
Really Complex Codes

with Application to STARKs

Yuval Domb
yuval@ingonyama.com

Abstract

Reed-Solomon (RS) codes [RS60], representing evaluations of univariate polyno-
mials over distinct domains, are foundational in error correction and cryptographic
protocols. Traditional RS codes leverage the Fourier domain for efficient encoding
and decoding via Fast Fourier Transforms (FFT). However, in fields such as the Re-
als and some finite prime fields, limited root-of-unity orders restrict these methods.
Recent research, particularly in the context of modern STARKs [BSBHR18b], has ex-
plored the Complex Fourier domain for constructing Real-valued RS codes, introducing
novel transforms such as the Discrete Circle-Curve Transform (DCCT) for Real-to-Real
transformations [HLP24]. Despite their efficiency, these transforms face limitations
with high radix techniques and potentially other legacy know-hows. In this paper, we
propose a construction of Real-valued RS codes utilizing the Discrete Fourier Transform
(DFT) over the Complex domain. This approach leverages well-established algebraic
and Fourier properties to achieve efficiency comparable to DCCT, while retaining com-
patibility with legacy techniques and optimizations.

1 Introduction

RS codewords are length n sequences that represent evaluations of univariate polynomials
of degree k−1 over a distinct domain, where k < n. Abundant RS codes utilize the Fourier
domain, which is a cyclic group generated by a root-of-unity of suitable order, for their
construction. This choice facilitates efficient encoding and decoding using FFT techniques
[Bri88], especially effective for code lengths that are powers-of-two.

For power-of-two transform lengths, the root-of-unity must match this order. In certain
fields like the Reals R and finite prime fields Fp where p ≡ 3 (mod 4), there exists only
one power-of-two root-of-unity, namely −1 of order 2, limiting options. However, Complex
extensions of these fields (R2 and F2

p) offer roots-of-unity of higher powers-of-two.
Recent research, as discussed in [HLN23] and [HLP24], explores the use of the Com-

plex Fourier domain for constructing Real-valued RS codes. In [HLP24], Haböck et al.
introduced the DCCT, a novel non-Fourier approach specifically designed for Real-to-Real
transformations. The DCCT employs trigonometric base functions structured to satisfy
the two-to-one decimation property (i.e., radix-2 butterflies), enabling efficient computa-
tional techniques. However, these same base functions limit the ability to apply higher
radix techniques, which often provide computational and memory advantages [Bri88]. A
key benefit of high radix designs is the improved memory locality of twiddle factors. In
such designs, the twiddle factors can be partitioned into two groups: those internal to the
radix block and those external to it. Since the internal twiddle factors remain identical

1

across all radix blocks, they can be cached, offering a significant performance advantage,
especially in massively parallel computing devices such as GPUs.

In this paper, we propose the Real Complex (RC) code, a novel error-correcting code
derived from Real-valued RS codes in the Complex Fourier domain using the DFT [Dom23].
This approach leverages the well-established properties and computational advantages of
Fourier Transforms.

The paper is organized as follows. In Section 2, we introduce important notations and
three key concepts: unique polynomial representation, Laurent polynomials, and Real-
valued Discrete Fourier Transforms (RDFT). Section 3 covers the construction and prop-
erties of the new RC code. Section 4 focuses on practical aspects of working with RC
codes, including Low Degree Extension (LDE) and polynomial operations. In Section 5,
we explore the application of RC codes within STARKs. Finally, Section 6 discusses an
FFT algorithm optimized for RDFT and compares RDFT with DCCT in the context of
FFT, with particular emphasis on the 31-bit Mersenne prime field (M31).

2 Preliminaries

In this paper, notations are introduced explicitly when used, except where they have been
previously defined. Below, we outline a few general conventions that apply throughout.

The term ”Complex field” refers to a quadratic extension of a given base field, which
we call the ”Real field.” For example, the Complex field CF = F2 represents a quadratic
extension of the Real field F, where F is an arbitrary field. The n-th root of unity in
CF is commonly denoted by ω. Additionally, the concept of a two-dimensional unit-circle
angle θ is extended to the Complex field CF, enabling application of Euler’s identity ωℓ =
cos(ℓθ) + i sin(ℓθ) in this context [Bha11].

Polynomials are denoted in the usual way; however, to distinguish between standard
polynomials and Laurent polynomials (see Subsection 2.2) in general usage, we denote
standard polynomials by P (x) and Laurent polynomials by L(x).

2.1 Unique Polynomial Representation

Unique representation of univariate polynomials is as old as algebra itself [Bôc95]. We
restate an appropriate version of it here as a theorem.

Theorem 2.1 (Unique Polynomial Representation (UPR)). A univariate polynomial whose
order is n− 1 can be uniquely represented by any n distinct evaluations.

Proof. Define a univariate polynomial of order n− 1 over field K as

P (x) =
n−1∑
i=0

cix
i (2.1)

where ci ∈ K are termed its coefficients. The translation from coefficients to n evaluations
can be represented by the following linear system

P (x0)
P (x1)

...
P (xn−1)

 =

1 x0 x20 ... xn−1

0

1 x1 x21 ... xn−1
1

...
...

