
A New Approach Towards Encrypted Data
Sharing and Computation: Enhancing Efficiency

Beyond MPC and Multi-Key FHE

Anil Kumar Pradhan

Vaultree Ltd.

Abstract. In this paper, we introduce a novel approach to Multi-Key
Fully Homomorphic Encryption (MK-FHE) that enhances both efficiency
and security beyond the capabilities of traditional MK-FHE and Multi-
Party Computation (MPC) systems. Our method generates a unified key
structure, enabling constant ciphertext size and constant execution time
for encrypted computations, regardless of the number of participants in-
volved. This approach addresses critical limitations such as ciphertext
size expansion, noise accumulation, and the complexity of relineariza-
tion, which typically hinder scalability in multi-user environments. We
also propose a new decryption method that simplifies decryption to a
single information exchange, in contrast to traditional multi-key FHE
systems that require information to be passed between all parties se-
quentially.
Additionally, it significantly enhances the scalability of MK-FHE sys-
tems, allowing seamless integration of additional participants without in-
troducing performance overhead. Through theoretical analysis and prac-
tical implementation, we demonstrate the superiority of our approach in
large-scale, collaborative encrypted computation scenarios, paving the
way for more robust and efficient secure data processing frameworks.
Further more, unlike the threshold based FHE schemes, the proposed
system doesn’t require a centralised trusted third party to split and dis-
tribute the individual secret keys, instead each participant independently
generates their own secret key, ensuring both security and decentraliza-
tion.

Keywords: Multi-Party Computation, Multi-Key FHE, Fully Homomorphic
Encryption (FHE)

1 Introduction

The rapid advancement of cloud computing and distributed systems has led to
a growing demand for secure and efficient methods of encrypted data sharing
and computation across multiple parties. As organizations increasingly rely on
cloud infrastructure for collaboration and data processing, the need to perform
computations on sensitive data without compromising privacy has become crit-
ical. Traditional encryption techniques are insufficient for this purpose, as they



require data to be decrypted for processing, exposing it to potential threats.
Hence, more advanced cryptographic techniques, such as Multi-Party Compu-
tation (MPC) and Multi-Key Fully Homomorphic Encryption (MK-FHE), have
gained significant attention for their ability to perform secure computations on
encrypted data [2,13,24]. However, both MPC and MK-FHE come with notable
limitations that hinder their practicality in large-scale applications.

Multi-Party Computation (MPC) provides a powerful framework for secure
computation by enabling multiple parties to collaboratively compute a function
over their inputs without revealing them to one another [15,19]. This is achieved
through complex interactive protocols that allow each participant to contribute
without exposing their data [3]. MPC’s flexibility allows it to handle a wide range
of computations, making it highly adaptable [5]. However, the interactive nature
of MPC presents scalability challenges, as the number of communication rounds
and the complexity of protocols grow rapidly with the number of participants.
This makes MPC less suitable for scenarios where large-scale, non-interactive
computation is required [10].

Fully Homomorphic Encryption (FHE) represents a breakthrough in cryptog-
raphy by enabling arbitrary computations on encrypted data without the need
for decryption [13, 14, 22]. FHE allows operations like addition and multiplica-
tion to be performed directly on ciphertexts, which opens up vast possibilities for
secure data processing in sensitive environments such as medical research, finan-
cial analysis, and cloud computing [1, 12]. However, standard FHE is typically
limited to single-user applications, making it challenging to extend its benefits
to multi-party systems where multiple users want to perform computations on
shared encrypted data [8, 18].

Multi-Key Fully Homomorphic Encryption (MK-FHE) was introduced as an
advanced version of FHE to support multi-user scenarios, allowing computations
on encrypted data from multiple participants without requiring them to decrypt
their data [7, 9]. In MK-FHE, each user encrypts their data with their own
key, and a computation can be performed on the combined ciphertexts without
ever exposing the underlying data [17]. This non-interactive approach overcomes
some of the limitations of MPC by removing the need for communication be-
tween parties during the computation phase [23]. However, MK-FHE introduces
new challenges, such as exponential growth in ciphertext size, increased noise
accumulation, and more complex relinearization processes as the number of par-
ticipants grows [21]. These issues become more pronounced as additional users
are added, resulting in exponential growth in computational overhead. This sig-
nificantly degrades performance and scalability, making MK-FHE impractical
for large-scale applications [6].

Despite these limitations, MK-FHE remains a promising solution for secure
multi-party computation. To address these challenges, this paper presents a novel
approach that addresses the inherent inefficiencies in existing systems. By intro-
ducing a unified key generation and management process, our method reduces
noise accumulation and maintains constant ciphertext size and execution time,
regardless of the number of participants [16]. This innovation enhances both

2



efficiency and scalability, making secure multi-party computation more prac-
tical and accessible for a broader range of applications [11]. This approach is
particularly well-suited for environments where the number of participants may
increase over time, such as collaborative cloud computing platforms, without
compromising performance or security [4, 20].

Higher-Level Design:

The core technical innovation in our approach lies in the novel key generation
process, and the simplified decryption mechanism, which together ensure both
efficiency and scalability. These innovations allow for secure and practical multi-
user encrypted computation without the typical performance overhead seen in
traditional Multi-Key Fully Homomorphic Encryption (MK-FHE) systems.

– Key Generation

• Each participant generates their own unique secret key and public key
independently, without relying on any centralized trusted entity.

• Key Exchange -1: Through a collaborative key exchange protocol, par-
ticipants combine their public keys to compute a unified group public
key and corresponding to a group secret key. This process effectively
amalgamates the secret keys of all participants without revealing them.

• Key Exchange -2: Participants execute another key exchange protocol to
compute a group relinearization key corresponding to a group secret key,
which is essential for efficient homomorphic multiplication.

– Encryption: All users encrypt their data using the group public key.

– Homomorphic Operations: Once the key generation process is complete, the
encryption, homomorphic addition, and multiplication operations follow the
standard procedures of single-key Fully Homomorphic Encryption (FHE)
systems.

– Decryption: Each participant generates a partial decryption key of the cipher-
text using their secret key, and these partial decryption keys are combined
to perform the final decryption.

Unlike traditional MK-FHE systems that require multiple sequential information
exchanges between participants, our approach enables all users to participate in
parallel that minimizes communication overhead and simplifies the decryption
process, further enhancing efficiency. Additionally, the partial decryption keys
are ciphertext-specific, ensuring that they cannot be reused across different ci-
phertexts, maintaining strong security.

3



New Multi-Key FHE Flow Diagram
This method of key generation not only maintains the constant ciphertext

size and execution time but also allows for seamless integration of additional
participants without impacting system performance. By reducing the computa-
tional burden associated with multi-user setups and eliminating the complexities
of traditional MK-FHE, our approach represents a significant advancement in
the field of homomorphic encryption, enabling more robust and efficient secure
computation frameworks.

This paper presents a significant advancement in the field of encrypted data
sharing and computation by overcoming the critical limitations of existing Multi-
Key FHE systems. The proposed approach not only enhances the practicality
and efficiency of secure data sharing and computation but also opens up new
possibilities for scalable, collaborative encrypted data processing. By reducing
the computational burden associated with multi-user systems, this approach
represents a leap forward in homomorphic encryption, enabling more robust and
efficient secure computation frameworks. Our contribution represents a signifi-
cant step forward in the development of homomorphic encryption technologies,
enabling more robust and efficient systems for secure data sharing and compu-
tation in distributed environments.

