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Abstract

In this work, we introduce the sparse LWE assumption, an assumption that draws inspi-
ration from both Learning with Errors (Regev JACM 10) and Sparse Learning Parity with
Noise (Alekhnovich FOCS 02). Exactly like LWE, this assumption posits indistinguishabil-
ity of (A, sA + e mod p) from (A,u) for a random u where the secret s, and the error vector
e is generated exactly as in LWE. However, the coefficient matrix A in sparse LPN is chosen
randomly from Zn×m

p so that each column has Hamming weight exactly k for some small k.
We study the problem in the regime where k is a constant or polylogarithmic. The primary
motivation for proposing this assumption is efficiency. Compared to LWE, the samples can be
computed and stored with roughly O(n/k) factor improvement in efficiency. Our results can
be summarized as:

• Foundations: We show several properties of sparse LWE samples, including: 1) The hard-
ness of LWE/LPN with dimension k implies the hardness of sparse LWE/LPN with spar-
sity k and arbitrary dimension n ≥ k. 2) When the number of samples m = Ω(n log p),
length of the shortest vector of a lattice spanned by rows of a random sparse matrix is
large, close to that of a random dense matrix of the same dimension (up to a small con-
stant factor). 3) Trapdoors with small polynomial norm exist for random sparse matrices
with dimension n × m = O(n log p). 4) Efficient algorithms for sampling such matrices
together with trapdoors exist when the dimension is n×m = Õ(n2).

• Cryptanalysis: We examine the suite of algorithms that have been used to break LWE
and sparse LPN. While naively many of the attacks that apply to LWE do not exploit
sparsity, we consider natural extensions that make use of sparsity. We propose a model
to capture all these attacks. Using this model we suggest heuristics on how to identify
concrete parameters. Our initial cryptanalysis suggests that concretely sparse LWE with
a modest k and slightly bigger dimension than LWE will satisfy similar level of security
as LWE with similar parameters.

• Applications: We show that the hardness of sparse LWE implies very efficient homo-
morphic encryption schemes for low degree computations. We obtain the first secret key
Linearly Homomorphic Encryption (LHE) schemes with slightly super-constant, or even
constant, overhead, which further has applications to private information retrieval, pri-
vate set intersection, etc. We also obtain secret key homomorphic encryption for arbitrary
constant-degree polynomials with slightly super-constant, or constant, overhead.

We stress that our results are preliminary. However, our results make a strong case for
further investigation of sparse LWE.
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1 Introduction

The celebrated work by Regev [Reg05] proposed the Learning With Errors (LWE) assumption,
postulating that noisy linear samples are indistinguishable from random,

(A, b = sA+ e mod p) ≈c (A,u)

where the coefficient matrix A ← Zn×m
p and the secret vector s ← Zn

p are sampled randomly, the
entries of the noise vector e ← D1×m

Z,σ are sampled from the discrete Gaussian distribution with
width σ smaller than p, and the vector u← Z1×m

p is uniformly random.
The LWE assumption is extremely versatile, and has been the basis of a plethora of construc-

tions. This spans the development of core cryptographic tools including key agreement, public key
encryption, and signature schemes that are ready to be deployed [ACC+18, AAC+22], schemes
and protocols with richer functionalities and nearly practical efficiency e.g., [HHC+23, HDCZ23,
LNP22, BLNS23], to advanced primitives pushing the envelop of cryptographic feasibility, such
as, Fully Homomorphic Encryption [Gen09, BV11, GSW13, Mah18a, Bra18], Attribute-Based En-
cryption [GVW13, BGG+14], Succinct Arguments for P [CJJ22] and many others [GKW17, WZ17,
GKW18, BCM+18, Mah18b]. The hardness of the LWE problem has been extensively studied.
It was shown that the hardness of LWE is implied by the worst-case hardness of certain lattice
problems such as GapSVP [Reg05, Pei09, LM09, BLP+13], which is widely believed to be subexpo-
nentially hard for a range of parameters.

Many variants of the LWE problems have been explored, encompassing 1) the use of struc-
tured secrets, such as binary random secrets and entropic secrets, 2) the use of structured noise,
e.g., binary random noise, uniform random noise of bounded magnitude, and rounded version
known as Learning With Rounding (LWR) [BPR12], and 3) the use of structured matrices, such
as those implicit in Ring LWE (RLWE) [LPR10] or middle-point LWE [RSSS17]. All these variants
have significantly extended the landscape of functionalities, efficiency and security levels, and
techniques supported by the LWE family of assumptions.

The Sparse Learning With Errors Problems This work proposes a new variant called the k-
Sparse LWE (k-sLWE) problem. We conjecture the hardness of the LWE problem when the coeffi-
cient matrices A ∈ Zn×m

p are random k-sparse matrices (as opposed to random dense matrices),
where each column has exactly k non-zero entries for some k ≤ n and every non-zero entry is
sampled uniformly and randomly from Zp. Sparsity is the new feature – the smaller the sparsity
parameter k is, the more efficient it is to store and compute the samples. Each sparse LWE sample
(ai, sai + ei) contains only k + 1 elements in Zp and takes Õ(k log p) time to compute, whereas a
standard LWE sample contains n+ 1 elements and takes Õ(n log p) time to compute. At the same
time, k is crucial for the hardness of the problem. A variety of settings of k is interesting; k can
be constant, logarithmic, polylogarithmic, or sublinear in the dimension n. We found that k be-
ing logarithmic or polylogarithmic is the most suitable for cryptographic applications, ensuring
efficiency and strong security. While the assumption with constant k and appropriately bounded
number of samples might also be useful for deriving interesting theoretical results, constant k
will not provide almost exponential security when the number of samples is superlinear in the
dimension n.

Sparse LWE is a natural question to study. The effect of sparsity in the coefficient matrix has
long been studied in the context of the Learning Parity with Noise (LPN) problem, a close cousin
of LWE, which uses sparse random noise, instead of small (but dense) Gaussian noise as in LWE.
Sparse LPN further uses random k-sparse coefficient matrices as described above. Variants of the
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sparse LPN assumption in the binary field F2 have been proposed and studied for at least a cou-
ple of decades in average-case complexity and are intimately connected to constraint satisfaction
problems (see works such as [Gol00, CM01, Fei02, Ale03, MST03, AOW15, AL16, KMOW17]). The
work of [ADI+17a] generalized the assumption to large fields Fq. These assumptions have been
used in a number of applications, for example [Ale03, AIK06, IKOS08, ABW10, CRR21, DIJL23].
Among them, the work of [ABW10] constructed a public-key encryption scheme from k-sparse
LPN for a constant k ≥ 3 and bounded polynomial number of samples, while the recent work
of [DIJL23] constructed multi-party Homomorphic Secret Sharing and multi-party computation
protocols with sublinear communication from k-sparse LPN for any polylogarithmic k and un-
bounded polynomial number of samples. The related assumption of local PRGs [Gol00] has
also been used in a number of works including the recent construction of a program obfuscation
scheme [JLS21].

It is somewhat surprising that the sparse variant of LWE has not been investigated, to the best
of our knowledge. That is the purpose of this work. Sparse LWE is related to constraint satisfaction
problems like sparse LPN and Goldreich’s one-way function and PRG, and at the same time draws
connection to lattices. It is curious and interesting to ask:

How hard is the sparse LWE problem?
What properties do sparse LWE samples have?

What can the hardness of sparse LWE enable cryptographically?

We give initial answers to these questions, and ask new questions. Our preliminary results in-
clude:

• Foundations. We show several properties of sparse LWE samples, including: 1) the hardness
of LWE with dimension k implies the hardness of sparse LWE with sparsity k and arbitrary
dimension n ≥ k. Our reduction is oblivious to the error model and hence the results also
apply to sparse LPN.

2) When the number of samples m = Ω(n log p), the length of the shortest vector of the
lattice spanned by the rows of a random sparse matrix is large, close to that of a random
dense matrix of the same dimensions (up to a small constant factor).

3) Trapdoors with small polynomial norm exist for random sparse matrices with dimension
n×m = O(n log p). An interesting consequence of the first claim from [GPV08a] is that when
m = O(n log p), the distribution (A,Ar mod p) for a vector r ∈ Zm

p is statistically close to
random in Zn

p provided r is chosen from a polynomially wide discrete Gaussian over Zm.
This might be useful for the design of public-key primitives.

4) While we don’t know how to sample random sparse matrices with trapdoors when m =
O(n log p), we can design an efficient algorithm for sampling such matrices together with
trapdoors when the dimension is n×m = O(n2 log n log p).

• Cryptanalysis. Examining existing attacks on the LWE problem, the structure of sparse matri-
ces does not naively speed up combinatorial [BKW03], lattice reduction [LLL82, Sch94], or
algebraic attacks [AG11]. Moreover, many attacks that would typically apply to sparse LPN
become harder to apply to sparse LWE due to the fact that the noise is dense (though small).
We also explore attacks that directly leverage sparsity, and show that they are ineffective
when the sparsity parameter k is polylogarithmic and number of samples m is (unbounded)
polynomial. Overall, our initial cryptanalysis optimistically suggests that when all other pa-
rameters are equal, namely the modulus p, the noise width σ, and polynomial number of
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samples m, polylogarithmic-sparse LWE with slightly larger dimension n′ = Θ(n), is com-
parable to LWE with dimension n. We also give some concrete parameters based on our
initial cryptanalysis.

• Applications. The hardness of sparse LWE implies very efficient homomorphic encryption
schemes for low degree computations. In particular, we obtain the first secret key Linearly
Homomorphic Encryption (LHE) schemes with slightly super-constant, or even constant, over-
head, which further has applications to private information retrieval, private set intersection,
etc. We also obtain secret key homomorphic encryption for arbitrary constant-degree poly-
nomials with slightly super-constant, or constant, overhead. In comparison, to the best of
our knowledge, previous homomorphic encryption schemes have (large) polylogarithmic
overhead [GHS12]. In particular, our LHE scheme is concretely efficient.

We emphasize that our cryptanalysis is preliminary, and more thorough study must be con-
ducted before we can rest our confidence on the hardness of sparse LWE. Nevertheless, in order
to assess the potential benefits of sparse LWE and provide motivation for further study, we make
tentative suggestions for concrete parameters to facilitate comparison of efficiency.

Comparison of sparse LWE with LWE and RLWE The main motivation behind introduction of
sparse LWE is efficiency. Storing and computing sparse LWE samples are roughly Õ(n/k) times
more efficient compared to plain LWE. Game-changing efficiency improvements have been af-
forded by Ring LWE [LPR10] due to its nice properties (such as SIMD compatibility [SV14]).
However, there are few settings where rings may not be ideal, for instance, when we want to
access data as integer elements rather than as ring elements. A good example of this is private-
information retrieval applications [HHC+23]. We believe that in those settings sparse LWE might
form an appealing alternative to ring LWE.

Open Problems Our work leaves a great supply of open problems from various angles. On
the complexity side, we ask if there are new attacks on sparse LWE? Can we show worst-case to
average-case reductions or leakage resilience properties similar to LWE? Similarly, it is completely
unclear if sparse LWE with small secrets is hard. On the concrete attacks and algorithms side, a
systematic study of concrete parameters is warranted. On the applications side, it would be good
to study more applications of sparse LWE beyond what we mentioned.

2 Technical Outline

We now describe our results with more context. The sLWE assumption is parameterized by a
sparsity parameter k, dimension n, sample complexity m, noise parameter σ and modulus p. It
posits that (A, sA + e mod p) is indistinguishable from (A,u) where A is a random matrix in
Zn×m
p such that each column is k-sparse, s ← Z1×n

p is randomly chosen, e ∈ Z1×m is generated
from discrete Gaussian with width σ and u ∈ Z1×m

p is randomly chosen. Our results can be
divided into three categories: Foundations, Cryptanalysis and Applications.

2.1 Foundations

We start by investigating some basic properties of sparse LWE. A very natural question to ask is
how much is the minimum distance of the lattice L = L(A) given by L = {xA+ pZm : x ∈ Z1×n}
as a function of k, n, m and p. This should be as large as possible, and certainly much larger
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than the norm of the error vector, so that given m sLWE samples the planted secret s is uniquely
determined. In section 4.1, we show that when m = Ω(n log p) as long as k > 1 and p is polynomial
in n, the minimum distance is Ω(p). In particular, once the number of samples exceeds 8n log n,
the minimum distance properties of L behave roughly similarly as in regular LWE samples.

An immediate consequence of this from the Transference theorems of Banaszczyk [Ban93] (and
as argued in corollary 3.1) is that the there exist m linearly independent vectors of bounded poly-
nomial norm in the lattice L⊥(A) = {x ∈ Zm : Ax = 0} once m = Ω(n log p). Thus, in principle
when m = Ω(n log p), A satisfies nice properties similar to a dense matrix corresponding to LWE
distribution. For instance, one immediate consequence from the work of [GPV08a] is that A can
be used to extract from Gaussian sources. In other words, if r is chosen from a wide enough (poly-
nomial width) discrete Gaussian, the induced distribution on Ar is statistically close to a random
vector in Zn

p even if A is public.
We ask when can we sample a random sparse matrix A along with such a trapdoor. While

we leave sampling random sparse matrices A along with a short trapdoor for m = O(n log p) as a
great open question, in section 6, we show that it is indeed possible to sample such sparse matrices
along with lattice trapdoors for m = O(n2 log n log p). Such linearly independent short vectors in
L⊥(A) can be used to sample from a discrete Gaussian distribution on vectors in L⊥(A) using
lattice sampling methods from prior work such as [GPV08a, MP13]. The current approach for
sampling fully random (dense) matrices along with trapdoors works by first sampling a matrix A
at random and then setting V = AR+G for a random small norm matrix R and the gadget matrix
G. This gives a small norm matrix X so that [A|V]X = G. Micciancio and Peikert [MP13] show
how to convert X to a trapdoor for [A|V]. This approach does not work directly for us because
unlike the case with dense matrices, V = AR + G is not sparse anymore. The main technical
highlight of our algorithm is a novel combinatorial approach to get around this issue and sample
random sparse matrices along with trapdoors.

