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Abstract

We present Rhombus, a new secure matrix-vector multiplication (MVM) protocol in the semi-honest
two-party setting, which is able to be seamlessly integrated into existing privacy-preserving machine
learning (PPML) frameworks and serve as the basis of secure computation in linear layers. Rhombus
adopts RLWE-based homomorphic encryption (HE) with coefficient encoding, which allows messages
to be chosen from not only a field Fp but also a ring Z2ℓ , where the latter supports faster computa-
tion in non-linear layers. To achieve better efficiency, we develop an input-output packing technique
that reduces the communication cost incurred by HE with coefficient encoding by about 21×, and pro-
pose a split-point picking technique that reduces the number of rotations to that sublinear in the matrix
dimension. Compared to the recent protocol HELiKs by Balla and Koushanfar (CCS’23), our implemen-
tation demonstrates that Rhombus improves the whole performance of an MVM protocol by a factor of
7.4× ∼ 8×, and improves the end-to-end performance of secure two-party inference of ResNet50 by a
factor of 4.6× ∼ 18×.

1 Introduction

Machine learning (ML) has enabled numerous applications. Particularly, model owners can provide infer-
ence services for users without the capability of training models, i.e., so-called ML as a Service (MLaaS).
Users can obtain value from ML services, while model owners are able to effectively monetize their ser-
vices. However, MLaaS puts forward a challenging question regarding data privacy, i.e., a model owner
may learn private data of a user, or the user may reveal the model. Privacy-preserving machine learning
(PPML) addresses the challenging question by providing a solution of secure two-party inference (i.e., two
parties can collaboratively perform secure inference without revealing data privacy).

Homomorphic encryption (HE), a powerful cryptographic primitive, enables the model owner to perform
complex computations over the encrypted user data. Although many efforts [KKK+22, SFK+22, LKL+22]
have been made to execute the HE-based computations efficiently, it’s still impractical to perform all the
inference computations on encrypted data because the model owner has to invoke bootstrapping opera-
tions, which are extremely computation-intensive. Instead, many protocols (e.g., [MZ17, LJLA17, JVC18,
SGRP19, ASKG19, CGR+19, DEK19, RSC+19, MLS+20, RRK+20, KRC+, NC21, RRG+21, PSSY21,
HJSK21, CZW+21, HLHD22, RBS+22, SDF+22, HLC+22, RBG+23, HLL+23, GJM+23, BK23]) have
been developed to improve the efficiency of PPML under the hybrid framework combining the HE and
secure multi-party computation (MPC) techniques. An ML model consists of a sequence of linear and non-
linear layers. Specifically, the operations in linear layers, e.g., 3D convolution and fully connection (FC),
can be often modeled as matrix-vector multiplications (MVMs), which can be realized from HE based on the
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ring learning with errors (RLWE) [LPR10], as that of in prior works [MZ17, JVC18, MLS+20, RRK+20,
CZW+21, HLHD22], while the computations in non-linear layers are performed by MPC based on secret
sharings. As a result, in this hybrid HE-MPC framework, each time when performing the MVM using HE,
the encrypted results need to be converted to secret sharings for the subsequent computations in non-linear
layers, and thus, the multiplicative depth is only one and bootstrapping is not needed. Figure 1 presents
a HE-based two-party MVM paradigm, where the model owner (Bob) holds a matrix W while the user
(Alice) holds a vector v, and the protocol outputs a vector of additive secret sharings (r1, r0) on W ·v such
that r0 + r1 = W · v.

Alice(v) Bob(W)

Encrypt v

Enc(v)

Enc(Wv)←W · Enc(v)
Sample r1 at random
Enc(r0)← Enc(Wv)− r1

Enc(r0)

Decrypt r0 Decode r1

Figure 1: Secure two-party MVM paradigm based on HE.

There are two kinds of encoding approaches for RLWE-based HE to realize the MVM protocol: (1) NTT
encoding that applies number theoretic transform (NTT) to the original data and then maps them to the co-
efficients of the plaintext polynomial, and (2) coefficient encoding that directly maps the original data to the
coefficients of the plaintext polynomial. Most of prior works [JVC18, RRK+20, ZXW21, BK23, PZM+23]
designed HE-based MVM protocols with NTT encoding. However, NTT encoding has three drawbacks.
Firstly, the NTT encoding is more costly compared to coefficient encoding. Secondly, NTT encoding is
limited to operating over a field Fp. As shown in [RRK+20], the communication cost of the oblivious trans-
fer (OT) based protocols in non-linear layers over Fp is approximately 1.5× larger than that over a ring
Z2ℓ where p ≈ 2ℓ. Thirdly, when converting homomorphic-computation results to additive secret sharings,
larger HE parameters must be chosen to protect the privacy of secret values used in the homomorphic op-
erations. The recent PPML protocol named Cheetah [HLHD22] employs coefficient encoding to overcome
these drawbacks, at the cost of introducing a one-bit error to the computational result, which has no impact
on the inference accuracy as the result would always be truncated. However, Cheetah encodes the MVM
or 3D-convolution result in multiple ciphertexts (each encodes only a few elements of the results), which
brings about a large communication overhead. In particular, the pointwise convolutions (with 1 × 1 filter
size) incur a large communication overhead for Cheetah, accounting for 80% overhead of all convolutions
for secure inference of ResNet50 [HZRS15], a popular deep neural network (DNN). This leads to a larger
communication in linear layers of Cheetah, compared to the state-of-the-art PPML protocol [BK23] using
HE with NTT encoding.

As analyzed above, we focus on coefficient encoding in this work. In the cleartexts, the MVM could
be viewed as the inner products between each row of the matrix and the vector. The computation of each
inner product is realized via placing the elements of matrix’s row and vector into two separate polynomials,
and then multiplying them. Based on this, one naive approach comes into play: Alice encodes her vector
v into the coefficients of a polynomial in sequence, encrypts it, and then sends the ciphertext to Bob. After
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receiving the ciphertext, Bob encodes each row of the matrix into the coefficients of a plaintext polynomial
in some reversed order, and multiplies the encrypted vector by each encoded row. As a result, Bob generates
r encrypted polynomials for a r × c matrix. To achieve O(1) communication complexity, Bob packs the
r ciphertexts into a single one by invoking the packing technique, known as PackLWEs [CDKS21], at the
cost of r − 1 homomorphic rotations. In conclusion, the naive approach requires O(r) plaintext-ciphertext
multiplications and rotations.

1.1 Our Contribution

The naive approach, as described above, is inefficient when handling the matrices with a moderately large
number r of rows (that is the case for most popular ML models), even if the number of columns c is small.
In this paper, we propose two techniques to significantly reduce the computation cost, while keeping the
communication complexity of O(1). On one hand, we develop an input-output packing technique for MVM
to reduce the number of rotations and plaintext-ciphertext multiplications to O(rc/N), where r, c (≤ N)
are the numbers of rows and columns in a matrix, and N is the dimension of a polynomial ring used in
RLWE-based HE. On the other hand, we present a split-point picking technique, which further reduces the
number of rotations to O(

√
rc/N). This results in a lower computational cost for an end-to-end execution

of the MVM protocol, compared to previous protocols.
Building upon the above techniques and RLWE-based HE with coefficient encoding, we design Rhombus,

a new two-party matrix-vector multiplication (MVM) protocol with semi-honest security. When applying it
to secure matrix multiplication, we further present two new encoding methods to reduce the communication
overhead, at the cost of sightly larger computational cost. The two encoding methods enable Rhombus to
better accommodate matrices of various dimensions. Our protocol Rhombus accepts the HE plaintexts from
not only a field Fp but also a ring Z2ℓ . As a building block, Rhombus is able to be seamlessly integrated into
existing two-party PPML frameworks to improve the performance of linear layers from simple models (e.g.,
logistic regression) to complicated models (e.g., Transformer-based models like GPT [BMR+20]). For per-
formance comparison between Rhombus and the state-of-the-art protocols [HLHD22, BK23], we evaluate
on the popular DNN model ResNet50 and use it as an example, as in the recent work [BK23].

We implemented Rhombus and integrated it to the open-sourced PPML library [HjLHD22]. Compared
to the recent protocol HELiKs [BK23] (CCS 2023) using HE with NTT encoding, Rhombus improves the
whole performance (resp., communication cost) of an MVM protocol by 7.4× ∼ 8× (resp., 1.8×), and
improves the end-to-end performance of secure ResNet50 inference by 4.6× ∼ 18×. Compared to the re-
cent protocol Cheetah [HLHD22] (USENIX Security 2022) using HE with coefficient encoding, Rhombus
reduces the communication cost of securely computing a matrix-vector multiplication (resp., pointwise con-
volutions) by 21× (resp., 4.6×).

1.2 Technical Overview

We adopt the HE-based two-party MVM paradigm described in Figure 1, where Alice (resp., Bob) holds a
vector v (resp., matrix W) over an arithmetic domain (e.g., Fp or Z2ℓ), and W · v is converted to a vector
of additive secret sharings (r0, r1) such that r0 + r1 = W · v. All secret values are encrypted with HE,
and the computation is performed homomorphically. In this work, we first introduce two techniques, i.e.,
input-output packing and split-point picking, to improve homomorphic matrix-vector multiplication (MVM),
which reduce the number of rotations to sublinear level to the dimension of the matrix, while keeping the
communication complexity at O(1). Then, we extend MVM to securely compute multiplication of two
matrices by describing two new encoding methods to reduce the communication.

Matrix vector multiplication. Matrix vector multiplication can be regarded as either the inner product of
each row of a matrix with a vector (called row-major), or as the linear combination of the matrix’s columns
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Figure 2: The high level idea of split-point picking.

with respect to the vector (called column-major). From these two perspectives, we respectively utilize the
PackLWEs [CDKS21] and Expand [ACLS18, ALP+21] algorithms to design the HE-based MVM protocol,
where the algorithms will be explained below. Suppose that a matrix W is of dimension r × c, and r, c are
powers of 2 for simplicity. In the row-major approach, Bob has to compute the inner product between each
row of W and v homomorphically, which can be realized from the implicit convolution of the coefficients
when multiplying two polynomials, as in [HLHD22]. Specifically, Bob encodes each row of W as a
polynomial ŵi for each i ∈ {0, 1, . . . , r − 1}, and performs plaintext-ciphertext multiplication to obtain
r ciphertexts, where the constant terms of the correponding plaintext polynomials are the results of inner
product. Moreover, Bob can pack N/c rows into a length-N vector when c < N (where N is the ring
dimension in HE), and then computes N/c inner products from a single plaintext-ciphertext multiplication.
To compress these ciphertexts, Bob first extracts the corresponding r LWE ciphertexts that encrypt r inner
products from m = rc/N RLWE ciphertexts cti for i ∈ {0, 1, . . .m − 1}, and then runs PackLWEs to
merge the r LWE ciphertexts into a single RLWE ciphertext, as in [RCG+].