The rest of the paper is organized as follows: Preliminaries introduces the
foundational cryptographic concepts, including Fully Homomorphic Encryption
(FHE), Multi-Key FHE, and the Ring Learning with Errors (RLWE) problem,

4



that underpin the proposed scheme. Core Ideas and Analysis dives into the
Multi-Key Fully Homomorphic Encryption Protocol, explaining the key princi-
ples and innovative methods behind the system. In the Construction section, the
detailed steps of the cryptographic protocol are outlined, including key gener-
ation, encryption, and decryption processes. Security Analysis provides a com-
prehensive examination of the scheme’s resilience against cryptographic attacks,
focusing on confidentiality, integrity, and key security. The Performance Analysis
and Key Improvements section evaluates the system’s computational efficiency
and scalability, with a discussion on potential optimizations. Finally, Applica-
tions and Use-Cases explores practical scenarios in which the proposed MK-FHE
protocol can be applied, including privacy-preserving data analysis and collabo-
rative cloud computing environments.

2 Preliminaries

2.1 Overview of Encrypted Data Sharing and Collaboration

Multi-Party Computation (MPC): Multi-Party Computation (MPC) is a
cryptographic protocol that enables multiple parties to jointly compute a func-
tion over their private inputs while ensuring that no party learns anything about
the other parties’ inputs except for what can be inferred from the output. This
is achieved through techniques such as secret sharing and secure function eval-
uation, where inputs are split into shares distributed among the parties or en-
crypted, and the computation is carried out collaboratively.

Fully Homomorphic Encryption (FHE): A cryptographic method that
allows computation on ciphertexts, producing an encrypted result that, when
decrypted, matches the result of operations performed on the plaintexts. FHE
supports arbitrary computations on encrypted data.

Multi-Key Fully Homomorphic Encryption (Multi-Key FHE): Multi-
Key Fully Homomorphic Encryption (Multi-Key FHE) is an advanced crypto-
graphic method that extends the capabilities of Fully Homomorphic Encryption
(FHE) to support computations on encrypted data from multiple parties, each
using their own encryption key. This powerful technique allows data encrypted
under different keys to be combined and processed together, enabling joint com-
putation on sensitive data without requiring any party to reveal their private
inputs.

2.2 Advantages and Benefits of Multi-Key FHE

Multi-Key Fully Homomorphic Encryption offers significant advantages over tra-
ditional Multi-Party Computation, particularly in scenarios where non-interactive,
secure computation is required. Its ability to perform computations on encrypted
data from multiple parties, combined with strong privacy guarantees, scalability,
and efficiency, makes it a powerful tool for privacy-preserving applications in di-
verse fields. While MPC provides flexibility and adaptability, Multi-Key FHE’s

5



non-interactive nature and robust security make it an increasingly attractive
option for secure, collaborative computation. Conclusion

Both MPC and Multi-Key FHE address the need for secure multi-party com-
putation, but they approach the problem differently. MPC focuses on interactive
protocols where privacy is maintained through secret sharing and controlled com-
munication, making it flexible but sometimes complex. In contrast, Multi-Key
FHE allows non-interactive computation on encrypted data, offering strong se-
curity but often at a higher computational cost and with less flexibility in terms
of the types of computations that can be performed. Each has its advantages,
with MPC being more general and adaptable, while Multi-Key FHE is powerful
for specific use cases involving encrypted data. Comparison Between MPC and
Multi-Key FHE

Aspect Multi-Party Computation
(MPC)

Multi-Key Fully
Homomorphic Encryption

Computation
Method

Interactive: Requires multiple
rounds of communication between
parties.

Non-interactive: Computation is
performed on encrypted data
without interaction.

Privacy
Model

Privacy through secret sharing and
controlled communication.

Strong privacy through encryption;
no plaintext exposure.

Flexibility Highly flexible, suitable for a wide
range of functions and scenarios.

Supports arbitrary computations
on encrypted data, ideal for
specific applications like encrypted
machine learning.

Complexity May require complex
communication protocols,
especially in the presence of
malicious adversaries.

Reduced complexity in multi-party
settings; streamlined
non-interactive processes.

Scalability May face challenges with
scalability due to communication
overhead.

Scales efficiently with the number
of parties, making it suitable for
large-scale applications.

Security Secure against semi-honest and
malicious adversaries with proper
protocols.

Strong security guarantees,
including resistance to quantum
attacks and minimal trust
assumptions.

Table 1. Comparison Between MPC and Multi-Key FHE

2.3 FHE Scheme

The Fully Homomorphic Encryption (FHE) scheme allows for arbitrary compu-
tations on encrypted data without needing to decrypt it. The BFV and BGV
scheme are based on the Learning With Errors (LWE) problem and its ring
variant, the Ring Learning With Errors (RLWE) problem.

Notation:

6



– [x]q = x mod q

Below is an explanation of the FHE schemes, including its key components,
encryption and decryption processes, and homomorphic operations.

Key Components

– Plaintext Space: Typically a polynomial ring Zt[X]/(Xn+1), where t is the
plaintext modulus.

– Ciphertext Space: Polynomials in Zq[X]/(Xn+1), where q is the ciphertext
modulus.

– Key Generation:
• Secret Key (sk): A polynomial s with small coefficients.
• Public Key (pk): Consists of two polynomials ([a.s+Encode(0, e)]q, [−a]q),

where a is random, and e being a small error polynomial. It represents
the encryption of zero.

• Relinearisation Key (rlk): rlk = (k1, k2) is a series of ciphertexts that
encrypt a function of the secret key. This is used to enable efficient
ciphertext multiplication.

Most FHE have the same structure but just different encoding/decoding
methods, here are some examples

– BFV: Encode(m, e) = ∆m+ e,∆ = [q/t],Decode(x) = [x/∆]
– BGV: Encode(m, e) = m+ te,Decode(x) = x mod t
– CRT-FHE [22]: Encode(m, e) = CRTp1,p2(m, e),Decode(x) = x mod p1

Encryption :
To encrypt a plaintext m ∈ Zt[X]/(Xn + 1):

– Choose a random small polynomial u and two small error polynomials e1
and e2.

– Compute the ciphertext c = (c0, c1) as:

c0 = pk[0] · u+ Encode(m, e1) mod q

c1 = pk[1] · u+ Encode(0, e2) mod q

Decryption To decrypt a ciphertext c = (c0, c1):

– Compute:
m′ = c0 + c1 · s mod q

– Decode

m = Decode(m′)

Homomorphic Operations

7



Addition Given two ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1):

– Compute the sum:

csum = (c1,0 + c2,0, c1,1 + c2,1)

– The resulting ciphertext csum encrypts the plaintext msum = m1 +m2.

Multiplication Given two ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1):

– Compute the product terms:

d0 = c1,0 · c2,0, d1 = c1,0 · c2,1 + c1,1 · c2,0, d2 = c1,1 · c2,1

– The resulting ciphertext is a three-tuple (d0, d1, d2), which needs to be re-
linearized to a two-tuple to maintain the structure of the ciphertext.

Relinearization Relinearization is used after multiplication to convert a three-
tuple ciphertext back into a two-tuple form. This involves using additional keys,
known as relinearization keys (k1, k2), to reduce the degree of the ciphertext.

– Use relinearization keys to compute:

crel = (d0 + k1 · d2, d1 + k2 · d2)

– The resulting ciphertext crel is a valid ciphertext that encrypts the product
of the original plaintexts.

Security
The security of the FHE schemes relies on the hardness of the RLWE prob-

lem. The assumption is that it is computationally infeasible to distinguish be-
tween samples from the RLWE distribution and uniformly random samples.

