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Abstract.

We introduce NeutronNova, a new folding scheme for the zero-check rela-
tion: an instance-witness pair is in the zero-check relation if a corresponding
multivariate polynomial evaluates to zero for all inputs over a suitable Boolean
hypercube. The folding scheme is a two-round protocol, and it internally in-
vokes a single round of the sum-check protocol. The folding scheme is more
efficient than prior state-of-the-art schemes and directly benefits from recent
improvements to the sum-check prover. The prover’s work is the cost to commit
to a witness and field operations in a single round of the sum-check protocol.
So, if the witness contains “small” field elements, the prover only commits to
“small” field elements. The verifier’s work is a constant number of group scalar
multiplications, field operations, and hash computations. Moreover, the folding
scheme generalizes to fold multiple instances at once and requires only logn
rounds of the sum-check protocol, where n is the number of instances folded.

As a corollary, we provide a folding scheme for any relation R for which
there is a reduction of knowledge (RoK) from R to one or more instance-
witness pairs in the zero-check relation. Such RoKs appear implicitly in prior
lookup arguments (e.g., Lasso) and high-performance zkVMs for RISC-V (e.g.,
Jolt). We formalize these RoKs for several relations including indexed lookups,
grand products, and CCS (which generalizes Plonkish, AIR, and R1CS). These
are simple and constant round RoKs that leverage interaction to perform
randomized checks on committed witness elements. Instead of proving these
resulting zero-check instances as is done in prior proof systems such as Jolt,
NeutronNova provides the more efficient option of continual folding of zero-check
instances into a single running instance.

1 Introduction

A folding scheme [KST22] is a simple cryptographic protocol between a prover
and a verifier that reduces the task of checking two NP instances into the task
of checking a single instance. For example, suppose that a verifier holds two
public inputs x1 and x2 and suppose that the prover wishes to prove that it
knows two witnesses w1 and w2 such that they both satisfy a circuit C, that
is, C(w1, x1) = 1 and C(w2, x2) = 1. Instead of proving both claims, the prover
and the verifier can first invoke a folding scheme for circuit satisfiability to
reduce both claims into a single claim of the same size about some witness w3

and some public input x3. Furthermore, Kothapalli et al. [KST22,KS24] show
that folding schemes when used in a recursive manner provides incrementally
verifiable computation (IVC) [Val08], a powerful cryptographic primitive that



allows producing a proof of correct execution of a “long running” computation in
an incremental fashion—without having to prove the entire computation at once.
Specifically, the prover to takes as input a proof πi proving the correct execution
of the first i steps of a computation, and update it to produce a proof πi+1 proving
the first i+ 1 steps of the computation. Notably, the prover’s per-step work to
update a proof and the verifier’s work to verify a proof are both independent of
the number of steps executed.1

Prior to folding schemes, IVC was constructed using succinct non-interactive ar-
guments of knowledge (SNARKs) [Val08,BCTV14], non-interactive arguments of
knowledge (NARKs) with accumulation schemes [BGH19,BCMS20], or NARKs
with split-accumulation schemes [BCL+21]. Folding schemes avoid SNARKs and
NARKs entirely and merely employ a particular type of reduction of knowl-
edge [KP23]. Furthermore, folding schemes not only provide a clean abstraction
that is not tied to SNARKs or NARKs, they also provide a significantly more
efficient prover than their predecessors. The efficiency stems from not having
to produce a SNARK (or a NARK), but rather directly fold instances in some
relation. In state-of-the-art folding schemes [KS24,BC23,EG23], the prover merely
commits to its witness and performs some finite field operations.

Motivating application: zkVMs. zkVMs refer to succinct proof systems for
machine executions: given an assembly program designed to run on a machine (e.g.,
RISC-V), the prover proves the correct execution of the program. zkVMs are
attractive in practice because one does not need to express their computation
with circuits. Rather, a programmer expresses their desired computation in a
high-level language (e.g., Rust) and compiles it to an assembly program using
existing compiler toolchains. Furthermore, zkVMs can, by design, support proving
program executions with arbitrary control flow.

Technical challenges: time efficiency + space efficiency. A key challenge
is to ensure that the zkVM prover runs efficiently, and, in particular, ensure
that the prover’s space complexity is independent of the length of the execution
proven. As demonstrated by Ben-Sasson et al. [BCTV14] this can be achieved by
utilizing (SNARK-based) IVC, which allows one to prove the correct execution of
the supported machine cycle-by-cycle (or a fixed number of cycles at once). This
ensures that the prover’s space requirements are essentially the space requirements
of the program whose execution is being proven.

Given that folding schemes offer a more efficient route to constructing IVC, at first
blush, folding schemes appear to be a perfect fit for constructing time-efficient
and space-efficient zkVMs. Indeed, this is the approach taken by the Nexus
project [nex24b], which effectively replaces SNARKs with folding schemes in the

1 A folding-based IVC can also be built in a tree fashion (e.g., [ZV23,NDC+24]): the
prover could first produce proofs πi→j and πj→k proving the correct execution of the
computation from steps i to j and j to k respectively. The prover can then combine
them to produce a proof πi→k that proves the correct execution of the computation
from steps i to k. Crucially, the cost to produce the combined proof does not depend
on the number of steps proven in the incoming proofs.
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zkVM due to [BCTV14] and builds a zkVM for RISC-V. While this certainly
achieves better efficiency than [BCTV14], Nexus’s prover is still 3+ orders of
magnitude slower than state-of-the-art zkVMs such as Jolt [AST24].2

Focusing on time efficiency, Jolt achieves a significant speedup through a carefully-
designed set of reductions from the correctness of a RISC-V execution to a simpler
set of problems in NP (a combination of lookups, grand products, and R1CS),
which are then proven with a proof system derived from Spartan [Set20]. In
contrast, Nexus encodes the entire RISC-V execution with a universal circuit
expressed with R1CS. This means that even though folding ensures that the
prover’s space requirements do not exceed the size of (a circuit representation
of) a single cycle (or a pre-defined number of cycles) and the per-constraint
prover costs are low, the circuit encoding each cycle is substantial: 15,000 R1CS
constraints [nex24a]. Specifically, the universal circuit pays for every instruction
supported by the machine. Furthermore, it uses Merkle proofs to verify memory
operations, which is up to three orders of magnitude less efficient than Jolt’s
approach, which is a collection of techniques referred to as offline memory
checking [BEG+91,CDD+03,SAGL18].

Focusing on space efficiency, Jolt is a monolithic zkVM that can only execute a
limited number of CPU cycles, where the limit is given by the amount of space
available to the prover. In contrast, Nexus is a space-efficient zkVM that scales
to any number of CPU cycles, thanks to the use of folding schemes.

Research questions. The above motivates the following question: Can we
design folding schemes that enable space-efficient zkVMs while still leveraging
reductions from universal machine execution into more efficient problems?

To answer this, we start with Jolt’s design paradigm of using a carefully-curated
set of relations that imply the correctness of universal machine execution as
opposed to directly proving machine execution via constraints. We bring this
approach to the folding-based zkVM setting by designing a suite of optimized
folding schemes for such relations, which can then be used instead of directly
folding machine execution constraints. As such, the folding schemes that we
provide serve as a starting point toward the goal of building a zkVM that is
simultaneously space and time efficient.

1.1 A technical overview our solution: NeutronNova

We introduce NeutronNova, a suite of folding schemes for relations that arise in
the context of proving the correct execution of CPUs such as RISC-V.

We design NeutronNova in a modular fashion to enable a rapid development of
folding schemes for new relations that may arise in the future. To enable such
extensibility, we design a folding scheme for a highly-expressive core-relation,
zero-check, to which we can naturally reduce a variety of complex relations such

2 When we say Nexus, we refer to their folding-based zkVM. More recently, they have
integrated Jolt, but that version suffers from the same space limitations as Jolt.
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Fig. 1. An overview of ZeroFold, our folding scheme for the zero-check relation underlying
NeutronNova. An instance in the zero-check relation, ZC, is folded into a running instance
consisting of instances in the power-check relation, ZCPC, that checks that a vector
commits to the powers of a random challenge, a variant of the sum-check relation NSC,
and a variant of the sum-check relation that enforces the power-check relation NSCPC.
In the diagram, ∗ indicates that one of the outputs of the zero-check reduction is a
fresh ZCPC instance included in the output running instance.

as CCS [STW23], lookups, and grand-products. We believe that this modular
framework also eases the formal verification of a zkVM based on NeutronNova.

In more detail, an instance-witness pair is in the zero-check relation if a prescribed
multivariate polynomial, with coefficients that are a function of the instance and
witness, evaluates to zero for all values over a suitable hypercube. As shown
implicitly in prior work, a vast number of complex relations can be interactively re-
duced to the zero-check relation, often with minimal computation and communica-
tion [BFLS91,BFL92,Sha92,BTVW14,Set20,GWC19,GW20,SL20,CBBZ23,STW24,AST24].
For instance, the circuit satisfiability relation reduces to checking that a set of mul-
tiplication and addition gate constraints [BFLS91,Sha92,BFL92] evaluate to zero,
the grand product relation reduces to checking a set of constraints between coef-
ficients of polynomials at neighboring monomials evaluate to zero [SL20,GW20],
and modern NP-complete relations, such as R1CS [GGPR13], CCS [STW23],
and Plonkish [GWC19] reduce to checking that entry-wise constraints on a fixed
set of vectors evaluate to zero. By formally modeling such interactive reductions
as reductions of knowledge [KP23], a folding scheme for the zero-check relation
would imply a folding scheme for all of these relations.

ZeroFold: A new folding scheme for the zero-check relation

We introduce ZeroFold, a two-round folding scheme for the zero-check rela-
tion. This folding scheme internally invokes a single round of the sum-check
protocol [LFKN90]. The prover’s work is in the folding scheme is the cost to
commit to its witness and some finite field operations in the single round of
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the sum-check protocol. Notably, if the witness contains “small” field elements,
the prover only commits to “small” field elements. This makes these commit-
ments very fast to compute (an order of magnitude faster than committing to
arbitrary field elements), a property also leveraged in prior works like Spar-
tan [Set20,STW23], HyperNova [KS24], Protostar [BC24b], Lasso [STW24], and
Jolt [AST24]. Furthermore, our prover benefits from recent efficiency improve-
ments to the sum-check prover [DT24]. The verifier’s work is a constant number
of group scalar multiplications, field operations, and hash computations. Our
folding scheme naturally extends to folding an arbitrary number of instances at
once (i.e, ZeroFold is a multi-folding scheme [KS24]), while ensuring that costs
grow only linearly for the prover and the verifier in the number of instances.
Note that the communication within the single round of the sum-check protocol
and the verifier’s work for sum-check messages do not depend on the number of
instances folded. When folding n instances, ZeroFold requires only log n rounds
of the sum-check protocol.

Theorem 1 (Folding zero-check (Informal)). There exists a folding scheme
for folding n ≥ 2 instances in the zero-check relation, ZC, with 1 + log n rounds,
an O(log n) communication complexity, an O(n) prover time complexity, and an
O(log n) verifier time complexity.

As a concrete example, suppose that the verifier holds two linearly homomorphic
commitments w0 and w1, and would like to fold the task of checking that the
prover knows openings w0 ∈ Fn and w1 ∈ Fn such that, say, all the elements are
0 or 1. This can be reduced to the task of folding two zero-check statements

0 = w0(x) · w0(x)− w0(x)

0 = w1(x) · w1(x)− w1(x)

for all x ∈ {0, 1}ℓ, where wi(x) indicates evaluating the polynomial representation
of wi at location x and ℓ = log n.

A prior approach [BFL92,BTVW14,Set20,CBBZ23], notably from [BTVW14],
for encoding zero-check is to embed each of the constraints into coefficients of a
Lagrange polynomial, and then check that this polynomial is zero when evaluated
at a random point. In particular the verifier first samples a challenge τ and
instead checks that

0 =
∑

x∈{0,1}ℓ
τX · (w0(x) · w0(x)− w0(x)) (1)

0 =
∑

x∈{0,1}ℓ
τX · (w1(x) · w1(x)− w1(x)), (2)

where X is the corresponding decimal representation if x is treated as the bit
representation i.e., X =

∑ℓ−1
i=0 2

i · xi. This essentially amounts to folding the
sum-check problem, which checks the sum of evaluations of a polynomial over a
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suitable hypercube. While sum-check is decidedly an easier problem to work with,
it is still not clear how to fold the above instances: the verifier cannot simply
output a folded instance as a random linear combination of the input instances
due to the inherent non-linearity of the summand polynomial.

To solve the non-linearity issue, we devise a new folding technique that utilizes
a single round of the sum-check protocol, which we refer to as SumFold. The
essential idea in SumFold is that we can devise new polynomials f(b, x) such that
f(0, x) = w0(x) and f(1, x) = w1(x). Then, checking Equations (1), and (2) is
equivalent to checking that

Q(B) =
∑

b∈{0,1}

eq(b, B) ·
∑

x∈{0,1}ℓ
τX · (f(B, x) · f(B, x)− f(B, x)) (3)

is the zero polynomial, where eq is a Lagrange polynomial such that eq(b, b′) = 1 if
b = b′ and 0 otherwise for b, b′ ∈ {0, 1}. Then, the verifier can check Equation (3)
with overwhelming probability by sampling a random challenge β ∈ F and
checking that 0 = Q(β).

Then, by running the sum-check protocol [LFKN90] on the outer sum for a single
round, the verifier can reduce the task of checking Equation (3) to the task of
checking

T =
∑

x∈{0,1}ℓ
τX · f(β, x) · f(β, x)− f(β, x),

for some value T . By the construction of f , for w ← w1 + β ·w2, this amounts to
checking

T =
∑

x∈{0,1}ℓ
τX · (w(x) · w(x)− w(x)).

The verifier can accordingly output a folded instance w ← w1 + β · w2.

Hence, the verifier has folded two zero-check instances into a single sum-check
instance. The verifier can then fold in new zero-check instances by first reducing
to a sum-check instance (the zero-check reduction in Figure 1), and then repeating
the above procedure (the nested sum-check reduction in Figure 1).

However, several challenges remain. First, with each additional zero-check in-
stance, a new challenge τ must be sampled, and polynomials encoding the powers
of τ (and the corresponding commitments) must also be folded. As it is too
expensive for the verifier to compute these commitments in each folding step,
this task must be outsourced to the prover. This places an additional burden on
the verifier in each step to check that the claimed commitment to the powers
of τ indeed agrees with τ . In applications such as IVC, where the verifier is
represented as an arithmetic circuit, this is overly expensive and infeasible. Our
idea here is to encode this check itself as another zero-check instance, which we
refer to as ZCPC, and bootstrap the existing folding scheme to fold these checks
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alongside. Moreover, even on the prover’s end, committing to the full vector
of the powers of τ (which scales with 2ℓ) is too expensive. We show how this
can be circumvented by having the prover commit to two

√
n-sized vectors, one

with the powers of τ and the other with a strided powers of τ (a similar pattern
appears in tensor polynomial commitment schemes [GLS+23]). The prover and
the verifier can then consider a variant of the sum-check relation, which we refer
to as the nested sum-check relation (NSC), that computes the tensor product of
these two vectors to produce the full powers of τ on the fly. Figure 1 summarizes
the resulting folding scheme.

NeutronNova: Folding schemes for more complex relations

NeutronNova is the resulting suite of folding schemes that result from sequentially
composing a reduction of knowledge (RoK) from a relation R to any number of
zero-check instances with the folding scheme for zero-check.

This immediately provides a new folding scheme with attractive efficiency char-
acteristics for customizable constraint systems (CCS), an NP-complete relation
that generalizes R1CS [GGPR13], Plonkish [GWC19], and AIR [BSBHR19] and
naturally reduces to zero-check. We provide a comparison between NeutronNova’s
folding scheme for CCS and prior work in Section 1.2.

Lemma 1 (Folding CCS (Informal)). There exists a folding scheme for the
CCS relation, CCS, with the same round complexity, communication complexity,
prover time complexity, and verifier time complexity as ZeroFold.