We then ask if we can show asymptotic polynomial time hardness of sparse LWE. It would be
nice to show a result of the form: “if LWE is hard, then sparse LWE is also hard”. Such results are
not known even in the setting of LPN/sparse LPN which has received a lot of study. While we do
not have a fully general result here, in section 5, we show quite an interesting reduction.

Specifically, sparse LWE with sparsity parameter k, dimension n > k, sample complexity m,
prime modulus p and the noise parameter σ is harder than LWE with dimension k, sample com-
plexity m, modulus p and the noise parameter σ. Our reduction is oblivious to the error model
and also applies to the case of sparse LPN/LPN. Assuming subexponential hardness for LWE,
this establishes polynomial time hardness for sparse LWE provided k is polylogarithmic. We
leave showing such hardness results for constant k to future work.

2.2 Cryptanalysis

We perform some preliminary cryptanalysis of this new assumption and also suggest some con-
crete parameters based on that. We stand on the tall shoulders of a body of great work done in
analyzing security of sparse LPN [Gol00, CM01, Fei02, Ale03, MST03, AIK06, IKOS08, ABW10,
AOW15, AL16, KMOW17] as well as LWE [ACF+15, APS15, Pla18, ADRSD15, ACF+14].

In sLWE sparsity creates some interesting effects. For example, when m ≥ k
(
n
k

)
+ 1 we are

guaranteed to find at least k+1 samples supported on the same set of k variables, which might
be enough to distinguish a random vector from one close to the lattice. More generally, one can
potentially use an algorithm that breaks LWE for some small dimension whenever there exists a
set of t samples supported on less than t distinct variables, with t being sufficiently small. How-
ever, we believe that once k is large enough, we can release polynomially many samples without
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compromising security. Most of our cryptanalysis deals with the case of k = O(log n) so that we
do not have to worry about this effect.

We now discuss a few different types of attacks against sparse LWE. Some of our attacks are
inspired by existing algorithms for sparse LPN and LWE attacks, while others leverage the sparsity
of A more directly.

Sparse LPN Style Attacks We first observe that many of the attacks that apply to sparse LPN do
not apply in this case because our error vectors are dense as opposed to being sparse. In the main
attack that still might apply how it does for sparse LPN, one aims to find sparse vectors x ∈ Zm

p

so that Ax = 0. Such a t-sparse x can break sparse LPN if the error probability is less than 1
t . We

show that if we can find a t-sparse vector x like this for very small t, it can lead to attacks against
sparse LWE in certain cases. The idea is that one can multiply sA+ e with x to yield ex. Observe
that ex only touches upon t coordinates of small norm error vector e. If t is very small and the
error bound B is also very small so that Bt ≪ p one could potentially use brute force to iterate over
all the relevant choices of error to learn with high probability the error coordinates corresponding
to the t non-zero locations of x. To rule out such attacks we propose that Bt ≫ p. In section 7.1, we
show that when k = log n or above, t is linear in n as long as the sample complexity m = poly(n).
Hence if p ≪ Bt, this attack will either not apply or take exponential time. We believe that this
attack is easy to circumvent by choosing parameters carefully as it applies less obviously to sparse
LWE than sparse LPN. For typical settings we would work with polynomial sized modulus and
polynomial norm errors and so t only needs be moderately big. This can be easily ensured by
setting k to be bigger than some large enough constant.

Attacks Inspired by LWE We have a great body of work on LWE algorithms consisting of al-
gebraic [AG11], combinatorial [BKW03, ACF+15, Lyu05], lattice-reduction / geometric attacks
[LLL82, Sch87, SE94] and reductions for LWE [Reg05, Pei09, BLP+13]. We observe that naively
these algorithms do not exploit the sparsity structure of the coefficients directly that well. It is
however plausible that some algorithms fare marginally better with sparse matrices – we leave
practical investigation of this as an open question for future work to explore. We observe that the
natural way for LWE based attacks to exploit sparsity would be to identify what we call a dense
minor.

Given m samples of sparse LWE of dimension n and sparsity k, one could try to identify a
special set of L variables for L < n so that there are lots of LWE samples supported only over
those L variables. Indeed, then one might be able to meaningfully use an LWE solver on a smaller
dimension L. For instance if L = n/2 and say there are more than L log p samples supported over
those L variables, this means that one might be able to use an LWE solver that works over much
smaller dimension n/2 giving rise to exponential improvement over general LWE of dimension n
in the case of sparse LWE.

Nevertheless, in section 7.2 we show that when k = log n, if the number of samples is bounded
by some polynomial, with high probability there won’t exist any set of up to L variables with
≥ L+ 1 samples for some L = Θ(n).

We believe that this is a very natural way of leveraging sparsity. Typical attacks that require a
large number of samples generate these samples by taking small linear combinations of the given
samples. Such combinations would increase the sparsity rapidly (as the locality pattern would
form an expander) and therefore it is not clear how to leverage sparsity meaningfully using this
approach. Despite our serious efforts of exploiting sparsity more cleverly, we could not come up
with a method that does it better than finding a dense minor. Moreover, our condition is really
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mild. In our dense-minor model, we look for minors of size L with just L+1 samples (one more than
the dimension). Most attacks would need L log p samples or cL samples for some constant c > 1
for optimal running time. At L + 1 samples the secret may not even be information theoretically
determined.

Concrete Parameters from Dense Minor We suggest that our dense-minor attack gives a nice
way to capture all natural attacks that exploit sparsity. Then, relying on influential work on LWE
parameter estimation [APS15], we can suggest a nice method to estimate concrete parameters.
Namely, since concrete parameters are well understood thanks to highly impactful prior work
[Pla18] for LWE, based on the dense-minor model we can use it as a benchmark for finding pa-
rameters for sparse LWE. For example, for our required number of samples m, and the required
level of security (say 128 bits), one could use the Lattice Estimator [ACD+18] and learn dimension
n, error and the modulus parameters.

We compute a new dimension n′ by setting k appropriately (say around log n) and then com-
puting the expected size of its dense minor. We want to set n′ and k so that the dense minor is at
least of size n given m samples. We provide a script that computes the dimension n as a function
of n′, m and k based on the dense-minor model. By simply running this script for various values
of n′, we can find an appropriate dimension such that dense minors of size < n are highly unlikely
to exist. In section 7.4, we show concrete examples of this for improving SimplePIR [HHC+23].
We take their number of required samples, error probabilities and modulus and work out the di-
mension n′ such that sparse LWE with dimension n′ and m samples provides the same level of
security as their parameter settings (according to our conjecture) with a sparsity k that is much
smaller. Indeed, for a reasonable k ≤ 50, we get very comparable dimensions n′ close to n for all
settings of sample complexity considered in [HHC+23]. Typical dimensions for 128 bit security in
SimplePIR was suggested around n = 1024. This suggests around a factor of n/k ≈ 20 improve-
ment in the efficiency in certain aspects of the scheme (query generation, setup and update time).
Due to this, we believe that the sparse LWE assumption has great promise and must be analyzed
further.

Asymptotically, we conjecture when k ≈ log n, for polynomial number of samples m, sparse
LWE with dimension n′ = α · n for some constant α > 1 is concretely similarly hard as LWE with
dimension n (assuming the sample complexity, error and modulus remain the same).

Exploiting Special Structure We note that this work does not touch upon structured assump-
tions for sparse LWE such as circular sparse LWE or small secret LWE. We have observed that
some of these variants behave differently for sLWE as compared to LWE. We leave investigating
such assumptions to future work.

2.3 Applications

The hardness of sparse LWE implies very efficient homomorphic encryption schemes for low de-
gree computations. In particular, we obtain the first secret key Linearly Homomorphic Encryption
(LHE) schemes with constant O(1) or superconstant ω(1) storage and evaluation overheads, and
secret key homomorphic encryption for arbitrary constant-degree polynomials with the same level
of overheads. The schemes are extremely simple. For LHE, we simply consider the vanilla secret
key encryption scheme where ciphertexts have form

ctTi = (aTi , bi = sa+mi + e · p mod q) ,
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for which homomorphically evaluating a linear function specified by the coefficient vector l ∈ Zℓ
p

simply amounts to computing ct = CT · l mod q. The efficiency stems from the fact that as sparse
LWE samples, all vectors ai are k sparse. Therefore, each ciphertext can be stored in a succinct
form using (k log n + (k + 1) log q) bits. If the message space Zp satisfies log p = Ω(log q + log n),
the rate of encryption is O(k), which can be set to a constant if the total number of ciphertexts is
a bounded polynomial and superconstant for unbounded number of ciphertexts. To analyze the
evaluation overhead, we observe that the cost of one step addition ct + cti · li where cti is a fresh
(k + 1)-sparse ciphertext is linear in k in the Random Access Memory model: one just need to
perform (k + 1) random accesses into ct, costing (k + 1) log n time (the address length is log n),
followed by (k + 1) additions mod q. Comparing with the cost of performing one multiplication
and one addition mod p in the clear, the overhead is O(k) when p is sufficiently large as described
above. We illustrate that our efficient LHE can lead to performance improvement in the practical
Private Information Retrieval scheme SimplePIR based on LWE [HHC+23], reducing both the
server database update time and the client query time by a multiplicative factor of n/k.

The same phenomenon extends to evaluating constant degree polynomials. The key to small
overheads is keeping the sparsity of the ciphertexts small. We show that with some optimization
over the Brakerski-Gentry-Vaikuntanathan scheme [BGV12a], for computing a degree 2D mono-
mial, we can bound the sparsity of the ciphertexts by kO(2D)D2D , which is a constant when k is a
constant. Using the BGV scheme directly would lead to sparsity kO(2D)(log q)2

D
, which is a large

polylog. We avoid this by using a gadget vector g that contains powers of a large base, namely
p, instead of 2. Another issue is that the BGV modulus reduction performs rounding on the ci-
phertexts and requires the secret to be short, in order to bound the error introduced by rounding.
When using sparse LWE, we would like to rely on large secrets, since small secret sparse LWE
is not equivalent to sLWE. Instead, we perform flipped modulus reduction – rounding the secret
instead of the ciphertexts.

We describe our LHE and constant-degree HE schemes based on sparse LWE, in Section 8.1
and Section 8.2 respectively. We also give comparisons with other lattice-based schemes proposed
in the literature. In short, to the best of our knowledge, no prior HE scheme achieves constant or
super-constant overhead, even for the simplest linear evaluation. Their overheads usually grows
at least linearly with λ, with the exception of [GHS12] that achieves fully homomorphic encryption
with (large) polylogarithmic overheads. They are also limited to quasipolynomially large modu-
lus, whereas our scheme can handle any message space Zp that is not too small log p = Ω(log n).

3 Preliminaries

Let N = {1, 2, . . . } be the natural numbers, and define [a, b] := {a, a + 1, . . . , b}, [n] := [1, n]. Our
logarithms are in base 2. For a finite set S, we write x ← S to denote uniformly sampling x from
S. We denote the security parameter by λ; our parameters depend on λ, e.g. n = n(λ), and we
often drop the explicit dependence. We abbreviate PPT for probabilistic polynomial-time. Our
adversaries are non-uniform PPT ensembles A = {Aλ}λ∈N. We write negl(λ) to denote negligible
functions in λ. Two ensembles of distributions {Dλ}λ∈N and {D′λ}λ∈N are computationally indis-
tinguishable if for any non-uniform PPT adversary A there exists a negligible function negl such
that A can distinguish between the two distributions with probability at most negl(λ). For any
binary outcome adversary A we define its distinguishing advantage in distinguishing {Dλ}λ∈N
and {D′λ}λ∈N as:

| Pr
x←Dλ

[Aλ(1
λ, x) = 1]− Pr

x←D′
λ

[Aλ(1
λ, x) = 1]|
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We will use matrices and vectors throughout. Both of them will be represented in boldface letters.
Matrices are represented using capital bold letters (such as A,B) and vectors using lowercase bold
letters (such as a,b). To refer to ith index of any vector v, we denote it by v[i]. For matrices, we
denote that by A[i, j].

3.1 Lattice Preliminaries

A lattice L is a discrete subgroup of Rm, or equivalently the set

L(b1, . . . , bn) =

{
n∑

i=1

xibi : xi ∈ Z

}
of all integer combinations of n linearly independent vectors b1, . . . , bn ∈ Rm. Such bi’s form a
basis of L.

The lattice L is said to be full-rank if n = m. We denote by λ1(L) the first minimum of L,
defined as the length of a shortest non-zero vector of L.

Definition 3.1 (Successive Minima). Given a lattice L and an integer 1 ≤ k ≤ n, define the k-th
successive minimum λk(L) as the smallest possible length of a set of k linearly independent vectors in L.

Equivalently, λk(L) is the smallest value r such that a ball of radius r (centered on the origin)
contains k linearly independent lattice points.

