
DeepFold: Efficient Multilinear Polynomial Commitment from Reed-Solomon Code
and Its Application to Zero-knowledge Proofs

Yanpei Guo
gyp2847399255@gmail.com

NUS

Xuanming Liu
hinsliu@zju.edu.cn
Zhejiang University

Kexi Huang
Cauchy_0326xz@outlook.com

NUS

Wenjie Qu
wenjiequ@u.nus.edu

NUS

Tianyang Tao
tianyangtao@u.nus.edu

NUS

Jiaheng Zhang
jhzhang@nus.edu.sg

NUS

Abstract
This work presents DeepFold, a novel multilinear polynomial
commitment scheme (PCS) based on Reed-Solomon code
that offers optimal prover time and a more concise proof size.
For the first time, DeepFold adapts the FRI-based multilin-
ear PCS to the list decoding radius setting, requiring signif-
icantly fewer query repetitions and thereby achieving a 3×
reduction in proof size compared to BaseFold (Crypto’24),
while preserving its advantages in prover time. Compared
with PolyFRIM (USENIX Security’24), DeepFold achieves
a 2× improvement in prover time, verifier time, and proof
size. Another contribution of this work is a batch evalua-
tion scheme, which enables the FRI-based multilinear PCS to
handle polynomials encoded from inputs of arbitrary length
without additional padding overhead.

Our scheme has broad applications in zk-SNARKs, since
PCS is a key component in modern zk-SNARK construc-
tions. For example, when replacing the PCS component of
Virgo (S&P’20) with DeepFold, our scheme achieves a 2.5×
faster prover time when proving the knowledge of a Merkle
tree with 256 leaves, while maintaining the similar proof size.
When replacing the PCS component of HyperPlonk (Euro-
crypt’23) with DeepFold, our scheme has about 3.6× faster
prover time. Additionally, when applying our arbitrary length
input commitment to verifiable matrix multiplications for ma-
trices of size 1200× 768 and 768× 2304, which are actual
use cases in GPT-2 model, the performance showcases a 2.4×
reduction in prover time compared to previous approaches.

1 Introduction

Polynomial Commitment Scheme (PCS) [5, 26] is a power-
ful cryptographic primitive that allows a prover to commit
to a µ-variate polynomial f defined over a field F with a de-
gree bound of d using a short commitment. Given x⃗ ∈ Fµ,
the prover can create a proof to convince the verifier that
f (⃗x) = y for some y ∈ F. PCS has broad applications like
verifiable secret sharing [36, 47], proofs of retrievability [25],

and data availability sampling [24]. A PCS is succinct if both
the proof size and the verifier time are sublinear in the polyno-
mial’s size n = (d +1)µ. Succinct PCS is an integral building
block of zero-knowledge succinct non-interactive argument
of knowledge (zk-SNARK) [18, 20, 21, 37], which are particu-
larly useful in various domains, including but not limited to
cryptocurrencies [15, 35], blockchain rollup [29, 43], AI regu-
lations [30, 46], and anonymous credentials [34]. A succinct
PCS can be integrated with a Polynomial Interactive Oracle
Proof (PIOP) [9] to construct zk-SNARK.

The concept and initial construction of univariate PCS
(namely, µ = 1) originated from the pioneering work by Kate,
Zaverucha, and Goldberg [26] (hereafter, KZG). With the use
of pairing groups, one major merit of KZG is its constant
verifier time and proof size in the evaluation of a univariate
polynomial. However, a long-standing issue that has been
widely criticized with KZG is its reliance on a trusted setup to
generate certain parameters, which often raises security con-
cerns. Another disadvantage ofKZG is the high computational
overhead of the pairing group operations for the prover. There-
fore, there have been numerous studies [5,22,44] focusing on
creating PCS based on error-correcting codes (ECC), which
is transparent and only relies on lightweight hash functions.
Among these schemes, the Fast Reed-Solomon Interactive Or-
acle Proof of Proximity (FRI) [5] is a compelling construction
for univariate PCS based on Reed-Solomon (RS) codes. FRI
is praised for its efficient prover without relying on pairing
group operations, as well as its transparent setup. The verifier
time and the proof size are poly-logarithmic with respect to
the polynomial size. Consequently, it has become an appeal-
ing univariate PCS choice for practical applications [6, 8, 23].

FRI-based Multilinear PCS. Recent years, multivariate poly-
nomials (µ > 1), especially multilinear polynomials where the
degree in each variable is at most one, have been widely ap-
plied in constructing efficient SNARKs [18,21,37]. Given its
transparency and efficiency, an interesting topic is to use the
technique of FRI to construct a PCS for multivariate polyno-
mials, especially multilinear polynomials. However, adapting
the (univariate) FRI for multivariate polynomials is non-trivial,

1

because RS code is originally compatible with the univariate
ones. Several works, such as Virgo [48], PolyFRIM [49], and
BaseFold [45], have aimed to achieve this transition. Nonethe-
less, these schemes always result in a significant increase in
prover time or proof size when compared to the univariate
FRI protocol, which is not optimal. Therefore, it remains an
open question to achieve a multilinear PCS based on FRI with
optimal prover time and compact proof size.

FRI query number. When constructing PCS based on FRI
techniques, an important metric is the query number, which de-
termines the final proof size. FRI considers the setting where a
verifier is given only oracle access to a vector v⃗. With the help
of an untrusted prover, the verifier needs to distinguish, by
querying v⃗ at a few locations repeatedly, whether v⃗ is a valid
RS codeword or whether v⃗ is far from all codewords in relative
Hamming distance. This is called a RS code interactive oracle
proof of proximity (IOPP) [9]. In the original univariate FRI,
the query number is restricted by a limitation known as the
unique decoding radius. Several works [10, 12, 27] have man-
aged to overcome this limitation and reduce the query number.
For example, for an RS code with a code rate of 1

8 , under the
unique decoding radius setting, to achieve 100-bit security,
the query number exceeds 120, whereas in DEEP-FRI [10],
the number is reduced to only 34, resulting in approximately
3× smaller concrete proof size for FRI-based univariate PCS.

Recently, BaseFold [45] discovered a special property of
FRI and invoked FRI for a purpose other than RS code IOPP,
achieving multilinear PCS with competitive prover time. Its
remarkable prover efficiency has made it appealing to numer-
ous industrial projects [19, 38]. However, this unconventional
usage of FRI renders previous optimizations for lowering the
query number of RS IOPP invalid. Consequently, the query
number in BaseFold has reverted to the same level as in the
original univariate FRI, resulting in a significant increase in
proof size. Concretely, when instantiating BaseFold for a mul-
tilinear polynomial with µ = 22 variables, the proof size is
619 KB, whereas the proof size for DEEP-FRI is only about
200 KB for a univariate polynomial degree with 222. There-
fore, it is of significant importance to reduce the proof size of
BaseFold while maintaining its prover efficiency.

Arbitrary length input. Another significant drawback of FRI-
based PCS is the overhead when encoding inputs of arbitrary
length. For instance, when applying a PCS to encode a vector
with 2k +2k/2 inputs for some k ≥ 1, we need to pad the vec-
tor to size 2k+1 to fit a (k+1)-variate multilinear polynomial.
If one chooses to commit to the polynomial using a multilin-
ear variant of KZG (mKZG), the overhead from padding is
negligible, as it can skip those zero terms directly. However,
when using FRI-based PCS, the RS encoding causes the entire
2k+1-sized vector to become non-zero, thereby resulting in
nearly double the prover time. This situation is less studied in
the literature, but we find it common in real-world scenarios,
which often involve inputs of random sizes.

The above issue becomes even more significant for veri-
fiable matrix multiplications [40], because committing to a
matrix requires padding in two dimensions, potentially lead-
ing to up to 4× overhead. We find this problem very common
in zero-knowledge machine learning (zkML) [39], which aims
to make ML inference verifiable. For example, in GPT-2 [33],
the attention matrix is of size 768× 2304. When handling
verifiable matrix multiplication with such matrices, there is
always a need for an efficient PCS to commit to and evaluate
a multilinear polynomial encoded from these "arbitrary" ma-
trices. Therefore, these challenges motivate us to develop a
new technique to efficiently handle inputs of arbitrary length.

In summary, we propose two open research questions for
improving FRI-based multilinear polynomial commitments:

1. Can we build a FRI-based multilinear PCS with optimal
efficiency, and push the proof size boundary even lower com-
pared to the state-of-the-art [45]?

2. Can we develop an efficient technique to commit arbitrary-
size inputs using FRI without any overhead?

1.1 Contributions
We give affirmative answers to the above questions. Our con-
tributions can be summarized as follows:

• DeepFold: A multilinear PCS with optimal prover time
and smaller proof size. Our main contribution is DeepFold,
an innovative multilinear PCS with O(n logn) commit time
and O(n) evaluating time, where n is the size of the poly-
nomial. The verifier time and the proof size are both O(sL ·
log2 n), where sL is the query number under the list decoding
setting, overcoming unique decoding limitation. Concretely,
when the code rate is set to 1

8 , the query number sL is about
34, while the query number in prior work BaseFold [45], sU ,
exceeds 100 due to the unique decoding limitation. This trans-
lates to more than 3× optimization in proof size. Using FS
transformation, DeepFold can be made non-interactive [13].

• Efficient evaluation for PCS encoding arbitrary length
inputs from batching FRI. For the first time in the literature,
we study the problem of committing to multilinear polyno-
mials encoding inputs of arbitrary length based on the FRI
technique. Instead of padding and committing the inputs as
a whole vector, we divide the inputs into several parts and
commit them using multiple multilinear polynomials with dif-
ferent numbers of variables. To ensure that this transformation
does not significantly increase the overhead of the evaluation,
a novel batching evaluation technique is developed, enabling
evaluations for different polynomials with varying sizes at one
time. This batching technique is also leveraged to non-trivially
make DeepFold zero-knowledge.

• Implementation, applications and evaluations. We have
fully implemented our schemes and applied them to two prac-
tical cases: (i) constructing general zk-SNARKs [18, 42], and

2

Table 1: Complexities comparison of µ-variate multilinear polynomial commitments to achieve λ-bit security.

Scheme Transparent Assumption Commit Evaluate Verify Proof Size
mKZG [32] no q-SDH O(n)GB O(n)GB O(logn)GB O(logn)
DARK [17] yes/no Strong RSA O(n)GU O(n logn)GU O(logn)GU O(logn)
Bulletproofs [16] yes DLog O(n)GP O(n)GP O(n)GP O(logn)
Hyrax [41] yes DLog O(n)GP O(n)F+O(

√
n)GP O(

√
n)GP O(

√
n)

Brakedown [22] yes O(n)H O(n)F O(
√

n)H O(λ
√

n)
Orion [44] yes O(n)H O(n)F O(sO log2 n)F O(sO log2 n), 3124 KB
Virgo [48] yes O(n logn)F+O(n)H O(n logn)F+O(n)H O(sL log2 n)H O(sL log2 n), 228 KB
PolyFRIM [49] yes O(n logn)F+O(n)H O(n)H O(sL log2 n)H O(sL log2 n), 394 KB
Basefold [45] yes O(n logn)F+O(n)H O(n)H O(sU log2 n)H O(sU log2 n), 619 KB
DeepFold yes O(n logn)F+O(n)H O(n)H O(sL log2 n)H O(sL log2 n), 208 KB

For Gi, where i ∈ {B,U,P}, it denotes a group with a Bilinear map, of Unknown order, or of known Prime order;
For si, where i∈ {O,L,U}, it denotes the query number needed for Orion, List decoding, or Unique decoding setting to guarantee

security;
F is a field with a large multiplicative coset. H denotes a hash function. n = 2µ denotes the polynomial size;
The PCS listed without assumptions relies solely on random oracle (RO) [28], which is plausibly post-quantum secure.

(ii) verifiable matrix multiplications [40]. Our codebase is
ready for open-source evaluation1. We collected experimental
data and demonstrated the competitive performance of our de-
signs. Compared to Virgo [48], DeepFold achieves more than
3× faster prover time for a 22-variate multilinear polynomial.
When compared to PolyFRIM [49], our proposal exhibits a
2× improvement in prover time, proof size, and verifier time.
Furthermore, DeepFold outperforms BaseFold [45] by 3× in
terms of proof size and verifier time, while maintaining similar
prover time. When combining DeepFold with the HyperPlonk
PIOP [18], the proof system is 3.6× faster than HyperPlonk
+ mKZG [32]. When integrated with Libra [42], the result
is 2.5× faster than Libra + Virgo. Finally, we utilized our
arbitrary-length input commitment to assist with verifiable
matrix multiplication with dimensions 768×2304, an actual
use case in GPT-2 [33]. Experiments showcase a 2.4× im-
provement in prover time compared to naive approaches.

