
Re-visiting Authorized Private Set Intersection:
A New Privacy-Preserving Variant and Two Protocols∗

Francesca Falzon

ffalzon@ethz.ch

ETH Zürich

Zürich, Switzerland

Evangelia Anna Markatou

markatou@brown.edu

TU Delft

Delft, Netherlands

ABSTRACT
We revisit the problem of Authorized Private Set Intersection (APSI),

which allows mutually untrusting parties to authorize their items

using a trusted third-party judge before privately computing the

intersection. We also initiate the study of Partial-APSI, a novel

privacy-preserving generalization of APSI in which the client only

reveals a subset of their items to a third-party semi-honest judge

for authorization. Partial-APSI allows for partial verification of

the set, preserving the privacy of the party whose items are being

verified. Both APSI and Partial-APSI have a number of applications,

including genome matching, ad conversion, and compliance with

privacy policies such as the GDPR.

We present two protocols based on bilinear pairings with linear

communication. The first realizes the APSI functionality, is secure

against a malicious client, and requires only one round of com-

munication during the online phase. Our second protocol realizes

the Partial-APSI functionality and is secure against a client that

may maliciously inject elements into its input set, but who follows

the protocol semi-honestly otherwise. We formally prove correct-

ness and security of these protocols and provide an experimental

evaluation to demonstrate their practicality. Our protocols can be

efficiently run on commodity hardware. We also show that our

protocols are massively parallelizable by running our experiments

on a compute grid across 50 cores.
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1 INTRODUCTION
Private set intersection (PSI) enables two parties – a client and

a server, for example – to securely compute the intersection of

their respective sets, X and Y. One or both parties learn the in-

tersection X ∩ Y, but neither party should learn anything about

the other party’s elements not contained in the intersection. This

problem naturally arises in many domains, including proximity test-

ing [35], the testing of sequenced human genomes [5, 36], botnet

detection [32], and Apple AirDrop [24]. PSI has also been proposed

by Facebook [8, 9] and Google [26] to measure ad conversion rates

by comparing the list of people who have seen an advert with those

who have completed a transaction.

However, even if a PSI protocol is secure in the malicious model,

parties can still inject elements into their set in order to mislead the

other party or to learn more information about the other party’s

set. If the universe is enumerable, a malicious party could go so far

as to add every element in the universe to their set. Authorized
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private set intersection (APSI) mitigates this attack by requiring

the items in the input set to be authorized by a trusted third party,

or judge, before the intersection is computed [10, 12]. The judge is

only involved in authorization and then goes offline.

While APSI offers good guarantees over PSI for preventing such

attacks, the party authorizing their elements must reveal their entire

set to the judge, which may be unreasonable. For example, revealing

the entire set is unnecessary if the client undergoes an audit in

which only a strict subset of the input is checked; revealing elements

beyond those requested only harms the privacy of the audited client.

We propose a new privacy-preserving variant of APSI, which we

call partial authorized private set intersection (Partial-APSI).

Partial-APSI requires the client to pre-commit to their set and send

this commitment to the judge. The client later reveals a subset of

their items – of the judge’s choosing – to the judge. Importantly,

the judge picks the subset to prevent the client from hand-picking

elements that it knows would be approved. Partially revealing the

input is useful in scenarios where revealing the entire data set

(e.g., an entire human genome) is undesirable, but revealing a few

elements (e.g., genes) may still result in sufficient privacy.

Below we highlight some important applications.

Application 1: Ad conversion. A social media company and

a store wish to compute the intersection of the set of people who

purchased an item from the store and the set of people who viewed

the store’s ad. The social media company may require the store to

have an auditing firm authorize the store’s input data via an APSI

protocol. If the client’s set is sufficiently large, the auditing firm

may instead only randomly sample the data and sign the set if the

selected elements are valid. In the latter case, a Partial-APSI protocol

can be used to ensure that the client list is not fully revealed.

Application 2: Privacy policy compliance. Data minimiza-

tion is central to privacy policies such as the European Union’s

General Data Protection Regulation (GDPR). GDPR Article 5(1)(c)

states that personal data must be “adequate, relevant and limited

to what is necessary in relation to the purposes for which they

are processed” [1]. Partial-APSI supports compliance by allowing

parties to only reveal necessary elements during routine audits

before intersection computations, thereby minimizing data sharing.

Application 3: Genome matching. PSI on DNA sequences is

useful in a number of settings including clinical (e.g., comparing

patient genomes), criminal (e.g., matching DNA of a suspect to that

found on a crime scene), personal (e.g., ancestry testing), and com-

mercial (e.g., patent disputes) settings. Genomes are immutable and

private, and parties participating in PSI involving such sensitive

data may wish to carry out the computation with a guarantee that

the other party’s data is valid; in such a case, APSI would be an

ideal solution. Other parties may wish to minimize the data revealed
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Protocol Security Assumptions Multi-runs

Authorize Intersect
# Rounds Comm. # Rounds Comm.

DT10 [14] Input-Malicious RSA & ROM ✓ 2 2𝑛 + 2 2 2 + 2𝑛 +𝑚
DKT10 [13] Malicious RSA, DDH, & ROM ✓ 2 2𝑛 + 2 2 1 + 5𝑛 +𝑚
SSS12 [38] Malicious CBDH & ROM ✓ 2 2𝑛 + 3 – –

DD15 [15] Malicious Quadratic Residuosity ✓ 2 2𝑛 + 2 2 2𝑛 +𝑚

Ours: APSI Malicious Client DBDH & ROM ✓ 2 2𝑛 + 2 1 𝑚 + 1
Ours: Partial-APSI Input-Malicious DBDH & ROM & DDH ✓ 4 2(𝑝 + 1)𝑛 + 2 3 3𝑚 + 1

Table 1: A comparison with prior APSI work. Here, 𝑛 and𝑚 denote the size of the client’s and server’s set, respectively. Input-
Malicious refers to a client that may maliciously insert elements to its set prior to Intersect, but who then executes the protocol
semi-honestly. Stefanov et al. [38] assumes that both parties authorize their elements and that the protocol has black-box use
of a PSI protocol; for comparability, we report the communication complexity needed to authorize a single party’s set.

𝑛 size of the sets X
𝑚 size of the sets Y
𝑝 fraction of elements to be revealed to judge

[𝑛] the set {1, . . . , 𝑛} for some integer 𝑛

⊥ empty string

𝑥 ←$X 𝑥 is chosen uniformly at random from a set X
𝑇 ⊆

$
𝑆 randomly chosen subset 𝑇 of a set 𝑆
c≈ computational indistinguishability

Table 2: Notation.
to third parties, in which case, Partial-APSI may be the a better

alternative. For example, bioengineering companies have been dis-

cussing barcoding cell lines, by adding unique DNA sequences to

genomes [27]. Genomes are relatively large, (e.g., mice genomes

are 2.5GB) and there are locations to place barcodes that don’t seem

to affect the organism. Auditing the entire genome is expensive

and the company might not wish to disclose the entire proprietary

genome. Partial-APSI would minimize access to private information

and discourage misuse of patented information. Recently, DNA-

based genotyping has been used as an alternative to serological

antibody-based methods to match blood donors to blood recipients

[40]. DNA-based genotyping is able to test for antigens for which

there are no serologic reagents. Both APSI and Partial-APSI could

serve to match blood donors to patients needing transfusions.

We consider protocols between three parties: a judge, a client,

and a server. The judge is assumed to be trusted, in the case of

APSI, and semi-honest, in the case of Partial-APSI. The client and

server hold sets X and Y, respectively, and we consider one-sided

protocols in which only the client learns the intersection X ∩ Y.
APSI and Partial-APSI can be broken down into two phases: (1)

the initial Authorize phase in which the client is required to (par-

tially or fully) authorize its elements and (2) the Intersect phase
in which the client can jointly compute the intersection with the

server. Throughout this paper, we assume that the client is input-
malicious i.e., it may inject unauthorized elements into its input

before authorization or before computing the intersection.

Table 2 describes the notation used throughout this paper.

1.1 Our Contributions
We revisit APSI and propose a new protocol based on bilinear

pairings that is bandwidth efficient and round-optimal, requiring

less interaction than previous proposed solutions. The server needs

to only encode its elements using some randomness and send those

encoded elements to the client along with the randomness. The

client can then recover the intersection from these elements. Our

APSI protocol is secure against a malicious client and semi-honest

server, assuming the Decisional Bilinear Diffie-Hellman assumption

and in the random oracle model. Our threat model is inspired by

the work of Hazay and Lindell [22, 23]. Since our APSI functionality

is one-sided (i.e., only the client learns the output), we consider

a relaxed notion of security in which only one party – the client

authorizing its elements and receiving the intersection – is fully

simulateable. Hazay and Lindell note that such a relaxation is often

sufficient in one-sided functionalities and that this notion has been

considered in previous works [18, 34].

We introduce Partial-APSI, a generalization of APSI that ad-

dresses the loss of privacywhen the client’s entire input is presented

to a semi-honest judge. Unlike in APSI where the client is required

to reveal all of its elements to the judge, Partial-APSI only requires

the client to present a partial, but computationally binding view of

its elements to the judge. A Partial-APSI protocol is parameterized

by a value 𝑝 ∈ (0, 1] which specifies the fraction of elements that

the client must reveal to the judge. The client commits to its items

and sends the commitments to the judge. The judge then requests

openings for a 𝑝 fraction of the set. If the revealed elements are

valid, then the judge authorizes the entire set (e.g., by signing the

committed values).

In Partial-APSI, the parameter 𝑝 denotes the privacy afforded

to the client. We model the judge as a semi-honest party (not fully

trusted) that aims to learn as much information about the client’s

set. The server can therefore choose to interact with clients who

have authorized their elements using a mutually approved judge

and whose parameter 𝑝 meets the server’s preferred threshold. Note

that when 𝑝 = 1, the client must reveal its entire set to the judge,

and thus Partial-APSI reduces to APSI. For this reason, we consider

Partial-APSI to be a generalization of APSI.

2



Re-visiting Authorized Private Set Intersection:
A New Privacy-Preserving Variant and Two Protocols

We present a second protocol that realizes the Partial-APSI func-

tionality. This protocol extends our APSI protocol to the Partial-

APSI setting and is also based on Diffie-Hellman and bilinear pair-

ings. However, in the authorize phase, the client must commit to

its elements using a secret 𝑟 to hide them from the judge. The

intersection phase thus requires an additional two rounds of com-

munication over the APSI protocol so that the client can blind the

server’s set with the same 𝑟 using an oblivious PRF.

The performance of our two protocols is summarized in Table 1.

Both our protocols achieve multi-runs: the client can authorize

its elements once and then execute Intersect without revealing its
signatures or the fact that its input set is the same. We assume

that in the Authorize phase, the client authorizes their elements

resulting in 2𝑛 communication (𝑛 elements to be sent to the judge

and 𝑛 signatures returned to the client). We also include an additive

factor of 2 to account for sending the judge’s public key to the client

and server. The communication of Intersect in both of our protocols
is independent of𝑛; this results in an at least 2𝑛multiplicative factor

decrease in communication compared with prior work, whilst still

achieving security against a malicious client.

