
Solving Multivariate Coppersmith Problems with

Known Moduli

Keegan Ryan

University of California, San Diego, USA
kryan@ucsd.edu

Abstract. We examine the problem of �nding small solutions to sys-
tems of modular multivariate polynomials. While the case of univari-
ate polynomials has been well understood since Coppersmith's original
1996 work, multivariate systems typically rely on carefully crafted shift
polynomials and signi�cant manual analysis of the resulting Copper-
smith lattice. In this work, we develop several algorithms that make
such hand-crafted strategies obsolete. We �rst use the theory of Gröb-
ner bases to develop an algorithm that provably computes an optimal
set of shift polynomials, and we use lattice theory to construct a lattice
which provably contains all desired short vectors. While this strategy
is usable in practice, the resulting lattice often has large rank. Next,
we propose a heuristic strategy based on graph optimization algorithms
that quickly identi�es low-rank alternatives. Third, we develop a strat-
egy which symbolically precomputes shift polynomials, and we use the
theory of polytopes to polynomially bound the running time. Like Meers
and Nowakowski's automated method, our precomputation strategy en-
ables heuristically and automatically determining asymptotic bounds.
We evaluate our new strategies on over a dozen previously studied Cop-
persmith problems. In all cases, our uni�ed approach achieves the same
recovery bounds in practice as prior work, even improving the practical
bounds for four of the problems. In four problems, we �nd smaller and
more e�cient lattice constructions, and in two problems, we improve the
existing asymptotic bounds. While our strategies are still heuristic, they
are simple to describe, implement, and execute, and we hope that they
drastically simplify the application of Coppersmith's method to systems
of multivariate polynomials.
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1 Introduction

Coppersmith's method of �nding small roots of polynomial equations is one of
the most widely applied techniques in algebraic cryptanalysis. Although origi-
nally developed to �nd a root of a single univariate modular polynomial, it has
been repeatedly adapted to heuristically �nd roots of multivariate polynomials,
integer polynomials, and polynomials modulo divisors. Coppersmith's method
is a powerful tool, but the main obstacle is that it involves signi�cant manual



analysis and algorithm design for every new system of polynomials one wishes to
solve. In this paper, we analyze systems of multivariate polynomials with known
moduli (or known multiples of moduli), and we develop a collection of proven
and heuristic results that all but eliminate the previously required manual labor.

The challenging part of Coppersmith's method is selecting shift polynomials.
In essence, the coe�cients of a polynomial f modulo p de�ne a linear combina-
tion of its monomials. When a root is small, the monomial valuations are small,
and lattice reduction can be used to e�ciently �nd a small solution to the linear
relations. However, lattice reduction performs worse the more monomials are
involved. In [13], Coppersmith realized that the coe�cients of shifted polyno-
mial xf induce an independent linear constraint, while only introducing a single
new monomial. By considering shift polynomials of the form xif j , Coppersmith
showed that the bene�t of adding shift polynomials outweighs the cost of in-
troducing monomials so long as the desired root is smaller than p1/ deg f . This
analysis of overlapping monomials in shift polynomials is easy in the univariate
case, but challenging in the multivariate case.

If one has a system F of multivariate polynomials with a shared root, each
polynomial still induces a linear relation on the monomials, but the amount
of monomial overlap in, for example, xi1

1 xi2
2 f j1

1 f j2
2 depends signi�cantly on the

precise monomials in f1(x1, x2) and f2(x1, x2). This is why so much manual
analysis is necessary for every di�erent system F . One must carefully design
a strategy for constructing shift polynomials with su�cient monomial overlap
for lattice reduction to recover a small root, and then one must analyze the
asymptotic behavior of their strategy to �nd the largest bound on the small root
for which their method succeeds.

1.1 Our contributions

We present a collection of tools and techniques that automate the multivariate
Coppersmith method for systems of modular polynomials. Our contributions
eliminate much of the arduous manual work that previously went into construct-
ing shift polynomials and analyzing their performance, and our algorithms are
fully practical. In order to achieve this, we rely on results from graph theory,
computer algebra, and discrete geometry. Like previous multivariate Copper-
smith approaches, our full algorithms are heuristic, but many of the intermediate
results are proven rigorously.

