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Abstract. This paper describes a simple idea to improve (text) diffusion in block ciphers
that use MDS codes but that take more than a single round to achieve full (text) diffusion.
The Rijndael cipher family is used as an example since it comprises ciphers with different
state sizes. A drawback of the new approach is the additional computational cost, but it is
competitive compared to large MDS matrices used in the Khazad and Kuznyechik ciphers.
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1 Introduction

Diffusion is one of C. Shannon’s principles [11] for designing secure symmetric-key cryptographic
algorithms. Achieving fast diffusion is modern cipher designs means the use of Maximum Distance
Separable (MDS) codes [8], which was pioneered in the works by Vaudenay [12], Rijmen et al. [9],
Daemen and Rijmen [4].

In the Rijndael block cipher family [5, 6], a single 4×4 MDS matrix operating in GF(28) is used
for all cipher members, although the state size ranges from 16 to 32 bytes organized as 4× 4 up to
4× 8 cipher states.

This MDS matrix (1) is the redundancy check part of a generator matrix of an [8, 4, 5] MDS
code [8] and is used in the MixColumns operation in the finite filed GF(28) under the irreducible
polynomial x8 + x4 + x3 + x+ 1. The subscript x in (1) means hexadecimal notation.

02x 03x 01x 01x
01x 02x 03x 01x
01x 01x 02x 03x
03x 01x 01x 02x

 (1)

Complete text diffusion1 is Rijndael takes two or more rounds depending on the block size [6].
Other block cipher designs, such as Khazad [3] and Kuznyechik [1], achieve full text diffusion in

a single round by using comparatively larger MDS matrices. In Khazad, the state size consists of 8
bytes while its MDS matrix M is 8×8. Let MC denote the MDS matrix transformation in Khazad,
and let X ∈ (GF(28))8 denote the cipher state as a 1× 8 row vector. Then,

MC(X) = X ∗M (2)

or
MC(X) = M ∗XT (3)

1 For this paper, complete or full (text) diffusion means that each byte of the output cipher state depends
on all bytes of the input cipher state.



where XT denotes a 8× 1 column vector. In a single matrix multiplication, according to (2) or (3),
each byte of MC(X) depends linearly on each byte of X.

Likewise for the Kuznyechik cipher where the state X consists of 16 bytes (as a row or column
vector) and its MDS matrix M in 16× 16.

The faster diffusion in Khazad and Kuznyechik is offset by a higher computational cost per round
compared to the cost per round in the Rijndael cipher family which uses a 4× 4 MDS matrix.

Let the round operations in Rijndael be denoted by AKi for the AddRoundKey operation of
the i-th round, MC for MixColumns, SR for ShiftRows, and SB for SubBytes. Further details for
each operation can be found in [6]. A full round in Rijndael will be denoted ρi, and defined as

ρi(X) = AKi ◦MC ◦ SR ◦ SB(X) = AKi(MC(SR(SB(X)))),

where2 X is the 4×m internal cipher state with 4 ≤ m ≤ 8.
A simple idea we explore to achieve full (text) diffusion in a single round of an SPN block cipher

design with an n×m state such as the Rijndael cipher family, is to use two small MDS matrices of
orders n and m, respectively, one multiplied on the left-hand side and the other on the right-hand
side of the state. So, instead of the round function ρi, we have the modified round function

ρ′i(X) = AKi(MC’(SB(X)))

where
MC’(X) = M1 ∗X ∗M2

with M1 a 4× 4 MDS matrix, M2 a m×m MDS matrix and 4 ≤ m ≤ 8.
Example: consider an MDS matrix M of order n = m = 2 and a 2×2 cipher state X with entries

(a, b, c, d) organized as in (4). Let the MDS matrix elements be the nonzero tuple (m1,m2,m3,m4).
Multiplying M on the left of X results in the intermediate state X ′:

M ∗X =

[
m1 m2

m3 m4

]
∗
[
a b
c d

]
= X ′ =

[
a.m1 + c.m2 b.m1 + d.m2

a.m3 + c.m4 b.m3 + d.m4

]
(4)

where . and + are the multiplication and addition operations in a finite field.
The (text) diffusion is not yet complete since each entry of X ′ depends on only two (out of four)

original state entries. Further, multiplying X ′ by M on the right-hand side, results in X ′′:

X ′ ∗M =

[
a.m1 + c.m2 b.m1 + d.m2

a.m3 + c.m4 b.m3 + d.m4

]
∗
[
m1 m2

m3 m4

]
= X ′′ =[

(a.m1 + c.m2).m1 + (b.m1 + d.m2).m3 (a.m1 + c.m2).m2 + (b.m1 + d.m2).m4

(a.m3 + c.m4).m1 + (b.m3 + d.m4).m3 (a.m3 + c.m4).m2 + (b.m3 + d.m4).m4

]
The first matrix multiplication guarantees diffusion per column of X while the second matrix mul-
tiplication guarantees diffusion per row of X ′. When multiplied on both sides of X, the result X ′′

depends on all four original inputs (a, b, c, d) of X, that is, complete text diffusion is achieved in a
single round assuming both matrix multiplications are performed in the same round.

If M is not involutory3, then there will be a performance gap between the encryption and
decryption operations since for encryption M ∗X ∗M will not cost the same as M−1 ∗X ∗M−1 for
decryption. To balance the computational cost for cipher states that are square matrices, there are
two alternatives:
2 Note that in Rijndael, the state X is not a row vector nor a column vector, but a rectangular matrix.
3 An involutory matrix M is its own inverse: M = M−1.
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(i) use an involutory MDS matrix M , so that the transformation M ∗ X ∗ M is the same (and
therefore, costs the same) for both encryption and decryption;

(ii) M is not involutory. In this case, M ∗ X ∗ M−1 can be used for encryption and the inverse
transformation for decryption will be M−1 ∗X ∗M , which again, will cost the same for both
operations.

The approach (i) is appropriate for the Anubis cipher [2], whose matrix is involutory, leading to
the same computational cost for both encryption and decryption.

For the AES cipher, whose MDS matrix (1) is not involutory, the approach (ii) leads to the use
of (1) and its inverse matrix (5) for both encryption and decryption, making the new combined
transformation MC’ have the same cost.

0Ex 0Bx 0Dx 09x
09x 0Ex 0Bx 0Dx

0Dx 09x 0Ex 0Bx

0Bx 0Dx 09x 0Ex

 (5)

Let M be the AES matrix (1) and let the state matrix X be (6).

X =


a b c d
e f g h
i j k l
m n o p

 (6)

Let X denote the internal AES state after SubBytes. If we remove ShiftRows and apply (1) on
the left of X, the partial state X ′ is (7):

X ′ = M ∗X =


2x 3x 1x 1x
1x 2x 3x 1x
1x 1x 2x 3x
3x 1x 1x 2x

 ∗


a b c d
e f g h
i j k l
m n o p



=


2xa+ 3xe+ i+m 2xb+ 3xf + j + n 2xc+ 3xg + k + o 2xd+ 3xh+ l + p
a+ 2xe+ 3xi+m b+ 2xf + 3xj + n c+ 2xg + 3xk + o d+ 2xh+ 3xl + p
a+ e+ 2xi+ 3xm b+ f + 2xj + 3xn c+ g + 2xk + 3xo d+ h+ 2xl + 3xp
3xa+ e+ i+ 2xm 3xb+ f + j + 2xn 3xc+ g + k + 2xo 3xd+ h+ l + 2xp

 (7)

The final state after a single round is X ′′ = X ′ ∗M−1 = M ∗X ∗M−1 depicted in (8):

X ′′ =


a′′ b′′ c′′ d′′

e′′ f ′′ g′′ h′′

i′′ j′′ k′′ l′′

m′′ n′′ o′′ p′′

 (8)