...
...

...

1 xn−1 x2n−1 ... xn−1
n−1

c0
c1
...

cn−1

 (2.2)

2

where {xi}i∈[n] is the evaluation domain. The translation matrix in (2.2) is a square
Vandermonde matrix [Kal84] whose determinant is known to be∏

i,j∈[n]
j>i

xj − xi (2.3)

For a distinct evaluation domain (i.e. xi ̸= xj ∀i ̸= j) the determinant (2.3) is necessarily
non-zero and the linear system (2.2) is fully-determined. Hence, this system admits a
unique solution.

Definition 2.1 (RS Codeword). An RS codeword {P (xi)}i∈[n] ∈ RS(n, k) with k < n is
the evaluation of an order k − 1 polynomial P (x) with coefficients {ci}i∈[k] over a distinct
length n domain {xi}i∈[n].
Corollary 2.1.1. Each codeword in RS(n, k) has exactly

(
n
k

)
determinations.

Proof. By Theorem 2.1 any k distinct evaluations from {P (xi)}i∈[n] uniquely determine
{ci}i∈[k].

Remark 2.1.1. RS codes are Maximum Distance Separable (MDS) codes, meaning they
achieve the largest possible minimum distance for a given code length n and dimension k,
achieving the Singleton Bound dmin ≤ n− k+1. codes that achieve dmin = n− k are often
called ”almost-MDS”.

2.2 Laurent Polynomials

Define a Laurent polynomial of order n over field K as the following univariate function

L(x) =

n
2∑

i=−n
2

cix
i (2.4)

where n is even and ci ∈ K are termed its coefficients. Formally, the collection of Laurent
polynomials forms an integral domain denoted by K[x, x−1] (see [Lan05]) with component-
wise addition and multiplication governed by convolution of coefficients vectors (see Section
1.3 of [Dom23]).

Corollary 2.1.2. Laurent polynomials obey the UPR property.

Proof. Equation (2.4) can be rewritten as

L(x) = x−
n
2

n∑
i=0

ci−n
2
xi (2.5)

which leads to the Laurent version of (2.2)
L(x0)
L(x1)

...
L(xn)

 =

x
−n

2
0

. . .

x
−n

2
n

1 x0 x20 ... xn0
1 x1 x21 ... xn1
...

...
...

...
...

1 xn x2n ... xnn

c−n
2

c−n
2
+1

...
cn

2

 (2.6)

The linear system (2.6) is fully determined for any distinct evaluation domain {xi}i∈[n+1]

such that xi ̸= 0 ∀i.

Remark 2.1.2. Laurent polynomials are undefined at x = 0.

3

2.3 Real-valued Discrete Fourier Transform

RDFT is the DFT that maps Real-value evaluations sequences. Formally, it is the eval-
uation over the domain {ωℓ}ℓ∈[n] of the conjugate-symmetric polynomial with Complex
coefficients

L(x) = c0 +

n
2∑

i=1

cix
i + c∗ix

−i (2.7)

where ω is an n’th root-of-unity for an even integer n and c0 and cn
2
are Real, (see Section

2.4 of [Dom23]). The evaluation at the ℓ’th power of ω results in

L(ωℓ) = c0 +

n
2∑

i=1

ciω
ℓi + c∗iω

−ℓi (2.8)

= c0 + 2(−1)ℓcn
2
+

n
2
−1∑

i=1

ciω
ℓi + c∗iω

−ℓi (2.9)

= r0 + 2(−1)ℓrn
2
+ 2

n
2
−1∑

i=1

ri cos(iℓθ)− qi sin(iℓθ) (2.10)

where ci = ri + iqi, with ri and qi being the Real and Imaginary components of ci, respec-
tively. The conjugate of ci is given by c∗i = ri − iqi.

Evidently, the resulting translation {r0, c1, ..., cn
2
−1, rn

2
} → {L(ωℓ)}ℓ∈[n] transforms

conjugate-symmetric coefficients sequences to their Real-valued evaluations sequences. The
RDFT can be presented in a matrix form as

L(1)
L(ω)
L(ω2)

...
L(ωn−1)

 =

1 1 1 ... 1
1 ω1 ω2 ... ωn−1

1 ω2 ω4 ... ω2(n−1)

...
...

...
...

...

1 ωn−1 ω2(n−1) ... ω(n−1)2

r0

cn

2rn
2

c†n

 (2.11)

where cn ≡
[
c1, ..., cn

2
−1

]
and c†n ≡

[
c∗n

2
−1, ..., c

∗
1

]
its flipped-conjugate version. The linear

system in (2.11) is a DFT matrix, (see Chapter 1 of [Dom23]). As such, it is invertible,
satisfies Parseval’s identity, and facilitates efficient computation.
The Laurent version of (2.11) can be expressed as

L(1)
L(ω)
L(ω2)

...
L(ωn−1)

 =

1 ... 1 1 1 ... 1

ω−n
2 ... ω−1 1 ω ... ω

n
2

ω−n ... ω−2 1 ω2 ... ωn

...
...

