
Polynomial Time Cryptanalytic Extraction of
Deep Neural Networks in the Hard-Label Setting

Nicholas Carlini1, Jorge Chávez-Saab2, Anna Hambitzer2, Francisco
Rodríguez-Henríquez2, and Adi Shamir �3

1 Google DeepMind nicholas@carlini.com
2 Cryptography Research Center, Technology Innovation Institute
{jorge.saab,anna.hambitzer,francisco.rodriguez}@tii.ae

3 Weizmann Institute
adi.shamir@weizmann.ac.il

Abstract. Deep neural networks (DNNs) are valuable assets, yet their
public accessibility raises security concerns about parameter extraction
by malicious actors. Recent work by Carlini et al. (Crypto’20) and Canales-
Martínez et al. (Eurocrypt’24) has drawn parallels between this issue
and block cipher key extraction via chosen plaintext attacks. Leveraging
differential cryptanalysis, they demonstrated that all the weights and
biases of black-box ReLU-based DNNs could be inferred using a polyno-
mial number of queries and computational time. However, their attacks
relied on the availability of the exact numeric value of output logits,
which allowed the calculation of their derivatives. To overcome this lim-
itation, Chen et al. (Asiacrypt’24) tackled the more realistic hard-label
scenario, where only the final classification label (e.g., "dog" or "car") is
accessible to the attacker. They proposed an extraction method requiring
a polynomial number of queries but an exponential execution time. In
addition, their approach was applicable only to a restricted set of archi-
tectures, could deal only with binary classifiers, and was demonstrated
only on tiny neural networks with up to four neurons split among up to
two hidden layers.
This paper introduces new techniques that, for the first time, achieve
cryptanalytic extraction of DNN parameters in the most challenging
hard-label setting, using both a polynomial number of queries and poly-
nomial time. We validate our approach by extracting nearly one million
parameters from a DNN trained on the CIFAR-10 dataset, comprising
832 neurons in four hidden layers. Our results reveal the surprising fact
that all the weights of a ReLU-based DNN can be efficiently determined
by analyzing only the geometric shape of its decision boundaries.

Keywords: ReLU-Based Deep Neural Networks · Neural Network Ex-
traction · Hard-label Attack · Polynomial Query and Polynomial Time
Attack.

2

1 Introduction

Deep Neural Networks (DNNs) have become ubiquitous in today’s technological
landscape due to their ability to perform complex tasks such as image classifica-
tion, speech recognition, natural language processing, and autonomous driving.

The simplest form of a DNN consists of a series of fully connected hidden
layers of neurons. Each neuron in the network performs a global linear operation
(over Rdi for various round dimensions di) followed by the parallel application
of local nonlinear operations over R, such as the Rectified Linear Unit (ReLU)
activation function. The DNN’s parameters are generally obtained by collecting
a huge corpus of training examples and iteratively adjusting an initial set of
parameters through a lengthy sequence of gradient descent steps aimed at min-
imizing the DNN’s loss on the training examples. This process can take many
months and incur costs in the millions of dollars, making a trained DNN a highly
valuable asset. However, this asset is often made available for free through an
oracle interface O that allows anyone to input data to the DNN classifier and
receive the corresponding answer.

The question of whether the DNN parameters can be determined by such an
oracle access to its black box implementation has a rich history and had been
addressed in numerous papers over the past 30 years (as detailed in section 2).
Recently, cryptographic researchers have noted the close similarities between the
structures of DNNs and block ciphers, both of which consist of alternating layers
of global linear operations and local nonlinear operations, such as ReLUs in the
case of DNNs and S-boxes in the case of block ciphers (see Figure 1). In both

Fig. 1: The similarity between DNN’s and block ciphers.

primitives, the nonlinear operations are publicly known, while the linear opera-
tions involve secret elements — the parameters in DNNs, and the round keys in
block ciphers. The goal of the attacker is to find these secret elements by apply-
ing an adaptive chosen input attack. Unsurprisingly, the most effective model
stealing attacks currently leverage concepts from the differential cryptanalysis
of block ciphers.

Cryptanalytic Extraction of Deep Neural Networks 3

A common taxonomy for attack scenarios on DNN classifiers was introduced
in [13]. They defined five distinct types of attacks based on the information
provided by the black box DNN in response to each input query: (S1) the most
likely class label (referred to as the hard-label scenario), (S2) the most likely class
label along with its probability score, (S3) the top-k labels and their probability
scores, (S4) all labels and their probability scores, (S5) the raw output of the
DNN (i.e., all the logits before normalizing them into a probability distribution).
Scenario (S1) poses the greatest challenge for attackers, as it offers only one bit of
information per query for classifiers with two possible classes, while scenario (S5)
is the least challenging, providing the complete numeric output of the DNN.

Most previous attacks on black box DNNs have focused on the easiest sce-
nario (S5), culminating in the work of [4], which requires a polynomial number of
queries and polynomial time (as a function of the number of neurons). However,
the challenge of finding the most effective attack in the hardest scenario (S1)
has only been tackled in [6], over three decades after its initial introduction in
1991 in [2]. Nonetheless, the solution in [6] describes an attack that utilizes a
polynomial number of queries but requires exponential time.4 This algorithmic
limitation forced the authors of [6] to report experiments on tiny networks with
no more than four neurons split between at most two hidden layers.

1.1 Why Previous Techniques Cannot Be Used

To understand the difficulty posed by the harder scenario (S1), consider the way
most recent attacks operate, as depicted in Figure 2. Any ReLU-based DNN
represents a piecewise-linear mapping from real valued inputs to real valued
outputs, which partitions the d0 dimensional input space into a huge number of
convex cells, as described in Figure 2a. Within each cell, the mapping behaves

Fig. 2: A schematic description of various attacks. a. Input space partition. b. De-
cision boundary. c. Path between two inputs.

4 Moreover, Chen et al. achieved polynomiality only for stealing part of the parameters
of the model, and only for a limited subset of DNN architectures.

4

as a linear transformation, and the boundaries between adjacent cells are d0 −
1 dimensional hyperplanes. These hyperplanes represent the points where at
least one of the ReLU inputs becomes zero, which we refer to as critical points
following the terminology proposed in [5] and adopted in [4,6]. Such ReLU flips
change the behavior of the mapping from one linear mapping into a different one.
Note that while the input/output mapping is always continuous, its derivatives
become discontinuous at cell boundaries.

In addition to cell boundaries, we can also draw the decision boundaries
between pairs of classes, whose points (which are called transition points) are the
points at which the network’s decision changes from one class to a different class.5
Since the class decision is usually defined by the largest logit, decision boundaries
are defined by linear inequalities between piecewise linear functions, and thus
they are also piecewise linear d0 − 1 dimensional hyperplanes which partition
the d0 dimensional input space into disjoint (not necessarily connected) regions,
where each region represents the locations in which the hard-label assigned by
the DNN is one of the classes. Note that decision boundaries can cut a single
cell into two subcells which correspond to two different class decisions, even
though the linear mapping in both subcells is the same. The only connection
between cell boundaries and decision boundaries (which are defined by critical
points and transition points, respectively) is that within each cell the decision
boundary must be a flat hyperplane, which typically changes its orientation as
it crosses into an adjacent cell, as depicted in Figure 2b.

Most recent attacks have analyzed the output behavior as the input tran-
sitions along a straight line between two points in the input space, such as x0

and x1 in Figure 2c. This path passes through various critical points such as
x3 and x4. When dealing with the easiest attack scenario (S5), an attacker can
precisely identify the location of such critical points, as the slope of the output
changes abruptly. Each identified critical point offers valuable information about
the value of some internal neuron during the evaluation of the DNN, by indi-
cating that the input to its ReLU is zero at that point. This concept is akin to
side-channel attacks that reveal internal values generated at various intermedi-
ate points during the encryption process, significantly reducing the complexity
of key recovery. By collecting a sufficient number of such internal values, the at-
tacker can recover the parameters of all the neurons by solving systems of linear
equations in polynomial time.

The primary challenge in the hard-label attack scenario (S1) is the lack of
access to the numeric values of the outputs, which prevents us from computing
derivatives. Consequently, when we pass through critical points (such as points
x3 and x4 in Figure 2c)„ we are unaware of this fact, as the DNN outputs "dog"
for every input in the vicinity of x3 and "car" for every input in the vicinity
of x4. The only event we can detect in this scenario is when we pass through

5 Transition points are referred to as decision boundary points in [6]. For the sake of
simplicity, we will ignore in this brief description the rare locations where there is
a multi-way competition between three or more equal logits, where several decision
boundaries intersect at the same point.

Cryptanalytic Extraction of Deep Neural Networks 5

the class transition point x2 where the hard-label produced by the network
changes from "dog" to "car". However, x2 is not associated with any internal
ReLU flip (in fact, it only reveals that the two top logits at the end of the DNN
computation had become equal), and thus we no longer get the crucial side-
channel information about values in the middle of the DNN computation which
was revealed by crossing critical points in the easiest attack scenario (S5).

1.2 Our Contributions

The main contribution of this paper is to show that we can effectively replace the
analysis of critical points in previous attacks by the analysis of class transition
points, and thus recover all the DNN’s secret parameters using a polynomial
number of oracle queries and polynomial execution time by just analyzing the
geometric shape of its decision boundary. In particular, we show that given any
initial transition point, we can efficiently move along the decision boundary patch
that contains it until this patch changes its orientation. This can happen only
at a point which is simultaneously a transition point and a critical point, and
thus we can indirectly sense the location of some critical points even though
the attack scenario does not allow us to sense them directly. We call points
which are both transition points and critical points dual points, and provide two
examples of such dual points (x5 and x6) in Figure 2c. Even though dual points
are only an infinitesimally small subset of the set of all possible critical points,
their analysis turns out to be a sufficient alternative to the analysis of critical
points in previous attacks.