We make two key improvements to the approach described as above. We first observe that the LWE
extraction is unnecessary because the results of inner products are located at indices of multiples of c within
each coefficient vector of the plaintext polynomials corresponding to cti for i ∈ {0, 1, . . . ,m − 1}, where
c is a power of two. We can modify the PackLWEs function to directly extract-and-merge the coefficients
at powers-of-two positions of each plaintext polynomial into a single RLWE ciphertext, where we call the
procedure as PackRLWEs (see Section 3.1 for details). In this way, only O(rc/N) of homomorphic rotations
are needed, compared to O(r) in [RCG+]. Then, a more important observation is that the input ciphertexts
to PackRLWEs are obtained by multiplying different plaintext polynomials {ŷi} (each packing N/c rows of
matrix W) with the same ciphertext JvK = Enc(v). In other words, the input ciphertexts of PackRLWEs
are all in the form of ŷi · JvK, and we can try to separate the plaintexts from the ciphertexts. Then the
homomorphic rotation (a.k.a., automorphism) in PackRLWEs can be performed on the common ciphertext
JvK, and the rotation results can be reused.

To be specific, we delve into more details about PackRLWEs. Its computation pipeline is structured
as a full binary tree (depicted in the left triangle of Figure 2), where each leaf node represents an input
ciphertext, the internal nodes represent the intermediate ciphertexts during the computation, and the root
node represents the output ciphertext. The ciphertext of each internal node is obtained via running the
pack two ciphertexts procedure on the inputs of its two child ciphertexts and an automorphism τ , illustrated
in the upper left corner of Figure 2 (see Algorithm 1 of Section 3.1 for details). Note that the ciphertexts
at the same level (with the exception of those on the leaf nodes) of the binary tree are computed using the
same automorphism τ . Given m ciphertexts as input, PackRLWEs processes through logm iterations, with
the number of ciphertexts halving in each iteration, until only one ciphertext left (as the output). Below,
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we set ct0i := cti, where the superscript indicates the index of the iteration in which the ciphertext resides.
Specifically, in the 1st iteration, the m ciphertexts cti’s are fed into PackRLWEs, where every two adjacent
ciphertexts will be packed to one ciphertext using the pack two ciphertexts procedure. At the 1st layer (i.e.,
the 1st iteration), this procedure executes as follows:

ct1j =
(
ct02j +Xc/2 · ct2j+1

)
+ τ

(
ct02j −Xc/2 · ct02j+1

)
for j ∈ {0, 1, · · · ,m/2 − 1}, and requires N/2 homomorphic automorphism calls, where τ satisfies
τ(Xc/2) = −Xc/2. By replacing ct0i with ŷi · JvK, we derive the following equation:

ct1j =
(
ŷ2j +Xc/2 · ŷ2j+1

)
· JvK +

(
τ(ŷ2j) +Xc/2 · τ(ŷ2j+1)

)
· τ(JvK).

This equation implies that only one homomorphic automorphism is needed now, since τ(JvK) could be
reused for the computation of all ct1j ’s. At this point, the computational flow has transformed into the shape
like the middle part of Figure 2. Subsequently, we can move on to perform the replacement recursively to
the 2nd, 3rd,... iterations, and will achieve the minimum number of homomorphic automorphism calls when
we arrive the middle layer of the PackRLWEs tree (see Section 3.2 for details). At this time, we obtain a
rhombus-shaped computation flow for homomorphic automorphism, as shown in the right part of Figure 2.
In particular, the number of homomorphic automorphism calls becomes 1 + 2 + · · · + 2⌊logm/2⌋−1 =
2⌊logm/2⌋− 1 for the first ⌊logm/2⌋ iterations, and (2⌈logm/2⌉−1+ · · ·+2+1) = 2⌈logm/2⌉− 1 for the last
⌈logm/2⌉ iterations. Totally, 2⌈logm/2⌉ + 2⌊logm/2⌋ − 2, that is, O(

√
m) = O(

√
rc/N) of homomorphic

automorphism calls are required now. During the process, we pick the optimal split-point to switch the
algorithm between the replacement and PackRLWEs. We refer to the above technique as split-point picking
(SPP).

Our column-major based approach leverages the Expand algorithm, following the combination of columns
of the matrix with the vector. Specifically, Expand(JvK) can output c ciphertexts Jv[i]K on the i-th element
of v for i ∈ {0, 1, . . . , c − 1}. Hence, we encode each column of W, multiply them with Jv[i]K, and then
accumulate the computational results. This process can also benefit from the above SPP approach, where
we can similarly perform the replacement as in the row-major approach, and reduce the number of homo-
morphic automorphisms calls to O(

√
c). The column-major approach is less efficient than the row-major

approach, as the latter can benefit from the input-packing. However, the column-major approach will be
more efficient for tall matrices with large dimensions (i.e., r > c ≥ N ), due to the choice of split point
during the SPP procedure. We postpone the explanation to Section 3.3.

Matrix Multiplication. Assume that Alice has a matrix Ym×k (to be encrypted), while Bob holds another
matrix Xn×m. Many prior works such as [JVC18, HLHD22, BK23] realized the matrix multiplication
from matrix vector multiplication directly. However, the direct approach incurs significant communication
overhead when m is small. To solve the problem, we give two new matrix-encoding methods called V1 and
V2, and both of them are more communication efficient than prior approaches. The intuition in V1 (resp.,
V2) is to pack as many columns (resp., rows) of matrix Ym×k as possible into one ciphertext. Then, we
can follow the row-major approach of MVM as described above, with the only difference where we have
essentially swapped the roles of the matrix and vector, i.e., the matrix is now encrypted, while the vector
(each row of Xn×m) is in plaintext to perform homomorphic computation. We refer the reader to Section 4.1
for details.

1.3 Related Work

The HE-based MVM protocol could be traced back to Halevi and Shoup’s work [HS14] (HS in short), which
has been implemented in the open-sourced library HELib [HS20]. They encode a matrix diagonally such that
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the output is aligned and the encrypted vector is rotated by all steps, and then multiply each encoded diagonal
with the corresponding rotated vector and accumulate the multiplication results. GAZELLE [JVC18] first
applied the method to secure two-party inference of DNN. Specifically, they proposed a hybrid method
with linear complexity to the matrix dimension based on the diagonal encoding. Based on the approach
of GAZELLE, GALA [ZXW21] deferred the final rotate-and-sum operation to be performed on cleartext.
Very recently, HELiKs [BK23] further presented a MAC (multiply-accumulate) mode, such that the rotation
operations are performed after plaintext-ciphertext multiplications, which reduces the noise growth. All the
above HE-based protocols adopt NTT encoding.

For coefficient encoding, Cheetah [HLHD22] computes the inner product from the implicit negacyclic
convolution computation on the coefficients when multiplying two polynomials. However, their encod-
ing method results in the output of multiple ciphertexts. To compress the results, Ren et al. [RCG+]
further extract specific positions of the RLWE ciphertexts to multiple LWE ciphertexts and then call the
PackLWEs [CDKS21] algorithm to merge these LWE ciphertexts back into a single RLWE ciphertext. Un-
fortunately, the invocation of PackLWEs incurs significant computation overhead, and they accelerated it
with FPGA hardware to achieve a performance that is comparable with Cheetah. We refer the reader to
Section 5.1 for the efficiency comparison between Rhombus and previous MVM protocols using HE with
NTT/coefficient encoding.

Matrix multiplication can be naturally generalized from matrix-vector multiplication, which is done in
GAZELLE, Cheetah and HELiKs. Nevertheless, the generalization may incur a significant amount of redun-
dant computation and communication for some dimensions of matrices. Specifically, for two matrices of
respective dimension n×m and m× k, it directly increases the communication and computation overhead
by a factor of k with respect to the matrix-vector multiplication with parameters (n,m). Several recent
works devote to solving this issue to a certain extent in the context of secure two-party inference of Trans-
formers. In particular, Iron [HLC+22] generalizes the approach in Cheetah, adopts the coefficient encoding
without being confined to column-wise partitioning of the second matrix, and achieves communication com-
plexity of O(

√
nmk/N). Based on Iron, BumbleBee [LHG+23] further compresses the output ciphertexts

with the proposed interleaving packing technique, but requires a large number of rotations. Very recently,
BOLT [PZM+23] generalizes the GAZELLE’s encoding method, makes full use of each slot of the polyno-
mial, and achieves the optimal communication complexity (i.e., O(k(m+n)/N)). However, it needs to run
an additional protocol to convert the computation results from a field Fp to a ring Z2ℓ for every execution
of secure matrix multiplication, due to the use of NTT encoding. See Section 5.2 for efficiency comparison
between Rhombus and prior matrix-multiplication protocols.

In addition, there are a few works [JKLS, HZ23, ZLY+24] that focus on matrix multiplication in the
context of outsourced computation. In such context, both matrices need to be encrypted, and the resulting
ciphertexts are involved in subsequent homomorphic computations (rather than being converted into secret
sharings). Therefore, the encoding method must be compatible with subsequent computations. This brings
about a large number of multiplications and rotations, resulting in a low efficiency when being applied in
the two-party computation scenarios.

2 Preliminaries

2.1 Notation

We use [n] to denote the set {0, 1, · · · , n− 1}. A vector (resp., matrix) is represented by a bold lower-case
(resp., upper-case) letter such as a (resp., W). The j-th element of vector a is denoted by a[j], and the
i-th row vector and j-th column vector of a matrix W are denoted by Wi: and W:j , respectively. For two
vectors a,b, we use ⟨a,b⟩ to denote the inner product of a and b. We use lower-case letters with a ”hat”
symbol such as â to represent a polynomial, and â[j] to denote the j-th coefficient of â. For a polynomial â
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(resp., a vector a), we use JâK (resp., JaK) to denote its encryption. For a set (resp., distribution) D, a←$D
represents that a is sampled uniformly from D (resp., according to the distribution D).