The ability to perform addition, subtraction, and multiplication on encrypted
data makes the FHE schemes suitable for a wide range of applications requiring
data privacy and security.

2.4 Multi-Key FHE

In the context of Ring Learning with Errors (RLWE), Multi-Key Fully Homo-
morphic Encryption (MK-FHE) can be described as follows:

Multi-Key Operation: Operations on ciphertexts encrypted under multiple
keys s1, s2, . . . , sk produce a ciphertext under the combined key sagg = (s1, s2, . . . , sk).

(c1s1 + · · ·+ cksk + Encode(m, e),−c1, . . . ,−ck)(
k∑

i=1

ci · si + Encode(m, e),−c1, . . . ,−ck

)

8



Decrypting this ciphertext requires the combined secret keys or collaborative
decryption process to recover the plaintext:

m = Decode

(
c0 +

k∑
i=1

ci · si

)
This structure maintains the privacy of individual keys while enabling joint

computations. This process ensures that the individual secrets si are never re-
vealed during decryption, maintaining privacy while allowing joint computation
on encrypted data.

Multi-Key FHE in the RLWE framework is powerful because it enables col-
laborative computations while preserving the privacy of each participant’s data.
The ring structure and RLWE problem underpin the security and efficiency of
this scheme, making it suitable for various secure multi-party applications.

2.5 Problems with Traditional Multi-Key FHE

– Ciphertext Size Explosion:

Tensor Product of Keys: In traditional Multi-Key FHE (MK-FHE), when
ciphertexts encrypted under different keys s1, s2, . . . , sk are multiplied, the re-
sulting ciphertext is encrypted under the tensor product of these keys, leading
to an increase in size. Single Key Ciphertext

ct = (c0, c1)

Multi Key Ciphertext
ct = (c0, c1, ..., ck)

Ciphertext size grows linearly with increasing number of users. This growth slows
down homomorphic operations and increases storage requirements.

– Storage and Communication Overhead :

The larger ciphertext size Size(CT ) not only demands more storage but also
increases the communication overhead, particularly in applications where ci-
phertexts need to be transmitted across networks. This overhead is proportional
to the number of keys k involved, given by:

Overhead ∝ k × Size(CT )

– Re-linearization Complexity:

Re-linearization Process: After ciphertext multiplication in MK-FHE, the re-
sulting ciphertext must be reduced to a standard form, a process known as
re-linearization. This involves reducing the expanded key space back to a man-
ageable size, typically requiring additional keys (re-linearization keys rk). If the
original keys are s1, s2, the re-linearization process reduces the tensor product:

9



s1 ⊗ s2 → Relin(s1 ⊗ s2, rk)

This operation incurs significant computational overhead, often quantified
as:

ComplexityRelin ≈ O(N · k2)

where N is the polynomial degree in the ring R, and k is the number of keys.

– Increased Computational Complexity:

Key Aggregation: In MK-FHE, when performing operations on ciphertexts en-
crypted under multiple keys, the keys are aggregated into a combined key sagg =
(s1, s2, . . . , sk). This aggregation increases the complexity of encryption and de-
cryption processes, which can be expressed as:

ComplexityEnc/Dec/Addition ∝ O(k)

Ciphertext Growth: The ciphertext growth resulting from multi-key opera-
tions can be modeled by:

Size(CTsum) = Size(CT1) + Size(CT2) + · · ·+ Size(CTk)

This growth slows down homomorphic operations and increases storage re-
quirements.

– Decryption Complexity:

Collaborative Decryption: Decrypting a ciphertext in MK-FHE requires the col-
laboration of all participating users, where each user contributes their secret
key share. The decryption of a ciphertext CT under aggregated key sagg =
(s1, s2, . . . , sk) requires:

m =

(
c0 +

k∑
i=1

ci · si

)
mod t

This process adds complexity, particularly in distributed systems, and in-
creases the risk of inefficiency if any party is unavailable.

– Performance Overhead:
• Noise Growth: As operations are performed on ciphertexts in MK-FHE,

the noise level within the ciphertexts tends to grow more rapidly than
in single-key FHE. The noise growth can be modeled as:

Noisenew = Noiseold + Noiseadd/mul

where the additional noise Noiseadd/mul increases with the number of
keys k involved. This necessitates more frequent bootstrapping or noise
management operations, impacting performance.

10



• Execution Time: The execution time for homomorphic operations in MK-
FHE is also affected by the number of keys, as the complexity of man-
aging multiple keys and larger ciphertexts increases. The execution time
Texec can be expressed as:

Texec ∝ O(k · log(N))

where N is the polynomial degree, and k is the number of keys.

– Implementation Complexity:
• System Complexity: Implementing MK-FHE requires careful manage-

ment of key distribution, noise growth, and secure decryption protocols.
The system complexity can be quantified as a function of the number of
participants and the operations they perform:

ComplexitySystem ∝ O(k ·N · log(N))

where k is the number of keys and N is the polynomial degree.
• Error Propagation: Errors from any party’s contributions can propagate

throughout the system, potentially leading to incorrect results or neces-
sitating complex error correction mechanisms. This can be expressed as
an increase in the probability of error P (Error) with the number of keys:

P (Error) ∝ O(k · Errorsingle)

These challenges demonstrate the inherent trade-offs between the flexibility
of MK-FHE and the increased computational and implementation complexity.

In the next sections we described the a novel approach for encrypted data
sharing and computation that overcomes these challenges.

3 Core Ideas and Analysis: Multi-Key Fully
Homomorphic Encryption Protocol

In multi-party computing scenarios, Fully Homomorphic Encryption (FHE) en-
ables secure computation on encrypted data from multiple users without reveal-
ing their individual inputs. Traditional multi-key FHE schemes allow each user
to independently generate and encrypt data using their own secret and public
keys, but this introduces significant overhead during homomorphic operations.
The proposed novel approach for multi-key FHE protocol addresses these inef-
ficiencies by introducing a collaborative key exchange mechanism to compute a
common group public key and relinearization key, enabling more efficient homo-
morphic operations on data encrypted by multiple parties. This approach not
only preserves the privacy of individual participants but also simplifies the pro-
cess of computation and decryption, ensuring that no single party has access
to the aggregated group secret key while allowing secure decryption through a
collaborative process.

11



Phase 1: Key Generation In the key generation phase, each user indepen-
dently generates a private secret key sj , which remains confidential. The cor-
responding public key pkj is derived from the secret key and made publicly
available. A "Group Public Key" (gpk) is then generated from the individual
public keys of all users. This gpk corresponds to a hypothetical "Group Secret
Key" (gsk), which is an aggregation of the individual secret keys, but crucially,
the group secret key is never explicitly computed or accessible to any user. This
ensures that while the group public key can be used for encryption, the under-
lying group secret key remains unknown.

Each user’s public key is derived from their secret key as follows:

pkj = ([aj(Ljsj) + Encode(0, ej)]q,−aj) for j = 1, 2, . . . , k

where Encode(m, e) is an encoding function. In the BFV scheme, for in-
stance, Encode(m, e) = ∆m + e where ∆ = ⌊q/t⌋, and in the BGV scheme,
Encode(m, e) = te+m, with t being the plaintext modulus and q the ciphertext
modulus.

The aggregated group secret key can be expressed as follows

s =

k∑
j=1

Ljsj

This group secret key corresponds to a group public key gpk, which can be
written as an encryption of zero under the group secret key:

gpk = ([as+ Encode(0, e)]q,−a)

Substituting s, the group public key becomes:

gpk =

a k∑
j=1

sjLj + Encode(0, e)


q

,−a

 =

k∑
j=1

([asjLj + ej ]q,−a)

Thus, the group public key can be computed as the sum of individual public
keys. The key exchange process ensures that none of the participants need to
share their secret keys or rely on a trusted third party.