Our new attack follows the same strategy as outlined in [5] and further de-
veloped in [4] and [6], but enhances them with novel techniques. The two main
technical contributions of this paper are a new polynomial time algorithm for
recovering the critical hyperplanes of all the neurons6 and a new polynomial
time sign recovery technique7 in the hard-label scenario. In particular, sign re-
covery was the main bottleneck in [6]: the only solution the authors found for
this problem was to perform an exponential time exhaustive search over all the
possible sign combinations of all the neurons in the current layer.

It is important to note that our attack can fail in some extreme situations
which are not likely to happen in normally trained networks (unless the network
was adversarially generated to resist our attack). For example, if some neuron
plays no role in forming the shape of the decision boundary, we will not be able
to find its weights. Another rare possibility is that some system of k random-
looking linear equations in k unknowns over floating point reals, generated by
our attack, has a determinant that is exactly zero (which will make it impossible
to recover any additional parameters at later layers).

Thanks to our enhanced signature and sign recovery algorithms in the hard-
label scenario, we could demonstrate the practical applicability of our attack on
6 We will refer to this process as signature recovery, which will be discussed in section 5.
7 That is, determining which side of the neuron’s critical hyperplane provides posi-

tive values and which side provides negative values for the subsequent ReLU; this
algorithm will be described in section 6

6

a real DNN with 935, 370 parameters that was trained to classify the CIFAR-10
classes. This DNN consists of an input layer of length 3072, three fully connected
hidden layers with 256 neurons each, another fully connected hidden layer with
64 neurons, and finally 10 neurons that produce the 10 output logits. The best
previous hard-label attack of [6] on this DNN would have required 2256 time,
whereas our new method had succeeded in extracted all these parameters on a
standard multi-core server with GPU support.

Table 1: Comparison of Neural Network Extraction Methods. Previous
works successfully extracted either single-hidden-layer models or networks with
very few hidden neurons, often requiring full access to floating-point outputs or
resulting in exponential time costs. In contrast, our new attack demonstrates the
ability to extract a multilayer neural network with approximately 1,000 hidden
neurons under the most challenging hard-label setting.

Neural Network Parameter Extraction
Architecture Parameters Hard-Label Signature Sign Approach

10-20-20-1 620 poly exp ICML’20 [18]
10-20-20-1 620 poly exp Crypto’20 [5]
784-128-1 ≈ 0.1M poly exp Crypto’20 [5]
3072-256×8-10 ≈ 1.25M (from [5]) poly EC’24 [4]
100-50-50-1 7,650 poly poly [10]

1024-2-2-1 2,508 restr. exp AC’24 [6]
3072-256×3-64-10 ≈ 0.9M poly poly This work

: In these works the attacker has full access to all the output logits in scenario (S5).
: Restricted hard-label scenario, e.g. only binary classifiers can be handled. : In

these works the attacker has access only to hard-labels in scenario (S1). poly : In
these works, the signature, respectively sign recovery is done in polynomial time.
exp: In these works, sign recovery for most networks requires exponential time.
restr.: The signature recovery polynomiality is only achieved for certain DNN ar-
chitectures.

Table 1 compares our results to prior extraction attacks both in the hardest
hard-label setting (S1) and in the easiest logit-output setting (S5).

1.3 Organization

The remainder of this paper is organized as follows. In section 2, we provide a
concise overview of the most relevant works in DNN parameter extraction within
the black-box model along with the main precedents attacking the hard-label
setting. In section 3 we give an attack overview, and afterwards present a full
description of the main components of our attack: dual point finding (section 4),
signature recovery (section 5) and sign recovery (section 6). All the practical
experiments conducted in this study are described in section 7, while section 8
presents our concluding remarks.

Cryptanalytic Extraction of Deep Neural Networks 7

2 Related Work

The problem of DNN model extraction was first studied in the 1990s [1,2,3,11].
In 1991, Baum presented an algorithm in [1, 2] that could infer the Boolean
function describing the model of a neural net algorithm in polynomial time.
This was achieved by utilizing chosen inputs and querying the DNN as an oracle
to obtain their labels. Baum demonstrated that his algorithm could provably
achieve Probably Approximately Correct (PAC) learning in polynomial time for
tiny networks consisting of up to four neurons, and he provided preliminary
evidence suggesting that it could be extended to handle larger networks with up
to 200 neurons. A few years after this research, Fefferman demonstrated in [9]
that complete knowledge of all the (infinitely many) possible outputs from a
sigmoid-based network uniquely determines its architecture and the weights of
its neurons (up to some unavoidable symmetries). However, his technique did not
provide an effective procedure for determining the actual network parameters.
Another remarkable result on this topic was established by Blum and Rivest in
1993 [3]. They examined a different scenario in which the attacker was given an
adversarially chosen set of known inputs and their corresponding outputs (i.e.,
she could not choose her own queries). Their main result was that in this scenario,
determining whether there exists a corresponding two-layer, three-neuron DNN
(with the sign activation function instead of a ReLU) is NP-complete.

Since 2016, the extraction of DNN models from their black-box implementa-
tions has been extensively studied in [7, 10, 13, 15, 16, 17, 20]. The main goal of
this line of research is to accurately infer all secret weights of the neurons in the
DNN, achieving sufficient numerical precision to ensure functional equivalence
between the extracted model and the original DNN. Current state-of-the-art
attacks in this domain can be found in [4, 5, 6].

In [5], the authors introduced several efficient techniques for recovering neu-
ron weights and their associated biases with remarkable precision, a process they
termed the neuron’s signature recovery. These methods operate with a polyno-
mial number of queries and time complexity. However, this approach can only
determine the neuron’s signature up to a constant multiplier of unknown sign,
thus necessitating an essentially exhaustive search for the correct signs, which
has exponential time complexity. Consequently, the showcase examples of deep
neural networks (DNNs) presented in [5] involved relatively shallow networks.
This limitation was addressed in [4], where the authors introduced novel tech-
niques for recovering the missing neuron signs in polynomial time, making it
possible to demonstrate attacks on significantly larger and deeper DNNs.

More recently, Foerster et al. [10] reported an end-to-end attack that effec-
tively combines the signature recovery methods from [5] with the sign recovery
techniques from [4]. They claim that their approach provides a more computa-
tionally efficient sign recovery process, resulting in significant speedups in the
overall execution time of the attack. The authors note that, in this complete
attack, most of the time is spent recovering signatures, with considerably less
time devoted to extracting the signs.

8

Based on their experiments, they recommend brute-forcing the signs of par-
ticularly challenging neurons rather than spending excessive time trying to ex-
tract them. However, the DNNs targeted in [10] are notably shallow, consisting
of no more than 100 neurons distributed across two hidden layers and a single
logit output, which is not representative of real-world scenarios. For these rela-
tively small networks, the authors demonstrate that it is feasible to exhaustively
search the signs of a limited number of difficult-to-extract neurons. Nonetheless,
it remains unclear how well this approach will scale to larger multi-output DNNs
with thousands of neurons spread across more than a handful of hidden layers.

All the attacks discussed in [4, 5, 10] fundamentally rely on the assumption
that the DNN outputs confidence scores in the form of logits with 64-bit pre-
cision. This information allows attackers to compute derivatives and gradients
with respect to the input, which is essential for conducting their signature and
sign recovery procedures.

A more realistic scenario was studied in [6], where the authors explored the
so-called hard-label setting. In this context, the DNN outputs only the label of
the class with the highest confidence score, while the confidence score itself—an
invaluable piece of information for the attacker—remains secret. Extracting DNN
models in this hard-label setting presents significantly greater challenges than
those based on the assumptions of previous studies. As a historical note, the
concept of the hard-label setting was first proposed over three decades ago by
Baum in [1,2], highlighting its lasting significance in this field and the persistent
elusiveness of this problem that has remained unsolved until this paper.

The attack presented by Chen et al. in this hard-label scenario efficiently
recovers signatures by exploiting the information provided by what the authors
called decision boundary points. However, their algorithm has several impor-
tant technical limitations. In particular, their method achieves polynomial time
complexity only for a very limited number of hidden layers and supports only
single-bit binary DNN outputs. They did not succeed in developing an efficient
algorithm for sign recovery, relying instead on a guessing approach, which in-
curs exponential time complexity. As a result, the signature recovery cannot be
considered solved in the general case and the sign recovery problem remains the
primary barrier to attacking larger and deeper networks in this setting. In fact,
the DNNs successfully targeted in [6] are restricted to those with a maximum of
four neurons distributed across two hidden layers.

3 Attack Overview

A deep neural network in the hard-label scenario takes inputs x and processes
them layer-by-layer into a final output decision, e.g. "dog" (cf. Figure 3).

Definition 1. An r-deep neural network f is a function parameterized by θ
that takes inputs from an input space Rd0 and returns values in an output space
Rdr+1 . The function f is composed as a sequence of functions alternating between
linear functions fi : Rdi−1 → Rdi , called fully connected layers, and a nonlinear

Cryptanalytic Extraction of Deep Neural Networks 9

function σ (acting component-wise):

f = fr+1 ◦ σ ◦ · · · ◦ σ ◦ f2 ◦ σ ◦ f1.