...
...

...
...

...

ω−n
2
(n−1) ... ω−(n−1) 1 ωn−1 ... ω

n
2
(n−1)

rn

2

c†n
r0
cn
rn

2

 (2.12)

=

1 ... 1 1 1 ... 1

ω−n
2 ... ω−1 1 ω ... ω

n
2
−1

ω−n ... ω−2 1 ω2 ... ωn−2

...
...

...
...

...
...

...

ω−n
2
(n−1) ... ω−(n−1) 1 ωn−1 ... ω(n

2
−1)(n−1)

2rn

2

c†n

r0

cn

 (2.13)

4

=

1

ω−n
2

ω−n

. . .

ω−n
2
(n−1)

1 1 1 ... 1
1 ω1 ω2 ... ωn−1

1 ω2 ω4 ... ω2(n−1)

...
...

...
...

...

1 ωn−1 ω2(n−1) ... ω(n−1)2

2rn

2

c†n

r0

cn

(2.14)

where (2.12) follows by definition of (2.8), in (2.13) we use the fact that the right and left
columns of the transform matrix are identical, and in (2.14) we extract the diagonal shift
matrix which yields the standard DFT matrix from (2.11).

3 Constructing RC Codes

In this section, we will demonstrate that an RC code is a linear subset of an RS code.
As such, it maintains a minimum distance that is at least equal to that of the RS code
while featuring a reduced number of nearest neighbors. These properties ensure that the
performance of RC codes in STARKs is at least as good as that of the original RS code,
with potential improvement.

3.1 A Complex-valued RS(n,k+1) Code

Consider a Complex field CF that has an n’th root-of-unity ω where n is an even integer,
and let a codeword polynomial over CF be the evaluations sequence on domain {wℓ}ℓ∈[n]
of the following polynomial

L(x) =

k
2∑

i=− k
2

cix
i (3.1)

where k < n is an even integer. Then the code C is the construction that sends any
coefficient (k+1)-tuple {c− k

2
, ..., c k

2
} to a length n evaluations sequence of its corresponding

polynomial. Namely,

C : {c− k
2
, ..., c k

2
} → {L(1), L(ω), L(ω2), ..., L(ωn−1)} (3.2)

Theorem 3.1. The code C is RS(n, k + 1).

Proof. By Corollary 2.1.2, the coefficients {c− k
2
, ..., c k

2
} of a codeword polynomial of C

can be recovered using any length k + 1 sub-sequence of its corresponding evaluations
sequence. Then by Corollary 2.1.1 it is RS(n, k+1) since this defines a system with

(
n

k+1

)
determinations.

3.2 A Real-valued RS(n,k+1) Code

Consider a linear subcode of C defined by the conjugate-symmetric polynomials over CF

L′(x) = r0 +

k
2∑

i=1

cix
i + c∗ix

−i (3.3)

5

where the free coefficient r0 is Real. In a similar manner to (2.10), one can show that the
evaluations

L′(ωℓ) = r0 + 2

k
2∑

i=1

ri cos(iℓθ)− qi sin(iℓθ) (3.4)

are Real-valued for all {ωℓ}ℓ∈[n]. Then the code C′ is the construction that sends any coef-

ficient
(
k
2 + 1

)
-tuple {r0, c1, ..., c k

2
} where r0 is Real, to a length n, Real-valued evaluations

sequence of its corresponding polynomial. Namely,

C′ : {r0, c1, ..., c k
2
} → {L′(1), L′(ω), L′(ω2), ..., L′(ωn−1)} (3.5)

Theorem 3.2. The code C′ is RS(n, k + 1).

Proof. Take any length k+ 1 sub-sequence of a codeword of C′. Then, by definition of the
codeword polynomial (3.3), the following linear relation holds

L′(α0)

L′(α1)

...

L′(αk)

 =

α
− k

2
0 ... α−1

0 1 α0 ... α
k
2
0

α
− k

2
1 ... α−1

1 1 α1 ... α
k
2
1

...
...

...
...

...
...

...

α
− k

2
k ... α−1

k 1 αk ... α
k
2
k

c∗k
2
...
c∗1
r0
c1
...
c k

2

(3.6)

=

α
− k

2
0

. . .

α
− k

2
k

1 α0 ... αk

0

1 α1 ... αk
1

...
...

...
...

1 αk ... αk
k

c∗k
2
...
c∗1
r0
c1
...
c k

2

(3.7)

where αi ∈ {1, ω, ω2, ..., ωn−1}, αi ̸= αj ∀i ̸= j. Since the r.h.s. matrix in (3.7) is square
Vandermonde, the linear system has

(
n

k+1

)
determinations (α0, α1, ..., αk) and by Corollary

2.1.1, it follows that C is RS(n, k + 1).

Remark 3.2.1. For both C and C′, we think of codeword symbols as Complex. As such,
the definition of Hamming distance is the number of Complex symbols that differ between
two codewords.

Remark 3.2.2. The code C′ is the Real projection of C.

Theorem 3.3. The code C is the Cartesian product of C′ with itself.

