
PAKE Combiners and Efficient Post-Quantum

Instantiations

Julia Hesse *

IBM Research Europe – Zurich
juliahesse2@gmail.com

Michael Rosenberg
Cloudflare Research

michael@mrosenberg.pub

Version 1.0, October 10, 2024

Abstract

Much work has been done recently on developing password-authenticated
key exchange (PAKE) mechanisms with post-quantum security. However,
modern guidance recommends the use of hybrid schemes—schemes which
rely on the combined hardness of a post-quantum assumption, e.g., Learn-
ing with Errors (LWE), and a more traditional assumption, e.g., decisional
Diffie-Hellman. To date, there is no known hybrid PAKE construction, let
alone a general method for achieving such.

In this paper, we present two efficient PAKE combiners—algorithms
that take two PAKEs satisfying mild assumptions, and output a third
PAKE with combined security properties—and prove these combiners
secure in the Universal Composability (UC) model. Our sequential com-
biner, instantiated with efficient existing PAKEs such as CPace (built
on Diffie-Hellman-type assumptions) and CHIC[ML-KEM] (built on the
Module LWE assumption), yields the first known hybrid PAKE.

Keywords: key agreement, password-based cryptography, post-quantum
cryptography

1 Introduction

Memorable passwords are the one of most commonly used forms of authentication
today, and exist across a wide variety of applications. While some applications,
such as website login, have users send their plaintext password, many large-
scale applications utilize password-authenticated key exchange (PAKE) and its
variants to limit the amount of information that can be intercepted. These include
iCloud Keychain escrow, 1Password user authentication, Facebook Messenger
chat history sharing, WhatsApp backup encryption, and passport chip access
control [fan24].

*The author was supported by the Swiss National Science Foundation (SNSF) under the
AMBIZIONE grant “Cryptographic Protocols for Human Authentication and the IoT”.

1

https://orcid.org/0000-0002-2875-6198
https://orcid.org/0000-0001-9784-125X

As a result of the widespread push from industry and government to move
towards post-quantum cryptography, many efficient lattice- and isogeny-based
PAKEs have been developed in recent years [BCP+23, ABJS24, AEK+22, IY23].
However, these constructions are not necessarily the end goal of the post-quantum
efforts. The largest rollout of a post-quantum protocol to date is that of TLS
1.3 with hybrid key exchange [ABBO24], i.e., key exchange which enjoys the
protection of both newer post-quantum constructions and classical constructions.
The purpose of the hybrid in this application is two-fold. Firstly, the newer,
less tested post-quantum hardness assumptions may turn out to be easier than
expected. Secondly, the newer implementations of the post-quantum algorithms
may turn out to have exploitable bugs. Perhaps unintuitively, the second is
considered by some as the more likely scenario [Wes24], and in fact already has
occurred [BBB+24]. For these reasons, it is important to have hybrid protocols
where possible. Unfortunately, no hybrid PAKE currently exists.

Non-solutions. The most common way to develop a primitive from a hybrid
assumption is to simply combine two copies of the primitive, with each copy
relying on a different assumption. However, the obvious combiners from other
cryptographic primitives do not work for PAKEs. Hybrid KEMs and hybrid
digital signature schemes can be constructed from the concatenation combiner :
separately execute two copies of the primitive, and output the hash or concatena-
tion of the outputs, respectively [BCD+24, BH23]. Let us attempt this for PAKE:
let P be the PAKE given by running some PAKE P1 and another PAKE P2 in
parallel using the same password pw and then outputting the hash H(K1,K2),
where Ki is the session key computed in Pi. This straightforward combiner is
only guaranteed to be as strong as the weaker of P1,P2. Intuitively, the reason
is that we made the situation worse by trusting two PAKEs with protecting
the password. For a concrete example, consider P1 to be KC-SPAKE2 [Sho20]
and P2 to be CAKE[ML-KEM] [BCP+23]. In the design of KC-SPAKE2, clients
send a MAC tag derived from their password-dependent Diffie-Hellman shared
secret. An attacker with a discrete-logarithm oracle (e.g., from a quantum
computer) can break P by merely observing one transcript of the KC-SPAKE2
subprotocol, and mount an offline attack where guesses are confirmed against the
MAC tag. CAKE, on the other hand, sends samples from the Module Learning
with Errors (MLWE) distribution, encrypted under the password. An attacker
with a decision-MLWE oracle who wishes to break P can observe one transcript
of the CAKE subprotocol to mount an offline attack, because the MLWE oracle
will reject with overwhelming probability when the password guess is wrong.
Hence, both assumptions have to hold in order for the concatenation combiner
to protect the password.

Another potential method to develop a hybrid PAKE is to use an existing
KEM-based PAKE construction, e.g., CAKE, and instantiate it with a hybrid
(concatenated) KEM. Similar to the above, this does not necessarily have the
combined security of the two underlying KEMs KEM1,KEM2. The key detail
is that CAKE encrypts the KEM public key (a concatenation of KEM1 and
KEM2 public keys) under pw. Thus, if either of the underlying public keys

2

has structure that makes it distinguishable from uniform, then trial decryption
on the CAKE encrypted public key yields an offline attack. Concretely, take
KEM1 to be X25519 and KEM2 to be ML-KEM (this concatenation KEM
essentially the X-Wing construction [BCD+24]). While X25519 public keys are
statistically close to uniform in the space {0, 1}32, ML-KEM public keys are only
computationally indistinguishable from uniform under the MLWE assumption.
If a passive attacker possesses an MLWE oracle, they may trial-decrypt the
encrypted concatenated public key, ignore the X25519 public key, and check if
the decrypted value is an MLWE sample. Thus, CAKE with X-Wing is at most
as secure as MLWE. A similar argument shows that the same is true for other
recent KEM-based PAKEs such as OCAKE [BCP+23] and CHIC [ABJS24].

Our contributions. In this paper we give a generalizable method for con-
structing hybrid PAKEs and demonstrate efficient instantiations. We present
two PAKE combiners: ParComb, a parallel combiner, executing both PAKEs in
parallel and hashing the results; and SeqComb, a sequential combiner, executing
the first PAKE and feeding the resulting session key into the second PAKE. We
prove the combiners’ security in the universal composability (UC) model with
random oracles and static corruptions.

For our ParComb combiner, which follows the blueprint of the usual concate-
nation combiner, we need to circumvent the above described insecurities. To
this end, we formalize a property of a PAKE that is sufficient to prove ParComb
secure. Intuitively, we demand that the password protection of both PAKEs used
in ParComb does not fatally break if any of the underlying computational assump-
tions break, i.e., their transcripts information-theoretically hide the password.
This ensures that none of the PAKEs leak information about the input password.
We identify a handful of PAKE protocols from the literature that satisfy this
unconditional hiding property. Unfortunately, none of these are post-quantum
PAKEs. So ParComb, while having zero round complexity overhead over its
building blocks, does not yet yield hybrid PAKE.

This is why we have to look into sequential combiner designs as well. Our
combiner SeqComb derives a shared key from a password through the first PAKE,
and then uses this shared key as a password in the second PAKE to derive another
shared key. The final key is, again, a (hashed) concatenation of both PAKE keys.
As in ParComb, the first PAKE consumes the plain password and hence must
enjoy the same unconditional hiding property as both PAKEs in ParComb. For
the second PAKE, however, we can get away with a weaker hiding property. This
is because we used the first PAKE as an entropy amplifier to derive unguessable
preshared keys from the passwords, and hence we do not rely on offline guess
protection from the second PAKE to protect these keys. We formalize a mild
hiding property, namely that the second PAKE’s transcript does not reveal
whether the first PAKE run was successful, that is sufficient to prove the security
of SeqComb. We identify KEM-based PAKEs with this mild hiding property,
namely CHIC [ABJS24], CAKE, and OCAKE [BCP+23]. Thus, when instantiated
with a post-quantum KEM such as ML-KEM or Saber [DKRV18], we get a
hybrid PAKE with a round complexity that is the sum of the underlying PAKEs’,

3

and computational overhead of only two hashes. To the authors’ knowledge, this
is the first description of a hybrid PAKE.

Finally, we remark that hybrid PAKE implies hybrid versions of other flavors
of PAKE. The Ω-method augmented PAKE (aPAKE) [GMR06] takes a generic
PAKE and signature scheme. Similarly, the LATKE identity-binding PAKE
(iPAKE) [KR24] takes a generic PAKE and identity-based key exchange (IBKE)
protocol. Since hybrid signatures [BH23] and IBKEs [KR24] are known, hybrid
PAKE implies hybrid aPAKE and iPAKE.

2 Preliminaries

2.1 Notation

We write probabilistic algorithms as Alg(x; r) where x denotes the input and r
denotes the random coins. We write y ← Alg(x) to denote sampling uniform r
and setting y := Alg(x; r), and x←$ S to denote sampling a uniform value from
a set S. For our security proofs we will consider probabilistic polynomial time
(PPT) adversaries, and denote them with calligraphic letters A. We use λ to
denote the security parameter.

In our pseudocode for ideal functionalities, assert checks the given condition,
and early-returns with “assertion failed” on failure. retrieve denotes retrieval
of a record with a specific marking; if no such record is present, this early-
returns with “no record.” We mark new variables introduced into the scope by a

retrieve using square brackets. We write Psid to denote execution of a PAKE
protocol P with session identifier sid.

2.2 Universal composability

The Universal Composability (UC) model [Can01] provides an alternative to
game-based security definitions. The model frames cryptographic protocols as
idealized functionalities, which can be thought of as black boxes with a tightly
constrained interface to the outside world. In the security game showing Π
UC-realizes the functionality F, the goal of an interactive Turing machine called
the environment Z is to distinguish between the ideal world and the real world,
which are defined as follows.

In the real world all the parties participate in Π, Z may view parties’ outputs,
and is permitted to give arbitrary instructions to a separate interactive Turing
machine, called the adversary A. The environment can arbitrarily ask the
adversary to view/modify/delay/drop messages between parties, corrupt parties,
and interact with any ideal functionalities F ′

i used to instantiate Π. In the
ideal world all the parties are dummies, speaking directly to F. In addition, the
adversary may also only interact with F, though it is still permitted to corrupt
parties.

Π UC-realizes F if for any A, there exists a simulator S of A such that any

4

Z has at most negligible advantage in distinguishing between A and S. That is,

IdealFS,Z
c≈ ExecA,Z

where the LHS refers to the probability ensemble consisting of the view of the
environment in the ideal world, and the RHS in the real world.

By [Can01, Theorem 11], it suffices to imagine that the adversary A is the
dummy adversary AD, which simply delivers backdoor messages generated by
the environment to the specified recipients, and delivers to the environment
all backdoor messages generated by the protocol parties, as well as the sender
machine’s identity.

There are two models in which the environment can corrupt parties. In
the static corruption model, the adversary may not corrupt any parties during
protocol execution. In the adaptive corruption model, the adversary may corrupt
parties at any time. In this work, we will consider adversaries who are allowed
static corruptions. We note that, since PAKE sessions are so short lived, and
static corruptions permit corruptions in between executions, this security model
is still quite strong.

To represent different instances of the same scheme, the UC model uses
session identifiers. Each party is given a session identifier sid on activation and
will only interact with other parties with the same sid. For clarity of presentation,
we will assume in our protocol definitions that session identifier establishment
has already occurred.

2.3 PAKE

A (balanced) password authenticated key-exchange protocol (PAKE) is a two-party
key-exchange protocol where parties use mutual knowledge of a low-entropy
password pw to establish a high-entropy session key K.

2.3.1 PAKE protocols

We define a rudimentary notion of a PAKE protocol by specifying its intput-
output behavior and correctness. Looking ahead, the following definition captures
the minimal guarantees that we can expect from a single PAKE building block
of our combiners, even when its security breaks.

Definition 1 (PAKE protocol). Let P be an interactive protocol between two
parties, P and P ′. We say P is a PAKE protocol if it satisfies the following
properties.

1. P takes input pw from P and pw′ from P ′

2. P produces output K for P and K ′ for P ′

3. If pw = pw′ then K = K ′

5

For any interactive protocol, a protocol round is the set of all messages that
can be sent in parallel from any point in the protocol [Gon93]. Thus, in a one-
round protocol, no message depends on another. We use syntax P = (Start,Finish)
for one-round PAKEs, defined as follows:

� Start takes as input a password pw and outputs a message x and a state
st, and

� Finish takes as input st and a message y and outputs a key.

2.3.2 Ideal PAKE functionality

The security goals for a PAKE are (1) to establish a high-entropy shared session
key when both parties are honest, (2) to prevent passive adversaries from learning
anything about the password, and (3) to limit active adversaries to one (or another
small constant) password guess(es) per protocol instance, even if given access
to session keys. These guarantees can be captured by the ideal functionality
FPAKE [CHK+05]. Some widely used protocols use a slight weakening of this
functionality, called lazy extraction PAKE (FlePAKE) [ABB+20], which permits
adversaries complete active attacks even after a session is already finished. In
this work we also make use of a novel functionality, a relaxed version of lazy
extraction PAKE (FrlePAKE), where the adversary additionally learns whether
the active attack was successful. We state all functionalities in Figure 1, and
include the small modifications from [AHH21] regarding adversary-controlled
keys.

