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Abstract

In this work, we provide new, tighter proofs for the TRH -transformation by Jiang et al.
(ASIACRYPT 2023), which converts OW-CPA secure PKEs into KEMs with IND-1CCA
security, a variant of typical IND-CCA security where only a single decapsulation query is
allowed. Such KEMs are efficient and have been shown sufficient for real-world applications
by Huguenin-Dumittan and Vaudenay at EUROCRYPT 2022. We reprove Jiang et al.’s
TRH -transformation in both the random oracle model (ROM) and the quantum random
oracle model (QROM), for the case where the underlying PKE is rigid deterministic. In both
ROM and QROM models, our reductions achieve security loss factors of O(1), significantly
improving Jiang et al.’s results which have security loss factors of O(q) in the ROM and
O
(
q2
)
in the QROM respectively. Notably, central to our tight QROM reduction is a new

tool called “reprogram-after-measure”, which overcomes the reduction loss posed by oracle
reprogramming in QROM proofs. This technique may be of independent interest and useful
for achieving tight QROM proofs for other post-quantum cryptographic schemes. We remark
that our results also improve the reduction tightness of the TH -transformation (which also
converts PKEs to KEMs) by Huguenin-Dumittan and Vaudenay (EUROCRYPT 2022), as
Jiang et al. provided a tight reduction from TH -transformation to TRH -transformation
(ASIACRYPT 2023).
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1 Introduction

Indistinguishability against Chosen-Ciphertext Attacks (IND-CCA) has been widely consid-
ered as the security standard for post-quantum key encapsulation mechanisms (KEMs) [10, 20,
34, 35, 36, 37, 40, 47], which could be achieved by applying the Fujisaki-Okamoto-like (FO-
like) transformation [27] to public-key encryption (PKE) with security weaker than IND-CCA.
However, in the post-quantum cryptography (PQC) migration, it has been shown that IND-
1CCA-secure KEM is sufficient to replace the Diffie-Hellman key exchange in TLS 1.3 [21] and
Signal [14] to achieve post-quantum security [31]. Compared to IND-CCA security, IND-1CCA
security allows the adversary to make only a single decapsulation query. This restriction en-
ables more efficient transformations [31, 33] than the FO-like approach, as it removes the need
for the time-consuming re-encryption operation in the decapsulation algorithm. In particular,
Huguenin-Dumittan and Vaudenay [31] pointed out that omitting the re-encryption step could
speed up the decapsulation algorithm of Kyber [13] and Frodo-AES [2] by 2.17 times and 6.11
times, respectively. Besides, removing the re-encryption operation might enhance the security
of the obtained KEM against side-channel attacks [49].

To design IND-1CCA-secure KEMs, Huguenin-Dumittan and Vaudenay [31] proposed two
transformations called TCH and TH , both of which build KEMs from PKE schemes with One-
Wayness against Chosen-Plainxt Attacks (OW-CPA). In particular, TCH is a variant of the RE-
ACT transformation [43], and TH is the same as the U⊥ transformation in [27]. Later, Jiang et
al. [33] presented an implicit variant of TH called TRH where the decapsulation algorithm returns
a pseudo-random value instead of an explicit abort symbol for an invalid ciphertext. Also, they
provided tighter proofs for TH by reducing its IND-1CCA security to the IND-1CCA security
of TRH .

Table 1 lists the reduction tightness of these transformations with deterministic PKE in
the random oracle model (ROM) [7] and the quantum random oracle model (QROM) [11].
Hereafter, we will use TD

X to denote TX with deterministic PKE for X ∈ {CH,H,RH}. As
shown in Table 1, the ROM proof of TD

CH is almost tight, but the QROM proof of TD
CH requires

an additional hash function for ciphertext verification which increases the size of ciphertext. In
contrast, the QROM proofs of TD

H and TD
RH in [33] do not need ciphertext expansion.

Jiang et al. [33] not only made improvements on the reduction tightness of TH , but also
proved that the reduction losses O(q) and O

(
q2
)
are unavoidable in the ROM and QROM

proofs of TRH respectively. However, in this work we found that these reduction losses could be
further reduced to O(1) when the underlying PKEs are rigid deterministic (See Section 1.2 for
detailed explanation). These tight security reductions could improve the practical efficiency of
KEMs built via the TD

RH due to no need to increase the security parameter to compensate for
the loss factor.

1.1 Our Contributions

In this work, we provide new, tighter proofs for the TRH -transformation by Jiang et al. [33]
when the underlying PKE is rigid deterministic1, as shown in Table 1, and our contributions
are as follows.

First, we present a tight security proof with loss factor O(1) for TD
RH in the ROM (The-

orem 3.1). In this proof, we propose a new strategy to simulate the decapsulation oracle
successfully with probability 1/2. This strategy takes full advantage of the rigid deterministic
property of PKE, and does not have to guess the random oracle query of adversary.

1The property of “rigidity” is studied by Bernstein and Persichetti [8]. Roughly speaking, it means that
Enc(pk,m) = c for every (pk, sk)← Gen(1λ), c ∈ C, and m := Dec(sk, c).
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Table 1: The reduction tightness of transformations from OW-CPA-secure deterministic PKE to
IND-1CCA-secure KEM in the ROM/QROM. Here ϵR represents the advantage of the reduction
algorithm R with respect to the OW-CPA security of the underlying PKE scheme, ϵA represents
the advantage of the adversary A with respect to the IND-1CCA security of the obtained KEM
scheme, and q is the total number of random oracle queries made by A.

Model Transformation Reduction tightness

ROM

TD
CH [31] ϵR ≈ ϵA [31]

TD
H [31]

ϵR ≈ O
(
1/q2

)
ϵA [31]

ϵR ≈ O(1/q)ϵA [33]

TD
RH [33]

ϵR ≈ O(1/q)ϵA [33]

ϵR ≈ ϵA (Our work)

QROM

TD
CH [31] ϵR ≈ O

(
1/q3

)
ϵ2A [31]

TD
H [31] ϵR ≈ O

(
1/q2

)
ϵ2A [33]

TD
RH [33]

ϵR ≈ O
(
1/q2

)
ϵ2A [33]

ϵR ≈ ϵ2A (Our work)

Gen(1λ)

1 : (pk, sk)← Gen′(1λ)

2 : return (pk, sk)

Encaps(pk)

1 : m←$M
2 : c← Enc′(pk,m)

3 : k := H(m, c)

4 : return (k, c)

Decaps(sk, c)

1 : m′ := Dec′(sk, c)

2 : if m′ = ⊥ then

3 : return k′ := H(⋆, c)

4 : return k′ := H(m′, c)

Figure 1: KEMRH := TRH [PKE′, H].

Second, we extend the above strategy to the QROM and obtain a tight security proof with
loss factor O(1) for TD

RH in the QROM (Theorem 4.2). At the core of our QROM proof for
TD
RH is a novel technique called reprogram-after-measure, which is used to handle the issue of

random oracle reprogramming in the QROM.
Compared with existing techniques including one-way to hiding (O2H) [3, 10, 40, 51] and

measure-and-reprogram [18, 19], our technique is tailored for this particular case and introduces
a reduction loss of O(1) only. Note that our results also improve the reduction tightness of
TD
H [31], as Jiang et al. [33] provided a tight reduction from TH to TRH .

1.2 Results Overview

TRH transformation is shown in Fig. 1, whereM and C are the message space and the ciphertext
space of the underlying PKE scheme PKE′ = (Gen′,Enc′,Dec′), respectively, K is the key space
of KEMRH , ⋆ is a fixed public value, and H is a hash function mapping from M∪ {⋆} × C to
K. For simplicity, we only consider the case of ⋆ ∈ M, and the case of ⋆ ̸∈ M can be proved
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similarly.

On the Reduction Tightness of TRH by Jiang et al. [33]. Theorem 5.1 in [33] says that the
reduction loss factors O(q) and O

(
q2
)
are unavoidable in the ROM and QROM proofs of TRH

when the underlying PKE is malleable. The proof of this theorem describes a ROM/QROM
adversary B against the IND-1CCA security of TRH . In specific, given c∗ ← Enc′(pk,m∗) and
k∗, B needs to determine whether k∗ = H(m∗, c∗) or k∗ is a random value over K. By the
malleability of PKE′, B first derives a new c′ from c∗ where c′ = Enc′(pk, f(m∗)) and f is the
function associated to the malleability of PKE′. Then, B makes the single decapsulation query
on c′ and receives tag = H(f(m∗), c′). Now B makes random oracle queries to find m∗ ∈ M
such that H(f(m∗), c′) = tag, and computes H(m∗, c∗) to check whether k∗ is random or not.
Let q be the total number of random oracle queries made by B, Jiang et al. [33] pointed out
that these q random oracle queries contribute to unavoidable loss factors of O(q) and O

(
q2
)
in

the ROM and QROM.
Note that if Enc′(pk, ·) is rigid deterministic, B could find correctm∗ by computing Enc′(pk, ·)

and comparing with c∗ instead of querying random oracle, and the loss factors in the ROM and
QROM could be avoided. This fact implies that it might be possible to improve the reduction
tightness of TD

RH by Jiang et al. [33].

Our Result I: Tight ROM Proof of TD
RH . As pointed out by Jiang et al. [33], the core of

the ROM proof is simulating decapsulation oracle without sk. The simulation of hash function
H relies on a hash list to record all the random oracle queries and corresponding hash values.
The ROM proof of TD

RH in [33] is based on the fact that the decapsulation oracle always makes
a random oracle query to generate k′ and one could find the corresponding query from the
hash list of H, say the i∗-th entry, where i∗ ∈ {0, . . . , q} and q is the total number of random
oracle queries made by A. So, the simulator of decapsulation oracle first randomly selects
i∗ ∈ {0, . . . , q}. If the i∗-th entry is not empty when A queries the decapsulation oracle, it
returns the hash value of this entry; otherwise, it returns a random k∗ ∈ K and when A makes
the i∗-th hash query, k∗ is returned. Therefore, the probability of a successful simulation is
1/(q + 1).

