
On Wagner’s k-Tree Algorithm Over Integers

Haoxing Lin∗ Prashant Nalini Vasudevan†

October 10, 2024

Abstract

The k-Tree algorithm [Wag02] is a non-trivial algorithm for the average-case k-SUM problem
that has found widespread use in cryptanalysis. Its input consists of k lists, each containing n
integers from a range of size m. Wagner’s original heuristic analysis [Wag02] suggested that this
algorithm succeeds with constant probability if n ≈ m1/(log k+1), and that in this case it runs in
time O(kn). Subsequent rigorous analysis of the algorithm [Lyu05, Sha08, JKL24] has shown
that it succeeds with high probability if the input list sizes are significantly larger than this.

We present a broader rigorous analysis of the k-Tree algorithm, showing upper and lower
bounds on its success probability and complexity for any size of the input lists. Our results
confirm Wagner’s heuristic conclusions, and also give meaningful bounds for a wide range of
list sizes that are not covered by existing analyses. We present analytical bounds that are
asymptotically tight, as well as an efficient algorithm that computes (provably correct) bounds
for a wide range of concrete parameter settings. We also do the same for the k-Tree algorithm
over Zm. Finally, we present experimental evaluation of the tightness of our results.
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1 Introduction

The (average-case) k-SUM problem is a basic computational problem that comes up relatively
often in cryptanalysis [Sch01, Wag02, DEF+19, BLL+22, . . . ]. In this problem, given k lists of n
integers each drawn uniformly at random from the range {− ⌊m/2⌋ , . . . , ⌊m/2⌋}, the task is to
find a set of k integers, one from each list, such that their sum is 0. Such sets exist with high
probability once the list size n is larger than m1/k; and in this case there is a simple meet-in-
the-middle algorithm that runs in time Õ(m1/2). The only known algorithms that do significantly
better than this are the k-Tree algorithm [Wag02] and its extensions [MS12, NS15, Din19] and
variants [BKW03, Lyu05, JKL24].

The k-Tree algorithm, as formulated by Wagner [Wag02], is described in Figure 1.1 Wagner
provided heuristic arguments indicating that this algorithm succeeds with constant probability if
the input lists are of size n ≈ m1/(log k+1), in which case it runs in time O(k ·m1/(log k+1)). Even for
modest values of k (say 4 or 8), this runtime is significantly better than the earlier Õ(m1/2) for large
values of m. For this reason, the k-Tree algorithm has been used repeatedly in the cryptanalysis of
signatures [Wag02, DEF+19, BLL+22], hash functions [CJ04, BC22], identification schemes [LF06],
symmetric-key encryption schemes [Jou03], etc., to provide simple attacks that perform significantly
better than brute force.

The k-Tree algorithm

Parameters: k, n,m ∈ N, with k being a power of 2

Input: Lists L1, . . . , Lk, each consisting of n integers from {− ⌊m/2⌋ , . . . , ⌊m/2⌋}

Output: Indices ℓ1, . . . , ℓk ∈ [n], or a failure symbol ⊥

Procedure:

1. Initialization:

• Set p = m1/(log k+1)

• For each i ∈ [k], denote the list Li by L0
i

• Set τ ← m/2

2. For d from 1 to log k:

• Set τ ← p · τ

• For i ∈
[
k
2d

]
:

compute Ld
i ←

{
(a+ b)

∣∣ a ∈ Ld−1
2i−1 ∧ b ∈ Ld−1

2i ∧ |a+ b| ≤ τ
}

3. If Llog k
1 contains 0, output the indices in the input lists that led to this sum. Otherwise

output ⊥.

Figure 1: The k-Tree algorithm over Integers

1See Figure 5 in Section 2 for a more detailed presentation.
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In spite of such widespread relevance, the complexity of the k-Tree algorithm is still not well
understood. Wagner’s aforementioned heuristic analysis was based on assumptions that are not
strictly true, though empirical evidence suggests that his conclusion is valid.2 Rigorous analysis of
the algorithm has since been carried out by Lyubashevsky [Lyu05], Shallue [Sha08], and Joux et
al. [JKL24], but these have not been able to confirm this conclusion (see Section 1.3 for details).
Further, we still do not have the means to provide good answers to basic questions like the following,
even heuristically:

1. What is the probability that the algorithm will succeed if the lists are of size (10 ·m1/(log k+1))
or (0.1 ·m1/(log k+1))?

2. What size of lists is necessary or sufficient for the algorithm to succeed with probability 0.01?

3. What is the complexity of the algorithm for these list sizes?

Answers to these questions for some pairs of values (m, k) for which these list sizes are not too
large – e.g., (264, 4), (2256, 128) – can be obtained empirically, but it is not clear how to extrapolate
these to other settings that may come out of concrete parameter choices in constructions – e.g.,
(2256, 4). Our objective in this work is to provide a tight analysis of the k-Tree algorithm that can
help researchers answer questions like the ones above and thus understand more accurately the
power of attacks that make use of the k-Tree algorithm.

Paper Outline. We summarize our results in Section 1.1, and provide an overview of our tech-
niques in Section 1.2. In Section 1.3, we describe prior work on this topic, present comparisons to
our results, and discuss other related work. In Section 2, we provide the complete proof of our main
theorem regarding the behavior of the k-Tree algorithm. In Section 3, we present pseudo-code for
computing tighter bounds on the behavior of the algorithm. In Section 4, we present experimental
evaluation of our bounds for concrete parameters.

1.1 Our Results

Recall that we are interested in the performance of the k-Tree algorithm when given as input k
lists of n numbers each drawn uniformly at random from {− ⌊m/2⌋ , . . . , ⌊m/2⌋}. Here k is a power
of 2. With these parameters, we define the complexity of the k-Tree algorithm to be the expected
total size of all the lists that are generated in the course of its execution.3

Analytical Bounds. Our first set of results are analytical bounds on the success probability and
complexity of the k-Tree algorithm for any list size.

Theorem 1. Consider any k, n,m ∈ N, where k ≥ 4 is a power of 2 and m > 30log k+1. Set

p = m
−1

log k+1 and c = n/m
1

log k+1 . The probability of success of the k-Tree algorithm is bounded as:

ck

1 + ck ·
(
1 + k

n

)k · (1− 150p)k ≤ Pr [k-Tree succeeds] ≤ ck · (1 + 37p)k

2See, for instance, the results of our experiments presented in Section 4.
3See Remark 1.3 at the end of this subsection for a brief discussion of this complexity measure.
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Its complexity is bounded as follows:

Complexity of k-Tree ∈ kn ·

1 +
∑

d∈[log k]

c2
d−1

2d

 · (1± 37p)k−1

Asymptotically, the following simpler bound can be inferred from the above theorem if k is not
too large in relation to the other parameters. (For a more rigorous statement, see Corollary 2.2 in
Section 2.)

Corollary 1.1. Consider the same parameters as in Theorem 1, and in addition suppose that
k = o(1/p) and k = o(n1/2). Then we have:

ck

1 + ck
· (1− o(1)) ≤ Pr [k-Tree succeeds] ≤ ck · (1 + o(1))

The setting c = 1 corresponds to the choice of n = m1/(log k+1) for the lists sizes suggested by
Wagner’s heuristic argument [Wag02]. As long as k is not too large, the above results confirm that
in this case the k-Tree algorithm succeeds with some probability roughly between 1/2 and 1. In
addition, they also allow one to compute list sizes and the resulting complexity that is sufficient for
the algorithm to succeed with probability, say, 0.01; or even the complexity that is necessary for
the algorithm to succeed with probability at least 0.01. This enables answering the various kinds
of questions about the algorithm presented earlier in this section.

Computational Bounds. There are still some meaningful concrete values of (m, k) (for example,
(2256, 1024)), however, for which Theorem 1 does not give accurate bounds. This is due to two
sources of inaccuracy in our results above: gaps that are inherent to our technique itself, and
approximations that were made in the course of our proof to make intermediate expressions easier
to handle analytically. Of these, the latter turn out to substantially dominate.

We eliminate this second source of inaccuracy by implementing our entire proof as a program
that, instead of attempting to produce simple analytical expressions, explicitly computes the re-
sulting probability and complexity bounds given values for the parameters k, m, and n. The
pseudo-code for the relevant algorithms are presented in Section 3, and our implementation of it is
available in the associated repository [Lin24].

Theorem 2. Consider any k, n,m ∈ N, where k ≥ 4 is a power of 2, and let p = m
−1

log k+1 . The pair
of values output by ProbBounds(m, k, n, p) bound the success probability of the k-Tree algorithm,
and those output by SizeBounds(m, k, n, p) bound its complexity. Further, these algorithms run in
time polylog(k,m, n).

We find that this tightening does significantly strengthen the resulting bounds for various con-
crete values of (m, k). We plot the bounds on success probability from both these theorems for a
couple of pairs of values of (m, k) in Figure 2 for illustration. For the rest of this section, we solely
use the bounds from Theorem 2 as they are more accurate.

Using Our Bounds. We expect our results to be useful in a few different ways. In applications
of the k-Tree algorithm where the size of the range m and the number of lists k are fixed and not in
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Figure 2: Plot of upper and lower bounds on success probabilities against the input list size n.
Bounds from both Theorems 1 and 2 are represented. The quantity c is defined to be the ratio
n/m1/(log k+1). Labels on the x-axis are log2(n), with the corresponding value of c in square brackets.

the control of the algorithm designer (e.g. the attack in [CJ04], solving the ROS problem [Wag02,
BLL+22]), our bounds can be used to determine the list size (and the corresponding complexity)
that is sufficient to achieve a specific desired probability of success. This may be done analytically
using Theorem 1 if k is relatively small, or computationally using Theorem 2 (with a binary search
for n) for larger values of k.

In applications where the range m is fixed but k may be determined by the algorithm designer
(e.g. attacks in [DEF+19, Jou03], the attacks on hash functions in [Wag02]), our bounds can also
be used to select the best value of k together with the best value of n (as the complexity depends
on both) for a desired probability of success. In Figure 3, we present some sample computations of
this form, covering some of the parameter settings from the papers cited above as examples.

Finally, our upper bounds on the probability of success of the k-Tree algorithm can be used to
obtain concrete lower bounds on the complexity of k-Tree-based attacks on candidate cryptographic
constructions that achieve any given probability of success.

Experimental Evaluation. To understand the tightness of our upper and lower bounds, we
empirically estimate the values of the quantities bounded in the theorems above for various values
of the parameters k, m, and n, and compare them to our predictions. We refer the reader to
Section 4 for details of these experiments, and a summary of their results and implications.

Remark 1.2 (Simple Optimizations). There are some simple optimizations to the k-Tree algorithm
that can significantly improve its behavior in some parameter regimes. For instance, removing
duplicates when computing the intermediate lists Ld

i ensures that the complexity of the algorithm
is at most O(k(n+m)), which is smaller than the bounds produced by Theorems 1 and 2 for very
large values of c.

For large values of c, the lower bound on the success probability produced by these theorems is
roughly (1− c−k). But for such c, simply breaking up the lists into ⌊c⌋ smaller lists with m1/(log k+1)

elements each and running k-Tree on each separately (effectively with “c”= 1) results in an amplified
success probability of (1− e−Ω(c)).

6



2 3 4 5 6 7 8 9 10 11
log2(k)

10

20

30

40

Co
m

pl
ex

ity
 (l

og
2)

43.2

34.6

29.8
26.8

25.0 23.8 23.1 22.8 22.6 22.7

41.0

31.2

25.2
21.1

18.2
15.9

14.2 12.8 11.6 10.7

Sufficient Complexity: m = 2¹² , Prob. = 0.01
Complexity
Input Size

2 3 4 5 6 7 8 9 10 11 12
log2(k)

20

40

60

80

Co
m

pl
ex

ity
 (l

og
2)

85.9

66.6

55.4
48.2

43.3
39.8 37.4 35.6 34.2 33.3 32.7

83.7

63.2

50.8
42.5

36.5
31.9

28.4 25.6 23.3 21.3 19.7

Sufficient Complexity: m = 2² , Prob. = 0.01
Complexity
Input Size

Figure 3: Plots of the complexity of the k-Tree algorithm that is sufficient to provably achieve
success probability of 0.01, against k. Input list size in each case is chosen so that the lower bound
on success probability is slightly larger than 0.01. Computed using Theorem 2.

Remark 1.3 (Measure of Complexity). Depending on various incidental factors such as the hard-
ware being used, its word-size in relation to m, etc., the actual running time of the optimal imple-
mentation of the k-Tree algorithm might be anything from a constant factor to a logarithmic factor
larger than the total list size. However, in all cases, the total list size is the central quantity that
determines the running time. So for the sake of generality and simplicity, we directly use this as
our measure of complexity.

Remark 1.4 (Integers vs. Zm). So far, we have been discussing the k-SUM problem where the
addition is over integers. In reality, the problem that is most often useful in cryptanalysis, etc.,
is the problem where addition is done modulo m (that is, over Zm), often for some prime number
m. In this case, the k-Tree algorithm is modified to perform all its additions modulo m instead of
over integers, with Zm being identified with the set {− ⌊m/2⌋ , . . . , ⌊m/2⌋} in the natural manner.
Prior analyses by Shallue [Sha08] and Joux et al. [JKL24] were also for k-Tree over Zm. However,
as demonstrated in Section 2.5, the difference in the behavior of the k-Tree algorithm in these two
cases is so small as to be beneath the precision with which we state our results in this section. So
for simplicity, we continue to ignore this distinction in this section, though later sections will take
it into account.

1.2 Technical Overview

In this section, we present an overview of our proof of the bounds on the success probability of
the k-Tree algorithm presented in Theorem 1. Our bounds on the complexity of the algorithm
follow from similar arguments. The algorithms captured in Theorem 2 follow the same high-level
approach as this proof, but involve some careful re-framing of its terms in order to enable efficient
computation of some intermediate values. The entire rigorous proof is presented in Section 2.

Our approach to these bounds is quite elementary – we define a random variable corresponding
to the number of occurrences of “0” in the final list computed by the k-Tree algorithm, compute
bounds on its first and second moments, and then use standard second-moment-based tail bounds
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to bound the probability that this variable has non-zero value. The challenge lies in computing
these moments, as this variable is somewhat complex.

Setup. Recall that the input to the k-Tree algorithm is k lists of n integers, with each integer being
drawn uniformly at random from the set {− ⌊m/2⌋ , . . . , ⌊m/2⌋}. Given these parameters, define
the symbols p = m−1/(log k+1), which is the filtering parameter in the algorithm, and c = n ·p, which
represents the size of the lists relative to the “default value” of m1/(log k+1) suggested by heuristic
arguments. For any non-negative integer s, we will denote by ⟨s⟩ such a set {⌊s/2⌋ , . . . , ⌊s/2⌋}.

For simplicity, we will fix the number of lists k to 4 in this overview (and so p = m−1/3). In this
case, the k-Tree algorithm is given as inputs k = 4 lists L1, . . . , L4, each of size n, and proceeds as
follows:

1. Compute the following lists:

• L1
1 ←

{
(a+ b)

∣∣ a ∈ L1 ∧ b ∈ L2 ∧ (a+ b) ∈ ⟨mp⟩
}

• L1
2 ←

{
(a+ b)

∣∣ a ∈ L3 ∧ b ∈ L4 ∧ (a+ b) ∈ ⟨mp⟩
}

• L2
1 ←

{
(a+ b)

∣∣ a ∈ L1
1 ∧ b ∈ L1

2 ∧ (a+ b) ∈ ⟨mp2⟩
}

2. Succeed if L2
1 contains a 0, fail otherwise.

Above, take the lists Ld
i to each be a multi-set instead of a set – for instance, if a specific value

of (a + b) ∈ ⟨mp⟩ occurs twice as the sum of elements in L1 and L2, then two such values will be
present in L1

1. This makes the algorithm sub-optimal in terms of efficiency, but does not change
its success probability and makes it easier to analyze. Define the following random variable as
described earlier:

C = number of occurrences of 0 in the list L2
1

The algorithm succeeds exactly when the value of this non-negative variable C is at least 1. So the
probability of this latter event is what we will be concerned with in our analysis.

For any set of input lists {Li}, the value of C may be computed by iterating through every
possible value of the indices ℓ1, . . . , ℓ4 ∈ [n], and considering whether the tuple (L1[ℓ1], . . . , L4[ℓ4])
passes all the “filters” of the algorithm and also sums to 0. For each such ℓ̄ = (ℓ1, . . . , ℓ4), we capture
this by defining a variable Cℓ̄ that is 1 if all of the following events occur and is 0 otherwise:

E1 ≡ (L1[ℓ1] + L2[ℓ2] ∈ ⟨mp⟩)
E2 ≡ (L3[ℓ3] + L4[ℓ4] ∈ ⟨mp⟩)
E3 ≡ (L1[ℓ1] + L2[ℓ2] + L3[ℓ3] + L4[ℓ4] ∈ ⟨mp2⟩)
E4 ≡ (L1[ℓ1] + L2[ℓ2] + L3[ℓ3] + L4[ℓ4] = 0)

Note that Cℓ̄ is a random variable, with randomness coming from the numbers in the input lists.
The variable C can now be written as follows:

C =
∑
ℓ̄∈[n]4

Cℓ̄ (1)

We will be interested in the moments of this random variable C, which are functions of m and n
(since we have already fixed k).
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Heuristic Analysis. Wagner’s heuristic analysis [Wag02] of the k-Tree algorithm essentially
relies on the following three assumptions (for any large enough integer s):

(a) When E [C] = 1, the algorithm succeeds with constant probability.

(b) When x and y are sampled uniformly at random from ⟨s⟩, their sum (x+ y) is contained in
⟨sp⟩ with probability p.

(c) With x and y sampled uniformly at random from ⟨s⟩, the distribution of (x + y), when
conditioned on being contained in ⟨sp⟩, is uniform over ⟨sp⟩

Fix some tuple of indices ℓ̄ = (ℓ1, . . . , ℓ4). Under assumptions (b) and (c), the expectation of Cℓ̄

can be computed by computing the probability of events E1, . . . , E4 as follows:

• Assumption (b) implies that events E1 and E2 each happens with probability p.

• Conditioned on these happening, assumption (c) implies that the sums (L1[ℓ1] + L2[ℓ2]) and
(L3[ℓ3] + L4[ℓ4]) are uniformly distributed over ⟨mp⟩.

• So by (b), E3 also happens with probability p.

• Finally, appealing to (c) again, conditioned on the first three events happening, the entire
sum is distributed uniformly over ⟨mp2⟩, and so E4 happens with probability (mp2)−1.

Thus, we have:

E [Cℓ̄] = Pr [E1 ∧ · · · ∧ E4]

= Pr [E1] · Pr [E2] · Pr [E3 | E1 ∧ E2] · Pr [E4 | E1 ∧ E2 ∧ E3]

= p · p · p · 1

mp2
=

p

m
= p4 (2)

The expected value of C is then:

E [C] =
∑
ℓ̄∈[n]4

Cℓ̄ = n4 · p4 = c4 (3)

Thus, when c = 1 (that is, n = m1/3), this expectation is 1, and by assumption (a), the algorithm
works with constant probability. This was the conclusion in [Wag02]. In providing a rigorous
analysis of the k-Tree algorithm, our objective is to remove the above assumptions. We show
that assumptions (b) and (c), while not strictly true, are close enough to being true. Further, we
show that a generalization of assumption (a) is true, which allows us obtain bounds on the success
probability of the algorithm for a wide range of values of c rather than just c = 1.

Relaxing the Assumptions. To compute the actual expectation of Cℓ̄, we start by first showing
that slightly relaxed versions of assumptions (b) and (c) above are true. Starting with assumption
(b), it can be shown using some elementary computation (see Section 2.1) that:

Pr
x,y←⟨s⟩

[x+ y ∈ ⟨sp⟩] ∈
(
p− p2

4

)
±O

(
1

s

)
(4)

The right-hand side above is not exactly p, but for typical values of p and s, is quite close to it.
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For assumption (c), we show that while the distribution of (x + y) as described there is not
actually uniform, it is close to the uniform distribution. The specific notion of distance we use,
which we refer to as the Max-Ratio (MR) distance from Uniform, is defined as follows4 for a
distribution D over a domain S:

∆MR(U,D) =
maxx∈S D(x)

minx∈S D(x)

where D(x) is the probability mass placed on x by the distribution D. This distance is at least 1
(which is achieved if D is the uniform distribution over S), and is potentially unbounded.