Phase 2: Generation of Relinearization Key Relinearization is a key oper-
ation in FHE to reduce the size of ciphertexts after multiplicative operations. In
this context, the relinearization key is an encryption of the square of the group
secret key, s2, further optimized as the encryption of wls2 for different powers l.

The relinearization key is defined as:

rlk =
{
E(wls2)

}⌊logw(q)⌋
l=0

where the square of the secret key is given by:

12



s2 =

 k∑
j=1

Ljsj

2

=

k∑
j=1

(Ljsj)
2 + 2

∑
1≤i<j≤k

LiLjsisj

Since no single user possesses the group secret key, another key exchange
process is required to compute the relinearization key. This is achieved in two
steps:

1. Each user j encrypts and publishes (Ljsj)
2 and 2LiLjsj for i ̸= j.

2. Each user i uses the published values to compute:

si ∗ E(2LiLjsj) + Encode(0, ej) = E(2LiLjsisj)

Once all this information is published, the relinearization key can be computed
by each user as:

k∑
j=1

E[wl(Ljsj)
2] +

∑
1≤i<j≤k

E(wl2LiLjsisj)

= E

wl

 k∑
j=1

Ljsj

2
 = E(wls2) for l = 1, 2, . . . , ⌊logw(q)⌋

Thus, each user has access to both the group public key and the group relin-
earization key.

Phase 3: Encryption and Homomorphic Computation Once the group
public key is established, each participant encrypts their data using gpk. Since
all data is encrypted under a common key, homomorphic operations such as
addition and multiplication can be performed on the encrypted data seamlessly,
as in single-key FHE schemes.

The uniform encryption scheme allows for efficient computation across data
from multiple participants without the additional complexity typically associated
with multi-key FHE systems.

Phase 4: Decryption All encrypted data and computed results are encrypted
with respect to the group secret key gsk, which no user possesses individually.
This ensures that no user can unilaterally decrypt the data. To decrypt, a re-
questing user must gain approval from all other participants.

Each participant generates a Partial Decryption Key (PDK) for the specific
ciphertext, ensuring that the PDK is ciphertext-specific and cannot be reused
for other decryption requests.

For a ciphertext ct = (c0, c1) encrypting a message m:

ct = ([as+ Encode(m, e)]q,−a)

13



Each user’s partial decryption key for this ciphertext is:

pdkj = [c1Ljsj + Encode(0, ej)]q for j = 1, 2, . . . , k

After collecting all the PDKs, the requesting user can compute:

c0 + k∑
j=1

pdkj


q

=

c0 + k∑
j=1

(c1Ljsj + Encode(0, ej))


q

=

c0 + c1

k∑
j=1

Ljsj +

k∑
j=1

Encode(0, ej)


q

=

c0 + c1s+

k∑
j=1

Encode(0, ej)


q

= Encode(m, e)

The message m can then be recovered by decoding Encode(m, e).

3.1 Difference between Old and New Decryption Method

New Decryption Diagram The new decryption method is described in the
3.1

New Decryption Diagram

Old Decryption Diagram The old decryption method is described in the 3.1

14



Old Decryption Diagram
In the traditional method, users must perform the "Partial Decryption" pro-

cess sequentially, with each user waiting for the previous one to complete before
beginning their own decryption. This limitation prevents parallelization and can
slow down the decryption process. In contrast, the new method allows all users to
generate their partial decryption keys simultaneously, enabling parallel process-
ing. This significantly improves efficiency and accelerates the overall decryption
process.

This multi-key FHE scheme allows each participant to independently gener-
ate secret and public keys while using a group key exchange protocol to derive
a common group public key and relinearization key. Data from different users,
encrypted under the same group public key, can be homomorphically computed
on efficiently. Decryption requires collaboration, ensuring privacy and security,
as no individual can decrypt the data alone.

4 Construction

This section provides a detailed framework of the proposed Multi-Key Fully
Homomorphic Encryption (MK-FHE) scheme, which enables secure multi-party
computations without compromising individual user privacy. It describes the
essential building blocks of the system, beginning with independent secret key
generation and the collaborative formation of a group public key, and group
relinearisation key. The section also covers the encryption mechanism, relin-
earization for efficient homomorphic multiplication, and the decryption process.
By combining these components, the proposed construction allows for efficient,
non-interactive computations on encrypted data while maintaining strong secu-
rity guarantees.

4.1 Terminologies

Consider a scenario where k users U1, U2, ..., Uk wish to perform computation on
their combined data, but they do not want to expose their data to each other.

Public Parameters:

15



– Ciphertext Modulus: q
– Plaintext Modulus: t
– RLWE Dimention: n
– Base and Level: (w,L = ⌊logw(q)⌋)
– Plaintext Space: A polynomial ring Zt[X]/(Xn+1), where t is the plaintext

modulus.
– Ciphertext Space: Polynomials in Zq[X]/(Xn+1), where q is the ciphertext

modulus.
– Participating Users: U1, U2, ..., Uk

All users must agree to use the same set of parameters including the Plain-
text Space and Ciphertext Space.

4.2 User Key Generation

In the key generation process, all participating users must agree on a common
mask a∗ ∈ Zq[X]/(Xn+1) and a shared set of values (L1, ..., Lk). These param-
eters will be used in the generation of public keys by each participant.

– Common Parameters for Key Generation:

[a∗, (L1, ..., Lk)]

Generating Secret Key Each participating user independently generates a
unique secret key that remains private. This ensures that no user shares their
secret key with others.

– For i = 1, 2, . . . , k
• User Ui generates a secret key si ∈ Zq[X]/(Xn + 1)

Generating User Public Key Each user independently generates their own
public key using their respective secret key and the agreed-upon common pa-
rameters.

Each user Ui performs the following steps to compute the public key

– Input: si, [a∗, (L1, ..., Lk)]
– Output: pki

Steps:

– Compute:

pki = ([a∗(Lisi) + Encode(0, ei)]q, [−a∗]q)

where ei is a small error polynomial.

– Return pki

The public key pki represents an encryption of zero. All users then publish their
public keys to the group.

(pki = [pki[0], pki[1]])
k
i=1

16



Users→ U1 U2 ... Uk

Secret Key → s1 s2 ... sk
Public Key → pk1 pk2 ... pkk

Table 2. User Keys

4.3 Generating Group Public Key

The Group Public Key gpk represents an encryption of zero with respect to a
Group Secret Key s , which is effectively a combination of the individual secret
keys from all participants. However, at no point during the process is the group
secret key explicitly computed or revealed, as the users do not share their secret
keys with each other. Although the group secret key remains hidden, the Group
Public Key gpk is derived using the individual public keys of the users, without
requiring access to their secret keys.

Algorithm: Generate Group Public Key

– Input: Public Keys of all user: (pk1, pk2, ..., pkk)
– Output: Group Public Key gpk
– Steps:

• Compute the sum of the first component of each user’s public key modulo
q:

gpk = (

k∑
i=1

pki[0] mod q, pk1[1])

• Return gpk

The first component of gpk can be expanded as:

k∑
i=1

pki[0] mod q =

k∑
i=1

a∗(Lisi) + Encode(0, ei) mod q

= a∗(

k∑
i=1

Lisi) + Encode(0,
k∑

i=1

ei) mod q = [a∗s+ Encode(0, e∗)]q

where e∗ =
∑k

i=1 ei. Thus, the group public key is:

gpk = ([a∗s+ Encode(0, e∗)]q, [−a∗]q)

Hence, the computed Group Public Key is indeed an encryption of zero with
respect to the Group Secret Key s, ensuring both correctness and security in the
multi-user homomorphic encryption setting.