To achieve tighter proof, we present a new simulation strategy. That is, determining the
way to compute k′ in decapsulation oracle based on a correct guess on m′ ̸= ⊥ with probability
1/2. In the case of a correct guess on m′ ̸= ⊥, assuming PKE′ is perfectly correct, the simulator
of decapsulation oracle first checks whether there is a pair (m′, c) in the hash list such that
Enc′(pk,m′) = c:

• If such a pair exists, then k′ := H(m′, c). The perfect correctness and the rigidity of the
deterministic PKE′ guarantee that if Enc′(pk,m′) = c, then Dec′(sk, c) = m′.

• Otherwise, A does not have any knowledge of H(m′, c). Responding with k′ := k∗, where
k∗ ∈ K is a random value, implicitly assigns k∗ to H(m′, c) and would not be noticed by
A. After this, if A makes a random oracle query on this pair, the random oracle should
return k∗.

This completes the simulation of the decapsulation oracle without the knowledge of sk. The
probability of a successful simulation is 1/2, and the loss factor of our proof is 2. Note that if
PKE′ is δ-correct where δ ̸= 0, i.e., PKE′ is not perfectly correct, then there will be an error
term δ in our reduction result.

Our Result II: Tight QROM Proof of TD
RH . Note that, in the QROM, since A can make

the random oracle queries in superposition, there is no such a hash list that can copy down A’s
queries and their responses, which implies that we cannot implicitly reprogram H(m′, c) to the
random k∗ as above. So, we propose following technique to fix this issue.
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A New Tool: Reprogram-after-Measure. We present a simulator that can use a random
value to simulate the decapsulation oracle without the knowledge of sk. This simulator sim-
ulates the random oracle using Zhandry’s compressed oracle technique [55], which can record
information about the adversary’s quantum queries into a database in superposition without
being detected by adversary. Assuming PKE′ is perfectly correct and rigid deterministic, we
can still use the simulation strategy in the ROM, i.e., guessing whether m′ is equal to ⊥ or not
with probability 1/2. When m′ ̸= ⊥ and the guess is correct, we have Enc′(pk,m′) = c, as Enc′

is rigid deterministic and perfectly correct. Then we could find the pair (m′, c) that satisfies
Enc′(pk,m′) = c in the database, and store the responses in a quantum register in superposition.
Now we measure this register in the computational basis to get the classical response to (m′, c).
This response may be in two cases: k∗ ∈ K, or ⊥ ̸∈ K. The latter implies that H(m′, c) has
not been defined, so we use a random k∗ ←$ K to replace it. Now, we let k∗ be the response
to the decapsulation oracle query on c. To make the random oracle responses consistent, in
the subsequent random oracle query, we respond with k∗ if the query is (m′, c), or still use
the compressed oracle to obtain the responses otherwise. This completes the decapsulation
simulation and the proof sketch in the QROM. For generality, we further extend this method
into a reprogram-after-measure technique, which can address the oracle reprogramming issue
encountered during the single classical query in the QROM, and is proved in Section 4.1.

The Proof in the QROM. Similar to the ROM proof of TD
RH (see Theorem 4.2), the QROM

proof also can be divided into following two steps:

1. The first step (games G0 to G4): We use a random k ←$ K to replace the k := H(m, c) in
Encaps, and use the double-sided O2H lemma (Lemma 2.1) to convert the advantage of A
detecting this change to the probability of a new adversary B outputting the corresponding
m.

2. The second step (games G5 to G8): We use the proposed reprogram-after-measure tech-
nique to simulate the decapsulation oracle without sk, and then use the ability of B to
attack the OW-CPA security of PKE′.

The tightness of this QROM proof results from our reprogram-after-measure technique that
has a tighter upper bound than the measure-and-reprogram technique used in [33].

1.3 Discussions

Note that Jiang et al. [33] proved that there are unavoidable reduction losses of O(q) and O
(
q2
)

in the security proof of TRH in the ROM and the QROM, respectively, where q is the number
of random oracle queries made by the adversary. We should stress that instead of indicating
any flaw in Jiang et al.’s negative results, our work merely demonstrates that there is a special
case which is not captured in their given proofs.

The technique used by Jiang et al. to prove the negative results is a so-called meta-reduction
technique [5, 17, 28]. In the case where the underlying PKE′ is malleable, the main idea is to
use the decapsulation oracle to construct an adversary B to attack the IND-1CCA security of
KEMRH directly.

In the ROM, roughly speaking, given the challenge encapsulation c∗ ← Enc′(pk,m∗), B uses
the malleability of PKE′ to construct a new encapsulation c′ from c∗ such that Dec(sk, c′) =
f(m∗), where f is a special function related to the property of the malleability. Then, B
makes a decapsulation query on c′ to obtain a tag := H(f(m∗), c′). Finally, through q many
H random oracle queries, B attempts to get m∗ ∈ M such that H(f(m∗), c′) = tag, and then
uses H(m∗, c∗) to distinguish k0 from k1. Assume that the underlying PKE scheme PKE′ is
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λ-bit secure, which implies that the probability for any PPT adversary breaking the OW-CPA
security of PKE′ is no more than O

(
1/2λ

)
. Therefore, after q many H random oracle queries,

the probability of getting m∗ is no more than O
(
q/2λ

)
. Therefore, they claim that there is an

unavoidable reduction loss of O(q) in the security proof for TRH in the ROM.
However, we can note that, in the aforementioned attack, the role of the decapsulation oracle

is to generate a tag, which is the image of m∗ under a deterministic mapping g(·) := H(f(·), c′),
and the q manyH random oracle queries are used to guess the preimage of tag under g. However,
in the case where PKE′ is deterministic, Enc′ itself can provide a deterministic mapping from m∗

to c∗ that neither relies on the use of the decapsulation oracle nor on queries to the H random
oracle. This implies that, at this point, B does not require access to the decapsulation oracle
or the H random oracle; he simply invokes Enc′ q times to achieve the effect of invoking the
H random oracle q times. Note that B’s advantage in the OW-CPA game of PKE′ surpasses
the probability of successfully guessing the plaintext m∗ corresponding to the ciphertext c∗ by
invoking Enc′ q times. Consequently, the aforementioned conclusion regarding an unavoidable
reduction loss of O(q) in the ROM is inapplicable when PKE′ is a deterministic public-key
encryption scheme. (Clearly, we also present a security proof with a reduction loss of O(1) as
evidence.) Note that in the case where PKE′ is probabilistic, the security proof given by Jiang et
al. [33] incurs a reduction loss of O

(
q2
)
, which is not as tight as claimed in their negative results.

Hence, an intriguing open question is whether this O
(
q2
)
reduction loss is unavoidable when

PKE′ is probabilistic, or if the reduction loss in this case can be refined.
In the QROM, similar to the case in the ROM, the core idea is to use the malleability

of PKE′ to generate a new encapsulation c′ from c∗, where c∗ is the challenge encapsulation,
Enc(pk,m∗) = c∗, Dec(sk, c′) = f(m∗), and f is a function related to the malleability of PKE′,
make the decapsulation oracle query on c′ to obtain k′ = H(f(m∗), c′), use the Grover’s al-
gorithm [26] to find m∗ from k′, and then use H(m∗, c∗) to distinguish k0 from k1, where the
Grover’s algorithm needs q times Grover iterations, and each Grover iteration needs to make
a random oracle query. Jiang et al. [33] show that this method to distinguish k0 from k1 can
succeed with probability at least (q + 1)2/|M|, and can derive the conclusion that reduction
loss O

(
q2
)
in the security proof for TRH in the QROM is unavoidable.

Similar to the analysis in the ROM, the use of the random oracle is to compute the de-
terministic mapping g(·) := H(f(·), c′) in order to recover m∗ from k′, but the deterministic
PKE′ itself can provide the deterministic mapping Enc′ from m∗ to c∗. Therefore, the Grover
iteration can use Enc′ instead of the random oracle to achieve the same purpose, which implies
that the conclusion about the unavoidable reduction loss O

(
q2
)
for the security proof of TRH

in the QROM is inapplicable when PKE′ is deterministic.
We should note that in the above analyses, we do not require that the deterministic PKE′

should be rigid. Therefore, there is an open problem that when the underlying PKE is deter-
ministic but not rigid, whether the reduction losses of O(q) and O

(
q2
)
given by Jiang et al. [33]

in the ROM and the QROM, respectively, can be improved or not.

1.4 Related Work

The quantum random oracle model (QROM) [11] has been a popular model to analyze the
security of some post-quantum cryptographic schemes, such as encryption [38, 54], signature [1,
9, 24, 46], authenticated key exchange (AKE) [30, 41, 44], classical verification of quantum
computations (CVQC) [6, 15], and other cryptographic primities [4, 29, 32]. Many works [53, 56]
showed that there exist schemes that are secure in the ROM but insecure in the QROM, which
implies that the QROM is stronger than the ROM.

TCH , TH , and TRH can be seen as the simplified versions of the FO-like transformation,
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where the FO-like transformation is a variant of the Fujisaki-Okamoto transformation [22, 23]
under KEM. Targhi et al. [50] and Hofheinz et al. [27] conducted the first analyses of the security
of FO transformation and FO-like transformation in the QROM, respectively. However, these
works need to introduce an additional hash function to achieve post-quantum security, and the
proofs suffer from the quartic reduction loss. For the case where the KEM is implicit reject,
Jiang et al. [34] provided a proof for the FO-like transformation without the additional hash,
where the degree the reduction loss is decreased from quartic to quadratic, and the factor
of the reduction loss is O

(
q2
)
. Jiang et al. [37] further pointed out that quadratic loss is

unavoidable in the measurement-based black-box reduction, where the adversary is accessed in
a black-box manner and is only run once without rewinding, and the reduction algorithm is
performed by measuring the state of the adversary. In the following works, Jiang et al. [36]
used the semi-classical O2H lemma proposed by Ambainis [3] to improve the security reduction
to ϵR ≈ O(q)ϵ2A, while Bindel et al. [10] proposed the double-sided O2H lemma to improve the
security reduction to ϵR ≈ ϵ2A. To investigate a tighter transformation, Saito et al. [47] proposed
the SXY transformation based on the FO-like transformation, and got a tight security reduction
to the newly defined security called disjoint simulatability. This tight result is extended by
Jiang et al. [35] to the KEM with explicit reject. Considering stronger quantum adversaries,
Xagawa and Yamakawa [52] further proved the IND-QCCA security2 of these PKE-to-KEM
transformations [35, 47] in the QROM. To remove the quadratic loss, Kuchta et al. [40] provided
the measure-rewind-measure lemma and obtained a security reduction with tightness ϵR ≈
O(1/q)ϵA. As previous works mainly focused on the cases where the underlying PKE has
negligible decryption errors, Cini et al. [16] proposed a new transformation that can work for
the PKE with non-negligible decryption errors. In addition, Kitagawa and Nishimaki [39] and
Pan and Zeng [45] further considered other security notions of the FO-like transformations,
named key dependent message (KDM) security and selective opening security (SO) against
chosen-ciphertext attacks, respectively.