1.2 Related Work

Multilinear PCS. In Table 1, we summarize the properties of
related schemes for a comparison. We list the concrete proof
sizes for all schemes with a complexity of O(s log2 n), where
n = 222 and s is chosen differently by each scheme to ensure
soundness. For all schemes based on RS code, we set the code
rate to 1

8 , the same as the default setting in Plonky2 [2].
The (univariate) KZG scheme can be adapted to the multi-

linear case [32] with logarithmic verifier time and proof size.
However, mKZG also inherits the issues of trusted setup and
expensive group operations. Bulletproofs [16] does not re-
quire a trusted setup and relies solely on the Discrete Log
(DLog) assumption. The problem is that verification takes

1https://anonymous.4open.science/r/deepfold-bench-248B

O(n) group exponentiations, making it often impractical for
real-world applications. Hyrax [41] generalizes Bulletproofs
by trading off proof size to improve verifier time, but an intrin-
sic limitation is that the complexity product of the proof size
and the verifier time cannot be smaller than O(n). DARK [17]
achieves logarithmic proof size and verifier time but relies on
strong RSA and adaptive root assumptions. It is transparent
only if class groups are used, which are known for slower
group operations.

From another path, PCS based on error-correcting codes
(ECC) relies solely on lightweight hash functions and is there-
fore transparent. Another advantage is that they avoid expen-
sive group operations. There are two families of ECC-based
PCS known for efficient prover performance and acceptable
verifier time and proof size: (i) FRI-based schemes and (ii)
tensor code-based schemes. The latter family of constructions
is derived from the concepts introduced in Ligero [3] and has
been recently enhanced in Brakedown [22] and Orion [44].
Without relying on proof recursion, Brakedown [22] achieves
linear-time prover but suffers from a relatively slow verifier
and a large proof size of O(λ

√
n), where λ is security param-

eter. On the other hand, Orion [44] reduces the proof size
to O(sO log2 n) through proof composition with Virgo, where
sO represents the query number. However, sO exceeds 1500,
resulting in a large concrete proof size. In contrast, DeepFold
and other FRI-based multilinear PCS [45, 48, 49] also yield a
poly-logarithmic proof size and verifier time, but the concrete
proof size is much smaller, as elaborated below.

FRI-based PCS. FRI-based PCS is originally designed for
univariate polynomials [5]. The correctness relies on the fact
that if f (z) = y for a univariate polynomial f (x) of degree n,
then f (x)−y

x−z is a polynomial of degree (n−1). This quotient
operation is inherently univariate, therefore obstructing the

3

https://anonymous.4open.science/r/deepfold-bench-248B

generalization of FRI to multivariate polynomials.
To overcome this limitation, Virgo [48] treats a multilinear

polynomial evaluation as a univariate sumcheck protocol [8]
and employs a GKR protocol [21] for FFT delegation, result-
ing in a prover overhead of O(n logn). PolyFRIM [49] adopts
the idea of Gemini [14] by committing to additional logn poly-
nomials to achieve O(n) prover time. However, this approach
runs FRI nearly twice, concretely doubling the overhead for
prover, verifier and proof size. Recently, BaseFold [45] dis-
covered that the last scalar sent by the prover in FRI is a
random evaluation of the committed polynomial. It combines
FRI with a multivariate sumcheck to achieve the most efficient
FRI-based PCS. However, FRI is used in an unconventional
way in [45], which restricts the scenario of BaseFold to only
unique decoding settings, resulting in more query numbers
and a larger proof size. This is precisely the problem we aim
to address in this work.

FRI query number. The soundness of FRI relies on sufficient
repetition of queries, the number of which is determined by
the distance preservation bound. A larger bound allows for
fewer queries, resulting in a smaller proof size. A series of
studies [7,10,12] have been conducted to improve the distance
preservation bound, thereby enhancing the efficiency of FRI.

In the original FRI paper [5], the bound is defined by the
unique decoding radius 1−ρ

2 , where ρ is the code rate. Ben-
Sasson et al. [12] successfully surpassed this unique decoding
limit by pushing the bound to Jε(Jε(∆V)), which is approxi-
mately 1− 4

√
ρ for RS codes. Later, Ben-Sasson et al. [10] fur-

ther proposed the "one-and-a-half" Johnson function bound,
increasing the bound to about 1− 3

√
ρ. Moreover, in the same

paper, they introduced the Domain Extending for Eliminating
Pretenders (DEEP) [10] technique, which effectively raises
the bound to any list decoding radius by making lightweight
adaptations to the protocol. This bound is theoretically op-
timal for FRI. Under a widely accepted conjecture on RS
codes [11] (cf. Section 2.2), this bound could potentially be
pushed to 1−ρ+ ε. In [7], Ben-Sasson et al. proved a bound
of 1−√ρ for Reed-Solomon codes without using the DEEP
technique. We will further elaborate on the distance preserva-
tion bound and the DEEP technique in subsequent sections.

Recently, Arnon et al. [4] proposed STIR to achieve fewer
queries than DEEP-FRI, which can be used to construct uni-
variate PCS. However, leveraging STIR to construct efficient
multilinear PCS remains an open problem.

2 Preliminaries

Notation. We use λ to denote the security parameter. We use
ε to denote any real number larger than 0. For n ∈ N, let [n]
be the set {1, · · · ,n}. negl(λ) is used to denote a negligible
function. A probability of 1−negl(λ) is said to be overwhelm-
ing. We use F to denote a field such that log(|F|) = Ω(λ).
For a vector v⃗ = (v1, · · · ,vn), let v⃗[i: j] denote the sub-vector

(vi, · · · ,v j), and let v⃗[i:] denote (vi, · · · ,vn). For a function
f : A→B, and D= {d1, · · · ,dn}⊆A, let f |D denote the vector
of evaluations (f (d1), · · · , f (dn)). Let F≤d [X1, · · · ,Xµ] denote
the set of all µ-variate polynomials with a degree bound d.
We use ⊗ to denote a tensor product, and ⟨·, ·⟩ to denote an
inner product.

Merkle tree. Merkle tree is a vector commitment scheme
with linear prover time and logarithmic verifier time and proof
size, with respect to the vector size. A Merkle tree consists
of three algorithms. rt←MT.Commit(⃗v) outputs the Merkle
tree root rt for vector v⃗. ({vi}i∈I , path) ← MT.Open(I, v⃗)
takes as input the query location set I and outputs the val-
ues {vi}i∈I and verification path path. Verification is done via
MT.Verify(rt, I,{vi}i∈I , path). We use collision-resistant and
non-invertible hash functions to instantiate a Merkle tree.

Lemma 1 (Multilinear extension). A multilinear polynomial
is a multivariate polynomial in which the degree of each vari-
able is at most one. For every function f : {0,1}µ→ F, there
is a unique multilinear polynomial f̃ ∈ F≤1[X1, · · · ,Xµ] such
that f̃ (⃗b) = f (⃗b) for all b⃗ ∈ {0,1}µ. We call f̃ the multilinear
extension of f , and f̃ can be expressed as

f̃ (X⃗) = ∑
b⃗∈{0,1}µ

f (⃗b) · ẽq(⃗b, X⃗)

where ẽq(⃗b, X⃗) = ∏
µ
i=1

(⃗
b[i]X⃗ [i]+ (1− b⃗[i])(1− X⃗ [i])

)
.

Lemma 2 (Schwartz-Zippel Lemma). Let f ∈ F[X1, · · · ,Xµ]
be a non-zero polynomial of total degree d over field F. Let S
be any finite subset of F, and let r1, · · · ,rµ be µ field elements
selected independently and uniformly from S. Then

Pr
[

f (r1, · · · ,rµ) = 0
]
≤ d
|S|

Lemma 3 (Twin Polynomials). For µ-variate multilinear
polynomial f̃ (X1, · · · ,Xµ), we denote univariate polynomial
f (X) ∈ F<2µ

[X] which shares the same coefficients with f̃ .
More precisely, there exists a coefficient vector f⃗ of 2µ length
such that: for each (x1, · · · ,xµ) ∈ Fµ,

f̃ (x1, · · · ,xµ) = ⟨ f⃗ ,(1,x1)⊗·· ·⊗ (1,xµ)⟩

and for each x ∈ F, f (x) = ⟨ f⃗ ,(1,x,x2, · · · ,x2µ−1)⟩. We call
f̃ and f are twin polynomials of each other.

Interactive Argument of Knowledge. An interactive argu-
ment for an NP relation R is a triple of algorithms (G ,P ,V).
G is a setup algorithm. P tries to convince V that there exists
a witness w such that (x,w) ∈ R for a statement x through
a multi-round communication. To qualify as an interactive
Argument of Knowledge (AoK), we require that w can be
efficiently extractable by an extractor E .

Definition 1 (Interactive Argument of Knowledge (AoK)).
(G ,P ,V) is an interactive argument of knowledge for an NP
language LR if the following holds:

4

• Completeness. For every pp← G(1λ), every x ∈ LR and
(x,w) ∈ R , Pr[⟨P (w),V ⟩(pp,x) = accept] = 1.

• Argument of Knowledge. For any PPT prover P ∗, pp←
G(1λ) and x, ∃ PPT extractor E s.t. Pr[⟨P ∗,V ⟩(pp,x) =
accept,(x,w) /∈ R |w← E(pp,x)]≤ negl(λ).

We say an interactive AoK is succinct if the running time
of V and the total communication cost between P and V are
poly(λ, |x|, log |w|).

2.1 Polynomial Commitment
Definition 2 (Multilinear Polynomial Commitment Scheme).
A multilinear polynomial commitment scheme PC consists of
a tuple of algorithms (Setup,Commit,Open,Eval):

• Setup(1λ,µ)→ pp. It takes the security parameter λ and
µ ∈ N (i.e., the number of variables in a polynomial) and
outputs the public parameter pp.

• Commit(pp, f̃)→ (C ,D). It takes a µ-variate multilinear
polynomial f̃ and outputs a commitment C along with some
auxiliary message D (e.g., some randomness).

• OpenPoly(pp,C , f̃ ,D)→ b. It takes the commitment C , the
multilinear polynomial f , and the auxiliary message D to
verify the commitment and outputs a bit b ∈ {0,1}.

• Eval(pp,C ,⃗z,y,µ, f̃ ,D)→ b. It is an interactive AoK be-
tween a PPT prover P and a verifier V . It takes z⃗ as
the evaluation point, y as the result, and outputs b =
⟨P (f̃ ,D),V ⟩(pp,C ,⃗z,y,µ). The algorithm only outputs
b = 1 if it satisfies f̃ (⃗z) = y.

The scheme should satisfy Completeness, Binding, and
(Knowledge) Soundness. The formal definition is presented
in Appendix A.

Batch evaluations. This work considers a special case where
the prover needs to evaluate multiple polynomials (possi-
bly with different numbers of variables) at different points,
which is referred to as batch evaluation. More precisely,
let {µi, f̃i,Ci}n

i=1 represent n different (µi-variate) multilin-
ear polynomials along with their commitments. An algorithm
BatchEval(pp,{Ci ,⃗zi,yi,µi, f̃i,Di}n

i=1)→ b is an interactive
AoK if it outputs b = 1 only when { f̃i(⃗zi) = yi}n

i=1 is satisfied.

2.2 Linear Codes and Reed-Solomon Code

Distance. For two vectors u⃗, v⃗ ∈ Fn, we use Ham(⃗u, v⃗) :=
Pri∈[n](⃗u[i] ̸= v⃗[i]) to denote their relative Hamming
distance. For vector u⃗ and a vector set V , we use
Ham(⃗u,V) := min⃗v∈V {Ham(⃗u, v⃗)} to denote their distance.
When Ham(⃗u, v⃗) ≤ δ, we call u⃗ is δ-close with v⃗. When
Ham(⃗u, v⃗)≥ δ, we call u⃗ is δ-far from v⃗.

Linear codes. Linear codes are a type of error-correcting
codes, where the codewords form a linear-space.

Definition 3 (Linear Code). An (n,k,δ)-linear error-
correcting code E : Fk → Fn is an injective mapping and
E(Fk) is a linear subspace of Fn, such that: Ham(u,v) of dif-
ferent codewords u,v∈Fn is at least δ. A codeword is a vector
in this linear subspace. The code rate of a (n,k,δ)-linear code
is ρ = k

n .

Reed-Solomon codes. RS codes are a type of linear code
where messages are encoded by a polynomial of degree at
most k−1, determined by the k entries of the message. The
polynomial is then evaluated at n points to obtain the code-
word.

Definition 4 (RS Code). A [F,L,ρ] RS Code is defined as
follows:

RS[F,L,ρ] = {p|L : p ∈ F[X],deg(p)≤ ρ|L|}

It is usually denoted as RS[L,ρ] when there is no ambiguity.
In practice and in FRI, L is usually a multiplicative subgroup
of F with a size that is a power of 2.