Fig. 3: Representation of the DNN as a composition of the recovered layers
f1, . . . , fi−1, the current target layer fi and the non-recovered future layers
fi+1, . . . , fr+1 (cf. Definition 9).

At a high level our attack extracts the parameters θ of a model layer by layer,
and the analysis of each layer consists of two steps:

– Signature recovery extracts the parameters of each neuron up to some un-
known multiplicative factor. This determines the location of its critical hy-
perplane.

– Sign recovery determines the side of the critical hyperplane in which the
linear function of the neuron produces positive values which pass unchanged
through the subsequent ReLU.

A full list of formal definitions can be found in subsection A.1. Our terminol-
ogy follows very closely the one first presented in [5] and then adopted in more
recent attacks [4, 6].

The main difference from previous attacks is that we no longer have direct
access to critical points - we are only aware of class transition points. We will
concentrate on the subset of transition points which are also critical points. These
are the dual points, and we can find them by moving along decision boundaries
until their local orientation changes (detailed in section 4).

Since dual points are defined by the intersection of two locally linear d0 − 1
dimensional hyperplanes (defined by the critical and transition conditions, re-
spectively), they form a locally linear d0 − 2 dimensional subspace D which
is associated with some neuron. Unfortunately, we can directly access only the
transition hyperplane and not the critical hyperplane. We overcome this problem
by computing the subspace D by intersecting two adjacent decision boundary
patches with different orientations (instead of intersecting a decision hyperplane
and a critical hyperplane). In other words, once we discover some dual point

10

xdual ∈ D, we can explore the vicinity of xdual in order to find the local orien-
tations of the two decision boundary patches on its two sides, intersect them,
and thus discover the whole subspace D from a single point xdual in it. Since D
is a d0 − 2 dimensional subspace of the d0 − 1 dimensional critical hyperplane
of some neuron, knowledge of this D makes it possible to find most (but not
all) of the parameters of this neuron by just moving along the DNN’s decision
boundary and exploring its geometric shape.

Fig. 4: A green critical hyperplane of some neuron which changes the local ori-
entation of two decision boundary patches on its two sides.

A 3D depiction of this situation is depicted in Figure 4, where the vertical
green 2D plane is the (unknown) critical subspace of some internal neuron, and
the two 2D almost horizontal patches of the decision boundary on its two sides
change their local orientation on the two sides of the critical plane. The inter-
section of the two 2D decision boundary patches yields a 1D line of dual points,
which are all contained in the unknown critical plane. The only thing we do
not observe about this critical plane is how it rotates around the known line of
critical points within it.

To get a complete description of the neuron, we just have to find another
instance of criticality of the same neuron in a different location of the input
space. Our analysis is likely to yield a differently oriented subspace of dual points
within it, and by combining the information they provide, we are likely to find
the missing parameters of that neuron. Note that each partial information can be
viewed as a set of linear equations, and thus determining whether two subspaces
of dual points were produced by the same neuron, we simply have to check if the
two systems of equations are consistent. If they are, their common solution is
likely to provide a full description of this neuron, including its missing orientation
around each one of the two subsets of dual points we have found within it.

The one remaining mystery about this neuron is which one of its two sides
corresponds to positive inputs to its ReLU. This is referred to as the problem
of finding the sign of the neuron, and without having this crucial information

Cryptanalytic Extraction of Deep Neural Networks 11

about all the neurons in the first i − 1 layers of the DNN we will not be able
to peel off the effect of these layers and proceed to the analysis of the i-th layer
neurons, as depicted in Figure 3.

The attack presented in [4] solved this problem in the easy scenario (S5)
by noticing that the output of the network tended to change faster (i.e., had
a higher value for the absolute value of the slope) when the input x moved
from the side of negative ReLU inputs (where the output of this neuron was
stuck at zero) to the side of positive ReLU inputs (where it was allowed to
change and thus contributed to the overall change in the output). This effect
could be maximized by wiggling the targeted neuron in a direction which is
perpendicular to its critical hyperplane. While each individual test of slopes
may give a wrong answer, we are likely to see a statistically significant difference
between the speed of change of the outputs on the two sides of this neuron when
we explore sufficiently many critical points belonging to the same neuron during
a large number of traversals of the input space. Unfortunately, in the hard-label
scenario (S1) considered in this paper we no longer have access to the numeric
values of the output, and thus cannot compute the rate of change of these values.

The way we solve the sign problem in the hard-label scenario is by exploiting
a different type of measurement which is also strongly correlated to the speed
of change of neuronal values, and can thus act as a proxy for the immeasurable
output slopes. Consider Figure 4 once again, where we are given some dual point
xdual. After finding the two d0 − 1 dimensional decision boundary patches on
its two sides, we can find the two dashed lines which start at xdual, lie on the
two decision boundary patches, and are perpendicular to D. Each one of these
line segments ends when another neuron flips sides, and thus changes again the
orientation of the decision boundary. We can now measure the two distances
∆on, ∆off until this happens on the two sides of the critical hyperplane. If this
other neuron that flipped is at one of the later layers (compared to layer i
where the targeted neuron resides), then the speed at which its inputs change
is affected by whether the targeted neuron is contributing to the change or
not. This implies that typically (but not always), we expect decision boundary
patches to be narrower on the positive side of the ReLU than on the negative side
of the ReLU (i.e., that ∆on < ∆off). This is a measurable property even when
the attacker has only access to the hard-labels assigned to inputs. In section 7
we show experimentally that this statistical difference becomes very prominent
once we test a sufficiently large number of dual points xdual which all lie on the
critical hyperplane of the same targeted neuron.

One important observation is that any particular patch of the decision bound-
ary can be ended by flipping neurons which are located within the DNN either
before or after the targeted neuron. Only neurons in later layers can possibly be
affected by the question whether the targeted neuron’s ReLU was on its positive
or negative sides, and thus we should discard from our statistics any earlier layer
neuron. Fortunately, we already know the signature of all these neurons, and we
can test whether the dual subspace that ends the decision boundary patch yields
a (partial) signature which is already known, and thus discard these cases.

12

Adversarial Goals and Assumptions. According to our security model, the
attacker can adaptively select queries x as inputs to oracle O, which returns
the label of x produced by the DNN fθ. The attacker’s objective is to obtain
the extracted parameters θ̂ which are the same as the original parameters θ, up
to roundoff errors produced by using finite precision real numbers8, and up to
unavoidable symmetries (such as permuting the order of internal neurons). In
addition, we make the following typical assumptions regarding the capabilities
of the attacker mirroring prior work on this topic [5]: Knowledge of the ar-
chitecture. The attacker has knowledge of the number of layers, the number
of neurons in each layer, and the number of inputs and outputs in the net-
work. Full-domain inputs. The attacker can query arbitrary inputs from Rd0 .
Precise computations. The DNN is specified and evaluated using a sufficiently
high precision floating-point arithmetic. Fully connected network and ReLU
activation functions. The network is comprised of fully connected layers and
all activation functions are the ReLU function. Compared to [6], we do not as-
sume that the classifier is binary, and can accommodate any number of classes
(with multiple decision boundaries between them).

4 Dual Point Finding

Fig. 5: Visualization of our dual point finding algorithm.

The value of critical points is well understood in the literature [4,5], because
it is the location of these points that completely determine the parameters of a
neural network. Unfortunately, without the ability to directly access the function
f(·) that returns the logits of the model, it is not possible to identify general
critical points. Instead, we use dual points (cf. Definition 17): inputs that sit both

8 Note that by increasing the number of floating point bits we use by a factor of k, we
can exponentially reduce these roundoff errors while increasing the time complexity
of the arithmetic operations in our attack only by the polynomial factor of k2.

Cryptanalytic Extraction of Deep Neural Networks 13

at the decision boundary and also on the critical hyperplane of some neuron. The
finding of dual points is one key capability we used throughout our attack. To
identify dual points, we implement a simple algorithm, visualized in Figure 5:

Step 1: find a point x2 on the decision boundary. Initially, we sample two ran-
dom inputs x0 and x1 that are labeled differently by the neural network, i.e.,
z(f(x0)) ̸= z(f(x1)). We then perform binary search starting from these two
points to find the exact location of the decision boundary where z(f(x2)) changes
from one class to another. Since we do this with binary search it is impossible
to learn the exact location of the decision boundary, but with log2 ϵ queries we
can recover a coordinate satisfying |f(x2)| < ϵ. (We will also call this point xleft,
because later we will find a right point.)

Step 2: make a random excursion to x3. We move away from x2 in a random
direction to reach a new point x3.

Step 3: find another point x4 on the decision boundary. Evaluate the class
z(f(x3)). If the class corresponds to the one of x0, find the transition point
x4 using a binary search between x3 and x1. If the class z(f(x3)) = z(f(x1)),
find the transition point x4 using a binary search between x3 and x0 instead.

Step 4: move along the decision boundary until xdual. Using the direction dx =
x4 − x2 we can move to xα = x2 +α · dx. For a small α the value xα remains on
the decision boundary. But after some distance, eventually xα will deviate away
from the decision boundary. Or, more accurately, the decision boundary will
deviate away from xα. Why is this? Recall that ReLU neural networks divide
the input space into piecewise linear regions. Within any region, the decision
boundary will behave completely linearly. But once we cross from one linear
region to another, the decision boundary will appear to bend, because we are no
longer in the same linear region. The location of the bend is exactly the dual
point which is both on the decision boundary, and also on some neuron’s critical
hyperplane.

Step 5: re-locate the decision boundary. After crossing the critical hyperplane,
we now project this point back onto the decision boundary. We refer to this point
as xright. At this point, we have collected three points: (xleft,xdual, and xright).