Proof. Let us start by counting the number of codewords in each code. Code C has k + 1
Complex coefficients. Counting Real degrees-of-freedom (dof) this is 2k + 2 dof. Code C′

6

has k
2 Complex and one Real coefficients which amounts to k + 1 dof. This already shows

that the code sizes relate as |C| = |C′|2.
Now, take any polynomial coefficients vector c =

[
c− k

2
, ..., c k

2

]
of C and compute the

following two sums

c′0 =
c+ c†

2

c′1 =
c− c†

2i
(3.8)

It is simple to verify that c′0 and c′1 are orthogonal, that they are both conjugate-symmetric
and that c = c′0 + ic′1. Thus, both c′0 and c′1 are valid coefficients vectors of C′.

3.3 RC Codes

To construct the RC code, let us take C′ and expurgate1 it by setting q k
2
, the imaginary

part of the coefficient c k
2
to zero. The resulting code is a length n Real-valued (n, k) code.

Namely,
C′′ : {r0, c1, ..., c k

2
−1, r k

2
} → {L′′(1), L′′(ω), L′′(ω2), ..., L′′(ωn−1)} (3.9)

where

L′′(x) = r0 + r k
2
(x

k
2 + x−

k
2) +

k
2
−1∑

i=1

cix
i + c∗ix

−i (3.10)

Theorem 3.4. Define BMDS as the hypersphere of radius n − k + 1, then the code C′′ is
an almost-MDS, linear (n, k) code with most of its nearest neighbors on the spherical shell
of BMDS except for at most a 1

n−k fraction of them at distance dmin = n− k.

Proof. Since RC(n, k) is an expurgation of RS(n, k+1), its minimal distance is dmin = n−k.
To analyze other distances, let us try to determine the coefficients from a length k sub-
sequence of a codeword of C′′ using the following linear system

L′′(α0)
L′′(α1)

...
L′′(αk−1)

0

 =

α
− k

2
0

. . .

α
− k

2
k−1

1

1 α0 ... αk−1

0 αk
0

1 α1 ... αk−1
1 αk

1
...

...
...

...
...

1 αk−1 ... αk−1
k−1 αk

k−1

−1 0 ... 0 1

r k

2

c†k
r0

ck

r k
2

 (3.11)

where the bottom-row of the system is an auxiliary equation enforcing that r k
2

= r k
2
.

A fully-determined system is equivalent to non-singularity of the r.h.s. matrix in (3.11).
Using the Laplace Expansion it is possible to compute the determinant of that matrix as∣∣∣∣∣∣∣∣∣∣∣

1 α0 ... αk−1

0 αk
0

1 α1 ... αk−1
1 αk

1
...

...
...

...
...

1 αk−1 ... αk−1
k−1 αk

k−1

−1 0 ... 0 1

∣∣∣∣∣∣∣∣∣∣∣
=

(
1−

k−1∏
i=0

αi

)∣∣∣∣∣∣∣∣∣

1 α0 ... αk−1

0

1 α1 ... αk−1
1

...
...

...
...

1 αk−1 ... αk−1
k−1

∣∣∣∣∣∣∣∣∣ (3.12)

1Code expurgation is the process of taking a reference code and forming a new code whose codebook is
a subset of the reference code’s codebook.

7

where the determinant is zero only if

k−1∏
i=0

αi = 1 (3.13)

⇒
k−1∏
i=0

ωβi = 1 (3.14)

⇒
k−1∑
i=0

βi = 0 mod n (3.15)

where βi ∈ [n], βi ̸= βj ∀i ̸= j. The above sum can be rewritten as β0 +
∑k−1

i=1 βi = 0

mod n where by elementary considerations, regardless of the value of
∑k−1

i=1 βi, there is at
most a single choice for β0 that leads to a solution and thus at least n− k − 1 that won’t.
This means that at least n−k−1

n−k

(
n
k

)
of the determinations of (3.11) lead to non-singular

systems and a distance of d = n− k + 1.

4 Working with RC Codes

This section presents key algorithms for working with RC codes, focusing on LDE and
various polynomial operations. These techniques are essential for efficiently handling and
manipulating data within a STARK framework.

4.1 Low Degree Extension

LDE is the process of interpolating data by treating the input as evaluations of a low-degree
polynomial over a small domain, and computing the polynomial’s evaluations over a larger
domain. The evaluations on the large domain are defined as before

{L(1), L(ω), L(ω2), ..., L(ωn−1)} (4.1)

and on the small domain as (4.1)’s subset

{L(1), L(µ), L(µ2), ..., L(µk−1)} (4.2)

where µ is the k’th root-of-unity such that µ = ω
n
k . The coefficients corresponding to (4.2)

can be recovered using (2.11) as
r0

ck

2r k
2

c†k

 = F−1
µ

L(1)
L(µ)
L(µ2)

...
L(µk−1)

 (4.3)

8

where F−1
µ is the Inverse DFT matrix of order k. Prior to evaluating over the larger

domain, the coefficients vector must be partitioned as follows

r0
ck
r k

2

0
...
0
r k

2

c†k

=

1
. . .

1
1
2
0
...
0
1
2

1
. . .