Isolated parties. We introduce another small modification to our PAKE ideal
functionality. In the original definition, it is possible for a party to output a
session key before the counterparty has even started its session. In our definition,
we prevent these isolated parties from getting their session key. This modification
is crucial to using FPAKE in a combiner, since we rely on timely extraction from
a particular sub-PAKE, and cannot deal with output keys that were produced
without any interaction.

This new functionality is slightly stronger than the original, but this is not
a problem: any PAKE which UC-realizes the original FPAKE UC-realizes the
new one as well. Consider a UC simulator for a such a PAKE. We will show
that NewKey is never called on an isolated party. First, note if the simulator
calls NewKey on an isolated party, it is because the environment Z has triggered
the end to the protocol (this is because NewKey gives Z the session key, so Z
knows precisely when NewKey is called). Further, if NewSession has not been
called for the counterparty, it is because Z has not activated that party. So the
only case in which NewKey can be called on an isolated party is if only that
party was activated and the protocol has finished, i.e., the protocol is at most a
one-message PAKE. Since such PAKEs are impossible in the UC model,1 this
scenario never occurs.

1More specifically, PAKEs with negligible correctness error and at most one message are
impossible. An efficient offline attack is as follows. Let P be the initiator in the execution of a

6

Session management

On (NewSession, sid,Pj , pwi) from Pi

send (NewSession, sid,Pi,Pj) to A
if ∄(Session, sid,Pi,Pj , pwi) :

record (Session, sid,Pi,Pj , pwi)

Mark session fresh

Key generation and authentication

On (NewKey, sid,Pi,K
′) from A

retrieve (Session, sid,Pi, [Pj], [pwi])

with mark m ̸= completed

if m = fresh : assert ∃(Session, sid,Pj ,Pi, ·)

if m = compromised : Ki := K′

elif m = fresh and

∃(Key, sid, [Pj], [pwj], [Kj], fresh) s.t. pwi = pwj :

Ki := Kj

else : Ki ←$ {0, 1}λ

record (Key, sid,Pi, pwi,Ki,m)

Mark the session completed

send (sid,Ki) to Pi

Active session attack

On (TestPwd, sid,Pi, pw
′) from A

retrieve (Session, sid,Pi, [Pj], [pwi]) marked fresh

if pwi = pw′ :

Mark session compromised

send “correct” to A
else

Mark session interrupted

send “wrong” to A

Completed session attack

On (RegisterTest, sid,P) from A
retrieve (Session, sid,P, ·, ·) marked fresh

Mark the record interrupted and flag it tested

On (LateTestPwd, sid,P, pw′) from A
retrieve (Session, sid,P, . . .) flagged tested

Remove the flag

retrieve (Key, sid,P, [pw], [K], ·)
if pw = pw′ : set K′ := K

else :

Set K′ ←$ {0, 1}λ

Set K′ := ⊥
send (sid,K′) to A

Figure 1: The FPAKE, FlePAKE, and FrlePAKE ideal functionalities. The original

FPAKE functionality excludes all gray and dashed parts. Adding the dashed
interfaces without the line in dark gray yields the lazy password extraction
functionality FlePAKE. Adding the line in dark gray yields the relaxed lazy

extraction functionality FrlePAKE. In this paper, we include the line in light gray
in all functionalities, to prevent isolated parties from outputting a key.

2.3.3 Hiding properties of PAKEs

For our combiner constructions, we will require two specific security properties
from the underlying PAKEs.

Perfect password hiding. The first property we require is that of perfect
password hiding—that PAKE execution transcripts perfectly hide the password
(as opposed to relying on a computational indistinguishability assumption).
Crucially, we demand this property from PAKE protocols even in situations
where its security breaks, e.g., through the discovery of an algorithm that solves
the underlying computational assumption in polynomial time. Hence, we define
a standalone property rather than modifying the ideal PAKE functionality. We
restrict the definition to one-round PAKEs for simplicity and because the popular

one-message PAKE, sending message m to P ′. If Z permits P to send m, then P ′ immediately
outputs its session key K. This K is the output of a function f(pw, sid,m) (w.l.o.g., this is
deterministic, otherwise we have noticeable correctness error). Since Z knows sid and m, it
can test various pw until it receives an output that matches K.

7

PAKEs satisfying this property are all one-round anyway.2

We formally define perfect password hiding through the existence of a sim-
ulator that produces identically distributed protocol messages without access
to the password, but is still able to compute keys from simulated messages
and passwords, using a simulation trapdoor. We note that the existence of a
simulator for producing computationally indistinguishable transcripts follows
from the fact that a PAKE protocol UC-realizes FPAKE or FlePAKE. Essentially,
perfect password hiding demands that this part of the PAKE never breaks.

Definition 2 (Perfectly password-hiding one-round PAKE). Let P = (Start,Finish)
be a one-round PAKE protocol. We call P perfectly password hiding iff there
exist PPT algorithms Sim = (Start,ComputeKey) such that:

� Sim.Start is a probabilistic algorithm that takes as input a security parameter
1λ and outputs a tuple (x, τ)

� Sim.ComputeKey is a deterministic algorithm that takes as input (x, y, τy, pw)
and outputs a key

� Perfect hiding. For any pw, P.Start(pw) is identically distributed, where |1
denotes the first component of the output. In other words, every message
in the honest protocol is equally explained by any password.

� Trapdoor key computation. For any pw, (x, st) := P.Start(pw), and
(y, τy) := Sim.Start(1λ), it holds that Sim.ComputeKey(x, y, τy, pw) = P.Finish(st, y).

EKE, CPace, and SPAKE2 (Figure 2) are perfectly hiding one-round PAKEs.
This property follows immediately from the fact that their messages (Diffie-
Hellman key shares) are uniformly distributed for any fixed password, i.e., any
password equally explains any message.

PSK equality hiding. The second property we require is that of perfect PSK
equality hiding—that a PAKE, when executed by two parties using high-entropy
passwords (a.k.a., a preshared key, or PSK), does not leak whether the passwords
match. As before, we require this property even when the PAKE is otherwise
insecure. Note that this is a strictly weaker property than perfect password
hiding. We provide a proper definition below. Unlike with password hiding, we
define this property to include multi-round PAKEs.

Definition 3 (PSK Equality Hiding). Let P be a PAKE protocol. We say
that P is PSK equality hiding iff an active adversary observing two honest
parties interacting cannot distinguish between the case where the parties share
a high-entropy password and the case where they have distinct high-entropy
passwords.

Formally, we define the advantage of an adversary A as

AdvPEHP (A) =
∣∣2 · Pr[GPEH

b,P (A) = b | b←$ {0, 1}]− 1
∣∣ ,

2In fact, we do not know of a PAKE with this property that is not one round. The failure
modes were discussed briefly in the introduction, using KC-SPAKE2 and CAKE as examples.

8

Alice(sid, pw) Bob(sid, pw)

G := H0(sid, pw) G := H0(sid, pw)

r ←$ F s←$ F

R := rG R S := sG

S

Z := rS Z := sR

K := H1(sid, R, S, Z) K := H1(sid, R, S, Z)

return K return K

(a) The CPace PAKE [HL19]. The random oracle H0

outputs values in a prime-order group.

Alice(sid, pw) Bob(sid, pw)

r ←$ F s←$ F

R := Esid
pw(rG) R S := Esid

pw(sG)

S

Z := rDsid
pw(S) Z := sDsid

pw(R)

K := H1(sid, R, S, Z) K := H1(sid, R, S, Z)

return K return K

(b) The EKE PAKE [BM92]. G is a group generator,
and (E,D) are the encryption and decryption algorithms
of an ideal cipher.

Alice(sid, pw) Bob(sid, pw)

r ←$ F s←$ F

R := rG+ pw ·M R S := sG+ pw ·N
S

Z := r · (S − pw ·N) Z := s · (R− pw ·M)

K := H1(sid, pw, R, S, Z) K := H1(sid, pw, R, S, Z)

return K return K

(c) The SPAKE2 PAKE [AP05]. G, M , and N are unrelated generators
of a prime-order group. pw is interpreted as an integer (perhaps via
hashing).

Figure 2: Three perfectly password-hiding PAKEs

where GPEH is the PSK equality hiding game defined in Figure 3. Note we permit
the adversary to read and modify messages, but not see the final protocol output.

We say that P is statistically PSK equality hiding if AdvPEHP (A) = negl(λ)
for any unbounded A.

As with password hiding, the computational version of PSK equality hid-
ing is guaranteed by the fact that the PAKE UC-realizes one of the PAKE
functionalities, but the statistical version is not.3

We claim that recent efficient post-quantum universally composable PAKEs
(Figure 4) achieve this property. At a high level, all these are statistically PSK
equality hiding because at least one of the sides’ message is encrypted using the
password as a key to an ideal cipher. Since the ideal cipher is a pseudorandom

3In fact, this is a strict separation. Take any secure PAKE and add (pk,Encpk(pw)) to
both Alice’s and Bob’s first messages, where pk is a public key in some asymmetric encryption
scheme. Then it is clear that this new PAKE is secure, but at best has PSK equality hiding
that depends on the computational hardness of decrypting a ciphertext in the asymmetric
encryption scheme. This sort of construction occurs in existing PAKEs. The one-round PAKE
from smooth projective hash functions presented in [KV11] is neither perfectly password hiding
nor statistically PSK equality hiding for precisely this reason.

9

Game GPEH
b,P (A)

psk0 ←$ {0, 1}λ
if b = 0 : psk1 ←$ {0, 1}λ
else: psk1 := psk0
i := 0 //wlog the initiator is participant 0
(st0, st1) := (P0.Start(psk0),P1.Start(psk1))
stA := ∅
m := ∅

while (done0, done1) ̸= (true, true):
(st′i, done

′
i,m

′) := Pi.Next(sti,m)
(st′A,m) := A(stA,m′)
sti := st′i
stA := st′A
donei := done′i
i := i⊕ 1

b′ := A(stA, final)
return b = b′

Figure 3: The PSK equality hiding (PEH) security game for the PAKE P.

permutation, and the key (here, pw) is high-entropy, the value reveals nothing
to the adversary. We provide more detailed proofs below.

OCAKE (Figure 4b). Let game 0 be the PEH game with b = 0, i.e., the
passwords are different. In game 1, rather than using pk := Dsid

pwB
(epk), Bob

generates a fresh KEM public key pk and encapsulates to that. Since the ideal
cipher is a family of uniformly chosen permutations, advantage of a distinguisher
of this hop is bounded by the ability to guess pwB , which is 2−λ times the number
of ideal cipher queries. Note this holds even when the distinguisher picks epk.
In game 2, rather than sending epk := Esid

pwA
(pk), Alice simply sends a uniformly

chosen value in the public key space. This is perfectly indistinguishable, again,
since the ideal cipher is a family of uniformly random permutations. In game 3,
set Alice’s password equal to Bob’s. This changes nothing. Let games 4 and 5
undo games 2 and 1, respectively, and we are done.

CAKE (Figure 4a). This argument is identical to that of OCAKE. This is
possible because the second ideal cipher encryption is made with respect to a
distinct and unrelated ideal cipher instance Esid∥2.

Note epk is uniform because Alice’s password is uniform. And ec is uniform
an independent of epk because Bob’s password is uniform and Esid∥2 is unrelated
to Esid∥1.

CHIC (Figure 4c). This also bears resemblance to OCAKE, so we will reuse
parts of the proof. Let game 0 be the PEH game with b = 0, i.e., the passwords
are different. In game 1, rather than using r := Dsid

t (er), Bob uses a uniformly
random r. Since the space of split KEM messages is indistinguishable from
uniform via its UNI-PK property, and because ideal cipher is a family of uniformly
chosen permutations, advantage of a distinguisher of this hop is bounded by the
ability to guess t = H1(sid, pwB , T), which is bounded by the entropy of pwB.
Note this holds even when the distinguisher picks er. In game 2, rather than
using t := H1(sid, pw, T), Bob uses a uniformly random t. The probability of
the adversary distinguishing this hop is again bounded by its ability to compute
t. In game 3, rather than sending er := Esid

t (r), Alice sends a uniform er. This
hop is again indistinguishable via the ideal cipher and its high entropy key. In
game 4, rather than using R := H0(sid, pw, r), Alice uses a uniform R. This is
indistinguishable by password entropy. We are now in the scenario where er

10

Alice(sid, pw) Bob(sid, pw)

(pk, sk) := Keygen(1λ)

epk := Esid∥1
pw (pk) epk pk := Dsid∥1

pw (epk)

(c, Z) := Encap(pk)

c := Dsid∥2
pw (ec) ec ec := Esid∥2

pw (c)

Z := Decapsk(c)

K := H(sid, epk, ec, Z) K := H(sid, epk, ec, Z)

return K return K

(a) The CAKE PAKE [BCP+23]. (E,D) are the encryp-
tion and decryption algorithms of an ideal cipher.