Moreover, by the results of Kothapalli and Setty [KS24, Lemma 4], we have
that a folding scheme for CCS induces a corresponding non-uniform IVC (NIVC)
scheme (i.e., IVC that supports different functions in each step of execution) over
arbitrary degree constraints with a matching cost profile.

Beyond CCS, we formally describe a reduction of knowledge (RoK) from the grand-
product relation, where a witness is a vector, and an instance is a commitment
to a vector and a claimed product of all entries in the witness, to the zero-
check relation. This RoK is based on the grand-product argument of Setty and
Lee [SL20] and it is a non-interactive RoK.

Lemma 2 (Folding grand-product (Informal)). There exists a folding
scheme for folding n instances in the grand-product relation, GP, with 2 + log n
rounds and the same communication complexity, prover time complexity, and
verifier time complexity as ZeroFold.

We additionally describe a RoK from an indexed lookup relation to four instance-
witness pairs in the grand product relation. This RoK is based on Lasso [STW24]
and consists of a single round of interaction. By sequentially composing the prior
two RoKs, we get a RoK from indexed lookups to zero-checks and hence a folding
scheme for indexed lookups. We compare this with prior lookup arguments for
folding schemes in Section 1.2.
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Lemma 3 (Folding lookup (Informal)). There exists a folding scheme for
folding n instances in the lookup relation, LKP, with 3 + log 4n rounds, and
the same communication complexity, prover time complexity, and verifier time
complexity as ZeroFold.

1.2 Related work

HyperNova. HyperNova [KS24] is a folding scheme for CCS, where the prover
runs the sum-check protocol [LFKN90] to reduce an instance-witness pair in
CCS [STW23] into an instance-witness pair in linearized CCS, which admits a
simple folding scheme based on random linear combination without any additional
help from the prover. Beyond committing to the witness, HyperNova’s prover’s
work is merely finite field operations in the sum-check protocol. Furthermore,
HyperNova is a multi-folding scheme that can fold k ≥ 2 instances at once.
Leveraging this, [ZZD23] show that HyperNova naturally extends to provide a
generalization of IVC called PCD [BCCT13]. One can apply their transformation
to NeutronNova’s folding scheme for CCS to obtain PCD.

NeutronNova improves upon HyperNova: NeutronNova avoids running the sum-
check protocol in entirety, so NeutronNova’s prover’s work in the sum-check
protocol is lower by ≈2×. More importantly, NeutronNova features a dramatically
smaller verifier circuit. HyperNova’s verifier circuit performs k − 1 group scalar
multiplications and NeutronNova’s verifier circuit performs k + 1 group scalar
multiplications. However, HyperNova’s verifier circuit verifies the sum-check
protocol messages from logm rounds, where m is the number of constraints in
CCS. HyperNova’s verifier circuit incurs O(d · logm) hash computations and field
operations, where d is the degree of CCS constraints. In contrast, NeutronNova’s
verifier circuit incurs O(d) hash computations and field operations. Overall,
NeutronNova’s verifier circuit is smaller.

Protostar. Protostar [BC23] focuses on folding special-sound protocols (with a
algebraic verifiers) and it provides special-sound protocols for various relations
including Plonkish, CCS, and lookups. To fold special-sound protocols, Protostar
folds the verifier of a non-interactive special sound protocol expressed as a relation.
This relation can be naturally reduced to the zero-check relation.

Focusing on their folding scheme for CCS, the prover’s work and the verifier
circuit size under NeutronNova’s folding scheme for CCS are similar to that
of Protostar’s. Unfortunately, Protostar cannot efficiently fold more than two
instances at once. To fold k > 2 instances, Protostar has to fold them one-by-one
increasing the verifier circuit size by a factor of O(k) compared to folding two
instances. Alternatively, one can attempt to fold all k instances at once, but
the costs grow exponentially in k [EG23, §1.2]. Furthermore, unlike Protostar,
NeutronNova employs the sum-check protocol as a black box, so it can leverage
recent optimizations [Gru24,DT24] to the sum-check protocol.

Protostar also describes a lookup argument within folding schemes. Their folding
scheme is based on logarithmic derivatives [Hab22] (which relies on grand sums of
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ratios of field elements) whereas the RoK that we describe for lookups is based on
Lasso [STW24] (which relies on grand products). As described, they have similar
asymptotic efficiency. However, by using the hybrid reduction of Quarks (§5.2),
our approach can avoid commitments to arbitrary field elements. Regardless, we
could devise a RoK from lookups to zero-checks relying on logarithmic derivatives.

Recently, Bünz and Chen [BC24b] extend Protostar with access to a global read-
write memory. One can replace Protostar with NeutronNova in their construction
to achieve better efficiency, especially due to NeutronNova’s support for folding
multiple instances at once.

Protogalaxy. Protogalaxy [EG23] extends Protostar [BC23] to support folding
k > 2 instances at once. In Protogalaxy, an instance is logarithmic in the number
of constraints folded, whereas in NeutronNova, the instances are constant-sized.
In Protogalaxy, the verifier circuit performs O(d+ logm) finite field operations
and hash computations when folding two instances. Whereas, with NeutronNova,
this is only O(d). Their prover time scales super-linearly with the number of
instances folded i.e., O(k log k), whereas in NeutronNova, the prover time scales
linearly with k. Protogalaxy describes alternate schemes that scale better for
larger values of k and handle the more general case of multiple running instances,
but remarks that it may have worse constants than their main protocol. In any
case, the instances are still logarithmic in the number of constraints folded. Recent
work [EGS+24] applies Protogalaxy to build a relaxed version of IVC, where they
apply Protogalaxy to a relation that appears closely related to our zero-check
relation. One can replace Protogalaxy with NeutronNova in their construction
and achieve better efficiency due to our improved folding scheme.

LatticeFold. LatticeFold [BC24a] describes a HyperNova-like folding scheme
in the lattice setting. Unlike most folding schemes including NeutronNova, Lat-
ticeFold provides plausible post-quantum security. However, LatticeFold, like
HyperNova, runs the full sum-check protocol, so it incurs higher recursion over-
heads than NeutronNova. Furthermore, their prover must commit to low-norm
versions of witness vectors and prove range checks to ensure that each entry in
the committed vector is a value in the range [b]. The degree of the sum-check is
min(2b, d), so choosing a small value for b (e.g., b = 2) makes the prover commit
to an excessive number of witness vectors. On the other hand, choosing a large
value of b increases the degree of the sum-check protocol, which in turn increases
the prover’s work in the sum-check protocol and the verifier circuit sizes.

Folding schemes for non-homomorphic commitments. Recently, there
is work to generalize Protostar-type folding schemes to non-homomorphic com-
mitments (e.g., Merkle commitments to codewords) [BMNW24]. Compared to
NeutronNova, they provide plausible post-quantum security. Unfortunately, they
still require excessive amounts of hashing to verify Merkle membership proofs.
Furthermore, the resulting IVC schemes are limited to a bounded number of
steps (i.e., concrete attacks exist for non-constant recursion depth).

Mova and Ova. Mova [DGMV24] is a recent folding scheme that improves on
Nova [KST22] by avoiding a commitment to the cross-term. NeutronNova (like
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its predecessors HyperNova and Protostar) naturally achieves this property.
Furthermore, unlike NeutronNova, Mova is limited to folding two instances at
once. Moreover, when folding two instances, Mova requires a logarithmic number
of hashes and finite field operations in the verifier circuit, whereas NeutronNova
requires only a constant number of hashes and finite field operations.

Ova [ova] reduces the number of group scalar multiplications in Nova by 1. This
is an improvement atop Nova in terms of verifier circuit sizes (by about 10–13%).
Unfortunately, the prover still needs to compute and commit to a cross-term,
which can contain arbitrary field elements even when witness elements are “small”,
a problem solved by prior works [KS24,BC23,EG23] including this work.

Nebula. In a companion work, Nebula [AS24] provides an efficient read-write
memory primitive in folding schemes. The read-write memory is globally ac-
cessible across different steps of NIVC and beyond. To achieve this, Nebula
provides a natural generalization of NIVC, which they refer to as commitment-
carrying NIVC (CC-NIVC): a proof contains an incremental commitment to
non-deterministic witness provided at each step of NIVC. To construct CC-
IVC, they adapt HyperNova’s compiler to provide a compiler from multi-folding
schemes to CC-NIVC. Using CC-NIVC, Nebula retrofits offline memory check-
ing [BEG+91,SAGL18,STW24,AST24] within NIVC. Since they use a folding
scheme as a black box, one can adapt their techniques to our setting and directly
reduce read-write memory checking to zero-check and use NeutronNova’s folding
scheme for zero-check. We leave this to the future work.

Jolt+Nova. A naive approach [ST24] to make Jolt space efficient is to recursively
compose it with Nova [KST22]: Jolt produces a proof of some number of CPU
cycles at once, which is verified using a step of Nova. Unfortunately, it requires
writing optimized circuits that check Jolt’s proofs. Furthermore, this approach
requires producing a Jolt proof. In contract, rather than proofs, NeutronNova
generates zero-check instances (roughly, witness commitments), which are then
folded with a single round of the sum-check protocol. Furthermore, NeutronNova’s
single-round sum-check protocol makes it more friendly to GPUs and ASICs
than O(log2 n) rounds of the sum-check protocol used in Jolt (where n is the
number of CPU cycles).3 Overall, NeutronNova provides a more efficient and a
more direct route to build zkVMs that are both space and time efficient.

2 Preliminaries

In this section, we fix our notation and recall reductions of knowledge, which
we use throughout our development. In Appendix A, we formally present multi-
linear polynomials and relevant properties, commitment schemes, arguments of
knowledge, and IVC.

3 Jolt can make the number of rounds closer to O(logn) by using the hybrid grand
product protocol of [SL20], rather their current approach [GKR08,Tha13]. However,
concretely, NeutronNova’s round complexity will still be an order of magnitude better.
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2.1 Notation

We let λ to denote the security parameter. We let negl(λ) to denote a negligible
function in λ. We write Pr[X] ≈ ϵ to mean that |Pr[X]−ϵ| = negl(λ). Throughout
the paper, the depicted asymptotics depend on λ, but we elide this for brevity.
We let PPT denote probabilistic polynomial time and let EPT denote expected
probabilistic polynomial time. We let [n] denote the set {1, . . . , n}. We let {ui}i∈[n]
denote the set {u1, . . . , un}.

We let F to denote a finite field (e.g., the prime field Fp for a large prime p) and
let Fn denote vectors of length n over elements in F. We write Fd[X1, . . . , Xn] to
denote multivariate polynomials over field F in the variables (X1, . . . , Xn) with
degree bound d for each variable. We omit the superscript if there is no degree
bound. We denote vectors as v⃗ = (v1, . . . , vn). Given a vector of polynomials
g⃗, we let g⃗(x) = (g1(x), . . . , gn(x)). We let eq(x, y) ∈ F1[X1, . . . , Xℓ, Y1, . . . , Yℓ]
denote the polynomial that outputs 1 if x = y and 0 otherwise for x, y ∈ {0, 1}ℓ.
For vector v ∈ Fn we let ṽ ∈ F1[X1, . . . , Xlogn] denote the multilinear polynomial
extension of v (i.e., ṽ(i) =

∑
j eq(i, j) · vj).

2.2 Reductions of Knowledge

We now recall the reductions of knowledge framework, introduced by Kothapalli
and Parno [KP23]. Reductions of knowledge are a generalization of arguments of
knowledge, in which a verifier interactively reduces checking a prover’s knowledge
of a witness in a relation R1 to checking the prover’s knowledge of a witness
in another (simpler) relation R2. In particular, both parties take as input a
claimed instance u1 to be checked, and the prover additionally takes as input a
corresponding witness w1 such that (u1, w1) ∈ R1. After interaction, the prover
and verifier together output a new statement u2 to be checked in place of the
original statement, and the prover additionally outputs a corresponding witness
w2 such that (u2, w2) ∈ R2.

We modify the original definition to account for the preprocessed setting, in which
a deterministic encoder algorithm preprocesses a portion of the statement called
the structure (typically encoding a circuit or set of constraints) once and outputs
a prover and verifier key which can be used to verify any number of witnesses
(e.g., variable assignments) against this structure. We enable the encoder to
additionally output a new structure to check the output instance-witness pair
against (this can be preprocessed by a subsequent encoder).

Definition 1 (Reduction of Knowledge [KP23]). Consider relations R1

and R2 over public parameters, structure, instance, and witness tuples. A reduc-
tion of knowledge from R1 to R2 is defined by PPT algorithms (G,P,V) and
deterministic algorithm K, called the generator, the prover, the verifier and the
encoder respectively with the following interface.

• G(λ, n) → pp: Takes as input security parameter λ and size parameters n.
Outputs public parameters pp.
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• K(pp, s1)→ (pk, vk, s2): Takes as input public parameters pp and structure
s1. Outputs prover key pk, verifier key vk, and updated structure s2.

• P(pk, u1, w1) → (u2, w2): Takes as input public parameters pp, and an
instance-witness pair (u1, w1). Interactively reduces the task of checking
(pp, s, u1, w1) ∈ R1 to the task of checking (pp, s, u2, w2) ∈ R2.

• V(pk, u1) → u2: Takes as input public parameters pp, and an instance u1

in R1. Interactively reduces the task of checking instance u1 to the task of
checking a new instance u2 in R2.

Let ⟨P,V⟩ denote the interaction between P and V. We treat ⟨P,V⟩ as a function
that takes as input ((pk, vk), u1, w1) and runs the interaction on the prover’s input
(pk, u1, w1) and the verifier’s input (pp, u1). At the end of the interaction, ⟨P,V⟩
outputs the verifier’s instance u2 and the prover’s witness w2. A reduction of
knowledge (G,K,P,V) satisfies the following conditions.

(i) Completeness: For any PPT adversary A, given pp← G(λ, n), (s1, u1, w1)←
A(pp) such that (pp, s, u1, w1) ∈ R1 and (pk, vk, s2) ← K(pp, s1) we have
that the prover’s output instance is equal to the verifier’s output instance
u2, and that

(pp, s2, ⟨P,V⟩((pk, vk), u1, w1)) ∈ R2.

(ii) Knowledge soundness: For any expected polynomial-time adversaries A and
P∗, there exists an expected polynomial-time extractor E such that given
pp ← G(λ, n), (s1, u1, st) ← A(pp), and (pk, vk, s2) ← K(pp, s1), we have
that

Pr[(pp, s1, u1, E(pp, s, u1, st)) ∈ R1] ≈ Pr[(pp, s2, ⟨P∗,V⟩((pk, vk), u1, st)) ∈ R2].

(iii) Public reducibility: There exists a deterministic polynomial-time function φ
such that for any PPT adversary A and expected polynomial-time adversary
P∗, given

pp← G(λ, n),
(s1, u1, st)← A(pp),
(pk, vk, s2)← K(pp, s1),

and (u2, w2)← ⟨P∗,V⟩((pk, vk), u1, st) with the interaction transcript tr, we
have that φ(pp, s1, u1, tr) = u2.

As with arguments of knowledge, we can define various additional properties for
reductions of knowledge such as succinctness (the communication is sublinear in
the witness size), non-interactivity (the interaction consists of a single message
from the prover), public-coin (the verifier only sends random challenges), and
tree-extractability (there exists an extractor that can produce a satisfying witness
given a tree of accepting transcripts). We define these properties in Appendix A.3.
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Typically, we are interested in reducing several relations at once. We can interpret
several relations as a single relation using the following product operator.

Definition 2 (Relation product). For relations R1 and R2 over public
parameter, structure, instance, and witness pairs we define the relation product
as follows.

R1×R2 =
{
(pp, s, (u1, u2), (w1, w2))

∣∣ (pp, s, u1, w1) ∈ R1, (pp, s, u2, w2) ∈ R2

}
.

We let Rn denote R× . . .×R for n times.

A motivating property of reductions of knowledge is that they are composable,
allowing us to build complex reductions by stitching together simpler ones. In
particular, given reductions Π1 : R1 → R2 and Π2 : R2 → R3 we have that
Π2 ◦ Π1 (that is, running Π1 first and then running Π2 on the outputs) is a
reduction of knowledge from R1 to R3. Similarly, given reductions Π1 : R1 → R2

and Π2 : R3 → R4 we have that Π1 ×Π2 (that is, independently running Π1

and Π2 on pairs of inputs) is a reduction of knowledge from R1×R3 to R2×R4.
We formally define sequential and parallel composition in Appendix A.3.