Definition 5 (List Size and List Decodability for RS Codes).
For u⃗ ∈ Fn, a code V ⊂ Fn, and distance parameter δ ∈ [0,1],
let List(⃗u,V,δ) = B(⃗u,δ)∩V , where B(⃗u,δ) is the Hamming
ball of relative radius δ centered at u⃗. The code V is said to
be (δ,L)-list-decodable if |List(⃗u,V,δ)| ≤ L for all u⃗ ∈ Fn.

Definition 6 (Unique and List Decoding Radius). δ such that
V is (δ,1)-list-decodable is called the unique decoding radius.
δ such that V is (δ,poly(|n|))-list-decodable is called the list
decoding radius.

According to the known limitation [11], there is an opti-
mistic and widely applied conjecture regarding the list decod-
ability of RS codes [10], on which our PCS will be based.
Note that many RS code-based PCS, like DEEP-FRI [10] and
RedShift [27], all rely on this conjecture.

Conjecture 1 (List Decodability for RS Codes). For every
ρ > 0, there is a constant Cρ such that for every RS code V of
length n and rate ρ, V is list-decodable from 1−ρ−ε fraction
errors with list size (|L|

ε
)Cρ . That is:

L(F,L,d = ρ|L|,1−ρ− ε)≤
(
|L|
ε

)Cρ

We summarize the relationship between δ and the decod-
ability of RS codes in the following graph [10]. In other words,
when δ is a unique decoding radius (δ≤ 1−ρ

2), for any v⃗, there
is at most one codeword that is δ-close to v⃗. When δ is a list
decoding radius (δ ∈ (1−ρ

2 ,1−ρ), where [1−√ρ,1−ρ) is
conjectured), for any v⃗, there might be more than one (but not
too many) codewords that are δ-close to v⃗.

Correlated agreements. The correlated agreement princi-
ple [7] (Figure 1) states that if a random linear combination of
two given vectors u,u∗ is δ-close (δ≤ ∆∗, where ∆∗ ∈ [0,1]

5

0 1
1−ρ

2 1−√ρ− ε 1−ρ− ε

unique well-proven-list conjectured-list

is called the distance preservation bound) to a RS code with
non-negligible probability, then each of the two vectors is
δ-close to some codeword (v,v∗ respectively) on the same set
of locations. The advancement of the distance preservation
bound has undergone extensive research, as discussed in Sec-
tion 1.2, where the optimal bound ∆∗ = 1−ρ− ε is derived
from DEEP-FRI [10].

u∗
u

u+ r ·u∗
Show correlated agreements

Equal to some codewords on these locations

Figure 1: Illustration of correlated agreement principle.

3 Technical Overview

Our main contribution in this paper is the reduction of the
number of queries in BaseFold [45], resulting in a signifi-
cantly smaller proof size. We first provide a quick review of
BaseFold and the FRI technique behind it (and our construc-
tion), followed by an outline of challenges we address in this
work and the core techniques we introduce.

3.1 Warmup: FRI and BaseFold

Recall that an RS-IOPP is designed to convince a verifier that
a given vector v⃗ is close to some codeword, where the verifier
is given only oracle access to v⃗. FRI is a specifically designed
RS-IOPP, enabling the prover P to convince the verifier V
that the committed vector v⃗ is ∆-close to RS[F,L0,ρ], where
L0 is a multiplicative subgroup of F. To avoid confusion,
here we use ∆ ∈ [0,1] to denote the maximum acceptable
relative Hamming distance in the FRI protocol, while δ =
Ham(⃗v,RS[F,L0,ρ]) denotes the actual distance between v⃗
and the RS code.

The FRI protocol. For any honest prover, v⃗ should equal
f (0)|L0 ∈ RS[F,L0,ρ], where f (X) = f (0)(X) denotes a uni-
variate polynomial whose degree is less than 2µ := ρ|L0|. De-
fine Li+1 =

{
x2 : x ∈ Li

}
. The FRI protocol proceeds in two

phases: the commit phase and the query phase. We provide
an overview below and include the full protocol in Appendix
B for a more detailed understanding.
Commit phase. The commit phase consists of µ rounds. In the
i-th round, P folds the polynomial f (i−1) into f (i), reducing

its length by half. Specifically, f (i−1)(X) can be expressed as
a combination of two half-degree polynomials, f (i)E and f (i)O :

f (i−1)(X) = f (i)E (X2)+X · f (i)O (X2) (1)

Given a random challenge ri ∈ F from V , a new polynomial
f (i) is computed as a random linear combination of f (i)E , f (i)O :

f (i)(X) = f (i)E (X)+ ri · f (i)O (X) (2)

P then sends a Merkle commitment of the vector v⃗(i) = f (i)
∣∣
Li

to V . Since the degree is halved in each round, in the final
round, f (µ) should be a scalar if P is honest.

Query phase. At the end of the commit phase, V queries
each of the µ committed vectors at random locations. These
openings are used to verify the consistency of the folding
performed by P in each round during the commit phase. To
maintain the soundness of the protocol, the query process
should be repeated multiple times, denoted by the query repe-
tition count s.

The soundness of the FRI protocol can be derived from
Theorem 1 [7]. Intuitively, the correlated agreement princi-
ple (Section 2.2) ensures that the random linear combination
(Equation 2) does not decrease the distance between v⃗(i) and
its corresponding RS code when reducing v⃗(i−1) to v⃗(i). There-
fore, the folding steps between f (i−1) and f (i) are valid, mak-
ing the protocol result acceptable for V . Moreover, according
to Theorem 1, to achieve λ-bit security, the query repetition
count s must satisfy (1−∆)s < 2−λ if ∆ < ∆∗.

Theorem 1. For any ∆ < ∆∗, where ∆∗ is the distance preser-
vation bound, if δ = Ham(⃗v,RS[F,L0,ρ]) ≥ ∆, with over-
whelming probability, after the commit phase, at least ∆-
proportional locations on L0 allows V to find an error.

Recap of BaseFold. Let f̃ (X1, . . . ,Xµ) denote a µ-variate mul-
tilinear polynomial, which is the twin polynomial of the uni-
variate polynomial f . BaseFold [45] makes a key observation
that for honest prover, the last round polynomial f (µ) in FRI
is actually a scalar equal to f̃ (r1, . . . ,rµ), where r1, . . . ,rµ are
the random challenges from V . Moreover, [45] proves this
property holds even for malicious provers when ∆ is a unique
decoding radius (cf. Section 2.2).

Leveraging this observation, [45] provides an efficient con-
struction of multilinear PCS. The commitment of f̃ is set
as the Merkle commitment of the vector v⃗ = f (0)|L0 . To val-
idate the evaluation of f̃ (⃗z), where z⃗ is a given evaluation
point, [45] introduces an elegant approach that runs an FRI
protocol and a classic sumcheck protocol [31] in parallel.
Specifically, P and V run both a µ-round FRI protocol and a
sumcheck protocol simultaneously, sharing the same random
challenges sampled by V . The intuition underlying this ap-
proach is: (i) The sumcheck protocol ensures the correctness
of f̃ (⃗z) = ∑⃗b∈{0,1}µ f̃ (⃗b) · ẽq(⃗b,⃗z), reducing the correctness of

6

f̃ (⃗z) to a random evaluation f̃ (⃗r), and (ii) With the aforemen-
tioned observation, the FRI protocol on f should precisely
provide a correctness f (µ), which exactly equals f̃ (⃗r).

Limitation of excessive queries. In [45], one major issue
we identify is the relatively large proof size, which is due to
the chosen large s in the FRI protocol. To understand why
such a large s is needed in BaseFold, recall that to achieve
λ-bit security for the soundness of FRI, the query repetition
count s must satisfy (1−∆)s < 2−λ (cf. Theorem 1). Since
the proof size is proportional to s, it is crucial to seek a larger
∆ to reduce the proof size. Because [45] operates only in the
unique decoding radius setting, the largest ∆ can be chosen is
1−ρ

2 (Section 2.2). Concretely, if ρ = 1
8 , then to achieve 100-

bit security, the query count must exceed 120, which translates
to a proof size of over 600 KB.

3.2 Overview of DeepFold
DeepFold aims to reduce s in BaseFold, thereby decreasing
the proof size. One may consider the most straightforward
approach is to transition directly to the list decoding radius
setting, where the limit of ∆ can be pushed to 1−ρ− ε under
Conjecture 1.

Problem of transition. However, we argue that this direct
transition can not be simply applied to BaseFold. Recall that
in BaseFold, FRI is actually used in a "specific" manner: in-
stead of a Reed-Solomon IOPP, FRI is further used to provide
the correctness of f (µ). Originally, FRI only requires that the
given vector v⃗ is close to some RS code, without specifying
in the i-th round which codeword the committed vector v⃗(i)

should be close to. Therefore, v⃗(i) could be ∆-close to multi-
ple RS codewords, including those irrelevant to the original
vector v⃗. This "gap" precisely implies why BaseFold works
smoothly only under the unique radius setting: for Equation
2, in the i-th round, there is at most one f (i) that satisfies the
distance requirement (Def. 6), and thus, in the end, f (µ) is
uniquely determined, even for a malicious prover.

Yet, when transitioning to the list decoding radius setting
where ∆ > 1−ρ

2 , multiple codewords are decodable from a
given vector (Def. 6). Therefore, for Equation 2, in each round,
a malicious prover may have the potential to derive a differ-
ent f (i)

′
to pass the check. As a result, the final scalar f (µ)

′

could be an incorrect value. In Figure 2, we provide an illus-
tration of this problem. A malicious prover may rely on the
random combination of some "garbage" values (the blue and
yellow positions) to derive an incorrect proximity while still
satisfying the ∆-close correlated agreements.

We found that there is actually no security guarantee against
this type of attack. Therefore, it remains a technical problem
to ensure the correctness of f (µ) for a malicious prover: we
must develop a method to make sure that in the list decoding
radius setting, the vector v⃗(i) committed in the i-th round is
not ∆-close to any codeword other than f (i), where f (i) is the

twin polynomial of f̃ (r1, · · · ,ri,Xi+1, · · · ,Xµ).

u(i)

ri ·u∗(i)

v(i) = u(i)+ ri ·u∗(i)

+

=

Correlated agreements f (i) Incorrect proximity f (i)
′

Figure 2: Illustration of the problem when transitioning to the
list decoding setting: In the i-th round, the vector v⃗(i) may be
close to multiple codewords.

Idea 1: Using DEEP for transition. Our idea is that in each
i-th round of FRI, let V query another evaluation outside Li,
which could help in binding the unique polynomial f (i). This
idea is inspired by the Domain Extending for Eliminating
Pretenders (DEEP) technique introduced in DEEP-FRI [10].
Although not originally intended for this purpose, we found
the DEEP technique can be adapted to solve our problem.

Specifically, in each i-th round, V makes two additional
random queries, f (i−1)(±αi) (which implies f (i)(α2

i)), where
αi is a challenge from V , just as in [10]. The intuition be-
hind this is: In the list decoding radius setting, there may
be more than one but not too many codewords within the
radius ∆. Since αi is chosen from the entire field F, with
overwhelming probability, there would not be two polyno-
mials in List(⃗v(i),RS,∆) that evaluate the same on α2

i . Thus,
f (i)(α2

i) is sufficient to bind the vector to the unique polyno-
mial f (i) ∈ List(⃗v(i),RS,∆), thereby avoiding the aforemen-
tioned problem. To ensure the correctness of this approach,
we provided a security proof in Theorem 4.

Idea 2: Using DEEP without quotient. Now, the challenge
comes in enabling V to validate the correctness of f (i)(α2

i) in
each i-th round, which remains a non-trivial technical problem.
We note that in DEEP-FRI [10], the authors also attempted
to address a similar issue. Since their target is a univariate
PCS, the authors combine the validation of f (i)(α2

i) with the
original folding formula (Equation 2). Specifically, in the i-th
round of the FRI commit phase, the folding from f (i−1) to f (i)

is adapted according to a new formula:

f (i)(X) =
(f (i)E (X)+ ri · f (i)O (X))− (f (i)E (α2

i)+ ri · f (i)O (α2
i))

X−α2
i

(3)

where ri is the original round challenge and αi is the extra
query point. In this way, the validation of each f (i)(α2

i−1) is
cleverly reduced to the IOPP of f (i) in the following rounds.
This technique is known as the quotient in [10].

Nonetheless, we find that this technique is not applicable
in our context. The reason is that the folding from Equation
3 hinders the aforementioned important property, as the last
scalar in FRI, f (µ), no longer equals f̃ (⃗r). This makes the
construction of a multilinear PCS extremely challenging.