For a rank n lattice L ⊂ Rn, the dual lattice, denoted L∗, is defined as the set of all points in
span(L) that have integer inner products with all lattice points,

L∗ = {w ∈ span(L) : ∀y ∈ L, ⟨w,y⟩ ∈ Z} .

Similarly, for a lattice basis B = (b1, . . . , bn), we define the dual basis B∗ = (b∗1, . . . , b
∗
n) to be the

unique set of vectors in span(L) satisfying ⟨b∗i , bj⟩ = 1 if i = j, and 0, otherwise. It is easy to show
that L∗ is itself a rank n lattice and B∗ is a basis of L∗. Given a lattice B = (b1, . . . , bn), we denote
∥B∥2 = max

i
∥bi∥.

An important property of the dual lattice is the following transference theorem, shown in
Theorem 2.1 of [Ban93].

Lemma 3.1 (Transference Theorem). For any n-rank lattice L, 1 ≤ λ1(L) · λn(L∗) ≤ n.

Discrete Gaussian and Related Distributions For any s > 0, define

ρs(x) = exp(−π∥x∥2/s2)

for all x ∈ Rn. We write ρ for ρ1. For a discrete set S, we extend ρ to sets by ρs(S) =
∑

x∈S ρs(x).
Given a lattice L, the discrete Gaussian DL,s is the distribution over L such that the probability of a
vector y ∈ L is proportional to ρs(y):

Pr
X←DL,s

[X = y] =
ρs(y)

ρs(L)
.

Using standard sub-Gaussian tail-bounds, one can show we can show the following claim.

Claim 3.1. Let m ∈ N, σ > 0, then it holds that:

Pr
e←DZm,σ

[∥e∥ > mσ] < exp(−Ω̃(m)).

We define the truncated discrete Gaussian as a distribution statistically close to discrete Gaus-
sian where one samples the vectors from discrete Gaussian conditioned on their norm being upper
bounded by mσ.
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Trapdoor Sampling We will need the following definition of a lattice trapdoor [GPV08b, MP13,
Vai20]. For A ∈ Zn×m

p , we define the rank m lattice

L⊥(A) = {z ∈ Zm : Az = 0 (mod q)} .

A lattice trapdoor for A is a set of short linearly independent vectors in L⊥(A).

Definition 3.2. A matrix T ∈ Zm×m is a β-good lattice trapdoor for a matrix A ∈ Zn×m
p if

1. AT = 0 (mod p).

2. For each column vector ti of T , ∥ti∥∞ ≤ β.

3. T has rank m over R.

Theorem 3.1. [GPV08b, MP13, Vai20] There is an efficient algorithm that, on input 1n, p,m ≥ 10n log p,
outputs a matrix A distributed statistically close to uniformly on Zn×m

p , and a O(m)-good lattice trapdoor
T for A.

We also observe that due to the transference theorems for any matrix A ∈ Zn×m
p a lower bound

on λ1(L) implies an upper bound on λm(L⊥).

Corollary 3.1. (of Transference Theorem 3.1) Given any A ∈ Zn×m
p , if λ1(L) ≥ β, then λm(L⊥) ≤ m · pβ .

Here L = L(A) and L⊥ = L⊥(A).

Proof. Recall that the transference theorem states:

1 ≤ λ1(L) · λm(L∗) ≤ m,

where L∗ is the dual of L. Observe that L⊥ = pL∗ and so λm(L∗) = λm(L⊥)
p . The claim follows

from using the right inequality using the lower bound on λ1(L) ≥ β.

4 Sparse Learning with Error

We now formally define our sparse LWE assumption. Our assumption is exactly identical to LWE
with a crucial difference that each coefficient vector is exactly k-sparse for some k that for the most
part should be thought of as a small function of the dimension n (ideally a constant or polyloga-
rithmic in n).

Definition 4.1 (Coefficient DistributionDcoeff,n,k,p). For a parameter n ∈ N, and a k = k(n), a modulus
p, we define the distribution Dcoeff,n,k,p that first samples a uniformly random set or a “locality pattern"
S ⊂ [n] so that S has exactly size k (we abuse notation to denote this by saying S ←

(
n
k

)
). Then, the

distribution samples a random vector as follows. Sample a ∈ Zn
p so that each coordinate a[i] is set to 0 if

i /∈ S. Otherwise a[i] is chosen at random from Zp.

Definition 4.2 (Locality Set). For a modulus p, and any vector v ∈ Zn
p we denote by the locality set of v

(denoted as LocSet(v)) as a set of indices S ⊂ [n] so that v[i] is non-zero for every i ∈ S.

Definition 4.3 (Sparse LWE Distinguishing Problem). For an integer dimension n, sparsity parameter
k, a sample complexity m, modulus p, and noise parameter σ = σ(n) we define the sLWEn,k,m,p,σ problem
as a distinguishing problem. In the first distribution, we generate m sparse LWE samples as follows:
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• Sample m coefficient vectors a1, . . . ,am where each ai ← Dcoeff,n,k,p.

• Sample a secret vector s← Zn
p .

• Sample m noise values from {ei ← DZ,σ}i∈[m].

• The first distribution consists of {(ai, bi = ⟨s,ai⟩+ ei mod p)}

The second distribution is exactly the same except {bi}i∈[m] are randomly sampled from Zp.

We also define the LWE distinguishing problem to be identical to a sparse LWE distinguishing
problem as above except that the vectors ai are chosen randomly from Zn

p as opposed to being
sampled as sparse vectors.

Definition 4.4 (Sparse LWE Assumption). Let k = k(n) ∈ [0, n], p = p(n) : N→ N, σ = σ(n) : N→
N, m = m(n) : N→ N be efficiently computable functions (computable in time polynomial in n).

We say that the sparse LWE assumption with respect to sparsity k(n), modulus p(n), noise parame-
ter σ = σ(n) and sample complexity m(n) holds, denoted as the sLWEn,k,m,p,σ assumption, if for every
non-uniform p.p.t adversaryA, the distinguishing advantage in winning the sLWEn,k,m,p,σ distinguishing
problem (Definition 4.3) is bounded by some negligible function negl(n).

We say that the sparse LWE assumption with respect to sparsity k(n), modulus p(n), noise parameter
σ = σ(n) and unbounded polynomial number of samples holds, denoted as the sLWEn,k,p,σ assumption, if
the above condition holds for every non-uniform p.p.t adversary A, and every polynomial m(n).

We say that the subexponential sLWEn,k,m,p,σ (respectively sLWEn,k,p,σ) assumption holds if there exists
a constant ϵ ∈ (0, 1), such that, every non-uniform probabilistic poly(2n

ϵ
)-time adversary A (and respec-

tively every polynomial m(n)), the distinguishing advantage in winning the sLWEn,k,m,p,σ distinguishing
problem is bounded by 1/ poly(2n

ϵ
).

Remark 4.1. For notational brevity, we will also denote sparse LWE samples as (A, sA+e mod p)
where the coefficient vectors {ai} form the columns of the matrix A ∈ Zn×m

p . s is interpreted to
live in Z1×m

p and the error vector e is in Z1×m.

4.1 Minimum Distance of the Sparse LWE Lattice

We now analyze bounds on λ1(L) for the lattice:

L(A) = {xA+ pZm : x ∈ Z1×n
p }.

We compute these bounds as a function of dimension n, sparsity parameter k = k(n), sample
complexity m = m(n) and the modulus p = p(n). These bounds will be useful for identifying
when short lattice trapdoors for A might exist. We will also use this calculation for understanding
the running time of various lattice-reduction based attacks on sparse LWE.

We start by recalling the minimum distance in the case when matrix A is randomly chosen
from Zn

p (in other words, it corresponds to plain LWE). In this case, it can be shown that as n

grows, the minimum distance λ1(L) is roughly around p1−n/m for m ≫ n (up to polynomial
factors, which we ignore). When m = Ω(n log p), this is roughly p.

For sparse LWE, since the matrix has a lot of zeros, one would expect the minimum distance
to be smaller. However, we show that for interesting parameter regimes (i.e. with k > log n,
and p being polynomial in the size n, and for polynomial m) the minimum distance with high
probability for the case of sparse LWE is also around p. We give a lower-bound on the minimum
distance.

Our main result is the following:
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Theorem 4.1. Let A be a n ×m sparse matrix each of whose columns are sampled i.i.d. from Dcoeff,n,k,p.
With probability 1−o(1), the length of the shortest nonzero vector in L(A) is Θ(p) assuming m ≥ 8n log n
and p = poly(n).

We do this calculation in two steps. First we prove that if the sparse matrix A satisfies a com-
binatorial property regarding the positions of non-zero coordinates, then with high probability
over the choice of those non-zero coordinates sampled randomly from Zp, the minimum distance
is large.

We start by defining the combinatorial property below.

Definition 4.5. We say that a matrix A ∈ Zn×m
p is c-row expanding if the following holds. Let the rows

of A be v1, . . . ,vn ∈ Zm
p . We define S1, . . . , Sn to be the sets of indices ⊂ [m] that correspond to non-zero

entries in v1, . . . ,vn respectively. Then, we require that for every non-empty T ⊆ [n] of size t,∣∣∣∣∣⋃
i∈T

Si

∣∣∣∣∣ > c · t

Since each row is supported roughly at km
n columns, we would expect c to be roughly km

n for
small t. For t closer to n, this should behave more like m

n . Nevertheless, we show that minimum
distance calculation reduces to understanding this combinatorial property.

Theorem 4.2. Let A ∈ Zn×m
p be chosen so that:

• It is c-row expanding for some c > 1.

• Conditioned on that, the non-zero entries are randomly chosen from Zp.

Then, with probability 1− o(1), the size of the smallest vector in the lattice is Ω
(

p1−
1
c

n1/c

)
Proof. We will prove a slightly stronger result and show that the stated lower bound actually holds
for ∥λ1(L(A))∥∞. The theorem statement then follows since the 2-norm is always at least as much
as the infinity norm.

Fix a coefficient vector x ∈ Zn
p . If we consider the lattice {xA + pZm}, it is easy to see that its

shortest vector can be obtained by reducing each coordinate of xA modulo p so that they lie in
[−p/2, p/2]. We start by calculating the probability that the infinity norm of this vector is less than
B for an arbitrary B < p/2, where the probability is taken over the randomness of A.
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Pr
A

[∥λ1({xA+ pZm})∥∞ < B]

=Pr
A

 ∧
j∈[m]

∑
i∈[n]

x[i]A[i][j] mod p < B


=Pr

A

 ∧
j∈[m]

(∑
i∈T

x[i]A[i][j] mod p < B

) T ⊆ [n] is the set of indices where x[i] ̸= 0

=Pr
A

 ∧
j∈N(T )

(∑
i∈T

x[i]A[i][j] mod p < B

) N(T ) ⊆ [m] is the set of columns of A spanned by T

=
∏

j∈N(T )

(
Pr
A

[∑
i∈T

x[i]A[i][j] mod p < B

])

=

(
B

p/2

)|N(T )|

≤
(

B

p/2

)c|T |
since A is c-row expanding

Let us denote |T | by t. If we fix t (the number of nonzero entries of x), we have
(
n
t

)
choices for T

and pt choices of x for each T . Therefore, taking an union bound over all 1 ≤ t ≤ n, we obtain

Pr
A

[
∥λ1({xA+ pZm : x ∈ Zn

p})∥∞ < B
]

=Pr
A

[∨
x

(∥λ1({xA+ pZm})∥∞ < B)

]
≤
∑
x

Pr
A

[∥λ1({xA+ pZm})∥∞ < B] By the union bound

≤
∑
x

(
B

p/2

)c|T |
T ⊆ [n] is the set of indices where x[i] ̸= 0

=
n∑

t=1

(
n

t

)
pt
(
2B

p

)ct

=

(
(2B)c

pc−1
+ 1

)n

− 1 By the binomial theorem

The above expression is asymptotically subconstant as long as

(2B)c

pc−1
= o

(
1

n

)
⇔ B = o

(
p1−1/c

n1/c

)
Therefore, we can conclude that with probability 1−o(1), the shortest nonzero vector of the lattice
L(A) is Ω

(
p1−1/c

n1/c

)
.

We then show that random matrices sampled from the coefficient distribution are log n-row
expanding with high probability.
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Theorem 4.3. Let A ∈ Zn×m
p be a matrix whose columns are sampled independently from the coefficient

distribution Dcoeff,n,k,p. If the number of samples, sparsity parameter and the dimension satisfy m >
4(1 + 1/k)n log n, A is log n-row expanding with probability 1− o(1).

Proof. We will bound the probability that A is not log n-row expanding. In that case, there must
be some T ⊆ [n] with |T | = t such that the rows of A indexed by T span at most t log n columns.
Let us calculate the probability of this event for some fixed T .

For each column i, we define the indicator random variable Ci which is 1 if it is spanned by
T and 0 otherwise. Since the locality patterns of each column are chosen independently, these
are i.i.d. Bernoulli random variables with expectation 1 −

((
n−t
k

)
/
(
n
k

))
. We are interested in the

probability of their sum not exceeding t log n. We can get a fairly tight bound by applying the
Chernoff bound.

First, we will show that the expected number of columns spanned by T is more than 4t log n.