In this work we are chiefly interested in building folding schemes, a particular
type of reduction of knowledge that reduces the task of checking several instances
in some relation R2 into a running instance in a relation R1.

Definition 3 (Folding scheme). A folding scheme for Rm
1 and Rn

2 is a reduc-
tion of knowledge of type Rm

1 ×Rn
2 → R1 where the encoder outputs its input

structure. We call a reduction of type Rn → R simply as a folding scheme for R.

2.3 The sum-check protocol

Recall that the standard sum-check relation checks that the sum of evaluations
of an ℓ-variate polynomial Q (under a commitment) on the Boolean hypercube
results in some value T . Formally, the sum-check relation is defined as follows.

Definition 4 (Unstructured sum-check relation). Let (Gen,Commit) de-
note an additively homomorphic commitment scheme. Consider a size bound
ℓ ∈ N. The unstructured sum-check relation USC over public parameter, instance,
witness pairs is defined as follows.

USC =

 (pp, (Q,T ), Q)

∣∣∣∣∣∣
Q ∈ F[X1, . . . , Xℓ],
Q = Commit(pp, Q),
T =

∑
x∈{0,1}ℓ Q(x)


Central to our development is the sum-check protocol [LFKN90], which, when
recast as a reduction of knowledge [BCS21], reduces from the sum-check relation
to the polynomial evaluation relation, which we define below.

13



Definition 5 (Polynomial evaluation relation). Let (Gen,Commit) denote
an additively homomorphic commitment scheme. Consider size bound ℓ ∈ N. We
define the polynomial evaluation relation, PE, as follows.

PE =

 (pp, (Q, x, y), g)

∣∣∣∣∣∣
Q ∈ F[X1, . . . , Xℓ],
Q = Commit(pp, Q),
y = Q(x)

 .

Lemma 4 (The sum-check protocol). There exists a succinct, public-coin,
tree-extractable reduction of knowledge (Lemma 15) from USC to PE compatible
with all encoder, generator, and commitment algorithms where the output com-
mitment is the same as the input commitment. For polynomials in Fd[X1, . . . , Xℓ]
the communication complexity is O(d · ℓ) elements in F.

3 SumFold: A folding scheme for the sum-check relation

In this section, we design a folding scheme for instance-witness pairs in the
sum-check relation by using the sum-check protocol itself as a core building block.
In the next section, we show that this enables a folding scheme for zero-check.

A strawman folding scheme for the unstructured sum-check relation (Definition 4)
is quite natural. By linearity, to interactively fold two unstructured sum-check
instances (T1, Q1) and (T2, Q2) the verifier can send a random challenge ρ and
check instead that the prover knows a polynomial Q to the folded instance
(T1+ρ ·T2, Q1+ρ ·Q2), which indeed the prover can compute so long as it knows
polynomials Q1 and Q2 that satisfy (T1, Q1) and (T2, Q2).

Sum-check over structured polynomials. Challenges arise in contexts of
interest, where the verifier does not explicitly hold commitments to Q1 and
Q2. In particular, when encoding instances in NP-complete relations, where the
polynomial Q is more concisely represented as a set of multilinear polynomials
(g0, . . . , gt−1) which we denote as g⃗ and a polynomial F ∈ F[Y1, . . . , Yt] such that
Q(x) = F (g0(x), . . . , gt−1(x)) for all x in {0, 1}ℓ. The multilinear polynomials g⃗
themselves are typically a linear function G of some (smaller) set of underlying
vectors w⃗ = (w0, . . . , ws−1) and sometimes a public vector x. For example, when
encoding circuit satisfiability, polynomials g1, g2, and g3 could represent left,
right, and output gate values selected from a single vector (w, x) encoding the
full list of intermediate wire values and inputs.

Hence, in practice, the commitment to the polynomial Q is much more concisely
represented as a commitments to polynomials w⃗ alongside public vector x and
functions F and G. With this the following more accurately captures the relation
we aim to fold.

Definition 6 (Sum-check relation). Let (Gen,Commit) denote an additively-
homomorphic commitment scheme for vectors over finite field F. Consider size
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bounds n,m, ℓ, d, s, t ∈ N. We define the sum-check relation, SC, as follows

SC =

 (pp, (F,G), (T, u⃗, x), w⃗)

∣∣∣∣∣∣∣∣
T ∈ F, F ∈ Fd[Y1, . . . , Yt], w⃗ ∈ (Fn)s, x ∈ Fm,
Commit(pp, wi) = ui,
g⃗ ∈ (F1[X1, . . . , Xℓ])

t ← G(w⃗, x)
T =

∑
x∈{0,1}ℓ F (g⃗(x))


where G is linear over the input vector (w⃗, x).

Challenges with folding sum-check. The simple folding scheme that worked
for USC no longer works for SC due to the potential non-linearity of F . To
demonstrate this, consider the following. Concretely, suppose that G simply
outputs multilinear extensions of its inputs (e.g., the multilinear extension of
the witness and the public input concatenated) and F multiplies all its inputs.
Suppose then that the verifier holds two sets of commitments (g0, . . . , gt−1) and

(h0, . . . , ht−1) and would like to check that the prover knows two sets of ℓ-variate
multilinear polynomial openings (g0, . . . , gt−1) and (h0, . . . , ht−1) such that

T0 =
∑

x∈{0,1}ℓ
g0(x) · g1(x) · . . . · gt−1(x) (4)

T1 =
∑

x∈{0,1}ℓ
h0(x) · h1(x) · . . . · ht−1(x). (5)

Suppose that the verifier samples a challenge ρ (as before), and computes the
folded instance:

(T0 + ρ · T1, (g0 + ρ · h0), . . . , (gt−1 + ρ · gt−1)).

Then, while the prover can compute the corresponding openings (g0 + ρ ·
h0), . . . , (gt−1 + ρ · gt−1), they no longer satisfy the sum-check relation because

T0 + ρ · T1 =
∑

x∈{0,1}ℓ
g0(x) · . . . · gt−1(x) + ρ · h0(x) · . . . · ht−1(x)

̸=
∑

x∈{0,1}ℓ
(g0(x) + ρ · h0(x)) · . . . · (gt−1(x) + ρ · ht−1(x)).

Our solution: SumFold. We are now ready to describe NeutronNova’s folding
scheme for the sum-check relation, which we refer to as SumFold. Recall that the
crux of SumFold is that we embed polynomials gi and hi as Lagrange coefficients
in a single-variable linear polynomial fi (and likewise for T0 and T1). The prover
and the verifier then run the sum-check protocol [LFKN90] for a single round to
bind this new variable to a random value.

Indeed, for all j ∈ [t], define fi as a multilinear polynomial in ℓ + 1 variables
such that for all x ∈ {0, 1}ℓ, fj(0, x) = gj(x) and fj(1, x) = hj(x). Specifically,
we define

fj(b, x) = (1− b) · gj(x) + b · hj(x).
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Then, checking Claims (4) and (5) is equivalent to checking

T0 =
∑

x∈{0,1}ℓ
f0(0, x) · f1(0, x) · . . . · ft−1(0, x)

T1 =
∑

x∈{0,1}ℓ
f0(1, x) · f1(1, x) · . . . · ft−1(1, x)

Embedding the above polynomials as Lagrange coefficients, the verifier can
equivalently check∑
b∈{0,1}

eq(X, b) · Tb =
∑

b∈{0,1}

eq(X, b) ·
∑

x∈{0,1}ℓ
f0(b, x) · f1(b, x) · . . . · ft−1(b, x).

Then, the verifier picks a random challenge β ∈ F, and by the Schwartz-Zippel
Lemma (Lemma 12), it reduces to checking∑
b∈{0,1}

eq(β, b) · Tb =
∑

b∈{0,1}

eq(β, b) ·
∑

x∈{0,1}ℓ
f0(b, x) · f1(b, x) · . . . · ft−1(b, x).

The prover and verifier then apply the sum-check protocol [LFKN90] for a single
round to the outer sum to bind the variable b to a random challenge rb ∈ F.
Then, for some T ′ ∈ F, the verifier is left to check the following claim about the
inner sum

T ′ =
∑

x∈{0,1}ℓ
f0(rb, x) · f1(rb, x) · . . . · ft−1(rb, x).

At this point, for j ∈ [t], the verifier computes commitments to multilinear
polynomials fj(rb) (i.e., fj with the first variable set to rb), homomorphically as

Commit(pp, fj(rb)) = (1− rb) · Commit(pp, fj(0)) + rb · Commit(pp, fj(1))

= (1− rb) · gj + rb · hj

Finally, the verifier produces the folded instance

(T ′, ((1− rb) · g0 + rb · h0), . . . , ((1− rb) · gt−1 + rb · ht−1)).

Furthermore, the prover can produce the satisfying folded witness ((1− rb) · g0 +
rb · h0), . . . , ((1− rb) · gt−1 + rb · ht−1).

SumFold generalizes naturally to fold any number of sum-check instances. If
there are n sum-check instances, then the verifier samples rb ∈ Flogn and run the
sum-check protocol for log n rounds. At the end of the protocol, the commitments
and witnesses are folded using the evaluations of eq(rb, i) for all i ∈ {0, 1}logn

as weights. In the case of n = 2, these weights are simply (1 − rb) and rb as
described above. We now formally describe our generalized construction.
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Construction 1 (SumFold). We construct a folding scheme for SC. Consider
size bounds ℓ, d, s, t ∈ N and let ν = log n. Let (Psc,Vsc) denote the sum-check
protocol (Lemma 4). Consider an arbitrary generator algorithm and an underlying
additively homomorphic commitment scheme. We define the encoder, prover, and
verifier as follows.

K(pp, (F,G)): Output (pk, vk)← ((F,G),⊥) and structure (F,G).

⟨P,V⟩((pk, vk), {(Ti, u⃗i, xi)}i∈[n], {w⃗i}i∈[n]):

1. V: Sample and send ρ
$← Fν .

2. P,V: Compute (c, rb)← ⟨Psc,Vsc⟩((pk, vk), (Q,T ), Q), where

T ←
∑

i∈{0,1}ν
eq(ρ, i) · Ti

fj(b, x)←
∑

i∈{0,1}ν
eq(b, i) · gi,j(x) where g⃗i ← G(w⃗i, xi)

Q(b)← eq(ρ, b) ·

 ∑
x∈{0,1}ℓ

F (f1(b, x), . . . , ft(b, x))


Q← ((F,G), ρ, (u⃗i, xi)i∈[n]).

3. P,V: Output the folded instance-witness pair (the verifier only outputs the
instance) ((T ′, u⃗, x), w⃗), where

T ′ ← c · eq(ρ, rb)−1

uj ←
∑

i∈{0,1}ν
eq(rb, i) · ui,j

x←
∑

i∈{0,1}ν
eq(rb, i) · xi

wj ←
∑

i∈{0,1}ν
eq(rb, i) · wi,j

We formally prove the following theorem in Appendix B.1.

Theorem 2 (SumFold). Construction 1 is a folding scheme for SC with 1+log n
rounds, a communication complexity of O(d log n) field elements, a prover time
complexity of O(ntd · 2ℓ) field operations, and a verifier time complexity of
O(d log n) field operations.

Proof (Intuition). We prove knowledge soundness via tree extraction (Lemma 15).
That is, we construct PPT extractor χ that outputs a satisfying input witness with
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probability 1−negl(λ) given a tree of accepting transcripts and the corresponding
output instance-witness pairs in SC. We do so by leveraging the tree-extractor
χsc guaranteed by the tree extractability of the sum-check protocol (Lemma 4).

In particular, χ can produce a sufficient number of accepting sub-trees for the
underlying sum-check protocol by using the provided instance-witness pairs in SC
to solve for satisfying instance-witness pairs output by the sum-check protocol in
the polynomial evaluation relation PE. Then, the sum-check tree extractor χsc

can produce a satisfying input witness in the unstructured sum-check relation
USC for each sub-tree. By the binding property of the commitment scheme, these
witnesses must all be identical. But, by interpolating over the verifier’s initial
challenge, this means that the witness produced by χsc must also be a satisfying
witness for the input relation SCn.

4 ZeroFold: A folding scheme for the zero-check relation

In this section, we design ZeroFold, a folding scheme for the zero-check relation,
which asserts that a polynomial is zero over a prescribed set of points. We use
SumFold (Construction 1), which is a folding scheme for the sum-check relation, as
the central engine underlying our construction. In the next section, we show that
this enables folding schemes for a variety of relations that reduce to zero-check.

As with folding unstructured sum-check instances, unstructured zero-check in-
stances can be folded with a standard random linear combination. However, as
with the sum-check relation, in practice, commitments to the involved polynomi-
als are typically represented as commitments to a set of (smaller) witness vectors
that generate the aforementioned polynomials. Hence, we are more accurately
interested in folding the following relation.

Definition 7 (The zero-check relation). Let (Gen,Commit) denote an additively-
homomorphic commitment scheme for vectors over finite field F. Consider size
bounds n,m, ℓ, d, s, t ∈ N. We define the zero-check relation, ZC, as follows

ZC =

 (pp, (F,G), (u⃗, x), w⃗)

∣∣∣∣∣∣∣∣
F ∈ Fd[Y1, . . . , Yt], w⃗ ∈ (Fn)s, x ∈ Fm,
Commit(pp, wi) = ui,
g⃗ ∈ (F1[X1, . . . , Xℓ])

t ← G(w⃗, x),
∀x ∈ {0, 1}ℓ. 0 = F (g⃗(x))


where G is linear over the input vector (w⃗, x).

Once again, we can no longer use a standard random linear combination due to
non-linearity. Our goal then is to reduce zero-check to the sum-check relation
and then invoke SumFold from Section 3. This introduces various difficulties in
terms of efficiency, which we methodically address.

4.1 From zero-check to (nested) sum-check

To illustrate core ideas, as in the previous section, suppose that the linear
map G simply outputs multilinear extensions of its inputs and the polynomial
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F multiplies all its inputs. Suppose then that the verifier holds two sets of
commitments (g0, . . . , gt−1) and (h0, . . . , ht−1), and would like to check that the
prover knows two sets of ℓ-variate multilinear polynomial openings (g0, . . . , gt−1)
and (h0, . . . , ht−1) such that

0 = g0(x) · . . . · gt−1(x)
0 = h0(x) · . . . · ht−1(x)

for all x ∈ {0, 1}ℓ. To fold these instances, our goal is to reduce them to a
corresponding set of sum-check instances.

Recall that, from prior work [BTVW14], this can be done by having the verifier
sample a challenge τ and instead check for all x ∈ {0, 1}ℓ that

0 =
∑

x∈{0,1}ℓ
τX · g0(x) · . . . · gt−1(x)

0 =
∑

x∈{0,1}ℓ
τX · h0(x) · . . . · ht−1(x)

where X =
∑ℓ

i=0 2
i · xi (i.e., X is the corresponding decimal representation if x

is treated as the bit representation).4

To match the interface of the sum-check folding scheme, we define the Lagrange
polynomial e(x) =

∑
z∈{0,1}ℓ eq(z, x) · τZ encoding the powers of τ (i.e., e is the

multilinear extension of the vector [τ0, . . . , τ2
ℓ

]), and have the verifier check for
all x ∈ {0, 1}ℓ that

0 =
∑

x∈{0,1}ℓ
e(x) · g0(x) · . . . · gt−1(x)

0 =
∑

x∈{0,1}ℓ
e(x) · h0(x) · . . . · ht−1(x)

Recall that in SumFold, the verifier samples a challenge ρ and the prover computes
the folded witness as gj + ρ · hj for j ∈ [t] for which the verifier homomorphically
computes the corresponding folded commitment gj + ρ · hj . Then, by extension
the prover will similarly need to fold e and the verifier will need to fold a
corresponding commitment to e.