This notion of distance is particularly beneficial for our analysis for a couple of reasons. First,
for any event E over the domain S, we can bound the probability of E happening under D in terms
of the probability of E happening under the uniform distribution over S as follows:

∆MR(U,D)−1 · Pr
x←S

[E(x)] ≤ Pr
x←D

[E(x)] ≤ ∆MR(U,D) · Pr
x←S

[E(x)] (5)

Second, this distance is easy to compute for distributions defined under conditioning, which can
otherwise be difficult to reason about. In particular, suppose D is the distribution of (x + y)
conditioned on being in ⟨sp⟩ when x and y are uniformly drawn from ⟨s⟩. Then, this distance is as
follows:

∆MR(U,D) =
maxz∈⟨sp⟩ Prx,y←⟨s⟩ [x+ y = z | x+ y ∈ ⟨sp⟩]
minz∈⟨sp⟩ Prx,y←⟨s⟩ [x+ y = z | x+ y ∈ ⟨sp⟩]

=
maxz∈⟨sp⟩ Prx,y←⟨s⟩ [x+ y = z] · Pr [x+ y ∈ ⟨sp⟩]−1

minz∈⟨sp⟩ Prx,y←⟨s⟩ [x+ y = z] · Pr [x+ y ∈ ⟨sp⟩]−1

=
maxz∈⟨sp⟩ Prx,y←⟨s⟩ [x+ y = z]

minz∈⟨sp⟩ Prx,y←⟨s⟩ [x+ y = z]

≤ (1 + p) +O

(
1

s

)
(6)

where the second equality follows from the Bayes theorem, and the inequality again follows from
elementary computations. Again, for typical values of p and s, the right-hand side above is quite
close to 1, indicating that the distribution is close to uniform. Putting together (5) and (6), with
some further computation, we get the following effective relaxation of assumption (c). For any
event E(z) defined over domain ⟨sp⟩, we have:

Pr
x,y←⟨s⟩

[E(x+ y) | (x+ y) ∈ ⟨sp⟩] ∈ Pr
z←⟨sp⟩

[E(z)] ·
[
1±

(
p+O

(
1

s

))]
(7)

For simplicity, in the rest of this overview we will ignore the O(1/s) parts in the expressions (4)
and (7) above. It is not a crucial part of the big picture, and in most reasonable parameter settings
is much smaller than p anyway.

4This is again a simplification. For the actual definition, see Section 2.1.
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Computing the Expectation. With (4) and (7) in hand, we can now compute the expectation
of Cℓ̄. We essentially follow the earlier heuristic argument step-by-step, replacing the assumptions
there with their true but relaxed versions.

Denote by x the vector (x1, . . . , x4), where xi ∈ ⟨m⟩ will later be identified with Li[ℓi]; the
variables x11, x

1
2, and x21 below will similarly initially be identified with (x1 + x2), (x3 + x4), and

(x11+x12), respectively. We re-state the events in definition of Cℓ̄ to be parameterized as follows for
ease of manipulation:

E1(x1, x2) ≡ (x1 + x2 ∈ ⟨mp⟩)
E2(x3, x4) ≡ (x3 + x4 ∈ ⟨mp⟩)
E3(x

1
1, x

1
2) ≡ (x11 + x12 ∈ ⟨mp2⟩)

E4(x
2
1) ≡ (x21 = 0)

Along the lines of (2), the expectation of Cℓ̄ for any ℓ̄ can be written as follows:

E [Cℓ̄] = Pr
x1,...,x4←⟨m⟩

[
E1(x1,x2)∧E2(x3,x4)∧

E3(x1+x2,x3+x4)∧E4(x1+···+x4)

]
= Pr

x1,x2←⟨m⟩
[E1(x1, x2)] · Pr

x3,x4←⟨m⟩
[E2(x3, x4)]

· Pr
x1,...,x4←⟨m⟩

[
E3(x1+x2,x3+x4)∧E4(x1+···+x4)

| E1(x1,x2)∧E2(x3,x4)

]
(8)

The first two terms in the product above can be bounded using (4) as follows:

Pr
x1,x2←⟨m⟩

[E1(x1, x2)] = Pr
x3,x4←⟨m⟩

[E2(x3, x4)] ≈
(
p− p2

4

)
(9)

The last term is more complex, but a useful observation here is that the events in the probability
expression there only depend on the sums (x1 + x2) and (x3 + x4) rather than on the xi’s directly.
Further, these events are conditioned on these sums being contained in ⟨mp⟩ (that is, conditioned
on the events E1 and E2). If assumption (c) had been true, it would have implied that these sums
are uniformly distributed over ⟨mp⟩, simplifying the probability expression considerably. We can
do the same using (7), albeit with some loss as follows:

Pr
x1,x2,x3,x4←⟨m⟩

[
E3(x1+x2,x3+x4)∧E4((x1+x2)+(x3+x4))

| E1(x1,x2)∧E2(x3,x4)

]
∈ Pr

x1
1,x

2
1←⟨mp⟩

[
E3(x

1
1, x

1
2) ∧ E4(x

1
1 + x12)

]
· (1± p)2 (10)

Putting together (8-10), we get:

E [Cℓ̄] ∈ p2 · (1± p)4 · Pr
x1
1,x

2
1←⟨mp⟩

[
E3(x

1
1, x

1
2) ∧ E4(x

1
1 + x12)

]
(11)

The probability expression above is similar to the one we started with in (8), except that it is for
the case of k = 2 and the range ⟨mp⟩ instead of k = 4 and range ⟨m⟩. For general k, we get a
similar recursive expression in terms of k/2 that enables us to compute the overall bound efficiently,
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both analytically and computationally. In the present case, we simply have to apply (4) and (7) in
turn once more to get the following final bound:

E [Cℓ̄] ∈ p3 · (1± p)6 · 1

mp2
⊆ p4 · (1±O(p)) (12)

The above is again quite close to its heuristic evaluation in (2). The expectation of C can then be
computed as in (3) to get:

E [C] ∈ c4 · (1±O(p)) (13)

The upper bound on expectation above already gives us an upper bound on the success probability
of the k-Tree algorithm using the Markov inequality. It remains, then, to show a corresponding
lower bound.

Concentration. Next we move on to proving that (a generalization of) assumption (a) is valid.
Our hope here is to show that when the expectation of C is significantly larger than 0, then with
somewhat high probability, we have C ̸= 0 – that is, the algorithm succeeds. Clearly, this is not
true of arbitrary random variables – if C was 0 with probability (1− n−4) and n4 with probability
n−4, it would still have an expected value of 1. So to show this, we will need to rely on additional
properties of C.

The property we will use is that C is the sum of the n4 identically distributed indicator random
variables Cℓ̄. If this set of random variables had been independent, we could have used a Chernoff-
Hoeffding bound to show that C strongly concentrates around its expectation, and thus if its
expectation is sufficiently larger than 0, then it will take non-zero values with large probability.
However, these variables are not independent.

Consider, for example, tuples of indices ℓ̄ = (ℓ1, . . . , ℓ4) and ℓ̄′ = (ℓ′1, . . . , ℓ
′
4) that differ only on

the value of their fourth element. If Cℓ̄ = 1, this implies that (L1[ℓ
′
1] +L2[ℓ

′
2]) = (L1[ℓ1] +L2[ℓ2]) ∈

⟨mp⟩. Thus, the tuple (L1[ℓ
′
1], . . . , L4[ℓ

′
4]) already passes one of the filters of the algorithm, and so

Cℓ̄′ is now more likely to be 1 than it would have been without conditioning on Cℓ̄ = 1. In fact,
this example illustrates that the set of random variables {Cℓ̄} are not even pairwise independent.
This lack of independence is perhaps the most significant challenge in analyzing the performance
of the k-Tree algorithm.

Our way around this is the following set of observations. The degree of correlation between Cℓ̄

and Cℓ̄′ is proportional to the number of co-ordinates on which ℓ̄ and ℓ̄′ agree. For instance, if ℓ̄
and ℓ̄′ do not agree on any co-ordinate, then Cℓ̄ and Cℓ̄′ are, in fact, independent. Fortunately, for
t ∈ [0, 4], the number of pairs ℓ̄ and ℓ̄′ that agree on t co-ordinates decreases as t (and thus the
correlation) increases. Out of the n8 possible pairs, only O(n7) pairs agree on 1 co-ordinate, O(n6)
agree on 2, and O(n5) agree on 3.

Taking advantage of this, we are able to carefully bound the second moment of C. Then, we use
second-moment-based concentration bounds to show that if the expectation of C is large enough,
it will indeed be non-zero with substantial probability.

Computing the Second Moment. The second moment of C can be written as follows:

E
[
C2
]
=

∑
ℓ̄,ℓ̄′∈[n]4

E [Cℓ̄ · Cℓ̄′ ] =
∑

ℓ̄,ℓ̄′∈[n]4
Pr [Cℓ̄ = 1 ∧ Cℓ̄′ = 1] (14)

12



Due to symmetry, the term corresponding to any ℓ̄ and ℓ̄′ in the sum above is fully determined by
the set of co-ordinates that ℓ̄ and ℓ̄′ agree on (that is, it does not matter what specific values the
ℓi’s and ℓ′i’s take once the set of i’s on which they agree is determined). To capture this, we define
the string δ(ℓ̄, ℓ̄′) ∈ {0, 1}4 whose ith co-ordinate is defined as follows:

(δ(ℓ̄, ℓ̄′))i =

{
0 if ℓi = ℓ′i
1 if ℓi ̸= ℓ′i

We then segregate the pairs (ℓ̄, ℓ̄′) in the sum in (14) according to the value of δ(ℓ̄, ℓ̄′). For any
s ∈ {0, 1}4, the the number of such pairs with δ(ℓ̄, ℓ̄′) = s is n4(n− 1)wt(s) ≈ n4+wt(s), where wt(s)
is the Hamming weight of s. We can then re-write the second moment as follows:

E
[
C2
]
=

∑
s∈{0,1}4

∑
ℓ̄,ℓ̄′∈[n]4

s.t. δ(ℓ̄,ℓ̄′)=s

Pr [Cℓ̄ = 1 ∧ Cℓ̄′ = 1]

≈
∑

s∈{0,1}4
n4+wt(s) · f(s) (15)

where f(s) is defined to be the probability that Cℓ̄ = Cℓ̄′ = 1 for any ℓ̄ and ℓ̄′ such that δ(ℓ̄, ℓ̄′) = s.
In computing f(s), our broad approach is similar to the one we took when computing the first
moment – to repeatedly replace intermediate list elements with uniformly random values while
computing the probabilities that the filters of the algorithm are passed. Only now, we need to do
this simultaneously for two partially dependent executions of the algorithm.

We start first with the events E1 as defined above, which capture the first filter applied to the
first two elements in the lists. The probability that this event happens in both executions is:

Pr
L1,L2

[
(L1[ℓ1] + L2[ℓ2]) ∈ ⟨mp⟩ ∧ (L1[ℓ

′
1] + L2[ℓ

′
2]) ∈ ⟨mp⟩

]
(16)

Let s = δ(ℓ̄, ℓ̄′), and denote its bits by s1, . . . , s4. If s1 = s2 = 0, then ℓ1 = ℓ′1 and ℓ2 = ℓ′2, meaning
the two events above are the same and so by (9) the above probability is ≈ p (ignoring factors of
(1±O(p)) for now). Similarly if s1 = s2 = 1, the two events are independent and the probability is
≈ p2. If exactly one of s1 and s2 is 1, then again the probability is roughly ≤ p2, due the following
fact, which again follows from elementary computations:

Pr
w,x,y←⟨s⟩

[w + x ∈ ⟨sp⟩ ∧ w + y ∈ ⟨sp⟩] ≤ p2 ·
(
1 +O

(
1

sp

))2

(17)

Overall, we have approximately the following (again ignoring (1±O(p)) factors):

Pr
L1,L2

[
E1(L1[ℓ1], L2[ℓ2]) ∧ E1(L1[ℓ

′
1], L2[ℓ

′
2])
]
≤ p1+max(s0,s1) = p1+s11 (18)

where we define s11 to be max(s1, s2).

Next, we look at the joint distribution of the sums (L1[ℓ1] + L2[ℓ2], L1[ℓ
′
1] + L2[ℓ

′
2]). If s11 = 0,

then these two sums are equal, and by (6) are each (1+O(p))-close to being uniformly distributed
over ⟨sp⟩. If s1 = s2 = 1, then these are independent and so the joint distribution is now close to
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being uniform over ⟨mp⟩ × ⟨mp⟩. We show by computing the MR distances explicitly that even in
the case where exactly one of s1 and s2 is 1, this joint distribution is close to being uniform over
⟨mp⟩ × ⟨mp⟩.

So overall, if s11 = 0, this pair of sums is equal with close-to-uniform marginals, and if s11 = 1,
the pair is close to being independently uniformly distributed over ⟨mp⟩. Notice that this is exactly
the relationship that the pair (L1[ℓ1], L1[ℓ

′
1]) had to s1, or (L2[ℓ2], L2[ℓ

′
2]) had to s2, except that the

marginal distributions there were over ⟨m⟩. The same sequence of arguments can be made with
the events E2, where in place of s11 we use s12 = max(s3, s4). In effect, this lets us set up a recursive
argument where we can replace the intermediate sums with uniform elements from ⟨mp⟩, and the
string s with (s11, s

1
2).

We can then repeat the entire argument above once more (essentially with k = 2 now), with
s21 = max(s11, s

1
2), to show that the probability of each of the pairs of events corresponding to E3

and E4 happening is roughly bounded by p1+s21 . Overall, we end up with the following bound:

Pr [Cℓ̄ = 1 ∧ Cℓ̄′ = 1] = f(s) ≤ p1+s11 · p1+s12 · p1+s21 · p1+s21 · (1 +O(p))

= p4+s11+s12+2s21 · (1 +O(p)) (19)

Combining this bound with (15), we get:

E
[
C2
]
≤

∑
s∈{0,1}4

n4+wt(s) · p4+s11+s12+2s21 · (1 +O(p))

= c4 · (1 +O(p)) ·
∑

s∈{0,1}4
cwt(s) · ps11+s12+2s21−wt(s) (20)

Using graph-theoretic arguments, we can show that for any s ̸∈
{
04, 14

}
, the difference (s11 + s12 +

2s21 − wt(s)) is at least 1, and so ps
1
1+s12+2s21−wt(s) ≤ p. For s ∈

{
04, 14

}
, this difference is 0. So we

can bound the above sum as follows:∑
s∈{0,1}4

cwt(s) · ps11+s12+2s21−wt(s) ≤ 1 + c4 +
∑

s∈{0,1}4\{04,14}

cwt(s) · p

≤ 1 + c4 + p ·
∑

s∈{0,1}4
cwt(s)

= 1 + c4 + p · (1 + c)4 (21)

Overall, from (20) and (21), we get the following bound on the second moment:

E
[
C2
]
≤ c4 ·

(
1 + c4 + p · (1 + c)4

)
· (1 +O(p)) (22)

Computing the Lower Bound. With the bounds on the first two moments from (13) and (22),
the required lower bound can be obtained using the Paley-Zygmund inequality, which states that
for any non-negative random variable Z and any θ ∈ [0, 1]:

Pr [Z > θE [Z]] ≥ (1− θ)2
E [Z]2

E [Z2]
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Applying this bound to C with θ = 0, we get:

Pr [k-Tree succeeds] = Pr [C > 0] ≥ E [C]2

E [C2]

≥ c8 · (1−O(p))

c4(1 + c4 + p(1 + c)4)(1 +O(p))

≥ c4

1 + c4 + p · (1 + c)4
· (1−O(p)) (23)

Tightening the Bound. The above approach naturally generalizes to any k that is a power of
2 to give the following lower bound:

Pr [k-Tree succeeds] ≥ ck

1 + ck + p · (1 + c)k
· (1−O(kp))

While their asymptotics for any fixed k are the same, for moderately large values of k and some
reasonable concrete values of m and n, the above bound ends up being much weaker than the lower
bound actually stated in Theorem 1. This is because, even when c = 1, the p(1 + c)k term in the
denominator quickly starts to dominate. The bound stated in Theorem 1 remains meaningful for
a wider range of concrete values of the parameters, and is obtained by performing a more careful
analysis of the sum in (20), using a recursive argument to bound the entire sum together rather
than each term separately.

The constants in the statement of Theorem 1 are obtained by carefully tracking the constants
that come up in the course of the above analysis. Even so, the constants stated there are sub-
optimal due to limits on human tolerance, and the algorithmic implementation of this proof (as
captured in Theorem 2) improves upon them significantly.

1.3 Related Work

The worst-case version of the k-SUM problem has been studied extensively in the literature on algo-
rithms [HS74, BDP08, DSW18, Cha20, . . . ], data structures [KP19, GGH+20, CL23, . . . ], and com-
plexity theory [GO95, BHP01, SEO03, CGI+16, GS17, Eri95, AC05, Pat10, PW10, GP18, ABHS19,
. . . ]. In the study of the fine-grained complexity of problems within P, in particular, connec-
tions have been discovered between the complexity of this problem and those of various impor-
tant problems from computational geometry, graph theory, data structures, etc. [GO95, BHP01,
SEO03, Pat10, AW14, KPP16]. A simple meet-in-the-middle algorithm solves this problem in
Õ(n⌈k/2⌉) time [HS74]. The best algorithms known are faster than this by only a small polylog
factor [BDP08, GP18, Cha20], or run in time Õ(m + n) [Bri17, JW19]. It has been conjectured
that the best worst-case algorithm for this problem runs in time n⌈k/2⌉−o(1) [GO95, AL13].

For average-case k-SUM, non-trivial algorithms (beyond known worst-case algorithms) have
so far been restricted to Wagner’s k-Tree algorithm [Wag02] and its extensions to using smaller
lists (at the cost of running time) [MS12], to values of k that are not power of 2 [NS15, Din19],
to generalizations with better time-memory tradeoffs [NS15, BK17, Din19], and to the quantum
setting [GNS18]. These algorithms have found extensive use across cryptography and cryptanaly-
sis [Sch01, Wag02, DEF+19, LS19, BLL+22, . . . ]. They are also closely related to some of the best
algorithms for the Learning Parity with Noise problem [BKW03].
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Lattice-based conditional lower bounds are known that indicate that the k-Tree algorithm for k-
SUM is optimal in its asymptotic dependence on k [BSV21]. Some conditional lower bounds are also
known for the complexity of the k-SUM problem given lists of size close to m1/k [DKK21, ASS+24].

Comparison with Existing Analyses. As noted earlier, Wagner’s original argument [Wag02]
of the correctness of the k-Tree algorithm was heuristic and relied on assumptions regarding the
distribution and independence of elements in intermediate lists computed by the algorithm. The
conclusion of this argument was that the algorithm works with constant success probability when
given input lists of size m1/(log k+1), and that in this case it runs in time O(k ·m1/(log k+1)).

This argument was made rigorous by Minder and Sinclair [MS12] for the variant of the k-
Tree algorithm that sovles the k-SUM problem over the group Zm

2 (in which case it is referred
to as the k-XOR problem). In this case, Wagner’s assumption regarding the uniform distribution
of intermediate list elements is immediately seen to be true. Minder and Sinclair also follow the
approach (described in Section 1.2) of then computing the first two moments of the random variable
counting the number of solutions found, and then using these to prove concentration bounds. In
the case of k-XOR, the process of computing these moments turns out to be much simpler due to
the fact that the XOR of any arbitrary vector with a uniformly random vector results again in a
uniformly random vector. Some of the questions that come up during this analysis of k-Tree over
Zm
2 also come up in the analysis of an approach to hashing called Simple Tabulation Hashing (see,

for example, [PT12]), but the implications of the results there for Minder and Sinclair’s analysis
are not immediately clear to us.

The first rigorous analysis of the k-Tree algorithm over integers5 was by Lyubashevsky [Lyu05],
who showed that the algorithm works with high probability if the input lists are of size at least
Ω(k2 log k ·m2/ log k). This was improved by Shallue [Sha08] to lists of size at least Ω(k ·m1/ log k).
Both of these actually study a variant of the k-Tree algorithm where the factor by which the
permitted range shrinks at each level of the tree is set to p = m−1/ log k instead of m−1/(log k+1).
In this case, the final list is only permitted to contain 0’s, and when the input list size is m1/ log k,
the expected number of solutions found by the algorithm is also Θ(m1/ log k). Both Lyubashevsky
and Shallue were interested in using the k-Tree algorithm for very large values of k, and so the
difference between log k and (log k + 1) in the exponent were not significant in their applications.
It is possible that Shallue’s analysis can be made to work for the original k-Tree algorithm, but
this is to be verified and even then it is not clear whether the bounds will work for list sizes smaller
than k ·m1/(log k+1).