Alice(sid, pw) Bob(sid, pw)

(pk, sk) := Keygen(1λ)

epk := Esid∥1
pw (pk) epk pk := Dsid∥1

pw (epk)

(c, Z) := Encap(pk)

Z := Decapsk(c)
c τ τ := H0(sid, pw, epk, c, Z)

τ ′ := H0(sid, pw, epk, c, Z)

assert τ = τ ′

K := H1(sid, epk, c, Z) K := H1(sid, epk, c, Z)

return K return K

(b) The OCAKE PAKE [BCP+23]

Alice(sid, pw) Bob(sid, pw)

(pk, sk) := Keygen(1λ)

(r,M) := Split(pk)

R := H0(sid, pw, r)

T := M ⊙R

t := H1(sid, pw, T)

er := Esid
t (r) er T t := H1(sid, pw, T)

r := Dsid
t (er)

R := H0(sid, pw, r)

M := T ⊙R−1

pk := Split−1(r,M)

(c, Z) := Encap(pk)

Z := Decapsk(c)
c τ τ := H2(sid, pk, er, T, c, Z)

τ ′ := H2(sid, pk, er, T, c, Z)

if τ ̸= τ ′ : K ←$ {0, 1}λ

else : K := H3(sid, pk, er, T, c, Z) K := H3(sid, pk, er, T, c, Z)

return K return K

(c) The CHIC PAKE [ABJS24]. The KEM used has splittable public
keys, i.e., public keys have one component which is uniformly random
and can be hashed to the space of the other component (in the case of
ML-KEM, this is the public matrix seed ρ). The ⊙ operator is a group
operation on the space of (the latter component of) public keys.

Figure 4: Three post-quantum PAKEs with statistical PSK equality hiding.
Each uses a generic KEM (Keygen,Encap,Decap) satisfying certain properties.

11

and T are both uniform. In game 5, set Alice’s password equal to Bob’s. This
changes nothing. In the following games, we undo games 1–4. The final game is
the PEH game with b = 1.

3 Constructions

In this section we present our two PAKE combiners, ParComb (parallel combiner)
and SeqComb (sequential combiner). Unlike the failed attempt at a combiner in
our introduction, these combiners will require specific hiding properties of their
underlying PAKEs. With these mild assumptions, we show that both combiners
achieve security in the UC model.

3.1 The ParComb combiner

We return to the insecure parallel combiner of our introduction. Recall the reason
it fails is, if the underlying security assumption were broken, the transcripts
of the underlying PAKEs would contain enough auxiliary information to check
password guesses. For KC-SPAKE2, this auxiliary information is a MAC whose
key is derived from the Diffie-Hellman shared secret, and for CAKE, this is the
fact that KEM ciphertexts are MLWE samples.

However, not every PAKE has this auxiliary information. In fact, the most
widely deployed PAKEs, such as CPace or SPAKE2, do not. The lack of such
auxiliary information is what we formalize in Definition 2 (perfect password
hiding). As it turns out, this property is necessary and sufficient in order to make
our parallel combiner work. At a high level, ParComb executes two perfectly
password-hiding one-round PAKEs P1 and P2 in parallel, and hashes the resulting
keys. This combiner is highly efficient, requiring only one extra hash, and has
round complexity bounded by the maximum round complexity of the underlying
PAKEs. We give the full construction in Figure 5.

3.1.1 Security

Before presenting the security theorem, we provide intuition for each assumption
and design decision.

Perfect password hiding. We know from our broken combiner example why
perfect (or at least statistical) password hiding is necessary for P1 and P2. We
provide intuition now for why it is sufficient. Consider what happens when P1 is
broken and P2 remains secure. An active adversary can engage in P1 with Bob
and be able to efficiently compute the guessing function pw 7→ K ′

1 (in EKE, for
example, this requires solving computational Diffie-Hellman). However, since
the messages are perfectly password-hiding, the only way to check a guess is
to compare it to the output key K := H(sid, tr,K1,K2). So the adversary is in
the scenario where it can make guesses of pw and see (a hash of) K2. This is
precisely the UC PAKE game for P2, which is assumed to be secure.

12

Alice(sid, pw) Bob(sid, pw)

pw pw

K1 tr1
P
sid∥1
1 K1 tr1

. In parallel .

pw pw

K2 tr2
P
sid∥2
2 K2 tr2

K := H(sid,K1,K2, tr1, tr2) K := H(sid,K1,K2, tr1, tr2)

return K return K

Figure 5: The ParComb combiner for perfectly password-hiding one-round PAKEs
P1 and P2. The random oracle H outputs values in {0, 1}λ.

The same argument shows that P is secure when P2 is broken and P1 remains
secure.

Hashing the transcript. We include the full protocol transcript in the final
key computation so that the session key can be simulated when messages are
mauled. Suppose P1 is broken, and the adversary has modified one of the P1

messages. If a simulator does not know either party’s password, then it cannot
decide whether P1 should succeed or fail. And since P1 is broken, the simulator
cannot rely on the PAKE UC-realizing FPAKE. Hashing the transcript resolves
the ambiguity, since any mauled messages will cause the protocol to fail (i.e.,
return different keys) with overwhelming probability.

We now state the security theorem for ParComb. The arguments of the proof
are sketched above, and the full proof can be found in Appendix A.1.

Theorem 1. Let P1 and P2 be perfectly password-hiding one-round PAKE
protocols, and let P := ParComb[P1,P2]. Then the following hold in the static-
corruptions setting:

1. If P1 UC-realizes FPAKE, then so does P (in the FRO-hybrid model)

2. If P2 UC-realizes FPAKE, then so does P (in the FRO-hybrid model).

In other words, ParComb[P1,P2] is at least as strong as the strongest of P1,P2,
and is hence a good combiner.

13

3.1.2 Limitations

While this combiner’s efficiency and round complexity are appealing, applicability
is currently limited. There are no known one-round post-quantum PAKEs with
perfect password hiding. One line of work in one-round post-quantum PAKEs
relies on isogeny assumptions [AEK+22, IY23]. However the password hiding
property in these depends on computational assumptions about the distribution
of random linear combinations of the selected group basis. Another line of work
includes the EKE-NIKE construction from [BGHJ24], using the lattice-based
NIKE, Swoosh [GdKQ+24]. Again, though, this does not have perfect hiding,
since messages are of the form Epw(t), where t is an (M)LWE sample and E is
an ideal cipher. This has the same problem as the CAKE construction in the
introduction.4 Thus, we do not yet have a one-round hybrid PAKE construction
from a post-quantum assumption.

3.2 The SeqComb combiner

To arrive at the SeqComb combiner, we again consider the minimum possible
amount of security necessary for a combined PAKE. Beginning our protocol with
a one-round perfectly password hiding PAKE cannot hurt, since even when it is
broken, it is difficult to exploit for a password guess. To handle the case that this
PAKE P1 is broken, we may pass pw along with the P1’s session key to a second
PAKE P2, receive a second session key, and output the hash of everything. If
P2 is secure, then including its session key in the final hash will be sufficient to
ensure that the overall protocol is secure. If the P2 is broken then including P1’s
session key in the final hash will be sufficient, so long as P2 is not so broken as
to reveal pw outright.

This is almost exactly the definition of SeqComb. That is, SeqComb executes
a perfectly password-hiding PAKE P1, feeds its output into a statistically PSK
equality hiding PAKE P2, and hashes everything at the end. Like ParComb, this
combiner is highly efficient, requiring only two extra hashes. Unlike ParComb, its
round complexity is the sum of the number of rounds of the underlying PAKEs.
We give the full construction in Figure 6.

3.2.1 Security

Again, before presenting the security theorem, we provide intuition for why each
component of protocol is necessary.

P1 perfect password hiding. We require P1 to be perfectly password hiding
for the same reason as in ParComb: it directly deals with pw, and so any leakage
here yields a leakage in the combined protocol. More rigorously, if P1 is broken,
an active adversary can efficiently compute the mapping pw 7→ Z ′, but not
receive any extra information on whether its guess was correct. So the adversary

4While it appears no post-quantum PAKE has this property, we do not believe it is inherent.
See Section 4 for potential new directions.

14

Alice(sid, pw) Bob(sid, pw)

pw pw

K1,1 K1,2 tr1
P
sid∥1
1 K1,1 K1,2 tr1

Z := H0(sid, pw,K1,1) Z := H0(sid, pw,K1,1)

Z Z

K2 tr2
P
sid∥2
2 K2 tr2

K := H1(sid,K1,2,K2, tr1, tr2) K := H1(sid,K1,2,K2, tr1, tr2)

return K return K

Figure 6: The SeqComb combiner for PAKEs P1 and P2. Both random oracles
H0,H1 output values in {0, 1}λ. We assume P1 outputs two keys, each of bitlength
λ (if not, it suffices to apply a KDF to stretch its output).

is in the scenario where it has guesses for Z and can see (a hash of) K2. This is
precisely the UC PAKE game for P2.

P2 statistical PSK equality hiding. We require P2 to be statistically PSK
equality-hiding in order to permit its transcript to be simulated when P2 is
broken. In the case where both SeqComb parties are honest, and have completed
P1, a simulator must simulate P2 without knowing whether P1 succeeded, i.e.,
without knowing whether the parties agree on the input to P2. Since this input
is high-entropy by assumption (P1 is a secure PAKE), then the PSK equality
hiding property is sufficient to permit the simulator to simulate one case and
have it be indistinguishable from the other.

Hashing K1,1. We include K1,1 in the hash Z because pw alone is insufficient
in the case that P2 is broken. If P2 were so broken as to leak its password Z in
its entirety (technically prevented by PSK equality hiding, but we may assume),
then pw would be trivially revealed. We therefore hash K1,1, which we assume
is high entropy, into Z. Thus, even if Z leaks in its entirety, pw is unaffected.

Hashing pw. We include pw in the computation of Z because K1,1 is not suffi-
cient in the case that P1 is broken. If P1 is broken, then we must pessimistically
assume that both K1,1 and K1,2 are fully controlled by the adversary. Thus,
simply feeding one of these values in P2 yields no security. Instead, we hash pw
with K1,1 and feed that into P2.

Hashing K1,2. We include K1,2 in the final session key computation because
K2 is not sufficient in the case that P2 is broken. It suffices to include some
yet-unused entropy from the session key of P1.

15

We now state the security theorem for SeqComb. The arguments of the proof
are sketched above, and the full proof can be found in Appendix A.2.

Theorem 2. Let P1 be a one-round perfectly password-hiding PAKE pro-
tocol, let P2 be a statistically PSK equality hiding PAKE protocol, and let
P := SeqComb[P1,P2]. Then the following hold in the static-corruptions setting:

1. If P1 UC-realizes FPAKE, then so does P (in the FRO-hybrid model).

2. If P2 UC-realizes FPAKE, then so does P (in the FRO-hybrid model).

In other words, SeqComb[P1,P2] is at least as strong as the strongest of P1,P2,
and is hence a good combiner.

3.2.2 Using weaker P1

Some of the most widely deployed PAKEs such as the Diffie-Hellman-based
CPace and SPAKE2 do not enjoy full UC PAKE security but are so-called lazy
extraction PAKEs. These PAKEs allow adversaries to successfully complete
an active attack even after the attacked party finished the protocol. Such
prolonged attack completions do not seem to pose any real-world threat, and
lazy extraction PAKEs are in widespread use (e.g., for Facebook Messenger chat
history transfer [Fac23]). Hence, to make SeqComb more applicable, we would
like to make it work when P1 UC-realizes FlePAKE. This functionality is depicted
in Figure 1 and is strictly weaker than FPAKE due to the additional password
test interface on completed sessions. This interface allows the “lazy” attacker to
provide a password guess even after an actively attacked party output a session
key, and it provides the attacker with that key or a random one depending on
whether the guess was correct.

Perhaps surprisingly, SeqComb is not as tolerant of a lazy-extraction P1 as
one would hope for: SeqComb[FlePAKE,P2] does not UC-realize FlePAKE. This
can be made more intuitive by looking at SeqComb’s design. In the case where
P2 cannot be trusted to protect K2, security is based solely on the output keys
K1,1,K1,2 of P1. When these values are revealed to the environment through a
correct late password guess on FlePAKE, the simulator has to explain how they
lead to the actual Z and output key K of the honest party. On the other hand,
if the guess was wrong, no connection should exist between K1,1,K1,2 and Z,K.
Since FlePAKE does not leak the information of whether the guess was correct or
not, the simulator is trapped. We formalize this intuition in Appendix B with a
formal distinguisher between SeqComb with a lazy extraction P1 and FlePAKE.