Find the normal vector m to the decision boundary. One final piece of informa-
tion is necessary that will will use in several places: the normal vector to the
decision boundary at the inputs xleft and xright. Formally, the normal vector to
the decision boundary m is a vector so that, for any input x on the decision
boundary and random vector ϵ, x+ (ϵ− projmϵ) is too. By viewing the normal
vector this way, we can see how to compute its value through a series of queries.

To begin we choose (arbitrarily and without loss of generality) two unit-
length and orthogonal vectors e0 and e1. We then choose a small constant α,
and step in the direction x′ = x+αe0. Then, via binary search, we search for the

14

smallest value of β such that x∗ = x′ + βe1 is on the decision boundary. Given
the value of β here, we can then compute β

α as the ratio between the first and
second coordinates of the normal vector. By repeating the above procedure for
each of the remaining directions e2, e3, . . . , ed0 , we can completely reconstruct
(up to scale) the normal vector m to the decision boundary.

5 Signature Recovery

The first step in our attack recovers the parameters of each layer of the model
up to a real-value scalar per neuron. Formally, the i-th fully connected layer of
the neural network is fi : Rdi−1 → Rdi , which is parameterized by the weight
matrix A(i) ∈ Rdi×di−1 and the bias vector b(i) ∈ Rdi (cf. Definition 10).

Definition 2. The signature of a neuron η is equal to α · A(i)
η , where α is an

an arbitrary rescaling of the corresponding parameter.

It is easy to verify that positive constants can be pushed through the net-
work arbitrarily (specifically: if all the weights and the bias of one neuron are
multiplied by a constant a > 0, and the corresponding inputs to every neuron
on the next layer are multiplied by 1

a , then the model will behave identically).
However, negative constants can not be pushed through the model, since this
causes neurons to flip from active to inactive which changes the behavior of
the model. Therefore, our signature recovery attack mirrors the methodology of
prior work [5]: we search for a set of dual points, and then use the locations of
these dual points to determine the signatures on the first layer.

5.1 Warm-up: Extracting the first layer

The prior section developed an algorithm that allows us to efficiently identify
a vast set of dual points. We now show how to use this information to recover
the normal vectors (up to sign and magnitude) to the neurons—and, as a conse-
quence, the signatures of all the neurons in the first layer of the neural network.

To begin, assume that we are given a dual (and thus critical) point xdual for
some neuron η. In prior work [5], computing the normal vector to the critical
hyperplane induced by the neuron η was possible directly via finite differences,
because they had the power to query the model f at arbitrary points x ∈ Rd0 .
But now the only useful points our attack can sense are constrained to a piecewise
linear d0 − 1 dimensional subspace—the set of points on the decision boundary
of the neural network, and thus we must implement a slightly different attack,
formalized in Algorithm 1.

Step 1: Compute the (d0 − 2)-dimensional dual space in the vicinity of xdual.

Definition 3. The dual space Dη of a neuron η is the locally linear d0 − 2
dimensional subspace which is the intersection between the d0 − 1 dimensional
critical hyperplane for η and the d0 − 1 dimensional decision boundary in the
vicinity of xdual.

Cryptanalytic Extraction of Deep Neural Networks 15

This definition at first may not appear very useful: we do not yet know the
d0 − 1 dimensional critical hyperplane, and so how do we compute the inter-
section between this hyperplane and the decision boundary? But now let us
make the following observation: the dual space for a neuron η is also equal to
the intersection of the two decision boundary hyperplanes around the neuron,
specifically, the ones at the points xleft and xright. As a result, it is possible to
compute the dual space (which has a strong dependence on the parameters of
the model) by making use of label-only oracle queries to the model.

Step 2: Combine two dual spaces to recover the lost dimension. 9 Suppose for
the moment (and we will show how to do this next) that we were given two
different dual points, and their corresponding dual spaces Dη

0 and Dη
1 for the

same neuron. Consider the quantity A
(1)
j : the j-th row of the first layer weight

matrix; put differently, this is the normal vector to the critical hyperplane. Notice
that each of these dual spaces satisfies A

(1)
j ̸∈ D0 and A

(1)
j ̸∈ D1 (because, by

definition, the dual space contains the d0 − 1 dimensional critical hyperplane,
which again by definition, does not contain the normal vector to the hyperplane).

But also notice that, unless we are exceptionally unlucky, Dη
0 ̸= Dη

1 . There-
fore, by simply computing the union of these two spaces, we can recover a
d0 − 1 dimensional space parameterized by its normal vector n. And therefore,
A

(1)
j = n · α for some real valued (and possibly negative) constant α.

Filtering first-layer dual points. The final missing piece to our puzzle is to
give an algorithm that filters out the dual points that correspond to neurons on
the first layer from dual points that correspond to neurons on later layers. We
detail this algorithm in Algorithm 2, and describe it here.

Fortunately, this is straightforward and does not require any new work. Sup-
pose that we have two dual spaces Di and Dj and want to know if they corre-
spond to the same neuron on the first layer. Let us simply compute E = Di∪Dj

as the union of these two d0 − 2 dimensional spaces. We already know that E
is d0 − 1 dimensional when both dual points correspond to the same neuron on
the first layer. Let us now consider what happens if Di and Dj correspond to
different neurons on the first layer, and after that, any neurons on later layers.

If Di and Dj both correspond to different neurons on the first layer, then
we will have that D⊥

i = span(A(1)
i , ri) where ri acts as an arbitrary, essentially

random vector (determined by later layers); similarly D⊥
j = span(A(1)

j , rj). Thus,
because we assume that no two critical hyperplanes are exactly parallel, we will
have that span(A(1)

i , ri)∩ span(A(1)
j , rj) = ∅, and therefore, Di ∪Dj = Rd0 . This

allows us to distinguish dual points that share a neuron from those that do not.
9 A simple 3D example of this process is to find a 2D plane from some 1D lines it

contains. A single line does not fully define the plane, since it can rotate around it,
but two different lines in it uniquely define the plane. Note that if the two lines are
arbitrary lines in 3D space, they are extremely unlikely to belong to any common
2D plane, so we can cluster consistent lines that belong to the same neuronal plane.

16

Algorithm 1 RecoverFirst-
LayerWeights(xdual,0, xdual,1)

Input: xi, dual points of the model
Output: The parameters of the

model α · A(1)
η , or ⊥ if the dual

points are inconsistent.
1: Di = ComputeDualSpace(xi)
2: D = D0 ∪D1

3: if D = Rd0 then
4: return ⊥
5: else
6: Find w such that

Span({w}) ∪D = Rd0

7: return w

Algorithm 2 CollectFirstLayerDual-
Points(K)

Input: K, number of dual points to search for
Output: Set of clusters of consistent dual points
1: S ← ∅
2: for i← 1 to K do
3: xdual ← FindRandomDualPoint()
4: S ← S ∪ {xdual}
5: clusters← ∅
6: for each xdual ∈ S do
7: matched← false
8: for each c ∈ clusters do
9: r ← RandomElement(c)

10: if IsConsistent(r,xdual) then
11: c← c ∪ {xdual}
12: matched← true
13: break
14: if not matched then
15: clusters← clusters ∪ {{xdual}}
16: return {c ∈ clusters : |c| > 1}

5.2 Extracting deeper layers

Having shown how to recover the first layer, we now present our general al-
gorithm. Without loss of generality, we assume that all previous layers of the
network are extracted, and our goal is to extract the i-th layer.

Definition 4. The function that computes the first i layers (up to and including
i) of f is called the input function and is denoted as f1..i. In particular, f =
f1..r+1.

Because we have extracted the parameters of the model up to layer i, we can
easily filter out and remove any dual points that belong to layers 1 through to
j, by taking every dual point xdual and computing f1..j(xdual) for every j < i
and rejecting any dual point where there exists some layer j and neuron η such
that f1..j(xdual) is at a critical point.

Identifying layer-i dual points To start, we consider all dual points that
have not already been found to be part of some prior layer. Now, we repeat an
algorithm very similar to the algorithm from subsection 5.1.

Definition 5. Let fx0;i be the linear transformation satisfying fx0;i(x0) = fi(x0)
and ∇fx0;i(x)

∣∣
x=x0

= ∇fi(x)
∣∣
x=x0

.

That is, fx0;i is just the linear transformation that the function fi defines
within the linear region around the point x0.

Cryptanalytic Extraction of Deep Neural Networks 17

Definition 6. The hidden state at layer j is the output of the function f1..j,
before applying the nonlinear transformation σ.

For each dual point {xduali} and corresponding normal vector {ni}, we com-
pute the hidden state x̂duali = f1..i(xduali) and normal vector n̂i = fxduali;i(ni).10

By performing this linear transformation, we can now pretend that we are
working from within the space of the i-th hidden layer. By doing this, it is now
possible to check if two dual points are consistent.

Definition 7. Two dual points xdual0 and xdual1 are consistent if they occur
because of the same neuron η on the same layer i of the model.

To check consistency, we leverage the fact that the union of the dual spaces
for dual points that share the same neuron will not have full rank, whereas the
dual spaces for dual points from different neurons will have full rank.

This allows us to repeat our prior algorithm identically; with one key chal-
lenge. Because we are working with ReLU networks, all inputs that are negative
will be set to zero. Therefore, the linear transformation defined by fx0;i(x0) will
not be onto—in fact, it will have a null space roughly equal to di/2 [4].

Definition 8. A partial dual space Dpartial is a subspace of the dual space D.