Both of the above papers take similar approaches in their analysis, and we briefly describe
Shallue’s here. Similar to us, Shallue starts by showing that the elements in the intermediate lists
are close to uniform; the distance measure used there is also an element-wise bound on differences in
probability mass, but the whereas MR distance measures relative difference, they measure absolute
difference. We believe our choice is better for concrete parameters, but asymptotically these choices
are likely equivalent. The larger difference is in how they deal with the dependence between
list elements. They start with the observation that even though there are dependencies between
list elements, it is possible to find a large enough subset of elements in each list such that all
correlations among them are relatively small. They then use martingale-based concentration bounds

5We continue to ignore the distinction between k-Tree over integers and over Zm, following the discussion in
Remark 1.4.
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to recursively bound the size of each intermediate list.
Their utilization of correlation bounds on larger sets of variables eventually results in a better

dependence of the probability bound on the list-size overhead. They show that if the input lists are
of size c·m1/ log k for some c ≥ k, then the probability of failure is roughly at most (m1/ log ke−c/1024),
whereas our bound for lists of size c · m1/(log k+1) is around c−k. For very large values of c, the
former will be much smaller, but for moderate values c = Θ(1), the latter bound is better.

A different approach to analyzing the k-Tree algorithm was taken by Joux, Kippen, and
Loss [JKL24]. They get around the uniformity and independence issues by modifying the k-Tree
algorithm in such a way that these properties actually hold as assumed by the heuristic analysis.
This makes the algorithm slightly worse than the original, but easier to analyze. They then show
that this modified algorithm works with probability roughly larger than (1− e−poly(k)) if the input

list sizes are n = β(k) ·m1/(log k+1), where β(k) ≈ (1.26)
ℓ−1
ℓ+1 · 6

(ℓ−1)(ℓ+2)
(ℓ+1) , with ℓ = log k. Further,

their modified algorithm runs in time Θ(kn) in this case. This again results in very good bounds
on the probability of success, but the bounds only work for large values of c, especially for larger
values of k – for instance, β(4) ≈ 3.563 and β(1024) ≈ 7964.

In summary, the following are the most significant points of comparison between our results and the
existing analyses of Shallue [Sha08] and Joux et al. [JKL24] of the k-Tree algorithm over integers:

• The results in the other papers do not give meaningful bounds for c ≤ 1 – that is, when the
size of the lists is n = m1/(log k+1), as suggested by Wagner’s heuristic analysis, or smaller –
while ours do. This is also true for some range of values of c larger than 1, with the range
depending on k.

• For sufficiently larger list sizes (c ≫ 1), the approaches in the other papers can likely show
lower bounds on the success probability that are much closer to 1 than our bounds can.
This gap can be closed using certain optimizations to the k-Tree algorithm as described in
Remark 1.2, though that does not vindicate our analysis itself.

We present comparisons of our results with these in Figure 4, making optimistic assumptions
regarding the constants in the bounds of the other papers, as well as regarding the regime of their
validity, wherever relevant.

2 Analysis

In this section, we present our analysis of Wagner’s k-Tree algorithm for the k-SUM problem over
integers [Wag02]. We present the algorithm in full detail in Figure 5. It has four parameters –
the number of lists (k), the size of each list (n), the range the numbers are drawn in (m), and
an internal filtering parameter p. We then state our main claim about its success probability in
Theorem 2.1, state its significant corollaries, and then prove the theorem in the rest of the section.

Notation. For any m ∈ N, we denote by [m] the set of natural numbers {1, 2, . . . ,m}, and by
⟨m⟩ the set of integers

{
−
⌊
m
2

⌋
, . . . ,

⌊
m
2

⌋}
. Below, the term “list” simply refers to an array indexed

by natural numbers in some range [n]. A list might contain duplicate entries, and in particular is
to be distinguished from a set.
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Figure 4: Comparison of bounds produced by Theorem 2 with those of [Sha08] and [JKL24]. For
the other papers, we plot the minimum complexity of k-Tree for which they show non-trivial lower
bounds on success probability (usually close to 1). In our case, we plot the smallest complexity of
k-Tree for which the lower bound on success probability produced by Theorem 2 is at least 0.5.

Theorem 2.1. Consider any k, n,m ∈ N, where k ≥ 4 is a power of 2 and m > 30log k+1. Set

p = m
−1

log k+1 and c = p · n. Consider k lists L1, . . . , Lk, each consisting of n uniformly random
integers from the range ⟨m⟩. The k-Tree algorithm (as in Figure 5) with these parameters, denoted
by kTree, satisfies the following:

• Success Probability. Its probability of success is bounded as follows:

1

c−k +
(
1 + k

n

)k · (1− 150p)k ≤ Pr
L1,...,Lk

[
kTree(L1,...,Lk)
outputs (ℓ1,...,ℓk)

such that
∑

i Li[ℓi]=0

]
≤ ck · (1 + 37p)k

• Complexity. Its expected complexity is bounded as follows:

E
L1,...,Lk

[
Total size of all lists

involved in
kTree(L1,...,Lk)

]
∈ kn ·

1 +
∑

d∈[log k]

c2
d−1

2d

 · (1± 37p)k−1

Corollary 2.2. Consider functions k, n : N → N, where for any m, k(m) ≥ 4 is a power of 2.

Set p(m) = m
−1

log k(m)+1 and c(m) = p(m) · n(m). Further, suppose k = o(1/p) and k = o(n1/2).
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The k-Tree algorithm

Parameters: k, n,m ∈ N, p ∈ (0, 1], with k being a power of 2

Input: Lists L1, . . . , Lk, each consisting of n integers from ⟨m⟩

Output: Indices ℓ1, . . . , ℓk ∈ [n], or a failure symbol ⊥

Subroutines:

• Merge(La, Lb, τ): On input lists La and Lb of integers and threshold τ ∈ R, outputs
a list consisting of all (a + b) such that a ∈ La, b ∈ Lb, and |a+ b| ≤ τ . This output
maintains duplicates – if multiples pairs (a ∈ La, b ∈ Lb) have the same sum, a copy of
that sum is included in the output list for each pair.

Procedure:

1. For each i ∈ [k], denote the list Li by L0
i

2. Set τ ← m/2

3. For d from 1 to log k:

• Set τ ← p · τ

• For i ∈
[
k
2d

]
: set Ld

i ← Merge(Ld−1
2i−1, L

d−1
2i , τ)

4. If Llog k
1 contains 0, output the indices in the input lists that led to this sum. Otherwise

output ⊥.

Remarks:

• In order to perform its last step, the algorithm additionally needs to keep track of which
elements of the input lists contribute to each sum in the intermediate lists. We leave this
bookkeeping out of our description for simplicity.

• Note that if any list considered in the course of the algorithm is empty, the algorithm is
eventually bound to output ⊥.

• Above, we only describe the behavior of the Merge algorithm rather than specifying the
procedure it follows because it can be implemented in various ways, with the most efficient
choice depending on the parameters of the problem and the execution environment. Also
see Remark 1.3.

Figure 5: The k-Tree algorithm over Integers

With k = k(m), n = n(m), m, and p(m) as its parameters, the probability of success of the k-Tree
algorithm, denoted kTree, is bounded as follows:

ck

1 + ck
· (1− o(1)) ≤ Pr [kTree succeeds] ≤ ck · (1 + o(1))
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Its complexity is bounded as follows:

Complexity of kTree ∈ kn ·

1 +
∑

d∈[log k]

c2
d−1

2d

 · (1± o(1))

The rest of this section is a proof of Theorem 2.1. Our approach is non-trivial, but elementary.
We simply compute the first two moments of the random variable that counts the number of
occurrences of 0 in the final list produced by the algorithm, and then use standard tail bounds to
bound the probability that this variable is non-zero.

Hereon, we adopt the context of the k-Tree algorithm from Figure 5, and use notation established
in its description in the general text as well. For any set of parameters k, n,m, p, we define the
aforementioned random variable as follows (with randomness coming from the choices of the Li’s):

Ck,n,m,p = number of occurrences of 0 in the list Llog k
1

We show the following properties of the lower moments of this random variable, use these to
prove Theorem 2.1, and then later in the section prove the propositions themselves.

Proposition 2.3. Consider any valid set of parameters k, n, m, and p such that m > 7k, p · k >
(7/m)(k/2−1), mplog k > 30, and p < 1/30. We have:

E [Ck,n,m,p] ∈
nkpk

mplog k+1
· (1± p)k−1

(
1± 35

mplog k

)k−1

The second moment of this variable is most conveniently bounded in terms of a function that
is again recursively defined, and is a refinement of Tµ,n defined above. For any µ, ν ∈ (0, 1) and
n ∈ N, the function Tµ,n,ν : N→ R is defined on inputs that are powers of 2. The base is its value
on 1:

Tµ,n,ν(1) = n · µ · ν

For any k ≥ 2 that is a power of 2, it is defined as follows:

Tµ,n,ν(k) = Tµ,n,ν(k/2)

(
Tµ,n,ν(k/2)

ν
+ 2µ

)
As the above is a quadratic recursion, there is no general closed-form expression for Tµ,n,ν(k). We
prove upper bounds on its value later in the course of the proof of Theorem 2.1.

Proposition 2.4. Consider any valid set of parameters k, n, m, and p such that mplog k−1 > 30
and p < 1/30. Define the following:

µ = p ·
[
(1− p)−1

(
1 +

35

mplog k

)]
and ν =

1

mplog k+1

Then, we have:

E
[
C2
k,n,m,p

]
≤ (nkµkν) · (1 + Tµ,n,ν(k))
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In order to discuss the complexity of the algorithm, for any set of parameters k, n,m, p, we
define the following random variable that captures the total size of all the lists in an execution of
the algorithm:

Λk,n,m,p =

log k∑
d=0

∣∣∣Ld
i

∣∣∣
Proposition 2.5. Consider any valid set of parameters k, n, m, and p such that m > 7k, p · k >
(7/m)(k/2−1), mplog k > 30, and p < 1/30. We have:

E [Λk,n,m,p] ∈ kn ·

1 +
∑

d∈[log k]

(np)2
d−1

2d

 · (1± p)k−1
(
1± 35

mplog k

)k−1

With these propositions, we can now prove our main theorem.

Proof of Theorem 2.1. The lower bound on the success probability in Theorem 2.1 follows from
applying a suitable second-moment-based tail-bound to the random variable Ck,n,m,p, and then
appropriately bounding the function Tµ,n,ν defined above. The lower bound follows from a simple
Markov bound, and the bounds on the complexity follow from Proposition 2.5.

Lower bound. For any k, n, m, and p, each entry in the list Llog k
1 is a sum of one entry each

from the input lists L1, . . . , Lk. So whenever the non-negative random variable Ck,n,m,p (denoted

simply by C hereon) is non-zero, there is at least one entry in Llog k
1 that is 0, and the execution

kTreep(L1, . . . , Lk) finds indices (ℓ1, . . . , ℓk) such that
∑

i Li[ℓi] = 0. So all we need to do is to
bound the probability that this random variable is non-zero. This we do using the Paley-Zygmund
inequality.

Lemma 2.6 (Paley-Zygmund Inequality, see e.g. [Roc24, Section 2.3]). For any non-negative
random variable Z and any θ ∈ [0, 1],

Pr [Z > θE [Z]] ≥ (1− θ)2
E [Z]2

E [Z2]

Substituting the values p = m
−1

log k+1 and n = c · m
1

log k+1 , and observing that the conditions
k ≥ 4 and m > 30log k+1 guarantee the requirements in its hypotheses, we get the following bound
from Proposition 2.3:

E [C] ∈ ck · (1± p)k (1± 35p)k (24)

For brevity, denote the function Tµ,n,1 that was defined above by Tµ,n. We get the following from
Proposition 2.4:

E
[
C2
]
≤ ck · (1 + Tµ,n(k)) ·

[
(1− p)−1 (1 + 35p)

]k
(25)

where µ = p ·
[
(1− p)−1 (1 + 35p)

]
. We bound this more concretely using the claim below, which

we prove after the completion of the current proof.
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Claim 2.7. For any µ ∈ (0, 1) and n, k ∈ N, we have:

Tµ,n(k) ≤ nkµk ·
(
1 +

k

n

)k

Putting together (25) and Claim 2.7, we have:

E
[
C2
]
≤ ck ·

(
1 + ck ·

[
(1− p)−1 (1 + 35p)

]k · (1 + k

n

)k
)
·
[
(1− p)−1 (1 + 35p)

]k
≤ c2k

(
c−k +

(
1 +

k

n

)k
)[

(1− p)−1 (1 + 35p)
]2k

(26)

Applying Lemma 2.6 with θ = 0 and the bounds from (24) and (26), we get:

Pr [C > 0] ≥ E [C]2

E [C2]

≥ c2k · (1− p)2k (1− 35p)2k

c2k
(
c−k +

(
1 + k

n

)k)
[(1− p)−1 (1 + 35p)]2k

≥ 1

c−k +
(
1 + k

n

)k · (1− p)4k(1− 35p)2k(1 + 35p)−2k

≥ 1

c−k +
(
1 + k

n

)k · (1− 150p)k

as required.

Upper bound. To get the upper bound on the success probability, we apply the Markov bound
using (24) as follows:

Pr [C ≥ 1] ≤ E [C] ≤ ck · (1 + 37p)k

Complexity. The bounds on the complexity of the algorithm follow directly from Proposition 2.5.
By our setting of p, we have mplog k+1 = 1, and using the fact that p < 1/30, we get:

E [Λk,n,m,p] ∈ kn ·

1 +
∑

d∈[log k]

(np)2
d−1

2d

 · (1± p)k−1 (1± 35p)k−1

⊆ kn ·

1 +
∑

d∈[log k]

c2
d−1

2d

 · (1± 37p)k−1

This proves the theorem.
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Proof of Claim 2.7. Fix some values of n and µ, and denote Tµ,n simply by T . Recall that T is
defined as follows:

T (1) = n · µ
T (k) = T (k/2) (T (k/2) + 2µ)

The claim is that for every k (that is a power of 2), T (k) ≤ (nµ+ kµ)k. This can be verified to be
true for k = 1 and 2. For some k ≥ 4, suppose this is true for k/2. Then, we have:

T (k) = T (k/2)(T (k/2) + 2µ)

≤ (nµ+ (k/2)µ)k/2(nµ+ (k/2)µ+ 2µ)k/2

≤ (nµ+ kµ)k/2(nµ+ kµ)k/2

= (nµ+ kµ)k

which proves the claim.

Section Outline. In Section 2.1, we define a useful notion of distance between probability distri-
butions and establish some facts about distributions over bounded integer intervals. In Section 2.2,
we compute the first moment of the above random variable to prove Proposition 2.3, and in Sec-
tion 2.3 we compute its second moment to prove Proposition 2.4.

2.1 Tools

Here, we set up some notational conventions, definitions, and propositions that will be useful at
multiple points in the proofs of Propositions 2.3 and 2.4.

Distance between distributions. For any distribution D over a domain X and any x ∈ X (or
S ⊆ X ), we denote by D(x) (resp. D(S)) the probability mass placed by D on x (resp. S). Given
distributions D and D̂, we denote by (D ⊗ D̂) the (“direct product”) distribution of (x, y) where
x← D and y ← D̂ are sampled independently.

We will use the following notion of distance between probability distributions. Related no-
tions of distance have found significant use in differential privacy [DMNS16], analysis of lattice
algorithms [BLRL+18], etc.

Definition 2.8 (Max-Ratio Distance). Consider two distributions D0 and D1 over a finite do-
main X that have the same support. The Max-Ratio (MR) distance between these, denoted by
∆MR(D0, D1), is the smallest λ ≥ 1 such that for all x, we have D1(x) ∈ [λ−1 ·D0(x), λ ·D0(x)].

Note that the above distance is symmetric, and is only defined if both distributions have the
same support. All pairs of distributions we will consider in our work will indeed have the same
support, and we will leave out stating this condition explicitly in the hypotheses of our statements
below. The following are a few other easily observed facts about this distance that we will use.

Fact 2.9. Consider any distributions D0 and D1 over X with ∆MR(D0, D1) = λ. For any subset
S ⊆ X , we have D1(S) ∈ [λ−1 ·D0(S), λ ·D0(S)].
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Fact 2.10. Consider any distributions D0, D1, D̂0, and D̂1 over appropriate domains. We have:

∆MR(D0 ⊗ D̂0, D1 ⊗ D̂1) ≤ ∆MR(D0, D1) ·∆MR(D̂0, D̂1)

The following proposition will be especially useful for us since we will be repeatedly bounding
the distance of distributions from the uniform distribution over their support.

Proposition 2.11. Consider any distribution D, denote its support by S, and let U be the uniform
distribution over S. Then, we have:

∆MR(U,D) ≤ maxx∈S D(x)

minx∈S D(x)

Proof of Proposition 2.11. Observe that for any x ∈ S, we necessarily have U(x) ≥ miny∈SD(y)
and U(x) ≤ maxz∈S D(z). If either of these is not the case, the sum of the values of D(x) over all
values of x ∈ S cannot be equal to 1. Thus, for any x ∈ S,

D(x) = U(x) · D(x)

U(x)
∈
[
U(x) ·

miny∈S D(y)

maxz∈S D(z)
, U(x) · maxz∈S D(z)

miny∈S D(y)

]
This proves the proposition. Note that above we rely on the fact that U(x) is non-zero for x ∈ S.

Distributions of Sums. For any distribution D over integers (or reals), denote by (2 · D) the
distribution sampled by taking two independent samples x and y from D and outputting (x+ y).
Denote by D|⟨s⟩ the distribution D conditioned on the samples being contained in ⟨s⟩. For any
s > 0, let Us be the uniform distribution over ⟨s⟩. That is, Us(x) is 1/ (2 · ⌊s/2⌋+ 1) if x ∈ ⟨s⟩,
and is 0 otherwise.

We now look at what happens to the distributions of elements in the lists in a single merge
step of the k-Tree algorithm. The distribution of the sum of two numbers uniform in some range
is captured by the following.

Claim 2.12. For any s > 10 and any integer z ∈ [−s, s],

Pr
x,y←Us

[x+ y = z] ∈
(
1

s
− |z|

s2

)
± 5

s2

Proof of Claim 2.12. This follows from the following calculation:

Pr
x,y←Us

[x+ y = z] =

⌊s/2⌋∑
x=−⌊s/2⌋

Us(x) · Us(z − x)

=

⌊s/2⌋+min(0,z)∑
x=−⌊s/2⌋+max(0,z)

1

(2 ⌊s/2⌋+ 1)2

= (2 ⌊s/2⌋+ 1− |z|) · 1

(2 ⌊s/2⌋+ 1)2

=
1

(2 ⌊s/2⌋+ 1)
− |z|

(2 ⌊s/2⌋+ 1)2
(27)
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Using the fact that (2 ⌊s/2⌋+ 1) ∈ s± 1 and |z| ≤ s, we can compute the “errors” in each term as
follows: ∣∣∣∣1s − 1

2 ⌊s/2⌋+ 1

∣∣∣∣ ≤ 1

s(s− 1)∣∣∣∣ |z|s2 − |z|
(2 ⌊s/2⌋+ 1)2

∣∣∣∣ ≤ |z| (2s+ 1)

s2(s− 1)2
≤ 3

(s− 1)2

Putting these together with (27) and some simple approximations using the fact that s > 10 gives
the claim.

Proposition 2.13. For any s > 10 and p ∈ [0, 1],

Pr
x,y←Us

[x+ y ∈ ⟨sp⟩] ∈
(
p− p2

4

)
± 7

s

Proof of Proposition 2.13. Using Claim 2.12, we can calculate the relevant probability as follows:

Pr
x,y←Us

[x+ y ∈ ⟨sp⟩] =
⌊sp/2⌋∑

z=−⌊sp/2⌋

Pr
x,y←Us

[x+ y = z]

∈
⌊sp/2⌋∑

z=−⌊sp/2⌋

1

s
− |z|

s2
± 5

s2

=
2 ⌊sp/2⌋+ 1

s
− 1

s2
·
⌊sp
2

⌋(⌊sp
2

⌋
+ 1
)
± 5 · (2 ⌊sp/2⌋+ 1)

s2

⊆
(
p± 1

s

)
−
(
p2

4
± p

2s

)
±
(
5p

s
+

5

s2

)
⊆
(
p− p2

4

)
± 7

s

which proves the proposition.