7

Therefore, another technical contribution of our work is
a new method to ensure the correctness of these extra eval-
uations on {αi}. From a high-level perspective, instead of
making quotients like in [10], in DeepFold, the evaluations
{ f (α2

i)} are deeply folded. Suppose in the i-th round, V
needs to check the correctness of f (i−1)(±αi). Let f̃ (i) :=
f̃ (r1, · · · ,ri,Xi+1, · · · ,Xµ) denote the twin of f (i). Leveraging
the relationship between twin polynomials, we derive that
f (i−1)(±αi) = f̃ (i−1)(±αi,α

2
i , . . . ,α

2µ−i

i), from which V can
extrapolate f (i)(α2

i) = f̃ (i)(α2
i , . . . ,α

2µ−i

i). In the j-th round
(j > i), P additionally sends f (j−1)(−α2 j−i

i), after which the
correctness of the f (i−1)(±αi) can be reduced to f (j)(α2 j−i+1

i).
Finally, all the checks on f (i−1)(±αi) converge to the same
point f (µ) = f̃ (r1, · · · ,rµ), which is precisely provided by FRI.
Furthermore, in the Eval procedure of DeepFold, the evalua-
tion f̃ (⃗z) can also be validated in a similar manner.

Until now, we have successfully made the transition to the
list decoding radius setting, where the maximum distance
requirement ∆ can be set to approximately 1− ρ− ε, and
the query repetition count s is reduced to around 34 times.
Our experiments suggest that this improves the proof size of
BaseFold by 3× under the same conditions as before.

Arbitrary input length via batching. We introduce a tech-
nique to help with committing and evaluating multilinear
polynomials encoded from inputs of arbitrary length. This
can be achieved from a batched DeepFold for multiple polyno-
mials of different sizes. For example, for a vector v⃗ of length
22n +2n, we need to encode v⃗ as a multilinear polynomial f̃
with 2n+1 variables. However, a naive approach to handling
f̃ would result in doubled prover overhead. Instead, we treat
the inputs as two multilinear polynomials, f̃1 and f̃2, with 2n
and n variables, respectively, such that:

f̃ (X0, · · · ,X2n) = (1−X0) · f̃1(X1, · · · ,X2n)+

X0 ·
n

∏
i=1

(1−Xi) · f̃2(Xn+1, · · · ,X2n)

One way to evaluate f̃ (z0, . . . ,z2n) is for P to simultaneously
open y1 = f̃1(z1, . . . ,z2n) and y2 = f̃2(zn+1, . . . ,z2n), but this
would require two proofs, nearly doubling the proof size.

To address this, we present an efficient batch evaluation
algorithm building upon the techniques applied in DeepFold.
When proving y1 and y2, the idea is to first reduce the evalu-
ation of y1 to f̃1(r1, . . . ,rn,zn+1, . . . ,z2n) through n rounds of
interactions. Then, in the last n rounds, the prover incorporates
f̃1(r1, . . . ,rn,zn+1, . . . ,z2n) and f̃2(zn+1, . . . ,z2n) through ran-
dom linear combinations, allowing the validation to be done
simultaneously. As a result, the batch evaluation protocol
achieves optimal prover complexity, which is linearly propor-
tional to the total length of all polynomials. Furthermore, the
proof size and verifier time remain almost the same as the cost
of evaluating f̃1 independently. This idea can be extended to
accommodate more polynomials, even when the evaluation

points differ for each polynomial. Finally, we leverage the
batching technique to construct a zero-knowledge version of
DeepFold, which is also an interesting contribution, as achiev-
ing zero-knowledge for FRI-based PCS remains non-trivial.

4 DeepFold: Multilinear Polynomial Commit-
ment based on Reed-Solomon Code

In this section, we present a novel multilinear PCS, which we
call DeepFold. The high-level idea is to expand the proxim-
ity bound to the entire list decoding radius setting, thereby
substantially reducing the number of queries needed and im-
proving the proof size of BaseFold [45].

4.1 DeepFold Multilinear PCS
Let f̃ denote the µ-variate multilinear polynomial, and let
f = f (0) denote its univariate twin polynomial. As discussed
in the overview, DeepFold also utilizes FRI as a subroutine
to provide f (µ) and thereby validate the correctness of f̃ (⃗r),
where r⃗ is the round challenges in the protocol. The transition
to list decoding radius setting reduces proof size but intro-
duces several challenges, which we summarize as follows:

1. The PCS may lose its binding property as there could be
multiple codewords ∆-close to the committed vector v⃗.

2. In each i-th round of the FRI protocol, there could be mul-
tiple codewords close to the vector v⃗(i). A malicious prover
may choose the codeword arbitrarily, thereby providing an
incorrect f (µ).

3. The quotient technique from [10] cannot be applied in our
context, as it ruins the nice structure of twin polynomials.

We claim that DeepFold addresses the above challenges.
Below, we first present the protocol:

• Setup(1λ,µ)→ pp. It takes the security parameter λ and
the number of variables µ, and outputs the public parameter
pp = {F,L0,s}, where s is the query repetition number
satisfying (1−∆)s ≤ 2−λ. In our setting, ∆ can be set as
1−ρ− ε, where ρ is the code rate.

• Commit(pp, f̃)→ (C ,D). It takes pp and f̃ , and outputs
the commitment C = ⟨rt0,α,c⟩ according to the following:
1: Let v⃗ = f (0)|L0 , P sends MT.Commit(⃗v)→ rt0 to V .

2: V sends α
$← F to P .

3: P computes c := f (0)(α) and sends c to V .

• OpenPoly(pp,C , f̃ ,D)→ b: P opens the commitment C
and sends the Merkle tree of v⃗ to V . V then checks (i)
the Merkle path using MT.Verify, (ii) f (0)(α) = c, and (iii)
Ham(⃗v, f (0)|L0)< ∆.

• Eval(pp,C ,⃗z,y,µ; f̃ ,D)→ b. Given the evaluation point
z⃗ = (z1, · · · ,zµ), y = f̃ (⃗z), f̃ , P and V run the following:

8

1: Let A0 := {⃗z, α⃗}, and α⃗ = (α20
,α21

, · · · ,α2µ−1
).

2: For each round i, where i ∈ [µ],

a. V sends αi
$← F to P . Let Ai−1 := {Ai−1, α⃗i}, where

α⃗i = (α20

i ,α21

i , · · · ,α2µ−i

i).
b. If i = µ, P linear function g(X) := f̃ (r1, ...,ri−1,X)

to V . Otherwise, let Ai := /0, for each w⃗ ∈ Ai−1, P
sends gw⃗[2:]

(X) := f̃ (r1, ...,ri−1,X , w⃗[2:]) to V . Let
Ai := {Ai, w⃗[2:]}.

c. V sends ri
$← F to P .

d. P computes f (i)(X) = f (i)E (X)+ ri · f (i)O (X), where

f (i)E (X), f (i)O (X) satisfy that:

f (i−1)(X) = f (i)E (X2)+X · f (i)O (X2)

e. Let v⃗(i) = f (i)|Li . If i = µ, P sends a scalar f (µ) ∈ F
to V . Otherwise, P sends MT.Commit(⃗v(i))→ rti.

3: V checks g⃗z[2:]
(z1) = y, g⃗α[2:]

(α) = c, g(rµ) = f (µ). For
each round i, where i ∈ [µ],
a. For each w⃗ ∈ Ai−1, if i < µ, V checks gw⃗(ri) =

gw⃗[2:]
(w1); otherwise, V checks gw⃗(ri) = g(w1).

4: Repeat the following query process s times:

a. V sends β0
$← L0 to P . For i ∈ [µ], define βi := β2

i−1.
b. For i ∈ [µ], P opens f (i−1)(βi−1) and f (i−1)(−βi−1)

using MT.Open.
c. V checks the results using MT.Verify.
d. For i ∈ [µ], V checks the following triple are on a

common line.(
βi−1, f (i−1)(βi−1)

)
,
(
−βi−1, f (i−1)(−βi−1)

)
,
(

ri, f (i)(βi)
)

5: If all above checks pass, V outputs 1; 0 otherwise.

The commit and evaluation algorithms can be made non-
interactive through a Fiat-Shamir heuristic transformation, as
the protocol is essentially public-coin. Now, we provide some
discussions on the critical steps to address the aforementioned
challenges. First, to ensure binding to a unique polynomial,
we add a random query f (0)(α) into the commitment. As
demonstrated in Theorem 4, this extra evaluation is sufficient
to maintain the binding property. Similarly, we add one more
evaluation f (i)(αi) in each round to ensure that only one code-
word is decodable from the committed vector, which ensures
the correctness of f (µ). Finally, we propose a new method
to validate the above evaluations: For each evaluation z̃ and
{ f (i)(αi)}, the interactions in Step 2-b and Step 3-a reduce
the check to the next round, finally converging at f̃ (r1, ...,rµ).
Since the value is provided by f̃ (µ), this concludes the check.

Complexity analysis. We present the complexity analysis
for DeepFold. For simplicity, we consider the code rate ρ as
constant, therefore O(L0) = O(n).

Commit. During the commitment, P is initially tasked with
calculating the RS code of the polynomial coefficient vec-
tor, which requires an FFT, leading to a time complexity of

O(n logn) field operations. Besides this, P computes O(n)
hashes to obtain the Merkle commitment.

Evaluate. In the i-th round, P computes f (i)|Li and its Merkle
tree from f (i−1)|Li−1 with a time complexity of O(Li), so
the total complexity to compute all Merkle commitments
is also O(n). P also needs to compute i+O(1) evaluations
on each f̃ (i). Each evaluation requires O(2µ−i) time. So the
total time complexity to compute all these evaluations is
∑

µ−1
i=0 (i+O(1))×O(2µ−i) = O(2µ) = O(n). Thus, the total

prover overhead is O(n) field operations and O(n) hashes.

Proof size. In addition to the Merkle paths equivalent to
traditional FRI, which include a proof size of O(s · log2 n),
there are an additional i + O(1) field elements to be sent
in the i-th round, so the total communication overhead is
∑

µ−1
i=0 (i+O(1)) = O(µ2) = O(log2 n). Thus, the total proof

size is O(s · log2 n).

Verify. Similar with the analysis of proof size, the verifier com-
plexity includes a traditional FRI verification plus a O(log2 n)
overhead, so the total verifier complexity is O(s · log2 n).

Comparison with BaseFold. The prover asymptotic com-
plexity of DeepFold is identical to that of BaseFold. The
query number s should satisfy (1−∆)s < 2−λ (Theorem 1),
where ∆ is the maximum acceptable distance of the FRI proto-
col. DeepFold operates under the list decoding radius setting,
where ∆ can be set at approximately 1−ρ−ε, while BaseFold
only works under the unique decoding radius setting, where
∆ can at most be set at 1−ρ

2 . Therefore, the query repetition
number s of DeepFold is smaller. The practical performance
results in Section 7 show that our scheme substantially re-
duces proof size and verifier time.

Security analysis. Due to the space limitation, we provide
the analysis of completeness, binding, and soundness for
DeepFold in Appendix C.

5 Batching Evaluation on Different-size Poly-
nomials

A traditional method for batch evaluation of univariate poly-
nomials involves P randomly combining all polynomials and
then evaluating the combined result. However, it remains un-
known how to apply this technique to multilinear polynomials
of different sizes. A naive approach is for P to pad the shorter
polynomials to match the largest one, which is costly. To
address this, in this section, we introduce a technique to ef-
ficiently batch evaluate multiple multilinear polynomials of
different sizes without any overhead from padding.

5.1 Batch Evaluation with DeepFold

The key insight is that in the evaluation of DeepFold, a multi-
linear polynomial is split and randomly folded into a smaller

9

one, as described in Step 2-d. Thus, when handling multiple
multilinear polynomials of different sizes, we can intuitively
combine them randomly when the larger polynomial is folded
to the same size as the smaller one. Specifically, for example,
when batch evaluating two multilinear polynomials, f̃0 with
µ variates and f̃1 with ℓ variates (ℓ < µ), f̃0 is first folded into
f (µ−ℓ)0 in the (µ− ℓ)-th round. Now the two polynomials can
be incorporated together since they have the same size. In
all subsequent i-th rounds, we handle the univariate polyno-
mial f (i)0 + γi · f (i)1 , which effectively reduces the overhead
compared to separately dealing with each polynomial.

Now, we present DeepFold.BatchEval, which batch evalu-
ates µ multilinear polynomials, each with a different number
of variables. Note that the polynomials are evaluated at the
same point z⃗, specifically, fi is evaluated on z⃗[i+1:]. We high-
light the modifications to DeepFold.Eval in orange.