2.2 Cyclotomic Field

Let ζ = exp(πi/N) for a power-of-two integer N , then K = Q[ζ] is the 2N -th cyclotomic field and R =
Z[ζ] is the ring of integers of K. We will identify K (resp., R) with Q[X]/(XN+1) (resp., Z[X]/(XN+1))
with respect to the map ζ 7→ X . The residue ring of R modulo an integer q is denoted by Rq = R/qR.
An element of K (resp., R,Rq) can be uniquely represented as a polynomial of degree less than N with
coefficients in Q (resp., Z,Zq), such as â(X) = â[0] + â[1] ·X + · · · + â[N − 1] ·XN−1. To extend, we
have the following field extension chain:

Q = K0 ≤ K1 ≤ K2 ≤ · · · ≤ KlogN = K

where Kℓ denotes the 2ℓ+1-th cyclotomic field. In this work, each element â ∈ Kℓ is represented as a
polynomial with only non-zero terms indexed by multiples of N/2ℓ, with â =

∑2ℓ−1
i=0 â[i] ·XiN/2ℓ .

2.3 Galois Group and Automorphisms

We recall that K ≥ Q is a Galois extension and its Galois group Gal(K/Q) consists of the automorphisms
τd : â(X) 7→ â(Xd) for d ∈ Z∗

2N , the invertible residues modulo 2N . The automorphism τd(·) acts on
the monomials for d = 2ℓ + 1 with 1 ≤ ℓ ≤ logN . We note that τd(Xi) = Xi for i = N

2ℓ
· e and

τd(X
i) = −Xi for i = N

2ℓ
· o, where e (resp., o) represents an even (resp., odd) integer. In other words, the

map â 7→ â+ τd(â) doubles the coefficients â[i] if i = N
2ℓ
· e, but zeroizes the coefficients â[i] if i = N

2ℓ
· o

(More details can be found in [CDKS21]).
Given the automorphisms τ2ℓ+1 for ℓ ∈ {1, . . . , logN} as the bases, any automorphism τ ∈ Gal(K/Q)

can be expressed as a combination of them:

τ = τ b1
21+1

◦ τ b2
22+1

◦ · · · ◦ τ blogN

2logN+1
, bℓ ∈ {0, 1}.

In general, for any 0 ≤ s < t ≤ logN , each automorphism τ ∈ Gal(Kt/Ks) can be expressed as τ =

τ
bs+1

2s+1+1
◦· · ·◦τ bt2t+1 |Kt . In particular, we define τ(â) := τ

bs+1

2s+1+1
◦· · ·◦τ bt2t+1(â) for â ∈ K, τ ∈ Gal(Kt/Ks).

2.4 RLWE-based Homomorphic Encryption

Homomorphic encryption schemes based on RLWE, e.g., BGV [BGV14], BFV [Bra12, FV12] and CKKS
[CKKS17], are defined over a ring R. The decisional RLWE assumption states that the distribution in the
form of (−â · ŝ+ ê, â) ∈ R2

q is computationally indistinguishable from the uniform distribution in R2
q ,

where â←$ Rq and ê←$ χσ (a discrete Gaussian distribution with standard deviation σ over Rq) and ŝ ∈ R
is a random secret. In this work, we use BFV as the basic HE scheme. Let t, q be two positive integers
with t≪ q, R2

q , Rt denote the ciphertext space and plaintext space, and q, t are the ciphertext modulus and
plaintext modulus, respectively. The scheme has a set of public parameters HE.pp = {t, q,N, σ} where N
is the ring dimension. We will adopt the following algorithms to design an MVM protocol:

• KeyGen. We adopt the symmetric-key BFV-HE scheme [KPZ21], where the encryption and decryption
depend on the same secret key ŝk, sampled uniformly from R3 (i.e., each coefficient of polynomial ŝk is
sampled from {−1, 0, 1}).
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• Encode. We use two coefficient encoding algorithms, denoted by Ecd1 and Ecd2. Specifically, Ecd1 maps
a vector a ∈ Zℓ

t to a polynomial â ∈ Rt with â[j] = a[j] for j ∈ [N ] (padding zero if ℓ < N ). Ecd2(a)
is the reciprocal polynomial of Ecd1(a), i.e., Ecd2(a) = â(X−1) ∈ Rt. We note that the constant term of
Ecd1(a) · Ecd2(b) = â(X) · b̂(X−1) is the inner product of a and b for two vectors a,b ∈ Zℓ

t .

• Decode. Given a plaintext polynomial m̂ ∈ Rt, this algorithm outputs the corresponding coefficient
vector m ∈ Zℓ

t .

• Encrypt. Given a plaintext polynomial m̂ ∈ Rt, the encryption algorithm outputs a ciphertext ct =
(ĉ0, ĉ1), such that ĉ0 = −â · ŝk + ê +

⌊ q
t · m̂

⌉
∈ Rq and ĉ1 = â ∈ Rq where â←$ Rq and ê←$ χσ. We

use Enc to denote the encryption algorithm, and also denote by [[m̂]] the ciphertext on m̂.

• Decrypt. Given a ciphertext ct = (ĉ0, ĉ1) ∈ R2
q , the decryption algorithm outputs m̂ =

⌊
t
q

(
ĉ0 + ĉ1 · ŝk

)⌉
∈

Rt.

• HomMulPt. Given a polynomial â ∈ Rt and a ciphertext ct ∈ R2
q on a plaintext polynomial m̂ ∈ Rt, this

algorithm HomMulPt outputs a ciphertext decrypted to m̂·â ∈ Rt. This plaintext-ciphertext multiplication
will amplify the noise from η to η · ηmul where ηmul is the multiplicative noise growth factor, which
depends on the infinity norm of â. We refer the reader to [Bra12, FV12] for the details of HomMulPt.

• HomAut. Given a ciphertext ct on a plaintext polynomial m̂ and an automorphism τ ∈ Gal(K/Q),
this algorithm homomorphically computes a new ciphertext ct′ ← HomAut(ct, τ), which is decrypted to
τ(m̂). The homomorphic automorphism (a.k.a., rotation) operation will introduce an additive noise ηaut,
and amplifies the noise from η to η + ηaut. The details of HomAut can be found in [Bra12, FV12].

• PackLWEs. Given 2ℓ(≤ N) ciphertexts {cti}i∈[2ℓ] where cti encrypts m̂i ∈ Rt, this algorithm PackLWEs
homomorphically merge the constant terms of them into a new ciphertext ct, decrypted to m̂ ∈ Rt with
m̂[(N/2ℓ) · i] = 2ℓ · m̂i[0] for i ∈ [2ℓ]. The algorithm details can be found in [CDKS21].

• Expand. Given an integer ℓ ≤ logN and a ciphertext ct on a plaintext polynomial m̂ =
∑2ℓ−1

i=0 m̂[i]·Xi ∈
Rt, this algorithm homomorphically expands it to 2ℓ ciphertexts {cti}i∈[2ℓ], where cti is decrypted to
2ℓ · m̂[i] ∈ Zt. We write it as {cti}i∈[2ℓ] ← Expand(ct, ℓ). We refer the reader to [ACLS18, ALP+21] for
details.

Additionally, we will invoke an algorithm (denoted by HomAdd) for computing homomorphic additions
(see [Bra12, FV12] for details). In general, for both PackLWEs and Expand, a single invocation requires
2ℓ−1 calls of HomAut, and the value 2ℓ in either {2ℓ ·m̂i[0]} or {2ℓ ·m̂[i]} could be removed via multiplying
the input ciphertexts by its inverse 2−ℓ.

2.5 Conversion between Additive SS and HE

We use additive secret sharing (SS) over a ring Zt. Concretely, for an element x ∈ Zt, an additive SS on
x (denoted by ⟨x⟩) is generated by sampling two shares ⟨x⟩0 and ⟨x⟩1 from Zt, such that ⟨x⟩0 + ⟨x⟩1 = x
mod t. The conversion from additive secret sharings to HE ciphertexts (denoted by A2H) and reverse
direction (denoted by H2A) are described as follows.

Conversion from SS to HE. Suppose that Pi for i ∈ {0, 1} holds a vector of additive secret sharings ⟨x⟩i,
where ⟨x⟩0+ ⟨x⟩1 = x mod t. To convert the secret values from SS to HE, for each i ∈ {0, 1}, Pi encodes
its shares by x̂i ← Ecd1(⟨x⟩i), and encrypts the resulting polynomial as Enc(x̂i). Then, Pi sends Enc(x̂i)
to P1−i, who performs the homomorphic addition Enc(x̂i) + Ecd1(⟨x⟩1−i) to get the HE ciphertext Enc(x̂)
such that x̂ = Ecd1(x).
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Conversion from HE to SS. Following prior works [HLHD22, CZ22], for the BFV scheme [Bra12, FV12]
with coefficient encoding, the H2A conversion executes as follows:

1. Given a ciphertext Enc(x̂) where x̂ ∈ Rt encodes a vector x ∈ ZN
t , for some i ∈ {0, 1}, Pi samples

r̂←$ Rq, and then sends Enc(x̂) − r̂ to P1−i. Pi computes ⟨x⟩i := ⌊(t/q) · r⌉ as its own shares, where
r ∈ ZN

q is the coefficient vector of r̂.

2. P1−i decrypts the ciphertext Enc(x̂) − r̂ to a polynomial, and then transforms the polynomial to the
coefficient vector as its own shares ⟨x⟩1−i.

Using the above H2A procedure, the noise flooding [Gen09] is eliminated, if a one-bit error is allowed
(that is the case for PPML applications). For NTT encoding, noise flooding needs to be used, which leads
to a noise 2λ larger than that in normal encryption for statistical security parameter λ. This blows up the
ciphertext modulus q of NTT encoding to at least λ bits larger than that of coefficient encoding.