17



4.4 Generating Re-linearisation Key

The relinearization key facilitates efficient homomorphic multiplication by allow-
ing ciphertexts to be relinearized after multiplication operations. Specifically, the
relinearization key is an encryption of the square of the Group Secret Key s2

under the same Group Secret Key s.
Let the encryption of a plaintext m under the secret key s be denoted as:

E(m, s) = ([a∗s+m+ Encode(0, e)]q, [−a∗]q)

For simplicity, we will use the notation E(m) for E(m, s). Consequently, the
relinearization key rlk can be expressed as:

rlk =
{
E(wl · s2)

}⌊logw(q)⌋
l=0

where w is a parameter used for encoding powers of the group secret key s2.
Since no single user holds the complete group secret key s, the generation

of the relinearization key requires a collaborative key exchange process. This
process is divided into two phases, each generating auxiliary keys that are later
combined to produce the final relinearization key.

Steps

– Key Exchange -1:
• Each participant generates the first set of auxiliary keys, termed "Auxil-

iary Keys - 1" and share them with all users. This can include encryption
of (Ljsj)

2 and 2LiLjsj .
– Key Exchange -2:

• Following the first exchange, participants generate the second set of aux-
iliary keys, termed "Auxiliary Keys - 2". The shared "Auxiliary Keys
- 1" are used in the process. This can include computing encryption of
2Lisi.Ljsj by multiplying si as plaintext to encryption of 2LiLjsj . These
keys are also published.

– Compute the Relinearisation Key
• The auxiliary keys from both exchanges are combined to compute the

relinearization key rlk.

This process ensures that the relinearization key is computed securely without
any party needing access to the full group secret key, maintaining the security
of the system while enabling efficient homomorphic operations.

4.5 Key Exchange -1

For each user Uj , where j = 1, 2, . . . , k, the following steps are performed to
generate the first set of auxiliary keys, denoted as Auxiliary Key - 1 Rj .

18



Auxiliary Key -1 [For each User Uj , j = 1, 2, ..., k,]

– Input:
• Secret Key: sj
• Group Pubic Key: gpk

– Output:
• Auxiliary Key -1 Rj

– Steps:
• Compute the Encryption of (Ljsj)

2 using the group public key

Rj [0] = (E(wl(sjLj)
2))

⌊logw(q)⌋
l=0

This represents the encrypted version of (Ljsj)
2, where wl is used for

encoding powers of (Ljsj)
2.

• Compute the Encryption of 2sjLiLj for all other users i ̸= j using the
Group Public Key:

Rj [1] = {(E(wl2sjLiLj))
⌊logw(q)⌋
l=0 : i = 1, ..., k, i ̸= j}

• Return and Publish Rj

Rj = (Rj [0], Rj [1])

So

Rj =
(
(E(wl(sjLj)

2))
⌊logw(q)⌋
l=0 , {{E(wl2sjLiLj)}⌊logw(q)⌋

l=0 : i = 1, ..., k, i ̸= j}
)

This completes the generation of Auxiliary Key - 1 for user Uj , ensuring secure
and encrypted contributions towards the relinearization process.

Users→ U1 U2 ... Uk

Aux Keys → E(wl(s1L1)
2) E(wl(s2L2)

2) ... E(wl(skLk)
2)

Table 3. Square Terms

U1 U2 ... Uk

U1 x E[wl2L1L2s1] ... E[wl2L1Lks1]

U2 E[wl2L2L1s2] x ... E[wl2L2Lks2]
...

...
...

. . .
...

Uk E[wl2LkL1sk] E[wl2LkL2sk] ... x
Table 4. Cross Multiplied Terms

19



4.6 Key Exchange -2

For each user Uj , where j = 1, 2, . . . , k, the following steps are performed to
generate the second set of auxiliary keys, denoted as Auxiliary Key - 2 Rj .

Auxiliary Key -2 [For User j]

– Input:
• Auxiliary Key -1: R[1] = {{E(wl ∗ 2siLiLj)}⌊logw(q)⌋

l=0 : i = 1, 2, ..., k}
• Secret Key: sj

– Steps:
• Compute the following for each user i = 1, 2, . . . , k:

R[2] =
{(

sj ∗ E(wl ∗ 2siLiLj) + Encode(0, ej)
)⌊logw(q)⌋
l=0

: i = 1, 2, ..., k
}

By multiplying the encrypted term E(wl · 2siLiLj) by sj , user j computes the
auxiliary contribution for the second key exchange phase. Further optimization
techniques like gadget decomposition and powers of 2 can be utilised to optimise
the multiplication. Simplify the expression:

R[2] =
{(

E(wl ∗ 2(Lisi)(Ljsj))
)⌊logw(q)⌋
l=0

: i = 1, 2, ..., k
}

This represents the encrypted interaction term 2(Lisi)(Ljsj), reflecting the com-
bined contribution of both users’ secret keys.

The resulting auxiliary key R[2] will be used in the final computation of
the relinearization key, ensuring that the process is securely performed without
exposing individual secret keys.

U1 U2 ... Uk

U1 x E(wl2L1s1L2s2) ... E(wl2L1s1Lksk)

U2 E(wl2L2s2L1s1) x ... E(wl2L2s2Lksk)
...

...
...

. . .
...

Uk E(wl2LkskL1s1) E(wl2LkskL2s2) ... x
Table 5. Cross Multiplied Terms

4.7 Computing Relinearization Key from Auxiliary Keys

– Input:
• Auxiliary Keys

∗ R[0] = {{E(wl(Lisi)
2)}⌊logw(q)⌋

l=0 : i = 1, 2, ..., k}
∗ R[2] = {{E(wl ∗ LisiLjsj)}⌊logw(q)⌋

l=0 : i = 1, 2, ..., k}
– Output:

20



• Relinearization Key: rlk

Steps:

– Compute Homomorphic Addition of Squared terms

X =

{
k∑

i=1

E(wl(Lisi)
2)

}⌊logw(q)⌋

l=0

– Compute Homomorphic Addition of Cross Multiplied terms

Y =

 ∑
1≤i<j≤n

E(wl · Lisi · Ljsj)


⌊logw(q)⌋

l=0

– Combine the Results to Generate the Relinearization Key

rlk = X + Y

– Return rlk

The combined result can be expressed as:

X + Y =

E(wl(Lisi)
2) +

∑
1≤i<j≤n

E(wl ∗ LisiLjsj)


⌊logw(q)⌋

l=0

=
{
E(wls2)

}⌊logw(q)⌋
l=0

Thus, the relinearization key rlk is an encryption of s2, allowing for secure
homomorphic operations without revealing individual users’ secret keys.

Set of all keys:

Users→ U1 U2 ... Uk

Secret Key → s1 s2 ... sk
Public Key → pk1 pk2 ... pkk

Group Public Key gpk = ([a∗s+ Encode(0, e∗)]q, [−a∗]q)

Group Relin Key rlk =
{
E(wls2)

}⌊logw(q)⌋
l=0

Table 6. User Keys

21



4.8 Encryption

In this step, all users encrypt their data using the Group Public Key (GPK),
following the standard public key encryption method as outlined in single-key
Fully Homomorphic Encryption (FHE) schemes.