BatchEval(pp,{Ci,yi,µi, f̃i,Di}µ
i=0 ,⃗z) → b: We assume f̃i

(i ∈ [0,µ− 1]) is a (µ− i)-variate multilinear polynomial.
Given the evaluation point z⃗, yi = f̃i(⃗z[i+1:]), { f̃i}, P and V
run the following:

1: Let A0 := {⃗z, α⃗}, and α⃗ = (α20
,α21

, · · · ,α2µ−1
). For i ∈

[µ−1], let c⃗z[i+1:]
:= yi, c⃗α[i+1:]

:= ci.
2: For each round i, where i ∈ [µ],

a. V sends αi
$← F to P . Let Ai−1 := {Ai−1, α⃗i}, where

α⃗i = (α20

i ,α21

i , · · · ,α2µ−i

i).
b. If i = µ, P sends g(X) := f̃ (r1, ...,ri−1,X) to V .

Otherwise, let Ai := /0, for each w⃗ ∈ Ai−1, P sends
gw⃗[2:]

(X) := f̃ (i−1)(X , w⃗[2:]) to V . Let Ai←{Ai, w⃗[2:]}.
For j ∈ [i,µ− 1], P sends cw⃗ := f j(α

2 j−i+1

i) to V ,
where w⃗ := (α2 j−i+1

i , · · · ,α2µ−i

i).

c. V sends ri,γi
$← F to P .

d. P computes f (i)(X) = f (i)E (X)+ ri · f (i)O (X)+γi · fi(X),

where f (i)E (X), f (i)O (X) satisfy that:

f (i−1)(X) = f (i)E (X2)+X · f (i)O (X2)

e. Let v⃗(i) = f (i)|Li . If i = µ, P sends a scalar f (µ) ∈ F to
V . Otherwise, P sends MT.Commit(⃗v(i))→ rti.

3: V checks g⃗z[2:]
(z1) = y1, g⃗α[2:]

(α) = c1, g(rµ) = f (µ). For
each round i, where i ∈ [µ],

a. For each w⃗ ∈ Ai−1, if i < µ, V checks
gw⃗(ri)+γi · cw⃗[2:]

= gw⃗[2:]
(w1); otherwise, V checks

gw⃗(ri) = g(w1).

4: Repeat the following query process s times:

a. V sends β0
$← L0 to P . For i ∈ [µ], define βi := β2

i−1.

b. For i ∈ [µ], P opens f (i−1)(±βi−1) and fi(βi) using
MT.Open.

c. V checks the results using MT.Verify.

d. For i ∈ [µ], V checks the following triple are on a
common line. (

βi, f (i)(βi)
)
,
(
−βi, f (i)(−βi)

)
(

ri+1, f (j+1)(β j+1)−γi+1 · f j+1(β j+1)
)

5: If all above checks pass, V outputs 1; 0 otherwise.

Complexity analysis. It is easy to observe that the batch evalu-
ation protocol also has linear prover time and poly-logarithmic
verifier time and proof size. It outperforms the naive approach
of evaluating each polynomial separately, which results in a
proof size of ∑

µ
i=1 O(i2) = O(log3 n).

Soundness. The soundness error of DeepFold.BatchEval is
ε = poly(|L0|)/|F|+(1−∆)s, derived from the following:

Theorem 2. If the verifier outputs 1 with probability greater
than poly(|L0|)/|F|+(1−∆)s, there exist multilinear poly-
nomials { p̃i(Xi+1, · · · ,Xµ)}µ−1

i=0 such that p̃i(⃗z[i+1:µ]) = yi,
p̃i(⃗α[i+1:µ]) = ci and Ham(f (i)|Li , pi|Li)< ∆ for i ∈ [0,µ−1].
Let p̃(0) = p̃0, and there exist polynomials p̃(i) such that

p̃(i)(X[i+1:µ]) = p̃(i−1)(ri,X[i+1:µ])+ γi · p̃i(X[i+1:µ]) (4)

for i ∈ [µ], where Ham(f (i)|Li , p(i)|Li)< ∆ for i ∈ [0,µ].
We refer to the derivation of p(i) from p(i−1) and pi in

Equation 4 as the folding-batch of p(i−1) and pi.

Proof. The proof is provided in Appendix D. The key to ad-
dress the problem posed by the list decoding radius is Lemma
7, which shows that an additional evaluation can uniquely
determine the polynomial within the list decoding radius.

Batch evaluation on different points. Our technique can
be extended to batch evaluation on different points, namely,
yi = f̃i(⃗zi), where {⃗zi} are unrelated to each other. The idea is
to first run a batched sumcheck [31] protocol to reduce each
evaluation to f̃i(⃗r[i+1:]), where r⃗ is the shared random chal-
lenge from V . We can now apply the above protocol directly
to { f̃i(⃗r[i+1:])}. We provide the batch sumcheck protocol and
the related ideas in Appendix E.

5.2 Achieving Zero-knowledge for DeepFold

With the batch evaluation technique at hand, we delve into
the zero-knowledge property of DeepFold. Zero-knowledge
requires that the PCS does not expose any information about
the underlying f̃ . However, the current DeepFold protocol
does expose certain information to V during specific stages:
(i) V can inquire about f (i) at some point in each round, and
(ii) V has access to f (i)|Li at certain locations during the query
phase. A traditional approach is to mask f with some random
polynomials [42]. However, this does not help conceal certain
parts of the commitment, such as the evaluation c := f̃ (0)(α)
and the leaves of the Merkle trees.

10

To mitigate this, P can employ a technique by augmenting
the µ-variate multilinear polynomial f̃ into a µ+ 1-variate
polynomial with 2µ additional random coefficients, denoted
as f̃ext , such that f̃ext (⃗z||0) = f̃ (⃗z). Then, for each x ∈ F\{0},
fext(x) would be a random value, masked by the random coef-
ficients, where fext is the twin polynomial of f̃ext . Nonetheless,
this augmentation is still not enough. Intuitively, during the
evaluation, P will send f̃ext(r1, · · · ,rµ,X) in the last round.
By replacing X with zero, V can obtain the evaluation of
f̃ (r1, · · · ,rµ), which essentially leaks some information. In
fact, there is also leakage in the last few rounds of the evalua-
tion, as V can open s points on f (i)ext |Li , which is sufficient for
V to interpolate the entire polynomial. V can immediately
infer some information about f̃ from the first half of f (i)ext ’s
coefficients, as they are not masked by randomness.

To address this, we propose that P use the batching tech-
nique from Section 5.1 to open f̃ext together with another
random polynomial, denoted by g̃. Since the leakage occurs
only in the last few rounds, g̃ can be much smaller than f̃ext ,
hiding f̃ext in the last ℓ rounds. Thus, this modification does
not significantly affect efficiency. We summarize our construc-
tion by making a slight modification to DeepFold and obtain
zkDeepFold, which is formalized as follows:

• Commit(pp, f̃)→ (C ,D): Let f⃗ denote the coefficients

of f̃ . P samples r⃗ $← F2µ
. Let f̃ext denote a (µ + 1)-

variable multilinear polynomial whose coefficient vector
is f⃗ext , where f⃗ext = f⃗ ||⃗r. Let g̃ denote a random ℓ-variable
multilinear polynomial, such that 2ℓ > s · µ2. P invokes
DeepFold.Commit to commit to f̃ext and g̃.

• Eval(pp,C ,⃗z,y,µ, f̃ ,D)→ b: P ,V run the BatchEval pro-
tocol for y = f̃ext (⃗z||0) and g̃(⃗z[µ−ℓ+2:]||0).

Theorem 3. zkDeepFold is a zero-knowledge polynomial
commitment scheme.

Proof. The definition of zero-knowledge and the construction
of the simulator are presented in Appendix F.

6 Applications to Zero-knowledge Proofs

In this section, we discuss several applications of our novel
multilinear polynomial commitment scheme. Our techniques
can be effectively combined with these practical applications,
resulting in significant improvements in actual efficiency.

6.1 zk-SNARK Systems
Modern zk-SNARKs [18, 42] often adopt a recipe by com-
bining a multilinear PCS with a PIOP, such as Libra [42] and
HyperPlonk [18], to obtain a prover-efficient proof system.
For example, in Libra [42], the prover P encodes the witness
f⃗ in the input layer of a layered arithmetic circuit as a multi-
linear polynomial f̃ . P then commits to f̃ using a multilinear

PCS and later evaluates f̃ at a random point u⃗. In the Hyper-
Plonk PIOP [18], the prover must commit to the entire witness
in the arithmetic circuit and later evaluate it at different ran-
dom points. Originally, the multilinear PCS was instantiated
by schemes like mKZG [32] and Virgo [48], which either
suffer from a trusted setup or evaluation inefficiency.

DeepFold serve as a substitution for instantiating the mul-
tilinear PCS. Due to its transparency, concise proof size, and
prover efficiency, combining the PIOPs with DeepFold can
immediately optimize the current proof systems of Libra and
HyperPlonk. We provide an experimental benchmark of this
instantiation against other PCS in Section 7.2.

6.2 Verifiable Matrix Multiplications
In [40], Thaler proposes a method to prove the correctness
of an n×n matrix multiplication with only O(n2) complexity,
which is even lower than the computation of the multiplication
itself. Let A ∈ Fm×n, B ∈ Fn×p, and C ∈ Fm×p. To prove that
A×B =C, the prover P first encodes the matrices into multi-
linear polynomials Ã(⃗x, y⃗), B̃(⃗y,⃗z), and C̃(⃗x,⃗z), where 2|⃗x|=m,
2|⃗y| = n, and 2|⃗z| = p. Given random challenges r1 ∈ F|⃗x| and
r2 ∈ F|⃗z| selected by V , P only needs to invoke a sumcheck ar-
gument to prove that ∑y⃗∈{0,1}logn Ã(r1, y⃗) · B̃(⃗y,r2) = C̃(r1,r2).
During the argument, the prover needs to evaluate the polyno-
mials Ã and B̃ at some challenge points. To make the argument
succinct, one can combine this argument with a multilinear
PCS, which can be effectively instantiated by DeepFold.

One problem is that, in practice, the dimensions of the in-
volved matrices are not always powers of 2. For example,
in machine learning applications like GPT-2 [33], there is
a need multiplying an attention matrix of size 768× 2304.
This task of arbitrary size matrix multiplication is impor-
tant for zkML [39]. Naively, one could pad the matrix to the
nearest size where the dimensions are all powers of 2, i.e.,
1024×4096. However, this would result in more than 60%
of the matrix being zero, leading to a significant waste when
committing to and evaluating it with DeepFold. Our batching
technique from Section 5 can be applied effectively: we can
commit to 4 smaller matrices with dimensions 512× 2048,
256×2048, 512×256, and 256×256, respectively, defined
as Ã1, Ã2, Ã3, and Ã4. When evaluating Ã(⃗x,⃗z), P can alterna-
tively batch evaluate

y1 = Ã1(⃗x[1..9],⃗z[1..11]), y2 = Ã2(⃗x[1..8],⃗z[1..11])

y3 = Ã3(⃗x[1..9],⃗z[1..8]), y4 = Ã4(⃗x[1..8],⃗z[1..8])

and then let V compute Ã(⃗x, y⃗) from y1, y2, y3, and y4. In
Section 7.3, our experiments show that this technique signifi-
cantly reduces both the proving cost and the proof size.

7 Experimental Evaluation

We implemented DeepFold in Rust with approximately 1,500
lines of code, and the two applications, zk-SNARKs and veri-
fiable matrix multiplication, with 4,000 lines.

11

10 12 14 16 18 20 22
number f variables

10−1
100
101
102
103
104
105
106

Pr
 v
er
 T
im

e/
m
s

10 12 14 16 18 20 22
number f variables

10−1

100

101

102

Ve
rif
ie
r T

im
e/
m
s

10 12 14 16 18 20 22
number f variables

103

104

105

106

107

Pr

f S
ize

/B
yt
e

basef ld p lyfrim hyrax kzg virg ri n deepf ld(ρ=1/2) deepfold

Figure 3: Performance comparison for multilinear PCS.

Experiment setup. All experiments were conducted on an In-
tel(R) Xeon(R) Platinum 8460Y+ with a speed of 2 GHz. The
server had 190GB of RAM and operated with Ubuntu 22.04
LTS. All reported figures are the averages from 10 executions.
No parallelization was employed in our experiments.

7.1 Performance for DeepFold

To demonstrate the efficiency of DeepFold, we first compared
the concrete performance of DeepFold against other multi-
linear PCS, namely mKZG [32], Hyrax [41], BaseFold [45],
Virgo [48], PolyFRIM [49] and Orion [44]. The security pa-
rameter for all schemes is set to λ = 100-bits. The number
of variables µ in the multilinear polynomials ranges from 12
to 22. For RS-based schemes (Virgo, PolyFRIM, BaseFold
and DeepFold), we use the field Fp2 , where p = 261−1, with
a multiplicative coset of size up to 260. The hash function
employed is blake3. mKZG and Hyrax operate on elliptic
curves, using a 256-bits prime field Fp. For RS code-based
schemes, we set the code rate to ρ = 1

8 , as in the default
setting of Plonky2 [2]. We also list a more efficient version
of DeepFold by setting the code rate to ρ = 1

2 . The results
are presented in Figure 3, including prover time (for both
commitment and evaluation), verifier time, and proof size.