Proposition 2.14. For any s > 20 and p ∈ [0, 1],

∆MR

(
Usp, 2 · Us|⟨sp⟩

)
≤
(
1− p

2

)−1(
1 +

30

s

)
Proof of Proposition 2.14. Following Proposition 2.11, as Usp and (2·Us|⟨sp⟩) have the same support
(that is, ⟨sp⟩), it is sufficient to bound the ratio between the maximum and minimum probability
masses of the latter to bound its distance from uniform. By Bayes’s theorem, the probability mass
placed on any z ∈ ⟨sp⟩ by this distribution is as follows:

(2 · Us|⟨sp⟩)(z) = Pr
x,y←Us

[x+ y = z | x+ y ∈ ⟨sp⟩] =
Prx,y←Us [x+ y = z]

Prx,y←Us [x+ y ∈ ⟨sp⟩]
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As the normalizing factor in the denominator appears in all probability mass values, it is sufficient
to bound the ratio between the maximum and minimum values of the numerator above. That is,
Proposition 2.11 implies the following:

∆MR

(
Usp, 2 · Us|⟨sp⟩

)
≤

maxz∈⟨sp⟩ Prx,y←Us [x+ y = z]

minz∈⟨sp⟩ Prx,y←Us [x+ y = z]

We can bound this ratio using Claim 2.12 as follows:

maxz∈⟨sp⟩ Prx,y←Us [x+ y = z]

minz∈⟨sp⟩ Prx,y←Us [x+ y = z]
≤ 1/s+ 5/s2

1/s− p/2s− 5/s2

≤
(
1− p

2

)−1(
1 +

5

s

)(
1− 10

s

)−1
≤
(
1− p

2

)−1(
1 +

30

s

)
where the second inequality follows from the observation that (1− p/2) ≥ 1/2, and the third uses
the hypothesis that s > 20. This proves the proposition.

Next we show some bounds involving pairs of sums of dependent random variables that come
in useful when computing second moments later. Just upper bounds turn out to be sufficient here
since we are only interested in upper-bounding these second moments.

Proposition 2.15. For any s > 10 and p ∈ [0, 1],

Pr
w,x,y←Us

[w + x ∈ ⟨sp⟩ ∧ w + y ∈ ⟨sp⟩] ≤ p2 ·
(
1 +

3

sp

)2

Proof of Proposition 2.15. We can write this probability as follows:

Pr
w,x,y←Us

[w + x ∈ ⟨sp⟩ ∧ w + y ∈ ⟨sp⟩] =
⌊s/2⌋∑

w=−⌊s/2⌋

Us(w) · Pr
x,y←Us

[w + x ∈ ⟨sp⟩ ∧ w + y ∈ ⟨sp⟩]

≤ max
w

Pr
x,y←Us

[w + x ∈ ⟨sp⟩ ∧ w + y ∈ ⟨sp⟩]

= max
w

Pr
x←Us

[w + x ∈ ⟨sp⟩] · Pr
y←Us

[w + y ∈ ⟨sp⟩]

= max
w

Pr
x←Us

[x ∈ −w + ⟨sp⟩] · Pr
y←Us

[y ∈ −w + ⟨sp⟩]

≤
(
|⟨sp⟩|
|⟨s⟩|

)2

(28)

≤
(
sp+ 1

s− 1

)2

≤ p2 ·
(
1 +

3

sp

)2

where the second equality follows from the independence of x and y, and the last inequality uses
the hypothesis that s > 10 and the fact that p ≤ 1.
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Proposition 2.16. Consider any s > 20 and p ∈ [0, 1/2], and let D be the distribution over Z×Z
sampled as follows: (Sample w, x, y ← Us conditioned on ((w + x), (w + y) ∈ ⟨sp⟩), and output
(w + x,w + y)). Then,

∆MR (Usp ⊗ Usp, D) ≤ (1− p)−1
(
1 +

4

s

)
Proof of Proposition 2.16. Following Proposition 2.11, as U⊗2sp (denoting Usp⊗Usp) and D have the
same support (that is, ⟨sp⟩ × ⟨sp⟩), and U⊗2sp is uniform over this support, it is sufficient to bound
the ratio between the maximum and minimum probability masses of D to bound this distance. We
can bound this ratio as follows:

∆MR

(
U⊗2sp , D

)
≤

maxz1,z2∈⟨sp⟩ Prw,x,y←Us [w + x = z1 ∧ w + y = z2]

minz1,z2∈⟨sp⟩ Prw,x,y←Us [w + x = z1 ∧ w + y = z2]

where again we have ignored the Bayes normalizing factor as it appears in both the numerator and
denominator. We can then express this as follows:

maxz1,z2∈⟨sp⟩ Prw,x,y←Us [w + x = z1 ∧ w + y = z2]

minz1,z2∈⟨sp⟩ Prw,x,y←Us [w + x = z1 ∧ w + y = z2]
=

maxz1,z2∈⟨sp⟩
∑

w∈⟨s⟩ Us(w)Us(z1 − w)Us(z2 − w)

minz1,z2∈⟨sp⟩
∑

w∈⟨s⟩ Us(w)Us(z1 − w)Us(z2 − w)

=
maxz1,z2∈⟨sp⟩ |⟨s⟩ ∩ (z1 − ⟨s⟩) ∩ (z2 − ⟨s⟩)|
minz1,z2∈⟨sp⟩ |⟨s⟩ ∩ (z1 − ⟨s⟩) ∩ (z2 − ⟨s⟩)|

≤ |⟨s⟩|
|⟨s⟩ ∩ (⌊sp/2⌋ − ⟨s⟩) ∩ (−⌊sp/2⌋ − ⟨s⟩)|

≤ |⟨s⟩|
|⟨s⟩| − 2 ⌊sp/2⌋

≤ (s− 1)

(s− 1)− sp

= (1− p)−1
(
1− p

(1− p)(s− 1)

)−1
≤ (1− p)−1

(
1 +

4

s

)
where the second equality follows from the fact that the summand corresponding to each w is a
fixed value when all of w, (z1 −w), and (z2 −w) are contained in ⟨s⟩, and is 0 otherwise. The first
inequality follows by noting that the denominator is the size of the intersection of three intervals
of integers, and is minimized when two of them are translated as far as possible in either direction.
The last inequality uses the fact that p ≤ 1/2 and s > 20.

2.2 Proof of Proposition 2.3

Fix any set of values for k, n, m, and p satisfying the hypothesis of Proposition 2.3. For each
d ∈ [0, log k] and i ∈ [k/2d], denote by Ld

i the corresponding list computed by the k-Tree algorithm
as described in Figure 5, with L0

1, . . . , L
0
k being the input lists, each of which contains n uniformly

distributed integers from ⟨m⟩. Recall that we defined the variable Ck,n,m,p to be the number of

occurrences of 0 in Llog k
1 ; denote this variable by C for brevity. We will write this C as a sum of
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indicator variables that indicate whether each tuple of elements in the k input lists pass all the
filters of the algorithm.

Each element of Llog k
1 corresponds to the sum (L0

1[ℓ1] + · · · + L0
k[ℓk]) for some ℓ1, . . . , ℓk ∈ [n].

For each ℓ1, . . . , ℓk ∈ [n], denote the tuple (ℓ1, . . . , ℓk) by ℓ̄, and define the following variable:

Cℓ̄ =

{
1 if (L0

1[ℓ1] + · · ·+ L0
k[ℓk]) appears in Llog k

1 , and this sum is 0

0 otherwise

Above, the phrase “(L0
1[ℓ1] + · · ·+L0

k[ℓk]) appears in Llog k
1 ” is to be taken symbolically. That is, it

means the following:

∀d ∈ [log k] ∀i ∈
[
k

2d

]
:

 i·2d∑
j=(i−1)·2d+1

L0
j [ℓj ]

 ∈ Ld
i

We can now write C as:

C =
∑
ℓ̄∈[n]k

Cℓ̄ (29)

Computing the expectation of each Cℓ̄ then gives us the expectation of C. We do this as follows.

Fix any value of ℓ̄ = (ℓ1, . . . , ℓk). For each i ∈ [k] denote by x0i the value of L0
i [ℓi]. When the

input lists are uniformly random, each x0i is also uniformly random over ⟨m⟩. For each d ∈ [log k]
and i ∈ [k/2d], we also set up the following notation for the partial sums being considered at each
step in the k-Tree algorithm:

xdi = xd−12i−1 + xd−12i

We will later override some of these xdi ’s by sampling them afresh rather than computing them as
above, but for any xdi for which we do not explicitly say otherwise, the above is to be taken to be
its definition. For each d ∈ [log k], define the following event that captures the set of checks made
by the calls to the Merge function in the dth iteration of the algorithm:

Ed(x1, . . . , xk/2d−1) ≡
(
∀i ∈

[
k

2d

]
: (x2i−1 + x2i) ∈ ⟨mpd⟩

)
Finally, define the following event that captures the property we are interested in elements of the
final list:

Elog k+1(x) ≡ (x = 0)

We can now write the expectation of Cℓ̄ as follows:

E [Cℓ̄] = Pr
x0
1,...,x

0
k←Um

[
E1

(
x01, . . . , x

0
k

)
∧ E2

(
x11, . . . , x

1
k
2

)
∧ · · · ∧ Elog k

(
xlog k−11 , xlog k−12

)
∧ Elog k+1

(
xlog k1

)]
We define the following sequence of probabilites of subsets of the events in the expression above
that we then bound inductively to eventually arrive at a bound for the above expectation. For
d ∈ [0, log k], define the following:

ζd = Pr
xd
1,...,x

d
k/2d
←U

mpd

[
Ed+1

(
xd1, . . . , x

d
k/2d

)
∧ Ed+2

(
xd+1
1 , . . . , xd+1

k/2d+1

)
∧ · · · ∧ Elog k+1

(
xlog k1

)]
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From the above two expressions, we have:

E [Cℓ̄] = ζ0 (30)

The base of our induction is the following observation that follows from noting that for any z,
⌊z⌋ ∈ (z ± 1):

ζlog k = Pr
xlog k
1 ←U

mplog k

[
Elog k+1(x

log k
1 )

]
= Pr

x←U
mplog k

[x = 0] ∈ 1

mplog k

(
1± 1

mplog k − 1

)
(31)

The inductive step uses the following claim.

Claim 2.17. For d ∈ [0, log k − 1], we have: ζd ∈ ζd+1 ·
[
p · (1± p)

(
1± 30

mplog k

)]k/2d+1

We now complete the proof of Proposition 2.3 and then prove Claim 2.17 below.

Proof of Proposition 2.3. Inductively applying Claim 2.17 with d going from (log k − 1) to 0, we
get the following:

ζ0 ∈ ζlog k ·
[
p · (1± p)

(
1± 30

mplog k

)]∑log k−1
d=0 k/2d+1

= ζlog k ·
[
p · (1± p)

(
1± 30

mplog k

)]k−1
(32)

Putting together (30), (31) and (32), we get:

E [Cℓ̄] = ζ0 ∈
pk

mplog k+1
· (1± p)k−1

(
1± 30

mplog k

)k−1(
1± 1

mplog k − 1

)
⊆ pk

mplog k+1
· (1± p)k−1

(
1± 35

mplog k

)k−1
(33)

Putting together (29) and (33), we get:

E [C] =
∑
ℓ̄∈[n]k

E [Cℓ̄] ∈
nkpk

mplog k+1
· (1± p)k−1

(
1± 35

mplog k

)k−1
(34)

as required in the statement of the proposition. Finally, we prove Claim 2.17, completing our proof
of Proposition 2.3.
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Proof of Claim 2.17. Expanding the expression that defines ζd using Bayes’s theorem, we get:

ζd = Pr
xd
1,...,x

d
k/2d
←U

mpd

[
Ed+1

(
xd1, . . . , x

d
k/2d

)
∧ Ed+2

(
xd+1
1 , . . . , xd+1

k/2d+1

)
∧ · · · ∧ Elog k+1

(
xlog k1

)]
= Pr

xd
1,...,x

d
k/2d
←U

mpd

[
Ed+1

(
xd1, . . . , x

d
k/2d

)]
·

Pr
xd
1,...,x

d
k/2d
←U

mpd

[
Ed+2

(
xd+1
1 , . . . , xd+1

k/2d+1

)
∧ · · ·

∣∣∣ Ed+1

(
xd1, . . . , x

d
k/2d

)]
= Pr

xd
1,...,x

d
k/2d
←U

mpd

[
Ed+1

(
x01, . . . , x

0
k/2d

)]
·

Pr
xd
1,...,x

d
k/2d
←U

mpd

[
Ed+2

(
xd+1
1 , . . . , xd+1

k/2d+1

)
∧ · · ·

∣∣∣ ∀i ∈ [ k

2d+1

]
: (xd2i−1 + xd2i) ∈ ⟨mpd+1⟩

]
= Pr

xd
1,...,x

d
k/2d
←U

mpd

[
Ed+1

(
x01, . . . , x

0
k/2d

)]
·

Pr
xd+1
1 ,...,xd+1

k/2d+1←2·U
mpd

[
Ed+2

(
xd+1
1 , . . . , xd+1

k/2d+1

)
∧ · · ·

∣∣∣ ∀i ∈ [ k

2d+1

]
: xd+1

i ∈ ⟨mpd+1⟩
]
(35)

where the third equality follows from the definition of Ed+1, and the fourth from the definition of
xd+1
i as being (xd2i−1 + xd2i). We can bound the first term above directly using Proposition 2.13 as

follows, noting that for the various values of i, the distributions of (xd2i−1 + xd2i) are independent:

Pr
xd
1,...,x

d
k/2d
←U

mpd

[
Ed+1

(
x01, . . . , x

0
k

)]
= Pr

xd
1,...,x

d
k/2d
←U

mpd

[
∀i ∈

[
k

2d+1

]
: (xd2i−1 + xd2i) ∈ ⟨mpd+1⟩

]

∈
((

p− p2

4

)
± 7

mpd

)k/2d+1

⊆
(
p− p2

4

)k/2d+1 (
1± 14

mpd+1

)k/2d+1

(36)

where the first containment follows from Proposition 2.13 (setting s there to be mpd), and the
second from the fact that (p− p2/4) > p/2.

The second term in (35) can be upper-bounded using Facts 2.9 and 2.10 and Proposition 2.14
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(and the hypothesis that mpd ≥ mplog k > 30) as follows:

Pr
xd+1
1 ,...,xd+1

k/2d+1←2·U
mpd

[
Ed+2

(
xd+1
1 , . . . , xd+1

k/2d+1

)
∧ · · ·

∣∣∣ ∀i ∈ [ k

2d+1

]
: xd+1

i ∈ ⟨mpd+1⟩
]

= Pr
xd+1
1 ,...,xd+1

k/2d+1←2·U
mpd
|⟨mpd+1⟩

[
Ed+2

(
xd+1
1 , . . . , xd+1

k/2d+1

)
∧ · · ·

]
≤ ∆MR

(
Umpd+1 , 2 · Umpd |⟨mpd+1⟩

)k/2d+1

· Pr
xd+1
1 ,...,xd+1

k/2d+1←U
mpd+1

[
Ed+2

(
xd+1
1 , . . . , xd+1

k/2d+1

)
∧ · · ·

]
= ∆MR

(
Umpd+1 , 2 · Umpd |⟨mpd+1⟩

)k/2d+1

· ζd+1

≤
[(

1− p

2

)−1(
1 +

30

mpd

)]k/2d+1

· ζd+1 (37)

We can similarly lower-bound it by:

∆MR

(
Umpd+1 , 2 · Umpd |⟨mpd+1⟩

)−k/2d+1

· ζd+1 ≥

[(
1− p

2

)(
1 +

30

mpd

)−1]k/2d+1

· ζd+1 (38)

Putting together (35), (36), and (37), we get the following upper bound:

ζd ≤ ζd+1 ·
[(

p− p2

4

)(
1− p

2

)−1(
1 +

14

mpd+1

)(
1 +

30

mpd

)]k/2d+1

≤ ζd+1 ·
[
p(1 + p)

(
1 +

29

mpd+1

)]k/2d+1

where the second inequality uses the fact that (1− p/4)(1− p/2)−1 < (1 + p), and the hypotheses
that mpd ≥ mplog k > 30 and p < 1/30. Similarly, putting together (35), (36), and (38), we get:

ζd ≥ ζd+1 ·

[(
p− p2

4

)(
1− p

2

)(
1− 14

mpd+1

)(
1 +

30

mpd

)−1]k/2d+1

≥ ζd+1 ·
[
p(1− p)

(
1− 15

mpd+1

)]k/2d+1

where we use the fact that (1 − p/4)(1 − p/2) > (1 − p), and the hypothesis that p < 1/30. The
above two expressions, along with the fact that d is at most (log k − 1), now prove the claim.

2.3 Proof of Proposition 2.4

Here, we prove Proposition 2.4, which bounds the second moment of the variable Ck,n,m,p defined
earlier. Fix any set of values for k, n, m, and p satisfying the hypothesis of Proposition 2.4. We will
continue to use the notation set up in Section 2.2, including denoting Ck,n,m,p by C. The second
moment of C can be written as:

E
[
C2
]
= E

 ∑
ℓ̄∈[n]k

Cℓ̄

2 =
∑

ℓ̄,ℓ̄′∈[n]k
E [Cℓ̄ · Cℓ̄′ ]
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For any tuples ℓ̄, ℓ̄′ ∈ [n]k, denote by δ(ℓ̄, ℓ̄′) the Hamming difference between them – that is,
δ : [n]k × [n]k → {0, 1}k outputs a string of length k whose ith bit is defined as follows:

(δ(ℓ̄, ℓ̄′))i =

{
0 if ℓi = ℓ′i
1 if ℓi ̸= ℓ′i

Then, we can write the above expectation as:

E
[
C2
]
=

∑
ℓ̄,ℓ̄′∈[n]k

E [Cℓ̄ · Cℓ̄′ ] =
∑

s∈{0,1}k

∑
ℓ̄,ℓ̄′:δ(ℓ̄,ℓ̄′)=s

E [Cℓ̄ · Cℓ̄′ ] (39)

Our approach now is to first obtain symbolic bounds on the expectation in the sum for each
value of δ(ℓ̄, ℓ̄′), and then bound the sum itself inductively using some convenient structure that it
possesses. The extremes have slightly different bounds from the general case, so we first separate
them as follows.

Claim 2.18. For any ℓ̄, ℓ̄′ ∈ [n]k such that δ(ℓ̄, ℓ̄′) = 0k,

E
[
Cℓ̄ · C ′ℓ̄

]
= E [Cℓ̄] ∈

pk

mplog k+1
· (1± p)k−1

(
1± 35

mplog k

)k−1

Proof of Claim 2.18. Because ℓ̄ = ℓ̄′ and Cℓ̄ and Cℓ̄′ are Boolean variables, Cℓ̄ · Cℓ̄′ = Cℓ̄, the
expectation of which is bounded in (33) from Section 2.2.

The bounds on the expectations in the general case are most conveniently expressed in terms
of quantities that are defined on top of the difference δ(ℓ̄, ℓ̄′) in a tree structure that reflects the
processing of the list elements by the algorithm. To capture these, we define a “tree extrapolation”
function tex : {0, 1}k → {0, 1}k/2 × {0, 1}k/4 × · · · × {0, 1} that on input an s0 ∈ {0, 1}k, outputs a
tuple of strings (s1, . . . , slog k), where for d ∈ [log k], the string sd is contained in {0, 1}k/2

d

, and its
ith bit is defined as follows for i ∈ [k/2d]:

sdi = max(sd−12i−1, s
d−1
2i )

Further, we define the function stex : {0, 1}k → N that on input s ∈ {0, 1}k, computes the tree
extrapolation (s1, . . . , slog k)← tex(s), and then outputs the sum

∑
d∈[log k]

∑
i∈[k/2d] s

d
i .