What this means practically speaking is that when we compute the union of
two dual spaces, even if they correspond to completely different neurons, they
will (with high probability) share some coordinates which are identically zero.
Therefore, the correct measure to check if two dual points are consistent is not
if they have completely full rank, but rather whether they achieve the highest
rank possible, given the number of shared coordinates where both dual points
have dead neurons.

Algorithm 3 IsConsistent(xdual0,xdual1, D0, D1)

Input: xduali a dual point of the model, Si the corresponding dual space
Output: True if the two dual points are on the same neuron’s critical hyperplane,

otherwise False.
1: Let D̃j = f(xduali; i)(Dj)
2: Let D = D̃0 ∪ D̃1.
3: Let X = the number of neurons active in either xdual0 or xdual1.
4: if Rank(D) = X then
5: return No
6: else
7: return Yes ▷ Specifically, Rank(D) < X

10 Notice the reason we are using this function is because ni is not an input to the
neural network, but we just want to appropriately transform the normal vector.

18

Recovering layer-i signatures Given a method to identify whether or not
two layer-i dual points correspond to the same neuron, we can now finally recover
the signatures for this layer of the model.

Step 1: cluster dual points. Given all of the dual points we have found thus far, we
first cluster them together using the IsConsistent function from Algorithm 3.
It is straightforward to implement an O((# duals)2) work algorithm to achieve
this. We begin by constructing a graph; each dual point corresponds to a node,
and we connect two dual points with an edge if they are consistent.

In an ideal world, this graph would be disconnected and have exactly di
cliques of size greater than one, and all remaining nodes isolated from each
other (corresponding to neurons on deeper layers). In practice, however, with
low probability the IsConsistent algorithm will spuriously claim two neurons
are consistent when in fact they are not with low (e.g., 10−6) probability due
to numerical instabilities. To resolve this issue, we instead search for maximal
clique, because we find that spurious errors are typically independent; this way,
single edges that connect to cliques are automatically discarded.

Step 2: unify dual spaces to recover signatures. At this point in our algorithm
we have one set of dual points per neuron on the i-th layer of the model. All
that remains now is to recover the parameters for each of these neurons.

Fortunately, in subsection 5.1 where we introduce our layer-1 attack, we have
already done almost all of the work necessary. Only now, instead of collecting a
pair of d0 − 2 dimensional dual spaces and unifying them together to obtain a
d0−1 dimensional critical hyperplane, we now unify a larger set Ω(log(di)) dual
points together.

The reason why we need a larger number of dual points per neuron is that a
small constant fraction of the neurons in any given layer will be dead [4]. And
so, in order to observe at least one non-dead input in each of the di positions, we
should expect to need to see Ω(log(di)) different examples assuming a perfectly
uniform distribution of active and inactive neurons. If we collect our set of dual
points and find that they do not have sufficient diversity, then we simply return
back to the first step of our attack and collect more dual points. A complete

Algorithm 4 RecoverDeeperWeights({xdualj}nj=1, {Dj}nj=1)

Input: xdualj a dual point of the model, Dj the corresponding dual space
Output: The parameters of the model A(i)

η .
1: assert all dual points xdualj are (pairwise) consistent.
2: Let D̃j = f(dj ; i)(Dj)
3: Let D = D̃0 ∪ D̃1 ∪ D̃2 ∪ · · · ∪ D̃n

4: if Rank(D) < d0 − 1 then
5: return ⊥ ▷ Insufficient data to reconstruct parameters.
6: else
7: Find w such that Span({w}) ∪D = Rd0

8: return w

Cryptanalytic Extraction of Deep Neural Networks 19

description of the algorithm for this attack is given in Algorithm 4.

6 Sign Recovery

Recall that a neuron’s signature is related to its actual weights by some arbitrary
scaling factor c. Finding the correct sign of c is crucial in order to correctly
recover the model. Similarly to [4], we use a heuristic argument and develop a
statistical test that is likely to identify the correct sign. We begin by providing the
intuition behind our sign recovery technique and experimentally validating its
key assumption (subsection 6.1). Next, we present the technique in algorithmic
form (subsection 6.2).

6.1 The Basic Technique

To correctly determine the sign of a target neuron, we require a property that
differs measurably between the neuron’s on- and off-sides.

In [4] the authors demonstrated that a small perturbation (neuron wiggle) in
a carefully chosen direction is expected to change the target neuron’s output by ϵ,
while affecting all other neurons in the same layer by about ± ϵ√

d
, where d is the

target layer’s width. Consequently, the output norms of the target layer, ||von||
and ||voff||, differ between the on- and off-sides of the target neuron. Assuming
that the neurons in the remaining layers behave randomly, the changes of the
floating point values of the output logits also differ in their magnitude between
the on- and off-side. This approach allowed the authors of [4] to directly measure
these infinitesimal changes in the output logits of the neural network.

One key intuition for sign recovery without direct access to output logits
is, that the average speed with which all future neurons11 change their values
depends on the target layer output norms. Accordingly, the speed with which the
average future neurons change their value on the target neuron’s on-side, son, is
larger than that on its off-side, soff, see also Figure 6. The core assumption is
that this speed difference correlates with the target layer’s output norms, leading
to the approximate magnitude estimates given in Equation 1 and Equation 2.

son ∝ ||von|| ≈ ∥
(
± ϵ√

d
, ± ϵ√

d
, . . . , ϵ , . . . , ± ϵ√

d
, ± ϵ√

d

)
∥ (1)

soff ∝ ||voff|| ≈ ∥
(
± ϵ√

d
, ± ϵ√

d
, . . . , 0 , . . . , ± ϵ√

d
, ± ϵ√

d

)
∥ (2)

Any neuron toggling point introduces bends in the decision boundary, which
allows us to measure ∆on and ∆off. If a future neuron is approaching its toggling
point xt, a higher speed implies it will reach this point earlier than if moving at
a slower speed (see Figure 6). The ratio between the two very rough theoretical
estimates of speed given above is about

√
2 ≈ 1.4, while actual experiments yield

an average speed ratio of about 1.2. This significant ratio of distances ∆off/∆on

11 A future neuron means a neuron that is located in any of the layers fi+1, . . . , fr+1

that follow the current target layer i.

20

Fig. 6: Assume a target neuron at a dual point xdual, and a future neuron at
initial value v0. A higher average speed on the on-side son compared to the off-
side soff will result in a measurable difference ∆off > ∆on.

(which does not depend on the dimension d and is expected to remain roughly
the same at different layers) is easily measurable. By running a small number of
experiments and taking their majority vote (i.e., assigning a minus sign to the
side of its critical hyperplane which tends to produce longer distances) we are
extremely likely to find the correct sign of the neuron.

Note that in the case of perfect control only the target neuron will change by
a value ϵ on the on-side while all other neurons in the target layer will change
by 0, resulting in ||von||/||voff|| = ∞. In this extreme case of perfect control
it is obvious that ∆off > ∆on since there will never be a future toggle on the
off-side.12

Experimental Verification of the Basic Technique To experimentally ver-
ify our technique in terms of the level of control (||von||/||voff||) and the average
future neuron speed (son and soff), we record these values in a white-box setting
for the network described in Our CIFAR10 Network. Details of this network will
be provided in the experimental section; here, we note that it contains four hid-
den layers, with 256 neurons in hidden layers 1 to 3, and 64 neurons in hidden
layer 4. For a large number of target neurons in every hidden layer, we examine
the speed of all future neurons and the level of control during our sign recovery
attack13 across several dual points. At each dual point, the speed of each future
neuron is calculated as son, off = |v (xdual)− v (xt) |/∆on, off. This represents the
change in the neuron’s value before its ReLU, divided by the distance ∆on, off to
the first future neuron toggling point on the on- or off-side.

Table 2 shows that the intuition on the future neuron speed being larger on
the on- than the off-side of the neurons is true for all the (3 × 256 + 64 = 832)

12 If we move too far away from xdual there will however be a past layer toggle at some
point. We discuss later in detail how these are handled.

13 The construction details of the neuron wiggle for the attack are discussed in subsec-
tion 6.2.

Cryptanalytic Extraction of Deep Neural Networks 21
Table 2: Whitebox-verification on the intuition for the sign-attack across target
neurons in Our CIFAR10 Network.

Average target neuron Worst target neuron
Layer Neurons ||von||/||voff|| son > soff nID ||von||/||voff|| son > soff

1 256 ∞ 100% - - -
2 256 (1.20± 0.04) (96± 5)% 170 1.07 64%
3 256 (1.21± 0.04) (82± 7)% 226 1.19 59%
4 64 (3.2± 0.8) 100% - - -

target neurons in the network. the average ratio is about 1.2, and even for the
worst neurons the ratio is above 1.07 (which will simply require a larger number
of corresponding dual points to get a reliable result).

6.2 Algorithm

Let xdual be a dual point for the target neuron. Assuming momentarily that
we do know the correct sign of the weights, we let n̂ be the unit normal vector
of the ReLU plane pointing towards the direction where the neuron is positive.
Walking in the direction of n̂ will produce a maximal rate of change in the
target neuron, which in turn may toggle neurons in future layers more often.
On the other hand, walking in the direction of −n̂ will produce no change in
the target neuron since it is being suppressed by the ReLU, and may be less
likely to toggle neurons in future layers. Of course, this general rule may not
hold depending on the unpredictable effect that the displacements have on non-
target neurons. However, when conducting many experiments that explore dual
points throughout different regions of the input space, we expect that walks on
regions where the target neuron is known to be on will on average trigger future
neurons faster than those where the target neuron is off. Based on the above
argument, we devise Algorithm 5: we assume that we know the correct sign of
the neuron, and measure the distance that we need to walk on either side of the
ReLU before a future-layer neuron is toggled. These distances are compared, and
the experiment is repeated at many different dual points. If our guess for the
sign was correct, we expect that a majority of experiments will walk a shorter
distance on the on-side than on the off-side. Otherwise, we conclude that the
real sign is opposite to our guess.