E

[
m∑
i=1

Ci

]
= mE [Ci]

= m

(
1−

(
n− t

k

)/(
n

k

))
= m

(
1− (n− t)(n− t− 1) · · · (n− t− k + 1)

n(n− 1) · · · (n− k + 1)

)
≥ m

(
1−

(
n− t

n

)k
)

= m

(
1−

(
1− t

n

)k
)

≥ m

(
1− 1

1 + tk/n

)
=

mtk

n+ tk
≥ t · mk

(k + 1)n

= t · m

(1 + 1/k)n
≥ 4t log n

We can now use Chernoff bound to bound the probability that the above quantity is less than
a fourth of its expectation.
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Pr [T spans at most t log n columns]

= Pr

[(
m∑
i=1

Ci

)
≤ t log n

]

≤ Pr

[(
m∑
i=1

Ci

)
≤
(
1− 3

4

)
E

[
m∑
i=1

Ci

]]

≤ exp

(
−9m

32

(
1−

(
n− t

k

)/(
n

k

)))
≤ exp

(
− 9

32
·m

(
1−

(
1− t

n

)k
))

≤ exp

(
− 9

32
· (4t log n)

)
≤ n−9t/8

Observe that we can choose T in
(
n
t

)
ways. Therefore, the union bound implies that

Pr [A is not log n-row expanding]

≤
n∑

t=1

(
n

t

)
n−9t/8

=

(
1 +

1

n 8
√
n

)n

− 1 by the binomial theorem

The above expression is asymptotically subconstant since

1

n 8
√
n
= o

(
1

n

)
This concludes our proof that the probability of A being log n-row expanding is 1− o(1).

We now have all we need to prove our main result.

Proof of theorem 4.1. We just put together the above two theorems. Since (1 + 1/k) can’t exceed 2,
setting m > 8n log n satisfies the condition of theorem 4.3. Therefore, under the parameter regime
of theorem 4.1, A is log n-row expanding with probability 1 − o(1). Conditioning on this row
expansion being true, theorem 4.2 implies that

λ1(L(A)) = Ω

(
p
1− 1

logn

n
1

logn

)
= Ω

(
p
1− 1

logn

)
which is only a constant factor away from p since p = poly(n).
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5 Reduction from LWE to Sparse LWE

5.1 Overview

We now show that given an oracle that breaks sparse LWE of dimension n and sparsity k with m
samples, we can break LWE of dimension k with m samples as long as the modulus p is a prime.

We get as input A,b = sA + e, and we will effectively convert it to a tuple of the form
A′,b′ = s′A′ + e with the same error (if our input b is sampled randomly instead of from the
LWE distribution, our reduction will keep it randomly distributed). The distribution for (A′,b′)
will be identical to that of average-case sparse LWE. The nice thing about our reduction is that it
does not manipulate the error e and therefore also applies to the setting of learning parity with
noise.

We now describe the conversion procedure. Our rough idea is that given a k×m dense matrix
A we transform each column into a sample in a related matrix (that we shortly show how to build)
A′ where A′ is a n × m sparse matrix with k nonzero entries per column. So far we keep the b
vector unchanged; it can be written as b = zA′ + e. At this point, the secret z is not uniformly
random. But we can randomize it by adding vA′ to b for a randomly chosen v. The new secret
v + z is random and independent of A′.

We now describe the transformation from A to A′. We want to ensure that the equation CA′ =
A holds for some k × n matrix C. This would allow us to write b = sA + e = (sC)A′ + e. Now
if we set A′ randomly and try to find C, this might be hard. Therefore, we do the reverse. We
first fix C and then sample only the locality pattern S1, . . . , Sm at random from

(
n
k

)
. Then, we

choose the non-zero coordinates given by Si so that CA′[i] is equal to A[i]. This can be done since
we can view the above matrix equation as a system of linear equations over Zp with k variables
corresponding to the nonzero entries of A′[i] and k equations corresponding to the k rows of A[i].
We will choose C to be a k × n Vandermonde matrix which has the property that any k columns
are linearly independent. This allows us to guarantee the system of equations described above
correspond to an invertible matrix, and is hence solvable.

We have to show that the above process yields a random A′. Observe that each column A′[i]
can be described by its locality pattern, and the sequence of nonzero entries in the indices corre-
sponding to the locality pattern. Ai is random means the nonzero entries of A′i must be random.
We chose the locality pattern independently at random to begin with. Therefore, the whole col-
umn A′[i] is distributed uniformly in Dcoeff,n,k,p and is independent of the other columns.

5.2 Formal Description

Theorem 5.1. Assume there exists a PPT algorithm which solves average-case sLWEn,k,m,p,σ instances in
time T with success probability γ, where the modulus p is a prime and the number of samples m < p. Then
we can solve average-case LWEk,m,p,σ instances in time T +O(n3m log p) with success probability γ.

Our reduction does not preserve dimension. If we choose k to be small (constant or logarithmic
in n), we end up with an algorithm for solving very low dimensional LWE which is anyway
easy. On the other hand, if k is very large (say Θ(n)), we conclude that sLWE is very hard if the
columns are not too sparse (only a constant fraction of each column vector is required to be zero).
The intermediate range, where k is polylogarithmic or polynomial in n, yields more interesting
conclusions.
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Algorithm B
Input:

• A PPT algorithm A for solving sLWEn,k,m,p,σ

• A matrix A← Zk×m
p

• A vector b which is either sampled uniformly from Z1×m
p , or by evaluating b = sA+ e

where s← Z1×k
p , e← D1×m

Z,σ

Objective: Determine which of the above distributions b is sampled from.
Algorithm:

1. Let C← Zk×n
p be the Vandermonde matrix whose entries are defined as

C[i][j] := ji mod p

2. Randomly select the locality pattern for a matrix with n rows and m columns. Formally,
we randomly sample m subsets {Si}i∈[m] of [n] each of size k. The elements of Si corre-
spond to the row indices which may contain a nonzero element in column i.

3. Initialize a matrix A′ of size n×m to all zeros.

4. For i := 1, 2, . . . ,m :

4.1. Define D to be the square matrix of size k obtained by concatenating the columns
of C indexed by Si. Formally, the entry in row u, column v of D is

D[u][v] := C[u][Si[v]] = (Si[v])
u mod p

4.2. Let A[i] be the ith column of A. Define r := D−1A[i]. Fill in the nonzero entries of
column i of A′ with the entries of r. Formally, set

A′[Si[j]][i] := r[j] ∀1 ≤ j ≤ k

5. Sample v← Z1×n
p

6. Return A (A′,vA′ + b)

We first prove a few properties of B.

Lemma 5.1. CA′ = A

Proof. If we denote the ith columns of A and A′ by t and t′ respectively, we just need to show that
Ct′ = t. Since t′ is mostly full of zeros except the indices in Si, we can express Ct′ as Dr where

r[j] := A′[Si[j]][i] & D[u][v] := C[u][Si[v]]

The desired equality now follows directly from line 4.2.

Lemma 5.2. The matrix D defined in line 4.1 is invertible.
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Proof. Observe that regardless of what Si is, D always satisfies D[i][j] = xij for some distinct
values xj . This is a square Vandermonde matrix; its determinant is given by

∏
i<j(xj − xi). As

long as each column uses a different xj , this determinant is nonzero and hence D−1 exists. By
construction of C, each column uses a different x since the number of columns m is less than p.
Hence, regardless of which columns of C are chosen to construct D, we always have xi ̸= xj for
any i ̸= j.

Lemma 5.3. The columns of A′ are independent and follow the coefficient distribution Dcoeff,n,k,p.

Proof. The locality pattern of A′ is chosen randomly, and the nonzero values of each column are
obtained by the formula D−1t where t ← Zk

p . Even though the D used for different columns are
not independent, the ts are all i.i.d and hence so are the products D−1t.

Proof of theorem 5.1. We will consider the two possible ways of sampling b separately. Let us first
handle the case where b ← Z1×m

p . Since A and b are independent, so are A′ and b. Since b is
uniformly random and independent of vA′, so is the sum b+ vA′. Therefore the two inputs to A
are independent and both follow the right distribution for sLWEn,k,m,p,σ where the target vector is
random. Hence in this case A succeeds with probability γ.

Now consider the other sampling procedure for b.

CA′ = A =⇒ b = sA+ e = sCA′ + e =⇒ vA′ + b = s′A′ + e

where
s′ = sC+ v

We will now argue that the input to A, (A′,vA′ + b) has exactly the same distribution as
expected by average-case sparse LWE oracle. A sparse LWE instance where we follow the second
sampling procedure for the target vector can be characterized by the matrix, the secret vector and
the error vector. The error remains unchanged in the reduction. The new secret is uniformly
random and independent of A′ since v is chosen independently uniformly at random. The matrix
is sampled from Dm

coeff,n,k,p. Hence A succeeds with probability γ in this case as well.
Therefore, the failure probability of B is exactly the same as that of A.

Remark 5.1. We needed p to be a prime in order for Zp to be a field. This allowed us to invert
matrices.

Remark 5.2. We need m to be large enough in order forA to have any chance of solving sLWE. This
is, however, not a problem. As long as we start with m > k log p, it is always possible to generate
more LWE samples by taking small linear combinations. We use this procedure to modify the
input and increase m, if necessary, before we begin to run B.

Remark 5.3. Analogously to sLWE, it is possible to define a sparse variant of the LPN problem
[ADI+17b]. Our reduction works exactly as is in that setting, since we don’t depend on or change
the error distribution in any way. Thus a PPT algorithm for sLPNn,k,m,p,σ implies a PPT algorithm
for LPNk,m,p,σ.
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6 Trapdoor Sampling for Sparse LWE

6.1 Overview

We are going to present an algorithm for sampling pairs of matrices A,T where A is a n×m sparse
matrix and T is a trapdoor for A. The distribution of each column of A should be statistically close
to independent samples from Dcoeff,n,k,p.

Our approach stands on the shoulders of amazing prior work of [MP12]. Recall that they
showed how to sample a matrix V ∈ Zn×m

p for m = O(n log p) that is statistically close to random
along with a full-rank square matrix TV of norm O(m) in the nullspace of V (TV can be converted
to a basis generically as shown by lemma 7.1 of [MG02] to a basis for L⊥(V)). The idea is that first
we sample a matrix A ← Zn×m′

p for m′ > 2n log p at random. Then we sample a random binary
matrix R← {0, 1}m′×n⌈log p⌉, and consider V = [A|AR+G] where G is the gadget matrix defined
as In ⊗ g where g = [1 2 4 . . . 2⌈log p⌉−1].

Notice that there is a small-norm square matrix D which satisfies VD = [X|G]. In particular,
we can pick

D :=

[
I −R
0 I

]
This is enough to obtain a short trapdoor; consider the matrix

E :=

[ 0 I
TG −G−1(X)

]
where TG is a trapdoor for G (1)

It is easy to check that the product DE is short (since both D and E have low norm), has full rank
(since both D and E are nonsingular), and lies in the nullspace of V.

Note that this approach fails completely for sparse matrices. Even if we sample A to be sparse,
AR will not be sparse anymore. Our idea is to start exactly as in the step above to construct V.
However, this matrix is not sparse at all. We come up with a procedure to “sparsify ” V to obtain
a wider k-sparse matrix C. We take each column of V and replace it by a n×n log n sparse matrix
whose columns add up to the column we are replacing.

We construct a matrix C of the form [C1|...|CL] as follows (L is the width of V).

• Each column of Ci has a random locality pattern chosen from
(
n
k

)
.

• The columns of Ci sum up to the ith column vi of V.

• Subject to the first two constraints Ci is random.

Such a C can be easily found provided the width of each Ci is large enough (n log n suffices). At
this point, C is from the right distribution. Its locality pattern is randomly chosen, and because
the distribution of V is statistically close to random, so is the distribution of C.

This C is indeed our matrix. We will now show how to construct the trapdoor. We try to find
a small-norm full rank square matrix D such that CD has the form [X|G]. Notice that if we can
find this D, we are already done (similar to [MP12]). We again use the same E from eq. (1). The
trapdoor we are looking for is the product DE, since it satisfies the following 3 properties:

• CDE = 0

• DE has small norm.

• The columns of DE are linearly independent.
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Let us now describe how we can find D. Recall that we started with a matrix V such that

V ·
[
−R
I

]
= G

By construction, we also have Ci[1 1 · · · 1]T = Vi for each column vi of V. Therefore, for any
matrix U, we can write VU = C(U⊗ [1 1 · · · 1]T ) So now our last equation gives us

C ·


[
−R
I

]
⊗


1
1
...
1


n log n

 = G

So now we have found a matrix F which satisfies CF = G, which was the difficult part. To
extend it so that we can obtain CD = [X|G], we just choose an arbitrary full rank matrix not in
the column span of F to concatenate to the left of F until the resulting matrix becomes square. We
can do this by picking columns from the identity matrix until there is a linear dependence.

6.2 Formal Description

Theorem 6.1. There is a PPT algorithm that on input 1n, p,m ≥ 3n2 log p log n, k > 1 outputs a matrix
A distributed statistically close to Dm

coeff,n,k,p, and a O(m)-good lattice trapdoor T for A with success
probability 1− o(1).

This is an analog of theorem 3.1 for sparse LWE. Note that our algorithm requires a much
higher number of samples as compared to the regular LWE trapdoor sampling process, O(n2 log n)
instead of O(n). We will follow a very similar approach to [MP12] in our construction.
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Algorithm SAMP

1. Define ℓ := m
n logn − ⌈n log p⌉

2. Let G := In ⊗ g where g = [1 2 4 . . . 2⌈log p⌉−1].

3. Sample matrices A← Zn×ℓ
p and R← {0, 1}ℓ×⌈n log p⌉

4. Define V := [A|AR+G]. We will denote the ith column of V by vi.

5. For i ∈ [1, 2, . . . , ℓ+ ⌈n log p⌉] :

(a) Sample a n×n log n sparse matrix Ci (with k nonzero entries in every column) with
a random locality pattern such that the columns sum up to vi. If this is impossible
because one or more rows of Ci are all 0s, abort.