Our contributions can be summarized as follows:

(1) We describe a new practical APSI protocol from bilinear

pairings that outperforms prior work with respect to number

of rounds and communication costs. (Section 4)

(2) We introduce and formalize a privacy-preserving general-

ization of APSI, which we coin partial authorized private set

intersection (Partial-APSI). (Section 2)

(3) We extend our APSI protocol to realize the Partial-APSI func-
tionality. (Section 5)

(4) We support our protocols with a formal analysis of their

correctness and security. We show that our APSI protocol is

secure against a malicious client and semi-honest server, and

our Partial-APSI protocol is secure against an input-malicious

client, and semi-honest judge and server. (Sections 4 and 5)

(5) We implement our two protocols and demonstrate their

efficiency and highly parallelizable nature. (Section 6)

1.2 Related Work
PSI can be realized using general secure multi-party computa-

tion [41], but specialized protocols are generally more efficient.

While the problem of PSI has been well-studied, the work done on

APSI is more limited. For a general treatment of PSI refer to [31].

PSI for certified sets was first proposed by Camenisch and Za-

verucha [10] as a way for a trusted third-party to authenticate and

bind the input sets to each party. De Cristofaro et al. [12] proposed

privacy-preserving policy-based information transfer (PPIT), in which
a third-party authorizes a client to retrieve a single piece of informa-

tion from a server. The protocols of [10] and [12] require quadratic

communication and complexity.

De Cristofaro and Tsudik [14] introduced Authorized PSI (APSI)
as a generalization of PPIT. Their protocol is secure in the input-

malicious model, with linear communication and complexity. This

work was later extended to be secure in the malicious model [13].

Kerschbaum [28] presented anAPSI protocol that relies on Bloom

filters and homomorphic encryption. Debnath et al. [15] expanded

on this work and presented a more efficient Bloom-filter-based

construction for both APSI and authorized private set intersection
cardinality (where parties only learn the size of the intersection).

Faber et al. [16] presented a protocol for authorized two-way private
set intersection; both parties are required to obtain authorizations on
their input sets and both parties learn the intersection. Their work

relies on a Diffie-Hellman key-exchange approach and is proven

secure in the malicious model.

Policy-enhanced private set intersection (PPSI) was introduced

as a variant of APSI in which parties must obtain authorizations

from a set of certificate authorities, and can encode elements with

different “policies” that certificates must satisfy [38]. Nagy et al.[33]

proposes Common Friends, which allows parties in a social network

to determine if they are friends or share common friends. The con-

struction enforces access control in a privacy-preserving manner

and uses Bloom filters for efficiency. D’Arco et al. [11] study impos-

sibility results of size-hiding PSI constructions; they demonstrate

that unconditionally secure size-hiding PSI is only possible in the

APSI setting. Their scheme requires exponential time and space.

The notion of authentication also appears in the outsourced

PSI literature, albeit with a different security goal. In Outsourced-

PSI [3], two clients outsource the intersection computation to an

untrusted server; the protocol includes an authorization mecha-

nism that ensures that the intersection is only computed with the

permission of all the clients and that the result is hidden from the

server. Verifiable delegated PSI [2, 39] considers the problem of how

mutually-distrusting clients can verifiably delegate computation to

a server and verify that the computation was performed correctly.

Most recently, Ghosh et al. [21] introduced private certifier inter-
section, the goal of which is to compute the set of common certifiers

between two parties or more parties and validate the the certificates.

2 PROBLEM DEFINITION
Both APSI and Partial-APSI proceed in two phases: (1) Authorize
in which the client C authorizes its elements, and (2) Intersect in
which the client C and the server S jointly compute the intersection

of their sets. At the end of the protocols, the client C learns the

intersection of its (authorized) elements with those of the server’s

and the server S learns nothing.
APSI supports authorization of a party’s elements via a trusted

third-party judge J [13–15]. Partial-APSI generalizes APSI by for-

malizing the judge as an honest-but-curious party, instead of a

trusted third-party. In Partial-APSI, the judge only sees a 𝑝 fraction

of X and its goal is to infer as much information about X beyond

the revealed elements.

2.1 Parties
Both APSI and Partial-APSI involve three parties:

• Client C: This party holds a set X and wishes to compute the in-

tersection of its set with the set held by a server.Cmust authorize

its elements before computing an intersection.

• Server S: This party holds a set Y and wishes to participate in

computing the intersection of their set with that of C.
• Judge J: Prior to an intersection computation, the judge J either
sees all elements in set X (APSI) or a 𝑝 fraction of X of the

judge’s choosing (Partial-APSI); if the judge accepts the observed

(sub)set, then it authorizes all the elements in X.
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Parties and their inputs: Client C with input sets X and X1, . . . ,X𝑞 ; the server S with input sets Y1, . . . ,Y𝑞 ; the judge J with input ⊥.
Parameters: The set sizes |X|, and |X𝑘 | and |Y𝑘 |, for 𝑘 ∈ [𝑞]; the probability 𝑝 ∈ (0, 1] .
Functionality:

• Authorize: The trusted third party T receives an authorization request from the client C, requesting J to authorize X.
◦ T forwards X to J, who can either accept or reject the items.

◦ T samples I ⊆
$
[𝑛] such that |I | = ⌈𝑝𝑛⌉ and forwards {𝑥𝑖 ∈ X : 𝑖 ∈ I} to J , who can either accept or reject the request.

◦ If J accepts, T replies Accept to C and remembers that J has authorized C on X. Otherwise, T replies Reject to C.
• Intersect: for 𝑘 ∈ [𝑞] do
– T receives a request from party C to perform set intersection with the server S . T forwards the request to S, and C and S run the ideal

protocol below.

◦ C sends a set X𝑘 to T; or C aborts.

◦ S sends a set Y𝑘 to T; or S aborts.
◦ T computes the intersection (X𝑘 ∩ X) ∩ Y𝑘 and sends the resulting intersection and the set size |Y𝑘 | to C.

Figure 1: The Ideal Functionalities FAPSI and FPartial-APSI. Text in the dashed box denotes steps unique to APSI and text in a solid
box denotes steps unique to Partial-APSI.

2.2 Security and Threat Model
We prove security for both APSI and Partial-APSI using the real-

ideal paradigm. In the real world, we execute our protocol and

the parties interact with each other directly. In the ideal world, the

parties C, S, and J interact with a trusted third party Twho executes

the ideal functionality FAPSI or FPartial-APSI (Figure 1) on inputs

chosen by the parties C and S.
In the Authorize phase, C submits its set X to T. In the case of

FAPSI, T forwards the entire set to the judge, whereas, in the case

FPartial-APSI, T randomly selects a subset of size 𝑝𝑛 and forwards

this subset to the judge J. If the judge approves the elements it sees,

then T forwards Accept to C and remembers the set X. Otherwise
T forwards Reject to C.

In the Intersect phase, C may initiate an intersection computa-

tion with the server S up to a polynomial 𝑞 number of times. The

intersection is mediated by T. C and S send their input sets X𝑘 and

Y𝑘 to T, respectively (here X𝑘 and Y𝑘 denote the input sets of the

𝑘-th invocation of Intersect). T then computes (X𝑘 ∩ X) ∩ Y𝑘 and

sends the result along with |Y𝑘 | to C. When X𝑘 = X, the client
precisely learns the intersection X ∩Y. However, if C maliciously

adds an element 𝑥 toX𝑘 such that 𝑥 ∉ X, then 𝑥 will still not appear

in the 𝑘-th intersection, even if 𝑥 ∈ Y𝑘 .
Throughout this work, we assume that the client might not

have authorizations for all elements in its set and may try to inject

additional elements into the input set at the start of either the

authorization or intersection phase. In APSI, we assume that the

judge is fully trusted and, in Partial-APSI, we assume that the judge

is semi-honest (honest-but-curious) and may try to infer as much

as it can about the client’s set beyond the elements revealed.

In the semi-honest setting, the parties follow the protocol

and may only try to passively infer information about the other

party’s input. In the malicious setting, the parties may deviate

arbitrarily from the protocol; they may refuse to participate, abort

prematurely, or modify their input. Even PSI protocols that are

secure against malicious adversaries may be susceptible to parties

adding additional elements to their set to try and learn additional

information about the other party’s set. Authorization thus ensures

that the intersection is only computed on authorized elements. We

assume that the judge and server do not collude.

We prove our APSI protocol secure against a malicious client
and semi-honest server. Since only the client learns the intersec-

tion, they have the most to gain by cheating. This relaxed notion

of security for one-sided PSI in which only the party receiving

the output is fully simulateable was formalized in [22, 23]. We also

prove our Partial-APSI protocol secure against an input-malicious
client and semi-honest judge and server. An input-malicious agent

acts exactly like a semi-honest adversary, but may chose their input

maliciously. The simulator uses the parties’ inputs and outputs to

create a view that is computationally indistinguishable from the

real world. We define security of APSI formally as follows.

Definition 1. Let 𝐸 = (𝐸1, . . . , 𝐸𝑚) be a sequence of events where
each 𝐸𝑖 is either of the form ⟨Authorize,C,X, J,⊥⟩ or ⟨Intersect,C,
(X1, . . . ,X𝑞), S, (Y1, . . . ,Y𝑞)⟩. Let IdealS,𝐸 denote the joint output
distribution of all parties and a simulatorS in the ideal world under 𝐸,
and RealA,𝐸 denote the joint output distribution of all parties and the
adversaryA in the real world under 𝐸. A protocolΠ securely realizes
FAPSI if for every probabilistic polynomial time (PPT) adversary A,
there is a probabilistic polynomial time simulator S such that

IdealS,𝐸
c≈ RealA,𝐸 .

In other words, the execution of our protocol (real world) should

be indistinguishable from realizing the functionality with a trusted

third-party carrying out the intersection (ideal world). Security of

Partial-APSI is defined analogously, with the only change being that

the APSI ideal functionality FAPSI is replaced by the Partial-APSI

ideal functionality FPartial-APSI.
On Multi-Run Security. One important property of PSI protocols

is multi-run security or unlinkability: the parties should be able

to execute the intersect protocol multiple times without needing to

re-authorize their elements. Consider the naive APSI protocol in

which both parties authorize their elements and the intersection is

carried out on the signatures. If this protocol is executed multiple

times, the client must re-authorize its set each time in order to

avoid leaking differences in its input between invocations. In the
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Partial-APSI setting, this is problematic since, by doing so, the client

would have to reveal additional elements from X in every time.

Our protocols achieve multi-run security, and this notion is cap-

tured by our functionality. In the ideal functionality (Figure 1), no

information is ever sent to the server and the client only ever learns

the intersection (X𝑘 ∩ X) ∩ Y𝑘 and |Y𝑘 |, even when Intersect is
invoked multiple times. In other words, neither the server nor the

client can tell if two instances of Intersect are related. In the func-

tionality, the trusted third party must remember X to ensure that

only items that are authorized can appear in the intersection.

3 CRYPTOGRAPHIC BUILDING BLOCKS
We now describe the required cryptographic building blocks.

3.1 Bilinear Group
Let G1, G2 and G𝑇 be groups of prime order 𝑞. Our protocols make

use of an efficient, non-degenerate bilinear mapping 𝑒 : G1 ×
G2 → G𝑇 such that for all group elements 𝑔1 ∈ G1 and 𝑔2 ∈ G2,
and all 𝑎, 𝑏 ∈ Z we have that 𝑒 (𝑔𝑎

1
, 𝑔𝑏

2
) = 𝑒 (𝑔1, 𝑔2)𝑎𝑏 .

In this work, we concern ourselves with Type-3 pairings, which
are asymmetric pairings (G1 ≠ G2) for which there are no efficiently

computable homomorphisms between G1 and G2. Such pairings

also admit a hash function 𝐻1 : {0, 1} → G1. Type-3 pairings are
efficient and representative of pairings libraries such as Mcl [37]

and Miracl [30]. See [19] for a primer on pairings for cryptography.