The precise way in which we perform our walk is visualized in Figure 7 (and
detailed in Algorithm 6). In a black box approach we cannot observe the val-
ues of future-layer neurons, but we know that the decision plane will change
directions whenever any neuron toggles. Therefore, we perform our walk over
the decision plane (moving not in the direction of ±n̂ but its projection onto
the decision plane), and infer that there has been a neuron toggle whenever we
notice a change in the direction of the plane.
It is important to stress that the toggle should only be counted if it comes from
a future layer, since toggles in pasts layers are unaffected by whether the target
neuron is on or off. We can easily check if the toggle is from a past layer, since
the weights and biases of all past-layer neurons are already known.

22

Algorithm 5 RecoverSign(i,W,B)

Input: i the index of the target neuron and W,B the weights and biases of the network
up to and including the target layer (with the target layer known only up to sign
per neuron).

Output: +1 if the sign of the target neuron is correct, otherwise −1
1: votes+ ← 0
2: votes− ← 0
3: for experiment = 1, . . . , Nexp do
4: xdual ← RandomDualPoint(i)
5: F ← LocalMatrix(W,B,xdual)
6: n̂← F [:, i] / ∥F [:, i]∥
7: ∆+ ← DistanceToToggle(xdual, n̂)
8: ∆− ← DistanceToToggle(xdual,−n̂)
9: if ∆+ < ∆− : votes+ = votes+ + 1

10: else : votes− = votes− + 1

11: if votes+ > votes− : return +1
12: else: return −1

A unique case of future-neuron influence occurs in the penultimate layer, where
no further ReLU layers (and thus no toggles) exist; only the output layer follows.
Here, the output logits, though inaccessible in the hard-label scenario, change
with the target neuron’s output. The current decision boundary eventually in-
tersects with another, allowing us to evaluate this crossing distance, similar to
assessing distances to future toggles.
Once we detected a non-future layer toggle we have two options: Either we de-
cide to discard the dual point altogether (Figure 7a), or, we try to follow the
decision hyperplane through the unwanted toggle and continue our search for
a future toggle (Figure 7b). In our experiments we choose this middle variant
which aims to handle non-future layer toggles, and measures the distance ∆ at
each input point xdual by summing the entire walked distance along the decision
hyperplane until one future toggle is encountered.
The handling of non-future layer toggles does not always succeed, and we still
discard the dual point if we keep on encountering the same past layer neurons.
Therefore, to successfully perform Nexp experiments we usually need to investi-
gate a larger number of Ndual dual points.

Confidence Level In our experiment, after conducting Nexp trials (or, in other
words, successfully analyzing Nexp dual points), we calculate the observed prob-
ability for one sign decision (either + or -) as pexp = max(votes+,votes−)

Nexp
. While

the average future neuron speed son is typically higher on the on-side, this is not
consistent across every single dual point (refer to Table 2). Thus, we might ob-
serve a vote for the correct side with a probability such as pexp = 0.55. To ensure
our observed probability pexp is not simply a result of random variation around
p0 = 0.5, we assess the probability of error, that is the significance level α. The
significance level is connected to the confidence level CL by CL = 100×(1−α)%.

Cryptanalytic Extraction of Deep Neural Networks 23

Fig. 7: Visualization of the distance measurement using the DistanceToTog-
gle algorithm. a. In its simplest variant the distance measurement only accepts
distance measurements from dual points at which the first toggle is a future
layer toggle. b. A slightly more elaborate variant of the distance measurement
handles past layer toggles by recomputing the decision hyperplane normal vector
and continue moving until the first future layer toggle is encountered. c. In its
most elaborate variant the distance measurement can gain statistics at a single
dual point, by moving through multiple (instead of only a single) future toggle.

Hoeffding’s inequality [12] provides a bound on the error probability α, stating:
α = P (pexp − p0 > δp) ≤ exp

(
−2δ2pNexp

)
. This implies that the number of trials

Nexp required to achieve a specified error probability α is Nexp ≥ ln(1/α)/(2δ2p).
As a practical example, at least Nexp ⪆ 1000 trials are required to achieve a
confidence level of CL = 99% for pexp = 0.55. If we don’t find pexp to be close
to p0 = 0.5, a much smaller minimum number of trials, such as Nexp ⪆ 100 (for
pexp = 0.65) or Nexp ⪆ 10 (for pexp = 1.0).

7 Experiments

In our attack on Our CIFAR10 Network we first discuss the signature recovery
(subsection 7.1), and then the sign recovery (subsection 7.2). In practice, the
recovery process begins with signature recovery for hidden layer 1, followed by
sign recovery. Once this layer is fully recovered, the process is repeated sequen-
tially for each subsequent layer until the entire network is reconstructed. In all
our experiments the current target layer is attacked using standard 64 bit float-
ing point precision, we do, however, assume that the prior layers were perfectly
extracted.

Our software implementation will be made available soon in

https://github.com/X

Our CIFAR10 Network CIFAR-10 is a widely used benchmark dataset in
the field of visual deep learning. It is a balanced subset of the larger 80 Million

24

Tiny Images dataset, containing ten classes, including categories like airplanes,
cats, and frogs [19]. Each class consists of images with RGB channels of size
32× 32 pixels, resulting in 3,072 pixels per image. The dataset comprises a total
of 50,000 training images and 10,000 test images.

Our model for CIFAR-10 employs 3,072 input neurons (one per pixel) and
consists of four densely connected hidden layers. The first three hidden layers
contain 256 neurons each, while the fourth layer contains 64 neurons, all us-
ing ReLU activations. The network’s output layer has 10 neurons with softmax
activation. We follow the same training procedure14 as [4, 14].

Our four-hidden-layer model achieves a test accuracy of 0.52 on CIFAR-10,
which aligns with the expected performance for densely connected neural net-
works utilizing pure ReLU activation functions, typically around 0.53 [14]. It is
important to note that higher test accuracies are attainable with more sophis-
ticated neural network architectures. For example, Google Research’s Vision
Transformer (ViT-H/14) currently achieves a state-of-the-art test accuracy of
0.995 on CIFAR-10 [8, Table 2].

7.1 Signature Recovery Attack

We have now each of the major algorithms necessary to recover the signatures
of the model.

Description of the Implementation. The total runtime for the signature
recoveries of each target layer can be expressed as

tsignatures = tdual + tcluster + tunify, (3)

where tdual is the time taken to find dual points, tcluster is the time taken to
cluster the dual points (cf. step 1 in section 5.2), i.e. identify which target neu-
ron in the target layer they belong to, and, tunify the time taken to unify the
corresponding dual spaces (cf. step 2 in section 5.2).

Our proof-of-concept implementation disregards the runtime of the n2 pair-
wise clustering tcluster needed to identify dual points that are mutually consistent.
Although this method is known to work in principle (we validated it post-hoc)
and clearly runs in polynomial time, applying it naively (i.e., without many
potential optimizations) to a real attack would involve a (1 million)2 time com-
plexity, requiring weeks of computation.
Further, efficiency is improved by computing the gradient symbolically at de-
cision boundary points, instead of relying on binary search, thereby enhancing
performance by a constant factor, and achieving a shorter tdual.
14 For training, we use standard preprocessing and optimization techniques. The pixel

values are rescaled from the original range of 0 to 255 to a range of 0 to 1. The
model is trained using stochastic gradient descent (SGD) with a momentum of 0.9
and sparse categorical cross-entropy as the loss function. A batch size of 64 is used
during training.

Cryptanalytic Extraction of Deep Neural Networks 25

Consistency Verification Recall that, after generating dual points, the first
step in our attack is to cluster dual points according to whether or not they
are consistent. To implement this in a numerically stable manner, we collect a
set of inputs that form a basis to each of the two partial dual spaces, and then
compute the singular value decomposition on this set of points. By inspecting
the smallest singular value, we can see if the dual spaces are consistent, because
consistent dual spaces will not span Rd0 whereas inconsistent ones will. As we
can see in Figure 8, running the algorithm on dual points that come from the
same neuron result in a significantly different distribution of singular values than
when the algorithm is run on dual points from different neurons.

In a very small number of cases, we find that different neurons can incor-
rectly have very low singular values. To address this rare occurrence, we apply a
secondary filter where we consider triples of dual points (a, b, c) that are believed
to be consistent with each other; if the triple is inconsistent, we discard the all
three. Empirically we observe that this completely eliminates all false positives.

Identifying a diverse set of dual points In order for our algorithm to recover
neurons at deeper layers, we must collect a diverse set of inputs that cause every
input to the neuron to be active at least once. Unfortunately, we find that some
neurons in the model we have trained are almost dead, and rarely activate. As a
result, it is necessary to identify a very large number of dual points in order to
reconstruct these last few parameters.

Figure 9 summarizes this analysis. Each layer requires more queries to extract
than the previous, because

Measuring Extraction Fidelity As mentioned earlier, throughout this paper
we describe an algorithm that succeeds as long as arithmetic is performed to
an arbitrary level of precision. However, in our implementation we make use
of 64-bit floating point arithmetic. In this section we validate that our attack
correctly recovers the weights of the model up to a high degree of precision,
assuming that all prior layers have been perfectly recovered. As we can see in
Figure 10, all neurons are extracted with extremely high fidelity—usually 18 or
more bits of precision.