The compressed oracle technique is a useful tool provided by Zhandry [55]. Based on it,
Don et al. [20] proposed an online extractor and provided a proof for the textbook FO trans-
formation with tightness ϵR ≈ O

(
1/q2

)
ϵ2A. Using a similar method, Shan et al. [48] and Ge et

al. [25] began to analyze the IND-QCCA security of the FO-like transformation. TCH and TH
are proposed by Huguenin-Dumittan and Vaudenay [31], but the QROM proof for TH is left.
Jiang et al. [33] proposed and provided the ROM and QROM proofs for TRH , and related the
IND-1CCA security of TRH to that of TH in the QROM. However, their proofs of TRH can be
improved when the underlying PKE is rigid deterministic.

2 Preliminaries

2.1 Notation

We represent the function H with domain X and codomain Y as H : X → Y. We denote the set
of such functions as ΩH . For any set S, we use |S| to represent its cardinality and use s ←$ S
to denote the random choice of an element s from S with uniform probability. To indicate the
output of a probabilistic (or deterministic) algorithm A with input x as y, we use the notation
y ← A(x) (or y := A(x)). Additionally, AH (or A|H⟩) denotes an oracle algorithm that has
classical (or quantum) access to the oracle H. We utilize the notation [x = y] to represent
an integer value of 1 when x = y and 0 otherwise. The security parameter is denoted by λ,
and PPT stands for probabilistic polynomial time. The base of logarithm log is 2, unless stated
otherwise.

2The decapsulation oracle can also be accessed in superposition.
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2.2 The (Quantum) Random Oracle Model

For the introduction to the fundamentals of quantum computation, we recommend readers refer
to [42]. In brief, the state space of a quantum system is a complex vector space with an inner
product. The Dirac notation “|·⟩” (and “⟨·|”) is used to represent unit vectors, known as state
vectors, in the state space (and their counterparts in the dual space). The state space can be
spanned by a set of orthonormal bases called computational bases. The joint state of |ψ⟩ and
|ϕ⟩ is |ψ⟩ ⊗ |ϕ⟩. The norm of a state |ψ⟩, denoted as ∥|ψ⟩∥, is calculated as

√
⟨ψ|ψ⟩, where

“⟨ψ|ϕ⟩” signifies the inner product between |ψ⟩ and |ϕ⟩.
The random oracle model (ROM), as introduced in [7], is an idealized model where the hash

function is modeled as a publicly accessible random oracle. In this model, to get the value of
H(x) for a given hash function H, an adversary must make a H random oracle query on x.
The quantum analog of this model, known as the quantum random oracle model (QROM) [11],
permits adversaries to make the random oracle queries in a superposition state. Here, the H
random oracle behaves as a unitary transformation, mapping |x, y⟩ to |x, y ⊕H(x)⟩. It is worth
noting that traditional, or “classical”, queries are still permissible in the QROM. These can be
interpreted as first querying the random oracle on |x, 0⟩ and then measuring the second register
to obtain the classical output [20].

2.3 The One-Way to Hiding Lemma

In the ROM, random oracles serve as a crucial tool for learning the adversary’s queries. An
adversary cannot learn any knowledge about H(x) without querying the H random oracle for
x. Furthermore, without querying the random oracle at x, the adversary cannot discover the
reprogramming of the oracle at that point. Under certain conditions in the QROM, the simulator
can exploit the adversary’s behavior to identify the point of random oracle reprogramming by
employing the “one-way to hiding (O2H)” lemma. In this work, we adopt the version of the
O2H lemma introduced by Bindel et al. [10], which has a tight bound except for a quadratic
loss that is impossible to avoid [37].

Lemma 2.1 (Double-Sided One-Way to Hiding [10]). Let G,H : X → Y be random functions
such that ∀x ̸= x∗ ∈ X , G(x) = H(x), and z be a random value, where (G,H, x∗, z) may have
arbitrary joint distribution. Let A|H⟩ be an oracle algorithm that has quantum access to the H
random oracle. Then there exists a double-sided oracle algorithm B|G⟩,|H⟩ that can access both
G and H, such that∣∣∣Pr[Ev : A|G⟩(z)]− Pr[Ev : A|H⟩(z)]

∣∣∣ ≤ 2
√
Pr[x̂ = x∗ : x̂← B|G⟩,|H⟩(z)]

for an arbitrary classical event Ev.

2.4 The Compressed Oracle Technique

The reduction in the ROM is allowed to record the adversaries’ queries, but this feature was
once considered impossible in the QROM. This is due to the quantum no-cloning principle,
which implies that any direct recording of a quantum state would alter the adversary’s state.
Fortunately, Zhandry [55] overcomes this “recording barrier” by introducing the compressed
oracle technique. The basic idea is to purify the quantum random oracle and then record
adversaries’ queries on the purified quantum random oracle.

Definition 2.1 (Compressed Standard Oracle). Let D represent the database composed of q
pairs (x, y) ∈ (X×Y)∪(⊥, 0n) where n := log |Y| and q signifies the maximum quantum random
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oracle queries a quantum adversary could make. The structure of D is as follows:

D = ((x1, y1), (x2, y2), . . . , (xl, yl), (⊥, 0n), . . . , (⊥, 0n)) ,

where 0 ≤ l ≤ q, (xi, yi) ∈ X × Y for i = 1, · · · , l, x1 < · · · < xl, and D ends with q − l pairs of
(⊥, 0n). We denote the set of such databases as D. For any x ∈ X , if there exists a y such that
(x, y) ∈ D, then we define D(x) = y; otherwise, D(x) = ⊥. Notably, no two pairs in D share
the same x. We use |D| to denote the number of (x, y) pairs in D where x ̸= ⊥. When |D| < q
and D(x) = ⊥, we define D ∪ (x, y) as the operation of removing one (⊥, 0n) entry from D and
then inserting (x, y) while preserving the ascending order of x values.

Let D be a quantum register with state space H = C[D]. On the basis state |D⟩ (where
D ∈ D), we define a unitary decompression procedure Fx as follows:

• If D(x) = ⊥ and |D| < q, we have

Fx |D⟩ = 2−n/2
∑
y

|D ∪ (x, y)⟩ ,

Fx

(
2−n/2

∑
y

|D ∪ (x, y)⟩

)
= |D⟩ ,

Fx

(
2−n/2

∑
y

(−1)z·y |D ∪ (x, y)⟩

)
= 2−n/2

∑
y

(−1)z·y |D ∪ (x, y)⟩ where z ̸= 0 .

• If D(x) = ⊥ but |D| = q, we have Fx |D⟩ = |D⟩ .

Let X and Y be the input and output registers of the quantum random oracle, respectively.
We define a unitary operator Ox that is applied to YD as

Ox : |y,D⟩ → |y ⊕D(x), D⟩ .

Note that unlike the definition in [55] where y⊕⊥ = y, here we define 0n⊕⊥ = ⊥, ⊥⊕0n = ⊥,
⊥⊕⊥ = 0n, and for y ∈ Y \ {0n}, y⊕⊥ = y, ⊥⊕ y = ⊥3. In the end, the compressed standard
oracle applied to XYD can be defined as

CStO :=
∑
x

|x⟩ ⟨x| ⊗ FxOxFx .

The compressed standard oracle is proved to be perfectly indistinguishable from the quantum
random oracle by Zhandry [55].

Lemma 2.2 (Lemma 4 in [55]). The compressed oracle as defined in Definition 2.1 with D set
as
⊗q

i=1(⊥, 0n) initially is perfectly indistinguishable from a quantum random oracle H : X → Y
for any quantum adversary making at most q random oracle queries.

2.5 Cryptographic Primitives

Definition 2.2 (Public-Key Encryption). The public-key encryption (PKE) scheme is com-
posed of three PPT algorithms with the security parameter λ, a message space M, and a
ciphertext space C: (1) The key generation algorithm Gen is a probabilistic algorithm that
takes as input 1λ and outputs a public/private key pair (pk, sk). (2) The encryption algorithm

3With this definition, we can verify that OxOx = I, indicating that the adjoint of Ox is itself, and thus Ox is
unitary.
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Enc is a probabilistic algorithm that takes as input pk and a message m ∈ M, and outputs a
ciphertext c ∈ C. (3) The decryption algorithm Dec is a deterministic algorithm that takes as
input sk and c ∈ C, and outputs m ∈M or a special ⊥ ̸∈ M value.

The correctness requirement of a PKE is that for all possible outputs (pk, sk) of Gen(1λ),
and all possible outputs c of Enc(pk,m), we have Dec(sk, c) = m. We say a PKE scheme is
deterministic if Enc is a deterministic algorithm.

Definition 2.3 (δ-correctness [20]). We say a PKE scheme is δ-correct if

E(pk,sk)←Gen(1λ)

[
max
m∈M

Pr[Dec(sk, c) ̸= m : c← Enc(pk,m)]

]
≤ δ .

If δ = 0, then we say the PKE scheme is perfectly correct.