1

r0

ck

2r k
2

c†k

 (4.4)

Finally, we can evaluate over the large domain as follows

L(1)
L(ω)
L(ω2)

...
L(ωn−1)

 = Fω

r0
ck
r k

2

0
...
0
r k

2

c†k

(4.5)

where Fω is the DFT matrix of order n.
The overall process involves performing an Inverse RDFT of order k, followed by an

RDFT of order n. A more memory-efficient approach computes evaluations over cosets
of the large domain, rather than evaluating over the entire domain at once. The pri-
mary advantage of this method is that a single large DFT is replaced by multiple smaller
ones. Additionally, the zero’th coset does not require re-evaluation, as it corresponds
to the original data. To demonstrate this approach, let us evaluate over the i-th coset
{ωi, ωiµ, ωiµ2, ..., ωiµk−1}. Plugging the evaluation coset into (3.6) leads to

L(ωi)

L(ωiµ)
...

L(ωiµk−1)

 =

ω− k

2
i ... 1 ... ω

k
2
i

ω− k
2
iµ− k

2 ... 1 ... ω
k
2
iµ

k
2

...
...

...
...

...

ω− k
2
iµ− k

2
(k−1) ... 1 ... ω

k
2
iµ

k
2
(k−1)

r k

2

c†k
r0
ck
r k

2

 (4.6)

=

1 ... 1

µ− k
2 ... µ

k
2

...
...

...

µ− k
2
(k−1) ... µ

k
2
(k−1)

ω− k

2
i

ω(− k
2
+1)i

. . .

ω
k
2
i

r k

2

c†k
r0
ck
r k

2

 (4.7)

9

=

1 ... 1

µ(− k
2
+1) ... µ

k
2

...
...

...

µ(− k
2
+1)(k−1) ... µ

k
2
(k−1)

ω(− k

2
+1)i

. . .

ω(k
2
−1)i

Re
(
ω

k
2
i
)

c†k
r0

ck

2r k
2

(4.8)

= FµΛi

r0

ck

2r k
2

c†k

 (4.9)

(4.10)

where in (4.7) we partition the coset modulation (i.e. multiplication by powers of ωi) and
represent it as right-multiplication by a diagonal matrix. In (4.8) we combine the left and
right columns of the transform matrix since they are equal. Finally, in (4.9) we rotate the
coefficients vector counterclockwise k

2 − 1 times resulting in standard coset interpolation,
where Fµ is the DFT matrix of order k and

Λi ≡ diag
(
1, ωi, ..., ω(k

2
−1)i,Re

(
ω

k
2
i
)
, ω(k

2
+1)i, ..., ω(k−1)i

)
The overall complexity of evaluating over a coset amounts to a single DFT and some linear
work.

4.2 Polynomial Sums and Products

As we shall see in Section 5, polynomial sums and products play a crucial role in defining
STARK constraints. A typical constraint polynomial is a ratio of two polynomials [Tea23],
where the numerator is a functional composition over an RC codeword, comprising sums
and products. The following theorem demonstrates that this functional composition results
in an RC codeword, potentially of a higher rate.

Theorem 4.1. The sum of two RC(n,k) codewords is an RC(n,k) codeword. The product
of two RC(n,k) codewords is an RC(n,2k) codeword given that n ≥ 2k.

Proof. Denote by c′′ the coefficients vector of an RC codeword

c′′ ≡
[
r k

2
c†k r0 ck r k

2

]
(4.11)

Then sum case is straightforward: adding two codewords with coefficients vectors of the
form (4.11) results in a coefficients vector that retains the same symmetric form, ensuring
the result is an RC(n, k) codeword.

For the product of two codewords, we rely on the property that polynomial multipli-
cation is equivalent to the convolution of their respective coefficients vectors (see Section
1.3 of [Dom23]). Convolving two vectors in the Laurent form (4.11) yields a conjugate-
symmetric vector with 2k+1 coefficients, where the left, middle, and right coefficients are
Real. As a result, the corresponding coefficients vector forms an RC(n, 2k) codeword in the
Laurent form. When n = 2k, the length 2k+1 coefficients vector folds onto itself, causing
the leftmost and rightmost coefficients to alias into a single coefficient of value 2rn

2
.

10

For consistency, we define the code RC(n, n) as the self-map corresponding to (2.11).
It is important to note that multiplying two RC(n, n) codewords cannot be done using this
method due to the aliasing effect.

4.3 Polynomial Quotients

The denominator of a STARK constraint is a polynomial designed to vanish on a spe-
cific subdomain where the numerator zeroes. In other words, the denominator introduces
poles only where the numerator has zeros, ensuring the resulting quotient is a polynomial.
Theorem (4.1) guarantees that the numerator is an RC codeword and, consequently, Real.
However, a simple pole of the form x − ωℓ has non-Real evaluations. In this section, we
present ways to ensures that the evaluation of the denominator polynomial remains Real.

Lemma 4.2. The conjugate-symmetric polynomial

x−1 − 2Re(ωℓ) + x (4.12)

vanishes only for x = ω±ℓ.