2.6 Threat Model

Our protocol in the two-party setting is secure in the presence of any semi-honest adversary, who follows
the protocol specification but tries to learn more than allowed from the protocol transcripts. Security against
semi-honest adversaries has been considered in most of PPML protocols like [JVC18, HLHD22, BK23]. We
always assume that the adversary is probabilistic polynomial time (PPT). For PPML applications, one party
(i.e., client) holds an input data, while the other party (i.e., server) holds the model parameters. Through
jointly running a secure two-party computation (2PC) protocol, the client will obtain an inference result on
the input data, and the server obtains nothing. For security, a party cannot learn any information on private
data of the other party beyond the inference results known only by the client.

3 Matrix Vector Multiplication

In this section, we present a new matrix vector multiplication (MVM) protocol, called Rhombus, shown in
Figure 1. In particular, Alice (resp., Bob) holds a vector v (resp., a matrix W), and the homomorphic-
computation result will be converted to additive secret sharings. The conversion can be realized by invoking
the H2A protocol shown in Section 2.5. Below, we focus on the part of homomorphic computation for MVM,
and present the input-output packing (Section 3.1) and the split-point picking (Section 3.2) techniques to
reduce the computation complexity based on the naive approach described in Section 1. Moreover, we also
give the column-major based approach for MVM in Section 3.3, which is more suitable for tall matrices
with large dimensions.

3.1 Input-Output Packing

The naive approach requires O(r) of HomMulPt and HomAut calls. However, it fails to fully exploit the
packing property of polynomials when c < N , thereby resulting in inefficient computation. For the matrix
W with c < N , it is natural to encode N/c rows of W into a single plaintext polynomial, and then compute
the N/c inner products by only one HomMulPt. In this way, only rc/N HomMulPt calls are required, and
we call it input-packing. However, the PackLWEs algorithm cannot be directly applied because the inner
products are located at indices that are multiples of c in the coefficient vector of a polynomial, instead of
only constant terms.
PackRLWEs. To solve the problem, we extend the PackLWEs algorithm to PackRLWEs, and introduce
an additional parameter h that indicates each ciphertext has 2h coefficients to be merged. We present it in
Algorithm 1 and give an example in Figure 3. In Proposition 1, we show the correctness of the PackRLWEs
algorithm.
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Algorithm 1: PackRLWEs({ctj}j∈[2ℓ], h)
Input: Ciphertexts {ctj}j∈[2ℓ] and an integer h ∈ [logN + 1] with ℓ+ h ≤ logN .
Output: A single ciphertext ct.

1: if ℓ = 0 then
2: return ct← ct0
3: else
4: cte ← PackRLWEs({ct2j}j∈[2ℓ−1], h)

5: cto ← PackRLWEs({ct2j+1}j∈[2ℓ−1], h)

6: ct← (cte +XN/2ℓ+h · cto) + HomAut(cte −XN/2ℓ+h · cto, τ2ℓ+h+1)
7: return ct

8: end

2 ∗ ∗ ∗ 1 ∗ ∗ ∗
0 ∗ ∗ ∗ 1 ∗ ∗ ∗
3 ∗ ∗ ∗ 3 ∗ ∗ ∗
5 ∗ ∗ ∗ 6 ∗ ∗ ∗

PackRLWEs
2 0 3 5 1 1 3 6

Figure 3: An example of PackRLWEs with ℓ = 2, h = 1, N = 8

Proposition 1. Given ciphertexts {ctj}j∈[2ℓ] (decrypted to âj for each j ∈ [2ℓ]) and an integer h ∈ [logN+

1] with ℓ + h ≤ logN , PackRLWEs outputs a ciphertext ct which is decrypted to â, such that â[(N/2h) ·
k + (N/2h+ℓ) · j] = 2ℓ · âj [(N/2h) · k] for each j ∈ [2ℓ], k ∈ [2h].

The correctness of the above proposition directly comes from [CDKS21]. The number of HomAut calls
required by PackRLWEs with input 2ℓ ciphertexts is still 2ℓ−1, which is independent of h, compared to that
PackLWEs requires HomAut calls of 2ℓ+h − 1. Note that PackRLWEs will degenerate to PackLWEs when
h = 0.

With the extended packing algorithm PackRLWEs, one can realize the input-output packing to reduce the
number of HomMulPt and HomAut calls to O(rc/N). In particular, we refer to the final step of PackRLWEs
as output-packing, which packs rc/N ciphertexts into one ciphertext. A toy example for the input-output
packing process is shown in Figure 4 with N = 8, r = 4 and c = 4.

3.2 Split-Point Picking

The input-output packing described in Section 3.1 reduces the number of HomMulPt and HomAut calls to
O(rc/N). Accordingly, the experimental results in Figure 8 imply that the HomAut operation will dominate
the whole computation. In the following, we present the critical technique called split-point picking (SPP),
which further reduces the number of HomAut calls to O(

√
rc/N).

For the SPP technique, a key observation is that the input ciphertexts of PackRLWEs are obtained by
multiplying different plaintexts with the same ciphertext (the encrypted vector) in the input-output packing
algorithm. By separating these plaintexts from the ciphertexts, it becomes possible to apply HomAut solely
on the common ciphertext.

We start with the input-output packing algorithm described as above, given the r × c matrix W and
a ciphertext Jv̂K as input, where W is encoded to {ŷi}i∈[m] with m = rc/N via the input packing. At
this point, the ciphertexts input to PackRLWEs are in the form of ct0i = ŷi · [[v̂]] for i ∈ [m]. Recall
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W =


1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

 v =


1
2
1
3

 Wv =


20
15
18
17



Encode matrix W: ŵi ← Ecd2(Wi:), i ∈ [4]
Input packing:

ŷ0 = ŵ0 +X4ŵ2 = 1 + 2X +X2 + 4X3 + 3X4 − 4X5 − 3X6 − 2X7

ŷ1 = ŵ1 +X4ŵ3 = 2 + 3X + 2X2 +X3 + 4X4 −X5 − 4X6 − 3X7

⇓ Multiply by v̂ = 1 + 2X +X2 + 3X3

ŷ0 · v̂ = 20 + · · ·+ 18X4 + · · ·
ŷ1 · v̂ = 15 + · · ·+ 17X4 + · · ·

⇓ Output packing

â = 20 + · · ·+ 15X2 + · · ·+ 18X4 + · · ·+ 17X6 + · · ·

Figure 4: Input-output packing for N = 8, r = c = 4.

that PackRLWEs involves logm iterations. For the i-th (1 ≤ i ≤ logm) iteration, it reduces the number
of ciphertexts from m/2i−1 to m/2i, using the automorphism τ2i(N/c)+1. We denote the m/2i−1 input
ciphertexts in the i-th iteration as {cti−1

j }j∈[m/2i−1]. We first focus on the computation in the 1st iteration,
which transforms the set of ciphertexts {ct0j}j∈[m] into {ct1j}j∈[m/2], with m/2 HomAut calls. In particular,

ct1j = (ct02j +Xc/2 · ct02j+1) + HomAut(ct02j −Xc/2 · ct02j+1, τ2N/c+1)

for j ∈ [m/2], according to step 6 in Algorithm 1. Based on the homomorphic property of τ2N/c+1,
replacing ct02j , ct

0
2j+1 with ŷ2j · Jv̂K, ŷ2j+1 · Jv̂K respectively, we obtain

ct1j =
(
ŷ2j +Xc/2 · ŷ2j+1

)
·Jv̂K+

(
τ2N/c+1 (ŷ2j) +Xc/2 · τ2N/c+1 (ŷ2j+1)

)
·HomAut

(
Jv̂K, τ2N/c+1

)
(1)

From the above equation (1), we find that all HomAut operations are performed on the same ciphertext Jv̂K.
Therefore, HomAut now needs to be called only once in the 1st iteration. Note that the automorphisms
on plaintexts are much faster than those on ciphertexts, hence, we ignore the automorphisms acting on
plaintexts temporarily. Similarly, we can proceed to carry out the replacement for the 2nd iteration if m ≥ 4.
Specifically, the equation in this iteration is shown as follows:

ct2j =
(
ct12j +Xc/4 · ct12j+1

)
+ HomAut

(
ct12j −Xc/4 · ct12j+1, τ4N/c+1

)
for j ∈ [m/4]. Replacing ct12j with the ciphertext defined in the equation (1), we can derive the following
equation:

ct2j =
∑

τ∈Gal(Kh+2/Kh)

(
3∑

k=0

τ (ŷ4j+k)X
kc/4

)
HomAut (Jv̂K, τ) (2)
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where h = log(N/c), Gal(Kh+2/Kh) = {1, τ2h+1+1, τ2h+2+1, τ2h+2+1 ◦ τ2h+1+1}. The equation (2) in-
dicates that computing ct2j in this manner requires only #Gal(Kh+2/Kh) − 1 = 3 HomAut calls. From
the replacements (1) and (2), we can summarize that #Gal(Kh+L/Kh) − 1 = 2L − 1 HomAut calls are
required when computing ctLj for j ∈ [m/2L] in the replacement way. In the extreme case, m− 1 HomAuts

are needed if we compute ctlogm0 using the above approach, which is equivalent to invoking the PackRLWEs
directly.

Based on the derivation above, we will achieve the optimal efficiency, if switching the computation
algorithm in the middle layer of the PackRLWEs tree. In particular, we adopt the replacement mentioned as
above in the first ⌊(logm)/2⌋ iterations of the PackRLWEs tree with HomAut calls of 2⌊(logm)/2⌋−1. Note
that the number of ciphertexts is m/2⌊(logm)/2⌋ at this time. Then we invoke PackRLWEs on the input of
m/2⌊(logm)/2⌋ ciphertexts, which requires m/2⌊(logm)/2⌋−1HomAut calls. Totally, the number of HomAut
calls is 2⌊(logm)/2⌋ + m/2⌊(logm)/2⌋ − 2, which amounts to a complexity of O(

√
m) = O(

√
rc/N). We

refer to this replacement approach as split-point picking. In the context of MVM, we usually choose the split
point corresponding to the middle layer in the PackRLWEs tree. We summarize the process in Algorithm 2.

Proposition 2. Given a matrix W with 2-power dimensions r, c ≤ N , an encrypted vector JvK (encoding via
Ecd1) and the split-point u, Algorithm 2 outputs a ciphertext ct′ which decrypts to â′, such that â′[(N/r)·i] =
(W · v)[i] for i ∈ [r].