Definition 2.4 (rigidity [8]). We say a deterministic PKE scheme is rigid if Enc(pk,m) = c for
every (pk, sk)← Gen(1λ), every c ∈ C, and m := Dec(sk, c), when the PKE is correct.

Definition 2.5 (The OW-CPA Security of PKE). We define the OW-CPA security of a PKE
scheme PKE = (Gen,Enc,Dec) in terms of an attack game between a challenger and an adversary
A, as follows. The challenger computes

(pk, sk)← Gen(1λ), m∗ ←$M, c∗ ← Enc(pk,m∗) ,

and sends (pk, c∗) to A. Finally, A outputs m̂ ∈ M. We define A’s advantage with respect
to PKE as AdvOW-CPA

PKE (A) := Pr[m∗ = m̂], and if this advantage is negligible for all PPT
adversaries, we say that PKE is OW-CPA secure. We refer to the m∗ and the c∗ computed by
the challenger as the challenge message and the challenge ciphertext, respectively.

Definition 2.6 (Key Encapsulation Mechanism). Key encapsulation mechanism (KEM) is
specified by three PPT algorithms with the security parameter λ, a key space K, and an en-
capsulation space C: (1) The key generation algorithm Gen is a probabilistic algorithm that
takes as input 1λ and outputs a public/private key pair (pk, sk). (2) The encapsulation al-
gorithm Encaps is a probabilistic algorithm that takes as input pk and outputs a pair (k, c)
where the key k ∈ K and the encapsulation c ∈ C. (3) The decapsulation algorithm Decaps is a
deterministic algorithm that takes as input sk and c ∈ C, and outputs k ∈ K ∪ {⊥}.

The correctness requirement of a KEM is that for all possible outputs (pk, sk) of Gen(1λ),
and all possible outputs (k, c) of Encaps(pk), we have Decaps(sk, c) = k. We usually say that a
KEM is explicit reject if ⊥ ̸∈ K, while a KEM is implicit reject if ⊥ ∈ K represents a random
value.

Definition 2.7 (The IND-1CCA Security of KEM). We define the IND-1CCA security of a
KEM scheme KEM = (Gen,Encaps,Decaps) in terms of an attack game between a challenger
and an adversary A, as follows. The challenger computes

(pk, sk)← Gen(1λ), (k0, c
∗)← Encaps(pk), k1 ←$ K, b←$ {0, 1} ,

and sends (pk, c∗, kb) to A. In this game, A can make at most one decapsulation query on
any c ̸= c∗. Finally, A outputs b̂ ∈ {0, 1}. We define A’s advantage with respect to KEM as

AdvIND-1CCA
KEM (A) :=

∣∣∣Pr[b = b̂]− 1/2
∣∣∣, and if this advantage is negligible for all PPT adversaries,

we say that KEM is IND-1CCA secure. We refer to the c∗ and the kb sent to A as the challenge
encapsulation and the challenge key, respectively.

Theorem 2.3 (Difference Lemma [12]). Let Z,W1,W2 be some events defined over some prob-
ability space, and Z̄ be the complement of Z. Assume that W0 ∧ Z̄ occurs if and only if W1 ∧ Z̄
occurs, then we have |Pr[W0]− Pr[W1]| ≤ Pr[Z].
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Games G0 to G5:

1 : (pk, sk)← Gen′(1λ), m∗ ←$M
2 : c∗ := Enc′(pk,m∗), k0 ←$ K, k1 ←$ K
3 : initialize an empty associative array

Map :M×C → K
4 : Map[(m∗, c∗)] := k0 // G0 −G1

5 : b←$ {0, 1}, cnt := 0

6 : flag←$ {0, 1} // G3 −G5

7 : ListODec := ⊥, k∗ ←$ K // G4 −G5

8 : if COLL1 then // G1 −G5

9 : return ⊥ // G1 −G5

10 : b̂←$AODec,H(pk, c∗, kb)

11 : return [b = b̂]

Random Oracle H(m, c):

1 : if (m, c) ̸∈ Domain(Map) then

2 : Map[(m, c)]←$ K
3 : if c ∈ ListODec then // G4 −G5

4 : if (flag = 0 and m = ⋆)

or (flag = 1 and Enc′(pk,m) = c)

then // G4 −G5

5 : Map[(m, c)] := k∗ // G4 −G5

6 : return Map[(m, c)]

Decapsulation Oracle ODec(c ̸= c∗):

1 : if cnt = 0 then

2 : cnt := cnt+ 1

3 : if COLL2 then // G1 −G5

4 : return ⊥ // G1 −G5

5 : ListODec .append(c) // G4 −G5

6 : m′ := Dec′(sk, c) // G0 −G4

7 : if m′ = ⊥ then // G0 −G2

8 : if flag = 0 then // G3 −G5

9 : return k′ := H(⋆, c) // G0 −G3

10 : if (⋆, c) ∈ Domain(Map)

then // G4 −G5

11 : return k′ :=Map[(⋆, c)]

// G4 −G5

12 : return k′ := H(m′, c) // G0 −G3

13 : if ∃(m′, c) ∈ Domain(Map)

s.t. Enc′(pk,m′) = c then

// G4 −G5

14 : return k′ :=Map[(m′, c)]

// G4 −G5

15 : return k′ := k∗ // G4 −G5

16 : return k′ := ⊥

Figure 2: Games G0 to G5 for the proof of Theorem 3.1.

3 The Security of TRH in the ROM

Here, we prove that the IND-1CCA security of KEMRH := TRH [PKE′, H] can be tightly reduced
to the OW-CPA security of PKE′ in the ROM, if PKE′ is rigid deterministic.

Theorem 3.1 (The security of TRH in the ROM). Assume H :M× C → K is modeled as a
random oracle. If PKE′ is a rigid deterministic public-key encryption scheme that is δ-correct
and OW-CPA secure, then KEMRH is IND-1CCA secure.

In particular, for any PPT adversary A that attacks the IND-1CCA security of KEMRH ,
there exists a PPT adversary B that attacks the OW-CPA security of PKE′, such that

AdvIND-1CCA
KEMRH

(A) ≤ 2
(
AdvOW-CPA

PKE′ (B) + δ
)
.

Theorem 3.1. Fig. 2 shows the simulation of the challenger for the adversary A in game Gj for

j = 0, . . . , 5. In each game, b is a random bit chosen by the challenger, while b̂ is the bit output
by A at the end of the game. We define Wj to be the event that b̂ = b in game Gj .

Game G0. In this game, the challenger explicitly initializes an empty associative arrayMap :
M×C → K to implement the random oracle. In the initialization step, k0 is chosen uniformly
over K and then is stored inMap[(m∗, c∗)]. This is equivalent to setting the value of the random
oracle at (m∗, c∗) to k0. We can see that, except for the extra records of responses from the
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random oracle, the behavior of the challenger is clearly consistent with that in the IND-1CCA
game of KEMRH := TRH [PKE′, H]. Therefore,

|Pr[W0]− 1/2| = AdvIND-1CCA
KEMRH

(A) . (1)

Game G1. This game is the same as game G0 except that events COLL1 and COLL2 do not
occur, where COLL1 (or COLL2) denotes that decrypting the encapsulation c∗ = Enc′(pk,m∗)
received by A (or the decapsulation oracle query c = Enc′(pk,m′) issued by A) with Dec using sk
would obtain m such that m ̸= m∗ (or m ̸= m′). By the δ-correctness of PKE′, the probability
of either COLL1 or COLL2 occurring is no greater than δ. Therefore,

|Pr[W1]− Pr[W0]| ≤ 2δ . (2)

Game G2. This game is the same as game G1 except that assigning k0 to Map[(m∗, c∗)] is
removed from the initialization step. Let Zj be the event that A makes an H random oracle
query on (m∗, c∗) in game Gj , then this game and game G1 proceed identically until Z1 or Z2

occurs. By the Difference Lemma (Theorem 2.3), we have

|Pr[W2]− Pr[W1]| ≤ Pr[Z2] . (3)

Here, since k0 and k1 are both randomly chosen from K, and are both irrelevant to the two
oracles, b is independent of A’s view. Therefore,

Pr[W2] = 1/2 . (4)

Game G3. This game modifies the initialization step and the decapsulation oracle in game
G2. In the initialization step, the challenger picks an extra random bit flag. In the decapsulation
oracle, the conditionm′ = ⊥ is replaced by flag = 0. One can note that ifm′ = ⊥ when flag = 0,
or if m′ ̸= ⊥ when flag = 1, game G3 is entirely identical to game G2

4, thereby

Pr[Z2] = Pr[Z3 ∧m′ = ⊥|flag = 0] + Pr[Z3 ∧m′ ̸= ⊥|flag = 1] . (5)

Game G4. Compared with game G3, we make the following modifications to answer the
decapsulation query without using sk. Firstly, in the initialization step, the challenger initializes
an extra empty list ListODec to store the c queried to the decapsulation oracle, and chooses a
random k∗ ←$ K for the decapsulation oracle query. The decapsulation oracle works as follows.

• Case flag = 0: If (⋆, c) has been queried in the H random oracle, then return Map[(⋆, c)];
otherwise, return k∗.

• Case flag = 1: If there exists (m′, c) ∈ Domain(Map) where Enc′(pk,m′) = c, then return
Map[(m′, c)]; otherwise, return k∗.

In the H random oracle, for the new query (m, c), we introduce the following operations: if c
has been queried to the decapsulation oracle, i.e., c ∈ ListODec , then if m = ⋆ when flag = 0, or
if Enc′(pk,m) = c when flag = 1, we reprogram Map[(m, c)] to k∗.