Proof. The polynomial (4.12) is an order 2 Laurent polynomial and thus has two roots.
By examination it can easily be verified that x = ω±ℓ are the roots of (4.12).

Lemma 4.3. The conjugate-symmetric polynomial

x−
n
2 + x

n
2 (4.13)

vanishes only for x ∈ {ωℓ}ℓ∈[n].
Proof. The polynomial (4.13) is an order n Laurent polynomial and thus has n roots. Since
it is undefined for x = 0, it can be expressed as

x−
n
2 (1 + xn) = x−

n
2

n−1∏
ℓ=0

(x− ωℓ) (4.14)

exposing the desired roots.

Lemma 4.4. Let L(x) be a Laurent polynomial of order n, and denote by RL the set of all
of its roots (with multiplicities) from {ωℓ}ℓ∈[n]. Then L(x−1) is also a Laurent polynomial
of order n, and the set of conjugates of all elements in RL (with multiplicities) consists of
all of its roots from {ωℓ}ℓ∈[n].

Proof. Denote L̃(x) ≡ L(x−1), then if L(ωℓ) = 0 then L̃((ωℓ)∗) = L̃(ω−ℓ) = L(ωℓ) = 0

Theorem 4.5. Let L(x) be a Laurent polynomial of order n and αi ∈ {ωℓ}ℓ∈[n] ∀i, then
the rational function

L(x)L(x−1)∏
i (x

−1 − 2Re(αi) + x)
(4.15)

is a polynomial of order at most 2n if

L(x)∏
i(x− αi)

(4.16)

is a polynomial of order at most n.

Proof. The theorem follows immediately by integrating Lemmas 4.4 and 4.2.

11

5 RC Codes and STARKs

In this section, we explore two central aspects in the interplay between RC codes and
STARKs. First, we examine the algebraic constraints imposed by STARKs and outline
strategies for efficiently computing their LDEs. Next, we introduce methods for proximity
testing (i.e. FRI) of RC codes within the STARK framework.

5.1 AIR Constraints

Algebraic Intermediate Representation (AIR) constraints in STARKs encompass several
types [Tea23]. In this subsection, we aim to present a general strategy for efficiently
computing LDEs for these constraints. References to polynomials often pertain to their
LDEs.
To clarify the concept, we introduce the following definitions:

1. Define the field tower F ⊂ CF ⊂ C2
F where each successive field is a quadratic extension

of the previous one.

2. Let ω be the n’th root-of-unity in CF and denote by Rω the cyclic group generated
by it, {ωℓ}ℓ∈[n].

3. Define CF[x, x
−1;n] and C2

F[x, x
−1;n] as the sets2 of Laurent polynomials of order

at most n, with coefficients in their respective fields. Note that CF[x, x
−1;n] ⊂

C2
F[x, x

−1;n].

Simple AIR constraints involve expressions like

f(t0(x), t1(x), ...)

v(x)
(5.1)

where f(x) is a composition involving only sums and products, ti(x) are polynomials with
evaluations in F over the domain Rω, and v(x) is a polynomial that vanishes over a subset
of Rω. By Theorem 4.1, defining the trace polynomials ti(x) using RC codes leads to
the nominator of (5.1) having evaluations in F (i.e. it is an RC codeword). To keep the
quotient (5.1) having evaluations in F requires using Lemmas 4.2, 4.3, or Theorem 4.5.
Alternatively, the quotient is well-defined in CF[x, x

−1;n], but potentially has evaluations
in CF (i.e. it is not an RC codeword).

A more complicated constraint, such as Out Of Domain (OOD) sampling [Tea23] in-
volves expressions like

c(x)− c(z)

x− z
(5.2)

where c(x) is the Composition Polynomial (CP) and z ∈ C2
F. In these cases, the resulting

polynomial is well-defined in C2
F[x, x

−1;n], with evaluations in C2
F.

Similarly, a Randomized AIR with Preprocessing (RAP) constraint [Gab24] involves ex-
pressions like

t0(x) + zt1(x)

v(x)
(5.3)

2Define sets rather than rings to avoid dealing with products whose order exceeds n.

12

where z ∈ C2
F and ti(x) and v(x) are as previously defined. In these cases, the resulting

polynomial can be treated as a tuple of polynomials in CF[x, x
−1;n] with evaluations in

either F or CF depending on the denominator, as in (5.1).

Remark 5.0.1. Unlike the DCCT, the DFT polynomials in this context are well-defined
over their respective fields, with the exception at x = 0.

5.2 FRI

A Fast RS Interactive Oracle Proof of Proximity (FRI) [BSBHR18a] is an interactive proto-
col that probabilistically verifies whether a given sequence is an RS codeword of a specified
rate. The protocol’s soundness hinges primarily on the code’s minimum distance and the
number of nearest neighbors. Although RC codes are expurgated RS codes with enhanced
distance properties, as discussed in Section 3, we conservatively bound our soundness by
that of the original RS code. Additionally, while an honest Prover is expected to use RC
codewords, a dishonest one may use RS codewords, potentially evading detection.