3.2 Computational Assumptions
The Decisional Diffie-Hellman (DDH) assumption states:

Definition 2. Let G be a cyclic group of order 𝑞 and let 𝑔 be a
generator of G. Let 𝑎, 𝑏, 𝑐 ←$Z𝑞 be sampled uniformly at random.
Then, (𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 ) and (𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 ) are computationally indistin-
guishable.

Note that DDH is trivially solvable using Type-1 pairings (G1 =

G2), since given 𝑔𝑎, 𝑔𝑏 , and 𝑔𝑥 where 𝑥 = 𝑎𝑏 or 𝑥 = 𝑐 and 𝑔 ∈ G1,
one can easily check if 𝑒 (𝑔𝑎, 𝑔𝑏 ) = 𝑒 (𝑔𝑥 , 𝑔). DDHmay also be solved

using Type-2 pairings, in which an isomorphism between G1 and
G2 is known. In contrast, DDH can still be assumed computationally

hard in G1 and G2 when using Type-3 pairings.

We also make use of the Decisional Bilinear Diffie-Hellman
(DBDH) in Type-3 assumption, which is defined as follows:

Definition 3. Let G1,G2 and G𝑇 be cyclic groups of prime or-
der 𝑞 and let 𝑔1 and 𝑔2 generators of G1 and G2, respectively. Let
𝑎, 𝑏, 𝑐 ←$Z𝑞 and 𝑔′

𝑇
←$G𝑇 be sampled uniformly at random. Then,

(𝑔𝑎
1
, 𝑔𝑏

1
, 𝑔𝑐

1
, 𝑔𝑏

2
, 𝑔𝑐

2
, 𝑔′
𝑇
) and (𝑔𝑎

1
, 𝑔𝑏

1
, 𝑔𝑐

1
, 𝑔𝑏

2
, 𝑔𝑐

2
, 𝑒 (𝑔1, 𝑔2)𝑎𝑏𝑐 ) are compu-

tationally indistinguishable.

Per Theorem A.2 of [6], we see that the DDH and DBDH assump-

tions may be assumed to hold true in Type-3 pairings.

3.3 Random Oracle Model
Our work is secure in the random oracle model; we assume the

existence of a random oracle O that behaves as follows.

Definition 4 ( RandomOracle.). Random Oracle O : {0, 1}∗ →
G is a public function. On input 𝑥 , O returns a random value from
the codomain. If input 𝑥 is used again, the output is the same.

3.4 Digital Signature Scheme
Definition 5. A digital signature scheme consists of a tuple of

algorithms DS = (KeyGen, Sign,Verify) with the following syntax:

• (pk, sk) ← KeyGen(1𝜆) takes as input a security parameter 𝜆 and
outputs a public-private key pair (pk, sk).
• 𝜎 ← Sign(sk,𝑚) takes as input a secret key sk and message𝑚,

and outputs a signature 𝜎 .
• 𝑏 ← Verify(pk, 𝜎,𝑚) takes as input a signature 𝜎 , a message𝑚,

and public key pk and outputs a bit 𝑏 ∈ {1, 0}.

Security.We require that the digital signature scheme be unforge-
able. That is, an adversary without the secret key should not be

able to generate a valid signature on a message𝑚 not previously

signed, with more than negligible probability.

The BLS Signature Scheme. Our protocols use the signature

scheme by Boneh–Lynn–Shacham (BLS) [7] to authorize the client’s

elements. We describe the BLS signature scheme in detail below.

Let 𝐻1 : {0, 1}∗ → G1 denote a hash function modelled as a

random oracle and let 𝑔1 ∈ G1 and 𝑔2 ∈ G2 be generators of their
respective groups. To generate the key pair, the judge samples a

secret key sk←$Z𝑞 and sets the public key to pk← 𝑔
sk
2

and shares

it with the client.

To authorize an element 𝑥 ∈ {0, 1}∗ for client C, the judge com-

putes 𝜎 ← 𝐻1 (𝑥 ∥ID𝐶 )sk where ID𝐶 denotes a unique identifier of

the client. As in [38], we concatenate 𝑥 with the client’s ID to bind

the authorization of 𝑥 to the party.

To verify, that 𝜎 is a signature on 𝑥 for C, one can check that the

following equality holds:

𝑒 (𝜎,𝑔2) = 𝑒 (𝐻1 (𝑥 ∥ID𝐶 ), pk) .

3.5 Arguments of Knowledge
In this work, we utilize a Sigma protocol. Intuitively, we can use

a sigma protocol to convince a judge, that a set of PRF values has

been correctly computed under the same key.

Definition 6 (Effective relation). An effective relation is a
binary relation R that is the Cartesian product of 2 efficiently recog-
nizable finite sets. If (x,w) ∈ R, thenw is a witness for x.

Definition 7 (Interactive Arguments of Knowledge). Let
the triple of algorithms (Setup, Prove,Verify) be defined as follows.
• Setup takes as input security parameter 𝜆 and a binary relation R

and outputs public parameters p.
• Prove and Verify are interactive algorithms. Prove takes as input
the public parameters p and a pair (x,w), and Verify takes as
input p and x. Let tr ← ⟨Prove(p, (x,w)),Verify(p,x)⟩ denote
the transcript of the interaction. At the end of the interaction, Verify
outputs a bit 𝑏 = ⟨Prove(p, (x,w)),Verify(p,x)⟩. If the transcript
is accepted, then 𝑏 = 1; otherwise, 𝑏 = 0.

The triple (Setup, Prove,Verify) is an interactive argument of knowl-
edge if the following two properties hold.
• Completeness: For honest prover P and verifier V, ∀(x,w) ∈ R:

Pr[⟨Prove(p, (x,w)),Verify(p,x)⟩ = 1] = 1

• Honest-verifier zero knowledge (HVZK): For all (x,w) ∈ R,
there exists an efficient algorithm S, such that the transcript from

5
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an honest prover, and verifier is computationally indistinguishable
from S(p,x):

{⟨Prove(p, (x,w)),Verify(p,x)⟩} c≈ {S(p,x)}
• Knowledge Soundness: There exists an efficient extractor E such
that given two accepting transcripts 𝑇0,𝑇1 forw, it can extract x,
where (x,w) ∈ R.

x← E(𝑇0,𝑇1,w)

Using the Fiat-Shamir heuristic [17], we can turn a public coin

interactive protocol into a non-interactive protocol in the random

oracle model (ROM). In this case, the Setup algorithm also outputs

a description of the hash function.

Definition 8. An exponent equality argument EEA = (Setup,
Prove, Verify) is a zero-knowledge argument of knowledge for the
following relation:

x = ({𝑤𝑖 }𝑖∈[𝑛] {ℎ𝑖 }𝑖∈[𝑛] ); w = 𝑟 : ∀𝑖 ∈ [𝑛], ℎ𝑖 = 𝐻 (𝑤𝑖 )𝑟

Details of the EEA protocol used can be found in Appendix A.1.

3.6 Oblivious PRFs
An oblivious pseudo-random function (OPRF) is a 2-party protocol

in which the sender inputs a secret key 𝑘 and the receiver inputs val-

ues 𝑥1, . . . , 𝑥𝑚 . The receiver learns the output 𝑓 (𝑘, 𝑥1), . . . , 𝑓 (𝑘, 𝑥𝑚)
for some function 𝑓 .

Definition 9 ([18]). An oblivious pseudo-random function
(OPRF) is a 2-party protocol OPRF with the following API:
• 𝑡,B ← Request(A) takes as input a set A of messages, and

outputs a blinding element 𝑡 and set of blinded elements B.
• C ← Eval(𝑘,B) takes as input a key 𝑘 , blinded set B, and outputs

the set C.
• D ← Recover(C, 𝑡) takes as input set C and blinding factor 𝑡 , and

outputs the set of PRF evaluations D.

Details of the OPRF instantiation can be found in Appendix A.2.

4 OUR APSI PROTOCOL
In this section we present our APSI protocol based on bilinear

pairings and which is inspired by [38]. We emphasize, however, that

the protocol in [38] encodes the elements and their signatures, and

then uses these encodings as input to any black-box PSI protocol.

This results in 3 rounds of communication beyond what is required

by the underlying PSI protocol; in addition to signing the client’s

elements, fresh randomness must be exchanged by both C and S
each time prior to running the black-box PSI protocol. In contrast,

we are able to both authorize the client’s elements and compute the

intersection in 3 rounds, whilst still achieving malicious security

against the client and better communication complexity.

4.1 Protocol Overview
The protocol proceeds in two phases. In the authorization phase,

the client interacts with the judge to authorize its elements. The

client sends its set X to the trusted third-party judge. If the judge

approves X, then it issues a signature on each element which the

client can later use during the intersection phase.

Public parameters. Set sizes 𝑛 = |X| and𝑚 = |Y|; Bilinear groups
G1, G2, and G𝑇 of prime order 𝑞 with generators 𝑔1, 𝑔2, and 𝑔𝑇 ,

respectively, and pairing function 𝑒 : G1×G2 → G𝑇 ; Hash function
𝐻1 : {0, 1}∗ → G1 modeled as a random oracle.

Authorize. Authorization proceeds in 2 rounds. The client C sends

its set X = {𝑥𝑖 }𝑖∈[𝑛] to the judge J. If J approves X, then for all

𝑖 ∈ [𝑛], it computes the BLS signature 𝜎𝑖 ← 𝐻1 (𝑥𝑖 ∥ID𝐶 )sk and

returns the signatures {𝜎𝑖 }𝑖∈[𝑛] to C.

Intersect. The intersect phase is carried out in 1 round and can

be carried out on input of any subset of X. Upon receiving an

intersection request from the client, S samples a random element

𝑠 ←$Z𝑞 and computes the group element 𝑆 ← 𝑔𝑠
2
; this will be used

to blind the server’s elements. The server then encodes its elements

as 𝑦 𝑗 ← 𝑒 (𝐻1 (𝑦 𝑗 ∥ID𝐶 ), pk𝑠 ) for each 𝑗 ∈ [𝑚] and sends 𝑆 and

{𝑦 𝑗 } 𝑗∈[𝑚] to the client.

Importantly, since the client does not know 𝑠 or sk, it cannot
generate the correct encoding of an element for which it does not

have a valid signature. The client uses 𝑆 to encode its elements as

𝑥𝑖 ← 𝑒 (𝜎𝑖 , 𝑆) for each 𝑖 ∈ N ⊆ [𝑛]. It recovers the intersection by

outputting the 𝑥𝑖 ’s such that 𝑥𝑖 = 𝑦 𝑗 for some 𝑖 ∈ N and 𝑗 ∈ [𝑚].
The detailed APSI protocol can be found in Figure 2.

4.2 Correctness and Security
Theorem 1. LetX andY be the inputs from the clientC and server

S, respectively. Let XAUTH be the client’s elements authorized by the
judge. Then, the APSI protocol (Figure 2) outputs (XAUTH ∩ X) ∩ Y,
assuming unforgeability of the BLS signature scheme in the ROM.

The proof can be found in Appendix B.1.

Theorem 2. The APSI protocol (Figure 2) is secure against a ma-
licious client C, if the Decisional Bilinear Diffie-Hellman (DBDH)
assumption holds and the hash function 𝐻 is a random oracle.

Proof. We start by describing our simulator, the first part of

which simulates the judge J. The simulator starts by choosing a

signing key pair (sk, pk) for the judge and gives pk to the adversary
A. The simulator then proceeds as follows.