This intuition implies a fix. It would suffice to let the simulator know
whether a late password guess succeeded. A PAKE that allows one late password
guess with responses of the form “correct” or “wrong” is called a relaxed PAKE
[ABB+20]. Combining this property with the lazy extraction property yields what
we call relaxed lazy extraction PAKE, or rlePAKE. We depict the functionality
in Figure 1. It has the same guarantees as FlePAKE, but additionally leaks the
information whether or not the late password guess was correct—a weakening

16

that does not seem to rule out any applications of PAKE protocols. We can
prove the following result in Appendix A.3.

Lemma 1. Let P2 be a statistically PSK equality hiding PAKE protocol, and let
P := SeqComb[P1,P2]. Then the following holds in the static-corruptions setting:

� If P1 UC-realizes FlePAKE, then P UC-realizes FrlePAKE (in the FRO-hybrid
model).

Lemma 1 implies that SeqComb is safe to use with a lazy extraction PAKE
such as CPace or SPAKE2 as P1.

3.2.3 Concrete instantiations yielding hybrid PAKE

Unlike ParComb, SeqComb can be instantiated with existing protocols to produce
a hybrid PAKE. For P1, it is possible to use the Diffie-Hellman-based CPace,
SPAKE2, or EKE. For P2, any statistically PSK equality-hiding PAKE will do.
While we have only verified this property for the plausibly post-quantum CHIC,
CAKE, and OCAKE protocols, it appears to be a natural one, particularly for
PAKEs in the random oracle and ideal cipher models. We thus suspect many
more plausibly post-quantum PAKEs enjoy this property, e.g., [MRR20, PZ23,
BCJ+19, SGJ23]

4 Future work

We identify some interesting problems which we do not address in this work.

Adaptive security So far, we have only defined hybrid PAKE in the static
corruptions setting. This may be inherent to the combiner construction.
No one-round PAKE can achieve security in the UC model with adaptive
corruptions. A simple attack is as follows. The environment Z initiates
a session between an honest Alice and Bob. Z forwards Alice’s message
to Bob, allowing Bob to finish the protocol and output K, and withholds
Bob’s message to Alice. Now, Z corrupts Alice. There is no way for a
simulator to respond to this corruption. This is because the simulator must
have used FPAKE .NewKey to key Bob, since both parties were honest at
the time. Thus, the simulator does not know K, and so cannot choose an
appropriate response to Z’s corruption query. We conclude that any PAKE
combiner which permits one-round PAKEs is limited to static corruptions.

We thus ask whether there exists a method for constructing adaptively
secure PAKEs and, if so, whether it be done generically.

One-round hybrid PAKE In our assessment of ParComb, we concluded that
it cannot be built using a post-quantum PAKE, since none has perfect
password hiding, to the authors’ knowledge. This does not seem inherent,
though. We conjecture that it is possible to modify EKE-NIKE[Swoosh]
to perfectly hide the password. This would involve sending two pairs of

17

public keys, replacing public keys of the form As + e with ones of the
form As for A, s, e of appropriate dimension. Effectively, this undoes the
size improvements of [LP11] in exchange for statistically uniform public
keys. Further, since the uniformity result relies on the leftover hash
lemma [HILL99], which is not known to apply in the cyclotomic rings of
typical module lattice constructions, the NIKE must use unstructured
LWE. We estimate public key sizes in the resulting scheme to be 1GB at
the 128-bit security level.

We leave as an open question whether such a scheme could be instantiated
and improved on to be more practical.

Analysis against quantum adversaries While our combiners can use PAKEs
that are secure against quantum adversaries, our reductions are classical
and in the random oracle model (ROM). It is known that if a reduction
in the ROM is history-free, i.e., oracle queries are not recorded and oracle
responses do not depend on the values of previous responses, then the re-
duction holds in the quantum ROM [BDF+11]. We believe our reductions
are history-free, but leave the exploration of this path to future work.

Capturing more flavors of PAKE As mentioned earlier, hybrid PAKE im-
plies hybrid aPAKE and iPAKE via the Ω-method [GMR06] and LATKE
[KR24]. However, it is not clear how to achieve the strong variants of
these constructions (called saPAKE and siPAKE, respectively). A strong
aPAKE is an aPAKE which is resistant to precomputation attacks—an
adversary must compromise a server before they are able to begin brute-
forcing the password. Existing constructions such as OPAQUE [JKX18]
use an oblivious pseuodrandom function (OPRF) to achieve strongness.
However, no hybrid OPRF construction is currently known, and so it is not
clear how to hybridize OPAQUE. More generally, it would be interesting to
understand how much strongness relies on an OPRF-like construction, and
how much can be achieved using generic combiners. For (s)aPAKE and
(s)iPAKE in general, such black-box combiners would further be desirable
in order to give developers the option to plug post-quantum protocols into
their existing deployments.

Acknowledgements

Thanks to Phillip Gajland for the suggestion of the information-theoretic variant
of Swoosh. Julia wants to say: thank you, Michael, for sharing your inspiring
ideas with me – this has been an awesome project!

18

References

[ABB+20] Michel Abdalla, Manuel Barbosa, Tatiana Bradley, Stanislaw
Jarecki, Jonathan Katz, and Jiayu Xu. Universally composable
relaxed password authenticated key exchange. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume
12170 of LNCS, pages 278–307. Springer, Heidelberg, August 2020.
doi:10.1007/978-3-030-56784-2_10.

[ABBO24] David Adrian, Bob Beck, David Benjamin, and Devon
O’Brien. Advancing Our Amazing Bet on Asymmetric Cryp-
tography, 2024. URL: https://blog.chromium.org/2024/05/

advancing-our-amazing-bet-on-asymmetric.html.

[ABJS24] Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki, and Marjan
Skrobot. C’est très chic: A compact password-authenticated key
exchange from lattice-based kem. Cryptology ePrint Archive, Pa-
per 2024/308, 2024. https://eprint.iacr.org/2024/308. URL:
https://eprint.iacr.org/2024/308.

[AEK+22] Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz, Sabrina Kun-
zweiler, and Doreen Riepel. Password-authenticated key exchange
from group actions. In Yevgeniy Dodis and Thomas Shrimp-
ton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS,
pages 699–728. Springer, Heidelberg, August 2022. doi:10.1007/
978-3-031-15979-4_24.

[AHH21] Michel Abdalla, Björn Haase, and Julia Hesse. Security anal-
ysis of CPace. In Mehdi Tibouchi and Huaxiong Wang, edi-
tors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages
711–741. Springer, Heidelberg, December 2021. doi:10.1007/

978-3-030-92068-5_24.

[AP05] Michel Abdalla and David Pointcheval. Simple password-based
encrypted key exchange protocols. In Alfred Menezes, editor, CT-
RSA 2005, volume 3376 of LNCS, pages 191–208. Springer, Heidel-
berg, February 2005. doi:10.1007/978-3-540-30574-3_14.

[BBB+24] Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam Bhasin, Anu-
pam Chattopadhyay, Tee Kiah Chia, Matthias J. Kannwischer,
Franziskus Kiefer, Thales Paiva, Prasanna Ravi, and Goutam
Tamvada. KyberSlash: Exploiting secret-dependent division tim-
ings in kyber implementations. Cryptology ePrint Archive, Paper
2024/1049, 2024. URL: https://eprint.iacr.org/2024/1049.

[BCD+24] Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron
Kaiser, Peter Schwabe, Karolin Varner, and Bas Westerbaan. X-
wing. IACR Communications in Cryptology, 1(1), 2024. doi:

10.62056/a3qj89n4e.

19

https://doi.org/10.1007/978-3-030-56784-2_10
https://blog.chromium.org/2024/05/advancing-our-amazing-bet-on-asymmetric.html
https://blog.chromium.org/2024/05/advancing-our-amazing-bet-on-asymmetric.html
https://eprint.iacr.org/2024/308
https://eprint.iacr.org/2024/308
https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-540-30574-3_14
https://eprint.iacr.org/2024/1049
https://doi.org/10.62056/a3qj89n4e
https://doi.org/10.62056/a3qj89n4e

[BCJ+19] Tatiana Bradley, Jan Camenisch, Stanislaw Jarecki, Anja Lehmann,
Gregory Neven, and Jiayu Xu. Password-authenticated public-
key encryption. In Robert H. Deng, Valérie Gauthier-Umaña,
Mart́ın Ochoa, and Moti Yung, editors, ACNS 19, volume 11464
of LNCS, pages 442–462. Springer, Heidelberg, June 2019. doi:

10.1007/978-3-030-21568-2_22.

[BCP+23] Hugo Beguinet, Céline Chevalier, David Pointcheval, Thomas Ricos-
set, and Mélissa Rossi. GeT a CAKE: Generic transformations from
key encaspulation mechanisms to password authenticated key ex-
changes. In Mehdi Tibouchi and Xiaofeng Wang, editors, ACNS 23,
Part II, volume 13906 of LNCS, pages 516–538. Springer, Heidelberg,
June 2023. doi:10.1007/978-3-031-33491-7_19.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Chris-
tian Schaffner, and Mark Zhandry. Random oracles in a quan-
tum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Hei-
delberg, December 2011. doi:10.1007/978-3-642-25385-0_3.

[BGHJ24] Manuel Barbosa, Kai Gellert, Julia Hesse, and Stanislaw Jarecki.
Bare pake: Universally composable key exchange from just pass-
words. In Leonid Reyzin and Douglas Stebila, editors, Advances in
Cryptology – CRYPTO 2024, pages 183–217, Cham, 2024. Springer
Nature Switzerland.

[BH23] Nina Bindel and Britta Hale. A note on hybrid signature schemes.
Cryptology ePrint Archive, Paper 2023/423, 2023. https://

eprint.iacr.org/2023/423. URL: https://eprint.iacr.org/
2023/423.

[BM92] S.M. Bellovin and M. Merritt. Encrypted key exchange: password-
based protocols secure against dictionary attacks. In Proceedings
1992 IEEE Computer Society Symposium on Research in Security
and Privacy, pages 72–84, 1992. doi:10.1109/RISP.1992.213269.

[Can01] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In 42nd FOCS, pages 136–145. IEEE
Computer Society Press, October 2001. doi:10.1109/SFCS.2001.
959888.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and
Philip D. MacKenzie. Universally composable password-based key
exchange. In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 404–421. Springer, Heidelberg, May 2005.
doi:10.1007/11426639_24.

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy,
and Frederik Vercauteren. Saber: Module-LWR based key

20

https://doi.org/10.1007/978-3-030-21568-2_22
https://doi.org/10.1007/978-3-030-21568-2_22
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1007/978-3-642-25385-0_3
https://eprint.iacr.org/2023/423
https://eprint.iacr.org/2023/423
https://eprint.iacr.org/2023/423
https://eprint.iacr.org/2023/423
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/11426639_24

exchange, CPA-secure encryption and CCA-secure KEM. In
Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi,
editors, AFRICACRYPT 18, volume 10831 of LNCS, pages
282–305. Springer, Heidelberg, May 2018. doi:10.1007/

978-3-319-89339-6_16.

[Fac23] Facebook. The Labyrinth Encrypted Message Stor-
age Protocol. December 2023. URL: https://

engineering.fb.com/wp-content/uploads/2023/12/

TheLabyrinthEncryptedMessageStorageProtocol_12-6-2023.

pdf.

[fan24] Deployments of fancy cryptography, September 2024. URL: https:
//github.com/fancy-cryptography/fancy-cryptography.

[GdKQ+24] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Mala-
volta, and Peter Schwabe. SWOOSH: Efficient Lattice-Based
Non-Interactive key exchange. In 33rd USENIX Security Sym-
posium (USENIX Security 24), pages 487–504, Philadelphia, PA,
August 2024. USENIX Association. URL: https://www.usenix.
org/conference/usenixsecurity24/presentation/gajland.

[GMR06] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method
for making password-based key exchange resilient to server com-
promise. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 142–159. Springer, Heidelberg, August 2006.
doi:10.1007/11818175_9.

[Gon93] Li Gong. Lower bounds on messages and rounds for network
authentication protocols. In Dorothy E. Denning, Raymond
Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, edi-
tors, ACM CCS 93, pages 26–37. ACM Press, November 1993.
doi:10.1145/168588.168592.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. A pseudorandom generator from any one-way function. SIAM
Journal on Computing, 28(4):1364–1396, 1999.

[HL19] Björn Haase and Benôıt Labrique. AuCPace: Efficient verifier-based
PAKE protocol tailored for the IIoT. IACR TCHES, 2019(2):1–
48, 2019. https://tches.iacr.org/index.php/TCHES/article/
view/7384. doi:10.13154/tches.v2019.i2.1-48.