Recall that we have assumed COLL2 would not occur since game G1, and that PKE′ is rigid
deterministic. This means that for any c where Dec(sk, c) = m′ ̸= ⊥, m′ is the only value in

4One may note that there are two additional cases in game G3, i.e., when m′ = ⊥ but flag = 1, and when
m′ ̸= ⊥ but flag = 0, requiring an extension of the domain of H to M × {⊥} for H(⊥, c) to be defined.
Nevertheless, in our analysis of the relationship between G3 and G2, these cases are not pertinent and, thus, are
omitted for brevity.
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M such that Enc′(pk,m′) = c. Therefore, if A has performed an H random oracle query on
(⋆, c) when flag = 0, or on (m′, c) when flag = 1, before the decapsulation query of c, then the
decapsulation oracle will return the corresponding random oracle value, which is consistent with
the behavior in game G3 in the same case. If A does not make an H random oracle query on
(⋆, c) or (m′, c), then the decapsulation oracle will return k∗, but in the subsequent H random
oracle query on the corresponding (⋆, c) or (m′, c), it will also respond with the same k∗. Since
k∗ is chosen randomly, the behavior at this time is consistent with that in game G3. Therefore,

Pr[Z4 ∧m′ = ⊥|flag = 0] = Pr[Z3 ∧m′ = ⊥|flag = 0]

Pr[Z4 ∧m′ ̸= ⊥|flag = 1] = Pr[Z3 ∧m′ ̸= ⊥|flag = 1] .
(6)

Combining (5) and (6), we obtain

Pr[Z4] ≥ Pr[Z4 ∧m′ = ⊥ ∧ flag = 0] + Pr[Z4 ∧m′ ̸= ⊥ ∧ flag = 1]

= Pr[Z4 ∧m′ = ⊥|flag = 0]Pr[flag = 0]

+ Pr[Z4 ∧m′ ̸= ⊥|flag = 1]Pr[flag = 1]

=
1

2

(
Pr[Z4 ∧m′ = ⊥|flag = 0] + Pr[Z4 ∧m′ ̸= ⊥|flag = 1]

)
=

1

2

(
Pr[Z3 ∧m′ = ⊥|flag = 0] + Pr[Z3 ∧m′ ̸= ⊥|flag = 1]

)
=

1

2
Pr[Z2] .

(7)

At this point, it can be observed that the response of the decapsulation oracle in game G4

no longer depends on m′ := Dec′(sk, c). Therefore, removing this step has no impact on Pr[Z4].

Game 5. This game is the same as game G4, except for removing the step m′ := Dec′(sk, c)
in the decapsulation oracle. From the above discussion, we have

Pr[Z5] = Pr[Z4] . (8)

At this point, we can find that all the oracles do not depend on sk and m∗. Therefore,
when the event Z5 occurs, we can construct an adversary B to attack the OW-CPA security of
PKE′ as follows: When B received the public key pk and the challenge ciphertext c∗ from the
OW-CPA game of PKE′, he chooses a random k ←$ K, and then sends (pk, c∗, k) to A. After
that, he uses the decapsulation oracle and H random oracle described in game G5 to respond
to A’s queries. At the end of the game, B can search the pair (m∗, c∗) in Map that satisfies
Enc′(pk,m∗) = c∗ and output m∗. Therefore,

Pr[Z5] ≤ AdvOW-CPA
PKE′ (B) . (9)

Combining (1)-(4) and (7)-(9), we obtain

AdvIND-1CCA
KEMRH

(A) ≤ 2
(
AdvOW-CPA

PKE′ (B) + δ
)
.

That completes the proof of the theorem.

Remark 3.1. The bound given by Jiang et al. [33] in the case of deterministic PKE is

AdvIND-1CCA
KEMRH

(A) ≤ (qH + 1)AdvOW-CPA
PKE′ (B) + δ ,

where qH is the number of H random oracle queries. We prove that the reduction from
IND-1CCA security of KEMRH to the OW-CPA security of rigid deterministic PKE′ is tight,
with a loss factor of O(1).
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4 The Security Analysis in the QROM

4.1 The Reprogram-after-Measure Technique

During the IND-1CCA game of KEMRH in the ROM, the challenger needs to access the random
oracle to calculate the response for the adversary A in the decapsulation oracle. But in some
cases where the challenger does not know the point at which it should query the random oracle,
the challenger can directly return a random response instead of accessing the random oracle,
and the only requirement is that the random response should be consistent with the response
to the corresponding random oracle query made by A in the subsequent process, e.g., Game 5
in the proof of Theorem 3.1. This process involves two techniques of ROM called lazy sampling
and reprogramming, which are hard to carry over to the quantum setting as Boneh et al. [11]
claim.

With the help of the compressed oracle technique introduced by Zhandry [55], we provide a
new technique that can simulate the decapsulation oracle in a similar way. We will reprogram
the compressed oracle after performing a measurement. Therefore, we refer to the proposed
technique as reprogram-after-measure. Note that the decapsulation oracle query and the implicit
random oracle query in it are both classical, and the classical decapsulation oracle is queried at
most once. In section 4.2, we can see that we can obtain a tighter security proof with this new
technique.

Theorem 4.1 (Reprogram-after-Measure). Let AO,|H⟩ be a quantum oracle algorithm that can
make qH times (quantum) H random oracle queries, but at most one (classical) O oracle query,
where O : C → Z, H : X → Y. Let C⊥ ⊆ C be a set on which A is not allowed to make the O
oracle query, and for any c ∈ C⊥ the O oracle always returns ⊥. For c ∈ C \ C⊥, the O oracle
computes x := f−1(c), (classically) accesses the H random oracle to obtain y := H(x), and
returns g(y), where the functions f : X → C, g : Y → Z, and there is a unique preimage x for
c ∈ C \ C⊥ under f . Then there exists an algorithm B that does not need to access the O oracle
and the H random oracle, and needs to know how to calculate the functions f and g (but does
not need to know how to calculate f−1), such that

Pr[Ev : AO,|H⟩] ≤ 2Pr[Ev : B] (10)

for any classical event Ev.
In particular, we can construct B from AO,|H⟩ as follows. Firstly, we use the compressed

oracle CStO to replace the H random oracle in AO,|H⟩. Let XY be the input/output registers of
CStO, D be the database register used by CStO that is initialized to

⊗qH+1
i=1 (⊥, 0n) (note that

AO,|H⟩ queries the H random oracle qH + 1 times in total) where n := log(|Y|), and CZ be the
input/output registers of O oracle. We define a function e : C × D → Y ∪ ⊥ as follows, where
D is the database set as defined in Definition 2.1:

e(c,D) =

 D(x) if there exists (x, y) ∈ D such that f(x) = c and y ̸= ⊥ ,

⊥ otherwise .

Since e can be computed efficiently, the unitary operator Ue : |c,D, y⟩ → |c,D, y ⊕ e(c,D)⟩ can
also be implemented efficiently based on the quantum computation theory. B first chooses a
random y∗ ←$ Y, and then runs AO,|H⟩ until it makes an O oracle query (with classical input c
on register C). If c ∈ C⊥, B directly sets register Z to ⊥ and continues running AO,|H⟩ until the
end; otherwise, instead of accessing the O oracle, B uses the following OB oracle as a substitute,
as shown in Fig. 3:
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input register C |c⟩
database register D |D⟩

output redister Z |0n⟩
Ue

set as g(y′) if y′ ̸= ⊥

set as g(y∗) if y′ = ⊥
|g(y′)⟩ or |g(y∗)⟩

Figure 3: The quantum circuit diagram for OB.

internal register R |0⟩
input register X |x⟩

output register Y |y⟩
database register D |D⟩

Uu

Uy′ CStO

Uu
|0⟩

Figure 4: The quantum circuit diagram for CStOB, where R is an internal register used by
CStOB.

1. Initialize the register Z to 0n.

2. Apply Ue to registers CDZ, where Z is the output register.

3. Perform the measurement MZ on the register Z in the computational basis {|y⟩}y∈Y∪⊥,
denoting the result as |y′⟩.

4. If y′ = ⊥, let y′ := y∗. Set Z to g(y′).

After that, define a function uc(x) : X → {0, 1} as follows:

uc(x) =

 1 if f(x) = c ,

0 otherwise ,

where c ∈ C is the classical input on the register C when AO,|H⟩ queries the O oracle. Construct
a unitary operator Uuc : |x, b⟩ → |x, b⊕ uc(x)⟩. In subsequent H random oracle queries, B uses
the CStOB oracle defined as follows (as shown in Fig. 4) instead of CStO to simulate the H
random oracle:

1. Initialize a register R to 0, where R is a one qubit register.

2. Apply Uuc to registers XR, where R is the output register.

3. Apply the following two conditional operations:

(a) The control bit is R, and apply the unitary operator Uy′ to Y if b = 1, where Uy′ |y⟩ =
|y ⊕ y′⟩ and y′ is the (classical) value obtained in the OB oracle.

(b) The control bit is R, and apply the unitary operator CStO to XYD if b = 0.

4. Apply Uuc on XR, where R is the output register. Note that R is restored to |0⟩, so it can
be discarded.
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This completes the description of the construction of B.

Theorem 4.1. Here we use the same notation used in Theorem 4.1. Let AO,|H⟩ be the oracle
algorithm defined in Theorem 4.1, where XY are the input/output registers of the H random
oracle and CZ are the input/output registers of O oracle. We introduce a database register D
that is initialized to

⊗qH+1
i=1 (⊥, 0n) and use the compressed oracle CStO to implement the H

random oracle in AO,|H⟩ to get a new oracle algorithm ÂO,|H⟩. According to Lemma 2.2, we
have

Pr[Ev : AO,|H⟩] = Pr[Ev : ÂO,|H⟩] (11)

for any classical event Ev.
Next, we analyze the relationship between ÂO,|H⟩ and B, where B is defined in Theorem 4.1.

Observe that the behavior of B is the same as that of ÂO,|H⟩ until ÂO,|H⟩ makes an O oracle
query on c ∈ C \ C⊥. In other words, if ÂO,|H⟩ does not make an O oracle query, or if ÂO,|H⟩

queries the O oracle on c ∈ C⊥, the behavior of B is exactly the same as that of ÂO,|H⟩. In
these two cases, equation (10) obviously holds. Therefore, in what follows, we only consider the
case where ÂO,|H⟩ makes only one (classical) O oracle query on c ∈ C \ C⊥.