• Hash query. Honestly play the role of random oracle 𝐻1 and

construct a table 𝑇 . Upon receiving a hash query 𝑞 from the

adversary A, check to see if the query 𝑞 has been previously

issued. If yes, return the same answer stored in the table,𝑇 [𝑞]. If
not, then sample a group element ℎ←$G1, return ℎ, and update

the table 𝑇 [𝑞] ← ℎ.

• Authorize.When the adversary A requests the authorization

of 𝑥 for a corrupt client C with identifier ID𝐶 , make a hash

query to the random oracle on 𝑥 ∥ID𝐶 and update table 𝑇 . After

determining the hash output, compute the signature using sk
and return it to A.

The remainder of the simulator, simulates the server S. On iter-

ation 𝑘 ∈ [𝑞] and inputs X𝑘 and Y𝑘 from the client and server,

respectively, do the following:

• Set Intersection. For each 𝑥 ∈ X𝑘 , that A sent J and its corre-

sponding signature 𝜎 we do the following:

– Sample 𝑠 ←$Z𝑞 and compute 𝑆 = 𝑔𝑠
2
.

6



Re-visiting Authorized Private Set Intersection:
A New Privacy-Preserving Variant and Two Protocols

Parameters: Set sizes 𝑛 = |X | and𝑚 = |Y |; Groups G1, G2, and G𝑇 of prime order 𝑞 and with generators 𝑔1, 𝑔2, and 𝑔𝑇 , respectively;

Bilinear function 𝑒 : G1 × G2 → G𝑇 such that 𝑒 (𝑔1, 𝑔2 ) = 𝑔𝑇 ; Hash function 𝐻1 : {0, 1}∗ → G1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Authorize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Client C(X = {𝑥𝑖 : 𝑖 ∈ [𝑛] } ) Judge J

To both C and S: pk sk←$Z𝑞, pk← 𝑔
sk
2

X if X is valid then:

{𝜎𝑖 }𝑖∈ [𝑛] for 𝑖 ∈ [𝑛] do: 𝜎𝑖 ← 𝐻1 (𝑥𝑖 ∥ID𝐶 )sk

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Client C({ (𝑥𝑖 , 𝜎𝑖 ) : 𝑖 ∈ N ⊆ [𝑛] } ) Server S({𝑦 𝑗 : 𝑗 ∈ [𝑚] } )

𝑠 ←$Z𝑞, 𝑆 ← 𝑔𝑠
2

𝑆, {�̂�1, . . . , �̂�𝑚 } for 𝑗 ∈ [𝑚] do: �̂� 𝑗 ← 𝑒 (𝐻1 (𝑦 𝑗 ∥ID𝐶 ), pk𝑠 )

for 𝑖 ∈ N do: 𝑥𝑖 ← 𝑒 (𝜎𝑖 , 𝑆 )
output

{
𝑥𝑖 : 𝑥𝑖 = �̂� 𝑗 and 𝑖 ∈ N, 𝑗 ∈ [𝑚]

}
Figure 2: The APSI Protocol.

– Submit the set of elements inX𝑘 that were received in the clear

during authorization, i.e., X ∩ X𝑘 , to the ideal functionality

(the functionality also receives Y𝑘 from the honest server).

– Upon receiving the intersection 𝑍 = (X ∩ X𝑘 ) ∩ Y𝑘 from the

functionality, compute 𝑧 ← 𝑒 (𝐻1 (𝑧∥ID𝐶 ), pk𝑠 ). Then pad 𝑍

up to size𝑚 with randomly sampled values from G𝑇 .
– Send 𝑍 to the client.

We now describe a list of hybrids that we will use to demonstrate

indistinguishably between the real and ideal worlds.

Hybrid 0: The real interaction, where all parties run the protocol
honestly on input X in Authorize and on X,X𝑘 and Y𝑘 for all

𝑘 ∈ [𝑞] in Intersect.
Hybrid 1: Compute sk←$Z𝑞 and pk← 𝑔

sk
2

to simulate a pub-

lic/private key-pair (pk, sk). For each 𝑥 ∈ X, compute the signature

𝜎 of 𝑥 using sk. Since sk is sampled uniformly at random, then

the simulated key pair is distributed identically to those gener-

ated by the judge and thus Hybrids 0 and 1 are computationally

indistinguishable.

Hybrid 2: Same as Hybrid 1, except the interaction aborts before

the signatures are sent, if there are 𝑥, 𝑥 ′ ∈ X such that 𝑥 ∥ID𝐶 ∉ 𝑇

and 𝑥 ′∥ID𝐶 ∈ 𝑇 and yet querying 𝑥 ∥ID𝐶 to𝐻1 results in the output

𝑇 [𝑥 ′∥ID𝐶 ]. For some fixed item 𝑥 ≠ 𝑥 ′, the probability of such a

collision is 1/|G1 |. Union bounding over all possible 𝑥 we get a total

collision probability of 𝑛2/|G1 |, which is negligible. Thus, Hybrids

1 and 2 are computationally indistinguishable.

Hybrid (3, 𝑘): Same as Hybrid 2 for 𝑘 = 0 and the same as

Hybrid (3, 𝑘 − 1) otherwise, except we replace 𝑠𝑘 with a randomly

sampled value from Z𝑞 and compute 𝑆𝑘 ← 𝑔
𝑠𝑘
2
. Values 𝑠𝑘 and 𝑆𝑘

are identically distributed to those in the previous hybrid, and thus

this hybrid and the previous one are indistinguishable.

Hybrid (4,𝑘) for𝑘 ∈ [𝑞]: Same as previous hybrid, except for𝑦 ∈
Y𝑘 such that 𝑦 ∉ X ∩ X𝑘 , replace the value 𝑦 = 𝑒 (𝐻1 (𝑦∥ID𝐶 ), pk𝑠 )
with a random element 𝑧←$G𝑇 . We define the DBDH tuple

(𝐻1 (𝑦∥ID𝐶 ), 𝑔
sk
1
, 𝑔𝑠

1
, 𝑔

sk
2
, 𝑔𝑠

2
, 𝑦 = 𝑒 (𝐻1 (𝑦∥ID𝐶 ), pk𝑠 )) .

Replacing the final entry of the tuple with a random 𝑧 is computa-

tionally indistinguishable by the DBDH assumption. Thus, Hybrid

(4, 𝑘) is indistinguishable from the previous hybrid.

Hybrid (4, 𝑞) defines the simulator and the theorem follows. □

Theorem 3. The APSI protocol (Figure 2) is secure against a semi-
honest server S.

Since the server only receives a public key from an honest judge

and receives no input from the client, simulation of the interaction

with the server is trivial. It is sufficient to argue correctness, which

follows from Theorem 1.

5 OUR PARTIAL-APSI PROTOCOL
We now present our Partial-APSI protocol, which extends our APSI

protocol to support partially revealing the client’s set to the judge.

The main difference between the APSI and Partial-APSI problems

is that the judge can only see a subset of X, yet, must sign all

the elements. In our Partial-APSI protocol, the client first blinds

each element by raising its hash to a random field element 𝑟 and

sends the blinded values to the judge. The judge then requests for

a fraction of the blinded elements to be revealed. If these elements

are valid, then the judge signs all the blinded values. During the

intersection phase, the server’s elements must be intersected with

the client’s blinded values. The client and server engage in an OPRF

protocol so that the client can “blind” the server’s elements using

the same 𝑟 . Importantly, the client uses an OPRF to avoid sharing 𝑟 .

5.1 Protocol Overview
Partial-authorization requires that the client commits to the ele-

ments in X and sends them to the semi-honest judge, who then

challenges the client to reveal a subset of its elements. The client

sends over the requested items in plaintext, together with an EEA
proof that the requested items correspond to their respective com-

mitments. If the judge approves the revealed items and the EEA
7
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Parameters: Set size 𝑛 = |X | and𝑚 = |Y |; Groups G1, G2, and G𝑇 of prime order 𝑞 and with generators 𝑔1, 𝑔2, and 𝑔𝑇 , respectively;

Bilinear function 𝑒 : G1 × G2 → G𝑇 such that 𝑒 (𝑔1, 𝑔2 ) = 𝑔𝑇 ; Hash functions 𝐻1 : {0, 1}∗ → G1 and 𝐻2 : G1 → G1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Authorize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Client C(X = {𝑥𝑖 }𝑖∈ [𝑛] ) Judge J

To both C and S: pk sk←$Z𝑞, pk← 𝑔
sk
2

𝑟 ←$Z𝑞

X𝐵 ← (𝐻1 (𝑥1 ∥ID𝐶 )𝑟 , . . . , 𝐻1 (𝑥𝑛 ∥ID𝐶 )𝑟 ) X𝐵

I I ⊆
$
[𝑛] s.t. | I | = 𝑝𝑛

𝜋 ← EEA.Prove(𝑟, {𝑥𝑖 }𝑖∈I ) 𝜋, {𝑥𝑖 }𝑖∈I if{𝑥𝑖 }𝑖∈I valid and EEA.Verify(𝜋, {𝑥𝑖 }𝑖∈I , {X (𝑖 )𝐵
}𝑖∈I ) then:

{𝜎𝑖 }𝑖∈ [𝑛] {𝜎𝑖 }𝑖∈ [𝑛] ← {𝐻2 (𝐻1 (𝑥𝑖 ∥ID𝐶 )𝑟 )sk}𝑖∈ [𝑛]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Client C({ (𝑥𝑖 , 𝜎𝑖 ) : 𝑖 ∈ N ⊆ [𝑛] } ) Server S(Y = {𝑦 𝑗 : 𝑗 ∈ [𝑚] } )

𝑠 ←$Z𝑞, 𝑆 ← 𝑔𝑠
2

B B, 𝑡 ← OPRF.Request({𝐻1 (𝑦 𝑗 ∥ID𝐶 ) } 𝑗 ∈ [𝑚] )

C ← OPRF.Eval(𝑟, B) C

D ← OPRF.Recover(C, 𝑡 ) //D = {𝐻1 (𝑦 𝑗 ∥ID𝐶 )𝑟 } 𝑗 ∈ [𝑚]
𝑆, {�̂�1, . . . , �̂�𝑚 } for 𝑑 𝑗 ∈ D do: �̂� 𝑗 ← 𝑒 (𝐻2 (𝑑 𝑗 ), pk𝑠 )

for 𝑖 ∈ [𝑛] do: 𝑥𝑖 ← 𝑒 (𝜎𝑖 , 𝑆 )
output

{
𝑥𝑖 : 𝑥𝑖 = �̂� 𝑗 for some 𝑖 ∈ N, 𝑗 ∈ [𝑚]

}

Figure 3: The Partial-APSI Protocol.

proof is valid, then J computes a set of BLS signatures on all the

blinded items and returns them to the client. The client can then

use these signatures during the intersection phase. At the end of

the intersection protocol, the client learns XAUTH ∩ Y. As in APSI,

the server learns nothing.

Public parameters. Set sizes 𝑛 = |X| and𝑚 = |Y|; Bilinear groups
G1, G2 and G𝑇 of prime order 𝑞 with generators 𝑔1, 𝑔2, and 𝑔𝑇 , re-

spectively, and pairing function 𝑒 : G1 ×G2 → G𝑇 ; Hash functions

𝐻1 : {0, 1}∗ → G and 𝐻2 : G1 → G1 modeled as a random oracles.