Claim 2.19. Consider any s ∈ {0, 1}k \
{
0k
}
, and let σ ← stex(s). For any ℓ̄, ℓ̄′ ∈ [n]k such that

δ(ℓ̄, ℓ̄′) = s, we have:

E [Cℓ̄ · Cℓ̄′ ] ≤
pk+σ+1

(mplog k+1)2
·
[
(1− p)−1

(
1 +

30

mplog k

)](k+σ+1)

We use these claims to prove Proposition 2.4, and then prove Claim 2.19.

Proof of Proposition 2.4. Fix any valid set of parameters k, n, m, and p that satisfy the hypothesis
of the proposition. Define the following symbols for convenience:

µ = p ·
[
(1− p)−1

(
1 +

35

mplog k

)]
ν =

1

mplog k+1

32



For s ∈ {0, 1}k, denote by (s1, . . . , slog k) the outputs of the tree extension function tex(s). Note

that the bit slog k1 is 0 if and only if s = 0k. For any s and ℓ̄, ℓ̄′ such that δ(ℓ̄, ℓ̄′) = s, we have the
following by Claims 2.18 and 2.19 (and noting that (1 + p) ≤ (1− p)−1):

E [Cℓ̄ · Cℓ̄′ ] ≤ µk+stex(s) · ν · (µν)s
log k
1 (40)

For s ∈ {0, 1}k, denote by wt(s) the Hamming weight of s – that is, the sum
∑

i∈[k] si. For any

s ∈ {0, 1}k, the number of pairs ℓ̄, ℓ̄′ ∈ [n]k such that δ(ℓ̄, ℓ̄′) = s is given by:

nk · (n− 1)wt(s) ≤ nk+wt(s) (41)

Putting together (39, 40, 41), we have:

E
[
C2
]
=

∑
s∈{0,1}k

∑
ℓ̄,ℓ̄′:δ(ℓ̄,ℓ̄′)=s

E [Cℓ̄ · Cℓ̄′ ]

≤
∑

s∈{0,1}k
nk+wt(s) · µk+stex(s) · ν · (µν)s

log k
1

= (nkµkν) ·
∑

s∈{0,1}k
nwt(s) · µstex(s) · (µν)s

log k
1 (42)

We show that the sum in the above expression can be simplified to a recursively defined function
of k, and to do so we define the following function for every k ≥ 2 that is a power of 2:

T (k) =
∑

s∈{0,1}k
nwt(s) · µstex(s) · (µν)s

log k
1 − 1 = (µν) ·

∑
s∈{0,1}k:s ̸=0k

nwt(s)µstex(s)

where the second equality follows from the fact that wt(0k) = stex(0k) = (0k)log k1 = 0. We also
define T (1) to be (n · µ · ν). For any k ≥ 2, by (42) we have:

E
[
C2
]
≤ (nkµkν) · (1 + T (k)) (43)

It may be verified by computation that:

T (2) = 2nµ2ν + n2µ2ν = T (1) ·
(
T (1)

ν
+ 2µ

)
(44)

We show that a similar relation holds between T (k) and T (k/2) for other values of k as well.
Generalize the definitions of wt and stex to input strings of length k/2 in the natural manner. We
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then do this as follows:

T (k) =
∑

s∈{0,1}k
nwt(s) · µstex(s) · (µν)s

log k
1 − 1

=
∑

s∈{0,1}k:s̸=0k

nwt(s) · µstex(s) · (µν)

=
∑

q,r∈{0,1}k/2:(q||r)̸=0k

nwt(q||r) · µstex(q||r) · (µν)

=
∑

q,r∈{0,1}k/2:(q||r)̸=0k

nwt(q)+wt(r) · µstex(q)+stex(r)+1 · (µν)

= (µ2ν) ·
∑

q,r∈{0,1}k/2:(q||r)̸=0k

nwt(q)+wt(r) · µstex(q)+stex(r)

= (µ2ν) ·

 ∑
q,r∈{0,1}k/2

nwt(q)+wt(r) · µstex(q)+stex(r) − 1


= (µ2ν) ·

( ∑
q∈{0,1}k/2

nwt(q) · µstex(q)
)2
− 1


= (µ2ν) ·

((
T (k/2)

µν
+ 1

)2

− 1

)

= µ · T (k/2) ·
(
T (k/2)

µν
+ 2

)
= T (k/2) ·

(
T (k/2)

ν
+ 2µ

)
(45)

Above, in the second, sixth, and eighth equalities, we use the fact that wt(0k) = stex(0k) = 0.
The fourth equality follows from the fact that wt is additive under concatenation of strings, and
stex(q||r), because of its tree-based definition, is equal to stex(q) + stex(r) + 1 if (q||r) is not 0k.
The rest are straightforward algebraic manipulations. The definition of T (1) and (44,45) imply
that this function T is exactly the function Tµ,ν,n specified in the statement of the proposition.
This observation together with (43) now proves Proposition 2.4.

Proof of Claim 2.19. Fix any s ∈ {0, 1}k \
{
0k
}
with σ ← stex(s), and tuples ℓ̄x, ℓ̄y ∈ [n]k such

that δ(ℓ̄x, ℓ̄y) = s. We set up notation similar to that used in Section 2.2. For each i ∈ [k], let:

xi0 = Li[ℓ
x
i ]

yi0 = Li[ℓ
y
i ]

For each d ∈ [log k] and i ∈ [k/2d], unless overridden, define the following:

xdi = xd−12i−1 + xd−12i

ydi = yd−12i−1 + yd−12i
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We sometimes denote by x̄d (similarly ȳd) the tuple (xd1, . . . , x
d
k/2d

). In our proof, we will rely on

the fact that for i ∈ [k] on which ℓ̄x and ℓ̄y differ, the values of x0i = Li[ℓ
x
i ] and y0i = Li[ℓ

y
i ] are

independent. To enable us to argue fluidly about this, we define the following indicator constants6

for i ∈ [k]:

Ind0i =

{
1 if ℓxi ̸= ℓyi
0 if ℓxi = ℓyi

Similarly, to capture the independence of intermediate values computed in the course of the k-Tree
algorithm, we extend this to define the following for each d ∈ [log k] and i ∈ [k/2d]:

Inddi = max(Indd−12i−1, Ind
d−1
2i )

That is, Inddi indicates whether the values computed at the ith “node” at depth d of the k-Tree
corresponding to the two tuples of indices ℓ̄x and ℓ̄y (that is, xdi and ydi ) are symbolically equal
(in which case it is 0). Note that the Inddi ’s correspond directly to bits in the “tree extrapolation”
tex(s) of s = δ(ℓ̄x, ℓ̄y) as defined before the statement of Claim 2.19. In particular, we have the
following: ∑

d∈[log k]

∑
i∈[k/2d]

Inddi = stex(s) = σ (46)

As in Section 2.2, for each d ∈ [log k], define the following event:

Ed(x1, . . . , xk/2d−1) ≡
(
∀i ∈

[
k

2d

]
: (x2i−1 + x2i) ∈ ⟨mpd⟩

)
And the following event that captures the property we are interested in elements of the final list:

Elog k+1(x) ≡ (x = 0)

Finally, we define the following events that enforce the conditions of independence captured by the
Inddi ’s. For each d ∈ [0, log k]:

Vd ≡
(
∀i ∈

[
k

2d

]
such that (Inddi = 0) : xdi = ydi

)
The expectation we care about can now be written as follows:

E [Cℓ̄x · Cℓ̄y ] = Pr
x̄0,ȳ0←(Um)k

[(
E1(x̄

0) ∧ E1(ȳ
0)
)
∧ · · · ∧

(
Elog k+1(x̄

log k) ∧ Elog k+1(ȳ
log k)

) ∣∣ V0

]
(47)

As in Section 2.2, we will bound this quantity inductively. For d ∈ [0, log k], define the following:

χd = Pr
x̄d,ȳd←(U

mpd
)k/2

d

[(
Ed+1(x̄

d) ∧ Ed+1(ȳ
d)
)
∧
(
Ed+2(x̄

d+1) ∧ Ed+2(ȳ
d+1)

)
∧ · · ·

∣∣ Vd

]
6These are constants because we have already fixed ℓ̄x and ℓ̄y.
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By definition, we have:

E [Cℓ̄x · Cℓ̄y ] = χ0 (48)

As the base for our induction, we will show a bound on χlog k. Note that as δ(ℓ̄
x, ℓ̄y) ̸= 0k, the value

of Indlog k1 is always 1, and so Vlog k is vacuously a tautology. So we have:

χlog k = Pr
xlog k
1 ,ylog k

1 ←U
mplog k

[
Elog k+1(x

log k
1 ) ∧ Elog k+1(y

log k
1 )

∣∣ Vlog k

]
= Pr

xlog k
1 ,ylog k

1 ←U
mplog k

[
Elog k+1(x

log k
1 ) ∧ Elog k+1(y

log k
1 )

]
= Pr

xlog k
1 ←U

mplog k

[
Elog k+1(x

log k
1 )

]
· Pr
ylog k
1 ←U

mplog k

[
Elog k+1(y

log k
1 )

]
≤ 1

(mplog k − 1)2
=

1

(mplog k)2

(
1 +

1

mplog k − 1

)2

(49)

The following claim enables our induction.

Claim 2.20. For d ∈ [0, log k − 1], we have:

χd ≤ χd+1 ·
[
p(1− p)−1

(
1 +

30

mplog k

)]( k

2d+1+
∑k/2d+1

i=1 Indd+1
i

)

We continue with the proof of Claim 2.19 now, and then prove Claim 2.20 later below. Applying
Claim 2.20 repeatedly, we get the following relationship:

χ0 ≤ χlog k ·
[
p(1− p)−1

(
1 +

30

mplog k

)]∑log k−1
d=0

(
k

2d+1+
∑k/2d+1

i=1 Indd+1
i

)

= χlog k ·
[
p(1− p)−1

(
1 +

30

mplog k

)]((k−1)+
∑log k−1

d=0

∑k/2d+1

i=1 Indd+1
i

)

= χlog k ·
[
p(1− p)−1

(
1 +

30

mplog k

)]((k−1)+
∑log k

d=1

∑k/2d

i=1 Inddi

)

= χlog k ·
[
p(1− p)−1

(
1 +

30

mplog k

)](k−1+σ)

(50)

where the last equality follows from (46). Putting together (49) and (50), we have:

χ0 ≤ χlog k ·
[
p(1− p)−1

(
1 +

30

mplog k

)](k+σ−1)

≤ pk+σ−1

(mplog k)2
·
[
(1− p)−1

(
1 +

30

mplog k

)](k+σ−1)(
1 +

1

mplog k − 1

)2

≤ pk+σ+1

(mplog k+1)2
·
[
(1− p)−1

(
1 +

30

mplog k

)](k+σ+1)

Together with (48), this proves Claim 2.19.
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Proof of Claim 2.20. As in the proof of Claim 2.17, we can write χd as follows:

χd = Pr
x̄d,ȳd←(U

mpd
)k/2

d

[(
Ed+1(x̄

d) ∧ Ed+1(ȳ
d)
)
∧
(
Ed+2(x̄

d+1) ∧ Ed+2(ȳ
d+1)

)
∧ · · ·

∣∣ Vd

]
= Pr

x̄d,ȳd←(U
mpd

)k/2
d

[
Ed+1(x̄

d) ∧ Ed+1(ȳ
d)
∣∣ Vd

]
·

Pr
x̄d,ȳd←(U

mpd
)k/2

d

[(
Ed+2(x̄

d+1) ∧ Ed+2(ȳ
d+1)

)
∧ · · ·

∣∣ Vd ∧
(
Ed+1(x̄

d) ∧ Ed+1(ȳ
d)
)]

(51)

As in the proof of Claim 2.17, we would like to bound the two terms in the right-hand size of (51)
separately. In each case, we do this by looking at the various nodes at level (d + 1) of the k-Tree
separately. As the values of xd+1

i and xd+1
i′ are independent for distinct values of i and i′ (and the

same with the y’s), the first term can be written as the following product:

Pr
x̄d,ȳd←(U

mpd
)k/2

d

[
Ed+1(x̄

d) ∧ Ed+1(ȳ
d)
∣∣ Vd

]
= Pr

x̄d,ȳd←(U
mpd

)k/2
d

[
∀i ∈

[
k

2d+1

]
: (xd2i−1 + xd2i) ∈ ⟨mpd+1⟩ ∧ (yd2i−1 + yd2i) ∈ ⟨mpd+1⟩

∣∣ Vd

]

=

k/2d+1∏
i=0

Pr
xd
2i−1,x

d
2i,y

d
2i−1,y

d
2i←U

mpd

[
(xd2i−1 + xd2i) ∈ ⟨mpd+1⟩ ∧ (yd2i−1 + yd2i) ∈ ⟨mpd+1⟩

∣∣ Vd

]
(52)

We bound the terms in the product in (52) separately. For i ∈ [k/2d+1] such that Indd+1
i = 0,

due to the conditioning on Vd, the events (xd2i−1 + xd2i) ∈ ⟨mpd+1⟩ and (yd2i−1 + yd2i) ∈ ⟨mpd+1⟩ are
identical, and the probability them both occuring is bounded as follows:

Pr
xd
2i−1,x

d
2i,y

d
2i−1,y

d
2i←U

mpd

[
(xd2i−1 + xd2i) ∈ ⟨mpd+1⟩ ∧ (yd2i−1 + yd2i) ∈ ⟨mpd+1⟩

∣∣ Vd

]
= Pr

xd
2i−1,x

d
2i←U

mpd

[
(xd2i−1 + xd2i) ∈ ⟨mpd+1⟩

]
≤
(
p− p2

4

)
+

7

mpd
≤ p ·

(
1 +

7

mpd+1

)
(53)

where the last inequality follows from Proposition 2.13. Next, consider the i such that Indd+1
i =

Indd2i−1 = Indd2i = 1. In this case, conditioning on Vd does not affect the independence of the x and
y variables, and we can write the above probability as follows:

Pr
xd
2i−1,x

d
2i,y

d
2i−1,y

d
2i←U

mpd

[
(xd2i−1 + xd2i) ∈ ⟨mpd+1⟩ ∧ (yd2i−1 + yd2i) ∈ ⟨mpd+1⟩

∣∣ Vd

]
= Pr

xd
2i−1,x

d
2i←U

mpd

[
(xd2i−1 + xd2i) ∈ ⟨mpd+1⟩

]
· Pr
yd2i−1,y

d
2i←U

mpd

[
(yd2i−1 + yd2i) ∈ ⟨mpd+1⟩

]
≤ p2 ·

(
1 +

7

mpd+1

)2

(54)

where the last inequality is from Proposition 2.13. Finally, consider the i’s for which Indd+1
i = 1 and

exactly one of Indd2i−1 and Indd2i is 1. Suppose, without loss of generality, that Ind
d
2i−1 = 1. Then,
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conditioning on Vd, the variables xd2i−1 and yd2i−1 are equal and uniformly distributed, whereas xd2i
and yd2i are independent and uniformly distributed. Thus, in this case, we can use Proposition 2.15
to bound the probability as follows:

Pr
xd
2i−1,x

d
2i,y

d
2i−1,y

d
2i←U

mpd

[
(xd2i−1 + xd2i) ∈ ⟨mpd+1⟩ ∧ (yd2i−1 + yd2i) ∈ ⟨mpd+1⟩

∣∣ Vd

]
= Pr

xd
2i−1,x

d
2i,y

d
2i←U

mpd

[
(xd2i−1 + xd2i) ∈ ⟨mpd+1⟩ ∧ (xd2i−1 + yd2i) ∈ ⟨mpd+1⟩

]
≤ p2 ·

(
1 +

3

mpd+1

)2

≤ p2 ·
(
1 +

7

mpd+1

)2

(55)

Putting together (52-55), we get:

Pr
x̄d,ȳd←(U

mpd
)k/2

d

[
Ed+1(x̄

d) ∧ Ed+1(ȳ
d)
∣∣ Vd

]
≤
[
p ·
(
1 +

7

mpd+1

)]( k

2d+1+
∑k/2d+1

i=1 Indd+1
i

)
(56)

Next we bound the second term in the right-hand side of (51), which, to recall, is the following:

Pr
x̄d,ȳd←(U

mpd
)k/2

d

[(
Ed+2(x̄

d+1) ∧ Ed+2(ȳ
d+1)

)
∧ · · ·

∣∣ Vd ∧
(
Ed+1(x̄

d) ∧ Ed+1(ȳ
d)
)]

(57)

As in the proof of Claim 2.17, we bound this in terms of χd+1 and the distance between the
distributions of xd+1

i ’s and yd+1
i ’s as sampled in the above expression and the corresponding uniform

distributions. Note that χd+1 is the following:

χd+1 = Pr
x̄d+1,ȳd+1←(U

mpd+1 )k/2
d+1

[(
Ed+2(x̄

d+1) ∧ Ed+2(ȳ
d+1)

)
∧ · · ·

∣∣ Vd+1

]
(58)

By Fact 2.9, the (multiplicative) difference between (57) and χd+1 is bounded by the distance
between the conditioned distributions from which (x̄d+1, ȳd+1) is sampled in the two expressions.
These distributions can be written in terms of the following two distributions defined for each
i ∈ [k/2d+1]:

D1
i ≡



Sample xd2i−1, x
d
2i, y

d
2i−1, y

d
2i ← Umpd

If Indd2i−1 = 0, reassign yd2i−1 = xd2i−1
If Indd2i = 0, reassign yd2i = xd2i
Set xd+1

i = (xd2i−1 + xd2i) and yd+1
i = (yd2i−1 + yd2i)

Condition on xd+1
i , yd+1

i ∈ ⟨mpd+1⟩
Output (xd+1

i , yd+1
i )



D0
i ≡

 Sample xd+1
i , yd+1

i ← Umpd+1

If Indd+1
i = 0, reassign yd+1

i = xd+1
i

Output (xd+1
i , yd+1

i )


By the definitions of the Ed’s and Vd’s, it may be seen that the distribution of (x̄d+1, ȳd+1) in (57)
is essentially (D1

1 ⊗ · · · ⊗D1
k/2d+1), while that in (58) is essentially (D0

1 ⊗ · · · ⊗D0
k/2d+1). Thus, if
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we bound the distance between D0
i and D1

i for each i, the multiplicative difference between these
expressions, by Facts 2.9 and 2.10 will be bounded by the product of these distances.

Consider any i ∈ [k/2d+1] for which Indd+1
i = 0, which implies that Indd2i−1 = Indd2i = 0, and so

the samples of both distributions are fully determined by the x variables. Then, by the definitions
of the distributions, for such i we have:

∆MR(D
0
i , D

1
i ) = ∆MR

(
Umpd+1 , 2 · Umpd |⟨mpd+1⟩

)
≤
(
1− p

2

)−1(
1 +

30

mpd

)
≤ (1− p)−1

(
1 +

30

mpd

)
(59)

where the first inequality follows from Proposition 2.14. Next, consider an i such that Indd+1
i =

Indd2i−1 = Indd2i = 1. In this case, the x variables and the y variables are independent, and each
behaves exactly like the x variables in the previous case. So, using Fact 2.10, for such i we have:

∆MR(D
0
i , D

1
i ) = ∆MR

(
U⊗2
mpd+1 , 2 · Umpd |⊗2⟨mpd+1⟩

)
≤ ∆MR

(
Umpd+1 , 2 · Umpd |⟨mpd+1⟩

)2
≤
[
(1− p)−1

(
1 +

30

mpd

)]2
(60)

Finally, consider i such that Indd+1
i = 1 and exactly one of Indd2i−1 and Indd2i is 1; without loss of

generality, suppose Indd2i−1 = 0. Then, in D1
i , x

d
2i−1 = yd2i−1 is sampled from Umpd , and is added to

xd2i and yd2i, which are sampled independently from Umpd , to get the outputs, whereas D0
i simply

outputs independent samples from Umpd+1 . We can then use Proposition 2.16 to bound the distance
between these as:

∆MR(D
0
i , D

1
i ) ≤ (1− p)−1

(
1 +

4

mpd

)
≤
[
(1− p)−1

(
1 +

30

mpd

)]2
(61)

Putting together (58-61) and applying Facts 2.9 and 2.10, we get:

Pr
x̄d,ȳd←(U

mpd
)k/2

d

[(
Ed+2(x̄

d+1) ∧ Ed+2(ȳ
d+1)

)
∧ · · ·

∣∣ Vd ∧
(
Ed+1(x̄

d) ∧ Ed+1(ȳ
d)
)]

≤ χd+1 ·
[
(1− p)−1

(
1 +

30

mpd

)]( k

2d+1+
∑k/2d+1

i=1 Indd+1
i

)
(62)

Putting together (51), (56), and (62), we get:

χd ≤ χd+1 ·
[
p(1− p)−1

(
1 +

7

mpd+1

)(
1 +

30

mpd

)]( k

2d+1+
∑k/2d+1

i=1 Indd+1
i

)

≤ χd+1 ·
[
p(1− p)−1

(
1 +

30

mplog k

)]( k

2d+1+
∑k/2d+1

i=1 Indd+1
i

)

where the second inequality uses the hypotheses that mpd ≥ mplog k ≥ 30, and p < 1/30. This
proves the claim.