6. Define C := [C1|C2| · · · |Cℓ+⌈n log p⌉]

7. Let D ∈ {−1, 0, 1}m×m be a full rank square matrix such that CD = [X|G]. We claim
such a matrix is easy to find (see lemma 6.2 for proof).

8. Define the G−1 function and trapdoor TG for G the same way as in [MP12].

9. Define

E :=

[ 0 I
TG −G−1(X)

]
10. Return the sparse matrix C and the trapdoor DE.

We will first prove two properties of the above algorithm.

Lemma 6.1. SAMP aborts with probability o(1).

Proof. Our procedure only aborts if one of the Ci matrices sampled in step 5a contains at least
one row with all zeros. Because the locality pattern is chosen randomly, the probability of any
particular row being all zeros is(

1− k

n

)n logn

≤ exp(−k log n) < nk

Applying an union bound over all rows, we can conclude that the abort probability is at most
n−(k−1) = o(1).

Lemma 6.2. There is an efficient algorithm to find D in step 7 of SAMP .

Proof. Denote the n log n× 1 all-1s vector by h. Observe that step 5 ensures that Cih = vi for all i.
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Therefore, the following must hold for any matrix U with ℓ+ ⌈n log p⌉ = m/(n log n) rows:

C · (Im/(n logn) ⊗ h) = V

=⇒ VU = (C · (Im/(n logn) ⊗ h)) ·U
= C · ((Im/(n logn) ⊗ h) ·U)

= C · ((Im/(n logn) ⊗ h) · (U⊗ [1]))

= C · ((Im/(n logn) ·U)⊗ (h · [1]))
= C(U⊗ h)

By construction,

V ·
[
−R
I

]
= G =⇒ C ·

([
−R
I

]
⊗ h

)
= G

We have thus found a full rank matrix F whose infinity norm is 1, whose columns are inde-
pendent, and which satisfies CF = G. We can now try to construct D = [S|F] where S ∈
{0, 1}m×(m−⌈n log p⌉). The columns of S are chosen from the columns of the identity matrix such
that no linear dependence is formed. In other words, we can start with the matrix [Im|F] and then
iteratively remove n log p columns from the Im component which were in the column span of the
other remaining columns.

Proof of theorem 6.1. First, we will show that DE is a valid trapdoor.

• It is a square matrix since both D and E are.

• D is full rank by construction, and E is full rank since I and TG are both full rank. Therefore
their product is also full rank.

• Recall that GTG = 0 and GG−1(X) = X by construction. Therefore, the product

C(DE) = (CD)E = [X|G]E = [GTG|X−GG−1(X)] = 0

So the matrix DE is in the nullspace of C.

• Both TG and G−1(X) have infinity norm at most 2. Therefore, ∥E∥∞ ≤ 2. We also have
∥D∥∞ = 1 by construction. Hence their product has infinity norm at most 2m.

We will now argue that C is statistically close toDm
coeff,n,k,p. Note that it suffices to show that V

is statistically close to uniform, since each Ci is chosen independently fromDn logn
coeff,n,k,p subject only

to the constraint that their columns sum to vi. This follows from a straightforward application of
the leftover hash lemma since ℓ ≥ 2n log p.

Remark 6.1. Our algorithm requires a much higher number of samples as compared to the regular
LWE trapdoor sampling process, O(n2 log n) instead of O(n).
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7 Cryptanalysis

7.1 Sparse Vectors in the Kernel

One potential approach to attack sparse LWE could be (in the same vein as sparse Learning Parity
with Noise) finding sparse vectors x ∈ Zm×1

p (not necessarily small) so that Ax = 0. If this is true,
given a t sparse x and a sLWE tuple (A,b = sA+ e mod p), one can observe that:

b · x = e · x.

If the error coordinates for e lie in [−B,B] for some B and t is sufficiently small so that (2B +
1)t ≪ p, then this will give an attack that runs in time roughly BO(t). The idea is that since x is t
sparse, the product e ·x touches upon only t coordinates of e. There are 2B+1 possible choices for
each coordinate. One could brute-force and check if there is a setting that yields the inner product
b · x. One can show that for a typical x only one choice of e will agree with p when (2B + 1)t

is sufficiently smaller than p. To rule out such attacks we ask for what sparsity t does there exist
solutions to Ax = 0. One can show a naive bound by lifting off analysis for the sparse LPN
assumption. Such analysis has been done for sparse LPN over Z2 that can be helpful here.

The above attack can be significant if there exist very sparse vectors in the kernel. For instance,
if t is a constant and B is polynomial, this attack could be implemented in polynomial time. Notice
that when the number of samples m ≥ k

(
n
k

)
+ 1, by pigeonhole principle there must exist k + 1

coefficient vectors supported on the same set of k input variables. Since there are at least k + 1
vectors supported on the same set of k variables they must be linearly dependent. This allows us
to find a t-sparse vector in the nullspace of A for t ≤ k + 1.

Inspired by the literature on random k-XOR in the field of average case complexity, we analyze
a certain graph expansion condition corresponding to the locality set of the column vectors of A.
If this condition is met, we would be guaranteed with high probability that t is not too small. As
we will describe later, this condition turns out to be conservative.

7.1.1 Locality Graph Expansion

Our main theorem is the following:

Theorem 7.1. Let A be a sLWEn,k,m,p,σ matrix. With probability 1− o(1), there does not exist any vector
x in the kernel of A which has L or fewer nonzero entries in either of the following cases:

• k ≥ 3 is a constant, m = nδ k
2 for some δ < 1, and L = Θ(n1−δ).

• k = poly(log n), m = poly(n), and L = Θ(n)

We observe that if Ax = 0 for a t-sparse x, the following holds. Let us denote by S1, . . . , Sm ⊂
[n] the locality sets (see Definition 4.2) corresponding to the column vectors of A ∈ Zn×m

p .
Observe that if there exist a t sparse x so that Ax = 0 this necessarily means that the following

expansion property is satisfied: ∣∣∣∣∣∣
⋃

i:x[i] ̸=0

Si

∣∣∣∣∣∣ < k · t
2

. (2)

This is because each column of A is exactly k sparse. A t sparse combination that yields the all
0 must cancel any variable that appears in the combination. Thus, each variable must appear
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at least twice. We also state that this condition is a bit conservative. It is plausible that each
variables appear multiple times yet the column vectors are linearly independent. This might be
more prominent for large p’s. We discuss this issue shortly.

We now compute an upper-bound on the probability of the above condition (Equation 2 being
violated) as a function of n, k,m (note that the condition is independent of p). From this we can
get the desired tradeoffs for n, k,m. This is a routine calculation.

Lemma 7.1. For n,m, k and t > k if the sets S1, . . . , Sm are chosen at random from
(
n
k

)
then the proba-

bility that the condition in Equation 2 is violated is bounded by fSPARSE(k, n,m)t where fSPARSE(k, n,m) =

e1+3k/2 · (k/2)k/2 · m·tk/2−1

nk/2 .

Proof. We observe that there are
(
m
t

)
ways of sampling t sets, and

( n
kt
2

)
ways of choosing indices

in [n]. Once t sets are selected, the probability that each set is supported only over the chosen kt
2

indices is bounded by (kt/2k )
(nk)

.

The required probability is upper bounded by (using a union bound):

(
m

t

)
·
(
n
kt
2

)
·

((kt/2
k

)(
n
k

) )t

We now use the naive Binomial approximation
(
a
b

)b ≤ (ab) ≤ eb
(
a
b

)b. Rephrasing it, we get the
following upper bound:

et+kt/2+kt

(
m

t
·
(
2n

kt

)k/2

·
(
kt

2n

)k
)t

.

We remove all powers of t to examine the probability. We collect some other terms and re-
arrange them.

fSPARSE(k, n,m) = e1+3k/2 · (k/2)k/2 · m · t
k/2−1

nk/2
. (3)

Our intention should be to set k and m as a function of n so that fSPARSE is small for a large t.
One can examine that for a constant k, t is some polynomial provided m = O(nk/2(1−ϵ)) for

some constant ϵ > 0. When m = Ω(nk/2), one can find a constant number of subsets that violate
Equation 2.

We now do some (asymptotic) case analysis for a constant k and setting m = nk/2(1−ϵ). To set
fSPARSE to be o(1), we consider another function gSPARSE that is only bigger than fSPARSE but more
amenable to analysis.

gSPARSE(k, n,m) =
m · (e3 · k · t)k/2

nk/2
. (4)

To ensure gSPARSE is small, we set:
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m2/ke3 · k · t≪ n

Thus, this holds for:

t <
n

m2/k · e3 · k
(5)

Proof of theorem 7.1. The theorem statement follows directly from eq. (5) by plugging in the appro-
priate values of n,m, k and setting L to the highest value of t that satisfies the inequality.

For concrete parameter estimation one can compute exact values of eq. (5) and find out how
this attack performs in practice. We anticipate if Bt ≫ p, then, the attack does not apply.

7.1.2 Large p effect

It is clear that for the analysis for this attack we were overly conservative. Not every collection
of t sets with less than kt

2 neighbours is likely to give a sparse vector in the kernel. Moreover, if p
increases the chances of this happening should be really small. Nevertheless as described before
while the calculation predicts security against polynomial time adversaries with m≪ n

k
2 when k

is a constant, system over any p can be broken when m > (k+1)
(
n
k

)
. Thus, the prediction in terms

of sample complexity is potentially only off by a square-root factor. We leave the analysis that
utilizes the largeness of p for future work as a great open question. We show how to loosely incor-
porate this above so that it is better for concrete parameter estimation. Finding precise bounds is
a great open question.

Claim 7.1. If m ≤ nk−3, the following inequality holds with probability 1 − negl(n) for all t ≤ L where
L = poly(n) and k is a constant.∣∣∣∣∣∣

⋃
i:x[i] ̸=0

Si

∣∣∣∣∣∣ > 2 · t where x is t-sparse (6)

Proof. We will upper bound the probability of eq. (6) being violated. Let us calculate the proba-
bility that there exist t equations which are supported on at most 2t variables. We can choose the
equations in

(
m
t

)
ways, choose the variables in

(
n
2t

)
ways, and the probability of all these equations

being supported on these variables is (
(
2t
k

)
/
(
n
k

)
)t. Applying the union bound, we now obtain

Pr [There exist some t equations supported on at most 2t variables]

≤
(
m

t

)(
n

2t

)((2t
k

)(
n
k

) )t

≤ e3t
(m
t

)t ( n

2t

)2t(2t

n

)kt

=

(
2k−2e3mtk−3

nk−2

)t

≤
(
2k−2e3tk−3

n

)t

since m < nk−3
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The above probability is asymptotically negligible in n whenever t < n1/(k−3)

2e . Taking a union
bound over all t less than this value finishes the proof.

If the locality pattern of A satisfies the above combinatorial property, we can show that there does
not exist a L-sparse x in the kernel of A with high probability. Since L above is polynomial in
n, this rules out the sparse vector in kernel attack. Recall that sparse LPN over F2 is broken for
m = nk/2 samples due to this attack (see [AOW15, KMOW17] etc). However, our result holds
as long as the sample complexity m is less than nk−3, which is a substantial improvement over
theorem 7.1. This is one of the ways increasing the modulus from 2 to some p = ω(m) increases
security.

We can now prove the following result:

Theorem 7.2. Let A be a sLWE matrix where the sample complexity m, dimension n and sparsity param-
eter k = O(1) satisfy the relation m < nk−3. If the modulus p is ω(m), then there does not exist any vector
x in the kernel of A which has L or fewer nonzero entries for some L = poly(n) with probability 1− o(1).

Proof. We use Claim 7.1 to obtain L. If x is at most L-sparse, the probability that Ax = 0 can now
be upper bounded by the expression: ∑

t∈[L]

(
m

t

)
pt/p2t

The reason for this is that for a fixed non-zero x, Ax is randomly distributed on the variables in
the support of

⋃
xi ̸=0 ai. By this property, the number of such variables is at least 2t.

Note that, ∑
t∈[L]

(
m

t

)
pt/p2t

<
∑
t∈[L]

mt

pt
.

This quantity is subconstant since m/p = o(1).

7.2 Dense Minor Lower-Bound Model

We now introduce a lower-bound model to provide an estimate of lattice attacks that exploit the
sparsity structure of the equations. We call our attack the Dense-Minor attack. This captures a
variety of different attacks as we will describe later and enables us to reason about security.

The rough idea is that all attacks that break LWE over dimension n requires at least n + 1
samples or else secrets are not information theoretically defined. The problem, with the low-
locality structure of our assumption is that each sample is constant sparse (say k). Thus, it is
plausible that exploiting the low locality, one can find L+1 samples supported over L coordinates
for some small L, and then use an algorithm that breaks LWE with dimension L and L+1 samples.
For example, if the number of samples is at least k

(
n
k

)
+1, the pigeonhole principle guarantees the

existence of some k + 1 columns which are supported on the same set of k variables. If k is a
constant, we can solve the resulting k-dimensional LWE problem in constant time; this points to
an attack against sparse LWE with constant sparsity and polynomially many samples.

We show how to set parameters to avoid this. In particular, setting the number of samples a
reasonable polynomial such as m = n2 or n4 for target applications, we will aim to find k such that
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L turns out to be at least linear in n e.g. 0.9n for the above attack strategy. This roughly states that
any meaningful attack exploiting the sparsity must involve Ω(n) variables. Thus, one can appeal
to concrete cryptanalysis to make a reasonable conjecture on the security of sparse LWE.