[IY23] Ren Ishibashi and Kazuki Yoneyama. Compact password au-
thenticated key exchange from group actions. In Leonie Simp-
son and Mir Ali Rezazadeh Baee, editors, ACISP 23, volume
13915 of LNCS, pages 220–247. Springer, Heidelberg, July 2023.
doi:10.1007/978-3-031-35486-1_11.

21

https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-89339-6_16
https://engineering.fb.com/wp-content/uploads/2023/12/TheLabyrinthEncryptedMessageStorageProtocol_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/TheLabyrinthEncryptedMessageStorageProtocol_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/TheLabyrinthEncryptedMessageStorageProtocol_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/TheLabyrinthEncryptedMessageStorageProtocol_12-6-2023.pdf
https://github.com/fancy-cryptography/fancy-cryptography
https://github.com/fancy-cryptography/fancy-cryptography
https://www.usenix.org/conference/usenixsecurity24/presentation/gajland
https://www.usenix.org/conference/usenixsecurity24/presentation/gajland
https://doi.org/10.1007/11818175_9
https://doi.org/10.1145/168588.168592
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://doi.org/10.13154/tches.v2019.i2.1-48
https://doi.org/10.1007/978-3-031-35486-1_11

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE:
An asymmetric PAKE protocol secure against pre-computation
attacks. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages
456–486. Springer, Heidelberg, April / May 2018. doi:10.1007/

978-3-319-78372-7_15.

[KR24] Jonathan Katz and Michael Rosenberg. Latke: A framework for con-
structing identity-binding pakes. In Leonid Reyzin and Douglas
Stebila, editors, Advances in Cryptology – CRYPTO 2024, pages
218–250, Cham, 2024. Springer Nature Switzerland.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal
password-based authenticated key exchange. In Yuval Ishai, edi-
tor, TCC 2011, volume 6597 of LNCS, pages 293–310. Springer,
Heidelberg, March 2011. doi:10.1007/978-3-642-19571-6_18.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for
LWE-based encryption. In Aggelos Kiayias, editor, CT-RSA 2011,
volume 6558 of LNCS, pages 319–339. Springer, Heidelberg, Febru-
ary 2011. doi:10.1007/978-3-642-19074-2_21.

[MRR20] Ian McQuoid, Mike Rosulek, and Lawrence Roy. Minimal symmetric
PAKE and 1-out-of-N OT from programmable-once public functions.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 2020, pages 425–442. ACM Press, November
2020. doi:10.1145/3372297.3417870.

[PZ23] Jiaxin Pan and Runzhi Zeng. A generic construction of tightly
secure password-based authenticated key exchange. In Jian Guo
and Ron Steinfeld, editors, ASIACRYPT 2023, Part VIII, volume
14445 of LNCS, pages 143–175. Springer, Heidelberg, December
2023. doi:10.1007/978-981-99-8742-9_5.

[RX23] Lawrence Roy and Jiayu Xu. A universally composable PAKE with
zero communication cost - (and why it shouldn’t be considered UC-
secure). In Alexandra Boldyreva and Vladimir Kolesnikov, editors,
PKC 2023, Part I, volume 13940 of LNCS, pages 714–743. Springer,
Heidelberg, May 2023. doi:10.1007/978-3-031-31368-4_25.

[SGJ23] Bruno Freitas Dos Santos, Yanqi Gu, and Stanislaw Jarecki.
Randomized half-ideal cipher on groups with applications to
UC (a)PAKE. In Carmit Hazay and Martijn Stam, edi-
tors, EUROCRYPT 2023, Part V, volume 14008 of LNCS,
pages 128–156. Springer, Heidelberg, April 2023. doi:10.1007/

978-3-031-30589-4_5.

[Sho20] Victor Shoup. Security analysis of itSPAKE2+. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of

22

https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1145/3372297.3417870
https://doi.org/10.1007/978-981-99-8742-9_5
https://doi.org/10.1007/978-3-031-31368-4_25
https://doi.org/10.1007/978-3-031-30589-4_5
https://doi.org/10.1007/978-3-031-30589-4_5

LNCS, pages 31–60. Springer, Heidelberg, November 2020. doi:

10.1007/978-3-030-64381-2_2.

[Wes24] Bas Westerbaan. The state of the post-quantum Internet, March
2024. The Cloudflare Blog. URL: https://blog.cloudflare.com/
pq-2024.

A Proofs

A.1 Proof of Theorem 1

We show the theorem for an intact P1 PAKE protocol, i.e., for the protocol

ParComb[F (1)
PAKE,P2]. Because the UC framework follows a sequential model

of execution where only one machine is active at any given point in time, we

cannot execute both F (1)
PAKE and P2 in parallel. We hence analyze a protocol

version where parties first receive their output from F (1)
PAKE and only then send

the first message in P2. Because the execution of P2 does not depend on F (1)
PAKE,

when instantiating F (1)
PAKE with an interactive protocol, its messages can be sent

together with the P2 messages.

Proof. Game G0: The real execution. This is the real execution as in

Figure 9, with a dummy adversary A. W.l.o.g. we replace P
sid||1
1 by a

hybrid functionality F (1)
PAKE.

Game G1: Change layout. We change the previous game as follows:

� We move the whole execution into a single machine and call it the
simulator Sim.

� We add all the record-keeping of the simulator as in Figures 7 and 8.
� In between Z and Sim we add one dummy party for each real party.
� In between the dummy parties and Sim, we add the ideal functionality
FPAKE as in Figure 1, but relaying passwords of honest parties to Sim
and relaying outputs keys provided by Sim to the dummy parties. We
call that functionality F.

The changes are only syntactical since the real execution runs on same
inputs and produces outputs the same way as in the previous game. We
hence have

Pr[G0] = Pr[G1].

Game G2: Simulate the P2 message of honest parties. In this game we
change the simulation to compute P2 messages using (x, τx) := Sim(2).Start(),

and compute the P2 output keys as Sim(2).ComputeKey(y, x, τx) for incom-
ing message y. Because P2 is perfectly password-hiding, messages are
distributed equally and the P2 output keys are equal to G1. We hence
have

23

https://doi.org/10.1007/978-3-030-64381-2_2
https://doi.org/10.1007/978-3-030-64381-2_2
https://blog.cloudflare.com/pq-2024
https://blog.cloudflare.com/pq-2024

On (NewSession, sid,P,P ′) from FPAKE

� (G10) Record (P1Session,P,P ′,⊥) and mark it fresh

� (G10) Send (NewSession, sid||1,P,P ′) to Z from F (1)
PAKE

On (NewSession, sid||1,P,P ′, pw) from corrupt P to F (1)
PAKE

� (G1) Record (P1Session, sid,P,P ′, pw) and it mark it fresh

On (TestPwd, sid||1,P, pw) from Z to F (1)
PAKE or as internal call // w.l.o.g. P is honest

� (G6) Retrieve (P1Session, sid,P, ·,⊥) marked fresh

� (G6) Send (TestPwd, sid,P, pw) to FPAKE

� (G6)Upon response “correct”:
– (G6) Mark P1Session as compromised
– (G6) Record (CorrectTestPwd, sid,P, pw)
– (G6) Return “correct”

� (G6) Upon response “wrong”:
– (G6) Mark P1Session as interrupted
– (G6) Return “wrong”

On (NewKey, sid∥1,P,K ′
1) from Z to F (1)

PAKE

� (G1) Retrieve (P1Session, sid,P, [P ′], [pw]) marked m ̸= completed

� (G1) If m = compromised: K1 := K ′
1

� (G1) Elif m = fresh and ∃(P1Key, sid,P ′, [K ′′
1], fresh): // P finishes last

– (G7) If ∃(TestedPwd, sid,P ′, pw, correct): K1 := K ′′
1 // Z ̸= ⊥ ⇒ P corrupt ⇒

w.l.o.g, P ′ is honest, and we already ran TestPwd when P ′ finished.
– (G10) Elif P and P ′ are honest: K1 := ⊥ // FPAKE controls the final K anyway
– (G1) Else: K1 ←$ {0, 1}λ // P corrupt, wrong password

� (G1) Elif ∃(P1Session, sid,P ′,P, ·) then set K1 ←$ {0, 1}λ // P finishes first or inter-
rupted, or P ′ finished non-fresh.

� (G1) Else ignore the query // Isolated P does not output a key
� (G7) If m = fresh:

– (G7) If P is honest and P ′ is corrupt: // Now that TestPwd can no longer be called
on this session, we can finally call it
* (G7) Retrieve (P1Session, sid,P ′,P, [pw′])
* (G7) Run code of (TestPwd, sid∥1,P, pw′)

� (G1) Record (P1Key, sid,P,K1,m)
� (G1) Mark P1Session as completed
� (G1) If P is corrupt:

– (G1) Send (sid,K1) to P
– (G1) Return

� (G2) Compute x, τx ← Sim(2).Gen(1λ)
� (G2) Record (P2State, sid,P, x, τx)
� (G1) Record (Sent, sid,P,P ′, x)
� (G1) Send (P → P ′, sid, x) to Z

Figure 7: Simulator for ParComb[F (1)
PAKE,P2] realizing FPAKE. Sim

(2) represents
the simulator for the perfectly password-hiding property of PAKE P2. Random
oracle H is simulated as in the real execution.

24

On (P → P ′, sid, y) from Z // P2 message delivered to P ′

� (G1) Record (Recvd, sid,P,P ′, y)
� (G1) If P is corrupted: record (Sent, sid,P,P ′, y)
� (G9) If P ′ is honest AND ∃(CorrectTestPwd, sid,P ′, [pw]):// Compute K2 for attacked
P ′

– (G9) Retrieve (P2State, sid,P ′, [x], [τ])

– (G9) Let K2 := Sim(2).ComputeKey(sid, x, y, τ, pw)
– (G9) Record (P2Key, sid,P ′,K2)
– (G2) Call FinalizeHonest(sid,P ′)

� (G2) If P ′ is honest AND ∃(P1Session, sid,P ′,P, ·) marked completed:// P1 is done and
the P2 message was received - P ′ outputs a key now.

– (G2) Call FinalizeHonest(sid,P ′)

// This procedure calls NewKey on an honest party. For an honest party finishing, it holds
that (1) there is always a P1Key record, and (2) there is a P2Key record if the party is actively
attacked. The final key is generated from these records if both exist.
Procedure FinalizeHonest(sid,P)

� (G10) Set K := ⊥
� (G1) If ∃(P1Key, sid,P,K1, fresh) and (P2Key, sid,P,K2): // P is running a session
with the adversary

– (G1) Retrieve (Sent, sid, [P ′],P, [x]) and (Recvd, sid,P ′,P, [y])
– (G1) Set K := H(sid,K1,K2, x, y)

� (G5) Else: // P is running a session with an honest party
– (G5) Retrieve (Sent, sid, [P ′],P, [x′]), (Sent, sid,P,P ′, [y]), (Recvd, sid,P ′,P, [x])

and (Recvd, sid,P ′,P, [y′])
– (G5) If x ̸= x′ or y ̸= y′ send (TestPwd, sid,P,⊥) to FPAKE: // If the transcripts of

two honest parties aren’t equal, tank the session
� (G1) Send (NewKey, sid,P,K) to FPAKE

Figure 8: Simulator (cont.)

Alice(sid, pw) Bob(sid, pw′)

pw pw′

K1
F (1)

PAKE K′
1

st, x := P2.Start(pw)
x st′, y := P2.Start(pw

′)
y

K2 := P2.Finish(st, y) K′
2 := P2.Finish(st

′, x)

K := H(sid,K1,K2, x, y) K := H(sid,K′
1,K

′
2, x, y)

return K return K

Figure 9: UC execution of the ParComb combiner with a hybrid functionality

F (1)
PAKE and P2 being a perfectly password-hiding one-round PAKE. When instan-

tiating F (1)
PAKE, messages can be sent in parallel with x, y. The random oracle H

outputs values in {0, 1}λ.

25

Pr[G1] = Pr[G2].

Game G3: Functionality aligns keys in honest sessions. We change
the functionality to ignore the simulator’s output key for honest parties
finishing last in honest sessions, with matching passwords, and where both
records were fresh at the time of output generation (i.e., no TestPwd was
queried by the simulator on any of the two parties). In this case, the
functionality also outputs the session key of the first party to the second
party.

This and the previous game are not distinguishable by the (trivial) cor-
rectness of the protocol, and hence we have

Pr[G2] = Pr[G3].

Game G4: Randomize output key of parties in an honest interaction.
We change the functionality F to ignore the output keys from the simulation
in case an honest party finishes in an unattacked session, and instead uses
the output key from its internal Key record.

Note that the change (a) randomizes the output key of the honest user
who finish first in an unattacked session, (b) randomizes the output key
of the honest user who finish last in an unattacked session, and (c) aligns
keys of the honest session in case of matching passwords. In this game,
parties with tampered P2 transcripts still receive their output key from
the simulation, which is uncorrelated to their honest partner’s key (which
is randomized in this game) due to the P2 transcript that is included in
the hash.