The proposition 2 shows the correctness of Algorithm 2, and we defer the proof to Appendix A. We note
that only the coefficients with indices being multiples of N/r are useful for the output ciphertext. Therefore,
for the output ciphertext in the form of (ĉ0, ĉ1) ∈ R2

q , we can drop the irrelevant coefficients of ĉ0 to reduce
the communication overhead.

This work follows the MVM protocol framework shown in Figure 1, and only improves the part of
locally homomorphic computation by invoking Algorithm 2. Therefore, the improved MVM protocol with
Algorithm 2 is natural to be secure in the presence of semi-honest adversaries under the RLWE assumption,
by directly following the security proof of previous protocols, e.g., [HLHD22].

3.3 Column Major based MVM

Section 3.2 gives the MVM algorithm by regarding the MVM as inner products between the vector v and
each row of the matrix W. Alternatively, MVM can also be viewed as the linear combination of the columns
of the matrix with the vector. In this way, we can leverage the Expand algorithm described in Section 2.4 to
compute MVM as follows.

1. On input of a matrix W of dimension r× c and an encrypted vector JvK with Ecd1 for encoding, run the
Expand algorithm to expand JvK to c ciphertexts, each of them encrypts the value v[i] for i ∈ [c].

2. For i ∈ [c], encode the column vector W:i of the matrix W by Ecd1 into a plaintext polynomial ŵi.

3. Execute the HomMulPt algorithm on these expanded ciphertexts and the encoded columns, and then
accumulate these ciphertexts.

The correctness is straightforward based on the definition of Expand. The column-major approach requires
c HomMulPt calls for computing the linear combination, and c − 1 HomAut calls for running Expand.
Similar to the row-major approach, the number of HomAut calls can be further reduced to O(

√
c) using the

SPP optimization. We provide the details of the column-major MVM algorithm in Appendix B.
It is easy to see that the row-major approach outperforms the column-major approach when both the

number of rows and columns of the matrix are smaller than N because the latter cannot benefit from the
input packing. More precisely, we can pack multiple rows of the matrix to one plaintext polynomial with
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Algorithm 2: RhombusMVMRM: Row major based matrix vector multiplication with SPP opti-
mization.

Input: r × c Matrix with r, c ≤ N (powers of two), ct← JvK ∈ R2
q , and the split-point u.

Output: A ciphertext ct′.
1: for i ∈ [r] do
2: ŵi ← Ecd2(Wi:)
3: end
4: m← r · c/N, h← log(N/c)
5: ct← m−1 · ct // To remove the PackRLWEs factor
6: for i ∈ [m] do
7: ŷi ←

∑N/c−1
j=0 Xj·c · ŵi+j·m // Input packing

8: end
9: for τ ∈ Gal(Ku/Kh) do

10: ctτ ← HomAut(ct, τ) // SPP: Replacement
11: end
12: for i1 ∈ [r/2u] do
13: cti1 ← Enc(0)
14: for τ ∈ Gal(Ku/Kh) do
15: ẑi1,τ ←

∑m2u/r−1
i0=0 X(N/2u)·i0 · τ(ŷ(r/2u)·i0+i1)

16: cti1 ← HomAdd(cti1 ,HomMulPt(ctτ , ẑi1,τ ))

17: end
18: end
19: ct′ ← PackRLWEs({cti1}i1∈[r/2u], u) // SPP: PackRLWEs

20: return ct′

row-major approach, but for column-major approach we cannot pack multiple columns to one polynomial
since each column will be multiplied by different element of the vector.

However, for matrix of large dimensions, i.e., the number of rows or columns is larger than N , the two
approaches have their own merits. To analyze the case of large matrix, we suppose that r = r′N, c = c′N
for simplicity, where r′, c′ are positive integers. In this case, we have to partition the large matrix W into
r′ × c′ submatrices, each of dimension N × N , and partition the vector v into c′ subvectors correspond-
ingly, then perform the MVM on each pair of the submatrices and subvectors, respectively. We count the
number of HomMulPt, HomAut calls and the complexity of matrix processing, corresponding to Step 15
in Algorithm 2, Step 10 in Algorithm 4, to compare the concrete efficiency of the two approaches. Before
conducting the concrete comparison, we first observe the following facts:

• Both the two approaches require rc/N times of HomMulPt.

• With the row major approach, the PackRLWEs (Step 19 in Algorithm 2) can be called only once for
the MVM computation with respect to the submatrices in the same row (note that the results of these
MVMs will be accumulated), because it is additive homomorphic on packing two groups of ciphertexts:
PackRLWEs({cti}, u) + PackRLWEs({ct′i}, u) = PackRLWEs({cti + ct′i}, u).

• With the column major approach, the similar fact holds true, i.e., the HomAut (Step 13 in Algorithm 4) can
also be merged, and thus be called only once, for the MVM computation with respect to the submatrices
in the same row.
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• For the matrix processing, larger split point u leads to more complex processing in both of the two algo-
rithms.

Based on the analyses above, we can derive the concrete number of HomAut calls when employing
the two approaches on large matrix (note that the input packing is not applicable), respectively. For row
major approach with split point ur(0 ≤ ur ≤ logN), the vector v is encrypted to c′ ciphertexts, each of
them will go through 2ur − 1 of HomAut calls in Step 10 in Algorithm 2 (note that h = 0 in this case), in
addition, for the MVMs with respect to the submatrices in the same row, we need N/2ur − 1 of HomAut
calls inside the PackRLWEs. Totally, c′(2ur − 1) + r′(N/2ur − 1) of HomAut are needed. For the column
major approach with split point uc(0 ≤ uc ≤ logN), each of the c′ input ciphertexts will go through the
N/2uc − 1 of HomAut calls at Step 5, besides, 2uc − 1 of HomAut are needed for the MVMs with respect
to the submatrices in the same row. Totally, c′(N/2uc − 1)+ r′(2uc − 1) of HomAut are needed when using
column-major approach. As a result, the column major approach has the same complexity of HomAut calls
as the row major approach if we set uc = logN − ur, and the only difference lies on the matrix processing.

In summary, for the tall matrix with r′ > c′ (i.e., r > c), the column major approach will outperform the
row major approach. The reason is in this case, row major approach will need a larger ur(> (logN)/2) to
minimize the HomAut calls, leading to a more complex matrix processing than column-major one. However,
for rectangular matrix with r′ < c′ (i.e., r < c), row major will perform better than column major approach,
due to a cheaper matrix processing in this case. We present the concrete efficiency comparison between
these two approaches in Table 2 in Section 5.1.

4 Matrix Multiplication

In this section, we focus on secure matrix multiplication, where Alice holds a matrix Ym×k (to be en-
crypted), and Bob holds another matrix Xn×m. Both parties will execute a protocol similar to Figure 1
to securely compute additive secret sharings of X · Y. Although matrix multiplication could be naturally
generalized from MVM, the cost of matrix multiplication with parameters (n,m, k) becomes k times that
of MVM with matrix dimension (n,m) in this case. Especially when n,m ≪ N , it results in significant
communication waste. Below, we present two new matrix encoding methods that fully utilize all coefficients
of the polynomial to achieve optimal asymptotic communication complexity. We consider the row-major
approach in Section 4.1, and then show the corresponding column-major method in Section 4.2.

4.1 Matrix Encoding for Row-Major Approach

Recall that in the MVM algorithm shown in Section 3, the matrix is encoded in a packed manner, while the
vector is encoded alone. When it comes to matrix multiplication, we can reverse the encoding manner of the
matrix and vector to give a communication efficient method. That is, for the matrix Y to be encrypted, we
pack multiple columns into one plaintext polynomial, similar to the encoding of matrices in MVM. Once
the columns of matrix Y are packed, each row of matrix X must be encoded separately, and then has to be
multiplied with the encrypted Y. Figure 5 gives an example for the case that n = m,mk = N where n,m, k
are powers of two. Furthermore, we can likewise apply the SPP approach. We describe it in Algorithm 3.

For general dimensions n,m, k of matrices, we have to partition them into several blocks satisfying the
above requirements, and perform the computation on each pair of blocks of X and Y using Algorithm 3. In
the following, we give two partition methods V1, V2, which enable a trade-off between the matrix encoding
and homomorphic automorphism.

Matrix Partition V1. The first method is to partition the matrix Y vertically. Specifically, we pad m to a
power of 2, denoted by m. Then, every N/m adjacent columns of Y will be packed into a single polynomial,
and thus Y will be encrypted to ⌈km/N⌉ ciphertexts. For the matrix X, we divide it into ⌈n/m⌉ blocks

14



X =


1 2 5 1
2 3 1 1
3 1 2 1
4 2 1 2

 Y =


3 1
1 2
2 2
1 3

 Z = XY =


11 18
12 13
15 12
18 16



Encode matrix Y: { ŷ ← Ecd1(Y:0) +X4Ecd1(Y:1) }
Encode matrix X: { x̂i ← Ecd2(Xi:), i ∈ [4] }

⇓ Multiply x̂i by ŷ

x̂i · ŷ = ⟨Xi:,Y:0⟩+ · · ·+ ⟨Xi:,Y:1⟩X4 + · · · , i ∈ {0, 1, 2, 3}

⇓ output packing

ẑ = 11 + 12X + 15X2 + 18X3 + 18X4 + 13X5 + 12X6 + 16X7

Figure 5: Example for row-major based matrix multiplication with n = m = 4, k = 2, N = 8.

horizontally, each of them is of dimension m×m (padding zero for the last block if necessary). In this way,
each block of X will be multiplied by every ciphertext on Y, as shown in the left part of Figure 6.

Matrix Partition V2. Instead of padding m, we can also pad k to a power of 2, denoted by k. Then, we
divide the matrix Y into ⌈mk/N⌉ blocks horizontally, each of dimension N/k × k. Accordingly, X is
partitioned into ⌈nk/N⌉× ⌈mk/N⌉ blocks, where each block is of dimension N/k×N/k, as shown in the
right part of Figure 6.

Figure 6: Two methods of partitioning matrices X, Y

Below, we analyze the following performance characteristics for the two partition methods with SPP
optimization:

V1. The number of HomMulPt calls is n · ⌈mk/N⌉. The total number of HomAut calls is ⌈mk/N⌉(s0−1)+
⌈mk/N⌉⌈n/m⌉(s1− 1) where s0s1 = m implicitly gives the split point. The total number of ciphertexts
sent between the two parties is ⌈mk/N⌉+ ⌈n/m⌉⌈mk/N⌉.