Assume that k is a power-of-two, and we are given an evaluations sequence of length
n corresponding to a Laurent polynomial of order k. Our goal is to test whether it is an
RC(n, k) codeword. However, rather than directly verifying this, we opt to test whether
it is a Complex RS(n, k+1) codeword, which amounts to performing a low-degree test on
the associated polynomial.

Remark 5.0.2. In a typical FRI, k is a power-of-two, and the tested codeword belongs to
an RS(n, k) code. In our case, the codeword belongs to an RS(n, k + 1) code, resulting in
a slight soundness degradation, as the minimum distance increases from n−k+1 to n−k.

By definition, an RC(n, k) codeword (in the honest case) is an LDE of the form:

L(1)
L(ω)
L(ω2)

...
L(ωn−1)

 = Fω

r0
ck
r k

2

0
...
0
r k

2

c†k

(5.4)

where Fω is a DFT matrix of order n. Rotating the coefficients vector clockwise by k
2

positions corresponds to multiplying the r.h.s. of (5.4) by the diagonal shift matrix Λ ≡
diag(1, ω− k

2 , ω−2 k
2 , . . . , ω−(n−1) k

2). This results in the FRI canonical form for conjugate-

13

symmetric Laurent polynomials

Λ∗

L(1)
L(ω)
L(ω2)

...
L(ωn−1)

 = Fω

r k
2

c†k
r0
ck
r k

2

0
...
0

(5.5)

As noted earlier, we make no additional assumptions about the coefficients vector, other
than the fact that it represents a polynomial of degree at most k + 1. This means the
forthcoming FRI protocol verifies a coefficients vector of the form:[

c̃0 ... c̃k−1 c̃k 0 ... 0
]

(5.6)

instead of the one in (5.5). The coefficients c̃0, . . . , c̃k−1 are assumed to be Complex, with
the possible exception of c̃k, which can be verified to be Real.

We now outline two methods to implement FRI in this setting. The first method
reduces the problem to a standard FRI, while the second introduces a slightly modified
FRI tailored to our case, though we provide it with no soundness analysis.

5.2.1 Method 1

The polynomial of degree k corresponding to (5.6) is given by

L(x) =
k∑

i=0

c̃ix
i (5.7)

To reduce it to a polynomial of degree k − 1 we compute

L̃(x) =
L(x)− c̃0

x
=

k−1∑
i=0

c̃i+1x
i (5.8)

The core idea in this method is to transmit c̃0 as cleartext and perform a standard FRI on
L̃(x).

5.2.2 Method 2

Performing log k rounds of FRI (i.e. two-to-one folds) on a length n evaluations sequence
corresponding to a polynomial of the form (5.7) results in n

k evaluations of the following
linear polynomial

(ρ0c̃0 + ρ1c̃1 + ...+ ρk−1c̃k−1) + ρ0c̃kx (5.9)

where the ρi’s represent the random multipliers applied during the protocol. The low-
degree test is then equivalent to verifying that the resulting evaluations correspond to a
linear polynomial with a slope of ρ0c̃k.

14

6 Implementation Aspects

This section explores key implementation aspects of RDFT, which is integral to the effi-
cient processing of RC codes. We examine fast RDFT algorithms and provide a concrete
complexity analysis, highlighting optimizations for specific cases such as for the M31 finite
field.

6.1 Faster Fourier Transform for RDFT

An RDFT can be expressed as a DFT linear system F

C = Fc (6.1)

where the evaluations vector C is Real-valued and the coefficients vector c obeys the
conjugate-symmetry in (2.11). Since RDFT is a DFT for a subset of the Complex domain,
all FFT methods that are applicable to DFTs are applicable here. Additionally, since
the resulting evaluations vectors are guaranteed to be Real-valued, we can process two
independent coefficients vectors c0 and c1 concurrently by transforming their orthogonal
sum c0 + ic1 as

F (c0 + ic1) = Fc0 + iFc1 = C0 + iC1 (6.2)

where the Real and Imaginary parts of the resulting transform correspond to the two
independent Real-valued transforms C0 and C1. The overall complexity of this scheme is
bounded by the minimal complexity of a length n FFT of O(n log n).

The Inverse RDFT can be computed in much the same way as

c0 + ic1 = F−1(C0 + iC1) (6.3)

where the conjugate-symmetry of the coefficients vectors is used to partition the two inverse
transforms. Denoting by c = c0+ic1 the resulting inverse transform of (6.3), the conjugate-
symmetry property implies that

c† = c†0 − ic†1 = c0 − ic1 (6.4)

The independent coefficients vectors can thus be obtained by

c0 =
c+ c†

2

c1 =
c− c†

2i
(6.5)

Note that direct decimation-decomposition [Bri88] can provide slightly better constant
complexity than the suggested method, but for sufficiently-large FFTs, the constant im-
provement diminishes.