Because F (1)
PAKE draws K1 uniformly at random and the adversary does not

query F (1)
PAKE in any way that it generates output to the adversary that

depends on K1, Z only sees a difference in this and the previous game if it
queries the random oracle with H(sid, x, y,K1,K2). We hence have

|Pr[G4]− Pr[G3]| ≤
qH
2λ

.

Game G5: Randomize output key upon message tampering. We change
the simulator to send (TestPwd, sid,P,⊥) to F (guaranteeing the session
is interrupted) when Z tampers with the P2 message sent to P in an
otherwise honest interaction (in particular, when there are no TestPwd

queries against P to F (1)
PAKE). At the same time, we let the functionality

ignore the output keys from the simulator of the session of P in case such
a TestPwd happened, and instead output the key from its Key record.

The argument is very similar to G4: Z can only notice a difference it it
queries the final hash of P to the random oracle. We again have

26

|Pr[G5]− Pr[G4]| ≤
qH
2λ

.

As of this game, all fresh records in F produce output keys.

Game G6: Relay TestPwd against P1. We change the code of the simulator

upon Z sending (TestPwd, sid,P, pw) to F (1)
PAKE for an honest P. Sim now

also sends this query to F and uses that response as its own response to Z.
Because both functionality instances work on the same inputs and com-
promised or interrupted markings in F do not yet affect the outputs, the
changes are only syntactical and we have

Pr[G5] = Pr[G6].

Game G7: Extract a password from a corrupt party. We change the
simulator to send (TestPwd, sid,P, pw) to F upon (NewKey, sid,P, ·) from
Z for an honest P that is in a session with a corrupt P ′ that had previously

send input (NewSession, sid,P ′,P, pw) to F (1)
PAKE. The simulator then sends

the output key of P to F via NewKey, and F uses that key for compromised
sessions.

While in G6 F just outputted all keys from the simulation, in this game it
still does the same but receives the ones for compromised sessions through
the simulator’s NewKey queries. Hence, the changes are only syntactical
and we have

Pr[G6] = Pr[G7].

Game G8: Randomize output keys of attacked users with wrong
password guess. We change the functionality to ignore the simulator’s
key for parties who finish on interrupted sessions, and instead use the
output key from the Key record.

Again, the argument is very similar to the one in G4: in G7, upon a wrong

password guess, F (1)
PAKE issues a random K1 to P of which Z only sees

the output H(sid,K1,K2, x, y) of P. We can now randomize this output
unnoticed by Z except with the negligible probability that Z guesses K1,
i.e.,

|Pr[G8]− Pr[G7]| ≤
qH
2λ

.

As of this game, all interrupted records in F produce output keys.

Game G9: Simulate compromised parties using TestPwd guesses. We
change the simulator upon sending (TestPwd, sid,P, pw) to F for an honest
P, as detailed in G6 and G7. If F replies with “correct”, we now let the
simulator use pw in the computation of Sim(2).ComputeKey.

27

The change is only syntactical because the passwords used in ComputeKey
are identical in this and the previous game. We have

Pr[G8] = Pr[G9].

Game G10: Remove the passwords from the simulation. We modify the
simulator to use ⊥ as password in all NewSession inputs to the internally

simulated F (1)
PAKE for honest parties. At the same time, we change the

functionality not to forward input passwords of honest parties to the
simulator, but relay (NewSession, sid,P,P ′) from F to Z as coming from

F (1)
PAKE.

We need to argue that outputs of F (1)
PAKE that depend on input passwords

of honest parties, i.e., any K1 that was output to an honest party and

chosen by F (1)
PAKE, are not relevant to the execution anymore. This concerns

fresh and interrupted records (compromised records get an adversarially

chosen key instead of a secure one picked by F (1)
PAKE). This is immediate

to see in G9: F computes all output keys as of G9, and the P2 execution
does not depend on K1.

Because forwarding of input passwords and relaying of simulator output
keys was the only difference when we introduced F in G1, the functionality
F in G10 is equal to FPAKE and we have

Pr[G9] = Pr[G10].

The theorem thus follows with the simulator depicted in Figures 7 and 8.

A.2 Proof of Theorem 2

The proof of this theorem is split into two cases, namely analyzing P relying on
the UC security of P1, and P relying on the UC security of P2. The corresponding
protocol relying on a secure P1 is depicted in Figure 13. The protocol relying on a
secure P1 is depicted in Figure 10, relying on a P2 with arbitrary communication
pattern.

Theorem 2 then follows from Lemmas 2 and 3. Since the proofs each require
the transcript of either the first or the second PAKE to be included in the final
hash, for the combiner to be secure, the full protocol transcript needs to be
included in the final hash.

Lemma 2. Let P1 be a one-round perfectly password-hiding PAKE protocol. Then

protocol SeqComb[P1,F (2)
PAKE] (Figure 10) UC-realizes FPAKE in the (FRO,FPAKE)-

hybrid model, where H0,H1 are modeled as random oracles (i.e., as calls to FRO),

and F (2)
PAKE = FPAKE (i.e., the superscript is only added to differentiate between

the two instances of FPAKE in the statement).

28

Alice(sid, pw) Bob(sid, pw)

st, x := P1.Start(pw)
x st′, y := P1.Start(pw

′)
yK1,1∥K1,2 := P1.Finish(st, y) K1,1∥K1,2 := P1.Finish(st

′, x)

Z := H0(sid, pw,K1,1) Z := H0(sid, pw,K1,1)

Z Z

K2
F (2)

PAKE K2

K := H1(sid,K1,2,K2, x, y) K := H1(sid,K1,2,K2, x, y)

return K return K

Figure 10: Protocol SeqComb[P1,F (2)
PAKE] relying on an intact second PAKE

protocol.

For proving the lemma we make the following simplifying assumptions.

1. Z corrupts at most one party in a session

2. Z never issues a TestPwd query against a corrupt party

3. Z never issues a TestPwd query against an honest party if the other party
is corrupt

These simplifications are without loss of generality, i.e., our proof still implies
that there is no distinguishing environment Z. This is because (1) in the fully
corrupt setting the simulator knows all secrets and hence the simulation is
straightforward, (2) a TestPwd query against a corrupt party compares two
passwords that were both given by Z, and (3) the password guess can be issued
via a corrupt NewSession instead of TestPwd.

Game G0: The real execution. This is the real execution as in Figure 10,

with a dummy adversary A and a hybrid functionality F (2)
PAKE in place of

P2.

Game G1: Change layout. We change the previous game as follows:

� We move the whole execution into a single machine and call it the
simulator Sim.

� We add all the record-keeping of the simulator as in Figures 11 and 12.
� In between Z and Sim we add one dummy party for each real party.
� In between the dummy parties and Sim, we add the ideal functionality
FPAKE as in Figure 1, but relaying passwords of honest parties to Sim
and relaying outputs keys provided by Sim to the dummy parties. We
call that functionality F.

29

On (NewSession, sid,P,P ′) from FPAKE // Simulate the P1 message

� (G2) Compute x, τx ← Sim(1)

� (G1) Record (P1State, sid,P, x, τx)
� (G1) Record (Sent, sid,P,P ′, x)
� (G1) Send (P → P ′, sid, x) to Z

On (P → P ′, sid, y) from Z // P1 message delivery
� (G1) If ∃(Recvd, sid,P,P ′, ·): ignore this query
� (G1) Record (Recvd, sid,P,P ′, y)
� If P is corrupted: // Record the sent message because it’s adversarially generated

– (G1) Record (Sent, sid,P,P ′, y)
� If P ′ is honest:// If the receiver is honest, use this as the time to start its P2 session

– (G8) Record (P2Session, sid,P,P ′,⊥) marked fresh

– (G1) Send (NewSession, sid∥2,P,P ′) to Z

On (NewSession, sid||2,P ′, Z) from corrupt P to F (2)
PAKE

� (G1) Record (P2Session, sid,P,P ′, Z)
� (G1) Send (NewSession, sid∥2,P,P ′) to Z //Wait with TestPwd until other party
received input

On (TestPwd, sid||2,P, Z) from Z to F (2)
PAKE or as internal call // w.l.o.g., P is honest

� (G1) Retrieve (P2Session, sid,P, ·,⊥) marked fresh

� // Z is the correct password iff it is what P would have computed. This is the case
iff both the pw and K1,1 used in the computation of Z are correct. So we test those.

� (G4) Retrieve (H0, sid, [pw], [K
∗
1], Z) or GOTO wrong

� (G4) Retrieve (P1State, sid,P, [x], [τx]), (Recvd, sid, ·,P, [y])
� (G4) Let [K1,1]∥[K1,2] := Sim(1).ComputeKey(sid, x, y, τx, pw)
� (G4) Record (P1Key,P,K1,1,K1,2)
� (G4) If K

∗
1 ̸= K1,1 GOTO wrong // Early-fail if the P1 key disagrees

� (G4) Send (TestPwd, sid||2,P, pw) to FPAKE

� (G1) If “correct”: GOTO correct

� (G1) If “wrong”: GOTO wrong

� (G1) Label wrong:
– (G1) Mark retrieved P2Session interrupted

– (G1) Record (TestedPwd, sid,P, pw, wrong)
– (G1) Return “wrong”

� (G1) Label correct:
– (G1) Mark retrieved P2Session compromised

– (G1) Record (TestedPwd, sid,P, pw, correct)
– (G1) Return “correct”

Figure 11: Simulator for SeqComb[P1,F (2)
PAKE] realizing FPAKE, Lemma 2. Random

oracles H0,H1 are simulated as in the real execution.

30

On (NewKey, sid∥2,P,K∗
2) from Z to F (2)

PAKE

� (G1) Retrieve (P2Session, sid,P,P ′, [Z]) with marking m ̸= completed

� // Pick K2 the same way a normal PAKE functionality would pick the key
� (G1) If m = compromised: K2 := K∗

2

� (G1) Else if m = fresh AND ∃(P2Key, sid,P ′, [K ′
2], fresh): // P finishes last

– (G5) If ∃(TestedPwd, sid,P ′, Z, correct): K2 := K ′
2 // Z ̸= ⊥ ⇒ P corrupt ⇒

w.l.o.g, P ′ is honest, and we already ran TestPwd when P ′ finished.
– (G8) Elif P and P ′ are honest: K2 := ⊥ // FPAKE controls the final K anyway
– (G1) Else: K2 ←$ {0, 1}λ // P corrupt, wrong password

� (G1) Elif ∃(P2Session, sid,P ′,P, ·) then set K2 ←$ {0, 1}λ // P finishes first or inter-
rupted, or P ′ finished non-fresh.

� (G1) Else ignore the query // Isolated P does not output a key
� // Same as PAKE functionality, record the key and return it to the party (if corrupt)
� (G1) Record (P2Key, sid,P,K2,m)
� (G1) Mark P2Session completed

� (G1) If P is corrupt:
– (G1) Send (sid,K2) to P // No need to call FPAKE.NewKey on a corrupt party

� // Now we compute the final key H2(sid,K1,2,K2, tr) for honest P if we can find K1.
� (G4) If P ′ is corrupt AND P2Session is fresh: // Attacked P finishes. Opportunistically
run TestPwd in the honest-corrupt setting.

– (G4) Retrieve (P2Session, sid,P ′,P, [Z ′])
– (G4) Run code of (TestPwd, sid||2,P, Z ′) // Ensure P1Key is set in attacked session

� (G4) If P ′ is corrupt OR ∃(TestedPwd, sid,P, ·, correct):
– (G4) Retrieve (P1Key, sid,P, ·, [K1,1,K1,2]) // Must exist in a non-tanked session

because, above, Sim always calls TestPwd on an honest-corrupt setting
– (G4) K := H2(sid,K1,2,K2, tr)

� Else:
– (G8) K := ⊥ // Honest-honest setting: FPAKE decides
– (G3) Retrieve (Sent, sid, [P ′],P, [x′]), (Sent, sid,P,P ′, [y]), (Recvd, sid,P ′,P, [x])

and (Recvd, sid,P ′,P, [y′])
– (G3) If x ̸= x′ or y ̸= y′ send (TestPwd, sid,P,⊥) to FPAKE: // DoS attack on P1

� Send (NewKey, sid,P,K) to FPAKE

Figure 12: Cont. simulator.

The changes are only syntactical since the real execution runs on same
inputs and produces outputs the same way as in the previous game. We
hence have

Pr[G0] = Pr[G1].

Game G2: Simulate the P1 message of honest parties. In this game we
change the simulation to compute P1 messages using (x, τx) := Sim(1).Start(),

and compute the P1 output keys as Sim(1).ComputeKey(y, x, τx, pw) for in-
coming message y. Because P1 is perfectly password-hiding, messages are
distributed equally and the P1 output keys are equal to G1. We hence
have

Pr[G1] = Pr[G2].