Encrypt (m, gpk)

– Input:
• Plain text: m ∈ Zt[X]/(Xn + 1)
• Group Public Key: gpk = (gpk[0], gpk[1])

– Output:
• Ciphertext: c = (c0, c1)

To encrypt a plaintext m ∈ Zt[X]/(Xn + 1), the following steps are per-
formed:

– Steps:
• Choose a random small polynomial u and two small error polynomials

e1 and e2.
• Compute the ciphertext c = (c0, c1):

∗ The ciphertext c = (c0, c1) is computed using the group public key
gpk = (gpk[0], gpk[1]) as follows:

c0 = gpk[0] · u+ Encode(m, e1) mod q

c1 = gpk[1] · u+ Encode(0, e2) mod q

The Encode() function is defined according to the specific FHE scheme being
used, ensuring the correct transformation of plaintext and error terms into ci-
phertext form while maintaining homomorphic properties.

4.9 Decryption

Decryption in this system requires collaboration among participants, ensuring
that no single user can independently decrypt the data, thus maintaining pri-
vacy and security. Each participant generates a Partial Decryption Key (PDK)
specific to the given ciphertext, ensuring that the key is unique and cannot be
reused for decryption of other ciphertext. Once all the partial decryption keys
are collected from the participants, the requesting user can proceed with the full
decryption.

Each user Uj generates the partial decryption key as follows:
Generation of Partial Decryption Key (ct, sj)

– Input:
• Ciphertext: ct = (c0, c1)
• Secret Key of User Uj : sj

– Output:
• Partial Decryption Key pdkj

22



Steps:

– Compute

pdkj = [c1Ljsj + Encode(0, ej)]q for

where ej is a small error term, and Lj is the parameter associated with user Uj .
Once all the partial decryption keys are collected from the participants, the

requesting user can proceed with the full decryption.
Full Decryption (ct, {pdkj : j = 1, 2, ..., k})

– Input:
• Ciphertext: ct = (c0, c1)
• Set of Partial Decryption Keys: {pdk1, pdk2, ..., pdkk}

– Output:
• Plain text: m

Procedure:

– Compute the intermediate result

m∗ =

c0 + k∑
j=1

pdkj


q

– Decode the message

m = Decode(m∗)

The intermediate value m∗ simplifies as follows:

m∗ =

c0 + k∑
j=1

pdkj


q

=

c0 + k∑
j=1

(c1Ljsj + Encode(0, ej))


q

=

c0 + c1s+

k∑
j=1

Encode(0, ej)


q

= Encode(m, e)

where s is the Group Secret Key.
Finally, the plaintext m can be recovered by decoding m∗ = Encode(m, e),

yielding the original message.
In the traditional method, users must perform the "Partial Decryption" pro-

cess sequentially, with each user waiting for the previous one to complete before
beginning their own decryption. This limitation prevents parallelization and can
slow down the decryption process. In contrast, the new method allows all users to
generate their partial decryption keys simultaneously, enabling parallel process-
ing. This significantly improves efficiency and accelerates the overall decryption
process.

23



4.10 Homomorphic Operations

Since all data is encrypted under the group public key, homomorphic operations
such as addition and multiplication can be performed on the encrypted data
seamlessly, as in single-key FHE schemes.

The uniform encryption scheme allows for efficient computation across data
from multiple participants without the additional complexity typically associated
with multi-key FHE systems.

Addition Given two ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1):

1. Compute the sum:

csum = (c1,0 + c2,0, c1,1 + c2,1)

2. The resulting ciphertext csum encrypts the plaintext msum = m1 +m2.

Multiplication Given two ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1):

1. Compute the product terms:

d0 = c1,0 · c2,0, d1 = c1,0 · c2,1 + c1,1 · c2,0, d2 = c1,1 · c2,1

2. The resulting ciphertext is a three-tuple (d0, d1, d2), which needs to be re-
linearized to a two-tuple to maintain the structure of the ciphertext.

Relinearization Relinearization is used after multiplication to convert a three-
tuple ciphertext back into a two-tuple form. This involves using the group relin-
earization keys generated in the key generation process, to reduce the degree of
the ciphertext.

5 Security Analysis

The proposed cryptographic scheme introduces a novel approach to secure multi-
party computations through the Multi-Key Fully Homomorphic Encryption (MK-
FHE). In this section, we provide a detailed security analysis of the system, con-
sidering key security properties such as confidentiality, integrity, and resilience
against various cryptographic attacks. The security of the scheme is primarily
based on the hardness of the Ring Learning with Errors (RLWE) problem, a
well-established foundation in lattice-based cryptography.

24



5.1 Basic Analysis: User Secret Key Confidentiality

In this scheme, each user generates their own secret key independently, without
any need to share their key with others at any point during the process. This iso-
lation of secret keys ensures that no party can infer another user’s key, enhancing
confidentiality and minimizing the attack surface. The decentralized nature of
secret key generation ensures that even if communication channels between users
are compromised, the secret keys remain protected.

The process of secret key generation and usage follows strong principles of
cryptographic security, as users encrypt their data under their own secret key.
Since no secret keys are shared, the system inherently protects each user’s key
from exposure to adversaries, even if some parties in the system are compromised.

5.2 Semantic Security: RLWE-based Cryptosystem

The security of the entire system relies on the RLWE (Ring Learning with Errors)
cryptosystem, a lattice-based encryption technique known for its resistance to
both classical and quantum attacks. Since all protocols, including encryption,
key exchange, and homomorphic operations, are built on RLWE, the semantic
security of the proposed scheme is directly tied to the hardness of the RLWE
problem. As RLWE is a hard problem, breaking it is computationally infeasible
under standard cryptographic assumptions, ensuring the system is secure against
known attacks.

The RLWE problem can be formulated as follows: given a tuple (b = a ·
s + e,−a), where a is uniformly random from a ring, s is the secret, and e is a
small error, it is computationally infeasible to distinguish (b,−a) from a random
pair. This underpins the semantic security of the system, which ensures that
ciphertexts are indistinguishable from random noise, barring knowledge of the
secret key s.

Given that the encryption is based on the hardness of RLWE, an adver-
sary’s advantage in breaking the encryption scheme is negligible, provided the
underlying parameters are chosen correctly. The RLWE assumption guarantees
that recovering the plaintext from the ciphertext is as hard as solving the RLWE
problem, which is considered intractable under both classical and quantum com-
putational models:

c0 = as+ Encode(m, e1) mod q

This guarantees that an adversary who intercepts ciphertexts will not be able
to learn any meaningful information about the plaintexts, as the ciphertexts are
indistinguishable from random noise without knowledge of the decryption key.
Hence, the semantic security of the system is as strong as that of the underlying
RLWE crypto system.

5.3 Key Exchange/Key Generation Security

Public Key Generation The key exchange protocol ensures that each user’s
contribution to the group public key gpk remains secure. Users do not share their

25



secret keys sj , and instead, contribute masked values based on the common mask
a∗, ensuring security throughout the process.

pkj = (a∗ · sj + Encode(0, ej) mod q,−a∗)

where a∗ is a common random element, ensuring that no individual user’s secret
key is exposed during the process. The public key is secure because each contri-
bution is masked by a∗, and the randomness of ej and the RLWE assumption
ensures that no adversary can infer any participant’s secret key from the public
key or group public key gpk.

The group public key gpk = (gpk[0], gpk[1]) through a combination of inde-
pendent public keys, with no direct exposure of any individual secret key during
the process. The group public key acts as a composite of user contributions
without revealing individual secrets.