V2. The number of HomMulPt calls is n · ⌈mk/N⌉. For HomAut, we note that the HomAut operations for
the blocks of X in the same row could be merged and performed only once. As a result, the number of
HomAut operations is ⌈mk/N⌉(s0 − 1) + ⌈nk/N⌉(s1 − 1), where s0s1 = N/k indicates the split point.
The number of ciphertexts sent is ⌈mk/N⌉+ ⌈nk/N⌉.
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Algorithm 3: RhombusMatMulRM: Row major based matrix multiplication with SPP optimiza-
tion.

Input: Matrix Xn×m, encrypted matrix ct← JYm×kK with n = m,mk = N , and split-point u.
Output: ct′ ← JX ·YK

1: ct← m−1 · ct // Remove the PackRLWEs factor.
2: h← log k
3: for i ∈ [n] do
4: x̂i ← Ecd2(Xi:) // Encode each row of X separately.
5: end
6: for τ ∈ Gal(Ku/Kh) do
7: ctτ ← HomAut(ct, τ) // SPP: Replacement
8: end
9: for i1 ∈ [nk/2u] do

10: cti1 ← Enc(0)
11: for τ ∈ Gal(Ku/Kh) do
12: ẑi1,τ ←

∑2u−h−1
i0=0 X(N/2u)·i0 · τ(x̂i0·(nk/2u)+i1);

13: cti1 ← HomAdd(cti1 ,HomMulPt(ctτ , ẑi1,τ ))

14: end
15: end
16: ct′ ← PackRLWEs({cti1}i1∈[nk/2u], u) // SPP: PackRLWEs

17: return ct′

Table 3 gives the comparison with prior works for matrix multiplication, where Encode/NTT represents
the number of plaintexts of the encoded matrix X. We note that the matrix X will be encoded to multiple
plaintexts, and then these plaintexts will be transformed to the NTT form and are multiplied by the encrypted
blocks of Y. The encoding and transformation (to NTT) could be performed only once. The number of
HomAut calls in Table 3 are the minimized by choosing the optimal split-point.

4.2 Matrix Encoding for Column-Major Method

Similar to the column-major MVM described in Section 3.3, matrix multiplication can also be realized with
the Expand algorithm. Specifically, we note that X ·Y =

∑
i∈[m]X:i ·Yi:. Taking the product of X:0 and

Y0: as an example, this tensor product can be computed as shown in Figure 7 (where X,Y are the same as
that in Figure 5).

Encode Y0:: ŷ0 = 3 + 1X4

Encode X:0: x̂0 = 1 + 2X + 3X2 + 4X3

⇓ Multiply x̂0 and ŷ0

x̂0 · ŷ0 = 3 + 6X + 9X2 + 12X3 + 1X4 + 2X5 + 3X6 + 7X7

Figure 7: Tensor of X:0 and Y0: from HE with N = 8.

Note that Y is encrypted in a packed manner. Hence, our goal is to extract the ŷ0, ŷ1, ŷ2, ŷ3, in the
same encoding manner as in Figure 7. Exactly, the extraction can be realized from the Expand algorithm by
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setting the parameter ℓ = 2.
For the general matrix parameters n,m, k, we can follow the same matrix partition methods described in

Section 4.1. In this way, the column-major matrix multiplication has the same complexity as the row-major
approach in terms of HomAut, HomMulPt and Encode/NTT operations. The only difference lies in the
processing of plaintext matrices (similar to MVM described in Section 3.3). In particular, for the dimension
(n,m) of the matrix X, the column major approach has the cheaper matrix processing than the row major
approach when n > m.

5 Performance Evaluation

In this section, we evaluate the performance of Rhombus, and compare it with prior arts. This includes the
efficiency comparison of MVM, matrix multiplication, pointwise convolution and the end-to-end inference
of ResNet50. We adopt the SEAL library [SEA21] of version 3.7 with HEXL acceleration to implement
HE-based MVM and matrix multiplication. For the pointwise convolution and ResNet50 inference, our
implementation builds upon the open-sourced PPML library OpenCheetah [HjLHD22], and simulates the
network environment with EMP-toolkit [WMK16].

Experimental Setup. All our experiments were conducted using Intel(R) Xeon(R) Platinum 8358P CPU
at 2.60GHz with 32GB of memory. We run our benchmarks in two network settings: LAN (3Gbps of
bandwidth and 0.3ms of round-trip time) and WAN (100Mbps of bandwidth and 40ms of round-trip time).
All experiments are run with 4 threads. We use the tc tool on Linux to control the network traffic.

HE parameters. Our protocols select the dimension N = 8192 of polynomial ring R, ciphertext modulus
q ≈ 2100, plaintext modulus t = 237 and standard deviation σ = 3.2 of a discrete Gaussian distribution,
which achieves 128-bit security level. For two recent protocols [HLHD22, BK23] to be compared, Cheetah
chooses the HE parameters as HE.pp[Cheetah] = {N = 4096, q ≈ 2105, t = 237, σ = 3.2}, and HELiKs
sets the HE parameters as HE.pp[HELiKs] = {N = 8192, q ≈ 2120, p ≈ 237, σ = 3.2}, which enables the
noise flooding to provide 32-bit statistical security according to the smudging lemma [AJL+12], where p is
the plaintext modulus. In Figure 8, we provide the overhead (including the runtime and noise growth) of
the basic homomorphic operations, which helps to understand the improvements we have made compared
to previous approaches.

Figure 8: Running time (in µs) and noise growth (in bit) of homomorphic operations for parameters N =
8192 and log q ≈ 100.
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5.1 Matrix Vector Multiplication

In Table 1, we give a theoretical comparison between our MVM protocol Rhombus and previous protocols,
where HomAut, HomMulPt and Encrypt are three dominated operations. We note that for the NTT encod-
ing based method, such as HELiKs [BK23], the multiplicative noise η̂mul introduced by HomMulPt will be
greater than (or equal to) ηmul of coefficient encoding. This is because the noise growth factor depends only
on the value of the coefficients of the plaintext polynomial and not on the size of the plaintext modulus, and
in most cases, the NTT encoding will transform a vector even with small elements to a polynomial whose
coefficients are spread throughout the entire plaintext space.

We use Algorithm 2 and choose the optimal split-point to minimize the number of rotations (i.e.,
HomAut) called by Rhombus. We focus on analyzing the comparison between Rhombus and the previous
approaches listed in Table 1. For the approaches with NTT encoding, HELiKs has the lower complexity than
GAZELLE and HS, and has a smaller noise growth compared to GALA by swapping the order of HomMulPt
and Rotation, such that HELiKs can choose a smaller ciphertext modulus q than GALA. For the coefficient
encoded approaches, we note that the O(r) number of HomAut calls in CHAM is more costly than the
O(
√
rc/N) number of Encrypt operations in Cheetah in most cases according to Figure 8, and CHAM

adopted the FPGA hardware to accelerate their approach to achieve a comparable performance as Cheetah.
Therefore, in terms of concrete performance (shown below), we only conduct the comparsion with the two
state-of-the-art protocols, i.e., HELiKs with NTT encoding (over a field Fp) and Cheetah with coefficient
encoding (over a ring Zt). Compared to Cheetah, Rhombus (Algorithm 2) requires additional O(

√
rc/N)

rotations. However, Cheetah requires additional O(
√
rc/N) calls of Encrypt (and decryption), which is

more expensive than rotation, as shown in Figure 8. For communication, Cheetah incurs a significant over-
head, especially for matrices with large dimensions. While HELiKs requires the number of rotations linear
in the matrix dimension, Rhombus needs only sublinear number of rotations. Furthermore, Rhombus can
drop the unused coefficients of ciphertext polynomials to further reduce the communication cost, which is
not supported by HELiKs with NTT encoding.

Table 1: Comparison of HE-based MVM protocols between Rhombus and known protocols in the
two-party setting, where r, c ≤ N are the number of rows and columns in a matrix respectively, c is also
the dimension of a vector, and N is the dimension of polynomial ring R in HE. The computational costs
of the basic operations satisfy: Encrypt ≻ Rotation ≻ HomMulPt, as shown in Figure 8. η is the initial
noise in the input ciphertext, ηmul (resp., η̂mul) is the noise introduced by HomMulPt with coefficient (resp.,
NTT) encoding, which satisfies η̂mul ≥ ηmul. ηaut is the noise introduced by HomAut.

Protocol Rotation (i.e., HomAut) HomMulPt Encrypt& Comm. Encoding Noise growth

HS [HS14] O(max{
√
r,
√
c}) O(max{r, c}) O(1) NTT (η + ηaut) · η̂mul + ηaut

GAZELLE [JVC18] O( rc
N

+ log(N
c
)) O( rc

N
) O(1) NTT (η + ηaut) · η̂mul + ηaut

GALA [ZXW21] O( rc
N
) O( rc

N
) O(1) NTT (η + ηaut) · η̂mul

HELiKs [BK23] O( rc
N
) O( rc

N
) O(1) NTT η · η̂mul + ηaut

CHAM [RCG+] O(r) O( rc
N
) O(1) Coefficient η · ηmul + ηaut

Cheetah [HLHD22] 0 O( rc
N
) O(

√
rc
N
) Coefficient η · ηmul

Rhombus O(
√

rc
N
) O( rc

N
) O(1) Coefficient (η + ηaut) · ηmul + ηaut

For concrete performance (running time and concrete communication cost), we compare Rhombus with
the state-of-the-art protocols HELiKs and Cheetah, which is reported in Figure 9. In the WAN setting, we
observe that Rhombus achieves a speedup of up to 8× over HELiKs and 3.4× over Cheetah. In the LAN
setting, we find that Rhombus improves the performance of Cheetah by 1.8× and that of HELiKs by 7.4×.
In terms of communication cost, Rhombus reduces the communication by a factor of 21× compared to
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Cheetah, and achieves the improvement of 1.8× over HELiKs.
In Table 2, we present the comparison between row major approach and column major approach on

large matrices of different dimensions. As analyzed in 3.3, we choose the optimal split point u to minimize
the number of HomAut calls, such that the only differences between the two approaches lies in the matrix
processing. In particular, when r < c, the row major approach has a cheaper matrix processing than the
column major approach, and thus performs better than the column major approach, conversely, the column
major approach outperforms the row major approach when r > c. The time difference between the two
approaches come from the different complexity of the matrix processing. And the two approaches perform
comparably when r = c.