We observe that when µ = 22 and ∆ = 1−ρ−ε, the prover
time for DeepFold is only 16 seconds, which is 3× faster than
Virgo and Hyrax, and 5× faster than mKZG. The proof size of
DeepFold is 208 KB, while the proof size of BaseFold is 619
KB. This optimization is a result of the reduced query com-
plexity in DeepFold (s= 34) compared to BaseFold (s= 120).
Besides this, we note that even when setting ∆ = 1−√ρ− ε

without relying on Conjecture 1, the proof size of DeepFold
is still 372 KB, about 1.7× smaller than BaseFold. Compared
with PolyFRIM, DeepFold achieves 2× better prover time,
verifier time, and proof size. This improvement is because
PolyFRIM essentially runs FRI twice.

We also observe that when setting the code rate to ρ = 1
2 ,

the prover time of DeepFold is only 3 second, almost equiva-
lent to Orion, but the proof size is 7.5× smaller. This result

is a bit surprising, as DeepFold requires O(n logn) time com-
plexity for the commitment algorithm, while Orion is known
for its linear prover time. However, we note that the concrete
prover of DeepFold is still better than Orion.

7.2 Performance for zk-SNARKs
In this section, we present the concrete efficiency of using
DeepFold to construct zk-SNARKs. We replace the PCS in
open-source implementation [1] of Virgo [48] to benchmark
Libra + DeepFold. We also implement the HyperPlonk PIOP
and compile it with DeepFold to compare against mKZG [32]
and BaseFold [45].

We evaluate zk-SNARKs using a Merkle tree circuit with
the following setup: P convinces V that it knows the leaves
of a Merkle tree that are consistent with a public Merkle
root, where the hash function applied is SHA-256. The circuit
consists of 2M−1 SHA-256 hashes for a Merkle tree with M
leaves. In our report, the number of leaves ranges from 2 to
256. The circuit size of each SHA-256 circuit is roughly 218

gates, and the total size of the largest Merkle tree (M = 256)
is around 226 gates. Figure 4 illustrates the performance.

When proving a Merkle tree with 256 leaves, Libra +
DeepFold takes only 33 seconds, which is 2.5× faster than
Virgo, while the verifier time is 10 ms, and the proof size is
235 KB, slightly better than Virgo. For HyperPlonk, it takes
826 seconds to prove a Merkle tree with 256 leaves when
compiled with DeepFold, compared to 2967 seconds with
mKZG, showcasing a 3.6× optimization. In the same set-
ting, the proof size with DeepFold is about 310 KB, while
BaseFold requires 1050 KB, demonstrating a 3.3× optimiza-
tion. These observations confirm that our new multilinear PCS
significantly enhances zk-SNARK performance compared to
existing schemes.

7.3 Performance for Verifiable MatMult

We use the case of verifiable matrix multiplications to demon-
strate the advantage of our batching technique. The bench-

12

20 22 24 26 28

number of leaves

102

103

104

105

106

107
Pr
ov

er
 T
im

e/
m
s

20 22 24 26 28

number of leaves

100

101

102

Ve
rif
ie
r T

im
e/
m
s

20 22 24 26 28

number of leaves

104

105

106

Pr
oo

f S
ize

/B
yt
e

deepfold+hyperplonk kzg+hyperplonk basefold+hyperplonk virgo+libra deepfold+libra

Figure 4: Performance of zk-SNARKs, when proving the knowledge of a Merkle tree

0 250 500 750 1000 1250
length of input token vector (n)

104

105

Pr
ov

er
 T

im
e/

m
s

0 250 500 750 1000 1250
length of input token vector (n)

100

101
Ve

rif
ie

r T
im

e/
m

s

0 250 500 750 1000 1250
length of input token vector (n)

105

106

Pr
oo

f S
ize

/B
yt

e

naive-padding naive-opening deepfold-batch

Figure 5: Performance of verifiable matrix multiplications

mark is run on the multiplication between a matrix of size
n×768 and another of size 768×2304. This is the same set-
ting as the GPT-2 attention matrix. The size n varies from
150 to 1200, representing the length of input token vectors.
We compared the following three approaches for verifiable
matrix multiplication with DeepFold:

• Naive padding: In this approach, P pads the rows and
columns of the matrices to the nearest power of two with
zeros. For example, for a matrix of size 150×768, P adds
256 zero columns and 106 zero rows, transforming it into a
256×1024 matrix. Similarly, for the second matrix, P per-
forms the same padding operation. Consequently, P needs
to prove the validity of matrix multiplication for matrices
of sizes 256×1024 and 1024×4096, which requires mul-
tilinear PCSs with sizes log2(256)+ log2(1024) = 18 and
log2(1024)+ log2(4096) = 22, respectively.

• Naive opening: P splits each matrix into at most four sub-
matrices. For example, for a matrix of size 150× 768, P
splits it into 128×512, 128×256, 22×512, and 22×256,
and adds 10 zero rows to the last two sub-matrices, convert-
ing them into 32×512 and 32×256, respectively. In this
case, P requires multilinear PCSs of size 16, 15, 14 and
13. When opening, P needs to generate proofs for these
multilinear polynomials separately.

• DeepFold batching: P splits each matrix into at most four
sub-matrices as in the naive opening. The only difference is
when opening those multilinear polynomials, we use batch
evaluation (Section 5) on polynomials of different sizes.

Figure 5 demonstrates that the DeepFold batching tech-
nique outperforms other methods in all aspects. Specifically,
the batching technique achieves approximately 2.4× better
prover time compared to naive-padding, and around 3× better
verifier time and proof size compared to naive-opening. This
indicates that the DeepFold batching technique takes advan-
tage of both the faster prover time of naive-opening and the
smaller proof size of naive-padding.

8 Conclusion

This paper presents DeepFold, an efficient and concise mul-
tilinear polynomial commitment constructed from RS codes.
DeepFold is transparent and relies solely on lightweight hash
functions. The core idea is to generalize [45] to the list decod-
ing radius setting. The main challenge is that the correlated
agreement principle does not hold in this scenario. To address
this problem, we incorporate an idea from [10] by adding an
extra evaluation in each round and inventing a new method to
validate the correctness of these evaluations.

Future works. One future direction is integrating DeepFold
with industrial projects like Binius [19] and Jolt zkVM [38].
Since experiments demonstrate concrete efficiency improve-
ments for DeepFold compared to existing multilinear PCS, we
anticipate these benefits will help with real-world applications.
Recently, STIR [4] proposed a method to further reduce the
query repetition number in RS-IOPP. Incorporating this ap-
proach could potentially enhance the efficiency of DeepFold,
making it another promising avenue for future work.

13

Discussion: Research Ethics

Our research focuses on enhancing the prover time and
proof size of existing polynomial commitment schemes. Our
method enables the prover to convincingly demonstrate the
evaluation of a committed multilinear polynomial at a specific
point. We strictly adhere to ethical guidelines, avoiding de-
ceptive practices, unauthorized disclosures, live system exper-
iments, or any actions that could compromise the well-being
of our team. Consequently, our work aims to reduce the proof
size of previous state-of-the-art schemes while preserving
their efficient prover time.

Discussion: Open Science Policy

Our study adheres to open science principles and fully sup-
ports artifact evaluation by guaranteeing the availability, func-
tionality, and reproducibility of our work. Currently, we are
reorganizing our code to make it more accessible for arti-
fact evaluators. We are committed to submitting our work for
artifact evaluation.

References

[1] https://github.com/sunblaze-ucb/Virgo.

[2] Plonky2. https://github.com/0xPolygonZero/
plonky2.git.

[3] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthura-
makrishnan Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 2087–2104, 2017.

[4] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Ey-
lon Yogev. Stir: Reed-solomon proximity testing with
fewer queries. In Annual International Cryptology Con-
ference, pages 380–413. Springer, 2024.

[5] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Fast reed-solomon interactive oracle
proofs of proximity. In Electron. Colloquium Comput.
Complex., 2017.

[6] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. IACR Cryptol.
ePrint Arch., 2018:46, 2018.

[7] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kop-
party, and Shubhangi Saraf. Proximity gaps for reed–
solomon codes. In 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS), pages
900–909. IEEE, 2020.

[8] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev,
Nicholas Spooner, Madars Virza, and Nicholas P Ward.
Aurora: Transparent succinct arguments for r1cs. In
Advances in Cryptology–EUROCRYPT 2019: 38th An-
nual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Darmstadt, Ger-
many, May 19–23, 2019, Proceedings, Part I 38, pages
103–128. Springer, 2019.

[9] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas
Spooner. Interactive oracle proofs. In Theory of Cryp-
tography: 14th International Conference, TCC 2016-B,
Beijing, China, October 31-November 3, 2016, Proceed-
ings, Part II 14, pages 31–60. Springer, 2016.

[10] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and
Shubhangi Saraf. Deep-fri: sampling outside the box
improves soundness. arXiv preprint arXiv:1903.12243,
2019.

[11] Eli Ben-Sasson, Swastik Kopparty, and Jaikumar Rad-
hakrishnan. Subspace polynomials and limits to list
decoding of reed–solomon codes. IEEE Transactions
on Information Theory, 56(1):113–120, 2009.

[12] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf.
Worst-case to average case reductions for the distance
to a code. In 33rd Computational Complexity Confer-
ence (CCC 2018). Schloss-Dagstuhl-Leibniz Zentrum
für Informatik, 2018.

[13] Alexander R. Block, Albert Garreta, Jonathan Katz,
Justin Thaler, Pratyush Ranjan Tiwari, and Michał Zając.
Fiat-shamir security of fri and related snarks. In Jian
Guo and Ron Steinfeld, editors, Advances in Cryptol-
ogy – ASIACRYPT 2023, pages 3–40, Singapore, 2023.
Springer Nature Singapore.

[14] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and
Michele Orru. Gemini: Elastic snarks for diverse envi-
ronments. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 427–457. Springer, 2022.

[15] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian
Miers, Pratyush Mishra, and Howard Wu. Zexe: En-
abling decentralized private computation. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 947–
964. IEEE, 2020.

[16] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In
2018 IEEE symposium on security and privacy (SP),
pages 315–334. IEEE, 2018.

14

https://github.com/sunblaze-ucb/Virgo
https://github.com/0xPolygonZero/plonky2.git
https://github.com/0xPolygonZero/plonky2.git

[17] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Trans-
parent snarks from dark compilers. In Advances in
Cryptology–EUROCRYPT 2020: 39th Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14,
2020, Proceedings, Part I 39, pages 677–706. Springer,
2020.

[18] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei
Zhang. Hyperplonk: Plonk with linear-time prover and
high-degree custom gates. In Annual International
Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 499–530. Springer, 2023.

[19] Benjamin E. Diamond and Jim Posen. Polylogarithmic
proofs for multilinears over binary towers. Cryptology
ePrint Archive, Paper 2024/504, 2024.

[20] Ariel Gabizon, Zachary J Williamson, and Oana Ciob-
otaru. Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, 2019.

[21] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Roth-
blum. Delegating computation: interactive proofs for
muggles. Journal of the ACM (JACM), 62(4):1–64,
2015.

[22] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin
Thaler, and Riad S Wahby. Brakedown: Linear-time and
field-agnostic snarks for r1cs. In Annual International
Cryptology Conference, pages 193–226. Springer, 2023.

[23] Ulrich Haböck, David Levit, and Shahar Papini. Circle
STARKs. Cryptology ePrint Archive, Paper 2024/278,
2024.

[24] Mathias Hall-Andersen, Mark Simkin, and Benedikt
Wagner. Frida: Data availability sampling from fri. In
Leonid Reyzin and Douglas Stebila, editors, Advances
in Cryptology – CRYPTO 2024, pages 289–324, Cham,
2024. Springer Nature Switzerland.

[25] Ari Juels and Burton S. Kaliski. Pors: proofs of retriev-
ability for large files. In Proceedings of the 14th ACM
Conference on Computer and Communications Security,
CCS ’07, page 584–597, New York, NY, USA, 2007.
Association for Computing Machinery.

[26] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In Advances in Cryptology-ASIACRYPT
2010: 16th International Conference on the Theory and
Application of Cryptology and Information Security, Sin-
gapore, December 5-9, 2010. Proceedings 16, pages
177–194. Springer, 2010.