Consider that the H random oracle is invoked qH + 1 times, where qH times are direct
quantum queries made by ÂO,|H⟩, and 1 time is a classical query made through the O oracle.
Without loss of generality, let the classical query be the i∗-th H random oracle query (1 ≤ i∗ ≤
qH + 1), and the execution of ÂO,|H⟩ can be described as

UqH+2

(
qH+1∏
i=i∗+1

CStO ◦ Ui

)
O ◦ Ui∗

(
i∗−1∏
i=1

CStO ◦ Ui

)
|ψ0⟩ ,

where |ψ0⟩ is the initial state of ÂO,|H⟩, and for i = 1, . . . , qH + 2, Ui is a unitary operator5.
Recall that the i∗-th (classical) H random oracle query is made through the O random oracle.
The (non-unitary) O can be described by the following steps, where C⊥ ⊆ C represents the set
of c on which ÂO,|H⟩ is not allowed to make the O oracle query:

1. If c ∈ C⊥, set Z to ⊥; otherwise

2. Initialize a register X′ to x := f−1(c).

3. Initialize the register Z to 0n, and apply CStO to registers X′ZD.

4. Perform the measurement MZ on the register Z in the computational basis {|y⟩}y∈Y∪⊥,
denoting the result as |y′⟩.

5. Compute g(y′) on the register Z.

The quantum circuit diagram for steps 2-5 is shown in Fig. 5.

Correspondingly, the execution of B|H⟩ can be described as

UqH+2

(
qH+1∏
i=i∗+1

CStOB ◦ Ui

)
OB ◦ Ui∗

(
i∗−1∏
i=1

CStO ◦ Ui

)
|ψ0⟩ ,

where CStOB and OB are defined in Theorem 4.1.

5This follows from the fact that any quantum oracle algorithm can be transformed to a unitary quantum
oracle with constant factor computational overhead and the same number of oracle queries [3, 25].
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internal register X′ |x⟩
output register Z |0n⟩

database register D |D⟩
CStO g |g(y′)⟩

Figure 5: The quantum circuit diagram for steps 2-5 for O, where X′ is an internal register used
by O.

Since before querying O oracle or OB oracle, the execution of ÂO,|H⟩ and B are the same,
they are in the same state at this time, denoted as |Ψ⟩. Next, we consider the state |Ψ⟩ on the
register CZDP, where CZ are the input/output registers of O (or OB) oracle, D is the database
register used by CStO, and P contains all remaining registers of ÂO,|H⟩ (or B).

Next, we divide |Ψ⟩ into three mutually orthogonal parts (note that c ̸∈ C⊥ and it is a
certain classical value):

|Ψ⟩ = |Ψ1⟩+ |Ψ2⟩+ |Ψ3⟩ ,

where

|Ψ1⟩ =
∑

z=0n,D,p,|D|<qH+1,
x=f−1(c),D(x)=⊥

βz,D,p |c, z,D, p⟩

|Ψ2⟩ =
∑

z=0n,D,p,|D|<qH ,
x=f−1(c),D(x)=⊥,r∈Y,r ̸=0

βz,D,p,r√
2n

∑
y1∈Y

(−1)r·y1 |c, z,D ∪ (x, y1), p⟩

|Ψ3⟩ =
∑

z=0n,D,p,|D|<qH ,
x=f−1(c),D(x)=⊥,r∈Y

βz,D,p,0√
2n

∑
y1∈Y

|c, z,D ∪ (x, y1), p⟩ .

Recall that the database register D is an internal register of CStO. Thus before querying the O
(or OB) oracle, except for CStO, ÂO,|H⟩ and B did not perform any operation on D. According
to [55], |Ψ⟩ does not have the component |Ψ3⟩. Hence, |Ψ⟩ can be rewritten as

|Ψ⟩ = |Ψ1⟩+ |Ψ2⟩ .

Denote the operation of O before performing the measurementMZ as O1, and the operation
of OB before performing the measurement MZ as O2, then

O1 |Ψ1⟩ =
∑

z=0,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,p√
2n

Fx

∑
y1∈Y

|c, y1, D ∪ (x, y1), p⟩


O2 |Ψ1⟩ =

∑
z=0,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,p |c,⊥, D, p⟩

O1 |Ψ2⟩ =
∑

z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r ̸=0

βz,D,p,r√
2n

Fx

∑
y1∈Y

(−1)r·y1 |c, y1, D ∪ (x, y1), p⟩


O2 |Ψ2⟩ =

∑
z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r ̸=0

βz,D,p,r√
2n

∑
y1∈Y

(−1)r·y1 |c, y1, D ∪ (x, y1), p⟩ ,

where Fx is the decompression procedure in CStO applying on register D.

17



Therefore, after ÂO,|H⟩ executes O1 and performs the measurement MZ, for any y
′ ∈ Y, |Ψ⟩

will collapse into the (un-normalized) state

|ΨÂ
y′⟩ =

∑
z=0,D,p,|D|<qH+1,
x=f−1(c),D(x)=⊥

βz,D,p√
2n

Fx

(
|c, y′, D ∪ (x, y′), p⟩

)

+
∑

z=0,D,p,|D|<qH ,
x=f−1(c),D(x)=⊥,r∈Y,r ̸=0

βz,D,p,r√
2n

Fx

(
(−1)r·y′ |c, y′, D ∪ (x, y′), p⟩

)

with probability pÂy′ =
∥∥∥|ΨÂ

y′⟩
∥∥∥2. It implies that for any y′ ∈ Y, the O oracle will respond with

g(y′) with probability pÂy′ .
For B, after executing O2 and measuring MZ, for any y′ ∈ Y, |Ψ⟩ will collapse into the

(un-normalized) state

|ΨB
y′⟩ =

∑
z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r ̸=0

βz,D,p,r√
2n

(−1)r·y′ |c, y′, D ∪ (x, y′), p⟩

with the same probability6

pB1 =
∥∥|ΨB

y′⟩
∥∥2 ,

and will collapse into the (un-normalized) state

|ΨB
⊥⟩ =

∑
z=0,D,p,|D|<qH+1,
x=f−1(c),D(x)=⊥

βz,D,p |c,⊥, D, p⟩

with the probability

pB2 =
∥∥|ΨB

⊥⟩
∥∥2 .

Note that when Z is ⊥, the result is set to g(y∗), where y∗ ∈ Y is uniformly and randomly
chosen by B in the beginning, so for any y′ ∈ Y, Pr[y∗ = y′] = 2−n. It implies that for any y′,
the probability of OB returning g(y′) is

pB = pB1 + pB2 /2
n .

Note that after the O oracle query, all the responses of H random oracle query on x = f−1(c)
made by ÂO,|H⟩ are

CStOFx |x, y,D ∪ (x, y′)⟩ = FxOxFxFx |x, y,D ∪ (x, y′)⟩
= Fx |x, y ⊕ y′, D ∪ (x, y′)⟩ ,

which is equivalent to applying a unitary operator Uy′ to |y⟩ such that Uy′ |y⟩ = |y ⊕ y′⟩.
Therefore, the H random oracle used by ÂO,|H⟩ after the O oracle query is equivalent to being
implemented by CStOB defined in Theorem 4.1. Therefore, the execution of ÂO,|H⟩ can be
rewritten as

UqH+2

(
qH+1∏
i=i∗+1

CStOB ◦ Ui

)
O ◦ Ui∗

(
i∗−1∏
i=1

CStO ◦ Ui

)
|ψ0⟩ .

6Since the probability
∥∥|ΨB

y′⟩
∥∥2

has same value for any y′ ∈ Y, we denote this common value as pB1 .
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According to [10], when the event Ev is classical and well-defined, the probability of occur-
rence of the event is equivalent to the measurement of the density operator of the final state of
ÂO,|H⟩ or B with MEv. Recall that the state of ÂO,|H⟩ after the O oracle query is

|ΨÂ
g(y′)⟩ =

1√
pÂy′

( ∑
z=0,D,p,|D|<qH+1,

x=f−1(c),D(x)=⊥

βz,D,p√
2n

Fx (|c, g(y′), D ∪ (x, y′), p⟩)

+
∑

z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r ̸=0

βz,D,p,r√
2n

Fx

(
(−1)r·y

′
|c, g(y′), D ∪ (x, y′), p⟩

))

with probability pÂy′ , and the state of B after the OB oracle query is

|ΨB
g(y′),1⟩ =

1√
pB1

∑
z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r ̸=0

βz,D,p,r√
2n

(−1)r·y′ |c, g(y′), D ∪ (x, y′), p⟩

with probability pβ1 , or is

|ΨB
g(y′),2⟩ =

1√
pB2

∑
z=0,D,p,|D|<qH+1,
x=f−1(c),D(x)=⊥

βz,D,p |c, g(y′), D, p⟩

with probability pB2 /2
n. Thus, let Q denote MEvUqH+2

(∏qH+1
i=i∗+1 CStO

B ◦ Ui

)
, then we have

Pr[Ev : ÂO,|H⟩] =
∑
y′

pÂy′
∥∥∥Q |ΨÂ

g(y′)⟩
∥∥∥2

Pr[Ev : B] =
∑
y′

(
pB2
2n

∥∥∥Q |ΨB
g(y′),2⟩

∥∥∥2 + pB1

∥∥∥Q |ΨB
g(y′),1⟩

∥∥∥2) .