where, a′′ = (2xa+3xe+i+m).Ex+(2xb+3xf+j+n).9x+(2xc+3xg+k+o).Dx+(2xd+3xh+l+p).Bx,
b′′ = (2xa+3xe+ i+m).Bx+(2xb+3xf+j+n).Ex+(2xc+3xg+k+o).9x+(2xd+3xh+ l+p).Dx,
c′′ = (2xa+3xe+ i+m).Dx+(2xb+3xf+j+n).Bx+(2xc+3xg+k+o).Ex+(2xd+3xh+ l+p).9x,
d′′ = (2xa+3xe+ i+m).9x+(2xb+3xf+j+n).Dx+(2xc+3xg+k+o).Bx+(2xd+3xh+ l+p).Ex,
e′′ = (a+2xe+3xi+m).Ex+(b+2xf+3xj+n).9x+(c+2xg+3xk+o).Dx+(d+2xh+3xl+p).Bx,
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f ′′ = (a+2xe+3xi+m).Bx+(b+2xf+3xj+n).Ex+(c+2xg+3xk+o).9x+(d+2xh+3xl+p).Dx,
g′′ = (a+2xe+3xi+m).Dx+(b+2xf+3xj+n).Bx+(c+2xg+3xk+o).Ex+(d+2xh+3xl+p).9x,
h′′ = (a+2xe+3xi+m).9x+(b+2xf+3xj+n).Dx+(c+2xg+3xk+o).Bx+(d+2xh+3xl+p).Ex,
i′′ = (a+e+2xi+3xm).Ex+(b+f+2xj+3xn).9x+(c+g+2xk+3xo).Dx+(d+h+2xl+3xp).Bx,
j′′ = (a+e+2xi+3xm).Bx+(b+f+2xj+3xn).Ex+(c+g+2xk+3xo).9x+(d+h+2xl+3xp).Dx,
k′′ = (a+e+2xi+3xm).Dx+(b+f+2xj+3xn).Bx+(c+g+2xk+3xo).Ex+(d+h+2xl+3xp).9x,
l′′ = (a+e+2xi+3xm).9x+(b+f+2xj+3xn).Dx+(c+g+2xk+3xo).Bx+(d+h+2xl+3xp).Ex,
m′′ = (3xa+e+i+2xm).Ex+(3xb+f+j+2xn).9x+(3xc+g+k+2xo).Dx+(3xd+h+ l+2xp).Bx,
n′′ = (3xa+e+ i+2xm).Bx+(3xb+f+j+2xn).Ex+(3xc+g+k+2xo).9x+(3xd+h+ l+2xp).Dx,
o′′ = (3xa+e+ i+2xm).Dx+(3xb+f+j+2xn).Bx+(3xc+g+k+2xo).Ex+(3xd+h+ l+2xp).9x,
p′′ = (3xa+e+ i+2xm).9x+(3xb+f+j+2xn).Dx+(3xc+g+k+2xo).Bx+(3xd+h+ l+2xp).Ex,
and every byte of X ′′ depends linearly on every byte of the original state X.

So far we considered cipher states as square matrices such as the 4× 4 state of AES.

For rectangular states, such as the 24-byte state of Rijndael-1924, an alternative approach is to
use two MDS matrices: a 4×4 matrix M1 and a 6×6 matrix M2. This situation is more asymmetric
because M1 and M2 have different dimensions.

Let X denote the 4×6 cipher state of Rijndael-192. The new diffusion layer applied to Rijndael-
192 would remove ShiftRows and consist of M1 ∗X ∗M2 for encryption (where X is the cipher state
after SubBytes), and M−1

1 ∗X ∗M−1
2 for decryption. Although this modified Rijndael-192 is more

expensive (per round) than the original Rijndael-192, it is wya cheaper than using a (much) larger
24× 24 MDS matrix (which is the approach used in Khazad and Kuznyechik).

Since the state of Rijndael-192 is not square but rectangular, it is not possible to use the same
matrix on both sides of the internal state X. But, it is still possible to use involutory MDS matrices
of orders 4 and 6, so that encryption and decryption share the same computational cost5.

For Rijndael-256, which uses a 32-byte state, an alternative diffusion layer uses two MDS matri-
ces: a 4× 4 matrix M1 and a 8× 8 matrix M2. Let X denote the 4× 8 cipher state of Rijndael-256.
The new diffusion layer of Rijndael-256 would remove ShiftRows and consist of M1 ∗ X ∗ M2 for
encryption (where X is the cipher state after SubBytes), and M−1

1 ∗X ∗M−1
2 for decryption. Al-

though it is more expensive per round than Rijndael-256, using M1 and M2 is still much cheaper
than using a 32× 32 MDS matrix to achieve full text diffusion in a single round.

2 Performance

The exact performance loss of any modified Rijndael cipher compared to the original Rijndael design
will depend on the exact MDS matrix coefficients and also on the metric used [7].

To get a rough estimate of the computational cost of the MC and MC’ layers, we will restrict
the analysis to the AES cipher with 128-bit keys, which we denote as AES-128.

To measure the cost of text diffusion in AES, a software implementation was timed (in CPU
cycles) in an Intel Core i5 CPU, for a several 128-bit text blocks and keys, with and without the
diffusion components.

The average timings in #CPU cycles are in Tables 1 and 2.