Authorize. The client starts by first sampling randomness 𝑟 and

then committing to each element 𝑥𝑖 as 𝐻1 (𝑥𝑖 ∥ID𝐶 )𝑟 ; we denote the
set of blinded X values with X𝐵 . Blinding the terms with 𝑟 ensures

that the judge learns nothing about the client’s values until they are

revealed. The judge samples a set of indices I ⊆
$
[𝑛] and sends it

to the client; I specifies the indices of the client’s elements that the

client is challenged on and which should be revealed to the judge.

The client computes an EEA proof 𝜋 relating the plaintexts {𝑥𝑖 }𝑖∈I
with the blinded commitments {𝐻1 (𝑥𝑖 ∥ID𝐶 )𝑟 }𝑖∈I , and sends 𝜋 and

{𝑥𝑖 }𝑖∈I to the judge. If the plaintext values are approved and the

proof of valid, then the judge computes the BLS signature 𝜎𝑖 ←

𝐻2 (𝐻1 (𝑥𝑖 ∥ID𝐶 ))sk for all 𝑖 ∈ [𝑛]. Finally the judge returns all the

signatures to the client, which completes partial-authorization.

Intersect. As before, the server starts by sampling randomness 𝑠 .

From here, the protocol diverges from the APSI protocol. In order for

the server S to compute 𝐻1 (𝑦 𝑗 ∥ID𝐶 )𝑟 for 𝑗 ∈ [𝑚] using the client’s
secret 𝑟 , S must engage in an OPRF protocol with C. The client

sends the OPRF evaluation C to the server, from which the server

can recover D = {𝑑 𝑗 = 𝐻1 (𝑦 𝑗 ∥ID𝐶 )𝑟 } 𝑗∈[𝑚] . The server encodes
its elements using the randomness 𝑠 as 𝑦 𝑗 ← 𝑒 (𝐻2 (𝑑 𝑗 ), pk𝑠 ) for
all 𝑑 𝑗 ∈ D. Finally it sends the value 𝑆 ← 𝑔𝑠

2
and the 𝑦 𝑗 ’s to the

client. The client finally computes 𝑥𝑖 ← 𝑒 (𝜎𝑖 , 𝑆) for 𝑖 ∈ N ⊆ [𝑛]
and outputs the set {𝑥𝑖 : 𝑥𝑖 = 𝑦 𝑗 for 𝑖 ∈ N , 𝑗 ∈ [𝑚]}.

The OPRF is run on the server’s elements (to exponentiate them

using the secret 𝑟 without the server learning 𝑟 and the client

learning anything about the server’s set). If the server samples a

new 𝑠 for every run, then the𝑦 𝑗 ’s received by the client look random,

thus ensuring multi-run security. The server never receives the

client’s set and cannot infer anything about the client’s elements.

The pseudocode of the protocol can be found in Figure 2.
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5.2 Correctness and Security
Theorem 4. Let X and Y be the inputs from the client C and

server S, respectively. Let XAUTH be the client’s elements authorized
by the judge. Then, the Partial-APSI protocol (Figure 3) outputs (X ∩
XAUTH) ∩ Y, assuming unforgeability of the BLS signature scheme
in the ROM.

The proof can be found in Appendix B.2.

Theorem 5. The Partial-APSI protocol (Figure 3) is secure against
a semi-honest Judge, if the DDH assumption holds in the bilinear
group G1 and the hash function 𝐻1 is a random oracle.

The proofs can be found in Appendix B.3.

Theorem 6. The Partial-APSI protocol (Figure 3) is secure against
an input-malicious client C, if the Decisional Bilinear Diffie-Hellman
(DBDH) holds, the Decisional Diffie-Hellman (DDH) assumption holds
in group G1, and hash functions 𝐻1 and 𝐻2 are random oracles.

Proof. Once again, we prove the security through a series of

hybrid arguments. Upon input of Y and Y ∩ X, the simulator

chooses a signing key pair (sk, pk) for the judge, gives pk to the

adversary A, and does the following:

• Hash queries: Model the hash functions 𝐻1 and 𝐻2 as random

oracles and store the results in tables 𝑇1 and 𝑇2, respectively. In

particular, upon each query 𝑞 to 𝐻1, check if there exists hash

value ℎ such that ℎ = 𝑇1 [𝑞] and return ℎ. If not, then sample a

random ℎ, return ℎ, and record 𝑇1 [𝑥] ← ℎ. Similarly for 𝐻2.

• Authorize. To simulate the judge J it does the following.
– Upon receiving an authorization request from the client and

the committed values (𝑥 ′
1
, . . . , 𝑥 ′𝑛), sample a set of indices

I′ ⊆
$
[𝑛] and send it to C.

– Check that 𝜋 and {𝑥𝑖 }𝑖∈I are valid. If not, then abort. If yes,

then make a hash query to the random oracle 𝐻2 for each 𝑥 ′
𝑖
,

𝑖 ∈ [𝑛] (𝑇2 is updated accordingly). If for any query 𝑞 to𝐻2 and

its corresponding hash value ℎ, there exists a 𝑞′ ≠ 𝑞 such that

𝑇2 [𝑞′] = ℎ, then abort. As before, this happens with negligible

probability. If all hash queries are successful, then compute

the signatures and return them to C.
On iteration 𝑘 ∈ [𝑞] and inputs X𝑘 and Y𝑘 from the client and

server, respectively, do the following:

• Set intersection. To simulate the server S it does the following.
– Upon receiving an intersection request from C, sample a new

𝑠 (𝑘 ) ←$Z𝑞 .

– Run the OPRF protocol with C. In particular, for each𝑦 ∈ (X∩
X𝑘 ) ∩ Y𝑘 , query 𝑦∥ID𝐶 to 𝐻1 and run the OPRF on the value

𝐻1 (𝑦∥ID𝐶 ). If for any hash query𝑞 to𝐻1 and its corresponding

value ℎ, there exists a 𝑞′ ≠ 𝑞 such that 𝑇2 [𝑞′] = ℎ, then abort.

This happens with negligible probability.

– For the remaining |Y𝑘 \ (X∩X𝑘 )∩Y𝑘 | items, sample a random

value 𝑦′ ∈ {0, 1}∗ and run the OPRF on 𝑦′.
– For each 𝑐 𝑗 ∈ C where C is the output of the OPRF eval-

uation, make a hash query to 𝐻2 on 𝑐 𝑗 and compute 𝑦 𝑗 ←
𝑒 (𝐻2 (𝑐 𝑗 ), pk𝑠

(𝑘 ) ). If for any hash query 𝑞 to 𝐻2 and its corre-

sponding value ℎ, there exists a 𝑞′ ≠ 𝑞 such that 𝑇2 [𝑞′] = ℎ,

then abort. This happens with negligible probability. Finally

return 𝑆 = 𝑔𝑠
(𝑘 )

2
and the 𝑦 𝑗 ’s to the C.

We now consider the following series of hybrids:

Hybrid 0: The real interaction, where all parties run the protocol
honestly on input X in Authorize and on X,X𝑘 and Y𝑘 for all

𝑘 ∈ [𝑞] in Intersect.
Hybrid 1: Same as Hybrid 0, but I is chosen randomly by the

simulator and then sent to C. Hybrid 1 is indistinguishable from

Hybrid 0, since I is sampled from the same distribution.

Hybrid (2, 𝑘) for 𝑘 ∈ [𝑞]: Same as previous hybrid, except

we abort if there exist 𝑦∗ ∈ Y𝑘 and 𝑥∗ ∈ X𝑘 \ Y𝑘 such that

𝐻1 (𝑥∗∥ID𝐶 ) = 𝐻1 (𝑦∗∥ID𝐶 ). This event happens with probability

𝑛𝑚/|G1 | which is negligible.

Hybrid (3, 𝑘) for 𝑘 ∈ [𝑞]: Same as previous hybrid, except

we abort if there exist elements 𝑦∗ ∈ Y𝑘 and 𝑥∗ ∈ X𝑘 \ Y𝑘 such

that 𝐻2 (𝐻1 (𝑥∗∥ID𝐶 )𝑟 ) = 𝐻2 (𝐻1 (𝑦∗∥ID𝐶 )𝑟 ) and 𝐻1 (𝑥∗∥ID𝐶 ) ≠

𝐻1 (𝑦∗∥ID𝐶 ). This happens with probability 𝑛𝑚/|G1 | which is neg-

ligible.

Hybrid (4, 𝑘) for 𝑘 ∈ [𝑞]: Same as previous hybrid, but we

replace the 𝐻1 (𝑦 𝑗 | |ID𝐶 )𝑡𝑘 ∈ B, where 𝑦 𝑗 ∈ Y𝑘 \ (X ∩ X𝑘 ), with
random values from G1. Under the DDH assumption, the OPRF

request B in Hybrid 3 is indistinguishable from the request in

Hybrid 4 (Theorem 9). In particular, this can be carried out with

only knowledge of (X ∩ X𝑘 ) ∩ Y𝑘 , Y𝑘 and |Y \ (X ∩ X𝑘 ) |.
Hybrid (5, 𝑘) for 𝑘 ∈ [𝑞]: Same as previous hybrid, but we

replace the elements 𝑦 𝑗 ← 𝑒 (𝐻2 (𝐻1 (𝑦 𝑗 | |𝐼𝐷𝐶 )𝑟 ), 𝑝𝑘𝑠
(𝑘 ) ), where

𝑦 𝑗 ∈ Y𝑘 \ (X ∩ X𝑘 ) with random values 𝑧 𝑗 ←$G𝑇 . We define the

DBDH tuple

(𝐻2 (𝐻1 (𝑦 𝑗 | |𝐼𝐷𝐶 )𝑟 ), 𝑔
sk
1
, 𝑔𝑠

(𝑘 )
1

, 𝑔
sk
2
, 𝑔𝑠

(𝑘 )
2

,

𝑦 = 𝑒 (𝐻2 (𝐻1 (𝑦 𝑗 | |𝐼𝐷𝐶 )𝑟 ), pk𝑠
(𝑘 )
)) .

Replacing the final entry with with with a random 𝑧 𝑗 is compu-

tationally indistinguishable by the DBDH assumption. Thus, this

hybrid is indistinguishable from the previous one.

Hybrid (5, 𝑞) is identical to our simulator and thus the Partial-

APSI protocol is secure against an input-malicious client C. □

Theorem 7. The Partial-APSI protocol (Figure 3) is secure against
a semi-honest server S, if the DDH assumption holds in group G1 and
hash functions 𝐻1 and 𝐻2 are random oracles.

Proof. We prove the security through a series of hybrid argu-

ments. Upon input of X the simulator does the following:

• Hash queries:Model the hash functions 𝐻1 and 𝐻2 using tables

𝑇1 and 𝑇2 as before.

• Authorize. To simulate C and J, S does the following.

– Upon receiving an intersection request from S, sample 𝑟 ←$Z𝑞 .

– Compute vector X𝐵 as follows. For each 𝑥𝑖 ∈ X ∩ Y, make a

hash query 𝑥𝑖 ∥ID𝐶 (updating𝑇1 as needed) to𝐻1 and compute

X (𝑖 )
𝐵
← 𝐻1 (𝑥𝑖 ∥ID𝐶 )𝑡 ; for all other indices, sample a random

𝑥 ′
𝑖
←$ {0, 1}∗ and compute X (𝑖 )

𝐵
←$𝐻1 (𝑥 ′𝑖 )

𝑡
. If there is a colli-

sion for distinct 𝑞, 𝑞′ to 𝐻1 in table 𝑇1, then abort.