This proof-of-concept assessment of the signature-recovery algorithm (ne-
glecting tcluster, and with improved t∇) had been successfully implemented, and
has a running time of approximately 16 hours on a 256-core machine with addi-
tional GPU support.

7.2 Sign Recovery Attack

We will first describe assumptions and possible further optimizations of our
current implementation of the sign recovery attack, and then conclude with the
obtained results.

26

Description of the Implementation The total runtime for the sign recovery
of each target neuron can be expressed as:

tsign = (tdual + tm + tvote)×Ndual, (4)

where tdual is the time needed to identify a single dual point for the target neu-
ron, tm is the time needed to determine the decision hyperplane normal vectors
(mon, moff), tvote is the actual time needed to execute the attack on the target
neuron and obtain a single vote for sign recovery, and Ndual is the total number
of dual points required to attain the desired confidence level (cf. section 6.2) for
the attacked neuron.
In our current implementation, we assume the dual points and decision hyper-
plane vectors are predetermined, as these components are common to both sign
recovery and signature recovery. Notably, here we use as inputs critical points
for the target neuron derived from a set of random uniformly distributed points
over the interval [−5,+5]d0 .
During the sign recovery process for a single neuron, four CPU cores are utilized.
On a 256-core computer, this allows for the simultaneous recovery of 64 neurons.
A potential further optimization is parallelized recovery on the dual point level,
as multiple dual points can, in principle, independently be analyzed in parallel.
Each vote evaluation is independent, enabling simultaneous processing.
Another potential optimization involves adaptive control of the number of dual
points investigated. Currently, we use a fixed minimum number of input points
(Nmin

exp = 100 for hidden layers 1 and 4, and Nmin
exp = 1, 000 for hidden layers 2 and

3 as detailed in section 6.2). This fixed minimum is often higher than necessary
for many of the targeted neurons.

Results We use the confidence level CL introduced in section 6.2 to monitor
the sign recovery. Figure 11 shows examples for the evolution of CL with the
number of investigated dual points Ndual in hidden layers 1, ..., 4. In hidden layer
1 the likelihood of encountering current layer toggles is very low, allowing for a
successful investigation of every dual point. Further, we have perfect control over
the target layer, i.e. pexp = 100%. Consequently, after analyzing approximately
Nexp = Ndual ≈ 10 points, we achieve a confidence level of CL ≈ 100% for all
neurons.
Similarly, in hidden layer 4, we expect strong control over the target layer. How-
ever, this layer is characterized by a high likelihood of encountering current
or past layer toggles, which results in variability in the number of dual points
Ndual ≈ 876 required to attain the final confidence level (see Table 3 for more
details).
In hidden layers 2 and 3, the behavior of the confidence level with respect to
the number of dual points shows greater variability. While the easiest neurons
achieve confidence levels of around 100% after approximately Ndual ≈ 250, av-
erage neurons require about Ndual ≈ 750 dual points to reach similarly high
confidence levels (cf. Figure 11). Notably, there are six and seven particularly
challenging neurons in layers 2 and 3, respectively, that maintain CL ≤ 75%

Cryptanalytic Extraction of Deep Neural Networks 27

even after extensive analysis. For these neurons we re-run the sign recovery on
a fresh set of input points and can indeed achieve higher confidence levels.

Table 3: Summary of sign recovery results on our CIFAR10 network.
Confidence level Times per neuron

Layer Recovered Ndual min(CL) mean(CL) max(CL) tvote
∑

tvote

1 256/256 (100±0) s 100% 100% 100% (0.71± 0.13) s (220± 127) s
2 256/256* (1142± 268) 86.27% 99.39% 100.00% (0.29± 0.07) s (1670±1131) s
3 256/256* (1275±193) 88.06% 99.48% 100.00% (2.16±0.43) s (3468±485) s
4 64/64 (876±377) 98.17% 99.63% 99.69% (1.48±0.39) s (2311±661) s

Ndual: The average of the dual points across all neurons. tvote: The average of the
runtime per dual point.

∑
tvote: The average of the total runtime per neuron.

* In layer 2 and 3, six, respectively seven neurons finalized the first run with CL <
75% and were re-run a second time to confirm the sign votes and achieve higher
confidence levels.

The sign recovery process for all neurons across all layers yields correct re-
sults. Table 3 summarizes the sign recovery results. This proof-of-concept assess-
ment of the sign-recovery algorithm indicates that given the indicated number
of input points and their decision hyperplane normal vectors, i.e. tsign ≈ tvote,
we can run our neuron sign recovery attack on 64 neurons in parallel on our 256
core server and recover hidden layers 1, . . . , 4 in around 8.5 hours runtime.15

8 Conclusions

In this paper we have finally solved the long standing open problem of how
difficult it is to extract all the secret parameters of a ReLU-based DNN by in-
teracting with its black box implementation. While previous papers have shown
that this problem can be solved in polynomial time in the easiest attack scenario
(in which the attacker is given the precise numeric values of all the DNN’s logits),
in this paper we develop the first polynomial time attack even in the hardest
attack scenario (in which only the hard-labels of chosen inputs are provided). In
our proof-of-concept implementation we demonstrated the correctness of all the
elements of our attack by successfully extracting all the approximately one mil-
lion parameters of a realistic CIFAR10 network with about a thousand neurons.
However, a fully optimized end-to-end blackbox implementation which can be
used by third parties is left to future work.

Acknowledgments. We would like to express our sincere gratitude to Isaac Canales-
Martínez for his valuable contributions to this paper. His experimental tests provided
critical insights that shaped our findings. We also appreciate his proofreading of the
manuscript, which enhanced its clarity and coherence. Additionally, his review of the
code written by others helped to maintain the integrity and accuracy of our work.
15 This estimate is based on Table 3: In detail we can recover the signs of hidden

layer 1 in four batches with a total runtime of about 4× 220 s≈ 15 minutes, hidden
layer 2 in about (4 + 1) × 1, 670 s≈2.5 hours (note that we added one extra-run for
the initially low-confidence neurons.), hidden layer 3 in about 5 hours, and hidden
layer 4 in 40 minutes.

28

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Baum, E.B.: A polynomial time algorithm that learns two hidden unit nets. Neural
Comput. 2(4), 510–522 (1990), https://doi.org/10.1162/neco.1990.2.4.510

2. Baum, E.B.: Neural net algorithms that learn in polynomial time from examples
and queries. IEEE Trans. Neural Networks 2(1), 5–19 (1991), https://doi.org/10.
1109/72.80287

3. Blum, A., Rivest, R.L.: Training a 3-node neural network is NP-Complete. In:
Hanson, S.J., Remmele, W., Rivest, R.L. (eds.) Machine Learning: From Theory
to Applications - Cooperative Research at Siemens and MIT. Lecture Notes in
Computer Science, vol. 661, pp. 9–28. Springer (1993)

4. Canales-Martínez, I.A., Chavez-Saab, J., Hambitzer, A., Rodríguez-Henríquez, F.,
Satpute, N., Shamir, A.: Polynomial time cryptanalytic extraction of neural net-
work models. Cryptology ePrint Archive (2023)

5. Carlini, N., Jagielski, M., Mironov, I.: Cryptanalytic extraction of neural network
models. In: Annual International Cryptology Conference. pp. 189–218. Springer
(2020)

6. Chen, Y., Dong, X., Guo, J., Shen, Y., Wang, A., Wang, X.: Hard-label crypt-
analytic extraction of neural network models. Cryptology ePrint Archive, Paper
2024/1403 (2024), https://eprint.iacr.org/2024/1403

7. Daniely, A., Granot, E.: An exact poly-time membership-queries algorithm for
extraction a three-layer relu network. CoRR abs/2105.09673 (2021), https://
arxiv.org/abs/2105.09673

8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

9. Fefferman, C.: Reconstructing a neural net from its output. Revista Matemática
Iberoamericana 10(3), 507–555 (1994), http://eudml.org/doc/39464

10. Foerster, H., Mullins, R.D., Shumailov, I., Hayes, J.: Beyond slow signs in high-
fidelity model extraction. CoRR abs/2406.10011 (2024). https://doi.org/10.
48550/ARXIV.2406.10011, https://doi.org/10.48550/arXiv.2406.10011

11. Hancock, T.R., Golea, M., Marchand, M.: Learning nonoverlapping perceptron net-
works from examples and membership queries. Mach. Learn. 16(3), 161–183 (1994).
https://doi.org/10.1007/BF00993305, https://doi.org/10.1007/BF00993305

12. Hoeffding, W.: Probability inequalities for sums of bounded random variables. The
collected works of Wassily Hoeffding pp. 409–426 (1994)

13. Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., Papernot, N.: High accu-
racy and high fidelity extraction of neural networks. In: 29th USENIX security
symposium (USENIX Security 20). pp. 1345–1362 (2020)

14. Lin, Z., Memisevic, R., Konda, K.: How far can we go without convolution: Im-
proving fully-connected networks. arXiv preprint arXiv:1511.02580 (2015)