Conjecture 7.1. sLWEn,k,m,p,σ is at least as hard as LWEL,f(L),p,σ for L = Θ(n), k = Ω(log n), and f is
some small polynomial.

We will use the above heuristic for parameter estimation purposes. We show some examples
in Section 7.4.

Definition 7.1 (Dense-Minor of order r). For any matrix A ∈ Zn×m
p , we say that it has a dense minor

of size L ∈ [0, n], if there exists a subset T ⊆ [n] of size L such that there are r ·L column vectors supported
entirely over indices given by T . Moreover, L is the minimum such number.

We will typically be interested in r as 1 + 1/L or some constant (like 2), or even r = log p.

Problem with a Small Dense Minor We observe that if for A ∈ Zn×m
p there is a dense minor of

size L and order r, then, this means that we have r · L columns all supported at some L indices.
This means that if one is given a sparse LWE sample A, sA+ e mod p one can pick out these r ·L
equations of the form {ai, ⟨ai, s⟩+ ei mod p}i∈S for some set S ⊆ [m] of size at least r ·L. Here we
assume a′is are column vectors of A. This new system is an LWE type system with r · L samples
of dimension L. This can potentially be broken with access to an LWE oracle that solves LWE on
dimension L, sample complexity r · L and the same modulus p.

Theorem 7.3. Let n be the dimension, k = log n be the sparsity parameter and m = nβ be the sample
complexity for some constant β > 1. Let p be the modulus. We have that, with probability 1− o(1/n) over
choice of A← Dm

coeff,n,k,p (sampling each column independently from the distribution Dcoeff,n,k,p specified
in definition 4.1), A the minimum L for which A has a dense minor of order 1 + 1/L is L = Ω(n).

Proof. Once again we will use a union-bound. There are
(
n
t

)
ways of choosing t variables and

(
m
t+1

)
ways of choosing t+ 1 samples. The probability that each of these t+ 1 equations depends on the

chosen t variables is
(
(tk)
(nk)

)t+1

. Thus, the probability of the dense-minor being smaller than some

L is:

fDENSEMINOR =
∑

t∈[k,L]

((
t
k

)(
n
k

))t+1

·
(
n

t

)
·
(

m

t+ 1

)
We now make every term smaller than 1/n2 and this will prove the claim.
Since the expression involves Binomial coefficients we will use the naive asymptotics on the

Binomial coefficients. (
t

k

)
≤ ek

(
t

k

)k

(
n

k

)
≥
(n
k

)k
(
n

t

)
≤ et

(n
t

)t
(

m

t+ 1

)
≤ et+1

(
m

t+ 1

)t+1
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Then each term for t in the claimed expression f becomes:

≤ exp (k(t+ 1) + 2t+ 1) · t
k(t+1)

nk(t+1)
· n

t

tt
·
(

m

t+ 1

)t+1

≤ exp ((k + 2)t+ k + 1) · t
t(k−1)

nt(k−1) ·
nβ(t+1)

tt+1

≤ exp ((k + 4)t) · ttk

ntk−2tβ−t

≤
(
exp (k + 4) · tk

/
nk−1−2β

)t
We set the term inside that is raised to the power t to be lesser than 1

4 . This yields, the final
term denoted by term

term ≤ exp (k + 4) · tk
/
nk−1−2β ≤ 1

4

⇐= tk ≤ nk−1−2β

4 exp (k + 4)

Since, k = Ω(log n) and β is a constant, we can enure that term is smaller than 1/4 provided
t ≤ αn for some constant α > 0.

This proves the theorem.

Remark 7.1. We remark that most attacks care about L log p samples or cL samples for some c > 1.
In the above theorem, we rule out minors with just L + 1 samples. This only makes our model
stronger.

The expression above is quite loose as we make several approximations regarding Binomial coef-
ficients. If one computes the expression

fDENSEMINOR =
∑

t∈[k,L]

((
t
k

)(
n
k

))t+1

·
(
n

t

)
·
(

m

t+ 1

)

it is possible to find tradeoffs exactly using a computer program. We use it to estimate the exact
size of the dense minor. For more discussion on this, see section 7.4.

Now we describe how our dense-minor model captures attacks such as Arora-Ge, BKW and
Lattice Reductions.

Capturing Arora-Ge Style Attacks Recall that for the Arora-Ge attack [AG11] on LWE, we as-
sume that the infinity norm of the error vector is at most B for some B < p/2. Each LWE sample
(a, b) gives rise to the following equation on the entries of the secret vector:

B∏
j=−B

(
n∑

i=1

aisi − b− j

)
= 0

The degree of each equation is 2B + 1. Since there are n variables, the total number of terms is(
n+2B+1

n

)
. We treat each unique term as a separate variable, and we can solve the resulting linear
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system directly as long as the number of equations, m, exceeds the total number of terms. If we
have fewer equations, we first multiply each equation by every possible term of degree ≤ d. This
increases the number of equations to m

(
n+d
d

)
and the total number of terms to

(
n+2B+1+d

n

)
, and we

can solve this system as soon as the former exceeds the latter.
Let us now consider what happens if we try to apply the same strategy to sparse LWE. The

only difference is the additional constraint that each of the original equations are supported on
k variables instead of n. Since our dense minor attack already provides an algorithm for solving
sLWE when we are given more than k

(
n
k

)
samples, we will assume that m < k

(
n
k

)
<
(
n+1
k+1

)
below.

• If 2B+1 < k, there is virtually no difference between LWE and sparse LWE for this approach.
This is because in either case, the original equations do not have terms containing more than
2B+1 distinct variables. We will therefore focus on the case where k is smaller than 2B+1.

• The total number of terms is bounded above by the number of all degree 2B + 1 monomials
supported on at most k out of n variables. This equals(

n+ 1

k + 1

)(
2B + 1 + k

k

)
>

(
n+ 1

k + 1

)
> m

Clearly, the number of terms is greater than the number of equations, and trying to linearize
the system naively does not work.

• We can consider increasing the number of equations by following the exact recipe used by
Arora-Ge. For some d, multiply each equation by every possible monomial of degree at most
d. The problem is that this breaks the locality pattern that distinguishes sLWE from LWE in
the Arora-Ge approach, since each equation can be now supported on many more variables.

• We can instead multiply each equation by all the monomials of degree at most d which are
supported on the same k variables as the equation. This preserves the locality, but does not
suffice since the number of terms continue to exceed the number of equations(

n+ 1

k + 1

)(
2B + d+ 1 + k

k

)
> m

(
d+ k

k

)
Another natural way to utilize the sparsity is to try to find a large number of samples sup-

ported on the same set of t variables for some t < n, and then run the Arora-Ge algorithm on
those samples with an effective dimension of t. The dense minor lower bound rules out this ap-
proach for any t = o(n). Therefore, the effective dimension in this approach will be linear in n,
and we would still require many more samples than what we have available.

Capturing BKW Style Attacks The BKW family of attacks ([BKW03, Lyu05, ACF+15]) look for a
short vector x such that the product Ax is either 0 or very sparse. They first partition the columns
of A into blocks of size B. New samples are then created by finding collisions in these blocks and
reducing those blocks to zero by subtraction. Iteratively applying this process for each block, we
can find vectors of magnitude 2n/B in the nullspace of A.

To execute this attack naively, we need access to a very large number of samples. For LWE, we
can generate new samples by taking random linear combinations with small norm. However, new
samples generated by combining columns of A destroy sparsity really fast. Therefore, the search
step of BKW attack does not advantage sparse LWE in any way over standard LWE.
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We can try to take advantage of the fact that the columns of sparse LWE are mostly filled
with zeros, and hence it will be easier to find collisions in blocks. While this is indeed true for
the first few blocks, observe that we subtract columns from each other at every iteration of BKW.
Each subtraction operation would increase the number of nonzero entries in the remaining blocks
exponentially, and hence the required sample complexity for the attack will at least be the same as
that of regular LWE with a constant factor smaller dimension.

So a natural way to leverage sparsity is therefore to work with a dense minor of order log p of
size L. Our theorem suggests that L = Ω(n), and we would again require more samples than we
have available.

Capturing Lattice-Style Attacks Typically, lattice attacks are applied by applying lattice reduc-
tion to solve either:

• Finding a short x so that Ax = 0. We already discussed why this approach doesn’t have an
advantage for sLWE over LWE in the BKW section.

• Solving BDD with respect to lattice L = {xA} and target point b = sA+ e. The hardness of
this depends on the ratio γ of λ1(L) and ||e||.

In section 4.1, we argued that the size of the shortest nonzero vector in L is similar to what
it would have been if A was chosen randomly. In fact, the minimum distance is smaller than a
random lattice. We therefore, expect γ to only be smaller. So if anything, so called primal attacks
against LWE work worse than expected when they are given sparse LWE instances.

On apparent inspection of lattice reduction algorithms, naive application of those don’t seem
to exploit sparsity at all. That said, most of our column vectors are mutually perpendicular since
the dot product of two column vectors is nonzero only if their locality patterns intersect (these
columns are however large in norm roughly

√
kp, and so they do not necessarily represent a good

basis). So, although unlikely, it is plausible that lattice reduction based methods turn out to do
better. We leave the study of this phenomenon to future work.

The most natural way to exploit the small sparsity of the system is to find a dense minor
and apply lattice algorithms to an instance with a smaller dimension. As long as the noise ratio
is inverse polynomial in the dimension n, the best lattice based attacks take 2O(n) time (see the
fantastic thesis of Rachel Player [Pla18] or Albrecht et.al. [APS15, ACD+18] for an excellent survey
on concrete running times). Thus if we are able to find dense minor of size (say) n/2 of order log p,
that is an exponential improvement in the running time over a dense matrix. Our dense-minor
model captures such improvements. In fact, we rule out attacks that makes use of only L + 1
samples in L variables. Typical lattice attacks require at least cL (where c > 1 is some constant) or
even L log p samples.

7.3 Open questions

We leave some exciting open problems for future work:

1. Are there other ways of leveraging sparsity besides the dense-minor method?

2. Analyze the performance of current lattice reduction algorithms with sparse LWE matrices.

3. Build new lattice reduction algorithms that naturally exploit sparsity
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Exploiting Special Structure One aspect that we did not touch at all in this work is whether
structured assumptions for sparse LWE are secure and/or useful for cryptographic constructions.
Some variants include circular sparse LWE and small secret LWE. While we did not observe vul-
nerabilities in circular sparse LWE, we note that one has to be careful working with small secret
sparse LWE. Unlike LWE where these two variants are equivalent [ACPS09, GKPV10, Mic18], it is
not the case here.

For instance, if each secret coordinate is boolean, a single sample of k-sparse LWE would leak
a lot of information about the secret vector. There are 2k possible choices of secret coordinates
occurring in each equation. If k is constant or logarithmic, this could effectively lead to a search
algorithm for sparse LWE. We note that however, some applications might need a small secret
and it might be plausible that once (∥s∥∞)k is large enough, this variant becomes hard. We leave
understanding small secret LWE as a great open problem.

7.4 Concrete Parameter Estimation

In this section, we focus on concrete security. Based on the cryptanalysis so far, we identify two
major avenues of attack against sLWE specifically:

• Find a t-sparse vector in the kernel. To rule out this attack, we merely need to set p < Bt.

• Find a dense minor of order at least 1 + 1/L. We write a script that estimates the size of the
smallest dense minor as a function of the dimension n, sparsity k and sample complexity m.
To see the code, please refer to appendix A.

To get a desired level of security using sLWE, we first look at the parameters for regular LWE
to obtain the necessary dimension n′ for m samples, modulus p and noise σ. We then compute a
small k and a dimension n for which the size of dense minor in a sLWEn,k,m,p,σ matrix exceeds n′.
We set concrete parameters based on the following assumption:

Conjecture 7.2. Let the expected size of the dense minor in sLWEn,k,m,p,σ matrix be L > n′. Then the
sLWEn,k,m,p,σ problem is at least as hard as LWEn′,m,p,σ

We show a few recommended parameter settings in the table below. We use LWE dimension
n′ = 210 and database size N between 226 and 242 as per [HHC+23]. Note that the number of
samples m =

√
N . For all of these settings we suggest setting the modulus to either 216, 232 or

264 since there is generally hardware support for arithmetic modulo these values. We also set the
noise parameter σ = 6.4. Neither σ nor p depends on any of n,m or k.

Sparsity parameter k
Number of samples m

213 217 221

20 1218 1425 1656
30 1143 1265 1395
40 1110 1195 1285
50 1090 1158 1234

Table 1: The recommended dimension for sLWE whose security guarantees are equivalent to LWE
with dimension 1024

We need not worry about the sparse vector in kernel attack since the size of the dense minor
in each of the above settings is 1023, which is much larger than the logarithm of the modulus.
Furthermore, it is evident from the above table that for typical parameters used in practice, we
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only need to increase the dimension by a small constant factor < 1.5 in most cases to achieve
equivalent security guarantees.

8 Applications of Sparse LWE

Our main applications lie in (secret-key) encryption schemes that support homomorphism. We
start by recalling the definition of homomorphic encryption.

Definition 8.1 (Homomorphic Encryption for F). A public key homomorphic encryption scheme E for
function class F over message spaceM consists of the following efficient algorithms:

• Setup(1λ) takes the security parameter λ. It outputs public parameters pp, which is implicitly given
as input to all remaining algorithms.