– For each X (𝑖 )
𝐵

, 𝑖 ∈ [𝑛], make a hash query to random oracle

𝐻2 (updating𝑇2 as needed) and compute the signatures (recall

that the simulator knows the private-public key pair of the

judge). If there is a collision between queries to 𝐻2 in𝑇2, abort.
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(a) APSI: |X | = |Y | = 𝑁 .
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(b) APSI: |X | = 𝑁, |Y | = 2
14
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(c) Partial-APSI: |X | = |Y | = 𝑁

and 𝑝 = 0.20
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(d) Partial-APSI: |X | = 𝑁, |Y | = 2
14,

and 𝑝 = 0.20

Figure 4: Timing and communication results of our protocols run on commodity hardware: In the above graphs, refers to
the judge, refers to the client and refers to the server. For the phases, authorize is and intersect is .

On iteration 𝑘 ∈ [𝑞] and inputs X𝑘 and Y𝑘 from the client and

server, respectively, do the following:

• Intersect. Upon input of X𝑘 and (X ∩ X𝑘 ) ∩ Y𝑘 the simulator

does the following.

– Upon receipt of set B, evaluate C ← OPRF.Eval(𝑟,B) and
send C to the server S.

We now consider the following series of hybrids:

Hybrid 0: The real interaction, where all parties run the protocol
honestly on input X in Authorize and on X,X𝑘 and Y𝑘 for all

𝑘 ∈ [𝑞] in Intersect.
Hybrid 1: Compute sk←$Z𝑞 and pk← 𝑔

sk
2

to simulate a pub-

lic/private key-pair (pk, sk). For each 𝑥𝑖 ∈ X, compute the signature

𝜎𝑖 of 𝑥𝑖 using sk. Since sk is sampled uniformly at random, then

the simulated key pair is indistinguishable from those generated

by the judge, and Hybrids 0 and 1 are thus indistinguishable.

Hybrid (2, 𝑘) for all𝑘 ∈ [𝑞]: Same as previous hybrid, but 𝑟 is re-

placed by 𝑟 ′ ←$Z𝑞 . By the DDH assumption, 𝐻1 (𝑦 𝑗 | |IDC)𝑡𝑟
′
, 𝑦 𝑗 ∈

Y𝑘 , from 𝐻1 (𝑦 𝑗 | |IDC)𝑡𝑟 . Thus, the two sequential hybrids are in-

distinguishable.

Hybrid (3, 𝑘) for all 𝑘 ∈ [𝑞]: Same as previous hybrid, ex-

cept we abort if there exist 𝑦∗ ∈ Y𝑘 and 𝑥∗ ∈ X𝑘 \ Y𝑘 such that

𝐻1 (𝑥∗∥ID𝐶 ) = 𝐻1 (𝑦∗∥ID𝐶 ). This happens with negligible proba-

bility, 𝑛𝑚/|G1 |, and thus the two hybrids are indistinguishable.

Hybrid (4, 𝑘) for all 𝑘 ∈ [𝑞]: Same as previous hybrid, except

we abort if there exist elements 𝑦∗ ∈ Y𝑘 and 𝑥∗ ∈ X𝑘 \ Y𝑘 such

that 𝐻2 (𝐻1 (𝑥∗∥ID𝐶 )𝑟 ) = 𝐻2 (𝐻1 (𝑦∗∥ID𝐶 )𝑟 ) and 𝐻1 (𝑥∗∥ID𝐶 ) ≠

𝐻1 (𝑦∗∥ID𝐶 ). This happens with negligible probability, 𝑛𝑚/|G1 |,
and so the hybrids are indistinguishable.

Hybrid (4, 𝑞) is identical to our simulator. Since the simulator is

indistinguishable from the real world, we conclude that the Partial-

APSI protocol is secure against a semi-honest server S. □

One important property that is required to upgrade the scheme

to malicious security is key-consistency, i.e., ensuring that the

same key is used to blind/encrypt elements across both phases

of the protocol. In the Partial-APSI protocol (Figure 3), we would

need to ensure that the 𝑟 used to blind its elements from the judge

in Authorize is the same 𝑟 used in the OPRF evaluation in the

Intersect phase. We could achieve this by having the judge sign

an additional element 𝑑 during Authorize, which is then sent to S
during Intersect. The server would then run the EEA protocol in

Intersect with the client on the set Y ∪ {𝑑} so that it can be sure

that the 𝑟 in Authorize is consistent with the 𝑟 used to exponentiate

its elements in Intersect. To achieve malicious security, one must

also take care to use a maliciously secure OPRF and we leave this

for future work.

6 EVALUATION
We implemented our two protocols in C++ and ran our experi-

ments an M2 MacBook Pro with 3.49 GHz CPU, 16GB RAM and

10 cores (results in Sections 6.1 and 6.2). We also ran our experi-

ments on a compute cluster with a 2 x 28 Core Intel Xeon Gold

6258R 2.7GHz Processor (Turbo up to 4GHz / AVX512 Support),
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Figure 5: PAPSI: |X| = |Y| = 2
18 varying 𝑝; refers to the

judge, the client and the server. For the protocols,
authorize is and intersect is .

and 384GB DDR4 2933MHz ECC Memory, parallelized across 50

cores to demonstrate parallelizability of our protocols (results in

Section 6.3). For the pairing operations, we used the Pairing Based

Cryptography Library [37] with the default Type-3 pairings.

For both the client and server set, we randomly generate credit

card numbers to perform the intersection over. Our implementation

can be found in https://anonymous.4open.science/r/APSI-451E.

6.1 Commodity Hardware
APSI. In Figure 4a, we plot the time and communication needed for

the APSI protocol when |X| = |Y|. On the right, we see that the

intersect phase takes more time than the authorize phase due to

the intersection requiring the computation of a bilinear pairing for

each element, which is our most expensive operation. We observe

the same trend on the left, where we plot the time needed per actor.

The client and the server need more time than the judge since

the judge only computes one hash function evaluation and one

exponentiation per element. Communication grows linearly with

𝑁 , with Intersect requiring overall less bandwidth.

In Figure 4b, we plot the time and communication needed for the

APSI protocol when |X| varies while |Y| is fixed to 2
14

elements.

On the left, we observe the time needed per actor. As expected,

the server takes the same amount of time, regardless of the size of

the client set. With regards to the different phases, the authorize

time increases as the client’s set grows. The time required for the

intersect is initially dominated by the server’s elements and stable,

but when the client set grows larger than the server set, the intersect

time also grows. Bandwidth of Authorize grows linearly since it is

a function of 𝑁 = |X|, whereas the bandwidth of Intersect is only
dependent on |Y|, which is fixed, and hence remains constant.

Partial-APSI. In Figure 4c, we plot the time and communication

needed for the Partial-APSI protocol when |X| = |Y| and 𝑝 = 0.20.

The timing follows a similar trend as Figure 4a. There is a bigger

gap between the time the server and the client need, versus the time

required by the judge. This is due to client blinding their elements in

the authorize phase and running the OPRF protocol in the intersect

phase. However, the bilinear pairings are the most expensive opera-

tion and the added operations (i.e., for the EEA andOPRF protocols)
have minimal impact on the timing. Communication also follows a

similar linear trend as in 4a; note that while authorization requires

similar communication overhead to that of the APSI variant, the

intersection phase requires notably more communication.

In Figure 4d, we plot the time and communication needed for the

Partial-APSI protocol when |X| varies, |Y| is fixed to 2
14

elements,

and 𝑝 = 0.20. Again, Partial-APSI follows similar trends to APSI,

as depicted in Figure 4b, with the server’s time being independent

of the client’s set size, and both the client and the judge requiring

time proportional to the size ofX. The communication of Authorize
phase increases linearly with 𝑁 = |X|. In contrast, the intersection

phase communication remains constant since it only relies on |Y|
and |Y| is fixed to 2

14
. The increase in communication of Intersect

of Partial-APSI over APSI is a result of the values sent for the OPRF.

In Figure 5, we explore the impact of varying 𝑝 , the percentage

of elements that the client and judge apply EEA on. We fix |X| =
|Y| = 2

18
. The server’s time and the time it takes to run the intersect

protocol are not affected by 𝑝 . However, the authorize phase times

(correspondingly, the judge and client times) increase as 𝑝 increases.

6.2 Comparison with Related Work
In Table 3, we compare our construction with the APSI protocol

DT10 [14]. Overall, we see that despite the higher communication

of our protocol for most data set sizes tested (due to the larger size

of pairings), our protocol out performs DT10 with respect to both

computational runtime and total runtime (which takes into account

both bandwidth and network latency). In addition to our protocol’s

individual computations being generally faster than those of DT10,

our protocol is also highly parallelizaeble thus resulting in overall

faster runtimes. In particular, all computations in Authorize and all

computations in Intersect except the final intersection computation

on the encoded elements can be parallelized. In contrast, some steps

of DT10’s protocol cannot easily be parallelized thus resulting.

DT10’s protocol is most efficient for higher𝑚 values and lower

𝑛 values. We observe this for 𝑛 = 2
10

and 𝑚 = 2
16
, where in

the 50Mbps and 5Mbps setting DT10 outperforms our protocol.

Unfortunately, due to RAM limitations, we were not able to run

DT10 for higher values of 𝑛 and𝑚. In all other network settings we

experimented with, our protocol outperforms DT10.

6.3 Compute Cluster
In Tables 4 and 5 we report the communication and computation

runtime results of running our protocols on a compute cluster

across 50 cores. Our protocols are both highly parallelizable, and

running them across 50 cores (vs on a laptop) results in runtimes

of an order of magnitude less than the experiments on commodity

hardware. We also report the total runtime of our protocol. The

LAN network has 20 Gbps bandwidth and 0.1 ms RTT latency. All

the other network settings have 80 ms RTT.

For both protocols, we see that the Authorize phase requires

substantially more communication than the Intersect phase. This
is because the size of the signature (96 bytes) is much larger than

the output of the pairing operation (32 bytes). We believe that,

in practice, this trade-off is reasonable as both of our protocols

achieve unlinkability: the intersection phase can be instantiated

multiple times using the same set of signatures without leaking any

additional information.
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Set Sizes Scheme Comm. (KB) Comp. Runtime (ms) Total Runtime (s)
𝑛 𝑚 Auth Inter J C (Inter) S LAN 200Mbps 50Mbps 5Mbps

2
10

2
8

DT10 41.0 57.4 1 1777 175 1.95 2.12 2.13 2.27

Ours 123 6.34 16 40 15 0.07 0.4 0.41 0.6

2
12

DT10 41.0 57.4 1 1809 225 2.04 2.2 2.21 2.35

Ours 123 98.5 11 37 151 0.2 0.53 0.55 0.87

2
16

DT10 41.0 57.4 1 1810 898 2.71 2.87 2.88 3.03

Ours 123 1573 11 71 2354 2.44 2.82 3.03 5.47

2
20

DT10 - - - - - - - - -

Ours 123 25166 12 735 38048 38.81 40.13 43.16 79.58

2
12

2
8

DT10 164 229 1 9707 8218 17.93 18.1 18.15 18.72

Ours 492 6.34 48 136 11 0.2 0.53 0.59 1.31

2
12

DT10 164 229 1 9844 8312 18.16 18.33 18.38 18.95

Ours 492 98.5 41 157 1569 0.35 0.7 0.77 1.62

2
16

DT10 164 229 1 9697 8941 18.64 18.81 18.86 19.43

Ours 492 1573.056 41 195 2346 2.58 2.98 3.23 6.21

2
20

DT10 - - - - - - - - -

Ours 492 25166 39 920 38679 39.65 40.98 44.06 81.01

Table 3: Results of running our APSI protocol and DT10 [14] on commodity hardware (M2 Macbook). We were unable to run
the APSI protocol from DT10 on with 𝑛 = 2

14 due to memory constraints (note that although the values sent between the client
and the server are small hash outputs, the values prior to hashing are large group elements).