15. Martinelli, F., Simsek, B., Gerstner, W., Brea, J.: Expand-and-cluster: Parameter
recovery of neural networks. In: Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net (2024)

https://doi.org/10.1162/neco.1990.2.4.510
https://doi.org/10.1109/72.80287
https://doi.org/10.1109/72.80287
https://eprint.iacr.org/2024/1403
https://arxiv.org/abs/2105.09673
https://arxiv.org/abs/2105.09673
http://eudml.org/doc/39464
https://doi.org/10.48550/ARXIV.2406.10011
https://doi.org/10.48550/ARXIV.2406.10011
https://doi.org/10.48550/ARXIV.2406.10011
https://doi.org/10.48550/ARXIV.2406.10011
https://doi.org/10.48550/arXiv.2406.10011
https://doi.org/10.1007/BF00993305
https://doi.org/10.1007/BF00993305
https://doi.org/10.1007/BF00993305

Cryptanalytic Extraction of Deep Neural Networks 29

16. Milli, S., Schmidt, L., Dragan, A.D., Hardt, M.: Model reconstruction from model
explanations. In: danah boyd, Morgenstern, J.H. (eds.) Proceedings of the Con-
ference on Fairness, Accountability, and Transparency, FAT* 2019, Atlanta, GA,
USA, January 29-31, 2019. pp. 1–9. ACM (2019)

17. Reith, R.N., Schneider, T., Tkachenko, O.: Efficiently stealing your machine learn-
ing models. In: Cavallaro, L., Kinder, J., Domingo-Ferrer, J. (eds.) Proceedings of
the 18th ACM Workshop on Privacy in the Electronic Society, WPES@CCS 2019,
London, UK, November 11, 2019. pp. 198–210. ACM (2019)

18. Rolnick, D., Körding, K.P.: Reverse-engineering deep ReLU networks. In: Proceed-
ings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119, pp.
8178–8187. PMLR (2020)

19. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data
set for nonparametric object and scene recognition. IEEE transactions on pattern
analysis and machine intelligence 30(11), 1958–1970 (2008)

20. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction {APIs}. In: 25th USENIX security symposium
(USENIX Security 16). pp. 601–618 (2016)

A Appendices

A.1 Basic Definitions and Notation

Here we present some basic definitions and notations used throughout the manuscript
which closely follows the terminology first presented in [5] and then adopted in
more recent attacks [4, 6].

Definition 9. An r-deep neural network fθ is a function parameterized by θ
that takes inputs from an input space X and returns values in an output space
Y. The function f is composed as a sequence of functions alternating between
linear layers fi (of different dimensions di) and a nonlinear function (which acts
component-wise) σ:

f = fr+1 ◦ σ ◦ · · · ◦ σ ◦ f2 ◦ σ ◦ f1.

As in [4, 5, 6], we study deep neural networks (DNNs) where X = Rd0 , Y =
Rdr+1 and d0, . . . , dr+1 are positive integers. Also, we only consider neural
networks using the ReLU activation function defined as σ : x 7→ max(x, 0).

Definition 10. The i-th fully connected layer of a neural network is a function
fi : Rdi−1 → Rdi given by the affine transformation

fi(x) = A(i)x+ b(i),

where A(i) ∈ Rdi×di−1 and b(i) ∈ Rdi are, respectively, the weight matrix and
the bias vector of the i-th layer, and di−1, di are positive integers.

30

Definition 11. A neuron is a function determined by the corresponding weight
matrix followed by an activation function. Particularly, the j-th neuron of layer
i is the function η given by

η(x) = σ(A
(i)
j x+ b

(i)
j),

where A
(i)
j and b

(i)
j denote, respectively, the j-th row of A(i) and the j-th coordi-

nate of b(i). An r-deep neural network has N =
∑r

k=1 dk neurons.

Definition 12. The architecture of a fully connected neural network is described
by specifying its number of layers along with the dimension di (i.e., number of
neurons) of each layer i = 1, · · · , r + 1. We say that d0 is the dimension of the
inputs to the neural network and dr+1 is the number of outputs of the neural
network.

Definition 13. The parameters θ of an r-deep neural network fθ are the con-
crete assignments to the weights A(i) and biases b(i), i ∈ {1, 2, . . . , r + 1}.

When working under the hard-label setting, the raw output f(x) is processed
before returning the result. We consider the processing employed in [6], which is
presented in the definition below.

Definition 14. Let f : X → Y be an r-deep neural network with Y = Rdr+1 .
The hard-label z on the outputs f(x) is computed as arg maxif(x)i, the coordi-
nate of the maximum of f(x).16

Definition 15. Let V(η;x) denote the value that neuron η takes with x ∈ X
before applying σ. If V(η;x) > 0 then η is active. Otherwise, the neuron is
inactive. The state of η on input x (i.e., active, or inactive) is denoted by S(η;x).

Definition 16. A critical point x satisfies V(η;x) = 0 for some neuron η the
value V(η;x) = 0.

Definition 17. A dual point d is a point that is both on the decision boundary
(i.e., z(f(d+ ε)) ̸= z(f(d− ε)) for ϵ > 0) and on some critical hyperplane (i.e.,
there is some neuron with η(d) = 0).

Definition 18. Let x ∈ X . The linear neighbourhood of x is the set

{u ∈ X | S(η;x) = S(η;u) for all neurons η in the DNN }.

Since the state of all neurons remains the same for all inputs in the same
linear neighbourhood, the DNN behaves as a linear map (within that linear
neighbourhood). Let Fi,j = σ ◦ fj ◦ · · · ◦ σ ◦ fi, 1 ≤ i ≤ j ≤ r. Then, for all x in
a linear neighbourhood,

Fi,j(x) = I(j)(A(j) · · · (I(i+1)(A(i+1)(I(i)(A(i)x+ b(i))) + b(i+1)) · · ·+ b(j))

= Γx+ β,

16 If multiple entries in f(x) have the same maximum value, the hard-label is the
smallest coordinate of these equal entries

Cryptanalytic Extraction of Deep Neural Networks 31

where I(ℓ) are 0−1 diagonal matrices with a 0 on the diagonal’s k-th entry when
neuron k at layer ℓ is inactive and 1 when that neuron is active.

Let i ∈ {1, . . . , r + 1}. The DNN can be regarded as a composition of an
input function Fi−1, the i-th layer and an output function Gi+1:

f = fr+1 ◦ σ ◦ · · · ◦ σ ◦ fi+1︸ ︷︷ ︸
Gi+1

◦ σ ◦ fi ◦ σ ◦ fi−1 ◦ · · · ◦ σ ◦ f1︸ ︷︷ ︸
Fi−1

.

When i = 1, F0 is the identity map on the input; when i = r + 1, Gr+2 is the
identity map on the output. Furthermore, if we restrict inputs x′ to be in the
linear neighbourhood of x ∈ X , we can write Fi−1 and Gi+1, respectively, as

Fi−1(x
′) = F (i−1)

x x′ + b(i−1)
x and Gi+1(x

′) = G(i+1)
x x′ + b(i+1)

x .

In the context of our attack, i is the index of the target layer and Fi−1, Gi+1

represent, respectively, the recovered and non-recovered layers of the network.
This view of the DNN is visually depicted as in Figure 3.

A.2 Algorithms

Algorithm 6 DistanceToToggle(xdual, n̂)

Input: A dual point xdual for the target neuron, and n̂ the normal unit vector of the
neuron’s ReLU plane. Also uses parameters nToggles with default value 1, and δ
(a small number).

Output: Walks in the direction of n̂ projected to the decision plane until nToggles
neurons from future layers are toggled, and returns the total distance walked along
the decision hyperplane in the input space.

1: ∆← 0
2: x0 ← xdual

3: dx← n̂
4: futureLayerToggles← 0
5: while futureLayerToggles < nToggles do
6: m̂← DecisionPlaneUnitVector(x0 + δ · dx)
7: dx← n̂− ⟨n̂, m̂⟩m̂ ▷ Project n̂ onto the decision plane
8: Walk from x0 in the direction dx and let x1 be the point at which the
9: ... direction of the decision boundary first changes.

10: if no past- or current-layer neuron being toggled between x0 and x1 then
11: futureLayerToggles← futureLayerToggles+ 1
12: else
13: either discard the dual point or handle the past- or current-layer toggle
14: ∆← ∆+ ||x1 − xd||
15: x0 ← x1

return ∆

A.3 Supporting Figures on Experimental Outcomes

32

20 0
0

200
400
600
800

1000

Fr
eq

ue
nc

y
Layer 1

20 0

Layer 2

20 0

Layer 3

20 0

Layer 4

Consistent vs Inconsistent Neurons

Singular Values (log-scaled)

Same Neuron
Different Neuron

Fig. 8: Our method that computes the consistency between two dual points
nearly perfectly separates the distribution of consistent and inconsistent neu-
rons.

103 104 105 106

Number of dual points searched

0.0

0.5

1.0

Fr
ac

tio
n

of
ne

ur
on

s r
ec

ov
er

ed

Layer 1
Layer 2
Layer 3
Layer 4

Fig. 9: Fraction of inputs on each layer recovered as a function of the number
of dual points explored. Early layers are easier to recover than later layers,
requiring just a few thousand dual points, but later layers can require millions
of dual points.

20 25
100

101

Fr
eq

ue
nc

y
(lo

g
sc

al
e) Layer 1

25 30
100

101

Layer 2

20 25
100

101

Layer 3

22.5 25.0 27.5
100

101
Layer 4

Bits of Precision in Extracted Weights

Fig. 10

Cryptanalytic Extraction of Deep Neural Networks 33

Fig. 11: The evolution of the sign recovery confidence level CL with the investi-
gated number of dual points Ndual for easy neurons, average neurons, and the
most difficult neurons in each layer.

	 Polynomial Time Cryptanalytic Extraction of Deep Neural Networks in the Hard-Label Setting