31

Game G3: Randomize outputs keys in case of DoS attack in P1. We
modify the simulator to send (TestPwd, sid,P,⊥) for an honest party P in
case P ′ is also honest, and there was no TestPwd query against P by Z,
and Z did not deliver both x, y untampered. This can only be decided

once Z sends NewKey for P to F (2)
PAKE, and hence the simulator performs

this check at the very end of the NewKey interface.

Because interrupted markings in F do no yet affect output keys, the
changes do not affect the output distribution and we have

Pr[G2] = Pr[G3].

Game G4: Extract password from corrupt party. We change the simula-
tor for an honest P , either upon (TestPwd, sid,P, Z) from Z where w.l.o.g.
P ′ is honest, or upon a corrupt P ′ receiving input (NewSession, sid,P, Z),
where Z = H0(sid, [pw], [K

∗
1,1]). The simulator computes [K1,1]∥[K1,2] :=

Sim(1).ComputeKey(sid, x, y, τx, pw) and ifK1,1 = K∗
1,1 sends (TestPwd, sid,P, pw)

to FPAKE. In all other cases, the simulator keeps letting the internally em-

ulated F (2)
PAKE instance handle the guess. When P is supposed to generate

output, if the guess came back “correct”, the simulator sets the key of P
to be H2(sid,K1,2,K

∗
2 , tr), where K

∗
2 is taken from the NewKey query from

Z to F (2)
PAKE for P. The simulator sends this key through NewKey to F,

which outputs it for compromised records.

The changes of key computation of P in this game are only syntactical
because the correct TestPwd guess guarantees that pw is the input password
of P. We hence have

Pr[G3] = Pr[G4].

Game G5: Removing two password equality checks from the simula-
tion. We change the functionality to ignore the simulator’s output key for
honest parties finishing last in honest sessions, with matching passwords,
and where both records were fresh at the time of output generation (i.e.,
no TestPwd was queried by the simulator on any of the two parties). In
this case, the functionality outputs the output key of the first party also
to the second party.

At the same time we make a similar change in the simulation of F (2)
PAKE,

for a corrupt party finishing last in a session with an honest party, where
simulator’s TestPwd query to FPAKE returned “correct” for that honest
party, for Z input by the corrupt party. Instead of comparing the honest
party’s password with the corrupt party’s password, we let the simulator
output the key K∗

2 that was previously output to the corrupt party.

This and the previous game are not distinguishable by the (trivial) cor-
rectness of the protocol and the correctness of FPAKE. We note that the

32

correctness of FPAKE can be used as an argument only in case of no adver-
sarial interference, as is the case in this game, but does not hold in general
as demonstrated by Roy and Xu [RX23]. Hence we have

Pr[G4] = Pr[G5].

Game G6: Randomize output keys of interrupted sessions. We change
the functionality to ignore the simulator’s output keys for interrupted
sessions and instead output they key stored in the Key record, i.e., a
randomly chosen key.

In this game, interrupted sessions got marked as such due to either an
incorrect password guess, or Z tampering with the transcript between two
honest users. Z can only notice a difference if it queries what the honest
user with the interrupted session outputs, namely H1(sid,K1,2,K2, x, y). In

case of message tampering without an active attack on F (2)
PAKE, this happens

at most with probability qH/2
λ because F (2)

PAKE chooses K2 uniformly at
random and does not leak any information about it since the other party
is also honest and outputs a hash H1(sid,K1,2,K2, x

′, y′) where (x, y) ̸=
(x′, y′). In case of an incorrect password guess, F (2)

PAKE chooses a uniformly
random K2 for the honest party with the interrupted session and outputs
it only to that party. Hence, we have

|Pr[G6]− Pr[G5]| ≤
qH
2λ

.

Game G7: Randomize keys of an honest party finishing first with
a fresh record. We change the functionality to ignore the simulator’s
output keys for an honest P finishing on a fresh session, and instead
output to P the key from the Key record, i.e., a randomly chosen key.

Note that, as of G5, the functionality aligns the output key in case of
matching passwords, which implies that the randomized key chosen of P
in this game might get repeated to the other party.

Because the simulation of G7 always asks TestPwd queries if an honest P
either runs with a corrupt party, or with an honest party but is attacked
by either a message tampering adversary or an active adversary through

TestPwd on F (2)
PAKE, P finishing on a fresh record is not under any attack.

In G7, F (2)
PAKE chooses a fresh K2 for P that is only given to the honest P ′

(if passwords match; otherwise P ′ receives no information about K2). We
hence have

|Pr[G7]− Pr[G6]| ≤
qH
2λ

.

Game G8: Remove the passwords from the simulation. We modify the
simulator to use ⊥ as password in all NewSession inputs to the internally

33

Alice(sid, pw) Bob(sid, pw)

pw pw

K1,1 K1,2
F (1)

PAKE K1,1 K1,2

Z := H0(sid, pw,K1,1) Z := H0(sid, pw,K1,1)

Z Z

tr K2
P
sid∥2
2 tr K2

K := H1(sid,K1,2,K2, tr) K := H1(sid,K1,2,K2, tr)

return K return K

Figure 13: Protocol SeqComb[F (1)
PAKE,P2] relying on an intact first PAKE protocol.

simulated F (1)
PAKE for honest parties. We let it omit ComputeKey runs on

the input passwords of honest parties. At the same time, we change
the functionality not to forward input passwords of honest parties to the
simulator, but relay (NewSession, sid,P,P ′) from F to Z as coming from

F (1)
PAKE.

As of G7, outputs are fully determined by F except for compromised
records where F forwards the key from the simulator. A careful inspection
of the simulator code of G8 shows that it does not use honest parties’
input passwords anymore: the protocol transcript is generated without
passwords of honest parties as of G2, with ComputeKey taking extracted

passwords as input as of G4. The internal simulation of F (2)
PAKE also works

without passwords since we replace password equality checks in G5. We
hence have

Pr[G7] = Pr[G8].

Because forwarding of input passwords and relaying of simulator output
keys was the only difference when we introduced F in G1, the functionality
F in G8 is equal to FPAKE. The theorem thus follows with the simulator
depicted in Figures 11 and 12.

Lemma 3. Let P2 be any PSK equality hiding PAKE protocol. Then protocol

SeqComb[F (1)
PAKE,P2] (Figure 13) UC-realizes FlePAKE in the (FRO,FPAKE)-hybrid

model with respect to static party corruptions, where H0,H1 are modeled as

random oracles (i.e., as calls to FRO), and F (1)
PAKE = FPAKE (i.e., the superscript

is only added to differentiate between the two instances of FPAKE in the statement).

34

We again make the following simplifying assumptions.

1. Z corrupts at most one party in a session

2. Z never issues a TestPwd query against a corrupt party

3. Z never issues a TestPwd query against an honest party if the other party
is corrupt

Game G0: The real execution.

Game G1: Change layout. We change the previous game as follows:

� We move the whole execution into a single machine and call it the
simulator Sim.

� We add all the record-keeping of the simulator as in Figure 14.
� In between Z and Sim we add one dummy party for each real party.
� In between the dummy parties and Sim, we add the ideal functionality
FPAKE as in Figure 1, but relaying passwords of honest parties to Sim
and relaying outputs keys provided by Sim to the dummy parties. We
call that functionality F.

The changes are only syntactical since the real execution runs on same
inputs and produces outputs the same way as in the previous game. We
hence have

Pr[G0] = Pr[G1].

Game G2: Extract password from corrupt party We change the simulator

upon a corrupt P sending input (NewSession, sid,P,P ′, pw) to F (1)
PAKE, or

upon Z sending (TestPwd, sid,P ′, pw). W.l.o.g., P ′ from these queries is
honest. Upon TestPwd, the simulator immediately forwards the query
to F. For the NewSession, the simulator first waits until P ′ is supposed

to output a key through F (1)
PAKE (i.e., Z sends a NewKey query for P ′ to

F (1)
PAKE), and then sends the password guess to F. If the response from
FPAKE is “correct”, the simulator uses pw in the computation of Z for P.
Because of the input password of P is the same in the simulation and in
F, the switch to pw upon “correct” is only syntactical and we have

Pr[G1] = Pr[G2].

Game G3: Randomize output key upon message tampering in P2. We
change the simulator to send (TestPwd, sid,P,⊥) to F in case of P,P ′

both honest and Z tampering with a message from P ′. At the same time,
we let the functionality ignore the simulator’s output key for P in case
such a TestPwd happened, and instead take the key from its Key record
(i.e., a randomly chosen one).

35

On (NewSession, sid,P,P ′) from FPAKE

� Record (P1Session, sid,P,P ′,⊥) and mark it fresh
� (G1) Send (NewSession, sid∥1,P,P ′) to Z

On (NewSession, sid||1,P,P ′, pw) from corrupt P to F (1)
PAKE

� (G1) Record (P1Session, sid,P,P ′, pw) and mark it fresh
� (G1) Send (NewSession, sid∥1,P,P ′) to Z

On (NewKey, sid,P,K∗) from Z to F (1)
PAKE

// Follow the logic of the FPAKE NewKey interface to compute the output key of P2:
� (G1) Retrieve (P1Session, sid,P, [P ′], [pw]) with mark m ̸= completed

� (G1) If m = compromised: K1,1,K1,2 := K∗

� (G8) Elif m = fresh AND ∃(P1Key, sid,P ′, [K ′], fresh): // P finishes last
– If ∃(TestedPwd, sid,P ′, pw, correct): K1,1,K1,2 := K ′ // Z ̸= ⊥ ⇒ P corrupt ⇒ w.l.o.g, P ′

is honest, and we already ran TestPwd when P ′ finished.
– (G1) Elif P and P ′ are honest: K1,1,K1,2 := ⊥ // FPAKE controls the final K anyway
– (G1) Else: K1,1,K1,2 ←$ {0, 1}λ // P corrupt, wrong password

� (G1) Elif ∃(P1Session, sid,P ′,P, ·) then set K1,1,K1,2 ←$ {0, 1}λ // P finishes first or interrupted,
or P ′ finished non-fresh.

� (G1) Else ignore the query // Isolated P does not output a key
� (G2) If P1Session is fresh, P is honest and P ′ is corrupt: // Now that TestPwd can no longer be
called on this session, we can finally call it

– (G2) Retrieve (P1Session, sid,P ′,P, [pw′])
– (G2) Run code of (TestPwd, sid∥1,P, pw′)

� (G1) Record (P1Key, sid,P,K1,1,K1,2,m)
� (G1) Mark the P1Session completed

� If P is corrupt:
– (G1) Send (sid,K1,1,K1,2) to P
– (G1) Return

� Else: // Now compute Z for honest P if we can, and run the rest of the protocol
– (G2) If ∃(TestedPwd, sid,P, [pw′], “correct”): Z := H0(sid, pw

′,K1,1) // K1,1 ̸= ⊥ because it’s
only ⊥ when both parties are honest and P ’s session is uncompromised. But when that’s the
case, (TestedPwd, sid,P, . . .) doesn’t exist

– (G9) & (G10) Else: Z ←$ {0, 1}λ
– (G1) Store (P2Input, sid,P, Z)
– (G1) Run P2 on behalf of P on input Z

On (TestPwd, sid,P, pw) from Z to F (1)
PAKE or as internal call // W.l.o.g., P is honest

� (G2) Retrieve (P1Session, sid,P, ·, ·) marked fresh

� (G2) Send (TestPwd, sid,P, pw) to FPAKE, get result b, and mark P1Session accordingly
� (G2) Record (TestedPwd, sid,P, pw, b)
� (G2) Return b

On Z sending the final message in P2 to honest (sid,P)
� (G1) Ignore if simulated P is not ready to receive the final P2 message
� (G1) Retrieve (P1Key, sid,P, ·, [K1,1,K1,2], ·) // Exists because P starts P2 after P1Key was
recorded

� (G1) If K1,1,K1,2 ̸= ⊥: // If we can compute K2 and K then do so
– (G1) Compute P2 protocol output tr,K2 on behalf of P
– (G1) Record (P2Key, sid,P,K2, tr)
– (G1) Compute K := H1(sid,K1,2,K2, tr)

� Else: K := ⊥ // P1 is uncompromised and interacting with honest party: Sim’s key will be ignored.
� (G3) If ∃ record (P2Key, sid,P ′, ∗, [tr′]) with tr ̸= tr′, send (TestPwd, sid,P,⊥) to FPAKE // DoS
on P2

� (G1) Send (NewKey, sid,P,K) to FPAKE

Figure 14: Simulator for SeqComb[F (1)
PAKE,P2] realizing FPAKE, Lemma 3. Random

oracles H0,H1 are simulated as in the real execution.