Figure 9: Comparison of the end-to-end performance of secure two-party MVM protocols for matrices
with different dimensions in the LAN and WAN settings. Comparison of communication efficiency is also
involved in this figure. For six sub-figures, the number of columns in a matrix are 256 (two sub-figures on
the left), 1024 (two sub-figures in the middle) and 4096 (two sub-figures on the right) respectively, and these
numbers are also the dimensions of vectors. The number of rows in a matrix is shown in the x-coordinate
of these sub-figures, i.e, 128, 256, 512, 1024 and 2048.

Table 2: Comparison between row major and column major approaches for large matrices of differ-
ent dimensions, the performance data includes only the time (measured in seconds) for the computation of
MVM, excluding the time for network communication because the two approaches have the same commu-
nication overhead.

Approach
Dimension (r × c)

213 × 214 214 × 213 214 × 214 213 × 215 215 × 213 215 × 215

row major, 3.2 1.32 1.68 2.66 2.56 3.86 10.8
column major, 3.3 1.68 1.33 2.67 3.88 2.55 10.8
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Table 3: Complexity comparison of HE-based two-party matrix-multiplication protocols among
Rhombus, Iron, BumbleBee and BOLT. Two matrices have dimensions n×m and m×k, respectively.
N denotes the polynomial-ring dimension in HE. Rhombus-V1 (resp., Rhombus-V2) adopts the matrix
partition method V1 (resp., V2) shown in Section 4.1. η is the initial noise of the input ciphertexts.

HomAut HomMulPt Encode/NTT Communication Encoding Noise growth

Iron [HLC+22] 0 O(nmk
N

) O(nmk
N

) O(
√

nmk
N

) Coefficient η · ηmul

BumbleBee [LHG+23] O( kn logN√
N

) O(nmk
N

) O( nm√
N
) O( km

N
+ kn√

N
) † Coefficient η · ηmul + ηaut

BOLT [PZM+23] O(mk
√
n

N
) O(nmk

N
) O(nmk

N
) O( k(n+m)

N
) NTT (η + ηaut) · η̂mul + ηaut

Rhombus-V1 O(mk
√
n

N
) O(nmk

N
) O(n) O( k(n+m)

N
) Coefficient (η + ηaut) · ηmul + ηaut

Rhombus-V2 O(
√

nmk
N

) O(nmk
N

) O(nmk
N

) O( k(n+m)
N

) Coefficient (η + ηaut) · ηmul + ηaut

† The complexity is derived from the partition window nw = 1,mw =
√
N, k =

√
N given in BumbleBee.

5.2 Matrix Multiplication

Firstly, we show a theoretical comparison between the secure matrix-multiplication protocol Rhombus
(described in Section 4) and the most efficient protocols in the two-party setting, which is shown in Ta-
ble 3. Compared to Iron, our protocol Rhombus takes about O(

√
N/k) times less communication, where

k ≪ N for the parameters used in real-world applications. As a trade-off, Rhombus requires additional

rotations of either O(mk
√
n

N ) or O(
√

nmk
N ), which is sublinear in the dimension (either n or m) of a ma-

trix. BumbleBee [LHG+23] proposed the IntrLeave algorithm to realize the same functionality as our
PackRLWEs, but required O(min{ℓ · 2ℓ, N}) rotation calls when packing 2ℓ ciphertexts, with each hav-
ing N/2ℓ coefficients to be merged, where PackRLWEs only requires O(2ℓ) rotations and ℓ ≤ logN . While
BumbleBee requires the almost linear complexity for the number of rotations, Rhombus adopts the SPP op-
timization, which further reduces the number of rotations to sublinear complexity. Therefore, Rhombus has
a significantly lower computation cost than BumbleBee. Protocol BOLT [PZM+23] adopts NTT encoding,
and requires a noise growth larger than Rhombus, where η̂mul ≥ ηmul. For the parameters N,n,m, k used
in real-world applications, BOLT requires significantly more either encoding operations than Rhombus-V1
or rotation operations than Rhombus-V2. Therefore, Rhombus has the lower computation cost than BOLT.
Furthermore, BOLT with NTT encoding not only incurs more complex computation for encoding matrices,
but also requires additional overhead when converting the computational results to additive secret sharings
over a ring (used by BOLT to compute non-linear layers).

For the end-to-end performance of two-party matrix multiplication, we compare Rhombus with the re-
cent protocols Iron [HLC+22] and BumbleBee [LHG+23], reported in Table 4. The HE parameters for Iron
and BumbleBee are set as HE.pp[Iron] = {N = 4096, q ≈ 292, t = 237, σ = 3.2} and HE.pp[BumbleBee] =
{N = 8192, q ≈ 2112, t = 237, σ = 3.2}, respectively. Note that the code of BOLT is not publicly available
for now, and thus we only conduct a theoretical comparison with BOLT. For different matrix dimensions,
we choose a suitable matrix partition method (V1 or V2) described in Section 4.1 to achieve a better perfor-
mance. Compared to Iron, Rhombus achieves a speedup by 2.7× ∼ 3.9× (resp., 1.3× ∼ 2.3×) in the WAN
(resp., LAN) setting, and reduces the communication cost by a factor of 4.6× ∼ 8×. Compared to Bumble-
Bee, Rhombus demonstrates a performance improvement by a factor of 1.9× ∼ 3.9× (resp. 2.5× ∼ 4.5×)
in the WAN (resp., LAN) setting, and achieves a communication reduction by around 1.1×.

The comparison with BumbleBee in this work was conducted using this version: https://eprint.iacr.org/
archive/2023/1678/1698733772.pdf
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Table 4: Comparison of the end-to-end performance and communication efficiency between Rhombus with
Iron for secure matrix multiplication. The dimensions of matrices are chosen as same as that in the BERT-
base model [DCLT19] with input of 128 tokens. We refer the reader to [HLC+22, PZM+23] for more
details.

Dimension
(n,m, k)

Protocol
Running Time (s)

Comm. (MB)
LAN WAN

(128, 128, 64)

Iron [HLC+22] 0.08 0.35 1.75
BumbleBee [LHG+23] 0.16 0.23 0.24

Rhombus-V1 0.06 0.12 0.22

(768, 768, 128)

Iron [HLC+22] 1.27 2.96 15.6
BumbleBee [LHG+23] 2.39 2.45 2.93

Rhombus-V2 0.63 0.75 2.7

(3072, 768, 128)

Iron [HLC+22] 4.86 7.67 31.3
BumbleBee [LHG+23] 9.4 10 7.35

Rhombus-V2 2.07 2.55 6.75

(768, 3072, 128)

Iron [HLC+22] 5.26 8.52 31.3
BumbleBee [LHG+23] 7.2 7.4 7.3

Rhombus-V2 2.88 3.12 6.75

5.3 Pointwise Convolutions

3D convolution is a common linear operation used in DNNs. In most cases, the convolutional kernels/filters
are quite small, such as 3 × 3 and 1 × 1. In particular, pointwise convolution (with filter size 1 × 1) is
commonly used to combine feature channels, reduce dimensionality and decrease the model’s parameters.
For example, in SqueezeNet [IHM+16] and DenseNet [HLvdMW18], half of the convolutions are pointwise;
in ResNet50, ResNet101 and ResNet152 [HZRS15], there are about two-thirds of the convolutions are
pointwise. Although Cheetah has proposed a generic method for convolution computation, it performs
poorly for pointwise convolutions. Specifically, for the inference of ResNet50, the overhead for pointwise
convolutions already accounts for 80% of all convolution layers.

As an application of our matrix-multiplication protocol Rhombus, we implemented the pointwise con-
volution and evaluate its performance. In particular, pointwise convolution of a (ci, h, w) input image with
(co, fh = 1, fw = 1) filter of stride s could be transformed to the matrix multiplication with parameters
(hw/s2, ci, co) [BK23] without any additional costs. We report in Figure 10 the performance comparison
under the WAN setting among Rhombus, Cheetah [HLHD22] and HELiKs [BK23] for pointwise convolu-
tions in ResNet50. From this figure, we observe that HELiKs (resp., Cheetah) takes 338 MB (resp., 842
MB) of total communication for all pointwise convolutions, and Rhombus needs the total communication
of 182 MB, which achieves the improvement by 1.9× (resp. 4.6×), compared to HELiKs (resp., Cheetah).
For running time of computing all pointwise convolutions, while HELiKs (resp., Cheetah) takes 56 seconds
(resp., 101 seconds), Rhombus runs in about 30 seconds, which gives a speedup of 1.9× (resp., 3.4×). We
also measured the performance of pointwise convolutions in ResNet50 under the LAN setting for these pro-
tocols, which is reported in Figure 13 in Appendix. In particular, while HELiKs (resp., Cheetah) takes 35
seconds (resp. 30 seconds) for all pointwise convolutions, Rhombus needs 15 seconds, which achieves the
improvement by 2.3× (resp., 2×).
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Figure 10: Comparison of running time and communication among Rhombus, Cheetah and HELiKs
for pointwise convolutions in ResNet50 under the WAN setting. There are 53 convolutions in ResNet50
indexed by 1 ∼ 53, where the x-coordinate in this figure represents the index of pointwise convolutions
among them.

5.4 End-to-End PPML Inference

We integrate Rhombus into the OpenCheetah library to demonstrate the efficiency improvement of end-to-
end PPML inference. We use the popular DNN model ResNet50 as an example just like as in HELiKs [BK23].
In Figure 11, we illustrate the comprehensive comparison of running time between Rhombus and the state-
of-the-art protocols Cheetah [HLHD22] and HELiKs [BK23] for the end-to-end inference of ResNet50. In
this figure, we divide the convolutions into two parts: pointwise convolutions (pw-conv) and non-pointwise
convolutions (npw-conv). Figure 12 reports the comparison of communication cost among these protocols
for the end-to-end inference of ResNet50. The experiments are run under two frameworks: (1) one is Crypt-
Flow2 [RRK+20] (CF2 in short) where all sub-protocols builds over a field Fp with p ≈ 237; (2) the other
is Cheetah [HLHD22], in which all sub-protocols work over a ring Z237 . Below, we give the performance
analysis of ResNet50 inference.