• KeyGen() outputs a public, secret, and evaluation key (pk, sk, evk).

• Enc(pk,m) takes public key pk and messages mM. It outputs a ciphertext ct.

• Eval(evk, f, {ct1, · · · , ctℓ}) takes the evaluation key evk, ciphertext (ct1, · · · , ctℓ), and a function
f ∈ F . It outputs an evaluated ciphertext ctf .

• Dec(sk, ctf ) takes the secret key sk and evaluated ciphertext ctf . It outputs a decrypted message y.

Correctness. The scheme is correct if for all λ ∈ N, function f ∈ F defined over Mℓ, and messages
m1, · · · ,mℓ ∈Mℓ:

Pr

y = f(m1, · · · ,mℓ)

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ)

(pk, sk, evk)← KeyGen()
∀i ∈ [ℓ], cti ← Enc(pk,mi)

ctf ← Eval(evk, f, {ct1, · · · , ctℓ})
y← Dec(sk, ctf )

 ≥ 1− negl(λ) .

A secret key homomorphic encryption scheme E is one defined as above except that pk = sk.

Compactness. We say that a scheme is compact if:

• The running time of encryption is polynomial in the message length and sublinear in the function
size.

• The size of the evaluated ciphertext is sublinear in the function size.

For regular circuits, we call the scheme satisfies levelled compact if instead of sizes/running times being
sublinear in function size they grow polynomially in the depth of the circuit (but not in its size). A scheme
is fully compact, if size/running times are independent of the circuit size.

Definition 8.2 (Semantic security). A public key homomorphic scheme E is semantically secure if: For
any sequence of pairs of messages {m0,m1 ∈ M}λ the following distributions are computationally indis-
tinguishable: {

pp, pk, evk,Enc(pk,m0)

∣∣∣∣ pp ← Setup(1λ)
(pk, sk, evk) ← KeyGen()

}
λ

≈
{
pp, pk, evk,Enc(pk,m1)

∣∣∣∣ pp ← Setup(1λ)
(pk, sk, evk) ← KeyGen()

}
λ
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A secret key homomorphic scheme E is semantically secure if: For any polynomial ℓ = ℓ(λ) and any
sequence of pairs of ℓ messages {{mi0}i∈[ℓ], {mi1}i∈[ℓ]}λ the following distributions are computationally
indistinguishable: {

pp, evk, {Enc(sk,mi0)}i∈[ℓ]
∣∣∣∣ pp ← Setup(1λ)

(sk, evk) ← KeyGen()

}
λ

≈
{
pp, evk, {Enc(sk,mi1)}i∈[ℓ]

∣∣∣∣ pp ← Setup(1λ)
(sk, evk) ← KeyGen()

}
λ

8.1 Linearly Homomorphic Encryption

We recall the Brakerski-Vaikuntanahthan secret key homomorphic encryption scheme from LWE [BV11,
BGV12b]. We then focus on analyzing the efficiency improvement when the scheme is instantiated
with sparse LWE and used for computing linear functions, in comparison with instantiation using
LWE or Ring LWE.

The Basic Secret Key Homomorphic Encryption Scheme

Let p = p(λ) be a modulus and the message space be Zp.

pp← sklhe.Setup(1λ, 1D): Based on the security parameter λ, choose a modulus q, where
gcd(p, q) = 1, a dimension n, a B-bounded distribution of noise elements χ. Output
pp := (q, n, χ).

(sk, evk)← sklhe.KeyGen(): Sample a secret key s′ ← Z1×n
q and set s = (s′,−1). Output sk = s.

ct← sklhe.Enc(sk,m): Parse the message m as an element of Zp. Sample a random k-sparse
coefficient vector a ∈ Zn

q , and a noise e ← χ. Output ctT := (aT, b = sTa + m + e ·
p mod q).

m← sklhe.Dec(s, ct): Parse ct = (a, b) ∈ Zq. Output m := (b− sTa) mod q, p.

ct← sklhe.Add(ct1, ct2, l): This algorithm takes two ciphertexts and scalar l ∈ Zp and homo-
morphically computes m1 + l ·m2 mod p. Output ct := ct1 + l · ct2 mod q.

Using the above operation, one can evaluate any linear function L specified by a coef-
ficient vector l ∈ Zℓ

p, on fresh ciphertexts ct1, · · · , ctℓ with noises bounded by B, and
obtain and output ciphertext ct with noise bounded by B̄ = ℓ · p ·B. Decryption correct-
ness is guaranteed if p · B̄ ≤ q, that is, q > ℓ · p2B.

Sparse Representation and Storage In the above scheme, while the sk is a dense vector in Z1×n
q ,

the ciphertext ct is only (k+1)-sparse. We can store ct using the following succinct representation.
For every integer vector a in Zn

Q, define

indicator set: Ia = {ij | ij ∈ [n]s.t. aij ̸= 0},
sparsity of a: ka = |Ia|

succinct representation: ã := SparseRep(a) = {(ij , aij ) | ij ∈ Sa}

The size of the sparse representation is only ka(log n + logQ), as opposed to n logQ. As a result,
encryption scheme has a good rate as shown below. In particular, when log p = Ω(log n + log q),
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the rate is O(k), which could be as small as a super-constant, or even constant if the number of
ciphertexts encrypted under s is a bounded polynomial.

rate =
|ct|
|m|

=
O(k(log n+ log q))

log p
= O(k) if log p = Ω(log n+ log q)

Scheme & Assumptions # of ciphertexts rate encryption overhead evaluation overhead

Elgamal & DDH 1 unbounded O(λ) Õ(λ) O(λ)

Elgamal & DCR [Pai99] 2 unbounded O(1) Õ(λ) O(λ)

BV [BV11] & LWE 3 unbounded O(n) O(n log log q) O(n)

BV & RLWE 3 unbounded O(n) Õ(n log log q) O(n)

[GHS12] & RLWE unbounded O(1) O(1) polylog(n) 4

BV & O(1)-sparse LWE (Ours) 3 bounded poly O(1) O(log log q) O(1)

BV & ω(1)-sparse LWE (Ours) 3 unbounded ω(1) ω(log log q) ω(1)

1 Use a group G with |G| = 2Ω(λ) and generator g. For m ∈ {0, 1}ℓ, ct = gr, gsr+m. Linear function
l ∈ Zℓ

|G| is evaluated over Z|G| and output must be small in order to decrypt.
2 Use group Z∗

N2 for an RSA integer N = 2Ω(λ), with hard group generator g. For m ∈ Zℓ
Nc , ct =

gr, gsr(1 +N)m. Linear function l ∈ Zℓ
N is evaluated over ZN .

3 For all the BV schemes, we consider the case log p = Ω(log n+ log q).
4 The scheme [GHS12] has large polylogarithmic overhead.

Table 2: Efficiency comparison of different linearly homomorphic schemes.

Efficiency Analysis We now analyze the efficiency overhead, in particular, we measure the en-
cryption overhead as ratio between the encryption time and the number of bits encrypted, and
the evaluation overhead as the ratio between the evaluation time and the time for evaluating the
linear function in the clear.

The sparsity of the ciphertext can be leveraged for efficiency in the RAM model, where one
can access an element in a vector or matrix at index i ∈ [n] in logarithmic time O(log n) (note the
index already has length O(log n)). In contrast, in the circuit model this takes linear time. Consider
encryption, where the dense secret key s is multiplied with a k-sparse coefficient vector a, in the
RAM model, this can be implemented in time O(k(log n + log q log log q)), involving fetching all
the elements sj for j ∈ Ia, and performing a k-wise inner product between sIa and aIa . The
evaluation of linear function l ∈ Zℓ

p can be done using ℓ invocation of sklhe.Add(ct, cti, li), where
cti is the ciphertext of the ith input element. Since cti is (k+ 1)-sparse, this can be implemented in
time O(k(log n+ log q log log q)).

encryption overhead =
TEnc

|m|
=

O(k(log n+ log q log log q))

log p
= O(k log log q)

evaluation overhead =
TEval

TL
=

O(ℓk(log n+ log q log log q))

O(ℓ log p log log p)
= O(k)

The right hand side equality holds when log p = Ω(log n+ log q). By setting k to be super-constant
or even constant, we get nearly constant overheads.

33



Comparison with other secret-key LHE To the best of our knowledge, the BV scheme instan-
tiated with sparse LWE is the only scheme achieving nearly constant overheads in all aspects,
storage, encryption time, and evaluation time. A comparison with previous schemes is provided
in table 8.1.

The most competitive scheme is by [GHS12] instantiated by RLWE, which presented a polylog-
arithmic overhead FHE scheme. To achieve this low overhead, they use the BV/BGV encryption
scheme to encrypt a vector of messages Zn

p in the same ciphertext, resulting in a “packed” cipher-
texts. These packed ciphertexts natively support SIMD computation i.e., coordinate-wise addition
and multiplication. To support general, non SIMD, computation, [GHS12] introduced novel meth-
ods for permuting elements encrypted in the same ciphertexts, and combining elements in differ-
ent ciphertexts into the same ciphertexts. Combined with the use of permutation networks, they
can implement arbitrary permutation over elements encrypted in multiple ciphertexts with poly-
logarithmic amortized overhead. Since general circuit computation can be implemented using
SIMD operation and permutation, they achieve homomorphic evaluation with polylogarithmic
amortized overhead. The only drawback is that the polylogarithmic overhead is very high and
unlikely going to be practical.

8.1.1 Applications to Private Information Retrieval

A nice application that could help test concrete efficiency gains afforded by sparse LWE could
be private-information retrieval schemes. In particular, consider the practical scheme SimplePIR
[HHC+23] that builds on top of [KO97] and instantiates the linearly-homomorphic encryption
scheme using LHE from LWE. The idea in that scheme is that the data D̂ ∈ {0, 1}N is processed
into a square shape yielding a matrix D ∈ {0, 1}

√
N×
√
N . For i ∈ [

√
N ], we let Di as the ith column

of A.
The client samples a matrix A ∈ Zn×

√
N

p at random from the LWE distribution. To fetch the
date index (i, j) the client computes a query b = sA+2·e+vi where vi ∈ {0, 1}1×

√
N is an indicator

vector with 1 at the ith coordinate. The server computes (bD1, . . . ,bD√N ) and (AD1, . . . ,AD√N )
and sends these to the client. Note that bDj ≈ sADj + D[i, j] upto small and even error. The
client can therefore derive D[i, j] using the secret s. The scheme can be proven to be secure due to
the security of LWE. Note that the total communication from client to the server is Õ(n

√
N) where

n is the dimension of LWE as the client needs to send A along with b. The query compute time is
also Õ(n

√
N) which is also the time to compute b. We note that the client communication can be

improved to Õ(
√
N) if AD can be precomputed. We will assume this in the following discussion.

For server, given the preprocessing, the computation consists of evaluating bD which takes Õ(N)

times but the communication is Õ(
√
N). The downside to this scheme is that if a data entry needs

to be changed, it takes Õ(n) time to change the preprocessing AD.
If one used sparse LWE instead, it will reduce the client query generation time to Õ(k

√
N) as

computing LWE samples will now be faster. This might be useful if the client is low-complexity.
Further, the update time reduces to Õ(k) as opposed to Õ(n). This might be useful in dynamic
settings where the update needs to be faster. To summarize, we have the following comparison.

LWE k-sparse LWE

Total Communication Õ(
√
N) Õ(

√
N)

Update Time Õ(n) Õ(k)

Client Query Time Õ(n ·
√
N) Õ(k ·

√
N)
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We leave concretely implementing the PIR scheme for a future update.

8.2 Constant Degree Homomorphic Encryption

We now describe how to perform homomorphic multiplication. In order to achieve the best
efficiency for evaluating constant-degree polynomials, we will make two modifications to the
Brakerski-Gentry-Vaikuntanathan [BGV12b] homomorphic multiplication. First, instead of using
the gadget matrix consisting of powers of 2, we will use the gadget matrix consisting of powers a
larger base, in particular, p the modulus of the message space. Second, instead of performing mod-
ulus reduction on the ciphertexts, we will perform the modulus reduction on the secret instead.
The second modification is necessary since we want to rely on large secret sparse LWE instead
of small secret sparse LWE. In contrast, standard modulus reduction (performed on ciphertexts)
relies on having small secrets in order to ensure that errors introduced by rounding is bounded.
While using small secrets is without loss of generality for LWE, it is not so for sparse LWE.

Let gQ,p = (1, p, p2, · · · , p⌊logp Q⌋) be the gadget matrix in ZQ with base p. Correspondingly,
define operation Decomp(x, p) that decomposes the integer vector x in base p. We will also make
use of the subroutine Scale defined in [BV11, BGV12b].

Definition 8.3. For integer vector x ∈ Zq and integers q ≥ p ≥ r, we define x′ ← Scale(x, q, p, r) to be
the Zp-vector closest to (p/q) · x that satisfies x′ = x mod r.

They proved the following key lemma about the scale operation, showing that if the inner
product between two vectors ipu,v over Zq is not too large, then inner product with the scaled
vector ipu′ = Scale(q, p, r),v over Zp is congruent to ipu,v mod r, and is roughly q/p times smaller
than ipu,v with an rounding error bounded by r∥v∥1/2.