Let

|Φ1
y′⟩ =

∑
z=0,D,p,|D|<qH+1,
x=f−1(c),D(x)=⊥

βz,D,pFx

(
|c, g(y′), D ∪ (x, y′), p⟩

)

|Φ2
y′⟩

∑
z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r ̸=0

βz,D,p,r√
2n

Fx

(
(−1)r·y′ |c, g(y′), D ∪ (x, y′), p⟩

)

|Φ3
y′⟩ =

∑
z=0,D,p,|D|<qH+1,
x=f−1(c),D(x)=⊥

βz,D,p

(
|c, g(y′), D ∪ (x, y′), p⟩

)

|Φ4
y′⟩

∑
z=0,D,p,|D|<qH ,

x=f−1(c),D(x)=⊥,r∈Y,r ̸=0

βz,D,p,r√
2n

(
(−1)r·y′ |c, g(y′), D ∪ (x, y′), p⟩

)
,
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then for any y′ ∈ Y, we have

√
pÂy′

∥∥∥Q |ΨA
g(y′)⟩

∥∥∥ =
√
pÂy′

∥∥∥∥∥∥Q 1√
pÂy′

(
2−n/2 |Φ1

y′⟩+ |Φ2
y′⟩
)∥∥∥∥∥∥

=
∥∥∥Q(2−n/2 |Φ1

y′⟩+ |Φ2
y′⟩
)∥∥∥

≤
∥∥∥Q2−n/2 |Φ1

y′⟩
∥∥∥+ ∥∥Q |Φ2

y′⟩
∥∥

(∗)
= 2−n/2

∥∥Q |Φ3
y′⟩
∥∥+ ∥∥Q |Φ4

y′⟩
∥∥

=

√
pB2
2n

∥∥∥∥∥∥Q 1√
pB2

|Φ3
y′⟩

∥∥∥∥∥∥+
√
pB1

∥∥∥∥∥∥Q 1√
pB1

|Φ4
y′⟩

∥∥∥∥∥∥
=

√
pB2
2n

∥∥∥Q |ΨB
g(y′),2⟩

∥∥∥+√pB1 ∥∥∥Q |ΨB
g(y′),1⟩

∥∥∥ ,
where equation (∗) utilizes the fact that unitary operators preserve the norm, and that the
compression procedure Fx is unitary. Thus,

Pr[Ev : ÂO,|H⟩] =
∑
y′

pÂy′
∥∥∥Q |ΨÂ

g(y′)⟩
∥∥∥2

≤
∑
y′

(√
pB2
2n

∥∥∥Q |ΨB
g(y′),2⟩

∥∥∥+√pB1 ∥∥∥Q |ΨB
g(y′),1⟩

∥∥∥)2

(∗)
≤ 2

∑
y′

(
pB2
2n

∥∥∥Q |ΨB
g(y′),2⟩

∥∥∥2 + pB1

∥∥∥Q |ΨB
g(y′),1⟩

∥∥∥2)
= 2Pr[Ev : B] ,

(12)

where (∗) uses the Jensen’s inequality. Combining equations (11) and (12), yields (10).
This completes the proof of Theorem 4.1.

4.2 The Security of TRH in the QROM

The security of TRH in the QROM is captured in the following theorem.

Theorem 4.2 (The security of TRH in the QROM). Assume H : M× C → K is modeled
as a quantum-accessible random oracle. If PKE′ is a rigid deterministic public-key encryption
scheme that is δ-correct and OW-CPA secure, then KEMRH is IND-1CCA secure.

In particular, for any PPT adversary A that attacks the IND-1CCA security of KEMRH and
has quantum access to the H random oracle, there exists a PPT adversary B that attacks the
OW-CPA security of PKE′, such that

AdvIND-1CCA
KEMRH

(A) ≤ 4
√
AdvOW-CPA

PKE′ (B) + 2δ .

Theorem 4.2. For j = 0, · · · , 3, we define Gj to be the game played between the adversary A
and the challenger as shown in Fig. 6, where A can make any number of quantum H random
oracle queries, but at most one classical decapsulation oracle query. In each game, b is a random
bit chosen by the challenger, while b̂ is the bit output by A at the end of the game. We define
Wj to be the event that b̂ = b in game Gj .
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Games G0 to G3:

1 : (pk, sk)← Gen′(1λ), m∗ ←$M
2 : c∗ := Enc′(pk,m∗), H←$ ΩH

3 : k∗, k1 ←$ K
4 : k0 := H(m∗, c∗) // G0 −G1

5 : k0 := k∗ // G2 −G3

6 : b←$ {0, 1}, cnt := 0

7 : if COLL1 then // G1 −G3

8 : return ⊥ // G1 −G3

9 : b̂←$AODec,|H⟩(pk, c∗, kb)

10 : return [b = b̂]

Random Oracle H(m, c):

1 : if (m, c) = (m∗, c∗) then // G3

2 : return k∗ // G3

3 : return H(m, c)

Decapsulation Oracle ODec(c ̸= c∗):

1 : if cnt = 0 then

2 : cnt := cnt+ 1

3 : if COLL2 then // G1 −G3

4 : return ⊥ // G1 −G3

5 : m′ := Dec′(sk, c)

6 : if m′ = ⊥ then

7 : return k′ := H(⋆, c)

8 : return k′ := H(m′, c)

9 : return k′ := ⊥

Figure 6: Games G0 to G3 for the proof of Theorem 4.2.

Game G0. In this game, the challenger randomly chooses a function H from the set ΩH of
functions H :M× C → K to respond to the H random oracle queries made by A. Note that
although the challenger chooses a random k∗ ←$ K in the initialization step, it is not used in
subsequent processes. Therefore, the behavior of the challenger is exactly consistent with that
in the IND-1CCA game of KEMRH := TRH [PKE′, H]. Thus, we have

|Pr[W0]− 1/2| = AdvIND-1CCA
KEMRH

(A) . (13)

Game G1. In this game, similar to game G1 described in the proof of Theorem 3.1, let COLL1
(or COLL2) represent the event of a collision occurring in the challenge encapsulation c∗ received
by A (or the decapsulation oracle query c issued by A). We assume that neither COLL1 nor
COLL2 occurs in this game. The probability of either occurring is no greater than δ since PKE′

is δ-correct. Thus, we have
|Pr[W1]− Pr[W0]| ≤ 2δ . (14)

Game G2. This game is the same as game G1, except that k0 := H(m∗, c∗) in the initialization
step is replaced by k0 := k∗. Since k0 and k1 are both randomly chosen from K∗, and are not
used in any oracles, b is independent of A’s view. Therefore,

Pr[W2] = 1/2 . (15)

Game G3. This game modifies the H random oracle as follows: upon receiving a query
where (m, c) = (m∗, c∗), it returns k∗. At this point, the H random oracle is simulated by a
new function G :M× C → K: for all (m, c) ̸= (m∗, c∗), G(m, c) = H(m, c); but when (m, c) =
(m∗, c∗), G(m∗, c∗) = k∗ is random and independent of H(m∗, c∗). Since k0 = k∗ = G(m∗, c∗),
the behavior of the challenger is equivalent to that in game G1. Thus, we have

Pr[W3] = Pr[W1] . (16)
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Recall that G(m, c) = H(m, c) for all (m, c) ̸= (m∗, c∗) and A is not allowed to make
decapsulation oracle queries on c∗. Therefore, the decapsulation oracle ODec in game G2 is
identical to that in game G3. Next, we can construct two oracle algorithms AODec,|H⟩(z) and
AODec,|G⟩(z) to execute games G2 and G3 respectively, where z = (pk, c∗, k0), (pk, sk)← Gen′(λ),
m∗ ←$ M, c∗ := Enc′(pk,m∗), k∗ ←$ K, k0 := k∗. AODec,|H⟩(z) (or AODec,|G⟩(z)) first computes
k1 ←$ K, b ←$ {0, 1}, then runs the adversary AODec,|H⟩(pk, c∗, kb) in game G2 (or game G3) to
obtain b̂, and finally outputs [b = b̂], where H (or G) is used to simulate the H random oracle
in game G2 (or game G3). Note that we still assume that the events COLL1 and COLL2 defined
in game G1 do not occur. Therefore,

Pr[1← AODec,|H⟩(z)] = Pr[W2]

Pr[1← AODec,|G⟩(z)] = Pr[W3] ,
(17)

where z = (pk, c∗, k0), (pk, sk) ← Gen′(λ), m∗ ←$ M, c∗ := Enc′(pk,m∗), k∗ ←$ K, k0 := k∗.
Since H and G only differ at the point (m∗, c∗), according to Lemma 2.1, there exists an oracle
algorithm BODec,|H⟩,|G⟩(z) such that7∣∣∣Pr[1← AODec,|G⟩(z)]− Pr[1← AODec,|H⟩(z)]

∣∣∣
≤ 2
√

Pr[(m∗, c∗)← BODec,|G⟩,|H⟩(z)] .
(18)

Then for j = 4, . . . , 8, we define Gj played between the oracle algorithm and the challenger as
shown in Fig. 7. In each game, m∗ is randomly chosen fromM, while m̂ is output by the oracle

Games G4 to G8:

1 : (pk, sk)← Gen′(1λ), m∗ ←$M
2 : c∗ := Enc′(pk,m∗), H←$ ΩH

3 : k∗, k1 ←$ K, k0 := k∗

4 : b←$ {0, 1}, cnt := 0

5 : if COLL1 then

6 : return ⊥
7 : flag←$ {0, 1} // G5 −G8

8 : (m̂, ĉ)← BODec,|H⟩,|G⟩(pk, c∗, k0)

// G4 −G6

9 : (m̂, ĉ)← B̄ODec,|H⟩(pk, c∗, k0) // G7

10 : (m̂, ĉ)← B̂(pk, c∗, k0, flag) // G8

11 : return [m∗ = m̂]

Random Oracle H(m, c):

1 : return H(m, c)

Decapsulation Oracle ODec(c ̸= c∗):

1 : if cnt = 0 then

2 : cnt := cnt+ 1

3 : if COLL2 then

4 : return ⊥
5 : m′ := Dec′(sk, c)

6 : if m′ = ⊥ then // G4

7 : if flag = 0 then // G5 −G8

8 : return k′ := H(⋆, c)

9 : return k′ := H(m′, c)

10 : return k′ := ⊥

Random Oracle G(m, c): // G4 −G6

1 : if (m, c) = (m∗, c∗) then // G4 −G5

2 : if c = c∗∧ Enc′(pk,m) = c∗ then // G6

3 : return k∗

4 : return H(m, c)

Figure 7: Games G4 to G8 for the proof of Theorem 4.2.

algorithm at the end of the game. We define the event that m̂ = m∗ as Zj in game Gj .