39



2.4 Proof of Proposition 2.5

Much of this proof proceeds along the lines of that of Proposition 2.3, and parts of the proof below
are reproduced from there nearly verbatim. Fix any set of values for k, n, m, and p satisfying the
hypothesis of Proposition 2.5. For each d ∈ [0, log k] and i ∈ [k/2d], denote by Ld

i the corresponding
list computed by the k-Tree algorithm as described in Figure 5, with L0

1, . . . , L
0
k being the input

lists, each of which contains n uniformly distributed integers from ⟨m⟩. Recall that we defined the
variable Λk,n,m,p to be the total size of all of these lists; denote this variable by Λ for brevity. For
each d ∈ [0, log k], denote by Λd the size of the list Ld

1. For any d, due to symmetry, the expected
size of all lists Ld

i is the same. Thus, we have:

E [Λ] = E

 ∑
d∈[0,log k]

∑
i∈[k/2d]

∣∣∣Ld
i

∣∣∣
 =

∑
d∈[0,log k]

∑
i∈[k/2d]

E
[∣∣∣Ld

i

∣∣∣] = ∑
d∈[0,log k]

k

2d
·E [Λd] (63)

We will then bound each Λd separately and use the above sum to bound Λ. By design, for d = 0,
we have:

E [Λ0] = n (64)

Fix any d ∈ [1, log k]. As in the proof of Proposition 2.3, we will write Λd as a sum of variables
that indicate whether each tuple of elements in the 2d input lists that contribute to the list Ld

1

pass all the filters of the algorithm until that point. Each element of Ld
1 corresponds to the sum

(L0
1[ℓ1] + · · · + L0

2d
[ℓ2d ]) for some ℓ1, . . . , ℓ2d ∈ [n]. For each ℓ1, . . . , ℓ2d ∈ [n], denote the tuple

(ℓ1, . . . , ℓ2d) by ℓ̄, and define the following variable:

Λd,ℓ̄ =

{
1 if (L0

1[ℓ1] + · · ·+ L0
2d
[ℓ2d ]) appears in Ld

1

0 otherwise

We can now write Λd as:

Λd =
∑

ℓ̄∈[n]2d
Λd,ℓ̄ (65)

Computing the expectation of each Λd,ℓ̄ then gives us the expectation of Λd. We do this as follows.

Fix any value of ℓ̄ = (ℓ1, . . . , ℓ2d). For each i ∈ [2d] denote by x0i the value of L0
i [ℓi]. When the

input lists are uniformly random, each x0i is also uniformly random over ⟨m⟩. For each t ∈ [d] and
i ∈ [2d−t], we also set up the following notation for the partial sums being considered at each step
in the k-Tree algorithm:

xti = xt−12i−1 + xt−12i

We will later override some of these xti’s by sampling them afresh rather than computing them as
above, but for any xti for which we do not explicitly say otherwise, the above is to be taken to be
its definition. For each t ∈ [d], define the following event that captures the set of checks made by
the calls to the Merge function in the tth iteration of the algorithm:

Et(x1, . . . , x2d−t+1) ≡
(
∀i ∈

[
2d−t

]
: (x2i−1 + x2i) ∈ ⟨mpt⟩

)
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We can now write the expectation of Λd,ℓ̄ as follows:

E
[
Λd,ℓ̄

]
= Pr

x0
1,...,x

0
2d
←Um

[
E1

(
x01, . . . , x

0
2d

)
∧ E2

(
x11, . . . , x

1
2d−1

)
∧ · · · ∧ Ed

(
xd−11 , xd−12

)]
We define the following sequence of probabilites of subsets of the events in the expression above
that we then bound inductively to eventually arrive at a bound for the above expectation. For
t ∈ [0, d− 1], define the following:

ξt = Pr
xt
1,...,x

t
2d−t←Umpt

[
Et+1

(
xt1, . . . , x

t
2d−t

)
∧ Et+2

(
xt+1
1 , . . . , xt+1

2d−t−1

)
∧ · · · ∧ Ed

(
xd−11 , xd−12

)]
From the above two expressions, we have:

E
[
Λd,ℓ̄

]
= ξ0 (66)

The base of our induction is the following bound that follows from Proposition 2.13:

ξd−1 = Pr
xd−1
1 ,xd−1

2 ←U
mpd−1

[
Ed(x

d−1
1 , xd−12 )

]
= Pr

x1,x2←U
mpd−1

[
x1 + x2 ∈ ⟨mpd⟩

]
∈
(
p− p2

4

)
± 7

mpd−1
(67)

The inductive step uses the following claim.

Claim 2.21. For t ∈ [0, d− 2], we have: ξt ∈ ξt+1 ·
[
p · (1± p)

(
1± 30

mplog k

)]2d−t−1

The proof of Claim 2.21 is identical to that of Claim 2.17, so we leave it out and refer the reader
to the earlier proof. If d = 1, we already have the following from (66,67):

E
[
Λ1,ℓ̄

]
∈
(
p− p2

4

)
± 7

m
⊆ p · (1± p)

(
1± 35

mplog k

)
(68)

where in the last bound we use the hypothesis that mplog k > 30 and p ≤ 1. Suppose d ∈ [2, log k].
Inductively applying Claim 2.21 with t going from (d− 2) to 0, we get the following:

ξ0 ∈ ξd−1 ·
[
p · (1± p)

(
1± 30

mplog k

)]∑d−2
t=0 2d−t−1

= ξd−1 ·
[
p · (1± p)

(
1± 30

mplog k

)]2d−2
(69)

Putting together (66), (67) and (69), we get:

E
[
Λd,ℓ̄

]
= ξ0 ∈

(
p− p2

4
± 7

mpd−1

)(
p · (1± p)

(
1± 30

mplog k

))2d−2

⊆ p2
d−1 · (1± p)2

d−1

(
1± 35

mplog k

)2d−1
(70)
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Putting together (65,68,70), and using the shorthand α = (1±p)
(
1± 35

mplog k

)
we get the following

for any d ∈ [log k]:

E [Λd] =
∑

ℓ̄∈[n]2d
E
[
Λd,ℓ̄

]
∈ n2dp2

d−1α2d−1 = n · (np)2d−1 · α2d−1 (71)

Putting together (63,64,71), we get:

E [Λ] =
∑

d∈[0,log k]

k

2d
·E [Λd] ∈ k · n+

∑
d∈[log k]

k

2d
· n · (np)2d−1α2d−1

= kn ·
∑

d∈[0,log k]

(np)2
d−1α2d−1

2d

⊆ kn · αk−1
∑

d∈[0,log k]

(np)2
d−1

2d
(72)

which proves the proposition.

2.5 k-Tree over Zm

In this section, we present our analysis of the k-Tree algorithm (from Figure 5) for the k-SUM
problem over Zm rather than over the integers. For convenience, we will restrict m to be odd. We
will identify the elements of Zm with integers in the range ⟨m⟩ =

{
−
⌊
m
2

⌋
, . . . ,

⌊
m
2

⌋}
in the natural

manner.
The only modification to the k-Tree algorithm itself is that the addition operation (as used by

the Merge procedure) is addition modulo m rather than addition over integers. A key observation
here is that if p < 1/2, then this difference in the addition operation is only relevant in the first
iteration of the algorithm’s loop in step 3 – that is, only when the initial input lists are merged.
Thereafter, all the numbers in all the lists have absolute value at most mp, and thus adding them
will never cause a “wrap-around” where the modulus operation with m actually makes a difference.
This lets us adapt our earlier analysis to this case with minimal modification. This is captured by
the following theorem. As its proof is almost the same as that of Theorem 2.1, we only provide a
sketch that highlights and follows the differences between the proofs.

Theorem 2.22. Consider any k, n,m ∈ N, where k ≥ 4 is a power of 2 and m > 30log k+1 is

an odd number. Set p = m
−1

log k+1 and c = p · n. Consider k lists L1, . . . , Lk, each consisting of n
uniformly random elements from the range ⟨m⟩. The k-Tree algorithm (as in Figure 5) over Zm

with these parameters, denoted by kTreem, satisfies the following:

• Success Probability. Its probability of success is bounded as follows:

1

c−k +
(
1 + k

n

)k · (1− 150p)k ≤ Pr
L1,...,Lk

[
kTree(L1,...,Lk)
outputs (ℓ1,...,ℓk)

such that
∑

i Li[ℓi]=0

]
≤ ck · (1 + 37p)k

• Complexity. Its expected complexity is bounded as follows:

E
L1,...,Lk

[
Total size of all lists

involved in
kTree(L1,...,Lk)

]
∈ kn ·

1 +
∑

d∈[log k]

c2
d−1

2d

 · (1± 37p)k−1
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Proof Sketch of Theorem 2.22. The proofs of Propositions 2.3 to 2.5 (which together imply the
bounds in Theorem 2.1) are built solely on top of Propositions 2.13 to 2.16, following by appropriate
manipulations of the bounds provided by the latter. As observed above, looking at the iterations
in step 3 of the k-Tree algorithm (as in Figure 5), all iterations from d = 2 onwards are identical
for the algorithm over integers and over Zm, as there is no wrap-around in the addition operations
involved, and that part of the analysis from the proof of Theorem 2.1 can be used as is.

For the first iteration, the primary differentiating factor in the analysis of the algorithms in
the two cases is that addition modulo m of two uniformly random numbers from ⟨m⟩ is slightly
more likely to lead to an element in ⟨mp⟩ than addition of such numbers over the integers. So
the statements of Propositions 2.13 to 2.16 might no longer be true. To redeem the proof, we
instead provide the following alternatives to each of the propositions that may be used instead in
the analysis of the first iteration. It may be verified that the bounds they provide suffice to make
the proofs of Propositions 2.3 to 2.5 continue to work even in the case of addition modulo m, which
can then be used to prove Theorem 2.22 in the same manner as Theorem 2.1.

Replacing Proposition 2.13: Note that the sum of two uniformly random elements of Zm is also a
uniformly random element of Zm. This lets us replace the use of Proposition 2.13 in the analysis
of the first iteration with the following statement for any m and p ∈ [0, 1]:

Pr
x,y←⟨m⟩

[(x+ y)(mod m) ∈ ⟨mp⟩] = |⟨mp⟩|
|⟨m⟩|

=
2 ⌊mp/2⌋+ 1

m
∈
(
p± 1

m

)
(73)

Replacing Proposition 2.14: As noted above, the sum of two uniformly random elements of Zm is
also a uniformly random element of Zm, and conditioning on this sum being in ⟨mp⟩ results in a
uniform distribution over ⟨mp⟩. Thus the MR distance between this conditioned sum distribution
and the uniform distribution over ⟨mp⟩ is actually equal to 1, which also happens to satisfy the
bound in Proposition 2.14.

Replacing Proposition 2.15: If w, x, and y are sampled uniformly at random from Zm, the sums
(w + x) and (w + y) are, in fact, independent and uniformly random over Zm. Thus, we have the
following using (73):

Pr
w,x,y←⟨m⟩

[(w + x)(mod m) ∈ ⟨mp⟩ ∧ (w + y)(mod m) ∈ ⟨mp⟩]

= Pr
w,x←⟨m⟩

[(w + x)(mod m) ∈ ⟨mp⟩] · Pr
w,y←⟨m⟩

[(w + y)(mod m) ∈ ⟨mp⟩]

≤ p2 ·
(
1 +

1

mp

)2

which also satisfies the bound in Proposition 2.15.

Replacing Proposition 2.16: Following the arguments above, the values (w + x) and (w + y) con-
ditioned on both being in ⟨mp⟩ are also independent and uniformly distributed over ⟨mp⟩. Thus
the MR distance between this joint distribution and the uniform distribution over ⟨mp⟩ × ⟨mp⟩ is
again equal to 1, which also satisfies the bound in Proposition 2.16.

3 Computed Bounds

The theoretical analysis presented in the previous sections provides asymptotically tight bounds
for the k-Tree algorithm. However, for some practical parameter values that modern computers
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can handle, these bounds may not be as precise as one might desire due to the approximations used
in the proofs. While these approximations do not affect the asymptotic tightness, they can have
significant impact on the bounds for the parameter ranges we wish to evaluate empirically.

To address this limitation, we have implemented a set of computer programs that compute
these bounds without the approximations used in the theoretical analysis. This approach allows
us to obtain much tighter bounds for smaller parameter values, which are particularly relevant for
practical applications and our experimental evaluations.

In this section, we present the computational methods used to calculate these precise bounds.
We provide pseudo-code for each key function, along with corresponding theorem statements that
relate these computations to our theoretical results and the k-Tree algorithm. By removing the
approximations used in the manual proofs, these computational methods provide a bridge between
our asymptotic analysis and the actual performance of the algorithm. The bounds computed by
these programs serve two crucial purposes:

• Offer more accurate predictions of the algorithm’s behavior for practical parameter ranges.

• Provide a means to validate our theoretical predictions against experimental measurements.

In the following subsections, we will detail each computational method, its relationship to the
theoretical claims, propositions and theorems, and how it contributes to our understanding of the
k-Tree algorithm’s performance.

Notations

To ensure consistency throughout this section, we use the following notations and definitions:

• k: The number of input lists (always a power of 2).

• n: The size of each input list.

• m: The range from which the numbers in the lists are drawn.

• p: The p parameter in the statement of Theorem 1, computed as p = m
− 1

log k+1 .

3.1 Algorithms

Here we present the algorithms that implement our approach to proving bounds on the k-Tree
algorithm. We start with sub-routines that compute basic probabilities and distances before pro-
ceeding to the ones that actually implement the proof using them. The final bounds on the success
probability are computed by the function ProbBounds (Algorithm 11), and the bounds on the
complexity by SizeBounds (Algorithm 13) In each case, we state a claim about the behavior of
the sub-routine, and if applicable refer to the corresponding analogue in Section 2 in this state-
ment. We provide proof sketches for these claims except in cases where the implementation departs
significantly from the proof in Section 2, in which case we provide more detailed proofs.

Claim 3.1 (Claim 2.12). Given parameters s and an integer z ∈ [−s, s] as inputs, ProbSumToZ
(Algorithm 1) outputs the exact probability Prx,y←Us [x+y = z], where Us is the uniform distribution
over ⟨s⟩. And the running time of the algorithm is O(polylog(s)).
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Algorithm 1 ProbSumToZ

Input: s, z ▷ Range size and target sum
Output: Probability of the sum of two random variables in ⟨s⟩ equaling z
1: d← 2 · ⌊s/2⌋+ 1

2: return 1
d −

|z|
d2

Proof Sketch. The computation is exactly the result of the proof for Claim 2.12 up to (27):

Pr
x,y←Us

[x+ y = z] =
1

(2 ⌊s/2⌋+ 1)
− |z|

(2 ⌊s/2⌋+ 1)2

Algorithm 2 ProbSumInRange

Input: s, p ▷ Range size and p
Output: Probability of sum being in specified range
1: t← ⌊(sp)/2⌋
2: d← 2 · ⌊s/2⌋+ 1

3: r ← 2·t+1
d − t2+t

d2

4: return r

Proposition 3.2 (Proposition 2.13). For any s and p ∈ [0, 1] as inputs, ProbSumInRange
(Algorithm 2) computes the probability Prx,y←Us [x+y ∈ ⟨sp⟩] with running time being O(polylog(s)).

Proof Sketch. The function calculates this probability by summing the exact probabilities of each
possible sum within the specified range as in Proposition 2.13. We simplify it a bit by directly
calculating the closed-form sum of Prx,y←Us [x + y = z] over z instead of iteratively calling Algo-
rithm 1:

Pr
x,y←Us

[x+ y ∈ ⟨sp⟩] =
⌊sp/2⌋∑

z=−⌊sp/2⌋

Pr
x,y←Us

[x+ y = z] =
(2 ⌊sp/2⌋+ 1)

(2 ⌊s/2⌋+ 1)
− ⌊sp/2⌋ (⌊sp/2⌋+ 1)

(2 ⌊s/2⌋+ 1)2
.

Algorithm 3 MRDistFromUnif

Input: s, p ▷ Range size and probability
Output: Max-ratio distance from uniform distribution
1: s′ ← sp
2: α← ProbSumToZ(s, 0)/ProbSumInRange(s, p)
3: β ← ProbSumToZ(s, ⌊s′/2⌋)/ProbSumInRange(s, p)
4: u← 1

2·⌊s′/2⌋+1

5: return max(α/u, u/β)
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Proposition 3.3 (Proposition 2.14). For any s and p ∈ [0, 1] as inputs, MRDistFromUnif (Al-
gorithm 3) computes ∆MR(Usp, 2 ·Us|⟨sp⟩) – the max-ratio distance between the uniform distribution
over ⟨sp⟩ and the distribution of the sum of two uniform random variables in ⟨s⟩ conditioned on
being in ⟨sp⟩. And the running time of the algorithm is O(polylog(s)).

Proof Sketch. The computation follows the exact definition of Max-Ratio Distance:

∆MR(Usp, 2 · Us|⟨sp⟩) = max

(
maxz∈⟨sp⟩ 2 · Us|⟨sp⟩(z)

Usp
,

Usp

minz∈⟨sp⟩ 2 · Us|⟨sp⟩(z)

)
.

And one can verify that 2 ·Us|⟨sp⟩(z) is maximized when z = 0 and minimized when z = ±⌊sp⌋ .

Algorithm 4 ProbSumWithTwoRVInRange

Input: s, p ▷ Range size and probability
Output: Probability of summing one r.v. with two other r.v.’s being in specified range respectively
Require: 0 ≤ p ≤ 1

1: α = 2 · (⌊s/2⌋ − ⌊sp/2⌋) · |⟨sp⟩|
2

|⟨s⟩|3
2: x = |⟨sp⟩| − 1
3: y = |⟨sp⟩| − 1− ⌊sp/2⌋
4: β = 2

|⟨s⟩|3 (x(x+ 1)(2x+ 1)− y(y + 1)(2y + 1)) /6

5: return α+ β

Proposition 3.4 (Proposition 2.15). For any s and p ∈ [0, 1] as inputs, ProbSumWithTwoRV-
InRange (Algorithm 4) computes the probability Prw,x,y←Us [w + x ∈ ⟨sp⟩ ∧ w + y ∈ ⟨sp⟩]. And the
running time of the algorithm is O(polylog(s)).

Proof Sketch. The algorithm computes the probability following the first equality of (28):

Pr
w,x,y←Us

[w + x ∈ ⟨sp⟩ ∧ w + y ∈ ⟨sp⟩] =
⌊sp/2⌋∑

w=−⌊sp/2⌋

Us(w) · Pr
x,y←Us

[w + x ∈ ⟨sp⟩ ∧ w + y ∈ ⟨sp⟩] .

The calculation considers two cases:

1. When w ∈ [−⌊s/2⌋+ ⌊sp/2⌋ , ⌊s/2⌋ − ⌊sp/2⌋], each term on the RHS equals

Us(w) · Pr
x,y←Us

[w + x ∈ ⟨sp⟩ ∧ w + y ∈ ⟨sp⟩] = |⟨sp⟩|
2

|⟨s⟩|3
,

and α is summing this value over all such w.

2. When w ∈ [−⌊s/2⌋ ,−⌊s/2⌋ + ⌊sp/2⌋ − 1] or w ∈ [⌊s/2⌋ − ⌊sp/2⌋ + 1, ⌊s/2⌋], let i = |w| −
⌊s/2⌋+ ⌊sp/2⌋. Then the probability on the RHS is

Pr
x,y←Us

[w + x ∈ ⟨sp⟩ ∧ w + y ∈ ⟨sp⟩] = (
|⟨sp⟩| − i

|⟨s⟩|
)2.