Thus, the group secret key or any user secret key cannot be extracted from
the key generation process, even in the presence of an adversary capable of
observing the entire public key generation exchange.

Relinearization Key Generation The relinearization key rlk is generated
to enable efficient homomorphic multiplication by transforming a product of
ciphertexts into a form compatible with the scheme’s encryption process. In the
proposed scheme, the relinearization key is the encryption of a function of group
secret key under the group secret key, ensuring that it does not leak any sensitive
information during the computation.:

rlk = E(s2)

where s is the group secret key. The encryption of the relinearization key ensures
that no sensitive information about s is revealed.

– Security of Auxiliary Keys: The auxiliary keys used for relinearization
are encrypted under the group secret key making them inaccessible to any
party that does not possess the group secret key. If the group secret key s
remains confidential, the auxiliary keys also remain secure. Thus, any op-
eration using these keys does not leak information about individual secret
keys.

This ensures that relinearization does not introduce vulnerabilities and that
the security of homomorphic operations is maintained throughout the computa-
tion process.

5.4 Decryption Security

Partial Decryption Key Confidentiality: During the decryption process,
each participant generates a partial decryption key specific to their secret key
and the ciphertext.

26



In the decryption phase, each user Uj generates a partial decryption key
(PDK) pdkj specific to the ciphertext ct = (c0, c1). The PDK is computed as:

pdkj = [c1Ljsj + Encode(0, ej)]q

Again the RLWE hardness assumption ensures that partial decryption keys do
not reveal the underlying user secret key. This property is critical for multi-party
decryption, as it prevents any user or external adversary from learning another
participant’s secret key through decryption operations.

Ciphertext-specific Decryption Keys: Partial decryption keys are tied to
specific ciphertexts, ensuring that even if a partial decryption key is intercepted,
it cannot be reused for other ciphertexts. This ciphertext-specific binding ensures
that decryption is secure and that leakage from one decryption operation does
not compromise other ciphertexts or decryption keys.

Mandatory Collaboration: Once all PDKs are collected, the final decryp-
tion is performed by summing them with c0:

m∗ =

c0 + k∑
j=1

pdkj


q

The plaintext m is then recovered through the decryption process:

m = Decode(m∗)

This structure guarantees that no single participant can decrypt the ciphertext
alone, and each PDK does not reveal the underlying secret keys, preserving the
confidentiality of individual users.

5.5 Other Security Practices

Secure Channel Usage To further enhance security, the system employs se-
cure communication channels for all key exchanges, including the generation of
the group public key, relinearization key, and partial decryption keys. By us-
ing secure channels, the scheme ensures that any information exchanged during
these critical phases is protected against eavesdropping, man-in-the-middle at-
tacks, and other network-based threats.

Using secure channels prevents adversaries from tampering with or intercept-
ing the messages exchanged during the key exchange and decryption processes,
thereby maintaining the integrity and confidentiality of the key generation and
usage protocols.

5.6 Summary

The security of the proposed MK-FHE scheme is rooted in several key principles:

– User Secret Key Confidentiality : Users generate and maintain independent
secret keys.

27



– RLWE-based Security : The encryption scheme is built on the hardness of the
RLWE problem.

– Key Generation and Decryption: The use of auxiliary and partial decryp-
tion keys ensures security during operations, while ciphertext-specific keys
protect against reuse.

– Secure Channels: The use of encrypted communication ensures that no sen-
sitive information is leaked during exchanges.

Together, these principles ensure that the system remains resilient against
cryptographic attacks while providing efficient and scalable secure multi-party
computation. Overall, the system achieves a strong balance between security
and efficiency, making it suitable for large-scale, collaborative encrypted data
processing.

6 Performance Analysis and Key Improvements

The comparison table 7 highlights the key differences between traditional Multi-
Key Fully Homomorphic Encryption (MK-FHE) and the proposed Multi-Key
FHE scheme.

7 Applications and Use-cases

The proposed Multi-Key Fully Homomorphic Encryption (MK-FHE) scheme
has the potential to revolutionize numerous industries by enabling secure, col-
laborative, and scalable data processing across multiple parties. The following
applications and use cases highlight the practical impact of our approach:

1. Collaborative Cloud Computing As businesses and organizations increas-
ingly rely on cloud-based platforms for data storage and computation, the
need for secure processing of sensitive data becomes paramount. Our MK-
FHE scheme allows multiple users to perform computations on encrypted
data stored in the cloud without revealing their private inputs. This enables
secure, joint data analysis and processing, with applications in:
– Secure Data Sharing : Multiple organizations can collaborate on analyz-

ing shared datasets (e.g., medical research, financial audits) while keep-
ing sensitive data encrypted and private.

– Cross-Organizational AI/ML Models: Organizations can collaboratively
train machine learning models on combined datasets without revealing
proprietary data, improving performance and insights in fields like pre-
dictive healthcare and fraud detection.

2. Privacy-Preserving Machine Learning The rise of artificial intelligence (AI)
and machine learning (ML) has created a demand for privacy-preserving
models, especially when using sensitive data such as healthcare records, fi-
nancial transactions, or user behavior patterns. Our MK-FHE scheme en-
ables secure, multi-party computation of encrypted data, allowing for:

28



Feature Traditional Multi-Key FHE Proposed Multi-Key FHE
Key Generation Each participant generates a

secret key and corresponding
public key independently. Keys

are combined through key
aggregation.

Each participant generates a
secret key and computes an
individual public key. Group
public key and relinearization

keys are computed using a
customized key exchange protocol.

Ciphertext Size Ciphertext size increases linerly
with the number of users, causing

significant overhead.

Constant and manageable:
Maintains a fixed ciphertext size,

independent of the number of
participants, enhancing efficiency.

Re-linearization Requires complex and
resource-intensive re-linearization
due to multiple key interactions.

Simplified process: Utilizes a
group relinerisation key,
drastically reducing the

complexity and computational
demands of re-linearization.

Noise Growth Rapid noise growth as a result of
complex relinearization requires

frequent bootstrapping, degrading
performance.

Controlled noise accumulation
due to simple relinearisation,
reducing the need for frequent

bootstrapping.
Decryption Collaborative decryption all

parties to work sequentially one
after another, which adds
complexity and potential

inefficiencies.

Decryption remains collaborative
but is optimized for efficiency,

uses parallel techniques.

Computational
Complexity

Increased complexity due to key
aggregation and large ciphertext

sizes.

Lower computational complexity,
with operations similar to

single-key FHE due to customized
key exchange protocol.

Storage and
Communication

Overhead

Substantial overhead from large
ciphertexts, especially

problematic in multi-party
scenarios.

Minimal overhead: Optimized
ciphertext sizes and efficient

communication protocols
significantly reduce storage and

transmission costs.
Performance
Overhead

Significant performance overhead
due to complex operations, large
ciphertexts, and frequent noise

management.

Optimized performance:
Maintains consistent efficiency

even as participant numbers grow,
avoiding the typical exponential

performance degradation.
Scalability Limited scalability due to

exponential growth in ciphertext
size and noise, hampering

large-scale adoption.

Highly scalable: Easily supports
an increasing number of

participants without performance
degradation, making it ideal for

large-scale applications.
Table 7. Key differences between traditional Multi-Key Fully Homomorphic Encryp-
tion (MK-FHE) and the proposed Multi-Key FHE scheme

29



– Private AI Inference: In scenarios where data owners need to perform
inference using an external model (e.g., facial recognition or sentiment
analysis), our scheme ensures that both the data and the model remain
encrypted, preserving privacy for all parties.