4 We use the reduction from zero-check to sum-check from Clover [BTVW14],
rather than from Spartan [Set20] although the latter is more widely
adopted [SL20,CBBZ23,STW23,STW24,AST24,DP23,DT24]. Clover’s variant con-
tributes a soundness error of 2ℓ/|F| whereas Spartan’s variant contributes soundness
error of at most ℓ/|F|. Both are acceptable as |F| ≈ 2256 in our concrete instantiation.
Furthermore, Clover’s variant requires sampling a single challenge τ ∈ F whereas
Spartan’s variant requires sampling a challenge from Fℓ. We adopt the variant from
Clover to keep NeutronNova’s verifier circuit size independent of ℓ.
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A key question is the following: how do the verifier and the prover represent a
commitment to e, which is highly structured. Naturally, the prover can directly
send a commitment to a vector of powers of τ , which for now we will assume is
trusted. However, this requires committing to a vector of size equal to the number
of constraints 2ℓ. Furthermore, these vector entries are completely random. If the
witness for the zero-check instance contains “small” field elements (e.g., witness
elements are from the set {0, . . . , 2b − 1}, for b = 32), the cost to commit to e is
at least an order of magnitude more expensive than the cost to commit to the
witness, which is highly undesirable.

As a first attempt, τ itself could serve as a commitment to e. However, because
e loses its tensor structure after folding, we will no longer have that τ + ρ · τ
represents a commitment to e+ ρ · e. In particular, we have that

e+ ρ · e =
∑

z∈{0,1}

(1 + ρ) · eq(z, x) · τZ

̸=
∑

z∈{0,1}

eq(z, x) · (τ + ρ · τ)Z

Our solution starts with the observation that

e(x) =
∑

z∈{0,1}ℓ
eq(z, x) · τZ

= (
∑

z1∈{0,1}ℓ
eq(z1, x1) · τZ1) · (

∑
z2∈{0,1}ℓ

eq(z2, x2) · τ
√
2ℓ·Z2)

where z1 and z2 represent the first and second half of z and Zi is the decimal
representation of zi (for i ∈ {1, 2}).5 Following this, we define

e1(x1) =
∑

z1∈{0,1}ℓ
eq(z1, x1) · τZ1

e2(x2) =
∑

z2∈{0,1}ℓ
eq(z2, x2) · τ

√
2ℓ·Z2 .

Now, we have that e(x) = e1(x1) · e2(x2). Hence, the verifier can instead check

0 =
∑

x∈{0,1}ℓ
e1(x1) · e2(x2) · g0(x) · . . . · gt−1(x)

0 =
∑

x∈{0,1}ℓ
e1(x1) · e2(x2) · h0(x) · . . . · ht−1(x)

5 A very recent work by Dao and Thaler [DT24] leverages a similar tensor decomposition
applied to the multilinear extension of the equality function. Their focus is to speed
up the task of proving a zero-check instance rather than folding multiple instance
together. Although our purpose for decomposition is different, our prover also reaps
benefits from lower field operation counts observed in [DT24] for the single round of
the sum-check protocol in NeutronNova’s folding scheme.
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Now, the prover can directly provide commitments to e1 and e2, or, for efficiency,
a single commitment e to the vector e = (e1, e2), which only commits to a vector

of size 2 ·
√
2ℓ. By linearity, the verifier can compute the folded commitment

e+ρ ·e for which the prover can compute the folded witness (e1+ρ ·e1, e2+ρ ·e2).
Formally, the prover and the verifier have reduced to folding the following variant
of sum-check. Note that the verifier still needs to check the correctness of the
provided commitments (which we address below).

Definition 8 (Nested sum-check relation). Let (Gen,Commit) denote an
additively-homomorphic commitment scheme for vectors over finite field F. Con-
sider size bounds n,m, ℓ, d, s, t ∈ N. We define the nested sum-check relation,
NSC, as follows

NSC =


(pp,
(F,G),
(T, u⃗, x, e),
(w⃗, e))

∣∣∣∣∣∣∣∣
T ∈ F, F ∈ Fd[Y1, . . . , Yt], w⃗ ∈ (Fn)s, x ∈ Fm,
Commit(pp, wi) = ui,Commit(pp, e) = e,
g⃗ ∈ F1[X1, . . . , Xℓ]← G((w⃗, x))
T =

∑
x∈{0,1}ℓ e1(x1) · e2(x2) · F (g⃗(x))


where G is linear over the input vector (w, x) and x1 and x2 (likewise, e1 and
e2) represent the first and second half of x (likewise, e).

It appears that we can now apply SumFold, but two problems remain. First, unlike
the sum-check relation, the nested sum-check relation enforces an additional
stipulation that e1 is only evaluated on the first half of x and e2 is only evaluated
on the second half of x. As we will see in the next section, this is only a minor
technicality which we can fix with an appropriate padding to e1 and e2. Second,
when reducing from zero-check to the nested sum-check relation, the verifier must
still ensure that e1 and e2 indeed contain appropriate powers of τ . Formally, the
verifier is tasked with checking the following relation.

Definition 9 (Power-check relation). Let (Gen,Commit) denote an additively-
homomorphic commitment scheme for vectors over finite field F. Consider size
bound m. We define the power-check relation PC over public parameter, instance,
witness tuples as follows

PC =

 (pp, (e, τ), e)

∣∣∣∣∣∣
Commit(pp, e) = e,

e1 = (τ0, τ1, τ2, . . . , τ
√
m−1)

e2 = (τ0, τ
√
m, τ2

√
m, . . . , τ (

√
m−1)·

√
m)


where e1 and e2 represent the first and second half of e.

From power-check to zero-check. Recall that for most applications it is too
expensive for the verifier to check a power-check instance in each folding step.
To circumvent this, our solution is for the prover and the verifier to also fold the
power-check instances alongside the zero-check instances. Instead of designing a
new folding scheme for the power-check relation, we reinterpret the power-check
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relation as a particular type of zero-check relation. This allows us the bootstrap
our eventual folding scheme for zero-check for the purpose of power-check.

Let m = 2ℓ. We observe that the power-check relation can be enforced with 2 ·
√
m

quadratic constraints. The first half of e can be checked by checking if e0 = 1
and that each subsequent entry is the result of multiplying the previous entry by
τ . The second half of e can be checked by checking that e√m = 1, checking that

e√m+1 (presumably τ
√
m) is the result of multiplying the last entry of the first

half of e (presumably τ
√
m−1) by τ , checking that the subsequent entry e√m+2

(presumably τ2·
√
m) is the square of the previous entry, and then check that all

subsequent entries result from multiplying the previous entry by e√m+1.

To reduce to power-check to zero-check, we observe that each entry of e is checked
to be the result of multiplying two other entries in (e, τ). Then, given e and τ we
can fix the structure polynomial GPC to set g1 ← ẽ and set g2 and g3 to contain
the left and right inputs respectively to the multiplication operation. Then, FPC

can compute g1(x) − g2(x) · g3(x), for all x ∈ {0, 1}ℓ thereby enforcing each
multiplication constraint in the zero-check. Formally, we encode a power-check
instance as a zero-check instance as follows.

Construction 2 (From power-check to zero-check). We have that (pp, (e, τ), e) ∈
PC if and only if (pp, (FPC, GPC), (e, τ), e) ∈ ZC where GPC(e, τ) produces g1 ← ẽ,
g2, and g3 such that

g2(i) =



1 i = 0

ei−1 1 ≤ i <
√
m

1 i =
√
m

ei−2 i =
√
m+ 1

ei−1 i =
√
m+ 2

e√m+1

√
m+ 2 < i < 2

√
m

g3(i) =



1 i = 0

τ 1 ≤ i <
√
m

1 i =
√
m

τ i =
√
m+ 1

ei−1 i =
√
m+ 2

ei−1
√
m+ 2 < i < 2

√
m

and FPC(y1, y2, y3) = y1 − y2 · y3. Note that g1, g2, and g3 can be padded with
evaluations to zero to any desired length. We let ZCPC denote the zero-check
relation with (FPC, GPC) fixed for the structure. Similarly, we let NSCPC denote
the nested sum-check relation with (FPC, GPC) fixed for the structure.

Putting everything together, given any number of zero-check instances, and any
number of power-check instances (represented as zero-check instances), the verifier
first samples a challenge τ for which the prover responds with an (unverified)
commitment e to the powers of τ . Then, the zero-check instances, and similarly
the power-check instances, can be reduced to the corresponding nested sum-
check instances over the corresponding structures with respect to the challenge τ .
Alongside, the verifier outputs a new power-check instance (e, τ) to be checked (in
the future). The following construction formally captures this aggregate reduction.
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Construction 3 (Zero-check reduction). We construct a reduction of knowl-
edge of type

ZCn × ZCm
PC → NSCn × NSCm

PC × ZCPC.

Consider size bounds ℓ, d, t ∈ N. Consider an arbitrary generator algorithm, an
arbitrary encoder algorithm that outputs its input structure and an arbitrary
underlying additively homomorphic commitment scheme. We define the prover
and the verifier as follows.

⟨P,V⟩((pk, vk), (⃗u, u⃗pc), (w⃗, w⃗pc)):

1. V: Sample and send τ
$← F.

2. P: Compute ((e, τ), e) ∈ ZCPC with size parameter m = 2ℓ/2 and send e.

3. P,V: Output the following instance-witness pairs (the verifier only outputs
the instances). (

{(0, ui, e)}i∈[n], {(wi, e)}i∈[n]
)
∈ NSCn(

{(0, upc,j , e)}j∈[m], {(wpc,j , e)}j∈[m]

)
∈ NSCm

PC(
(e, τ), e

)
∈ ZCPC

We formally prove the following lemma in Appendix B.2.

Lemma 5 (Zero-check reduction). Construction 3 is a reduction of knowl-
edge of type ZCn×ZCm

PC → NSCn×NSCm
PC×ZCPC with 1 round, a communication

complexity of 1 field element and 1 element in the message space of the commit-
ment scheme over size 2ℓ/2+1 vectors, an O(2ℓ/2+1) prover time complexity, and
an O(1) verifier time complexity.

Proof (Intuition). We prove knowledge soundness via tree extraction (Lemma 15).
That is, we construct PPT extractor χ that outputs a satisfying input witness
given a tree of accepting transcripts and corresponding output instance-witness
pairs in NSCn × NSCm

PC × ZCPC.

Indeed, in such a tree, consider an output satisfying NSC instance-witness pair

((0, ui, e), (wi, e)) ∈ NSC.

By the satisfiability condition of NSC, for (u⃗i, xi)← ui and w⃗i ← wi we have that

0 =
∑

x∈{0,1}ℓ
ẽ1(x1) · ẽ2(x2) · F (G(w⃗i, xi)).
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But from the fact that e is a satisfying ZCPC instance, it must contain powers of
some τ ∈ F. Substituting, we have that

0 =
∑

x∈{0,1}ℓ
τX · F (G(w⃗i, xi)(x)),

where X is the corresponding decimal representation if x is treated as the bit
representation.

By the binding property of the commitment scheme, and the verifier’s construction,
we must have that w⃗i and xi remain identical across all transcripts. Then, with
enough such transcripts, by interpolation we have that

0 = F (G(w⃗i, xi)(x))

for all x ∈ {0, 1}ℓ. But, this means that

(ui,wi) ∈ ZC.

By an identical line of reasoning χ can produce satisfying witnesses for the input
ZCPC instances as well.

4.2 A folding scheme for the nested sum-check relation

Given the reductions in the prior subsection, our goal is to fold a set of nested
sum-check instances over the original structure (F,G), and a set of nested sum-
check instances over the power-check structure (FPC, FPC). This involves recasting
nested sum-check instances as sum-check instances.

Indeed, as stated earlier, one technicality is that unlike the sum-check relation,
which performs a check of the form T =

∑
x F (G(w⃗, x)(x)), the nested sum-check

relation performs a more structured check of the form:

T =
∑

x∈{0,1}ℓ
ẽ1(x1) · ẽ2(x2) · F (G(w⃗, x)(x)).

The nested sum-check instance can be reinterpreted as a sum-check instance by
first defining polynomials h1 and h2, which extend the domain of e1 and e2 to
{0, 1}ℓ as follows

h1(x) = e1(x1) · ˜(1, 1, . . . , 1)(x2) = e1(x1)

h2(x) = ˜(1, 1, . . . , 1)(x1) · e2(x2) = e2(x2)

Then, we can define the structure G′ to additionally produce h1 and h2 given an
additional vector e in the nested sum-check witness

G′((w⃗, e), x) = (G(w⃗, x), h1, h2)
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Crucially, we have that h1 and h2 are produced linearly from e, which is stipulated
by the sum-check relation. Then, we can define the polynomial F ′ to account for
these additionally produced polynomials

F ′(g⃗(x), h1(x), h2(x)) = h1(x) · h2(x) · F (g⃗(x))

Then, we have that

T =
∑

x∈{0,1}ℓ
ẽ1(x1) · ẽ2(x2) · F (G(w⃗, x)(x))

=
∑

x∈{0,1}ℓ
F ′(G′((w⃗, e), x)(x))

Hence, the prover and the verifier can fold a set of nested sum-check instances
over structure (F,G) by using SumFold to fold equivalent sum-check instances
with respect to structure (F ′, G′).

We can similarly define the structure (F ′PC, G
′
PC) to fold the nested sum-check

instances over the power-check structure. At this point the prover and the verifier
can run two independent invocations of SumFold, once to fold over structure
(F ′, G′) and once to fold over structure (F ′PC, G

′
PC). Alternatively, for concrete

efficiency, the prover and the verifier can run a single invocation of SumFold
by taking a random linear combination of the original structures. In particular,
consider two sets of nested sum-check instance-witness pairs

{(Ti, (u⃗i, ei, xi), (w⃗i, ei))}i∈[n] ∈ NSCn

{(Tpc,i, (u⃗pc,i, epc,i, xpc,i), (w⃗pc,i, epc,i))}i∈[n] ∈ NSCn
PC

to be checked over structures (F,G) and (FPC, GPC) respectively. The verifier
begins by sending a challenge γ ∈ F. Then, for each i ∈ [n], the prover and the
verifier can reduce to checking that

Ti+γ ·Tpc,i =
∑

x∈{0,1}ℓ
F ′(G′((w⃗i, ei), xi)(x))+γ ·F ′PC(G′PC((w⃗pc,i, epc,i), xpc,i)(x))

Once again, we can recast the above instance to a sum-check instance by defining
the following structure:

F ′′(g⃗, g⃗pc) = F (g⃗) + γ · FPC(g⃗pc)

G′′(w⃗, e, w⃗pc, epc, (x, xpc)) = (G′((w⃗, e), x), G′PC((w⃗pc, epc), xpc)).

Then, for the aggregated instance-witness pair

(Ti + γ · Tpc,i, (u⃗i, ei, u⃗pc,i, epc,i, (xi, xpc,i)), (w⃗i, ei, w⃗pc,i, epc,i)),

the verifier can equivalently check

Ti + γ · Tpc,i =
∑

x∈{0,1}ℓ
F ′′(G′′((w⃗i, ei, w⃗pc,i, epc,i), (xi, xpc,i))(x)) (6)
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for all i ∈ [n]. Note that because we are pairing off NSC and NSCPC instances,
the above optimization specifically requires the same number of instances from
each relation. This is not a problem in practice as we can always pad either side
with trivially satisfying instance-witness pairs.

Then, the prover and the verifier can run SumFold over all the instance-witness
pairs in Equation (6) to reduce to checking a single instance

Tγ =
∑

x∈{0,1}ℓ
F ′′(G′′((w⃗, e, w⃗pc, epc), (xi, xpc))(x))

=
∑

x∈{0,1}ℓ
F ′(G′((w⃗, e), x)(x)) + γ · F ′PC(G′PC((w⃗pc, epc), xpc)(x))

At this point, the prover can send

T =
∑

x∈{0,1}ℓ
ẽ1(x1) · ẽ2(x2) · F (G(w⃗, x)(x)) (7)

Tpc =
∑

x∈{0,1}ℓ
ẽpc,1(x1) · ẽpc,2(x2) · FPC(GPC(w⃗pc, xpc)(x)). (8)

The verifier checks that indeed Tγ = T + γ · Tpc, and reduces to checking
Equations (7) and (8). But, by definition, this is precisely equivalent to checking
an instance in NSC and an instance in NSCPC. Hence, the above interaction gives
us a reduction of knowledge from NSCn × NSCn

PC to NSC× NSCPC. We formally
describe this reduction below.