Summing all these values over w results in a sum of some squares, which is computed as β in
the algorithm.
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Algorithm 5 MRDistFromPairUnif

Input: s, p ▷ Range size and probability
Output: Max-ratio distance from uniform distribution for pairs
1: α← 1

(|⟨s⟩|)2·ProbSumWithTwoRVInRange(s,p)

2: β ← 2(⌊s/2⌋−⌊sp/2⌋)
(|⟨s⟩|)3·ProbSumWithTwoRVInRange(s,p)

3: u← 1
(|⟨sp⟩|)2

4: return max(α/u, u/β)

Proposition 3.5 (Proposition 2.16). For any s and p ∈ [0, 0.5] as inputs, MRDistFromPairUnif
(Algorithm 5) computes ∆MR (Usp ⊗ Usp, D) as defined in Proposition 2.16. And the running time
of the algorithm is O(polylog(s)).

Proof Sketch. The computation follows the definition of Max-Ratio Distance:

∆MR (Usp ⊗ Usp, D) = max

(
max(z1,z2)∈⟨sp⟩2 D(z1, z2)

Usp ⊗ Usp
,

Usp ⊗ Usp

min(z1,z2)∈⟨sp⟩2 D(z1, z2)

)
.

The algorithm computes:

1. The maximum probability max(z1,z2)∈⟨sp⟩2 D(z1, z2) (α) occurs when (z1, z2) = (0, 0).

2. The minimum probability min(z1,z2)∈⟨sp⟩2 D(z1, z2) (β) occurs when

(z1, z2) = (−⌊sp/2⌋ , ⌊sp/2⌋) or (⌊sp/2⌋ ,−⌊sp/2⌋).

3. The uniform probability (u) over ⟨sp⟩2.

It then calculates the results by comparing these terms. The use of ProbSumWithTwoRVIn-
Range in the denominator of α and β accounts for the conditioning on the sums being in ⟨sp⟩.

Algorithm 6 FirstMomentInductFactors

Input: m, k, p, d ▷ Input parameters
Output: UB, LB ▷ Upper and lower bounds
1: s← m · pd

2: α← (ProbSumInRange(s, p))
k

2d+1

3: β ← (MRDistFromUnif(s, p))
k

2d+1

4: UB← α · β
5: LB← α/β
6: return UB, LB
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Claim 3.6 (Claim 2.17). For any m and k being powers of 2, p ∈ [0, 1] and d ∈ [0, log k − 1] as
inputs, FirstMomentInductFactors (Algorithm 6) computes factors UB = α·β and LB = α/β
such that ζd+1 · LB ≤ ζd ≤ ζd+1 ·UB, where:

α = Pr
xd
1,...,x

d
k/2d
←U

mpd

[
∀i ∈

[
k

2d+1

]
: (xd2i−1 + xd2i) ∈ ⟨mpd+1⟩

]
,

β = ∆MR(Umpd+1 , 2 · Umpd |⟨mpd+1⟩)
k

2d+1 ,

and ζd is as defined in the proof of Proposition 2.3. And the algorithm runs in O(polylog(m, k)).

Proof Sketch. Algorithm 6 computes the exact values of the factors described in the proof of Propo-
sition 2.3. It calls ProbSumInRange to compute α as in (36), andMRDistFromUnif to compute
β as in (37). Then it computes the upper and lower bound factors accordingly.

Algorithm 7 FirstMomentBounds

Input: m, k, n, p ▷ Input parameters
Output: UB, LB ▷ Upper and lower bounds
1: UB← nk · 1

2·⌊mplog k⌋−1
2: LB← UB
3: for d← 0 to log k − 1 do
4: αu, αl ← FirstMomentInductFactors(m, k, p, d)
5: UB← αu ·UB
6: LB← αl · LB
7: return UB, LB

Proposition 3.7 (Proposition 2.3). Given parameters m, k, n and p satisfying the hypotheses of
Proposition 2.3 as inputs, FirstMomentBounds (Algorithm 7) computes upper and lower bounds
UB and LB such that:

LB ≤ E[C] ≤ UB,

where C is the number of k-tuples (l1, . . . , lk) ∈ [n]k such that
∑k

i=1 Li[li] = 0, and L1, . . . , Lk are
the uniformly random input lists. And UB, LB are at least as tight as the bounds in Proposition 2.3.
And the running time of the algorithm is O(polylog(m, k, n)).

Proof Sketch. The algorithm first computes the base values of the upper and lower bounds as in
(31) and multiplies them with the scaling factor nk as in (34). Then it iteratively computes the
induction factors using FirstMomentInductFactors as in (32) and (33). As the computations
in the subroutines have no approximations involved, the bounds computed by Algorithm 7 are at
least as tight as the ones in Proposition 2.3.

Proposition 3.8 (Proposition 2.4). Given parameters m, k, n and p satisfying the hypotheses of
Proposition 2.4 as inputs, SecondMomentUB (Algorithm 8) computes an upper bound on the
second moment of the number of solutions, such that:

E[C2] ≤ UB
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Algorithm 8 SecondMomentUB

Input: m, k, n, p ▷ Input parameters
Output: Recursive result of the second moment bound
1: if k = 1 then
2: u← 1

2·⌊m⌋+1

3: return (n · u) · (n · u+ 1)
4: else
5: m′ = m · p
6: k′ = k/2

7: n′ = ((ProbUnifXMRDist(m, p))2 · n4 + 2 · (ProbUnifXMRDistPair(m, p)) · n3)
1
2

8: return SecondMomentUB(m′, k′, n′, p)

Algorithm 9 ProbUnifXMRDist

Input: m, p ▷ Input parameters
Output: Product of uniform probability and max-ratio distance
1: return ProbSumInRange(m, p) ·MRDistFromUnif(m, p)

Algorithm 10 ProbUnifXMRDistPair

Input: m, p ▷ Input parameters
Output: Product of uniform probability and max-ratio distance for pairs
1: return ProbSumWithTwoRVInRange(m, p) ·MRDistFromPairUnif(m, p)

and UB is at least as tight as the bound in Proposition 2.4. And the running time of the algorithm
is O(polylog(m, k, n)).

Proof. Algorithm 8 employs a recursive variant of the calculation presented in the proof of Propo-
sition 2.4 to compute the upper bound on the second moment. For consistency, we adhere to the
notations defined in the proof of Proposition 2.4.

We begin by refining several expressions from the proof of Proposition 2.4 to enable recursive
calculation. Recall the expression we want to calculate in (39):

E
[
C2
]
=

∑
ℓ̄,ℓ̄′∈[n]k

E [Cℓ̄ · Cℓ̄′ ] =
∑

s∈{0,1}k

∑
ℓ̄,ℓ̄′:δ(ℓ̄,ℓ̄′)=s

E [Cℓ̄ · Cℓ̄′ ].

We continue to use the notations (s1, . . . , slog k) ← tex(s) defined before Claim 2.19. Unless
overridden in the context, we write sd by assuming it is one of the corresponding outputs generated
by tex(s0) for some s0 either implicitly or explicitly. We further define ex : {0, 1}2

∗
→ {0, 1}2

∗/2 on

input s ∈ {0, 1}2
∗
that is of length power of 2, outputs s′ ∈ {0, 1}2

∗/2 with half the length, where
its ith bit is defined as follows, for i ∈ [k/2d]:

s
′
i = max(s2i−1, s2i).

Then we refine (48) and provide its extended notation χd(s) with s ∈ {0, 1}
k

2d as input, where for
χ0, the input s corresponds to δ(ℓ̄, ℓ̄′):

E [Cℓ̄ · Cℓ̄′ ] = χ0(δ(ℓ̄, ℓ̄
′)).
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The inclusion of input s is by revisiting the definition of χd in the proof of Proposition 2.4 and
verifying that in each step of the recursive calculations, the corresponding sd is sufficient and
necessary to determine the value of χd. Putting this back to (39), we have the following expression:

E
[
C2
]
=

∑
s∈{0,1}k

∑
ℓ̄,ℓ̄′:δ(ℓ̄,ℓ̄′)=s

χ0(s). (74)

Then we recall the inequality stated by Claim 2.20 and its precise form:

χd(s
d) ≤ χd+1(s

d+1) · (Ampd,pBmpd,p)

∑
i∈

[
k

2d+1

] 1[sd2i−1=sd2i=0]

· (Ampd,pBmpd,p)
2·
∑

i∈
[

k
2d+1

] 1[sd2i−1=sd2i=1]
· (Cmpd,pDmpd,p)

∑
i∈

[
k

2d+1

] 1[sd2i−1 ̸=sd2i]
, (75)

where sd+1 = ex(sd) and the notations Ampd,p, Bmpd,p, Cmpd,p, and Dmpd,p are defined as the
shorthands for the following values:

Ampd,p = Pr
x,y←U

mpd

[
(x+ y) ∈ ⟨mpd+1⟩

]
,

Bmpd,p = ∆MR

(
Umpd+1 , 2 · Umpd |⟨mpd+1⟩

)
,

Cmpd,p = Pr
w,x,y←U

mpd

[
(w + x) ∈ ⟨mpd+1⟩ ∧ (w + y) ∈ ⟨mpd+1⟩

]
,

Dmpd,p = ∆MR(D
0, D1) in (61).

Recall that in the proof of Claim 2.20, we consider three cases regarding the values of sd2i−1 and
sd2i: sd2i−1 = sd2i = 0, sd2i−1 = sd2i = 1 and sd2i−1 ̸= sd2i. And in (75), the base terms corresponding
to the three cases are by putting together (53) and (59), (54) and (60), (55) and (61) respectively.
For simplification, we define the following functions:

γ0(s) =
∑

i∈[|s|/2]

1 [s2i−1 = s2i = 0] ,

γ1(s) =
∑

i∈[|s|/2]

1 [s2i−1 = s2i = 1] ,

γ ̸=(s) =
∑

i∈[|s|/2]

1 [s2i−1 ̸= s2i] .

We would then rewrite the recursive upper bound (75) in terms of the following function g:

g(s,m, p) =


(
Prx←U

mplog k
[x = 0]

)1+wt(s)
if length(s) = 1,

g(ex(s),m · p, p) · δs,m,p otherwise,
(76)

where δs,m,p = (Am,pBm,p)
γ0(s) · (Am,pBm,p)

2·γ1(s) · (Cm,pDm,p)
γ̸=(s).

It is easy to see that for χ0(s
0), the δs0,m,p in g(s0,m, p) is exactly the RHS of (75) with d = 0.

And in the subsequent g(s1,m · p, p) (i.e., χ1(ex(s
0))) where s1 ← ex(s0), δs1,mp,p equals

(Amp,pBmp,p)
γ0(s1) · (Amp,pBmp,p)

2·γ1(s1) · (Cmp,pDmp,p)
γ̸=(s1).
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It is evident that the calculations align with (75) in each inductive step. The base case when
length(s) = 1 is derived from (49), where the value of χlog k(s) can be computed precisely as

Pr
x←U

mplog k

[x = 0] · Pr
y←U

mplog k

[y = 0]

if s = 1 and
Pr

y←U
mplog k

[y = 0]

otherwise.
Now we substitute χ0(s

0) in (74) with the recursive upper bound g(s0,m, p) to obtain

E
[
C2
]
≤

∑
s0∈{0,1}k

∑
ℓ̄,ℓ̄′:δ(ℓ̄,ℓ̄′)=s0

g(s0,m, p)

=
∑

s0∈{0,1}k
n(k−wt(s0)) · (n(n− 1))wt(s0) · g(s0,m, p)

≤
∑

s0∈{0,1}k
n(k−wt(s0)) ·

(
n2
)wt(s0) · g(s0,m, p). (77)

To conclude our computation of the second moment upper bound recursively, we define a
function f(m, k, n, p) to capture (77) more generally:

f(m, k, n, p) =
∑

s∈{0,1}k
n(k−wt(s)) ·

(
n2
)wt(s) · g(s,m, p). (78)

Corresponding to the base case of g, the base case of f is when k = 1:

f(m, 1, n, p) = n · g(0,m, p) + n2 · g(1,m, p)

=
n

2 · ⌊m/2⌋+ 1

(
n

2 · ⌊m/2⌋+ 1
+ 1

)
.

We now rewrite (77) in a slightly different form:

f(m, k, n, p) =
∑

s∈{0,1}k

∑
ℓ̄,ℓ̄′∈[n]k:δ(ℓ̄,ℓ̄′)=s

g(s,m, p) (79)

=
∑

s′∈{0,1}
k
2

∑
s:ex(s)=s′

∑
ℓ̄,ℓ̄′:δ(ℓ̄,ℓ̄′)=s

g(s,m, p)

=
∑

s′∈{0,1}
k
2

∑
s:ex(s)=s′

∑
ℓ̄,ℓ̄′:δ(ℓ̄,ℓ̄′)=s

g(s′,mp, p) · δs,m,p

=
∑

s′∈{0,1}
k
2

g(s′,mp, p) ·
∑

s:ex(s)=s′

∑
ℓ̄,ℓ̄′:δ(ℓ̄,ℓ̄′)=s

δs,m,p

(80)

51



In the sum
∑

s:ex(s)=s′
∑

ℓ̄,ℓ̄′:δ(ℓ̄,ℓ̄′)=s δs,m,p, the value of δs,m,p is determined by the values of s, m

and p. We then count the total number of ℓ̄ and ℓ̄′ that satisfy δ(ℓ̄, ℓ̄′) = s such that ex(s) = s′

then multiply the result by δs,m,p:∑
s:ex(s)=s′

δs,m,p

∑
ℓ̄,ℓ̄′:δ(ℓ̄,ℓ̄′)=s

1 =
∑

s:ex(s)=s′

δs,m,p · (n2)γ0(s)(n2(n− 1)2)γ1(s)(n2(n− 1))γ̸=(s) (81)

≤
∑

s:ex(s)=s′

(Am,pBm,p · n2)γ0(s)

· (Am,pBm,p · n2)2·γ1(s) · (Cm,pDm,p · n3)γ̸=(s) (82)

=

wt(s′)∑
i=0

(
wt(s′)

i

)
· (Am,pBm,p · n2)k/2−wt(s′)

· (Am,pBm,p · n2)2·i · (2 ·Cm,pDm,p · n3)wt(s′)−i (83)

= (Am,pBm,p · n2)k/2−wt(s′)

· ((Am,pBm,p · n2)2 + 2 ·Cm,pDm,p · n3)wt(s′).

The first equality is by counting the number of ℓ̄ and ℓ̄′ that satisfy δ(ℓ̄, ℓ̄′) = s for a fixed s and the
following inequality is by upper bounding n−1 by n. The equality in (83) is by counting the number
of possible s given s′, where s′i = 0 implies s2i−1 = s2i = 0 (γ0(s)) and s′i = 1 implies s2i−1 = s2i = 1
(γ1(s)) or s2i−1 ̸= s2i (γ ̸=(s)). Then we denote by i the number of case s2i−1 = s2i = 1 and sum
over all possible i ∈ [0, wt(s′)]. Finally, the last equality is by summing the binomial coefficients
with the last two terms then applying Binomial Theorem. Combining the result with (79), we have:

f(m, k, n, p) ≤
∑

s′∈{0,1}
k
2

g(s′,mp, p) · (Am,pBm,p · n2)k/2−wt(s′)

· ((Am,pBm,p · n2)2 + 2 ·Cm,pDm,p · n3)wt(s′)

≤f(mp, k/2, ((Am,pBm,p · n2)2 + 2 ·Cm,pDm,p · n3)1/2, p). (84)

Finally, we note that Algorithm 9 and Algorithm 10 computes the products of Am,p and Bm,p,
and Cm,p and Dm,p. Combining all these elements, the function f precisely follows the procedure
defined in SecondMomentUB (Algorithm 8). Since in each recursive call, the total running time of
all operations is O(polylog(m, k, n)), the running time of the algorithm is determined by multiplying
the number of total recursive calls, which gives O(log k ·polylog(m, k, n)) = O(polylog(m, k, n)).

Theorem 3.9. Given parameters m, k, n, p satisfying the hypotheses in Theorem 2.1 as inputs,
ProbBounds (Algorithm 11) computes upper and lower bounds UB and LB on the success proba-
bility of the kTree algorithm. And the running time of the algorithm is O(polylog(m, k, n)).

Proof Sketch. ProbBounds (Algorithm 11) combines the results from FirstMomentBounds
and SecondMomentUB to compute the final bounds by first computing the upper and lower
bounds UB1 and UB2 of the first moment and the upper bound UB2 of the second moment. Then

applying the Paley-Zygmund inequality to obtain LB = Pr [C > 0] ≥ E[C]2

E[C2]
≥ LB2

1
UB2

and Markov’s

inequality to obtain UB = Pr [C ≥ 1] ≤ E [C] ≤ UB1.
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Algorithm 11 ProbBounds

Input: m, k, n, p
Output: Bounds on the success probabilities
1: αu, αl ← FirstMomentBounds(m, k, n, p)
2: β ← SecondMomentUB(m, k, n, p)
3: UB← min(αu, 1)

4: LB← α2
l
β

5: return UB, LB

Algorithm 12 SizeBoundInductFactors

Input: m, k, p, d, t ▷ Input parameters
Output: UB, LB ▷ Upper and lower bounds
1: s← mpt

2: α← ProbSumInRange(s, p)
3: β ←MRDistFromUnif(s, p)

4: (α · β)2d−t−1

5: (α/β)2
d−t−1

6: return UB, LB

Algorithm 13 SizeBounds

Input: m, k, n, p ▷ Input parameters
Output: UB, LB ▷ Upper and lower bounds
1: UB← 0, LB← 0
2: for d← 0 to log k do
3: if d = 0 then
4: UB← UB+ k · n
5: LB← LB + k · n
6: else if d = 1 then
7: α← k

2 ·ProbSumInRange(m, p) · n2

8: UB← UB+ α
9: LB← LB + α

10: else
11: s′ ← mpd−1

12: γu ← ProbSumInRange(s′, p), γl ← ProbSumInRange(s′, p)
13: for t← 0 to d− 2 do
14: βu, βl ← SizeBoundInductFactors(m, k, p, d, t)
15: γu ← γu · βu
16: γl ← γl · βl
17: UB← UB+ k

2d
· n2d · γu

18: LB← LB + k
2d
· n2d · γl

19: return UB, LB
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Proposition 3.10 (Proposition 2.5). Given parameters m, k, n and p satisfying the hypotheses in
Proposition 2.5 as inputs, SizeBounds (Algorithm 13) computes upper and lower bounds UB and
LB on the expected total size of all lists involved in the execution of the k-Tree algorithm, such that
LB ≤ E[Λ] ≤ UB and

UB = nk +
kn2

2
· Pr
x1,x2←Um

[x1 + x2 ∈ ⟨mp⟩]

+
∑

d∈[2,log k]

k

2d
· n2d · Pr

x1,x2←U
mpd−1

[
x1 + x2 ∈ ⟨mpd⟩

]
· [α · β]

∑d−2
t=0 2d−t−1

,

LB = nk +
kn2

2
· Pr
x1,x2←Um

[x1 + x2 ∈ ⟨mp⟩]

+
∑

d∈[2,log k]

k

2d
· n2d · Pr

x1,x2←U
mpd−1

[
x1 + x2 ∈ ⟨mpd⟩

]
· [α/β]

∑d−2
t=0 2d−t−1

,

where

α = Pr
xd
1,...,x

d
2d−t←Umpt

[
∀i ∈

[
2d−t−1

]
: (xd2i−1 + xd2i) ∈ ⟨mpt+1⟩

]
,

β = ∆MR(Umpt+1 , 2 · Umpt |⟨mpt+1⟩)
2d−t−1

.

Λ is the sum of the sizes of all lists generated during the algorithm’s execution (as defined above in
Proposition 2.5). And the running time of the algorithm is O(polylog(m, k, n)).

Proof Sketch. Similar to the proof of Proposition 2.5, the proof of the property of SizeBoundIn-
ductFactors (Algorithm 13) can be referred to the proof sketch of Proposition 3.7. In Algorithm
SizeBounds, the total size of all lists is computed by summing the expected sizes of the lists gen-
erated at each level of the k-Tree algorithm. For d = 0, the size is k · n as each list has n elements
as in (64). For d = 1, the size is computed based on the probability of the sum being in the
specified range as in (68). For d > 1, the size is calculated using the induction factors computed by
SizeBoundInductFactors, with the initial value γu, γl (ξd−1) calculated by ProbSumInRange
following (67). Then the results are scaled according to (71) and (72).