Set Sizes Comm. (MB) Computation Runtime (ms) Total Runtime (s)
𝑛 𝑚 Auth Inter J C (Inter) S LAN 200Mbps 50Mbps 5Mbps

2
12

2
16

0.525 2.10 61 117 698 0.88 1.3 1.62 5.39

2
20

0.525 33.6 55 1138 11633 12.84 14.51 18.6 67.67

2
24

0.525 537 69 28110 213058 241.45 263.05 327.54 1101.39

2
16

2
16

8.39 2.10 299 822 744 1.87 2.6 3.86 18.96

2
20

8.39 33.6 292 1762 11655 13.73 15.71 20.74 81.14

2
24

8.39 537 220 21044 182029 203.51 225.42 290.85 1076.03

2
20

2
16

134 2.10 2973 11005 779 14.81 20.53 36.89 233.18

2
20

134 33.6 2764 12374 11743 26.95 33.91 54.04 295.64

2
24

134 537 2741 31045 206295 240.35 267.24 347.78 1314.14

2
24

2
16

2147 2.10 43983 197836 777 243.46 328.9 586.85 3682.25

2
20

2147 33.6 43308 193751 11194 249.13 335.81 597.54 3738.23

2
24

2147 537 44490 204423 191963 441.95 548.57 870.69 4736.16

Table 4: Results of running APSI on a compute cluster, parallelized across 50 cores.

Set Sizes Comm. (MB) Computation Runtime (ms) Total Runtime (s)
𝑛 𝑚 Auth Inter J C (Auth) C (Inter) S LAN 200Mbps 50Mbps 5Mbps

2
12

2
16

1.18 14.7 34 75 156 962 1.23 2.5 4.4 27.25

2
20

1.18 235 46 72 1566 13612 15.39 25.38 53.71 393.64

2
24

1.18 3758 41 72 23322 217923 242.86 392.37 843.48 6256.84

2
16

2
16

18.9 14.7 144 335 793 907 2.19 4.16 8.19 56.55

2
20

18.9 235 115 265 2188 12997 15.67 26.36 56.81 422.26

2
24

18.9 3758 127 246 24559 208837 235.28 385.49 838.73 6277.61

2
20

2
16

302 14.7 1484 2866 11041 901 16.42 29.62 67.67 524.27

2
20

302 235 1755 3037 12539 13253 30.8 52.72 117.19 890.89

2
24

302 3758 1676 2837 34007 224301 264.45 425.88 913.14 6760.27

2
24

2
16

4839 14.7 22961 43189 185987 898 254.98 447.8 1030.19 8018.85

2
20

4839 234 21823 42747 181584 12818 261.0 462.55 1071.36 8377.1

2
24

4839 3758 23579 43193 209280 221013 500.5 841.57 1873.17 14252.34

Table 5: Results of parallelizing Partial-APSI (𝑝 = 0.10).
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7 DISCUSSION
In this work, we revisit APSI and present a round-optimal APSI

protocol built from bilinear pairings. We also propose a generaliza-

tion of APSI, called Partial-APSI, and extend our APSI protocol to

the Partial-APSI setting. We prove security and correctness, and

implement both protocols to demonstrate their practicality.

Properties of (Partial-)APSI protocols. Another goal is that of

client/server privacy. A PSI protocol is said to be client-private

(resp. server-private) if the client (resp. server) doesn’t learn any-

thing about the other party’s set other than an upper bound on the

set size and – in the case of the client – the intersection. Since the

client never sends anything to the server in either our protocols,

the server doesn’t learn anything about X and thus both protocols

achieve full client privacy.

Rational and Covert Adversaries Modeling parties either as

semi-honest or malicious does not capture the full picture of how

people in the real world may act; often times people are driven by

self-gain and may not deviate from the protocol if doing so offers

little to no benefit. A game theoretic approach to APSI/Partial-APSI

could shed light on how a rational party in a one-sided protocol

would act. In [4], Aumann and Lindell also introduce the notion

of a covert adversary. Such an adversary may deviate arbitrarily

from the protocol, but do not wish to be “caught” cheating. The

goal is to thus design a protocol that guarantees that any adversary

deviating from the protocol can be detected by the honest parties

with probability at least 𝜖 . It would be interesting to explore whether

APSI/Partial-APSI secure against such adversaries can be designed

and be made more efficient than existing constructions.

Parameter Selection. The value of 𝑝 is dependent on the appli-

cation and the level of risk that the server is willing to tolerate.

Let 𝑛 be the total number of items in X and let 𝑘 be the number

of malicious elements in X. Then the probability that J samples a

malicious element is 1−
(𝑛−𝑘
⌈𝑝𝑛⌉

)
/
( 𝑛
⌈𝑝𝑛⌉

)
. If 𝑘 = 1, then the probability

of being caught is 1 − (𝑛 − ⌈𝑝𝑛⌉)/𝑛; this probability increases as

𝑘 grows. If the server can tolerate the client learning a couple of

malicious elements (elements that were never shown to the judge,

but nevertheless signed), then 𝑝 ≤ 1/2 may be chosen.

In the case of a rational adversary, if the cost of getting caught is

higher than the value of learning a few additional elements, then the

adversary would be incentivized to not cheat even when 𝑝 is small.

We also note, that standard PSI protocols may allow for an arbitrary

number of maliciously added elements. In comparison, running

Partial-APSI with 𝑝 ≤ 1/4 offers a significant deterrent to the

client adding any number of malicious elements. For applications

when no such error can be tolerated (e.g., such as a government

organization computing the intersection of the no-fly list and the

list of passengers belonging to an airport), it may be best use APSI.

Challenges of Adapting PSI to (Partial-)APSI. As PSI protocols

become more efficient, the techniques used become increasingly

sophisticated. Modern PSI protocols often have multiple rounds

of interaction and numerous cryptographic primitives composed

in complex ways and with varying dependencies. Authorizing a

subset of elements before computing the intersection is non-trivial

and often places certain requirements on the protocol.

An APSI protocol needs to fulfill the following requirements: (1)

only elements in X authorized by the judge appear in the intersec-

tion and (2) the server cannot extract anything about X beyond

the size. If we consider Partial-APSI, we have additional require-

ments: (3) the elements revealed by the client during authorization

indeed correspond to the indices requested by the judge and (4) no

more than 𝑝𝑛 elements are revealed to the judge, either directly or

by enabling the judge to extract the information (e.g. dictionary

attacks). Below we outline some of the challenges of extending

state-of-the-art PSI protocols to support (partial) authorization.

When a PSI protocol involves multiple rounds of interaction, it’s

possible that the only way to adapt it to APSI, would be to involve

the judge in the intersection protocol. This increases the load on

the judge and requires the judge to be online for the entire protocol.

In the case of partial authorization, a PSI protocol may utilize

cryptographic building blocks such that the judge cannot guarantee

the number of elements encoded, making requesting elements by

index difficult or impossible. In other words, C could insert addi-

tional elements without the judge detecting the existence of these

elements. For example, a number of PSI protocols utilize oblivious

key-value stores (OKVS), e.g [20], but many OKVSs do not neces-

sarily leak |X|. Some protocols make it impossible to even check if

a specific element is in X, like hashing into bins [25].

A PSI protocol may utilize cryptographic building blocks that

cannot be “partially" opened. For example, PSI can be achieved

using encryption. Revealing one element would require disclosing

the secret key, which would compromise all the elements. In this

case, the protocol would most likely need to be augmented with,

potentially costly, oblivious computation or a commitment scheme

that prevents the judge from learning all the encrypted elements.

Future Directions. While APSI is ideal in settings in which a

third party that can authorize the sets (e.g., an accounting firm

auditing the purchases made at a company), in some settings there

is no clear answer for who the judge should be (e.g., private con-

tact discovery). The question of how to mitigate the injection of

elements to a party’s set in such settings is an open question. The

introduction of the Partial-APSI problem also opens up a number

of future directions. One question is whether the computation time

and communication complexity of Partial-APSI protocols can be

improved. Another interesting direction would be to explore the

intersection of APSI and data privacy law, for example by extending

the work in [38] and developing (Partial-)APSI schemes that allow

fine-grained policy control and enable updates and deletions.
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A INSTANTIATIONS
A.1 Exponent Equality Argument
We use an exponent equality argument EEA to prove that a set of

group elements 𝐻1 (𝑤1)𝑟 , . . . , 𝐻1 (𝑤𝑛)𝑟 ∈ G1 are raised to the same

random 𝑟 . We use the Fiat-Shamir heuristic to make the protocol

non-interactive. To generate a proof, the prover first samples a

random element 𝑧 and computes 𝑡𝑖 ← 𝐻1 (𝑤𝑖 )𝑧 for all 𝑖 ∈ [𝑛].
The challenge is computed non-interactively as a function of the

protocol transcript, 𝑐 ← 𝐻 ({𝑡𝑖 , 𝐻1 (𝑤𝑖 )}𝑖∈[𝑛] ). The prover then

sends {𝑡𝑖 }𝑖∈[𝑛] and the value 𝑠 ← 𝑧 + 𝑐𝑟 .
To verify, the verifier takes as input the commitment {ℎ𝑖 =

𝐻1 (𝑤𝑖 )𝑟 }𝑖∈[𝑛] and the elements {𝑤𝑖 }𝑖∈[𝑛] , as well as {𝑡𝑖 }𝑖∈[𝑛] and
𝑠 . For each 𝑖 ∈ [𝑛], it checks whether 𝐻1 (𝑥𝑖 )𝑠 = 𝑡𝑖 · ℎ𝑐𝑖 . If yes, then
it accepts. Otherwise, it rejects the proof.

The pseudocode for these algorithms can be found in Figure 6

for interactive and Figure 7 for non-interactive.

Theorem 8. The exponent equality argument EEA described in
Figure 6 is complete, Honest-Verifier Zero Knowledge, and knowledge-
sound.

Proof. Below we show (i) completeness, (ii) Honest-Verifier

Zero Knowledge (HZRK) and (iii) knowledge-soundness.

Completeness: For all 𝑖 , we have that

𝐻1 (𝑤𝑖 )𝑠 = ℎ𝑐𝑖 = 𝐻1 (𝑤𝑖 )𝑧+𝑐𝑟 = 𝑡𝑖 · (𝐻1 (𝑤𝑖 )𝑟 )𝑐 .
HVRK: We show that for every 𝐻1 (𝑤𝑖 ) , the output of our simu-

lator is indistinguishable from the output of the transcript.

We construct a simulator as follows:

(1) Sample 𝑠 ←$Z∗𝑞 and 𝑐 ←$Z∗𝑞 .
(2) For all 𝑖 , set 𝑡𝑖 = 𝐻1 (𝑤𝑖 )𝑠/ℎ𝑐𝑖 .
(3) Output ({𝑡𝑖 }𝑖∈[𝑛] , 𝑐, 𝑠).
Note that the 𝑐 is uniformly random and so are the 𝑡𝑖 , and 𝑠

is correct. Thus, the output of the simulator is random and

distributed like the real transcript.