36

In an honest interaction, the only values depending on key K1,2 are the
outputs of the two honest parties, which because of the inclusion of tr
in the final hash are different. Hence, this and the previous game are
equally distributed unless Z queries (sid,K1,2,K2, tr) to H1 which happens
only with probability 1/2λ for each H1 query of Z, because K1,2 is chosen
uniformly at random. Hence we have

|Pr[G3]− Pr[G2]| ≤
qH
2λ

.

Game G4: Abort if Z queries a secret P1 output key to H0. We abort

the simulation if Z queries H0(sid, ·,K1,1) for a K1,1 that F (1)
PAKE generated

as output to an honest party P, except when P is attacked with a correct
password guess.

Because F (1)
PAKE generates output keys uniformly at random and, unless P

is subject to a successful active attack, these output keys are not given to
anybody else than the honest P, the probability for the abort to happen
is 1/2λ per hash query, and hence we have

|Pr[G4]− Pr[G3]| ≤
qH
2λ

.

Game G5: Randomize output keys of interrupted sessions. We change
F to ignore the simulation’s ouput keys for interrupted sessions and instead
output the key from the Key record. This means that honest parties who
received wrong password guesses now obtain a fresh random key from F.
The argument is the same as in G4, this time relying on the negligible
probability of Z querying K1,2 to H1. We again have

|Pr[G5]− Pr[G4]| ≤
qH
2λ

.

Game G6: Functionality aligns keys In this game we let F output the
same key to the party who finishes last in a fresh session, with matching
passwords, and thereby ignore the output key provided by the simulator.

Due to the (trivial) correctness of the protocol and of F (1)
PAKE in an unattacked

session, the changes are only syntactical and to not affect the output dis-
tribution. We have

Pr[G5] = Pr[G6].

Game G7: Randomize output keys parties finishing first in fresh
sessions We change F to ignore the simulator’s output keys for honest
parties finishing first on a fresh session, and instead output the key from
the Key record. I.e., these parties get a fresh uniform key generated by F
now.

37

Because of games G2 and G3, the simulator queries TestPwd for honest
parties under attack, and hence the fresh sessions modified in this game are
guaranteed to belong to honest parties that are running with another honest
party and an untampered transcript. Hence, K1,2 chosen uniformly by

F (1)
PAKE are only given to the honest parties. Z can only notice a difference

in the output distribution of G7 and G6 if it queries K1,2 to H1, which
happens with negligible probability

|Pr[G7]− Pr[G6]| ≤
qH
2λ

.

Game G8: Remove password equality check from simulation. We
change the simulation to replace the password equality check in the NewKey

interface of the internally simulated F (1)
PAKE: instead of comparing the

input password of a finishing corrupt P with its honest counterparty’s
password, the simulator compares with the correct password guess against
the counterparty (if it happened).

Because TestPwd compares a password guess against an input password,
the changes are only syntactical and we have

Pr[G7] = Pr[G8].

Game G9: Randomize Z of honest unattacked parties with matching
passwords. We change the simulation to use a randomly chosen Z ←$

{0, 1}λ as a password in P2 both honest parties if they have matching
passwords and are not attacked, i.e., parties that received a session key

from F (1)
PAKE while their session at F was marked fresh.

A distinguisher between this and the previous game breaks the pre-shared
key equality hiding property of P2. To see this, in G8 both parties were
running on the same Z, which was randomly chosen by the random oracle.
In this game, both parties are running on randomly chosen Z values.
Further, Z does not see the output keys K2 since we randomized outputs
of honest parties in G7. We hence have

|Pr[G9]− Pr[G8]| ≤ AdvPEHP2
.

Game G10: Randomize Z of honest attacked parties and honest parties
with mismatching passwords. We now change the simulation to use
a random Z for an honest P in all other cases except if P’s session in F
is compromised, which the simulator can determine via the existence of a
(TestedPwd, sid,P, ·, correct) entry.

In all these cases, F (1)
PAKE outputs a key K1,1 to P that is not given to

anybody else. Hence, Z can only notice a difference if it queries K1,1 to
H0. We hence have

38

|Pr[G10]− Pr[G9]| ≤
qH
2λ

.

We are now in a situation where, in the simulation, honest parties whose
sessions are not marked compromised in F no longer useK1,1 to compute Z.
The output keys of these parties are determined by F and the corresponding
output keys produced by the simulation are ignored by F. Hence, the
whole execution does not depend on the input passwords of honest parties
anymore, and we can replace them by dummy values in the next game.

Game G11: Remove passwords from simulation. We let the simulator
use ⊥ as input password for honest parties, and change F to not forward
passwords of honest parties to the simulator anymore.

As argued above, the changes go unnoticed by Z because the distribution
does not depend on the honest parties’ passwords in the simulation as of
G10. We hence have

Pr[G10] = Pr[G11].

Because forwarding of input passwords and relaying of simulator output
keys was the only difference when we introduced F in G1, the functionality
F in G11 is equal to FPAKE. The theorem thus follows with the simulator
depicted in Figure 14.

A.3 Proof of Lemma 1

The overall idea of the proof is to let FrlePAKE handle LateTestPwd queries by

Z. However, Z issues those queries against the first sub-PAKE, i.e., F (1)
lePAKE,

while the simulator has a LateTestPwd interface at FrlePAKE which handles the
overall key exchange. This causes a slight timing issue: if P1 completed but
P2 is still ongoing, Z can issue a late password guess against P1 while FrlePAKE

would reject such a query. The solution is to let our simulator translate late
password guesses against P1 to online guesses against FrlePAKE while the overall
key exchange is not yet completed.

The proof is derived from the proof of Lemma 3 by changing all occurrences

of F (1)
PAKE to F (1)

lePAKE, changing all occurrences of FPAKE to FrlePAKE, and modifying
the games as follows.

� Registering lazy extractions at FrlePAKE. We add a new gameG2.1 right
after G2 where we change the simulation to forward a (RegisterTest, sid,P)
query to FrlePAKE, but only at the very last moment before P is producing
an output key. That is, we mark the P1Session of P with a tested flag
and, right before sending (NewKey, sid,P, ·) to FrlePAKE, the simulator sends
(RegisterTest, sid,P) to FrlePAKE. Because the effect of RegisterTest is an
interrupted record and these markings do not yet affect any output keys
in this game, the changes do not affect the output distribution and the
new game G2.1 is equally distributed to G2.

39

� Answering “online” LateTestPwd queries without passwords. We
add a new game G2.2 right after G2.1 where we change the simulation in
case Z sends (LateTestPwd, sid,P, pw) for a P1Session that is completed
and flagged tested, but where P has not yet produced an output key.
The simulator sends (TestPwd, sid,P, pw) to FrlePAKE. Upon “correct”, it
returns the P1Key record K1,1,K1,2 to Z, otherwise a random key. Because

the passwords in both FrlePAKE and F (1)
lePAKE match, the changes are only

syntactical and G2.1 and G2.2 are equally distributed.

� Answering “completed” LateTestPwd queries without passwords.
We add a new game G2.3 right after G2.2 where we change the simulation
in case Z sends (LateTestPwd, sid,P, pw) for a P that has a completed P1
session flagged tested, and that has already produced an output. In case
the guess comes back correct with a key K ̸= ⊥, the simulator programs
H0[sid, pw

∗,K1,1] := Z and H1[sid,K1,2,K2, tr] := K for K1,1,K1,2, Z,K2

from the simulation of P. The changes are only syntactical because the
simulator re-programs exactly what P already computed.

� Randomize output keys of interrupted sessions. This is the original
G5, where we additionally let the simulator skip the output key compu-
tation of interrupted sessions. Because LateTestPwd queries also result in
interrupted records, these output keys are also randomized by this game.
The effect is that LateTestPwd responses are now also random keys chosen
by FrlePAKE, and hence the programming of the simulator in G2.3 becomes
crucial as it reinstalls consistency between the simulated protocol values for
P and its FrlePAKE-determined output key. Hence, the switch to different
keys goes unnoticed by the environment except with negligible probability
as argued in G5, despite the additional interrupted records through the
LateTestPwd queries.

40

On Z sending the final message in P2 to honest (sid,P)
� Ignore if simulated P is not ready to receive the final P2 message
� Retrieve (P1Key, sid,P, ·, [K1,1,K1,2], ·) // Exists because P starts P2 after P1Key was recorded
� If K1,1,K1,2 ̸= ⊥: // If we can compute K2 and K then do so

– Compute P2 protocol output tr,K2 on behalf of P
– Record (P2Key, sid,P,K2, tr)
– Compute K := H1(sid,K1,2,K2, tr)

� Else: K := ⊥ // P1 is uncompromised and interacting with honest party: Sim’s key will be ignored.
� If ∃ record (P2Key, sid,P ′, ·, [tr′]) with tr ̸= tr′, send (TestPwd, sid,P,⊥) to FrlePAKE // DoS on P2

� (G2.1) If P is honest AND P1Session is flagged tested AND ∄(TestedPwd, sid,P, . . .): send
(RegisterTest, sid,P) to FrlePAKE // Forward the RegisterTest at the last possible moment

� Send (NewKey, sid,P,K) to FrlePAKE

On (RegisterTest, sid∥1,P) from Z to F (1)
lePAKE

� (G2.1) Retrieve (P1Session, sid,P, ·, ·) marked fresh

� (G2.1) Mark it interrupted and flag it tested
� // Defer forwarding the RegisterTest until right before we do NewKey

On (LateTestPwd, sid∥1,P, pw∗) from Z to F (1)
lePAKE // W.l.o.g., P is honest

� (G1) Retrieve (P1Session, sid,P, ·, ·) marked completed with flag tested

� (G1) Remove the flag tested

� (G1) Retrieve (P1Key, sid,P, [K1,1,K1,2], [m]) // K1,1,K1,2 can’t be ⊥ because that only happens
for untested sessions

� (G2.2) If m = interrupted: // TestPwd was not queried on this session yet. It was marked
interrupted by RegisterTest, so the normal TestPwd points were never triggered

– (G2.2) Send (TestPwd, sid,P, pw∗) to FrlePAKE, get result b
– (G2.2) If “correct”: return K1,1,K1,2

– (G2.2) Else: return K ′
1 ←$ {0, 1}2λ

� Else: // The session ended. Need to make it such that K1,2 explains the final K
– (G2.3) Retrieve (P2Key, sid,P,K2, ·)
– (G2.3) Retrieve (P2Input, sid,P, Z)
– (G2.3) Send (LateTestPwd, sid,P, pw∗) to FrlePAKE and get K
– (G2.3) If K = ⊥ return K ′

1 ←$ {0, 1}2λ
– Else:

* (G2.3) Set H0[sid, pw
∗,K1,1] := Z //Program the P2 input to the correct password.

* (G2.3) Set H1[sid,K1,2,K2, tr] := K // Program the final hash to the key K previously
output by P.

* (G1) Return K1,1,K1,2

Figure 15: Simulator for Lemma 1 in terms of added/modified interfaces from
Figure 14.

41

B Formal distinguisher for SeqComb with lazy
extraction

To make SeqComb work with lazy extraction PAKEs, we would need to prove
the following statement: if P1 UC-realizes FlePAKE and P2 is PSK equality hiding,
then P UC-realizes FlePAKE (in the FRO-hybrid model). In this section we give a
formal distinguisher for this statement.

The PSK equality hiding property does not rule out offline attacks against
P2. We use that to distinguish the protocol from FlePAKE.

1. Z starts honest P with pw, sends RegisterTest to F (1)
lePAKE and completes

P’s session to receive output key K.

2. Z flips a coin b and sends pwb as LateTestPwd guess to F (1)
lePAKE, where

pw0 = pw and pw1 is a different password.

3. Z receives key K1,1,K1,2 from F (1)
lePAKE

4. Z tests whether H0(sid, pwb,K1,1) was used by P in P2.

� If b = 0 Z expects that test to pass
� If b = 1 Z expects that test to fail.

A simulator Sim can react in the following way to this Z

1. Sim has no information about P’s password, so it chooses a random Z to
run P2

2. Sim submits pwb via LateTestPwd to FlePAKE and receives back Kb, where
Kb = K for b = 0 and random otherwise.

3. Sim chooses random K1,1,K1,2 to reply to Z.

4. Sim obtains query H0(sid, pwb,K1,1) and can now program it:

� If Sim programs the hash to Z and b = 1, the test passes—Z can
distinguish

� If Sim programs the hash to a different Z ′ and b = 0, the test fails—Z
can distinguish

42

	Introduction
	Preliminaries
	Notation
	Universal composability
	PAKE
	PAKE protocols
	Ideal PAKE functionality
	Hiding properties of PAKEs

	Constructions
	The ParComb combiner
	Security
	Limitations

	The SeqComb combiner
	Security
	Using weaker P1
	Concrete instantiations yielding hybrid PAKE

	Future work
	Proofs
	Proof of thm:parComb
	Proof of thm:seqcomb
	Proof of lemma:seqcomb-rle

	Formal distinguisher for SeqComb with lazy extraction