Algorithm 14 MainTheorem

Input: m, k, n
Output: Bounds on the probabilities and sizes

1: p← m
− 1

log k+1

2: UBsuccess,LBsuccess ← ProbBounds(m, k, n, p)
3: UBsize,LBsize ← SizeBounds(m, k, n, p)
4: return UBsuccess, LBsuccess, UBsize, LBsize

The properties of MainTheorem (Algorithm 14) follows directly from Theorem 3.9 and Propo-
sition 3.10, and the proof is omitted for brevity.
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3.2 Computed Bounds for Zm

To compute bounds for the k-SUM problem over Zm, we provide several slightly modified sub-
routines to account for the differences in probability calculations when working with modular
arithmetic. The key modifications are based on the observations in Section 2.5, particularly for the
first iteration of the algorithm.

Notice that in the computed bounds, the only subroutines affected are ProbSumInRange (Al-
gorithm 2), MRDistFromUnif (Algorithm 3), ProbSumWithTwoRVInRange (Algorithm 4)
and MRDistFromPairUnif (Algorithm 5) during the first iteration of the algorithm. We first
introduce the following modifications to ProbSumInRange:

Algorithm 15 ProbSumModSInRange

Input: s, p ▷ Modulus and p
Output: Probability of sum being in specified range
1: return 2·⌊sp/2⌋+1

s

ProbSumModSInRange (Algorithm 15) follows direct from (73) in Section 2.5, and we will
omit a formal statement of its correctness here. Regarding ProbSumWithTwoRVInRange
(Algorithm 4), its Zm calculation is simply the square of ProbSumModSInRange. And for
MRDistFromUnif (Algorithm 3) and MRDistFromPairUnif (Algorithm 5), we relies on the
conclusion from Section 2.5 that the max-ratio distance from the uniform distribution is always 1.
Then we can simply replace any calls to MRDistFromUnif and MRDistFromPairUnif with
constant 1 in the first iteration of the algorithm.

To realize the modified calculations during the first iteration, we introduce the following mod-
ification to FirstMomentInductFactors, SecondMomentUB, ProbUnifXMRDist, Size-
BoundInductFactors and SizeBounds.

Algorithm 16 FirstMomentInductFactorsMod

Input: m, k, p, d ▷ Input parameters
Output: UB, LB ▷ Upper and lower bounds
1: s← m · pd
2: if d = 0 then
3: α← (ProbSumModSInRange(s, p))

k

2d+1

4: β ← 1
5: else
6: α← (ProbSumInRange(s, p))

k

2d+1

7: β ← (MRDistFromUnif(s, p))
k

2d+1

8: UB← α · β
9: LB← α/β

10: return UB, LB

The modification in SecondMomentUBMod is realize by passing a flag b to indicate the first
iteration of the algorithm. Only the initial call to SecondMomentUB will be given b = 1, and it
will remain 0 in all the subsequent recursive calls.

These modifications address the calculation of ProbSumInRange and MRDistFromUnif

55



Algorithm 17 SecondMomentUBMod

1: if k = 1 then
2: u← 1

2·⌊m⌋+1

3: return (n · u) · (n · u+ 1)
4: else
5: m′ = m · p
6: k′ = k/2

7: n′ = ((ProbUnifXMRDist(m, p, b))2 · n4 + 2 · (ProbUnifXMRDistPair(m, p, b)) · n3)
1
2

8: return SecondMomentUB(m′, k′, n′, p, 0)

Algorithm 18 ProbUnifModMXMRDist

Input: m, p, b ▷ Input parameters
Output: Product of uniform probability and max-ratio distance
1: if b = 0 then
2: return ProbSumInRange(m, p) ·MRDistFromUnif(m, p)
3: else
4: return ProbSumModSInRange(m, p)

Algorithm 19 ProbUnifXMRDistPair

Input: m, p, d ▷ Input parameters
Output: Product of uniform probability and max-ratio distance for pairs
1: if b = 0 then
2: return ProbSumWithTwoRVInRange(m, p) ·MRDistFromPairUnif(m, p)
3: else
4: return (ProbSumModSInRange(m, p))2

Algorithm 20 SizeBoundInductFactorsMod

Input: m, k, p, d, t ▷ Input parameters
Output: UB, LB ▷ Upper and lower bounds
1: s← mpt

2: if t = 0 then
3: α← (ProbSumModSInRange(s, p))
4: β ← 1
5: else
6: α← ProbSumInRange(s, p)
7: β ←MRDistFromUnif(s, p)

8: (α · β)2d−t−1

9: (α/β)2
d−t−1

10: return UB, LB

when the input s = m, corresponding to the first iteration of the algorithm over Zm. They allow us
to compute bounds for the k-SUM problem over Zm that share the same tightness as the bounds
for the k-SUM problem over integers.
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Algorithm 21 SizeBoundsMod

Input: m, k, n, p ▷ Input parameters
Output: UB, LB ▷ Upper and lower bounds
1: UB← 0, LB← 0
2: for d← 0 to log k do
3: if d = 0 then
4: UB← UB+ k · n
5: LB← LB + k · n
6: else if d = 1 then
7: α← k

2 ·ProbSumModSInRange(m, p) · n2 ▷ Modified for Zm

8: UB← UB+ α
9: LB← LB + α

10: else
11: s′ ← mpd−1

12: γu ← ProbSumInRange(s′, p), γl ← ProbSumInRange(s′, p)
13: for t← 0 to d− 2 do
14: βu, βl ← SizeBoundInductFactorsMod(m, k, p, d, t)
15: γu ← γu · βu
16: γl ← γl · βl
17: UB← UB+ k

2d
· n2d · γu

18: LB← LB + k
2d
· n2d · γl

19: return UB, LB

3.3 Visualizations and Interpretations

In this section, we present examples of our computing bounds for various parameter settings. These
visualizations help us better understand the tightness of the upper and lower bounds of the success
probability as key parameters, such as m and k, change. We will also directly compare our bounds
with our experimental results to validate the trends we observe in this section (see Section 4 for
details).

Success Probability Bounds. In Figures 6, the most notable observation is that for a fixed
m, the lower bounds on the success probability become looser as k increases. This trend will be
further illustrated when we later compare the bound with our empirical measurements of success
probabilities. Such phenomenon is clearly visualized in the case where m = 264 and k = 256 (see
Figure 6b). In this example, the lower bound flattens early and is far from 1, indicating a quick
relaxation of the bound as k increases. This behavior shows that when k is large, the success
probability bounds are less effective for moderately small values of m.

However, asm increases, the bounds become significantly tighter for all values of k. For instance,
in the case where m = 2256, the bounds k = 1024 (Figures 6d) exhibits much better tightness
compared to when m = 264 and k = 128. This improvement in the tightness of the bounds align
with our conclusion in Section 2 that our bounds become asymptotically tight as m approaches
infinity.

Overall, the visualizations indicate that larger values of m lead to more refined bounds on
success probability. And the impact of increasing k is more pronounced at smaller values of m,
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Figure 6: Success probability upper and lower bounds when varying the input list size under fixed
m’s and k’s. The values in the square brackets report c = n/m1/(log k+1) as described in Theorem 1.
Note that the cascading patterns of the bounds for certain values of m and k are due to rounding
the input list size to the nearest integer.

while the bounds become more stabilized as m increases.
Complexity Bounds. In the examples shown in Figure 7, we present the sufficient and

necessary complexities (total list sizes) for achieving a target success probability. For the sufficient
complexity, given a fixed m, we compute the minimum input list size via binary search such that our
success probability lower bound equals or slightly larger than the specified probability threshold.
We then use this minimum input list size as an input to compute our upper bound on the expected
total size of all lists. For the necessary complexity, we first search for the minimum input list
size such that our success probability upper bound equals or slightly smaller than the specified
probability threshold. We then use this minimum input list size to compute our lower bound on
the expected total size of all lists.

As observed in these figures, when k increases, the upper bound on the total list size first

58



2 3 4 5 6 7 8
log2(k)

10

20

30

40

50

Co
m

pl
ex

ity
 (l

og
2)

21.9
18.6 17.0 16.2 15.9 15.9

51.7

19.7
15.2

12.4 10.5 9.0 8.0 7.3

Sufficient Complexity: m = 2 , Prob. = 0.01
Complexity
Input Size

(a)

2 3 4 5 6 7 8 9 10 11 12
log2(k)

5

10

15

20

25

30

35

Co
m

pl
ex

ity
 (l

og
2)

21.9
18.6

17.0 16.2 15.9 15.8 16.0 16.3 16.8
18.8

34.3

19.7

15.2
12.4

10.5 9.0 7.9 7.1 6.4 5.8 5.4 5.0

Necessary Complexity: m = 2 , Prob. = 0.01
Complexity
Input Size

(b)

2 3 4 5 6 7 8 9 10 11
log2(k)

20

40

60

80

100

Co
m

pl
ex

ity
 (l

og
2)

92.4

71.2

58.6
50.3

44.7
40.7 37.8 35.9 34.4 33.5

87.0

64.8

51.6
42.9

36.7
32.1 28.5 25.6 23.3 21.3

Sufficient Complexity: m = 2² , Prob. = 0.99
Complexity
Input Size

(c)

2 3 4 5 6 7 8 9 10 11 12
log2(k)

20

40

60

80

Co
m

pl
ex

ity
 (l

og
2)

88.1

67.9

56.2
48.6

43.6
40.0 37.4 35.6 34.3 33.3 32.7

85.3

64.0

51.2
42.7

36.6
32.0

28.4 25.6 23.3 21.3 19.7

Necessary Complexity: m = 2² , Prob. = 0.99
Complexity
Input Size

(d)

Figure 7: Size upper and lower bounds when varying k for fixed m’s (the fewer amount of k in some
of the Sufficient Complexity plots is due to the lower bound cannot reach the probability threshold
even for very large c).

decreases accordingly then increases again as k continues to grow. This trend is more pronounced
for small m’s, as shown in Figures 7a. This behavior is consistent with the results shown in the
Figures 6, where the lower bounds on the success probability become looser as k increases. The
immediate consequence is that the input list size has to be substantially larger to achieve the
same success probability when k is large. That accounts for the surge of total list size observed in
Figure 7a. As m increases, the total list sizes become more stable. In Section 4, we see a similar
trend of decrease-then-increase of the complexities in our empirical measurements.

Overall, these visualizations provide a straightforward understanding of the efficacy of our
method in estimating the computational resource for achieving a target success probability. We
will further validate these results through empirical evaluation in Section 4.
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3.4 Practical Implications

The precise bounds computed by our implementation have several significant implications for the
practical use of the kTree algorithm:

1. Accurate Performance Prediction: The tighter bounds allow for more accurate predic-
tions of the algorithm’s performance on real-world problem sizes. This is particularly crucial
when deciding whether to employ the kTree algorithm for a specific task, as it provides a more
reliable estimate of the required computational resources and expected success probability.

2. Optimal Parameter Selection: With our precise bounds, practitioners can make better-
informed decisions when selecting algorithm parameters. For instance, the optimal choice
of the number of lists (k) can be more accurately determined to achieve desired success
probabilities without actually running the algorithm for various k.

3. Confidence in Cryptographic Applications: In cryptographic settings, where the kTree
algorithm might be used for attacks or analysis, having precise bounds allows for more accu-
rate estimation of the computational effort required for potential attacks, leading to better-
informed decisions about key sizes and security parameters.

In summary, these computing bounds enhance our understanding of the kTree algorithm’s be-
havior in practical settings and provide a crucial bridge between theoretical analysis and real-world
application. As we move forward to the evaluation of the kTree algorithm, these computed bounds
will serve as a valuable reference point and will be further validated against empirical observations.

3.5 Limitations

For small values of m, the tightness of our computed bounds degrade noticeably even when k is in
a reasonable range, despite they are still much tighter than the analytical bounds. This limitation
can also be inferred from our analytical results, where our bounds loosen considerably after the
point around k > m1/(log k+1).

Besides, for very large values of m (e.g., 2512), our current Python implementation may en-
counter numerical stability issues due to overflow or underflow. To address this limitation, one
can update our implementation by using Python Decimal library that handles large numbers with
arbitrary precision with reasonable overhead.

4 Experiments

The theoretical analysis and bounds computed in the previous sections are to offer insights into
the expected performance of the kTree algorithm. However, empirical experiments are crucial to
understand the algorithm’s behavior under practical conditions and to validate these theoretical
predictions. In this section, our primary objectives are as follows:

1. Evaluate the behavior of the kTree algorithm under various parameter configurations;

2. Compare the empirical results with our computed bounds.

The results we demonstrate in this section provide empirical evidence on how different param-
eters influence the algorithm’s success probability, time, and space complexity.
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4.1 Experimental Setup

In discussions below, we use symbols defined in the context of the description of the kTree algorithm
in Figure 5.

Algorithm Implementation. We implemented the kTree algorithm in C++, closely following
the description provided in Figure 5. The Merge subroutine was implemented by conducting a
binary search over the sorted second list for each element in the first list.

Parameter Configurations. We investigate the impact of varying the following parameters:

• m: taking values from {264, 296, 2128}. Due do limitations in computational resources, we
were unable to explore larger values of m.

• k: The number of input lists, with values ranging from 4 to 1024, varied in powers of 2. Note
that not all k’s are feasible for all m’s. For example, when m = 2128, any k smaller than
512 results in a large input list size that exceeds the computational resources available. We
report all the feasible results we have obtained.

• n: The size of each input list, dynamically adjusted via binary search to achieve target success
probabilities varied from 0.01 to 1.0. Notice that not all the target probabilities are feasible
due to either the nature of the problem (e.g., when m is relatively small and k is large,
increasing the input list size by 1 will increase the success probability from below 0.2 to
above 0.8) or the limit of computational resources. We report all the feasible results we have
obtained.

Evaluation Metrics.

• Success Probability: The fraction of trials where the algorithm successfully identifies a set
of indices such that the indexed elements of the k input lists sum to 0.

• Total Size: The sum of the sizes of all lists generated when running the kTree algorithm,
measured in terms of the number of elements:

log k∑
d=0

∑
i∈

[
k

2d

]
∣∣∣Ld

i

∣∣∣ .
We use this measurement as a proxy for the running time of the algorithm (see Remark 1.3).

• Max Level Size: The maximum sum of the sizes of all lists generated at one level when
running the kTree algorithm:

max
d

∑
i∈

[
k

2d

]
∣∣∣Ld

i

∣∣∣ .
This measurement corresponds to the space complexity of the algorithm.
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Hardware and Software Environment. All experiments were conducted on a machine running
Ubuntu 24.04 LTS (64-bit) system on an Intel Core i7-12700 CPU @ 4.90GHz with 16 GB of RAM.
The kTree algorithm was implemented in C++ 17, and the experimental results were managed and
analyzed using Python 3.9 with libraries such as NumPy and Matplotlib for plotting results.

4.2 Success Probability

Objectives. This section is to explore and measure the effect of varying the input list size on the
success probability of the kTree algorithm under different configurations of m and k.

Methodology. For each combination of m and k, we conducted a series of trials with varying
input list sizes. We started with a list size corresponding to c = 1, where c = n/m1/(log k+1) as
defined in Theorem 1. We then used binary search to iteratively adjust the list size, exploring a
range of c values that span a typical set of success probabilities (i.e., percentage points). For each
parameter configuration, we performed 1000 independent trials to calculate the empirical success
probability. Then we further compare the empirical results with our theoretical bounds.

Results. Figure 8 presents the results of our experiments. The blue dots represents the measured
success probability, while the dashed red and green lines represent the upper and lower bounds de-
rived from our theoretical analysis, respectively. The error bars around the empirical measurements
indicates the 99% confidence interval, calculated using the Chernoff inequality. The parameter c,
as defined earlier, serves as a normalized measure of the input list size relative to m and k. It
allows us to compare results across different parameter configurations and relates directly to our
theoretical bounds. These plots enable us to visualize how the success probability transitions from
near 0 to near 1 as the input list size increases, and how this transition varies for different values
of m and k. They also allow us to assess the tightness of our theoretical bounds under various
conditions.

The results shown in Figure 8 illustrate several key trends in the success probability of the
kTree algorithm as the input list size varies. We report both the actual input list size n and the
corresponding c value. We make the following general observations:

• Generally, after fixing reasonable values form and k, the actual success probability approaches
0 and 1 at the left and right extremes when the c value is slightly below or above 1.

• For a fixed m, as k increases, the success probability converges to 0 and 1 more rapidly as c
is decreased or increased linearly.

• In terms of the bounds we provided, for a fixed m, the tightness of the bounds improves as k
decreases. Conversely, for a fixed k, increasing m significantly improves the tightness of our
bounds, which aligns with the earlier conclusion that our bounds are asymptotically tight.

As expected from our theoretical model, the c value has a direct and significant impact on the
success probability. When c is below 1, the success probability approaches 0 gradually. Conversely,
when c exceeds 1, the success probability converges to 1. When m is fixed, increasing k accelerates
the convergence of the success probability toward 0 and 1. Larger k increases the rate at which
the success probability transitions between failure and success. This faster convergence for larger
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Figure 8: Success probability when varying the input list size under fixed m’s and k’s. The values
in the square brackets report c = n/m1/(log k+1) as described in Theorem 1.

k highlights a sharper threshold between the regions where the algorithm succeeds and fails, which
could be beneficial in applications where precise control over success rates is desired.

The empirical results closely align with our theoretical predictions regarding the behavior of the
kTree algorithm. Specifically, the success probability’s dependence on the c value and the role of
k in determining the speed of convergence are both well-captured by the theoretical bounds. The
observation that the bounds are tighter for smaller k (for fixed m) and for larger m (for fixed k)
is consistent with the asymptotic analysis provided earlier. Moreover, the empirical data validates
the hypothesis that our bounds are asymptotically tight: as m grows relative to k, the bounds
become increasingly accurate, which confirms that the algorithm’s performance can be effectively
predicted using the theoretical framework developed.
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Figure 9: Measurements of kTree’s complexities for different k under fixedm’s. Due to the limitation
of computational resources, we were only able to measure the k = 512 and k = 1024 cases for
m = 128. Therefore its plot is not included.

4.3 Complexity

Objectives. The primary objectives of this section are to measure and analyze the time and
space complexity of the kTree algorithm under various parameter configurations. Specifically, we
aim to:

• Observe how the total list size (a proxy for time complexity) and maximum level size (space
complexity) vary with different values of k for fixed m and success probability.

• Investigate the impact of different success probability thresholds on the algorithm’s complex-
ity.

• Identify optimal parameter configurations that minimize time and space usage.
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Methodology. For each m (264 and 296) and success probability threshold (0.01 and 0.99), we
varied k from 4 to 1024 in the powers of 2. For each configuration:

1. We used binary search to find the minimum input list size n that achieves a success probability
above the specified threshold.

2. We measured the total size and the maximum level size to represent the time and space
complexity.

3. We conduct 1000 trials and report the average and standard deviation to ensure reliability.

Results. Figure 9 provide a detailed analysis of the algorithm’s complexities. For fixed m and
a given probability threshold, we observe that both time and space complexities initially decrease
and then increase as k grows. This reflects a trade-off: from the results we observed in Figure 8,

increasing k boosts the value of p = m
−1

log k+1 and significantly decrease the threshold c = np that
achieve success probability 1. This further leads to a drastically decrease in the input list size.
Nevertheless, at the same time, a larger k increases the number of total lists and the number of
levels in the kTree algorithm. This indicates the importance of finding an optimal k value that
minimizes complexity.

The impact of the probability threshold (0.01 vs 0.99) on the optimal complexity is relatively
small, particularly for larger k values. This suggests that achieving a constantly higher success
probability doesn’t necessarily incur a significant additional cost. This can also be inferred from the
analytical bounds, where the success probability changes exponentially (where k is the exponent)
as n vary.

We also observe that as m increases, the minimum complexity (in both time and space) occurs
at a higher value of k. This indicates that for larger m, the optimal choice of k—in terms of
minimizing both time and space complexity—shifts upwards. This implies that for larger problem
sizes, using more input lists can be beneficial up to a certain point. And the insight we obtained
here allows users of the algorithm to select the most efficient parameter configuration using our
bounds.
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Raykova. On the (in)security of ROS. J. Cryptol., 35(4):25, 2022.
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