Construction 4 (Folding nested sum-check). We construct a reduction of
knowledge of type

NSCn × NSCn
PC → NSC× NSCPC.

Indeed, let (GSF,KSF,PSF,VSF) be SumFold (Construction 1). Consider size bounds
ℓ, d, t ∈ N. Consider an arbitrary generator algorithm and an underlying addi-
tively homomorphic commitment scheme. We define the encoder, the prover, and
the verifier as follows.

K(pp, (F,G)): Output (pk, vk)← ((F,G),⊥) and structure (F,G).

⟨P,V⟩((pk, vk), {((Ti, ui, xi), (Tpc,i, upc,i, xpc,i))}i∈[n], {(wi,wpc,i)}i∈[n]):

1. V: Sample and send γ
$← F.

2. P: Compute the updated prover key pk′ ← (F ′, G′) where

F ′(g⃗, h1, h2, g⃗pc, hpc,1, hpc,2) = h1 · h2 · F (g⃗) + γ · hpc,1 · hpc,2 · FPC(g⃗pc)

G′(w⃗, e, w⃗pc, epc, (x, xpc)) = (G(w⃗, x), h1, h2, GPC(w⃗pc, xpc), hpc,1, hpc,2)

where (FPC, GPC) are defined as in Construction 2 with an appropriate
padding, and for j ∈ {1, 2}, hj(x) = ẽj(xj) and hpc,j(x) = ẽpc,j(xj), where
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(e1, e2), (epc,1, epc,2), and (x1, x2) represent the first and second half of the
original vector.

3. P,V : Run the sum-check folding reduction ⟨PSF,VSF⟩ on the updated prover
and verifier keys (pk′, vk), and the updated instance-witness pairs for i ∈ [n]

((Ti + γ · Tpc,i, (ui, upc,i), (xi, xpc,i)) , (wi,wpc,i))

to produce a folded instance-witness pair (Tγ , (u, upc), (x, xpc)), (w,wpc).

4. P: Parse (w⃗, e) ← w, (w⃗pc, epc) ← wpc, compute g⃗ ← G(w⃗, x), g⃗pc ←
GPC(w⃗pc, xpc), and send to V

T ←
∑

x∈{0,1}ℓ
ẽ1(x1) · ẽ2(x2) · F (g⃗(x))

Tpc ←
∑

x∈{0,1}ℓ
ẽpc,1(x1) · ẽpc,2(x2) · FPC(g⃗pc(x)).

5. V: Check that Tγ = T + γ · Tpc.

6. P,V: Output the following instance-witness pairs (the verifier only outputs
the instances).

((T, u, x),w) ∈ NSC

((Tpc, upc, xpc),wpc) ∈ NSCPC

We formally prove the following lemma in Appendix B.3.

Lemma 6 (Folding nested sum-check). Construction 4 is a reduction of
knowledge of type NSCn × NSCn

PC → NSC × NSCPC with 2 + log n rounds, a
communication complexity of O(d log n) field elements, a prover time complexity
of O(ntd · 2ℓ) field operations, and a verifier time complexity of O(d log n) field
operations.

Proof (Intuition). We prove knowledge soundness via tree extraction (Lemma 15).
That is, we construct PPT extractor χ that outputs a satisfying input witness
given a tree of accepting transcripts and corresponding output instance-witness
pairs in NSC×NSCPC. We do so by leveraging the tree-extractor χFSC guaranteed
by the tree extractability of SumFold (Lemma 17).

In particular, χ can produce a sufficient number of accepting sub-trees for the
underlying SumFold by using the provided instance witness pairs in NSC×NSCPC

to solve for corresponding satisfying output instance-witness pairs in SC. Then,
SumFold’s tree extractor χFSC can produce a satisfying input witness in SCn

for each sub-tree. By the binding property of the commitment scheme, these
witnesses must all be identical. Then, by interpolating over the verifier’s initial
challenge, this means that the witness produced by χFSC must also be a satisfying
witness for the input relation NSCn × NSCn

PC.
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4.3 ZeroFold: Putting everything together

So far, we have constructed the zero-check reduction ΠZCR : ZCn × ZCn
PC →

NSCn × NSCn
PC × ZCPC (Construction 3) and a folding scheme for the nested

sum-check relation ΠFNSC : NSCn × NSCn
PC → NSC × NSCPC (Construction 4).

We can use these two reductions to produce a folding scheme for ZC with a
running instance type of NSC× NSCPC × ZCPC

Indeed, suppose that a verifier would like to check n zero-check instances u⃗ =
(u1, . . . , un) and n running instances U⃗ = (U1, . . . ,Un) in NSC× NSCPC × ZCPC.

The verifier first collects n instances in ZCPC from U⃗ and reduces these instances
along with u⃗ via the zero-check reduction ΠZCR into n instances in NSC, n
instances NSCPC, and a fresh instance in ZCPC. Now the verifier is left with 2n
instances in NSC and 2n instances in NSCPC (half from the original n running
instances and half freshly generated by ΠZCR). The verifier reduces all these
instances via the folding scheme for the nested sum-check relation ΠFNSC into a
single instance in NSC and a single instance in NSCPC. The verifier concludes by
outputting these two instances alongside the fresh instance in ZCPC generated by
ΠZCR as the folded instance.

We formally capture this construction in the following theorem. We let 1R denote
the identity reduction (i.e. the prover and the verifier output their inputs) for
the relation R. In Appendix 4.4, we discuss how to reduce the number of rounds
to 1 + log n.

Theorem 3 (ZeroFold). Given reductions of knowledge

ΠZCR : ZCn × ZCn
PC → NSCn × NSCn

PC × ZCPC (Construction 3),

ΠFNSC : NSC2n × NSC2n
PC → NSC× NSCPC (Construction 4)

we have that
(ΠFNSC × 1ZCPC

) ◦ (1NSCn×NSCn
PC
×ΠZCR)

is a reduction of knowledge of type

(NSC× NSCPC × ZCPC)
n × ZCn → (NSC× NSCPC × ZCPC)

with 3+log n rounds, a communication complexity of O(d log n) field elements and
1 element in the message space of the commitment scheme over size 2ℓ/2+1 vectors,
a prover time complexity of O(ntd · 2ℓ) field operations and a commitment over a
size 2ℓ/2+1 vector, and a verifier time complexity of O(d log n) field operations.

4.4 Optimizing the round complexity of Theorem 3

We observe that the zero-check folding scheme can be optimized down to 1+log n
rounds of communication: First, as the commitment e to the powers of τ in ΠZCR

is checked independently of the interaction at a later point, the prover is free to
send it as part of its first message in ΠFNSC. This allows the verifier to send the
randomness τ in ΠZCR, the randomness γ in ΠNSC, and the randomness ρ in the
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first round of SumFold all in one message, removing a round of communication.
Second, in ΠNSC, instead of sending Tγ at the end of the underlying sum-check
protocol and then again T and Tpc. the prover can directly send T and Tpc

(in place of Tγ) in the final round of the underlying sum-check protocol. This,
once again, removes a round of communication. In the case of folding a single
zero-check instance with a single running instance, this brings the overall number
of rounds to 2.

5 Folding relations targeting zero-check

In this section, we design reductions of knowledge [KP23] from various relations
to zero-check, thereby demonstrating that these relations can also be efficiently
folded. Concretely, we reduce an NP-complete relation, CCS [STW23], the grand-
product relation, and the lookup relation to zero-check. In all these cases, the
reductions are simple, constant-round, and involve minimal verifier work.

To tie together the results of this section, we start with a natural corollary of
Theorem 3, which formally states that if there exists a reduction of knowledge
from a relation R to any number of zero-check instances, then we can fold
instances in R by first reducing them to instances in the zero-check relation and
then applying ZeroFold, NeutronNova’s folding scheme for zero-check.

Corollary 1 (Folding relations targeting zero-check). Let ΠFZC represent
the zero-check folding scheme from Theorem 3. Given a reduction of knowledge
Π : R → ZCm we have that

ΠFZC ◦ (1(NSC×NSCPC×ZCPC)nm ×Πn)

is a reduction of knowledge of type

(NSC× NSCPC × ZCPC)
nm ×Rn → (NSC× NSCPC × ZCPC)

where the round complexity, communication complexity, prover time complexity
and verifier time complexity is the combined total of running Π for n times and
ΠFZC over nm zero-check instances.

5.1 Reducing CCS to zero-check

We first reduce the customizable constraint system (CCS) [STW23], to zero-check
without any interaction or work by the verifier. Since CCS is an NP-complete
language that simultaneously generalizes R1CS [GGPR13], AIR [BSBHR19], and
Plonkish [GWC19], we obtain a folding scheme for all of these relations whose
efficiency matches the efficiency of our folding scheme for zero-check.

Recall that CCS checks arbitrary degree constraints represented using selector
matrices M1, . . . ,Mt over z (which is the concatenation of a witness vector w,
a public vector x, and a constant of 1) by first computing the matrix-vector
products Mj · w for all j ∈ [t] and then checking a sum of Hadamard products
over the resulting vectors. Formally, CCS is defined as follows.
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Definition 10 (CCS [STW23]). Let (Gen,Commit) denote an additively ho-
momorphic commitment scheme for vectors over finite field F. Consider size
bounds m,n,N, ℓ, t, q, d ∈ N where n > ℓ. We define the customizable constraint
system (CCS) relation, CCS, over structure, instance, witness tuples as follows.

CCS =

 (pp, (M⃗, S⃗, c⃗), (w, x), w)

∣∣∣∣∣∣∣∣
M ∈ (Fm×n)t, Si ⊆ [t] for i ∈ [q], c⃗ ∈ Fq

x ∈ Fℓ, w ∈ Fm−ℓ−1,
Commit(pp, w) = w,∑

i∈[q] ci ·
∏

j∈Si
Mjz = 0


where z = (w, x, 1) and each matrix Mi contains at most Ω(m) non-zero entries.

We reduce CCS to zero-check as follows: we design an inner zero-check structure
polynomial GM⃗ that encodes the CCS selector matrices M1, . . . ,Mt. Specifically,
on input witness vector w and a public vector x, GM⃗ outputs the multilinear
extensions of M1z, . . . ,Mtz, where z = (w, x, 1). Then, for each row of entries in
these vectors, we design an outer zero-check structure polynomial FS⃗,⃗c that takes
a sum of products exactly as the original CCS structure dictates. Formally we
have the following reduction from CCS to zero-check.

Lemma 7 (From CCS to zero-check [STW23]). Consider size bounds m,

n, N , ℓ, t, q, and d where n > ℓ. We have that (pp, (M⃗, S⃗, c⃗), (w, x), w) ∈ CCS if
and only if (pp, (F,G), (w, x), w) ∈ ZC where for z = (w, x, 1)

FS⃗,⃗c(m1, . . . ,mt) =
∑
i∈[q]

ci ·
∏
j∈Si

mj

GM⃗ (w, x) = ((̃M1z), . . . , (̃Mtz)).

This naturally induces an equivalent reduction of knowledge (with no interaction)
by defining the encoder, prover, and verifier to map the structure, instance, and
witness identically. Then, by Corollary 1, we have a folding scheme for CCS.

5.2 Reducing grand-product to zero-check

In this section, we reduce the grand-product relation to the zero-check relation,
thereby providing a folding scheme for grand-products. We rely on results from
Lasso [STW24], which itself builds on its predecessors [Set20,SL20].

Recall that the grand-product relation checks that taking the product of elements
of a committed vector v results in some prescribed value p.

Definition 11 (Grand-product relation). Let (Gen,Commit) denote an
additively-homomorphic commitment scheme for vectors over finite field F. Con-
sider size bound n,m ∈ N. We define the grand-product relation GP over public
parameter, instance, witness tuples as follows

GP =

 (pp, (p, v), v)

∣∣∣∣∣∣
v ∈ Fn

Commit(pp, v) = v,
v =

∏
i∈[m] vi

 .
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Lasso provides two options for proving grand products: (1) the approach pre-
sented in Section 5.2, which in their setting is then proven with the sum-check
protocol; and (2) the protocol of Thaler [Tha13], a specialization of GKR proof
system [GKR08]. The main trade-off is that the first option requires committing
to an additional vector of size N , where N us the number of entries in v whereas
the second protocol requires logarithmic number of invocations of the sum-check
protocol, resulting in a proof length of O(log2 N). To mitigate this trade-off, Setty
and Lee [SL20, §6] also describe a hybrid solution where their grand product
argument is applied on an instance of size N/2k (for some chosen parameter
k) and Thaler’s protocol is applied to reduce a claim about that instance to
a multilinear evaluation claim about ṽ. For simplicity, we focus on option (1).
However, both option (2) and the hybrid solution induce alternative compatible
reductions from grand-product to zero-check.

At a high level, Setty and Lee consider a new polynomial f , which contains the
original vector v as well as all the intermediate products computed in a tree-like
fashion. Then, the relationship between v and the final claimed product p can be
checked using quadratic constraints.

Lemma 8 (Grand-product arithmetization [SL20]). Consider p ∈ F and
v ∈ Fn. There exists an efficiently computable f ∈ F[X1, . . . , Xlogn+1] such that
p =

∏
i∈[n] vi if and only if f(0, x) = ṽ(x), f(1, . . . , 1, 0) = p and

f(1, x) = f(x, 0) · f(x, 1) (9)

for all x ∈ {0, 1}logn.

In light of this arithmetization, we get a natural reduction from grand-product to
zero-check: The prover begins by committing to an intermediate product vector v′

which is the portion of f not including v. Together v and v′ are treated as the new
zero-check witness and a vector with a single entry of p is treated as the public
vector. Then, we design an inner zero-check structure polynomial GGP, which
produces polynomials g1(x) = f(1, x), g2(x) = f(x, 0), and g3(x) = f(x, 1) by
selecting elements from v, v′, and p. For each evaluation of these polynomials we
design an outer zero-check structure polynomial FGP that computes Equation 9.
Formally, we have the following reduction.

Construction 5 (From grand-product to zero-check). We construct a
reduction of knowledge of type

GP→ ZC.

Consider size bound n ∈ N. Let (Gen,Commit) denote an arbitrary additively
homomorphic vector commitment scheme. We define the generator, encoder,
prover, and verifier as follows.

G(λ, n): Output pp
$← Gen(λ, n).

K(pp):
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1. Define FGP(g1, g2, g3) = g1 − g2 · g3 and define GGP on input ((v, v′), p) to
output

g1(x)← f(1, x)

g2(x)← f(x, 0)

g3(x)← f(x, 1)

where f is the multilinear extension of (v, (v′1, . . . , v
′
n−2, p, v

′
n)).

2. Output (pk, vk)← (pp,⊥) and the updated zero-check structure (FGP, GGP).

⟨P,V⟩((pk, vk), (p, v), v):

1. P: Compute a multilinear polynomial f̃ as guaranteed by Lemma 8. Define
v′ ∈ Fn such that ṽ′ = f̃(1, x) and send a commitment v′ ← Commit(pp, v′).

2. P,V : Produce the following zero-check instance-witness pair (the verifier
only outputs the instance)

(((v, v′), p), (v, v′)) ∈ ZC.

We formally prove the following lemma in Appendix B.5, which, by Corollary 1
implies a folding scheme for GP.

Lemma 9 (From grand-product to zero-check). Construction 5 is an
RoK of type GP→ ZC with a single round, a communication complexity of one
element in the message space of the commitment scheme for vectors of size n.
The prover’s time complexity is O(n) and the verifier’s time complexity is O(1).

5.3 Reducing lookups to grand-product

In this section, we reduce a lookup instance to several grand product instances,
which, from the previous subsection, can be reduced to zero-check instances.
Hence, we get a folding scheme for the lookup relation.

Our starting point is Lasso [STW24], a state-of-the-art lookup argument. Lasso
supports unstructured tables (for which the verifier holds a commitment) as
well as very large Spark-only structured (SOS) tables that do not need to be
materialized either by the prover nor the verifier. Crucially, Lasso’s lookup
argument for very large structured tables of size N is obtained by essentially
running c copies of the lookup argument for unstructured tables on tables of
size N1/c and then assembling results of sub-table lookups (e.g., with CCS). A
similar observation appears in prior work [DP23]. For this reason, the rest of the
section focuses on lookups over unstructured tables, but our results naturally
generalize to Lasso’s SOS tables.