Knowledge Soundness: We construct an extractor:

(1) Run the protocol to obtain transcript

(𝑡𝑖 , 𝑐, 𝑠) for each 𝑖 ∈ [𝑛].
(2) Rewind and rerun the protocol to obtain a second tran-

script (𝑡𝑖 , 𝑐′, 𝑠′) for each 𝑖 ∈ [𝑛].
(3) Compute

𝑠 − 𝑠′
𝑐 − 𝑐′ =

(𝑧 + 𝑐𝑟 ) − (𝑧 + 𝑐′𝑟 )
𝑐 − 𝑐′ ≡ 𝑟 𝑐 − 𝑐

′

𝑐 − 𝑐′ = 𝑟 .

□

A.2 OPRF
The OPRF protocol [29] is carried out between the client C with

key 𝑘 and the server S with its set of elements Y. First, the server
makes a Request for the PRF to be applied to its elements, then

the client applies the Eval function on them, and finally the server

S recovers the elements with the PRF applied on them using the

Recover function (Figure 8).

Theorem 9. The OPRF protocol described in Figure 8 is correct,
hides 𝑘 from S and hides all elements in the request from C, assuming
DDH.

Let 𝐻1 : Z𝑞 → G1 be a hash function.

1: Prover(𝑟, {𝑤𝑖 }𝑖∈[𝑛] )
2: 𝑧←$Z∗𝑞
3: for 𝑖 ∈ [𝑛] do
4: 𝑡𝑖 ← 𝐻1 (𝑤𝑖 )𝑧

5: return {𝑡𝑖 }𝑖∈[𝑛]

6: Verifier({𝑤𝑖 }𝑖∈[𝑛] , {𝑡𝑖 }𝑖∈[𝑛] )
7: 𝑐 ←$Z∗𝑞
8: return c

9: Prover(𝑟, {𝑤𝑖 }𝑖∈[𝑛] , 𝑐)
10: return 𝑠 = 𝑧 + 𝑐𝑟

11: Verifier({𝑤𝑖 }𝑖∈[𝑛] , {𝑡𝑖 }𝑖∈[𝑛] , 𝑠)
12: for 𝑖 ∈ [𝑛] do
13: if 𝐻1 (𝑤𝑖 )𝑠 ≠ 𝑡𝑖ℎ

𝑐
𝑖
then // ℎ𝑖 = 𝐻1 (𝑤𝑖 )𝑟

14: return 0

15: return 1

Figure 6: Pseudocode for the interactive Exponent Equality
Argument (Schnorr’s protocol).

Let 𝐻1 : Z𝑞 → G1 and 𝐻 : {0, 1}∗ → G1 be hash functions.

1: Prove(𝑟, {𝑤𝑖 }𝑖∈[𝑛] )→ 𝜋

2: 𝑧←$Z∗𝑞
3: for 𝑖 ∈ [𝑛] do
4: 𝑡𝑖 ← 𝐻1 (𝑤𝑖 )𝑧

5: 𝑐 ← 𝐻1 ({𝑡𝑖 ,𝑤𝑖 }𝑖∈[𝑛] )
6: 𝑠 ← 𝑧 + 𝑐𝑟
7: return ({𝑡𝑖 }𝑖∈[𝑛] , 𝑠)

8: Verify(𝜋, {𝑤𝑖 }𝑖∈[𝑛] , {ℎ𝑖 }𝑖∈[𝑛] )→ 𝑏

9: ({𝑡𝑖 }𝑖∈[𝑛] , 𝑠) ← 𝜋

10: 𝑐 ← 𝐻 ({𝑡𝑖 ,𝑤𝑖 }𝑖∈[𝑛] )
11: for 𝑖 ∈ [𝑛] do
12: if 𝐻1 (𝑤𝑖 )𝑠 ≠ 𝑡𝑖 · ℎ𝑐𝑖 then // ℎ𝑖 = 𝐻1 (𝑤𝑖 )𝑟
13: return 0

14: return 1

Figure 7: Pseudocode for the non-interactive Exponent Equal-
ity Argument EEA = (Prove,Verify), after applying the Fiat-
Shamir Heuristic.

Proof. Correctness: For each element 𝑎 ∈ Y of S, S raises

them to some random value 𝑡 . Then, C raises them to the 𝑘 and

finally S raises them to
1

𝑡 . We have:

((𝑎𝑡 )𝑘 )
1

𝑡 = 𝑎𝑘

Hiding 𝑘: S receives elements 𝑎𝑡𝑘 and can then turn them into

𝑎𝑘 , for all 𝑎 ∈ Y. S cannot recover the key 𝑘 , as that would break

the DDH assumption.
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1: // Server S initiates a request:
2: Request(A)→ 𝑡,B
3: 𝑡 ←$Z𝑞
4: B ← {𝑎𝑡 }𝑎∈A
5: return 𝑡,B

6: // Client C applies PRF:

7: Eval(B, 𝑘)→ C
8: return {𝑏𝑘 }𝑏∈B

9: // Server S recovers elements:

10: Recover(C, 𝑡 )→ D
11: return {𝑐

1

𝑡 }𝑐∈C

Figure 8: OPRF Protocol

Hiding S’s input: C receives elements 𝑎𝑡 . Since 𝑡 is chosen

uniformly at random, the elements 𝑎𝑡 are indistinguishable from

random. □

B PROOFS
B.1 Proof of Theorem 1

Proof. Let 𝑥 ∈ X and 𝑦 ∈ Y be elements of C and S, respec-
tively, and let 𝜎 = 𝐻1 (𝑥 ∥ID𝐶 )sk be the signature of 𝑥 issued by the

judge. Suppose 𝑥 = 𝑦 and observe the following:

𝑥 = 𝑒 (𝜎, 𝑆) = 𝑒 ((𝑥 ∥ID𝐶 )sk, 𝑔𝑠2) = 𝑒 (𝐻1 (𝑦∥ID𝐶 ), pk𝑠 ) = 𝑦.

Thus we have that 𝑥 = 𝑦. Moreover, since 𝜎 is valid signature and by

the unforgeability of the BLS signature scheme the client could not

have computed it without the judge’s secret key, and so 𝑥 ∈ XAUTH
which implies that 𝑥 ∈ (XAUTH ∩ X) ∩ Y.

Now suppose 𝑥 ≠ 𝑦. There are two cases: (1) 𝑒 (𝐻1 (𝑥 ∥ID𝐶 ), pk𝑠 )
≠ 𝑒 (𝐻1 (𝑦∥ID𝐶 ), pk𝑠 ) or (2) they are equal. In case (1), the values

are not equal and hence 𝑥 does not appear in the intersection. In

case (2), 𝐻1 (𝑥 ∥ID𝐶 ) = 𝐻1 (𝑦∥ID𝐶 ) and 𝑥 ∥ID𝐶 ≠ 𝑦∥ID𝐶 , and so we

have found a collision in 𝐻1. This case happens with negligible

probability and the theorem follows. □

B.2 Proof of Theorem 4
Proof. We show that the only elements in the intersection are

(i) signed by the judge and (ii) in both X and Y. Let 𝑥 ∈ X and

𝑦 ∈ Y, and let 𝜎 = 𝐻2 (𝐻1 (𝑥 ∥ID𝐶 )𝑟 )sk be the valid signature of 𝑥

issued to C by the judge. Suppose that 𝑥 = 𝑦, then:

𝑥 = 𝑒 (𝜎, 𝑆) = 𝑒 (𝐻2 (𝐻1 (𝑦∥ID𝐶 )𝑟 )𝑠 , pk) = 𝑦

Thus, we have that 𝑥 = 𝑦. Additionally, this equality holds be-

cause 𝜎 is valid signature and by the unforgeability of the BLS

signature scheme the client could not have computed it without

the judge’s secret key sk, and so 𝑥 ∈ XAUTH which implies that

𝑥 ∈ (X ∩ XAUTH) ∩ Y.
Now suppose 𝑥 ≠ 𝑦, then either (1) 𝑒 (𝐻2 (𝐻1 (𝑥 ∥ID𝐶 )𝑟 ), 𝑔sk·𝑠 ) ≠

𝑒 (𝐻2 (𝐻1 (𝑦∥ID𝐶 )𝑟 ), pk𝑠 ) or (2) they are equal. In case (1), 𝑥 ≠

𝑦 and hence 𝑥 does not appear in the intersection. In case (2),

𝐻2 (𝐻1 (𝑥 ∥ID𝐶 )𝑟 ) = 𝐻2 (𝐻1 (𝑦∥ID𝐶 )𝑟 ) and so we have found a colli-

sion in 𝐻1 or 𝐻2. Both happen with negligible probability and the

theorem follows. □

B.3 Proof of Theorem 5
Proof. We prove the security through a series of hybrid argu-

ments. We now describe our simulator. Upon input of the random

index I ⊆
$
[𝑛] such that |I | = 𝑝𝑛 and the corresponding values

{𝑥𝑖 }𝑖∈[𝑛] , the simulator proceeds as follows:

• Hash queries. Model the hash function 𝐻1 as a random oracle

and store the results in a table𝑇 . For each query 𝑞 to 𝐻1, check if

𝑞 ∈ 𝑇 . If yes, then return 𝑇 [𝑞] = ℎ. If not, then sample ℎ←$G1
and set 𝑇 [𝑞] ← ℎ.

• Authorize. To simulate the client C during the authorize phase,

the simulator does the following.

– Sample value 𝑟 ←$Z𝑞 .

– For all 𝑖 ∈ [𝑛] \ I, sample a random value X (𝑖 )
𝐵
←$G1.

– For all 𝑖 ∈ I, make a hash query to 𝐻1 on 𝑥𝑖 ∥ID𝐶 (table 𝑇1 is

updated accordingly) and compute X (𝑖 )
𝐵
← 𝐻1 (𝑥𝑖 ∥ID𝐶 )𝑟 . If

X (𝑖 )
𝐵

= X ( 𝑗 )
𝐵

for any 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ [𝑛], abort.
– Send the vector X𝐵 = (X (1)

𝐵
, . . . ,X (𝑛)

𝐵
) to the judge.

– GivenI, compute𝜋 ← EEA.Prove(𝑟, {𝑥𝑖 }I ) and return𝜋, {𝑥𝑖 }I .
We now describe a series of hybrids.

Hybrid 0: The real interaction, where both parties run the

Authorize protocol honestly on input X.
Hybrid 1: Same as Hybrid 0, except sample 𝑟 ←$Z𝑞 . This is

indistinguishable from Hybrid 0, since 𝑟 is distributed equally.

Hybrid 2: Same as Hybrid 1, except we abort if there exist items

𝑥, 𝑥 ′ ∈ X such that 𝐻1 (𝑥 ∥ID𝐶 ) = 𝐻1 (𝑥 ′∥ID𝐶 ) or if 𝑑 = 𝐻1 (𝑥 ∥ID𝐶 )
and 𝑥 ∈ X. For some fixed item 𝑥 ≠ 𝑥 ′, the probability of such

a collision is 1/|G1 |. Union bounding over all possible 𝑥 we get a

total collision probability of 𝑂 (𝑛2)/|G1 | which is negligible. Thus,

Hybrid 2 is indistinguishable from hybrid 1.

Hybrid 3: Same asHybrid 2, except for 𝑖 ∈ [𝑛]\I, (𝐻1 (𝑥𝑖 | |𝐼𝐷𝐶 )𝑟
in X𝐵 is replaced with a random value in G1. By the DDH assump-

tion holding in group G1, the new binding commitments are indis-

tinguishable from those in Hybrid 2. The second message from the

client (𝜋, {𝑥𝑖 }𝑖∈I ) do not depend on any 𝑥𝑖 , 𝑖 ∈ [𝑛] \ I, so they are
not affected by this change.

Hybrid 3 is identical to our simulator. Since the simulator is

indistinguishable from the real world, the theorem follows. □
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