4 The suffix indicates the block size in bits.
5 We do not provide any particular MDS matrix of order 6 here, but [10] is a very good source of MDS
matrices of different orders.
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Table 1. Average #CPU cycles for one 128-bit text block AES-128 encryption/decryption.

#CPU cycles per AES-128 encryption #CPU cycle per AES-128 decryption

5.066100 (in 10000 trials) 4.522200 (in 10000 trials)
3.977120 (in 100000 trials) 4.103070 (in 100000 trials)
3.876024 (in 1000000 trials) 3.970893 (in 1000000 trials)

Table 2. Average #CPU cycles for one 128-bit text block AES-128 encryption/decryption without the
MixColumns layer.

#CPU cycles per AES-128 encryption #CPU cycle per AES-128 decryption

2.977600 (in 10000 trials) 3.130500 (in 10000 trias)
2.920230 (in 100000 trials) 3.111800 (in 100000 trials)
2.985882 (in 1000000 trials) 2.941333 (in 1000000 trials)

From the last lines in Tables 1 and 2, the difference is 3.8760 − 2.9858 = 0.8901 CPU cycles,
which means 0.8901/3.8760 ≈ 0.2296 ie. the MixColumns layer is estimated to cost roughly 23% of
each 10-round AES-128 encryption of a 128-bit text block.

Likewise, for AES-128 decryption, the difference is 3.970893− 2.941333 = 1.02956 CPU cycles,
which means 1.02956/3.970893 ≈ 0.2592 ie, the InvMixColumns layer is estimated to cost roughly
26% of each 10-round AES-128 decryption of a 128-bit text block. This result corroborates the fact
that InvMixColumns costs more than MixColumns.

Thus, if we assume the approach (ii) for a modified 10-round AES-128 encryption ie. multiplying
the cipher state with matrix (1) on the left and matrix (5) on the right would cost roughly 26%
more than the original AES-128.

We leave a more precise cost estimate for future analysis. The same applies to other members
of the Rijndael cipher family.

Comparatiively, if we were to multiply the AES-128 state by a 16× 16 MDS matrix M16 as in
the Kuznyechik cipher, we would have to consider that M16 can accomodate sixteen 4× 4 matrices
inside it. We do not go into the details of what the M16 entries are, but the computational cost of
multiplying a 16-byte state (e.g as a row vector) by M16 would be more than sixteen times that of a
single 4× 4 MDS matrix because M16, being itself MDS, cannot have sixteen identical copies of the
same 4× 4 MDS matrix. Therefore, M16 would cost more than sixteen MixColumns operations.

3 Security

Concerning security against DC and LC, we restrict the analysis to AES, and consider two situations:

(a) the original AES,
(b) a modified AES where there is no ShiftRows transformation and the MixColumns operation

is replaced by M ∗X ∗M−1, where X is the AES state, M is the matrix (1), and M−1 is its
inverse (5).

In (a), complete text diffusion is achieved after two full rounds, and the sequence of the minimum
number of (differentially or linearly) active S-boxes (across five rounds) follows the pattern: 1-4-16-
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4-1. Therefore, it takes four rounds to reach 25 active S-boxes, which is enough to protect the AES
against DC and LC [6].

In (b), complete text diffusion is achieved after one round, and the sequence of minimum number
of (differentially or linearly) active S-boxes (across five rounds) becomes 1-16-1-16-1 in the worst
case. This means that theoretically, less than four rounds will not provide enough active S-boxes
to protect the modified cipher against DC and LC. At least four rounds will still be needed, which
is the same number of rounds needed for the original AES. Therefore, security against DC and LC
does not decrease with the new design.

4 Conclusions

This paper proposed a simple idea to achieve full text diffusion in a single round in SPN ciphers
using small MDS matrices.

As examples, the Rijndael cipher family was used only to illustrate this idea. This paper does
not suggest that the Rijndael (or the AES) designs should be changed. The Rijndael cipher family
simply has rectangle-shaped states that are convenient to illustrate our arguments and this fact
allows us to show the flexibility of our approach to non-square-shaped cipher states.

Our idea has advantages and drawbacks. An immediate advantage is the faster diffusion (in a
single round) of existing cipher designs, which may help counter some attacks that exploit slow
diffusion (further details/study is needed here). A drawback is the additional computational cost
per round, since an additional MixColumns operation is required per round.

Nonetheless, our new approach with small MDS matrices still allows fast diffusion with much
lower cost compared to using largerMDS matrices, like in the Khazad and Kuznyechik block ciphers.
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