Recall that the lookup relation checks that a committed vector v only consists
of elements found in a committed table t. Lasso considers a more general form,
which they refer to as indexed lookups, where an additional committed vector
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a indicates which index of t each entry of v can be found. All lookups used in
Jolt [AST24] are indexed lookups, so we focus on this general version.

Definition 12 (Lookup relation [STW24]). Let (Gen,Commit) denote an
additively-homomorphic commitment scheme for vectors over finite field F. Con-
sider size parameters n,m ∈ N. We define the lookup relation LKP over public
parameter, instance, witness tuples as follows

LKP =

 (pp, (t, a, v), (t, a, v))

∣∣∣∣∣∣∣∣∣∣
v, a ∈ Fm, t ∈ Fn,
∀i ∈ [m]. vi = tai ,
Commit(pp, t) = t,
Commit(pp, a) = a,
Commit(pp, v) = v,

 .

Instead of directly proving the above relation, Lasso reformulates the lookup
relation as the following bivariate polynomial identity test. This bivariate identity
is implicit in [STW24, Claim 3].

Lemma 10 (Lookup arithmetization [Set20,STW24]). Consider vectors
v, a ∈ Fm and t ∈ Fn. There exist efficiently computable vectors c ∈ Fm and
f ∈ Fn such that vi = tai

for all i ∈ [m] if and only if∏
i∈[n]

(i+ ti ·X − Y )

 ·
 ∏

i∈[m]

(ai + vi ·X + (ci + 1) ·X2 − Y )

 =

 ∏
i∈[m]

(ai + vi ·X + ci ·X2 − Y )

 ·
∏

i∈[n]

(i+ ti ·X + fi ·X2 − Y )

 .

(10)

Checking Equation (10) can be reduced to checking four grand product in-
stances (Definition 11). In particular, the prover first computes c and f as
guaranteed by Lemma 10 and send the corresponding commitments c and f . The
verifier samples and sends challenges rX ∈ F and rY ∈ F to check Equation (10)
at a single random point. By the Schwartz-Zippel lemma, this implies checking
the original polynomial identity with overwhelming probability. The prover then
sends claimed products p1, p2, p3, and p4 for each of the grand products in
Equation (10) The verifier checks that p1 ·p2 = p3 ·p4, and then homomorphically
compute and output commitments to each of the inner vectors to be checked in
constant time. Formally, we have the following reduction.

Construction 6 (From Lookup to grand-product). We construct a reduc-
tion of knowledge of type

LKP→ GP4.

Consider size bounds n,m ∈ N. Let (Gen,Commit) denote an arbitrary additively
homomorphic commitment scheme. We define the generator, encoder, prover,
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and verifier as follows.

G(λ, (n,m)): Output pp
$← Gen(λ,max (n,m)).

K(pp):

1. Compute vector commitments

Gn ← Commit(pp, 1n)

Gm ← Commit(pp, 1m)

H ← Commit(pp, (1, . . . , n)).

Gn ← Commit(pp, 1n), Gm ← Commit(pp, 1m), H ← Commit(pp, (1, . . . , n)).

2. Output (pk, vk)← ((pp, (Gn, Gm, H)), (Gn, Gm, H)).

⟨P,V⟩((pk, vk), (t, a, v), (t, a, v)):

1. P: Compute c ∈ Fm and f ∈ Fn as guaranteed by Lemma 10 and send
c← Commit(pp, c) and f ← Commit(pp, f).

2. V: Send random challenges rX ∈ F and rY ∈ F.

3. P: Compute the underlying grand-product witnesses

v1 ← {(i+ ti · rX − rY )}i∈[n]
v2 ← {(ai + vi · rX + (ci + 1) · r2X − rY )}i∈[m]

v3 ← {(ai + vi · rX + ci · r2X − rY )}i∈[m]

v4 ← {(i+ ti · rX + fi · r2X − rY )}i∈[n].

4. P: Compute and send the claimed products pk ←
∏

i vk,i for k ∈ {1, 2, 3, 4}.

5. V: Check that p1 · p2 = p3 · p4.

6. P,V: Compute the corresponding vector commitments

v1 ← H + t · rX −Gn · rY
v2 ← a+ v · rX + (c+Gm) · r2X −Gm · rY
v3 ← a+ v · rX + c · r2X −Gm · rY
v4 ← H + t · rX + f · r2X −Gn · rY .

7. P,V : Output the following grand-product instance-witness pairs (the verifier
only outputs instances)

{((pk, vk), vk)}k∈[4] ∈ GP4

We formally prove the following lemma in Appendix B.4.
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Lemma 11 (From lookup to grand-product). Construction 6 is an RoK
of type LKP→ GP4 with 2 rounds, a communication cost of 6 field elements, and
2 elements in the message space of the commitment scheme over vectors of size
n and m. The prover’s time complexity is O(n + m) field operations, time to
compute commitments to vectors of size n and m, and O(1) operations in the
message space of the commitment scheme. The verifier’s time complexity is O(1).

By Lemma 9, we have a reduction of knowledge from lookup to four zero-check
instances. By Corollary 1, we get the desired folding scheme for the lookup
relation. However, by our optimization in Section 4, to combine two sum-check
reductions into one, we can only fold the same number of “fresh” instances and
“running” instances. However, in our setting, we must fold n lookup instances into
4n running instances. This is not an issue as we can always generate trivially
satisfying running instances or forgo the optimization to remove this dependence.
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A Additional Background

A.1 Polynomials and multilinear extensions

We adapt this subsection from prior work [Set20]. We recall several definitions
and results regarding multivariate polynomials.

Definition 13 (Multilinear polynomial). A multivariate polynomial is called
a multilinear polynomial if the degree of the polynomial in each variable is at
most one.

Definition 14 (Multilinear polynomial extension). Given a vector v ∈ Fn a
multilinear polynomial extension of v is an (log n)-variate multilinear polynomial,
denoted ṽ, such that ṽ(x) = vx for all x ∈ {0, 1}logn. Specifically, ṽ can be
computed as follows.

ṽ(x) =
∑

y∈{0,1}ℓ
vy · eq(x, y)

where eq(x, y) =
∏ℓ

i=1(xi · yi + (1 − xi) · (1 − yi)), outputs 1 if x = y and 0
otherwise for x, y ∈ {0, 1}logn.

For any r ∈ Fℓ, ṽ(r) can be computed in O(2ℓ) operations in F [VSBW13,Tha13].

Lemma 12 (Schwartz-Zippel [Sch80]). let g : Fℓ → F be an ℓ-variate
polynomial of total degree at most d. Then, on any finite set S ⊆ F,

Pr
x←Sℓ

[g(x) = 0] ≤ d/|S|.

A.2 Commitment Schemes

Definition 15 (Commitment Scheme). A commitment scheme is defined
by polynomial-time algorithm Gen : N2 → P that produces public parameters
given the security parameter and size parameter, a deterministic polynomial-
time algorithm Commit : P ×M × R → C that produces a commitment in C
given a public parameters, message, and randomness tuple such that binding
holds. That is, for any PPT adversary A, given pp ← Gen(λ, n), and given
((m1, r1), (m2, r2))← A(pp) we have that

Pr[(m1, r1) ̸= (m2, r2) ∧ Commit(pp,m1, r1) = Commit(pp,m2, r2)] ≈ 0.

The commitment scheme is deterministic if Commit does not use its randomness.

Definition 16 (Homomorphic). The commitment scheme (Gen,Commit) is
homomorphic if the message space M , randomness space R, and commitment
space C are groups and for all n ∈ N, and pp← Gen(λ, n), we have that for any
m1,m2 ∈M and r1, r2 ∈ R

Commit(pp,m1, r1) + Commit(pp,m2, r2) = Commit(pp,m1 +m2, r1 + r2).
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Definition 17 (Succinct Commitments). A commitment scheme (Gen,Commit),
over message space M and commitment space R, provides succinct commit-
ments if for all pp ← Gen(1λ), and any m ∈ M and r ∈ R, we have that
|Commit(pp,m, r)| = Oλ(polylog(|m|)).

A.3 Reductions of Knowledge

First, we define additional properties of reductions of knowledge.

Definition 18 (Succinctness). A reduction of knowledge is succinct if the
communication complexity and the verifier time complexity is at most poly-
logarithmic in the size of the structure and witness.

Definition 19 (Non-interactivity). A reduction of knowledge is non-interactive
if the interaction consists of a single message from the prover to the verifier. In
this case, we denote this single message as the output of the prover, and as an
input to the verifier.

Definition 20 (Public-coin). A reduction of knowledge is public-coin if the
verifier only sends uniformly random challenges during the interaction.

Next, we define the semantics of the sequential and parallel composition operators.

Lemma 13 (Sequential composition [KP23]). For reductions Π1 = (G,K1,P1,V1) :
R1 −→ R2 and Π2 = (G,K2,P2,V2) : R2 −→ R3, we have that Π2 ◦ Π1 =
(G,K,P,V) : R1 −→ R3 where K(pp, s1) computes (pk1, vk1, s2) ← K1(pp, s1),
(pk2, vk2, s3)← K2(pp, s2) and outputs ((pk1, pk2), (vk1, vk2), s3) and where

P((pk1, pk2), u1, w1) = P2(pk2,P1(pk1, u1, w1))

V((vk1, vk2), u1) = V2(vk2,V1(vk1, u1, w1))

Lemma 14 (Parallel composition [KP23]). Consider relations R1, R2,
R3, and R4. For reductions of knowledge Π1 = (G,K,P1,V1) : R1 −→ R2 and
Π2 = (G,K,P2,V2) : R3 −→ R4 we have that Π1×Π2 = (G,K,P,V) : R1×R3 −→
R2 ×R4 where

P(pk, (u1, u3), (w1, w3)) = (P1(pk, u1, w1),P2(pk, u3, w3))

V(vk, (u1, u3)) = (V1(vk, u1),V2(vk, u3))

Next, we can define arguments of knowledge as a special type of reduction of
knowledge.

Definition 21 (Argument of Knowledge). Consider the boolean relation
TRUE = {(true,⊥)}. A proof of knowledge for relation R is a reduction of
knowledge of type R → TRUE.

40



When proving the security of protocols, reasoning about knowledge soundness
directly is typically cumbersome. To alleviate this issue, Bootle et al. [BCC+16]
show that to prove knowledge soundness for the vast majority of public-coin
interactions, it is sufficient to show that there exists an extractor that can produce
a satisfying witness when provided a tree of accepting transcripts with refreshed
verifier randomness at each layer. This property is known as tree-extractability and
we formally state the corresponding result for reductions of knowledge (proven
by Kothapalli and Parno [KP23]).

Definition 22 (Tree of transcripts). Consider an m-round public-coin in-
teractive protocol (G,K,P,V) that satisfies the interface described in Definition 1.
For a public parameter, structure, instance tuple (pp, s, u1), a (n1, . . . , nm)-tree
of accepting transcripts is a tree of depth m where each vertex at layer i has ni

outgoing edges such that (1) each vertex in layer i ∈ [m] is labeled with a prover
message for round i; (2) each outgoing edge from layer i ∈ [m] is labeled with a
different choice of verifier randomness for round i; (3) each leaf is labeled with an
accepting statement-witness pair output by the prover and verifier corresponding
to the interaction along the path.

Lemma 15 (Tree extraction [KP23]). Consider an m-round public-coin
interactive protocol (G,K,P,V) that satisfies the interface described in Definition 1
and satisfies completeness. Then (G,K,P,V) is a reduction of knowledge if there
exists a PPT extractor χ that outputs a satisfying witness w1 with probability 1−
negl(λ), given an (n1, . . . , nm)-tree of accepting transcripts for public parameter,
structure, instance tuple (pp, s, u1) where the verifier’s randomness is sampled
from space Q such that |Q| = O(2λ), and

∏
i ni = poly(λ).

A.4 Incrementally Verifiable Computation

Recall that incrementally verifiable computation (IVC), enables a prover to to
produce a proof πi+1 for i + 1 steps of a computation given a proof πi for i
steps of the computation in a way that ensures that the proof size remains
independent of the total steps of computation. As IVC is a major application of
folding schemes [BCL+21,KST22,KS24], for completeness, we recall the formal
definition below.

Definition 23 (Incrementally verifiable computation (IVC)). An in-
crementally verifiable computation (IVC) scheme is defined by PPT algorithms
(G,P,V) and deterministic K denoting the generator, the prover, the verifier,
and the encoder respectively, with the following interface

• G(1λ, N)→ pp: on input security parameter λ and size bounds N , samples
public parameters pp.

• K(pp, F ) → (pk, vk): on input public parameters pp, and polynomial-time
function F , deterministically produces a prover key pk and a verifier key vk.
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• P(pk, (i, z0, zi), ωi, Πi) → Πi+1: on input a prover key pk, a counter i, an
initial input z0, a claimed output after i iterations zi, a non-deterministic
advice ωi, and an IVC proof Πi attesting to zi, produces a new proof Πi+1

attesting to zi+1 = F (zi, ωi).

• V(vk, (i, z0, zi), Πi)→ {0, 1}: on input a verifier key vk, a counter i, an initial
input z0, a claimed output after i iterations zi, and an IVC proof Πi attesting
to zi, outputs 1 if Πi is accepting, and 0 otherwise.

An IVC scheme (G,K,P,V) satisfies the following requirements.

1. Perfect Completeness: For any PPT adversary A

Pr

V(vk, (i+ 1, z0, zi+1), Πi+1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
F, (i, z0, zi, Πi)← A(pp),
(pk, vk)← K(pp, F ),
zi+1 ← F (zi, ωi),
V(vk, i, z0, zi, Πi) = 1,
Πi+1 ← P(pk, (i, z0, zi), ωi, Πi)

 = 1

where F is a polynomial-time computable function represented as an arithmetic
circuit.

2. Knowledge Soundness: Consider constant n ∈ N. For all expected polynomial-
time adversaries P∗ there exists an expected polynomial-time extractor E such
that over all randomness ρ

Pr


zn = z where
zi+1 ← F (zi, ωi)
∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(F, (z0, zi), Π)← P∗(pp, ρ),
(pk, vk)← K(pp, F ),
V(vk, (n, z0, z), Π) = 1,
(ω0, . . . , ωn−1)← E(pp, ρ)

 ≈ 1.

Moreover, F is a polynomial-time computable function represented as an
arithmetic circuit.

3. Succinctness: The size of an IVC proof Π is independent of the number of
iterations n.

B Deferred Proofs

B.1 Proof of Theorem 2 (SumFold)

Lemma 16 (Completeness). Construction 1 is complete.

Proof. Consider an arbitrary generator and encoder algorithm (G,K), and an
arbitrary PPT adversary A. For an arbitrary size parameter N , and a structure
(F,G), let pp ← G(λ,N) and (pk, vk) ← K(pp, (F,G)). Suppose now that the
adversary A on input pp generates input instance-witness pairs

({(Ti, u⃗i, xi)}i∈[n], {w⃗i}i∈[n]) ∈ SCn. (11)
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The prover and the verifier on input (pk, vk), {(Ti, u⃗i, xi)}i∈[n], {w⃗i}i∈[n] interac-
tively produce the output instance-witness pairs

((T ′, u⃗, x), w⃗).

We must show that ((T ′, u⃗, x), w⃗) ∈ SC.

Indeed, by the linearity of the commitment scheme and by the satisfiability of
the input instances, we have that for j ∈ [s]

uj =
∑

i∈{0,1}ν
eq(rb, i) · ui,j

=
∑

i∈{0,1}ν
eq(rb, i) · Commit(pp, wi,j)

= Commit(pp,
∑

i∈{0,1}ν
eq(rb, i) · wi,j)

= Commit(pp, wj).

(12)

That is, we have that all output witnesses are satisfying openings to the output
commitments.