[27] Assimakis A Kattis, Konstantin Panarin, and Alexander
Vlasov. Redshift: transparent snarks from list polyno-
mial commitments. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1725–1737, 2022.

[28] Neal Koblitz and Alfred J Menezes. The random oracle
model: a twenty-year retrospective. Designs, Codes and
Cryptography, 77:587–610, 2015.

[29] T. Liu, T. Xie, J. Zhang, D. Song, and Y. Zhang. Pianist:
Scalable zkrollups via fully distributed zero-knowledge
proofs. In 2024 IEEE Symposium on Security and Pri-
vacy (SP), pages 39–39, 2024.

[30] Tianyi Liu, Xiang Xie, and Yupeng Zhang. Zkcnn: Zero
knowledge proofs for convolutional neural network pre-
dictions and accuracy. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications
Security, pages 2968–2985, 2021.

[31] Carsten Lund, Lance Fortnow, Howard Karloff, and
Noam Nisan. Algebraic methods for interactive proof
systems. Journal of the ACM (JACM), 39(4):859–868,
1992.

[32] Charalampos Papamanthou, Elaine Shi, and Roberto
Tamassia. Signatures of correct computation. In Theory
of Cryptography Conference, pages 222–242. Springer,
2013.

[33] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[34] Michael Rosenberg, Jacob White, Christina Garman,
and Ian Miers. zk-creds: Flexible anonymous credentials
from zksnarks and existing identity infrastructure. In
2023 IEEE Symposium on Security and Privacy (SP),
pages 790–808. IEEE, 2023.

[35] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE symposium on security and
privacy, pages 459–474. IEEE, 2014.

[36] David Schultz, Barbara Liskov, and Moses Liskov.
Mpss: mobile proactive secret sharing. ACM Trans-
actions on Information and System Security (TISSEC),
13(4):1–32, 2010.

[37] Srinath Setty. Spartan: Efficient and general-purpose
zksnarks without trusted setup. In Annual International
Cryptology Conference, pages 704–737. Springer, 2020.

15

[38] Hang Su, Qi Yang, and Zhenfei Zhang. Jolt-b: recursion
friendly jolt with basefold commitment. Cryptology
ePrint Archive, Paper 2024/1131, 2024.

[39] Haochen Sun, Jason Li, and Hongyang Zhang. zkllm:
Zero knowledge proofs for large language models. arXiv
preprint arXiv:2404.16109, 2024.

[40] Justin Thaler. Time-optimal interactive proofs for circuit
evaluation. In Annual Cryptology Conference, pages 71–
89. Springer, 2013.

[41] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin
Thaler, and Michael Walfish. Doubly-efficient zksnarks
without trusted setup. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 926–943. IEEE, 2018.

[42] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalam-
pos Papamanthou, and Dawn Song. Libra: Succinct
zero-knowledge proofs with optimal prover computa-
tion. In Advances in Cryptology–CRYPTO 2019: 39th
Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 18–22, 2019, Proceedings, Part
III 39, pages 733–764. Springer, 2019.

[43] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang,
Yupeng Zhang, Yongzheng Jia, Dan Boneh, and Dawn
Song. zkbridge: Trustless cross-chain bridges made
practical. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
pages 3003–3017, 2022.

[44] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion:
Zero knowledge proof with linear prover time. In Annual
International Cryptology Conference, pages 299–328.
Springer, 2022.

[45] Hadas Zeilberger, Binyi Chen, and Ben Fisch. Base-
fold: efficient field-agnostic polynomial commitment
schemes from foldable codes. In Annual International
Cryptology Conference, pages 138–169. Springer, 2024.

[46] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and
Dawn Song. Zero knowledge proofs for decision tree
predictions and accuracy. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2039–2053, 2020.

[47] Jiaheng Zhang, Tiancheng Xie, Thang Hoang, Elaine
Shi, and Yupeng Zhang. Polynomial commitment with
a {One-to-Many} prover and applications. In 31st
USENIX Security Symposium (USENIX Security 22),
pages 2965–2982, 2022.

[48] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and
Dawn Song. Transparent polynomial delegation and
its applications to zero knowledge proof. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 859–
876. IEEE, 2020.

[49] Zongyang Zhang, Weihan Li, Yanpei Guo, Kexin Shi,
Sherman SM Chow, Ximeng Liu, and Jin Dong. Fast
{RS-IOP} multivariate polynomial commitments and
verifiable secret sharing. In 33rd USENIX Security Sym-
posium (USENIX Security 24), pages 3187–3204, 2024.

A Definition of Polynomial Commitment

The PCS satisfies completeness if for any multilinear polyno-
mial f̃i ∈ F[X1, · · · ,Xµi] and any point z⃗i ∈ Fµi , the following
probability is 1:

Pr

[
pp← Setup(1λ,µ)

(C ,D)← Commit(pp, f̃)
: Eval(pp,C ,⃗z, f̃ (⃗z); f̃ ,D) = 1

]

It is binding if for any µ ∈ N and PPT adversary A ,

Pr

b0 = b1 = 1∧
f̃0 ̸= f̃1

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ,µ)

(C , f̃0,D0, f̃1,D1)← A(pp)

b0← OpenPoly(pp,C , f̃0,D0)

b1← OpenPoly(pp,C , f̃1,D1)

≤ negl(λ)

The scheme satisfies (knowledge) soundness if Eval is an
argument (of knowledge) for the relation REval,pp defined as
follows:{
(x = {C ,⃗z,y});w = { f̃ ,D} :

f̃ (⃗z) = y

OpenPoly(pp,C , f̃ ,D) = 1

}

B FRI Protocol

We provide the full protocol of FRI in Protocol 1.

C Security Proofs for DeepFold

Completeness. The completeness follows directly from the
construction of DeepFold.

Binding. The binding property of DeepFold comes from the
following theorem.

Theorem 4. For any committed vector v⃗ of length n and
a random point α ∈ F, the probability that there exist two
different polynomials p1 and p2 with bounded degree, such
that Ham(p1|L0 , v⃗),Ham(p2|L0 , v⃗) < 1−ρ− ε and p1(α) =
p2(α), is negligible.

Proof. According to Conjecture 1, define L = List(⃗v,1−ρ−
ε), where |L | ≤ poly(n). Thus, the probability that there exist
such polynomials p1, p2 ∈ L is less than n ·

(|L |
2

)
/|F|. The

numerator represents the union bound of equal evaluations
for all pairs of polynomials in L .

Soundness. The soundness relies on the following theorem.

16

Protocol 1 The FRI protocol for f (0)|L0 ∈ RS[F,L0,ρ]

Inputs: (F,L0,ρ, f (0)). P holds a univariate polynomial
f (0)(X) with degree less than ρ|L0|. We assume ρ|L0| = 2µ

for a positive integer µ.
1: Let v⃗ = f (0)|L0 , P sends MT.Commit(⃗v)→ rt0 to V .
2: for i = 1 to µ do
3: P decomposes f (i−1)(X) = f (i)E (X2)+X · f (i)O (X2).

4: V sends ri
$← F to P .

5: P computes f (i)(X)= f (i)E (X)+ri · f
(i)
O (X). Let v⃗(i) =

f (i)|Li . If i= µ, P sends a scalar f (µ) ∈F to V . Otherwise,
P sends MT.Commit(⃗v(i))→ rti.

6: end for
7: for i = 1 to s = O(λ) do
8: V sends β0

$← L0 to P . For j ∈ [µ], define β j = β2
j−1.

9: For j ∈ µ], P opens f (j−1)(±β j−1) using MT.Open.
10: V checks the correctness using MT.Verify.
11: For j ∈ [µ], V checks the following triple are on a

common line.(
β j−1, f (j−1)(β j−1)

)
,
(
−β j−1, f (j−1)(−β j−1)

)
,
(

r j, f (j)(β j)
)

12: end for
13: If all above checks pass, V outputs 1; 0 otherwise.

Theorem 5. If the verifier outputs 1 with probability greater
than poly(|L0|)/|F|+(1−∆)s, there exists a µ-variate mul-
tilinear polynomial p such that p̃(⃗x) = y, p(α) = c, and
Ham(f (i)|Li , p(i)|Li) < ∆ for i ∈ [µ], where p(i)(X⃗[i+1:µ]) :=
p̃(⃗r[1:i], X⃗[i+1:µ]).

Proof. This theorem is a special case of Theorem 2, which is
deferred to the next section.

The theorem indicates that in each round, the committed
vector approximates the honest folding of a unique polyno-
mial. When i = 0, this implies the soundness of DeepFold, as
presented in the following theorem:

Theorem 6. DeepFold.Eval is an argument of knowl-
edge for relation REval,pp, where the soundness error ε =
poly(|L0|)/|F|+(1−∆)s.

D Proof of Theorem 2

First of all, we clarify some notions that have different mean-
ing with previous section, because of the case of malicious
prover. The committed vector in the i-th round could be rep-
resented by mapping f (i) : Li→ F. Similarly, fi : Li→ F de-
notes the vector representing the commitment of polynomial

f̃i. f (i+1)
E , f (i+1)

O : Li+1→ F is defined as

f (i+1)
E (x2) =

f (i)(x)+ f (i)(−x)
2

f (i+1)
O (x2) =

f (i)(x)− f (i)(−x)
2x

for each x ∈ Li. To demonstrate round-by-round soundness,
we need to consider malicious case such that f (i) isn’t equal
to f (i)E + ri f (i)O + γi fi.

We prove the theorem via mathematical induction. When
µ = 1, this theorem holds straightforwardly. If the theorem
holds for µ = t, we will prove it also holds for µ = t +1.

Since the protocol from the second round to the last can
be viewed as a t-variate polynomial batch evaluation, so f (1)

must approximate some g(1)|L1 of degree 2t , and for each
i ∈ [2,µ], fi must approximate some gi|Li polynomial of de-
gree 2µ−i satisfying specific evaluations based on induction
assumption. For each i ∈ [1,µ− 1], g(i+1) is defined as the
folding-batch of g(i) and gi+1. Then f (i) is close to g(i)|Li .

Before further proof, we first define following notions.

• RS′i = {p(X) ∈ RS[Li,ρ] ∧ ∀w⃗ ∈
Ai, p̃(⃗v) equals to the specific value}. From induction
assumption, for each i ∈ [µ], g(i) ∈ RS′i.

• Ii = {x ∈ Li| f (i)(x) = g(i)(x)} denotes the vanishing set of
f (i)−g(i)|Li .

• {keri}i∈[0,µ] is a family of mappings defined recursively.
Let ker0(S) = S for S ⊂ L0, and keri(S) = keri−1({x ∈
Li−1|x2 ∈ S}) for S ⊂ Li−1. Intuitively speaking, keri(S)
can be viewed as the "preimages" of S in L0 under the
i-iteration of square function.

• {erri}i∈[0,µ] is a family of sets defined recursively. Let

err0 = φ and erri = erri−1 ∪ keri({x ∈ Li| f
(i)
E (x) + ri ·

f (i)O (x)+ γi · fi(x) ̸= f (i)(x)}). Intuitively speaking, the lat-
ter component of erri can be viewed as the "preimages" of
points which expose "evaluation errors", and therefore, erri
is the set of all points exposing "evaluation errors" until the
i-th round.

• Ei : S 7→ |keri(S)∩erri|
|L0| +

(
1− |S||Li|

)
for S⊆ Li.

Intuitively speaking, the former component of Ei(Ii) can
be viewed as the ratio of current "erronous" points, while
the latter one is the ratio of the potential "erronous" points.
Therefore, this mapping denotes a total ratio of the number
of "erronous" points. In the last round, all errors are exposed,
so Eµ(Iµ) means the proportion in L0 that V can find an error.
We will next prove if induction assumption doesn’t hold, it
has Eµ(Iµ)≥ 1−ρ− ε with overwhelming probability.

We first prove following useful lemmas:

Lemma 4. For any S1 ⊆ S2 ⊆ Li, Ei(S1)≥ Ei(S2).

17

Proof. By definition,

Ei(S1)−Ei(S2)

=
(|S2|− |S1|)
|Li|

− (|keri(S2)∩ erri|− |keri(S1)∩ erri|)
|L0|

=|S2\S1|/|Li|− |(keri(S2)\keri(S1))∩ erri|/|keri(Li)|

=
|keri(S2\S1)|
|ker(Li)|

− |keri(S2\S1)∩ erri|
|keri(Li)|

≥ 0

Lemma 5. For every i∈ [µ], θ∈ [0,1], if Ham(f (i)E +ri · f
(i)
O +

γi · fi,g(i)|Li)≥ θ, then for each f (i), there has Ei(Ii)≥ θ.