Federated Learning with Privacy: Multiple institutions can securely collab-
orate to build and train shared ML models without exposing individual
datasets, crucial in sectors like healthcare (e.g., predicting disease outbreaks)
and finance (e.g., anti-money laundering).

3. Financial Services The financial industry handles highly sensitive data that
requires stringent privacy and security measures. Our MK-FHE scheme en-
hances privacy-preserving computations for various financial services, includ-
ing:
– Anti-Money Laundering (AML): Banks and financial institutions can

collaborate on detecting suspicious transactions across different data
sources while keeping customer information private.

– Secure Risk Analysis: Financial institutions can perform joint risk assess-
ments on pooled, encrypted data to identify potential risks and trends
while ensuring that private data is never exposed.

4. Healthcare and Genomic Research The healthcare sector increasingly relies
on secure data sharing to improve diagnosis, treatment, and research. Our
MK-FHE scheme enables privacy-preserving collaboration between hospi-
tals, research institutions, and pharmaceutical companies, with applications
in:
– Medical Research: Multiple hospitals and research centers can jointly

analyze patient data, such as genome sequences or clinical trial results,
without compromising patient privacy. This could lead to breakthroughs
in personalized medicine and drug development.

– Collaborative Diagnosis and Treatment : Healthcare providers can collab-
oratively evaluate patient data while maintaining patient confidential-
ity, enabling better diagnostic models and treatment plans in privacy-
sensitive scenarios.

5. Digital Marketing and Privacy-Preserving Advertising Our MK-FHE scheme
allows for secure, privacy-preserving advertising strategies in digital market-
ing. Advertisers can target users based on encrypted data while ensuring that
sensitive user information remains confidential. Potential use cases include:
– Privacy-Preserving Behavioral Targeting : Advertisers can securely tar-

get users based on their behavior patterns without compromising their
privacy, ensuring compliance with data privacy regulations like GDPR.

– Encrypted Analytics: Businesses can run analytics on encrypted cus-
tomer data to gain insights into consumer preferences and behavior while
protecting personal information.

6. Privacy-Preserving Record Linkage In sectors like government, insurance,
and social services, combining datasets from different organizations for anal-
ysis often requires linking records that share common attributes. Using our
MK-FHE scheme, record linkage can be performed securely across encrypted
datasets, ensuring:

30



– Secure Data Integration: Organizations can combine and analyze data
without revealing sensitive details, useful in areas like social service as-
sessments, fraud detection, and public health initiatives.

– Anonymized Cross-Organizational Insights: Government agencies or NGOs
can collaborate on large-scale data analysis for policy-making, while en-
suring citizen privacy and security.

The wide-ranging applications of our Multi-Key FHE scheme demonstrate
its potential to reshape secure multi-party computation across industries. By
enabling efficient and scalable encrypted data processing, our approach provides
a foundation for privacy-preserving technologies that meet the growing demand
for data security and collaboration. From healthcare to finance, AI to digital
marketing, the proposed MK-FHE scheme enables new possibilities for privacy-
conscious, secure data-sharing and computation at scale.

8 Conclusion

In this paper, we have introduced a novel approach to Multi-Key Fully Homo-
morphic Encryption (MK-FHE) that addresses the key challenges of scalability,
efficiency, and security in multi-party encrypted computations. Our approach en-
ables secure computation across multiple participants while maintaining constant
ciphertext size and execution time, regardless of the number of users involved.

We demonstrated how our method overcomes the traditional limitations of
MK-FHE, such as noise growth, ciphertext expansion, and complex relineariza-
tion, by employing a unified group key structure. This advancement enhances
the scalability and practicality of homomorphic encryption systems, particularly
in environments where the number of participants may increase over time, such
as cloud computing, collaborative data analysis, and privacy-preserving machine
learning.

The security of our scheme is grounded in the hardness of the Ring Learning
with Errors (RLWE) problem, ensuring that the system is resistant to both
classical and quantum attacks. Moreover, our security analysis confirmed that
key generation, encryption, and decryption processes are designed to prevent
leakage of sensitive information, even in the presence of adversaries.

Overall, this work represents a significant step forward in the field of homo-
morphic encryption, enabling more efficient, scalable, and secure frameworks for
multi-party encrypted computations. By reducing computational complexity and
improving performance, our approach opens new possibilities for practical appli-
cations of homomorphic encryption in various industries, including healthcare,
finance, and digital marketing, where privacy and security are paramount.

References

1. Shaikha Al-Riyami et al. Privacy-preserving medical data sharing based on fully
homomorphic encryption. Journal of Biomedical Informatics, 2018.

31



2. Michael Armbrust et al. A view of cloud computing. Communications of the ACM,
53:50–58, 2010.

3. Michael Ben-Or et al. Completeness theorems for non-cryptographic fault-tolerant
distributed computation. In Proceedings of the twentieth annual ACM symposium,
1988.

4. Ranjan Bhaskar and Edan Beig. Cloud computing in Industry 4.0: Innovations
and challenges. Springer, 2022.

5. Peter Bogetoft et al. Secure multiparty computation goes live. Financial Cryptog-
raphy, 2009.

6. Zvika Brakerski et al. Leveled fully homomorphic encryption without bootstrap-
ping. In ACM CCS, 2014.

7. Hao Chen et al. Practical multi-key homomorphic encryption. In ACM CCS, 2017.
8. Jung Hee Cheon et al. Homomorphic encryption for arithmetic of approximate

numbers. In ASIACRYPT, 2017.
9. Ilaria Chillotti et al. Faster fully homomorphic encryption: Bootstrapping in less

than a second. In ASIACRYPT, 2016.
10. Ivan Damgård et al. Multiparty computation. Technical report, University of

Aarhus, 2012.
11. Léo Ducas et al. A blueprint for practical fully homomorphic encryption. In IACR

Cryptology, 2015.
12. Zekeriya Erkin et al. Privacy-preserving data aggregation in financial networks. In

Financial Cryptography, 2009.
13. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford

University, 2009.
14. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from

learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In EUROCRYPT, 2013.

15. Oded Goldreich. Foundations of cryptography: Volume 2. Cambridge University
Press, 2004.

16. Shai Halevi and Victor Shoup. Faster homomorphic linear transformations in helib.
In CRYPTO, 2019.

17. Shai Halevi and Victor Shoup. Algorithms in fully homomorphic encryption: A
survey. In Proceedings of the Third Workshop on Encrypted Computing and Applied
Homomorphic Cryptography, 2020.

18. Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic en-
cryption schemes fv and yashe. In IACR Cryptology, 2014.

19. Yehuda Lindell and Benny Pinkas. Secure multiparty computation for privacy-
preserving data mining. Journal of Privacy and Confidentiality, 1, 2009.

20. Peter Mell and Timothy Grance. The nist definition of cloud computing. Technical
report, National Institute of Standards and Technology (NIST), 2011.

21. Mathieu Mouchet et al. Multi-key fully homomorphic encryption: Challenges and
progress. Public Key Cryptography, 2020.

22. Anil Kumar Pradhan. A New CRT-based Fully Homomorphic Encryption. Cryp-
tology ePrint Archive, Paper 2024/1105, 2024.

23. Dan Rotaru et al. Practical multi-key fhe. In ACM CCS, 2021.
24. Dimitrios Zissis and Dimitrios Lekkas. Addressing cloud computing security issues.

Future Generation Computer Systems, 28:583–592, 2012.

32


	A New Approach Towards Encrypted Data Sharing and Computation: Enhancing Efficiency Beyond MPC and Multi-Key FHE