Moreover, given g⃗i ← G(w⃗i, xi), we have that

T =
∑

i∈{0,1}ν
eq(ρ, i) · Ti By construction

=
∑

i∈{0,1}ν
eq(ρ, i) ·

∑
x∈{0,1}ℓ

F (g⃗i(x)) By Precondition (11)

=
∑

i∈{0,1}ν
eq(ρ, i) ·

∑
x∈{0,1}ℓ

F (f⃗(i, x)) By construction

=
∑

i∈{0,1}ν
Q(i) By construction

Therefore, by the completeness of the sum-check protocol, we have that

c = Q(rb).

This means that

T ′ = eq(ρ, rb)
−1 · c

= eq(ρ, rb)
−1 ·Q(rb)

=
∑

x∈{0,1}ℓ
F (f⃗(rb, x)).

(13)
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But, by the linearity of G (Definition 7), we have that

G(w⃗, x) = G(
∑

i∈{0,1}ν
eq(rb, i) · w⃗i,

∑
i∈{0,1}ν

eq(rb, i) · xi)

=
∑

i∈{0,1}ν
eq(rb, i) ·G(w⃗i, xi)

=
∑

i∈{0,1}ν
eq(rb, i) · g⃗i

= f⃗(rb, x).

(14)

Thus, by derivations (12), (13), and (14), we have that ((T ′, u⃗, x), w⃗) ∈ SC.

Lemma 17 (Knowledge soundness). Construction 1 is knowledge sound
(and in particular tree-extractable).

Proof. We prove knowledge soundness via tree extraction (Lemma 15). That is,
we construct a PPT extractor χ that outputs a satisfying input witness with
probability 1−negl(λ) given a tree of accepting transcripts and the corresponding
output instance-witness pairs.

Indeed, let χsc denote the tree-extractor for the sum-check protocol which reduces
from the unstructured sum-check relation USC to the polynomial evaluation
relation PE. Suppose that χsc can extract using an L-tree of accepting transcripts
where L ∈ Nν . Then, we provide χ with a (2ν , L)-tree of accepting transcripts
for public parameter, structure, instance tuple (pp, (F,G), {(Ti, u⃗i, xi)}i∈[n]). For
k ∈ [2ν ] and l ∈ ([L1], . . . , [Lν ]), let ρ(k) denote the verifier’s first challenge,

and for each such challenge let r
(k,l)
b denote the verifier’s challenges during the

sum-check protocol. Let

((T ′(k,l), u⃗(k,l), x(k,l)), w⃗(k,l)) ∈ SC (15)

denote the corresponding output instance-witness pairs.

For k ∈ [2ℓ], the extractor χ interpolates w⃗
(k)
i for i ∈ [n] such that for j ∈ [s]

w
(k,l)
j =

∑
i∈{0,1}ν

eq(r
(k,l)
b , i) · w(k)

i,j . (16)

Now, by the satisfiability requirement of SC (Precondition 15), we have that

T ′(k,l) =
∑

x∈{0,1}l
F (G(w⃗(k,l), x(k,l))(x)) (17)

u
(k,l)
j = Commit(pp, w

(k,l)
j ) (18)
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Moreover, by the verifier’s computation we have that

G(w⃗(k,l), x(k,l)) = G(
∑

i∈{0,1}ν
eq(r

(k,l)
b , i) · w⃗(k)

i ,
∑

i∈{0,1}ν
eq(r

(k,l)
b , i) · x(k)i ) By (16)

=
∑

i∈{0,1}ν
eq(r

(k,l)
b , i) ·G(w⃗

(k)
i , x

(k)
i )

=
∑

i∈{0,1}ν
eq(r

(k,l)
b , i) · g⃗(k)i,1

= f⃗ (k)(r
(k,l)
b )

Then, by the verifier’s computation in Step 3 and Equation (17), this means that

c(k,l) = eq(ρ(k), r
(k,l)
b ) · T ′(k,l)

= eq(ρ(k), r
(k,l)
b ) ·

∑
x∈{0,1}ℓ

F (G(w⃗(k,l), x(k,l))(x))

= eq(ρ(k), r
(k,l)
b ) ·

∑
x∈{0,1}ℓ

F (f⃗ (k)(r
(k,l)
b , x))

= Q(k)(r
(k,l)
b )

(19)

Moreover, by the verifier’s computation for i ∈ [n] and j ∈ [s], we have that for

all r
(k,l)
b∑

i∈{0,1}ν
eq(r

(k,l)
b , i) · u(k)

i,j = u
(k,l)
j

= Commit(pp, w
(k,l)
j ) By (18)

= Commit(pp,
∑

i∈{0,1}ν
eq(r

(k,l)
b , i) · w(k)

i,j ) By (16)

=
∑

i∈{0,1}ν
eq(r

(k,l)
b , i) · Commit(pp, w

(k)
i,j ) By linearity

Then, by interpolation, we have that for all i ∈ [n] and j ∈ [s] that

u
(k)
i,j = Commit(pp, w

(k)
i,j ). (20)

Then, by Derivation (19) and Equation (20), we have that for each challenge ρ(k),
χ can produce an L-sub-tree of accepting transcripts for an input unstructured

sum-check instance (T (k), Q
(k)

) where Q
(k)

= ((F,G), ρ(k), (u⃗i, xi)i∈[n]), with
output polynomial evaluation instance-witness pairs

((Q
(k)

, c(k,l), r
(k,l)
b ), Q(k)) ∈ PE
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where Q(k) is represented as the tuple ((F,G), ρ(k), (w⃗
(k)
i , xi)i∈[n]).

Now, for each challenge ρ(k), given the corresponding L-sub-tree χsc can produce

a witness Q(k) represented as the tuple ((F,G), ρ(k), (w⃗
(k)
i , xi)i∈[n]) such that

((T (k), Q
(k)

), Q(k)) ∈ USC. (21)

Then, because Q(k) must be a valid opening to Q
(k)

which contains the same
commitment u⃗i across all transcripts by Equation (21), we must have that

w⃗
(k)
i = w⃗

(k′)
i for all k, k′ ∈ [2ℓ]. We denote this value across all transcripts simply

as w⃗i.

By the satisfiability condition of USC and the verifier’s computation, this means
that ∑

i∈{0,1}ν
eq(ρ(k), i) · Ti = T (k)

=
∑

b∈{0,1}ν
Q(k)(ρ(k))

=
∑

b∈{0,1}ν
eq(ρ(k), b) ·

∑
x∈{0,1}ℓ

F (f⃗(b, x))

Then, interpolating, we must have for i ∈ {0, 1}ν

Ti =
∑

x∈{0,1}ℓ
(f⃗(i, x))

= F (g⃗i(x))

= F (G(w⃗i, xi)(x))

This means that

({(Ti, u⃗i, xi)}i∈[n], {w⃗i}i∈[n]) ∈ SCn.

Thus, χ can compute and output a satisfying input witness w⃗i for i ∈ [n].

B.2 Proof of Lemma 5 (Zero-check reduction)

Lemma 18 (Completeness). Construction 3 is complete.

Proof. Consider an arbitrary generator and encoder algorithms (G,K), and an
arbitrary PPT adversary A. For an arbitrary size parameter N , let pp← G(λ,N).
Suppose now that the adversary A on input pp, generates input structure-instance-
witness pairs

(F,G), (⃗u, u⃗pc), (w⃗, w⃗pc) ∈ ZCn × ZCm
PC. (22)
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Suppose that for (pk, vk)← K(pp, (F,G)), the prover and the verifier on input
(pk, vk), (⃗u, u⃗pc), (w⃗, w⃗pc) interactively produce the output instance-witness pairs

({(0, ui, e)}i∈[n], {(wi, e)}i∈[n]), ({(0, upc,j , e)}j∈[m], {(wpc,j , e)}j∈[m]), ((e, τ), e).

We must show that

({(0, ui, e)}i∈[n], {(wi, e)}i∈[n]) ∈ NSCn (23)

({(0, upc,j , e)}j∈[m], {(wpc,j , e)}j∈[m]) ∈ NSCm
PC (24)

((e, τ), e) ∈ ZCPC. (25)

Indeed, by the prover’s construction (Step 2), we immediately have that Equa-
tion 25 holds.

Now, for each i ∈ [n], we parse (u⃗i, xi)← ui, and w⃗i ← wi. By Precondition (22)
we have that

Commit(pp, wi,j) = ui,j . (26)

Moreover, by the precondition, we have that for all x ∈ {0, 1}ℓ

0 = F (G(w⃗i, xi)(x)).

This means that for any choice of e

0 =
∑

x∈{0,1}ℓ
ẽ1(x1) · ẽ2(x2) · F (G(w⃗i, xi)(x)) (27)

where x1 and x2 (likewise e1 and e2) represent the first and the second half of the
original vector. Then, by Equations (26) and (27), we have that Equation (23)
holds. By an identical line of reasoning, we have that Equation (24) holds as well.
Thus, we have that completeness holds.

Lemma 19 (Knowledge Soundness). Construction 3 is knowledge sound.

Proof. We prove knowledge soundness via tree extraction (Lemma 15). That is,
we construct a PPT extractor χ that outputs a satisfying input witness with
probability 1−negl(λ) given a tree of accepting transcripts and the corresponding
output instance-witness pairs.

Indeed, suppose χ is provided with a (2ℓ)-tree of accepting transcripts for public
parameter, structure, instance tuple (pp, (F,G), ({u⃗i}i∈[n], {u⃗pc,j}j∈[m])). For k ∈
[2ℓ], let τ (k) denote the verifier challenge in each of these transcripts, and let

({(0, u(k)i , e(k))}i∈[n], {(w
(k)
i , e(k))}i∈[n]) ∈ NSCn (28)

({(0, u(k)pc,j , e
(k))}j∈[m], {(w

(k)
pc,j , e

(k))}j∈[m]) ∈ NSCm
PC (29)

((e(k), τ (k)), e(k)) ∈ ZCPC (30)
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denote the corresponding output instance-witness pairs.

By the verifier’s construction (Step 3) we have that u
(k)
i is the same as the input

instance ui for all k ∈ [2ℓ]. Then, by the binding property of the commitment

scheme, we have that w
(k)
i = w

(k′)
i for all k, k′ ∈ [2ℓ]. Thus, we denote this value as

wi. Now, for each i ∈ [n], we parse (u⃗i, xi)← ui, and w⃗i ← wi. By Equation (28),
for each k ∈ [2ℓ], given

g⃗i ← G(w⃗i, xi),

we have that

0 =
∑

x∈{0,1}ℓ
ẽ
(k)
1 (x1) · ẽ(k)2 (x2) · F (g⃗i(x)),

where x1 and x2 (likewise e
(k)
1 and e

(k)
2 ) represent the first and the second half

of the original vector. But by Equation (30), we have that

e1 = ((τ (k))0, (τ (k))1, (τ (k))2, . . . , (τ (k))
√
m−1)

e2 = ((τ (k))0, (τ (k))
√
m, (τ (k))2

√
m, . . . , (τ (k))(

√
m−1)·

√
m).

Substituting, we have that

0 =
∑

x∈{0,1}ℓ
(τ (k))X1+

√
m·X2 · F (g⃗i(x)),

where Xi =
∑

j∈[ℓ/2] xi,j · 2ℓ/2−j (i.e. the corresponding decimal representation if

xi is treated as the bit representation). Then, by interpolation, we have that the
Lagrange polynomial

Q(Y ) =
∑

x∈{0,1}ℓ
Y X1+

√
m·X2 · F (g⃗i(x))

is the zero polynomial. This means that

0 = F (g⃗i(x))

for all x ∈ {0, 1}ℓ. Hence, we have that

(⃗u, w⃗) ∈ ZCn.

Then, χ can produce w⃗i for all i ∈ [n] by reading the output witness from any
one of the transcripts. By an identical line of reasoning χ can produce w⃗pc such
that

(⃗upc, w⃗pc) ∈ ZCm
PC.

Thus, we have that tree-extractability holds.
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B.3 Proof of Lemma 6 (Folding nested sum-check)

Lemma 20 (Completeness). Construction 4 is complete.

Proof. Consider an arbitrary generator and encoder algorithm (G,K), and an
arbitrary PPT adversary A. For an arbitrary size parameter N , let pp← G(λ,N).
Suppose now that the adversary A on input pp generates a structure (F,G), and
input instance-witness pairs

{((Ti, ui, xi), (Tpc,i, upc,i, xpc,i))}i∈[n], {(wi,wpc,i)}i∈[n] ∈ NSCn × NSCn
PC. (31)

Suppose for (pk, vk)← K(pp, (F,G)), the prover and the verifier on input (pk, vk)
and this instance-witness pair interactively produce the output instance-witness
pair

(((T, u, x), (Tpc, upc, xpc)), (w,wpc)).

We must show that

((T, u, x),w) ∈ NSC

((Tpc, upc, xpc),wpc) ∈ NSCPC.

Indeed, for each i ∈ [n], we parse (w⃗i, ei)← wi and (w⃗pc,i, epc,i)← wpc,i. Then,
for g⃗i ← G(w⃗i, xi) and g⃗pc,i ← GPC(w⃗pc,i, xpc,i), by Precondition 31, we have that

Ti + γ · Tpc,i

=
∑

x∈{0,1}ℓ
ẽi,1(x1) · ẽi,2(x2) · F (g⃗i(x)) + γ · ẽpc,i,1(x1) · ẽpc,i,2(x2) · FPC(g⃗pc,i(x))

=
∑

x∈{0,1}ℓ
h1,i(x) · h2,i(x) · F (g⃗i(x)) + γ · hpc,1,i(x) · hpc,2,i(x) · FPC(g⃗pc,i(x))

=
∑

x∈{0,1}ℓ
F ′(g⃗i(x), h1,i(x), h2,i(x), g⃗pc,i, hpc,1,i(x), hpc,2,i(x))

=
∑

x∈{0,1}ℓ
F ′(G′(w⃗i, ei, w⃗pc,i, epc,i, (xi, xpc,i))(x)),

where h1,i, h2,i, hpc,1,i, and hpc,2,i are defined as in the construction. This implies
that the completeness precondition holds for the sum-check folding reduction.
That is, for i ∈ [n]

(pp, (F ′, G′), (Ti + γ · Tpc,i, (ui, upc,i), (xi, xpc,i)) , (wi,wpc,i)) ∈ SC.

Then, by the completeness of the sum-check folding reduction, we have that the
instance-witness pair output from the folding sum-check reduction is satisfying.
That is

(pp, (F ′, G′), (Tγ , (u, upc), (x, xpc)), (w,wpc)) ∈ SC. (32)
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This implies that given (w⃗, e) ← w, (w⃗pc, epc) ← wpc, g⃗ ← G(w⃗, e), and g⃗pc ←
GPC(w⃗pc, epc) we have that

Tγ =
∑

x∈{0,1}ℓ
F ′(G′(w⃗, e, w⃗pc, epc, (x, xpc))(x))

=
∑

x∈{0,1}ℓ
h1(x) · h2(x) · F (g⃗(x)) + γ · hpc,1(x) · hpc,2(x) · FPC(g⃗pc(x))

=
∑

x∈{0,1}ℓ
ẽ1(x1) · ẽ2(x2) · F (g⃗(x)) + γ · ẽpc,1(x1) · ẽpc,2(x) · FPC(g⃗pc(x))

= T + γ · Tpc.

Therefore, we have that the verifier’s check in Step 5 passes.

Moreover, by the prover’s computation, we have that

T =
∑

x∈{0,1}ℓ
ẽ1(x1) · ẽ2(x2) · F (g⃗(x))

Tpc =
∑

x∈{0,1}ℓ
ẽpc,1(x1) · ẽpc,2(x) · FPC(g⃗pc(x))

Then, by the validity of the commitments implied by Equation 32, we have that

((T, (u, x)),w) ∈ NSC

((Tpc, (upc, xpc)),wpc) ∈ NSCPC.

Therefore, completeness holds.

Lemma 21 (Knowledge Soundness). Construction 4 is knowledge sound.

Proof. We prove knowledge soundness via tree extraction (Lemma 15). That is,
we construct a PPT extractor χ that outputs a satisfying input witness with
probability 1−negl(λ) given a tree of accepting transcripts and the corresponding
output instance-witness pairs.