Lemma 8.1. Let q > p > r be positive integers satisfying q = p = 1 mod r. Let u ∈ Zn
q and u′ ←

Scale(u, q, p, r) ∈ Zn
p . Then, for any v ∈ Zn

q , the following holds

If, [⟨u,v⟩]q < q/2− (q/p) · (r/2) · ∥v∥1 ,

Then, [⟨u′,v⟩]p,r = [⟨u,v⟩]q,r and [⟨u′,v⟩]p <
q

p
[⟨u′,v⟩]q +

1

2
· r · ∥v∥1

In the BGV scheme, the inner product between the secret key and a ciphertext ⟨s, ct⟩ over Zq is
the approximate message m+ p ·E. The modulus reduction step scales the ciphertext to a smaller
modulus q′ with respect to p. By the above lemma, they have that ⟨s,Scalect, q, q′, p⟩ mod q′ =
m+ p · e, where the noise is bounded by |e| ≤ q

q′ |E|+ p · ∥s∥1, which is small if s is short.
In our setting, we use large secret s and instead scale the secret. To start with, observe that ⟨s⊗

gq,p,Decomp(ct, p)⟩ mod q = m+p ·E. Therefore, we have ⟨Scale(s⊗gq,p, q′, p),Decomp(ct, p)⟩ mod
q′ = m+p ·e, where the noise is bounded by |e| ≤ q

q′ |E|+p ·∥Decomp(ct, p)∥1. In the actual scheme
described below, we apply this scaling w.r.t. the tensor product of two ciphertexts ct = ct1 ⊗ ct2,
and the secret key is s⊗ s. The operation is summarized in the following corollary.

Corollary 8.1. Let q > q′ > p be positive integers satisfying q = q′ = 1 mod p. For every s ∈ Z1×(n+1)
q ,
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and ct1, ct2 ∈ Z(n+1)
q .

If, m+ p · E = [(s⊗ s) · (ct1 ⊗ ct2)]q = [(s⊗ s⊗ gq,p) · (Decomp(ct1 ⊗ ct2, p))]q

< q/2− (q/q′) · (p/2) · (n2 · p · log q/ log p) ,
Let t̄ = Scale(s⊗ s⊗ gq,p, q

′, p)

m′ + p · e = [t̄ · (Decomp(ct1 ⊗ ct2, p))]q′

Then, m = m′, and |m′ + p · e| ≤ q

q′
|m+ p · E|+ (p/2) · (n2 · p · log q/ log p)

Constant Degree Homomorphic Encryption Scheme

pp← skhe.Setup(1λ, 1D): Based on the security parameter λ and maximal depth D, choose a
tower of decreasing modulus q = q(D) ≥ q(D−1) > q(D−2) > · · · > q(0) > p, where
gcd(p, q(j)) = 1, q(d) = 1 mod p, and qd/qd−1 > ∆. Also choose a dimension n, a B-
bounded distribution of noise elements χ. Output pp := (q, n, χ, p), where q is the
vector of modulus.

sk, evk← skhe.KeyGen(): For every d ∈ [D], sample a random k-sparse coefficient matrix B(d)

over Zq(d) , a noise vector e(d) ← χ1×m, and a secret key s′(d) ← Z̄1×n
p . Let s(d) :=

(s′(d),−1). Compute the level d evaluation key as follows:

t(d+1) := s(d+1) ⊗ s(d+1) ⊗ gq(d+1),p mod q(d+1) ∈ Z1×m(d+1)

q(d+1)

t̄(d+1) := Scale(t, q(d+1), q(d), p) ∈ Z1×m(d+1)

q(d)

evk(d) :=

(
B(d)

s(d)B(d) + t̄(d+1) + p · e(d) mod q(d)

)
∈ Z(n+1)×m(d+1)

q(d)

Above dimension m(d) = Θ(n log q(d+1)/ log p) = O(n log q(D)/ log p).

Output (sk = {sd}, evk = {evkd}).

ct(D) ← skhe.Enc(sk,m): Parse the message m as an element of Zp. Sample a random k-sparse
coefficient vector a ∈ Zq(D) , and a noise e← χ. Output ct(D)T := (aT, b = s′(D)a+m+

e · p mod q(D)).

m← skhe.Dec(sk, ct(d), d): Parse ct(d) = (a, b) ∈ Zq(d) . Output m := (b− s(d)a) mod q(d), p.

ct(d+1) ← skhe.Mult(ct
(d+1)
1 , ct

(d+1)
2 ): This algorithms takes two ciphertexts at level d + 1 in

Zn+1
q(d+1) and outputs a ciphertext of dimension (n + 1)2. Output ct(d+1) := ct

(d+1)
1 ⊗

ct
(d+1)
2 mod q(d+1).

ct(d) ← skhe.Reduce(evk, ct(d+1)): This algorithms takes the evaluation key and a ciphertext at
level d+ 1 of dimension (n+ 1)2 and returns a ciphertext at level d of dimension n+ 1.

ct(d) := evk(d) · Decomp(ct(d+1), p) mod q(d) .

Evaluating Constant-Degree Polynomials and Noise Bounds Using the above operations, we
can homomorphically evaluate a constant-degree polynomial, expressed as a sum of degree 2D
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monomials, by homomorphic evaluation of all monomial followed by homomorphic additions.
To homomorphically compute a degree 2D+1−d monomial

∏
j∈[2D+1−d]mij (initially d = D, and

at the last step d = 1), suppose we have already obtained ciphertext ct1 encrypting
∏

j∈[2D−d]mij

and ct2 encrypting
∏

j∈[2D−d+1,2D+1−d]mij , both at level d. We can obtain a ciphertext ct encrypt-
ing

∏
j∈[2D+1−d]mij at level d − 1 by first invoking skhe.Mult on ct1, ct2 obtaining an intermediate

ciphertext of dimension (n+1)2, followed by skhe.Reduce to reduce the dimension to n while also
reducing the modulus to q(D−d), i.e.,

ct = evk(d−1) · Decomp(ct1 ⊗ ct2) mod q(d−1) .

Correctness Proof To see the correctness and analyze noise growth, consider the following set-
ting

q(d) = O(q(0)∆d), q(0) = O(∆), ∆ = 3r2 (7)
r > B (8)

r2 > 3(p/2) · (n2 · p · log q(D)/ log p) (9)

r2 > 3p2Bn (10)

We keep the invariant that ciphertexts at level d satisfy that

[s · ct(d)]q(d) = m+ p · e ≤ r2

For fresh ciphertexts, i.e., at level D, this holds as m + p · e < pB < r2 (condition (8)). Suppose
this holds for two level d ciphertexts ct1, ct2, we show it also holds for level d − 1 ciphertexts ct
described above. We want to bound

[s(d−1) · ct]qd−1

=[s(d−1) · evk(d−1) · Decompp(ct1 ⊗ ct2)]q(d−1)

=[(t̄d + p · e(d−1)) · Decompp(ct1 ⊗ ct2)]q(d−1)

=[p · e(d−1) · Decompp(ct1 ⊗ ct2)]q(d−1)

≤p2Bn ≤ r2/3

The last inequality follows from condition (10), while the second last follows from the fact that
e(d−1) is the noise in evk(d−1) and is B bounded. To analyze the other term, [t̄d · Decompp(ct1 ⊗
ct2)]q(d−1) , we will rely on Corollary 8.1.

Before scaling, [(s⊗ s) · (ct1 ⊗ ct2)]q(d) < r4

r4 < q(1)/2− r4 [condition(7)]

= q(1)/2− (∆/3)r2

< q(1)/2− (∆/3)(3(p/2) · (n2 · p · log q(D)/ log p)) [condition(9)]

< q(d)/2−∆((p/2) · (n2 · p · log q(d)/ log p)) [precondition of Cor 8.1]

By Corollary 8.1,

[t̄(d) · Decompp(ct1 ⊗ ct2)]q(d−1) < (1/∆) · r4 + (p/2) · (n2 · p · log q(d)/ log p) < (2/3)r2

[t̄(d) · Decompp(ct1 ⊗ ct2)]q(d−1),p = [(s(d) ⊗ s(d) ⊗ gq(d),p) · Decompp(ct1 ⊗ ct2)]q(d),p = m1 ·m2
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Therefore,

[s(d−1) · ct]qd−1 = [(t̄d + p · e(d−1)) · Decompp(ct1 ⊗ ct2)]q(d−1) ≤ r2

[s(d−1) · ct]qd−1,p = [t̄d · Decompp(ct1 ⊗ ct2)]q(d−1),p = m1 ·m2

This ensures the correctness of evaluation and decryption.

Efficiency Analysis We now analyze efficiency in the following setting:

log p = Ω(logB, log n) = Ω(log r), q(d) = pO(d), log q(d)/ log p = O(D)

We can upper bound the cost of each homomorphic multiplication by the cost of the final multi-
plication, where the two operand ciphertexts (at level 1) have the worst sparsity.

Let’s first see how fast sparsity deteriorates. If two ciphertexts ct1, ct2 at level d have sparsity
kd, skhe.Mult creates a ciphertext ct of sparsity k2d. Decomposition further increases sparsity to
k2d log q

(d)/ log p = k2dO(D). Finally, skhe.Reduce increases sparsity further to kd−1 = k2d ·O(D) · (k+
1) since the sparsity of all the evaluation keys are k + 1. Therefore, for k ≥ 3,

kd = k2
D−d ·O(D)(2

D−d−1)/2 · (k + 1)(2
D−d−1)/2 < k2

D−d+1
O(D)2

D−d−1

Each multiplication at level d involves at most O(kd−1) non-zero Zq(d) elements. For each ele-
ment, computation involved is random access – O(log n) time and Zq(d) addition and multiplica-
tion. Hence, the cost of multiplication is bounded by

kd−1 ·O(log n+ log q(d) log log q(d)) ≤ k2
D+1 ·O(D)2

D−1 ·O(log n+D log p log log p)

In comparison, a multiplication in the clear costs time O(log p log log p). Therefore the evaluation
overhead is:

evaluation overhead ≤ k2
D+1

O(D)2
D−1 ·O(D)

The overhead is a constant when k = O(1) for releasing a bounded polynomial number of cipher-
texts and is slightly super constant when k = ω(1) for unbounded number of ciphertexts.

A comparison of the efficiency of our scheme with previous schemes is provided in Table 8.2.

Scheme & Assumptions # of ciphertexts rate encryption overhead evaluation overhead

BV [BV11] & LWE 1 unbounded O(n) O(n log log q) Ω(n3)

BV & RLWE 1 unbounded O(n) Õ(n log log q) Ω(n log n)

[GHS12] & RLWE unbounded O(1) O(1) polylog(n) 2

BV & O(1)-sparse LWE (Ours) 1 bounded poly O(1) O(log log q(D)) O(1)

BV & ω(1)-sparse LWE (Ours) 1 unbounded ω(1) ω(log log q(D)) ω(1)

1 For all the BV schemes, we consider the case log p = Ω(log n+ log q).
2 The scheme [GHS12] has large polylogarithmic overhead.

Table 3: Efficiency comparison of different homomorphic schemes supporting constant-degree
polynomials.
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A Script for Concrete Security

The following code is used to calculate the expected size of the smallest dense minor for sLWE.

// Usage instructions:
// Adjust the values of n,m,k at the top of the main method
// Running the program will give you a value of n' up to which
// the probability upper bound is at most 10%.
//
// Our formula for probability upper bound is
// \sum_{t=k}^{n'} nCt \times mC{t+1} \times (tCk/nCk)^{t+1}
// The purely locality based attack will not find a smaller
// sample of size n' as long as this value is quite low.

#include <iostream>
#include <vector>

using namespace std;

double term_t(int n, int m, int k, int t) {
// Calculate nCt . mC(t+1) . (tCk / nCk)^{t+1}

vector<int> numerator, denominator;
numerator.clear();
denominator.clear();

// Expression for nCt
for (int i = 1; i <= t; i++) {

numerator.push_back(n-i+1);
denominator.push_back(i);

}

// Expression for mC(t+1)
for (int i = 1; i <= t+1; i++) {

numerator.push_back(m-i+1);
denominator.push_back(i);

}

// Raising to the power t+1
for (int j = 0; j < t+1; j++) {

// Expression for tCk/nCk
for (int i = 0; i < k; i++) {

numerator.push_back(t-i);
denominator.push_back(n-i);

}
}

// Evaluate num/den.
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double d = 1.0;
while (true) {

if (d < 0.000001) {
// If d is already too small, prefer to multiply
if (!numerator.empty()) {

d *= (double)(numerator.back());
numerator.pop_back();

} else if (!denominator.empty()) {
d /= (double)(denominator.back());
denominator.pop_back();

} else {
break;

}

continue;
}

// Prefer to divide
if (!denominator.empty()) {

d /= (double)(denominator.back());
denominator.pop_back();

} else if (!numerator.empty()) {
// The term should always be < 1 to be useful
if (d > 2) {

cerr << "Term evaluates to > 1";
cerr << " for n = " << n;
cerr << " for m = " << m;
cerr << " for k = " << k;
cerr << " for t = " << t << endl;
return d;

}
d *= (double)(numerator.back());
numerator.pop_back();

} else {
break;

}
}

return d;
}

int main() {
int n = 1200;
int m = 2097152; // 2^21
// int m = 524288; // 2^19
int k = 50;

double prob_upper_bound = 0.0;
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for (int t = k; t <= n; t++) {
double d = term_t(n,m,k,t);
if (prob_upper_bound + d > 0.1) {

cout << "We reach a high probability at n'=" << t;
cout << " n=" << n;
cout << " m=" << m;
cout << " k=" << k;
cout << "\n The probability up to the previous term is at most ";
cout << prob_upper_bound << endl;
cout << "We suggest n' = " << t-1 << endl;
return 0;

}
prob_upper_bound += d;

}

return 0;
}
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