Proof. Let f ← f (i)E + ri · f
(i)
O +γi · fi. Define set B = Ii∪{x ∈

Li| f (x) ̸= f (i)(x)}. Define polynomial f ′ : Li→ F such that
f ′(x) = g(i)(x) when x ∈ B and f ′(x) = f (x) when x /∈ B.

For all x ∈ B, if f (x) ̸= f ′(x), there has f (x) ̸= g(i)(x).
Besides, for all x /∈ B, f (x) = g(i)(x). Thus, the number of
inconsistency points in B is not less than the Hamming
distance between f |Li and f ′|Li , i.e., |keri(B)∩ erri|/|L0| ≥
∆(f |Li , f ′|Li).

Also, as f ′(x) = g(i)(x) holds for all x ∈ B, there has 1−
|B|/|Li| ≥ Ham(f ′|Li ,g

(i)|Li). Thus, Ei(B) ≥ Ham(f , f ′) +
Ham(f ′,g(i)|Li) ≥ Ham(f ,g(i)|Li) ≥ θ. As Ii ⊆ B, Ei(Ii) ≥
Ei(B)≥ θ.

Next, we will prove the following two statements: 1). The
induction assumption holds for µ= t+1 or E1(I1)≥ 1−ε−ρ

and 2). For each i ∈ [µ−1], with overwhelming probability
Ei+1(Ii+1)≥ Ei(Ii).

Lemma 6. If there exist no polynomials g(0),
g1 satisfying the claimed evaluations and
Ham(g(0)|L0 , f (0)),Ham(g1|L1 , f1) < 1 − ρ − ε and
g(1) equals the folding batch of g(0) and g1, there has
E1(I1)≥ 1−ρ− ε with overwhelming probability.

Now we discuss the two cases in the first round.
Case 1: For random r, α, if f (1)E + r1 · f (1)O + γ1 · f1 approx-

imates some polynomial in RS′1 with negligible probability,
there has E1(I1)≥ 1−ρ− ε with overwhelming probability
from lemma 5, given that g(1) ∈ RS′1.

Case 2: If f (1)E + r1 · f (1)O + γ1 · f1 approximates some poly-
nomial in RS′1 with non-negligible probability, from the DEEP
theorem, f (1)E , f (1)O , f1 should approximate p(1)E , p(1)O , p1 satis-
fying claimed evaluations on α2

1 and z⃗[2:] respectively. The

following lemma shows that f (1)E + r1 · f (1)O + γ1 · f1 can-

not approximate any polynomial in RS′1 other than p(1)E +

r1 · p
(1)
O + γ1 · p1 with non-negligible probability. Thus, if

g(1) ̸= p(1)E + r1 · p
(1)
O + γ1 · p1, there has E1(I1)≥ 1−ρ− ε.

Lemma 7. Let f = f (1)E + r1 · f (1)O + γ1 · f1. For a ran-
dom α ∈ F, if there are p, p′ ∈ RS[L1,ρ] such that
max(Ham(p, f),Ham(p′, f)) < 1 − ρ − ε, and that both
p(α2), p′(α2) equal to the combination of claimed f (α2),
there holds p = p′.

Proof. Since max(Ham(p, f),Ham(p′, f)) < 1− ρ− ε, we
have p, p′ ∈ List(f ,1−ρ− ε), and p(α2

1) = p′(α2
1). Because

of the randomness of α1, according to Theorem 4, the proba-
bility that p ̸= p′ is negligible.

The statement 1 follows from the analysis of the two cases.
We now prove statement 2.

Define g(i)E ,g(i)O such that g(i−1)(X) can be decomposed into

g(i)E (X2)+X ·g(i)O (X2). There has g(i) = g(i)E + ri ·g
(i)
O + γi ·gi.

Define B′ = {x ∈ Li+1| f
(i+1)
E (x) = g(i+1)

E (x) ∧ f (i+1)
O (x) =

g(i+1)
O (x)∧ fi+1(x) = gi+1(x)}. By properties of random lin-

ear combination, with probability at least 1−|Li+1|/|F|, the
following equality holds

Ham
(

f (i+1)
E + ri+1 f (i+1)

O + γi+1 fi+1,g(i+1)
)
= 1− |B

′|
|Li+1|

Let B = {x ∈ Li : x2 ∈ B′}. By definition, B⊆ Ii. Define set
C = Ii+1∪B′. To prove that Ei+1(Ii+1)≥ Ei(Ii), it suffices to
prove Ei+1(C)≥ Ei(B) according to Lemma 4 as B⊆ Ii and
Ii+1 ⊆C.

By the definition of B′, for every x ∈ Ii+1\B′,

f (i+1)(x) = g(i+1)(x) ̸= f (i+1)
E (x)+ ri+1 · f (i+1)

O (x)

+ γi+1 · fi+1(x)

Therefore, keri+1(Ii+1\B′) = keri+1(C\B′) ⊆ erri+1. Define
sets M = keri(B)∩ erri and N = keri+1(C\B′). As erri ⊆
erri+1, we have

M∪N ⊆ erri∪keri+1(C\B′)⊆ erri+1. (5)

Besides, as B′ ⊆C and keri(B) = keri+1(B′),

M∪N = (keri+1(B′)∩ erri)∪N ⊆ keri+1(C). (6)

By Equations (5) and (6),

M∪N ⊆ keri+1(C)∩ erri+1. (7)

Since keri(B) = keri+1(B′), there has

M∩N ⊆ keri+1(B′)∩keri+1(C\B′) = /0. (8)

According to Equation (8), Equation (7) can be rewritten as

|keri+1(C)∩erri+1| ≥ |keri+1(C\B′)|+ |keri(B)∩erri|. (9)

Substituting

|keri+1(C\B′)|
|L0|

=
|C\B′|
|Li+1|

=
|C|− |B′|
|Li+1|

=
|C|
|Li+1|

− |B|
|Li|

18

in Equation (9), the following relation holds

|keri+1(C)∩ erri+1|
|L0|

− |C|
|Li+1|

≥ |keri(B)∩ erri|
|L0|

− |B|
|Li|

.

Therefore, εi+1(C)≥ εi(B).

E Batch Sumcheck for Different Variable Poly-
nomials

We present the batch sum-check algorithm for different vari-
able polynomials, which would be a subprotocol of batch
opening different points on multiple polynomials.

For simplicity, we consider the following condition without
loss of generalization. Let

{
f̂i
}µ−1

i=0 be a series of multivariate
polynomial, where f̂i(Xi+1, · · · ,Xµ) is (µ− i)-variable. P is
supposed to prove for each i∈ [0,µ−1], ∑⃗b∈{0,1}µ−i f̂i(⃗b) = yi.

After receiving {yi}, V sends a random challenge r ∈ F.
The prover can run multivariate sumcheck on the following
polynomial to prove all these sums.

∑
b⃗∈{0,1}µ

(
µ−1

∑
i=0

ri · f̂i(⃗b[i+1:])

)
=

µ−1

∑
i=0

(2r)iyi

In our case, each f̂i is product of two multilinear polynomi-
als, denoted as f̃i and g̃i. In the j-th round, the prover needs
to send a j,t for t = {0,1,2}, where

a j,t = ∑
b⃗∈{0,1}µ− j

(
j−1

∑
i=0

ri (f̃i · g̃i
)
(r[i+1, j−1], t ,⃗b)

+
µ−1

∑
i= j

ri ·
(

f̃i · g̃i
)
(⃗b[i− j:])

)

= ∑
b⃗∈{0,1}µ− j

j−1

∑
i=0

ri (f̃i · g̃i
)
(r[i+1, j−1], t ,⃗b)

+
µ−1

∑
i= j

ri ·2i− j · yi

which can be computed in O(k j · 2µ− j), where k j is the
total number of polynomials with variable number equal
or larger than µ− j + 1. Thus, the total prover complex-
ity is ∑

µ
j=1 O(k j · 2µ− j) = O(∑

µ
j=1 k j · 2µ− j+1 −∑

µ
j=1 k j−1 ·

2µ− j+1) = ∑
µ
j=1 O((k j− k j−1) ·2µ− j+1), equivalent to the to-

tal length of all polynomials.
Invoking batch sumcheck for following polynomials can

reduce the evaluations of different polynomials f̃i on differ-
ent points, together with different αi in commitment to the

evaluations of them on a single random point r⃗

∑
b⃗∈{0,1}µ−i

f̃i(⃗b) · ẽq(⃗b,⃗z(i)) = yi

∑
b⃗∈{0,1}µ−i

f̃i(⃗b) · ẽq
(⃗

b,(αi,α
2
i , · · · ,α2µ−i−1

i)
)
= ci

F Proof of Zero-knowledge

A PC is considered to be zero-knowledge if there is a PPT
simulator S = (S1,S2) such that for all multilinear polynomial
f̃ , PPT non-uniform adversary A :

Pr

b = 1

∣∣∣∣∣∣∣∣∣
C ←Commit(pp, f̃)

z⃗← A(C , pp)

(y, tr)← ⟨P (f̃),V ⟩(⃗z)
b← A(C ,y,⃗z, tr)

=

Pr

b = 1

∣∣∣∣∣∣∣∣∣
C ← S1(pp)

z⃗← A(C , pp)

(y, tr)← S2(f̃ (⃗z),⃗z)

b← A(C ,y,⃗z, tr)

A simulator S can be constructed as following:

1. Generate a random (µ+1)-variate multilinear polynomial
f̃r, a random (µ− ℓ+2)-variate multilinear polynomial g̃,
and use them to simulate zkDeepFold.Commit to generate
the commitment C = ⟨rt0,α0,c0,rt1,α1,c1⟩.

2. On receiving query point z⃗ and let y = f̃ (⃗z), S then pro-
ceeds a sum-check protocol on ∑⃗b∈Hµ+1

ĥ(⃗b) = y+ r · c0 +

r2 · c2
1, where ĥ(⃗x) is defined as

f̃r (⃗x)(ẽq(⃗zext , x⃗)+ r · ẽq(α⃗0, x⃗))+ r2g̃(⃗x[ℓ:]) · ẽq(α⃗1, x⃗[ℓ:])

with z⃗ext = z⃗||0, α⃗0 = (α20

0 ,α21

0 , · · · ,α2µ

0), α⃗1 =

(α1,α
2
1, · · · ,α2µ−ℓ+1

1). Assume the random number
used in the sumcheck is z⃗′, then the final claim is the value
of ĥ(⃗z′).

3. S sends a set of randoms y1,y2 ∈ F representing f̃r (⃗z′),
g̃(⃗z′[ℓ:]), which satisfy the sum-check condition.

4. Given s queries, S interpolates multilinear polynomials
f (0),g(ℓ−1) such that f̃ (0)(⃗z′) = y1, g̃(ℓ−1)(⃗z′[ℓ:]) = y2, and

that f (0), g(ℓ−1) match fr, g on all s queries.

5. S uses f (0) and g(ℓ−1) to finish the rest of batch evaluation.

Next, we will show the real transcript and the simulator
transcript are indistinguishable. In step 2, V receives as the
real transcript in the i-th (i≤ µ) round

∑
bi+1,··· ,bµ+1∈{0,1}

ĥ(z′1, · · · ,z′i−1,X ,bi+1, · · · ,bµ+1)

19

When bµ+1 = 1, the evaluation of ĥ would be uniformly
random since the evaluation of f̃ext is random, so the real
transcript is uniformly random. When i = µ+1, V receives
ĥ(z′1, · · · ,z′µ,X), which is also uniformly random because of
g̃’s randomness.

The evaluation of f̃ext (⃗z′), i.e. y1 sent at step 4 should be
a random number because when z′µ+1 ̸= 0 (the probability
is negligible) the evaluation of f̃ext (⃗z′) is random. When it
comes to step 5, all the scalars received by V in first ℓ round
are evaluations on f̃ext , and V cannot get any message of
f̃ from them. After ℓ rounds, since f (i) is masked by g̃, V
cannot distinguish it with the transcript of S .

20

	Introduction
	Contributions
	Related Work

	Preliminaries
	Polynomial Commitment
	Linear Codes and Reed-Solomon Code

	Technical Overview
	Warmup: FRI and BaseFold
	Overview of DeepFold

	DeepFold: Multilinear Polynomial Commitment based on Reed-Solomon Code
	DeepFold Multilinear PCS

	Batching Evaluation on Different-size Polynomials
	Batch Evaluation with DeepFold
	Achieving Zero-knowledge for DeepFold

	Applications to Zero-knowledge Proofs
	zk-SNARK Systems
	Verifiable Matrix Multiplications

	Experimental Evaluation
	Performance for DeepFold
	Performance for zk-SNARKs
	Performance for Verifiable MatMult

	Conclusion
	Definition of Polynomial Commitment
	FRI Protocol
	Security Proofs for DeepFold
	Proof of Theorem 2
	Batch Sumcheck for Different Variable Polynomials
	Proof of Zero-knowledge