7Since the decapsulation oracle ODec in game G2 is identical to that in game G3, therefore it can be seen as
an internal oracle of the oracle algorithm A.
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Game G4. This game is defined in Fig. 7. It is obvious that

Pr[(m∗, c∗)← BODec,|G⟩,|H⟩(z)] ≤ Pr[Z4] , (19)

where z = (pk, c∗, k0), (pk, sk)← Gen′(λ), m∗ ←$M, c∗ := Enc′(pk,m∗), k∗ ←$ K, k0 := k∗.

Game G5. This game is the same as game G4, except that the challenger chooses an extra
random bit flag←$ {0, 1} in the initialization step, and replaces the conditionm′ = ⊥ by flag = 0
in the decapsulation oracle. Similar to the analysis of game G3 in the proof of Theorem 3.1, we
have

Pr[Z4] = Pr[Z5 ∧m′ = ⊥|flag = 0] + Pr[Z5 ∧m′ ̸= ⊥|flag = 1] . (20)

Game G6. This game replaces the condition (m, c) = (m∗, c∗) by c = c∗ ∧ Enc′(pk,m) = c∗

in the G random oracle of game G5. Recall that since game G1 we have assumed that the event
COLL1 would not occur, which implies that these two conditions are equivalent. Therefore,

Pr[Z6 ∧m′ = ⊥|flag = 0] = Pr[Z5 ∧m′ = ⊥|flag = 0]

Pr[Z6 ∧m′ ̸= ⊥|flag = 1] = Pr[Z5 ∧m′ ̸= ⊥|flag = 1] .
(21)

Note that at this point, the G random oracle does not depend on the knowledge of m∗, so
it can be simulated with only access to the H oracle. Therefore, we can construct a new oracle
algorithm B̄ODec,|H⟩(pk, c∗, kb), which is the same as BODec,|H⟩,|G⟩ except that if it needs to query
the G oracle, it accesses H as the same way as the G random oracle in game G6 and responds
with the corresponding result.

Game G7. This game replaces the oracle algorithm BODec,|H⟩,|G⟩ by B̄ODec,|H⟩ in game G6. By
the above analysis, we have

Pr[Z7 ∧m′ = ⊥|flag = 0] = Pr[Z6 ∧m′ = ⊥|flag = 0]

Pr[Z7 ∧m′ ̸= ⊥|flag = 1] = Pr[Z6 ∧m′ ̸= ⊥|flag = 1] .
(22)

Denote two functions f :M×C → C∪⊥ and g : K → K as follows. If flag = 0, the challenger
sets

f(m, c) :=

 c if m = ⋆

⊥ otherwise ;

while if flag = 1, the challenger sets

f(m, c) :=

 c if Enc′(pk,m) = c

⊥ otherwise .

Let g be an identity function, i.e., g(k) = k for all k ∈ K. It is obvious that for c ̸= c∗, if
m′ = ⊥ when flag = 0, or if m′ ̸= ⊥ when flag = 1, the process of ODec is equivalent to
computing (m, c) := f−1(c), (classically) accessing the H random oracle to obtain k := H(m, c),
and returning g(k), where (m, c) is the unique preimage of c under f . Then by Theorem 4.1,
there exists a new algorithm B̂ that only needs to know how to calculate f and g, such that

2Pr[Ev : B̂(z, flag)|m′ = ⊥ ∧ flag = 0] ≥ Pr[Ev : B̄ODec,|H⟩(z)|m′ = ⊥ ∧ flag = 0]

2Pr[Ev : B̂(z, flag)|m′ ̸= ⊥ ∧ flag = 1] ≥ Pr[Ev : B̄ODec,|H⟩(z)|m′ ̸= ⊥ ∧ flag = 1],

for any classical event Ev, where z = (pk, c∗, k0)
8.

8The extra input flag for B̂ is used to determine which f should be used.

23



Game G8. This game replaces the oracle algorithm B̄ODec,|H⟩ by B̂ in game G7. By the above
analysis, we have

2Pr[Z8|m′ = ⊥ ∧ flag = 0] ≥ Pr[Z7|m′ = ⊥ ∧ flag = 0]

2Pr[Z8|m′ ̸= ⊥ ∧ flag = 1] ≥ Pr[Z7|m′ ̸= ⊥ ∧ flag = 1] .

Since the event m′ = ⊥ is independent of the event flag = 0, we have

Pr[Ev|m′ = ⊥ ∧ flag = 0] =
Pr[Ev ∧m′ = ⊥ ∧ flag = 0]

Pr[m′ = ⊥ ∧ flag = 0]

=
Pr[Ev ∧m′ = ⊥ ∧ flag = 0]

Pr[m′ = ⊥] Pr[flag = 0]
=

Pr[Ev ∧m′ = ⊥|flag = 0]

Pr[m′ = ⊥]

for any classic event Ev. Therefore, we obtain

2Pr[Z8 ∧m′ = ⊥|flag = 0] = 2Pr[Z8|m′ = ⊥ ∧ flag = 0]Pr[m′ = ⊥]
≥ Pr[Z7|m′ = ⊥ ∧ flag = 0]Pr[m′ = ⊥]
= Pr[Z7 ∧m′ = ⊥|flag = 0] .

(23)

Similarly, we can obtain

2Pr[Z8 ∧m′ ̸= ⊥|flag = 1] ≥ Pr[Z7 ∧m′ ̸= ⊥|flag = 1] . (24)

Combining (20)-(24), we obtain

Pr[Z8] ≥ Pr[Z8 ∧m′ = ⊥ ∧ flag = 0] + Pr[Z8 ∧m′ ̸= ⊥ ∧ flag = 1]

=
1

2

(
Pr[Z8 ∧m′ = ⊥|flag = 0] + Pr[Z8 ∧m′ ̸= ⊥|flag = 1]

)
≥ 1

4

(
Pr[Z7 ∧m′ = ⊥|flag = 0] + Pr[Z7 ∧m′ ̸= ⊥|flag = 1]

)
=

1

4

(
Pr[Z6 ∧m′ = ⊥|flag = 0] + Pr[Z6 ∧m′ ̸= ⊥|flag = 1]

)
=

1

4

(
Pr[Z5 ∧m′ = ⊥|flag = 0] + Pr[Z5 ∧m′ ̸= ⊥|flag = 1]

)
=

1

4
Pr[Z4] .

(25)

At this point, we can find that sk is useless in game G8. Therefore, if the event Z8 occurs,
we can construct an adversary B to attack the OW-CPA security of PKE′ as follows: Upon
receiving the public key pk and the challenge ciphertext c∗ from the OW-CPA game of PKE′,
B randomly chooses k0 ←$ K and flag ←$ {0, 1}, and uses (pk, c∗, k0, flag) as input to run B̂.
When the game ends, B outputs m̂ that outputed by B̂. Therefore,

Pr[Z8] ≤ AdvOW-CPA
PKE′ (B) . (26)

Combining (13)-(19) and (25)-(26), we obtain

AdvIND-1CCA
KEMRH

(A) ≤ 4
√

AdvOW-CPA
PKE′ (B′) + 2δ .

That completes the proof of the theorem.
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Remark 4.1. The bound given by Jiang et al. [33] in this case is

AdvIND-1CCA
KEMRH

(A) ≤ 6(qH + 1)
√
AdvOW-CPA

PKE′ (B) + 1/|K|+ δ ,

where qH is the number of H random oracle queries made by A. Despite the unavoidable
quadratic reduction loss [37], our reduction is also tight in the QROM, with a loss factor of
O(1).
Remark 4.2. The security proof technique used by Jiang et al. [33] is called (single-classical-
query) measure-and-reprogram lemma, which is first proposed by Don et al. [18, 19] and then is
extended by Jiang et al. [33]. In this technique, to simulate the decapsulation oracle without sk,
the basic strategy adopted by the challenger is to randomly choose one of the q random oracle
queries made byA, measure its input register, consider it as the point that needs reprogramming,
and use the reprogrammed random oracle to respond to subsequent random oracle queries. This
analysis method needs to consider the impact of different measurements at different times on
the final state of A, and ultimately derives an upper bound for the norm of the final state
of A, which is a sum of approximately q terms. When considering probability, it is necessary
to square this upper bound, and when using Jensen’s inequality to relate the probability in a
specific case, a coefficient of O

(
q2
)
will be generated. Therefore, using this technique in security

proofs can introduce a loss factor related to q. However, the strategy adopted here is similar to
that in the proof in the ROM, where the random oracle and decapsulation oracle are modified
during the execution of A, resulting in a loss factor of only O(1) for the derived bound. Thus,
using our proposed new technique for security proofs will not introduce an additional loss factor
exceeding O(1).
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[5] Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic reductions. In:
EUROCRYPT (2). Lecture Notes in Computer Science, vol. 9666, pp. 273–304. Springer (2016),
https://doi.org/10.1007/978-3-662-49896-5_10

[6] Bartusek, J., Malavolta, G.: Indistinguishability obfuscation of null quantum circuits and applica-
tions. In: ITCS. LIPIcs, vol. 215, pp. 15:1–15:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2022), https://doi.org/10.4230/LIPICS.ITCS.2022.15

25

https://doi.org/10.1007/978-3-030-45727-3_27
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-031-15979-4_8
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.4230/LIPICS.ITCS.2022.15


[7] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols.
In: CCS. pp. 62–73. ACM (1993), https://doi.org/10.1145/168588.168596

[8] Bernstein, D.J., Persichetti, E.: Towards KEM unification. IACR Cryptol. ePrint Arch. p. 526
(2018), https://eprint.iacr.org/2018/526

[9] Beullens, W., Faugère, J., Koussa, E., Macario-Rat, G., Patarin, J., Perret, L.: Pkp-based signature
scheme. In: INDOCRYPT. Lecture Notes in Computer Science, vol. 11898, pp. 3–22. Springer
(2019), https://doi.org/10.1007/978-3-030-35423-7_1

[10] Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter proofs of CCA
security in the quantum random oracle model. In: TCC (2). Lecture Notes in Computer Science,
vol. 11892, pp. 61–90. Springer (2019), https://doi.org/10.1007/978-3-030-36033-7_3
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