Indeed, let χFSC denote the tree-extractor for the sum-check folding reduction,
which reduces from SCn to SC in Step 3. Suppose that χFSC can extract using
an L-tree of accepting transcripts where L ∈ Nν+1. Then, we provide χ with a
(2, L)-tree of accepting transcripts for public parameter, structure, instance tuple

(pp, (F,G), {((Ti, ui, xi), (Tpc,i, upc,i, xpc,i))}i∈[n]).

For k ∈ [2] and l ∈ ([L1], . . . , [Lν+1]), let γ
(k) denote the verifier’s first challenge,

and for each such challenge let r(k,l) denote the verifier’s challenges during the
sum-check folding reduction. Let

((T (k,l), u(k,l), x(k,l)),w(k,l)) ∈ NSC

((T (k,l)
pc , u(k,l)pc , x(k,l)pc ),w(k,l)

pc ) ∈ NSCPC
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denote the corresponding output instance-witness pairs.

Now, by the satisfiability condition of NSC and NSCPC for

(u⃗(k,l), e(k,l))← u(k,l)

(u⃗(k,l)
pc , e(k,l)pc )← u(k,l)pc

(w⃗(k,l), e(k,l))← w(k,l)

(w⃗(k,l)
pc , e(k,l)pc )← w(k,l)

pc ,

we have that

T (k,l) =
∑

x∈{0,1}ℓ
ẽ
(k,l)
1 (x1) · ẽ(k,l)2 (x2) · F (G(w⃗(k,l), x(k,l))(x))

T (k,l)
pc =

∑
x∈{0,1}ℓ

ẽ
(k,l)
pc,1 (x1) · ẽ(k,l)pc,2 (x2) · FPC(GPC(w⃗

(k,l)
pc , x(k,l)pc )(x))

and that

e(k,l) = Commit(pp, e(k,l)) (33)

e(k,l)pc = Commit(pp, e(k,l)pc ) (34)

u
(k,l)
j = Commit(pp, w

(k,l)
j ) (35)

u
(k,l)
pc,j = Commit(pp, w

(k,l)
pc,j ) (36)

for j ∈ [s].
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Then, by the verifier’s check in Step 5, we have that

T (k,l)
γ

= T (k,l) + γ(k,l) · T (k,l)
pc

=
∑

x∈{0,1}ℓ
ẽ
(k,l)
1 (x1) · ẽ(k,l)2 (x2) · F (G(w⃗(k,l), x(k,l))(x))+

γ(k,l) ·
∑

x∈{0,1}ℓ
ẽ
(k,l)
pc,1 (x1) · ẽ(k,l)pc,2 (x2) · FPC(GPC(w⃗

(k,l)
pc , x(k,l)pc )(x))

=
∑

x∈{0,1}ℓ
h
(k,l)
1 (x) · h(k,l)

2 (x) · F (G(w⃗(k,l), x(k,l))(x))+

γ(k,l) ·
∑

x∈{0,1}ℓ
h
(k,l)
pc,1 (x) · h

(k,l)
pc,2 (x) · FPC(GPC(w⃗

(k,l)
pc , x(k,l)pc )(x))

=
∑

x∈{0,1}ℓ
F ′((G(w⃗(k,l), x(k,l)), h

(k,l)
1 , h

(k,l)
2 , GPC(w⃗

(k,l)
pc , x(k,l)pc ), h

(k,l)
pc,1 , h

(k,l)
pc,2 )(x))

=
∑

x∈{0,1}ℓ
F ′(G′(w⃗(k,l), e(k,l), w⃗(k,l)

pc , e(k,l)pc , (x(k,l), x(k,l)pc ))(x))

=
∑

x∈{0,1}ℓ
F ′(G′((w(k,l),w(k,l)

pc ), (x(k,l), x(k,l)pc ))(x))

(37)

Therefore, by Derivation (37), and Equations (33), (34), (35), and (36) we have
that

(pp, (F ′, G′), (T (k,l)
γ , (u(k,l), u(k,l)pc ), (x(k,l), x(k,l)pc )), (w(k,l),w(k,l)

pc )) ∈ SC.

This means that for each challenge γ(k), and the corresponding input instance to
the sum-check folding reduction

(pp, (F ′, G′), {(T (k)
i + γ(k) · T (k)

pc,i, (u
(k)
i , u

(k)
pc,i), (x

(k)
i , x

(k)
pc,i))}i∈[n]),

χ can produce a satisfying L-sub-tree of transcripts for the sum-check folding
reduction with satisfying output instance-witness pairs in SC. Then, χ can run
χFSC on each of these sub-trees to retrieve a corresponding satisfying input witness

{(w(k)
i ,w

(k)
pc,i)}i∈[n] such that

({(T (k)
i + γ(k) · T (k)

pc,i, (u
(k)
i , u

(k)
pc,i), (x

(k)
i , x

(k)
pc,i))}i∈[n], {(w

(k)
i ,w

(k)
pc,i)}i∈[n]) ∈ SCn

with respect to structure (F ′, G′).

By the verifier’s construction, we have that for all i ∈ [n], T
(k)
i = Ti, T

(k)
pc,i = Tpc,i,

x
(k)
i = xi, x

(k)
pc,i = xpc,i, u

(k)
i = ui, and u

(k)
pc,i = upc,i. Then, by the binding property

of the commitment scheme, for all i ∈ [n] we must have that for any k, k′ ∈ [2]

w
(k)
i = w

(k′)
i and w

(k)
pc,i = w

(k′)
pc,i . We denote these values simply as wi and wpc,i.
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Then, for

(w⃗i, ei)← wi

(w⃗pc,i, epc,i)← wpc,i,

by the satisfiability condition of SC we have that

Ti + γ(k) · Tpc,i

=
∑

x∈{0,1}ℓ
F ′(G′((wi,wpc,i), (xi, xpc,i))(x))

=
∑

x∈{0,1}ℓ
F ′(G′((w⃗i, ei, w⃗pc,i, epc,i), (xi, xpc,i))(x))

=
∑

x∈{0,1}ℓ
F ′((G(w⃗i, xi), h1,i, h2,i, GPC(w⃗pc,i, xpc,i), hpc,1,i, hpc,2,i)(x))

=
∑

x∈{0,1}ℓ
h1,i(x) · h2,i(x) · F (G(w⃗i, xi)(x))+

γ(k) ·
∑

x∈{0,1}ℓ
hpc,1,i(x) · hpc,2,i(x) · FPC(GPC(w⃗pc,i, xpc,i)(x))

=
∑

x∈{0,1}ℓ
ẽ1,i(x1) · ẽ2,i(x2) · F (G(w⃗i, xi)(x))+

γ(k) ·
∑

x∈{0,1}ℓ
ẽpc,1,i(x1) · ẽpc,2,i(x2) · FPC(GPC(w⃗pc,i, xpc,i)(x)).

Then, by interpolation, we have that

Ti =
∑

x∈{0,1}ℓ
ẽ1,i(x1) · ẽ2,i(x2) · F (G(w⃗i, xi)(x))

Tpc,i =
∑

x∈{0,1}ℓ
ẽpc,1,i(x1) · ẽpc,2,i(x2) · FPC(GPC(w⃗pc,i, xpc,i)(x)).

This means that for i ∈ [n]

((Ti, ui, xi),wi) ∈ NSC

((Tpc,i, upc,i, xpc,i),wpc,i) ∈ NSCPC.

Therefore, χ can compute a satisfying input witness (wi,wpc,i) for i ∈ [n].

B.4 Proof of Lemma 11 (From lookup to grand-product)

Lemma 22 (Completeness). Construction 6 is complete.
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Proof. Consider an arbitrary PPT adversary A. For arbitrary size parameters
(n,m), let pp← G(λ, (n,m)), and pk, vk← K(pp). Suppose now that the adver-
sary on input pp generates

((t, a, v), (t, a, v)) ∈ LKP.

The prover and verifier on input (pk, vk), (t, a, v), (t, a, v) interactively produce
output instance-witness pairs

{((pk, vk), vk)}k∈[4]

We must show that {((pk, vk), vk)}k∈[4] ∈ GP4.

Indeed, by the linearity of the commitment scheme and by definitions of Gn =
Commit(pp, 1n), Gm = Commit(pp, 1m), and H = Commit(pp, (1, . . . , n)), we
have that

vk = Commit(pp, vk) (38)

for k ∈ [4].

Next, by the prover’s computation of f and c and by Lemma 10, we have that∏
i∈[n]

(i+ ti ·X − Y )

 ·
 ∏

i∈[m]

(ai + vi ·X + (ci + 1) ·X2 − Y )

 =

 ∏
i∈[m]

(ai + vi ·X + ci ·X2 − Y )

 ·
∏

i∈[n]

(i+ ti ·X + fi ·X2 − Y )

 .

But, this means that for an arbitrary rX , rY ∈ F∏
i∈[n]

(i+ ti · rX − rY )

 ·
 ∏

i∈[m]

(ai + vi · rX + (ci + 1) · r2X − Y )

 =

 ∏
i∈[m]

(ai + vi · rX + ci · r2X − rY )

 ·
∏

i∈[n]

(i+ ti · rX + fi · r2X − rY )

 .

Then, by the definition of v1, . . . , v4 we have that∏
i∈[n]

v1,i ·
∏

i∈[m]

v2,i =
∏

i∈[m]

v3,i ·
∏
i∈[n]

v4,i.

Hence, by construction, we have that

pk =
∏
i

vk,i (39)
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for k ∈ [4], by substitution, we have that

p1 · p2 = p3 · p4.

Therefore, we have that the verifier’s check in Step 5 passes.

Then, by Equations 38 and 39, we have that {((pk, vk), vk)}k∈[4] ∈ GP4.

Lemma 23 (Knowledge Soundness). Construction 6 is knowledge sound.

Proof. We prove knowledge soundness via tree extraction (Lemma 15). That is,
we construct a PPT extractor χ that outputs a satisfying input witness with
probability 1−negl(λ) given a tree of accepting transcripts and the corresponding
output instance-witness pairs.

Indeed, for a sufficiently large N = O(nm) we provide χ with an N -tree of
accepting transcripts for the public parameter, instance tuple (pp, (t, a, v)). For

l ∈ [N ], let r
(l)
X and r

(l)
Y denote the verifier’s challenges in Step 2. Let

{((p(l)k , v
(l)
k ), v

(l)
k )}k∈[4] ∈ GP4 (40)

denote the corresponding output instance-witness pairs.

Using an arbitrary but sufficiently large subsets of transcripts, the extractor χ
interpolates t such that for i ∈ [n]

v
(l)
1,i = i+ ti · r(l)X − r

(l)
Y , (41)

interpolates a, v, and c such that for i ∈ [m]

v
(l)
2,i = ai + vi · r(l)X + (ci + 1) · r(l)X

2
− r

(l)
Y , (42)

interpolates a′, v′, and c′ such that for i ∈ [m]

v
(l)
3,i = a′i + v′i · r

(l)
X + c′i · r

(l)
X

2
− r

(l)
Y (43)

interpolates t′ and f such that for i ∈ [n]

v
(l)
4,i = i+ t′i · r

(l)
X + fi · r(l)X

2
− r

(l)
Y . (44)

We will now argue that regardless of the extractors choice of transcripts, due
to the binding property of the commitment scheme, it will derive the same
interpolated vectors t, a, v, c, and f . Indeed, starting with t, regardless of the
extractors choice of l ∈ [N ] to derive t, we must have that

Commit(pp, t) = Commit(pp, (v
(l)
1 − (1, . . . , n) + (r

(l)
Y , . . . , r

(l)
Y )) · r(l)X

−1
)

= (v
(l)
1 −H +Gn · r(l)Y ) · r(l)X

−1

= t
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Therefore, because t is identical across all transcripts, by the binding property of
the commitment scheme, we have that t is identically derived regardless of the
choice of transcripts. For similar reasons, because a, v, c, and f are identical across
transcripts we must have that a, v, c, and f are identically derived regardless
of the choice of transcripts, and moreover that t = t′, a = a′, v = v′ and c = c′.
Then, we must have that Equations (41), (42) (43) (44) hold for all l ∈ [N ].

Then, by Precondition (40), and the verifier’s check in Step (5), we have for all
l ∈ [N ]∏

i∈[n]

(i+ ti · r(l)X − r
(l)
Y )

 ·
 ∏

i∈[m]

(ai + vi · r(l)X + (ci + 1) · r(l)X

2
− r

(l)
Y )


=

∏
i∈[n]

v
(l)
1,i ·

∏
i∈[m]

v
(l)
2,i

= p
(l)
1 · p

(l)
2

= p
(l)
3 · p

(l)
4

=
∏
i∈[n]

v
(l)
3,i ·

∏
i∈[m]

v
(l)
4,i = ∏

i∈[m]

(ai + vi · r(l)X + ci · r(l)X

2
− r

(l)
Y )

 ·
∏

i∈[n]

(i+ ti · r(l)X + fi · r(l)X

2
− r

(l)
Y )

 .

Therefore, by the precondition that N is sufficiently large, by interpolation, we
have that∏

i∈[n]

(i+ ti ·X − Y )

 ·
 ∏

i∈[m]

(ai + vi ·X + (ci + 1) ·X2 − Y )

 =

 ∏
i∈[m]

(ai + vi ·X + ci ·X2 − Y )

 ·
∏

i∈[n]

(i+ ti ·X + fi ·X2 − Y )

 .

Then, by Lemma 10, and by the derivation that Commit(pp, t) = t (and the
similar implied derivations for a and v), we have that

(pp, (t, a, v), (t, a, v)) ∈ LKP.

B.5 Proof of Lemma 9 (From grand-product to zero-check)

Lemma 24 (Completeness). Construction 5 is complete.

Proof. Consider an arbitrary PPT adversary A. For an arbitrary size parameter
n, let pp ← G(λ, n), and (pk, vk, (FGP, GGP)) ← K(pp). Suppose now that the
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adversary on input pp generates

((p, v), v) ∈ GP. (45)

The prover and verifier on input (pk, vk), (p, v), v interactively produce output
instance-witness pairs (((v, v′), p), (v, v′)). We must show that

((FGP, GGP), ((v, v
′), p), (v, v′)) ∈ ZC. (46)

Indeed, by Precondition 45 and the prover’s computation in Step 1, we have that

v = Commit(pp, v)

v′ = Commit(pp, v′)

By Lemma 8 we have that

f(0, x) = ṽ(x)

f(1, . . . , 1, 0) = p,

and that for all x ∈ {0, 1}logn

f(1, x) = f(x, 0) · f(x, 1).

Then, for all x ∈ {0, 1}logn, we have that

0 = f(1, x)− f(x, 0) · f(x, 1)

= (̃v, v′)(1, x)− (̃v, v′)(x, 0) · (̃v, v′)(x, 1)

= ˜(v, (v′1, . . . , p, v
′
n))(1, x)− ˜(v, (v′1, . . . , p, v

′
n))(x, 0) · ˜(v, (v′1, . . . , p, v

′
n))(x, 1)

= FGP(GGP((v, v
′), p)(x))

Therefore, we have that Equation 46 holds.

Lemma 25 (Knowledge soundness). Construction 5 is knowledge-sound

Proof. We prove knowledge soundness via tree extraction (Lemma 15). That is,
we construct a PPT extractor χ, that can produce a satisfying input witness
given as input a single transcript for public parameters pp and input instance
(p, v), and output instance-witness pair

((FGP, GGP), ((v, v
′), p), (v, v′)) ∈ ZC. (47)

Indeed, by Precondition (47), we have that for all x ∈ {0, 1}logn

0 = FGP(GGP((v, v
′), p)(x))

= ˜(v, (v′1, . . . , p, v
′
n))(1, x)− ˜(v, (v′1, . . . , p, v

′
n))(x, 0) · ˜(v, (v′1, . . . , p, v

′
n))(x, 1)

= f(1, x)− f(x, 0) · f(x, 1)
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for f = ˜(v, (v′1, . . . , p, v
′
n)). But this means that f(1, x) = f(x, 0) · f(x, 1) for all

x ∈ {0, 1}logn, f(1, . . . , 1, 0) = p, and f(0, x) = ṽ(x). Then, by Lemma 8, we
must have that p =

∏
i∈[n] vi. Moreover, by Precondition (47), we have that

Commit(pp, v) = v. Therefore, we have that

((p, v), v) ∈ GP.
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