Performance of HELiKs. The recent work [BK23] integrated HELiKs into the CF2 framework [RRK+20]
by replacing the original matrix-multiplication and 3D-convolution protocols with their new protocols,
which is called HELiKs+CF2. Additionally, HELiKs performed the encoding of convolutional filters and
NTT transformation in the preprocessing phase to improve the performance of the online phase. In our
benchmark, we focus on the end-to-end running time and total communication without dividing the pro-
tocol into the preprocessing and online phases. We note that both Cheetah and Rhombus can also benefit
from executing a similar preprocessing. HELiKs+CF2 works a field Fp, which leads to be less efficient than
the best-known protocol over a ring Zt for secure computation of non-linear layers. Besides, HELiKs+CF2
uses the IKNP OT extension [IKNP03] in the implementation, which incurs a large communication. The
experimental result shows that HELiKs+CF2 executes one inference in 42 minutes (resp., 195 seconds) in
the WAN (resp., LAN) setting and the communication cost of 28.8 GB.

Performance of Cheetah. Cheetah [HLHD22] builds upon a ring Z237 . For non-linear layers, Cheetah em-
ploys Ferret OT extension [YWL+20] with sublinear communication and uses it to realize the approximate
truncation, which significantly reduces the communication cost of non-linear operators. For linear layers,
Cheetah adopted the coefficient encoding to compute 3D convolution and matrix multiplication. However,
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Cheetah does not fully utilize each coefficient of the polynomial, resulting in significant waste in both com-
munication and computation. The experimental result shows that Cheetah completes one inference within
213 seconds in the WAN setting and 58 seconds in the LAN setting. Figure 11 shows the proportion of
running time of each module in Cheetah, among which 50% of running time takes at the pointwise convolu-
tions. The total communication of Cheetah is 1.77 GB, while 46% of communication is used for computing
pointwise convolutions.

Performance of Rhombus+Cheetah. We integrate Rhombus into the Cheetah framework by replacing
the original pointwise convolution and MVM protocols with our protocols. Using our protocol Rhombus,
the end-to-end running time for ResNet50 inference is improved to 141 seconds (resp., 42 seconds) in the
WAN (resp., LAN) setting, and the total communication is reduced to 1.13 GB. In terms of the end-to-end
performance, we achieve the improvement of 18× (resp., 1.5×) in the WAN setting and the improvement of
4.6× (resp., 1.4×) in the LAN setting, compared to HELiKs (resp., Cheetah). In terms of communication
efficiency, Rhombus achieves the improvements by 26× over HELiKs and 1.6× over Cheetah, as shown in
Figure 12. Due to the performance advantage of computing pointwise convolutions as shown in Section 5.3,
our solution Rhombus will also achieve better efficiency for secure two-party inference of DNN models
SqueezeNet, DenseNet, ResNet101 and ResNet152, compared to the state-of-the-art approaches HELiKs
and Cheetah, where these DNNs have at least a half of convolutions are pointwise convolutions.

Figure 11: Comparison of running time (in second) among Rhombus, HELiKs and Cheetah for the end-to-
end inference of ResNet50. The above (resp., below) image is the running time in the WAN (resp., LAN)
setting.

Figure 12: Comparison of the total communication (in MB) among secure two-party protocols for ResNet50
inference.
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A Proof of Proposition 2

We first recall the properties of field trace, and then give the proof of proposition 2 based on it. Assuming
that 0 ≤ s ≤ t ≤ logN , the field trace is the map TrKt/Ks

: Kt → Ks, â 7→
∑

τ∈Gal(Kt/Ks)
τ(â), which

is an additive homomorphism from Kt to Ks. The trace TrKt/Ks
(â) could be decomposed as TrKs+1/Ks

◦
· · · ◦ TrKt/Kt−1

(â), which can zeroize the coefficients â[i] if N
2t | i and N

2s ∤ i. It has the following desired
properties for any â, b̂ ∈ Kt, ĉ ∈ Ks:

1. TrKt/Ks
(â+ b̂) = TrKt/Ks

(â) + TrKt/Ks
(̂b)

2. TrKt/Ks
(ĉ · â) = ĉ · TrKt/Ks

(â)

3. TrKt/Ks
(ĉ) = 2t−s · ĉ

For simplicity, we write TrKt/Ks
as Trt,s for 0 ≤ s ≤ t ≤ logN , and write TrlogN,s as Trs when

t = logN . Next, we give the formal proofs of proposition 2 based on the field trace described above. At
first, we note that the PackRLWEs({cti}i∈[2ℓ], h) and Expand(ct, ℓ) could be expressed as follows:

PackRLWEs({cti}i∈[2ℓ], h)→
2ℓ−1∑
i=0

X(N/2ℓ+h)·i · Trℓ+h,h(cti)
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Expand(ct, ℓ)→ {TrlogN−ℓ(X
−i · ct)}i∈[2ℓ]

Proof of proposition 2. We claim that Algorithm 2 outputs a ciphertext which could be expressed as

ct′ ← PackRLWEs({ŷi · ct}i∈[m], h})

Let ℓ = logm, then it could be further expressed as

ct′ ←
2ℓ−1∑
i=0

X(N/2ℓ+h)·i · Trℓ+h,h(ŷi · ct)

Assume Ku is the middle field between Kh and Kℓ+h, then

ct′ =

2ℓ−1∑
i=0

X(N/2ℓ+h)·i · Trℓ+h,u(Tru,h(ŷi · ct))

due to Trℓ+h,h = Tru,h ◦ Trℓ+h,u = Trℓ+h,u ◦ Tru,h (Note that we are abusing notation here, as strictly
speaking, Tru,h is only defined for the input from Ku, however, we can easily extend it to the large filed
K, as decribed in Section 2.3). Let i = i0 · 2ℓ+h−u + i1, then the monomial XN/2ℓ+h·i can be rewritten as
X(N/2u)·i0 ·X(N/2ℓ+h)·i1 , and the first part can be moved into Trℓ+h,u according to property 2. Specifically,
we have

ct′ =
2ℓ+h−u−1∑

i1=0

X(N/2ℓ+h)·i1 · Trℓ+h,u(cti1) (3)

where cti1 =
∑2u−h−1

i0=0 X(N/2u)·i0 · Tru,h(ŷi0·2ℓ+h−u+i1 · ct). And the cti1 could be further written as

cti1 =
∑

τ∈Gal(Ku/Kh)

2u−h−1∑
i0=0

X(N/2u)·i0 · τ(ŷi0·2ℓ+h−u+i1)

 · τ(ct)
The expression in parentheses for some τ is just the ẑi1,τ in step 15 of Algorithm 2 (Note that 2ℓ+h−u =
r/2u).

Finally, it’s easy to find that the equation 3 happens to be the PackRLWEs({cti1}i1∈[r/2u], u) which
corresponds to the step 19. This completes the proof.

B Column major based MVM

The column major based MVM with SPP optimization is described in Algorithm 4. The following proposi-
tion 3 shows its correctness.

Proposition 3. Given a matrix W with dimensions r, c ≤ N and an encrypted vector JvK (encoded by
Ecd1), Algorithm 4 outputs a ciphertext ct′, which decrypts to a polynomial â′ with â′[i] = (W · v)[i] for
i ∈ [r].

Proof. Similar to the proof of proposition 2, we prove that Algorithm 4 could be expressed as

ct′ ←
c−1∑
i=0

ŵi · Expand(ct, ℓ)[i]
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Algorithm 4: RhombusMVMCM: Column-major based approach with SPP optimization.
Input: r× c matrix W with r, c ≤ N (powers of two), a ciphertext ct← JvK, and the split-point u.
Output: A ciphertext ct′ ← JWvK.

1: for i ∈ [c] do
2: ŵi ← Ecd1(W:i)
3: end
4: ct← c−1 · ct // To remove the Expand factor
5: {cti1}i1∈[N/2u] ← Expand(ct, logN − u)

6: ct′ ← Enc(0)
7: for τ ∈ Gal(Ku/KlogN−log c) do
8: ctacc ← Enc(0)
9: for i1 ∈ [N/2u] do

10: ŷi1,τ ←
∑2uc/N−1

i0=0 τ−1(ŵi0(N/2u)+i1) ·X−i0(N/2u)

11: ctacc ← HomAdd(ctacc,HomMulPt(cti1 , ŷi1,τ ))

12: end
13: ct′ ← HomAdd(ct′,HomAut(ctacc, τ))

14: end
15: return ct′

Figure 13: Performance comparison among Rhombus, Cheetah and HELiKs for pointwise convolu-
tions in ResNet50 under the LAN setting. There are 53 convolutions in ResNet50 indexed by 1 ∼ 53,
where the x-coordinate in this figure represents the index of pointwise convolutions among them.

where ℓ = log c. It could be also written as

ct′ ←
c−1∑
i=0

ŵi · TrlogN−ℓ(X
−i · ct).

Choosing u as the split point with logN − ℓ ≤ u ≤ logN , the equation described as above could be
further written as

ct′ =

c−1∑
i=0

ŵi · Tru,logN−ℓ

(
Tru(X

−i · ct)
)
.
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Next, we decompose i = i0 · (N/2u) + i1, and then we have

ct′ =

c2u/N−1∑
i0=0

N/2u−1∑
i1=0

ŵi0(N/2u)+i1 · Tru,logN−ℓ(X
−i0(N/2u)cti1)

where cti1 = Tru(X
−i1 ·ct). The cti1 , i1 ∈ [N/2u] could be computed by Expand(ct, logN−u). Expanding

the trace Tru,logN−ℓ and rearranging the expression, we have the following result:

ct′ =
∑

τ∈Gal(Ku/KlogN−ℓ)

τ

N/2u−1∑
i1=0

ŷi1,τ · cti1


where ŷi1,τ =

∑c2u/N−1
i0=0 τ−1(ŵi0(N/2u)+i1) ·X−i0·(N/2u) corresponds to the step 10 in Algorithm 4. This

completes the proof.
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