6.2 Concrete Complexity Analysis

The number of required multiplications for a radix M FFT is given by

NFFT =
N logN

M logM
· (M − 1 + rdx(M)) (6.6)

15

where N logN
M logM represents the number of radix blocks, M−1 is the number of twiddle factor

multiplications per block, and rdx(M) refers to the number of multiplications needed to
compute a single radix block. For radix-2, this expression simplifies to N

2 log2N .
In this analysis, we assume that a Complex multiplication costs three Real multipli-

cations by applying the Karatsuba algorithm [İC17]. Furthermore, since a Complex FFT
can compute two Real-valued transforms simultaneously, as shown in Section 6.1, the cost
of a single Real-valued Complex FFT can be amortized. Overall, combining these two
optimizations, results in an RDFT that is 3

2 times more computationally expensive than
a DCCT. Table 1 presents a comparison of the number of required multiplications for
different scenarios. The right-most column considers the finite-field case where the charac-
teristic is the 31-bit Mersenne prime. In this specific case, the radix-8 block requires zero
multiplications due to the unique structure of the 8th root-of-unity in the M31 Complex
extension [SD24].

DCCT RDFT Radix-2 M31 RDFT Radix-8

FFT N
2 log2N

3N
4 log2N

7N
16 log2N

Table 1: The number of required multiplications for FFT in different scenarios.

As shown, the concrete multiplicative complexity of RDFT is comparable to DCCT,
particularly in the case of M31. However, RDFT retains all the well-known properties of
Fourier transforms, notably the ability to work with high radixes—a crucial property for
efficient memory management in massively parallel computing devices such as GPUs.

Acknowledgement

The author extends deep gratitude to Leo Lerer and Ilya Lesokhin from Starkware for
their thorough and insightful reviews, and for pointing out the relevance of Laurent poly-
nomials. Special thanks go to my teammates at Ingonyama’s Research Team—Tomer Sol-
berg, Karthik Inbasekar, and Suyash Bagad—for countless hours of productive discussions.
Lastly, heartfelt thanks to Omer Shlomovits for his guidance unwavering support.

References

[Bha11] Gaurav Bhatnagar. In praise of an elementary identity of euler. arXiv
preprint arXiv:1102.0659, 2011.

[Bôc95] Maxime Bôcher. Gauss’s third proof of the fundamental theorem of algebra.
1895.

[Bri88] E Oran Brigham. The fast Fourier transform and its applications. Prentice-
Hall, Inc., 1988.

[BSBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast
reed-solomon interactive oracle proofs of proximity. In 45th international
colloquium on automata, languages, and programming (icalp 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

16

[BSBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, 2018.

[Dom23] Yuval Domb. NTT 201 - Foundations of NTT hardware design. 2023. https:
//github.com/ingonyama-zk/papers/blob/main/ntt_201_book.pdf.

[Gab24] Ariel Gabizon. From airs to raps - how plonk-style arithmetization works.
https://hackmd.io/@aztec-network/plonk-arithmetiization-air#

fn1, 2024.

[HLN23] Ulrich Haböck, Daniel Lubarov, and Jacqueline Nabaglo. Reed-solomon
codes over the circle group. Cryptology ePrint Archive, 2023.

[HLP24] Ulrich Haböck, David Levit, and Shahar Papini. Circle starks. Cryptology
ePrint Archive, 2024.

[İC17] Murat Burhan İlter and Murat Cenk. Efficient big integer multiplication
in cryptography. International Journal of Information Security Science,
6(4):70–78, 2017.

[Kal84] Dan Kalman. The generalized vandermonde matrix. Mathematics Magazine,
57(1):15–21, 1984.

[Lan05] Serge Lang. Undergraduate algebra. Springer Science & Business Media,
2005.

[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain fi-
nite fields. Journal of the society for industrial and applied mathematics,
8(2):300–304, 1960.

[SD24] Tomer Solberg and Yuval Domb. Mersenne 31 polynomial arithmetic.
https://github.com/ingonyama-zk/papers/blob/main/Mersenne31_

polynomial_arithmetic.pdf, 2024.

[Tea23] StarkWare Team. ethstark documentation–version 1.2. Technical report,
IACR preprint archive 2023, 2023.

17

https://github.com/ingonyama-zk/papers/blob/main/ntt_201_book.pdf
https://github.com/ingonyama-zk/papers/blob/main/ntt_201_book.pdf
https://hackmd.io/@aztec-network/plonk-arithmetiization-air#fn1
https://hackmd.io/@aztec-network/plonk-arithmetiization-air#fn1
https://github.com/ingonyama-zk/papers/blob/main/Mersenne31_polynomial_arithmetic.pdf
https://github.com/ingonyama-zk/papers/blob/main/Mersenne31_polynomial_arithmetic.pdf

	Introduction
	Preliminaries
	Unique Polynomial Representation
	Laurent Polynomials
	Real-valued Discrete Fourier Transform

	Constructing RC Codes
	A Complex-valued RS(n,k+1) Code
	A Real-valued RS(n,k+1) Code
	RC Codes

	Working with RC Codes
	Low Degree Extension
	Polynomial Sums and Products
	Polynomial Quotients

	RC Codes and STARKs
	AIR Constraints
	FRI
	Method 1
	Method 2

	Implementation Aspects
	Faster Fourier Transform for RDFT
	Concrete Complexity Analysis