In Section 2, we give general background on multivariate Coppersmith prob-
lems, and in Section 3, we revisit the connection between shift polynomials and
polynomial ideals. This connection has been observed previously, but we de-
velop it further and show that all shift polynomial selection strategies (to our
knowledge) involve constructing polynomials that belong to particular ideals.

In Section 4, we give a simple and novel algorithm to select shift polynomials
from the ideal that are de�ned over a �xed set of monomials. This algorithm is
based on the theory of Gröbner bases over Euclidean domains. We prove that
our algorithm is optimal in two parts: we show that our de�nition of optimality
is meaningful and unique, and we show that our algorithm achieves this notion
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of optimality. Finally, we compare our new algorithm to the algorithm in [33]
and show how ours �nds signi�cantly better shift polynomials than their design,
even though their algorithm claimed to be optimal.

In Section 5, we show how to select the set of monomials. We describe a
set of monomials Mbig and use lattice reduction theory to show that this set is
large enough to guarantee that all suitably small vectors exist in the resulting
Coppersmith lattice. The main drawback of this result is that the resulting lattice
may have large rank, increasing the cost of lattice reduction. To �nd a better
subset of Mbig, we describe an algorithm that automatically searches the lattice
for dense sublattices. Our algorithm does not rely on lattice reduction and is
based on an optimization technique for weighted directed graphs. Our algorithm
is not guaranteed to �nd a sublattice if one exists, but if it �nds a sublattice,
it is guaranteed to contain short vectors. In practice, this algorithm is fast and
highly e�ective.

In Section 6, we show how the expensive Gröbner basis computations in
Section 4 can be avoided when working with powers of ideals. We describe a
simpli�ed strategy that is similar to prior work which takes a small but good
set of shift polynomials S in an ideal J and outputs a larger set of shift poly-
nomials Sk in ideal Jk. We use the theory of Ehrhart polynomials to analyze
the asymptotic behavior of this simpli�ed approach. We conclude this section
with a procedure to automatically prove asymptotic bounds for any multivari-
ate Coppersmith problem, supposing standard heuristic assumptions are true.
While this procedure requires some hand-selected inputs, it drastically simpli�es
the existing process of proving asymptotic bounds, and it agrees with existing
bounds for well-studied classes of multivariate Coppersmith problems.

Finally, in Section 7 we describe experiments on 14 di�erent Coppersmith
problems to demonstrate the e�ectiveness of our new approach. We include a
wide variety of problems which exhibit our algorithm's ability to match the most
advanced shift polynomial strategies previously described, including Herrmann
and May's unravelled linearization [19], the exponent tricks of Lu, Zhang, Peng,
and Lin [25], and the linear algebra strategy of Xu, Sarkar, Hu, Huang, and
Peng [46]. In all cases, our uni�ed approach achieves similar practical bounds,
often outperforming prior work, all while requiring minimal problem-speci�c
con�guration.

2 Background

In this work, we frequently consider polynomials in Z[x1, . . . , xℓ]. Polynomials

consist of terms that are monomials m =
∏ℓ

1 x
ei
i multiplied by coe�cients cm.

For a particular monomial ordering, each nonzero polynomial f has a leading
term LT(f) with leading monomial LM(f) and leading coe�cient LC(f). For
brevity, we often use vector notation: f(x) is shorthand for f(x1, . . . , xℓ). We
are also sometimes casual with function notation: for example, LM(S) means
the set of leading monomials of polynomials in S.
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2.1 Multivariate Coppersmith problems

De�nition 1 (Multivariate Coppersmith problem). A multivariate Cop-
persmith problem in ℓ variables involves �nding one or more bounded, shared
roots to a system of modular or integer polynomials. For bounds X ∈ Zℓ and
constrained input polynomials F ⊂ Z[x], �nd a small root r ∈ Zℓ with |ri| < Xi

for i = 1, . . . , ℓ such that r satis�es the constraint of polynomial fi ∈ F . This
constraint is either modular or integer:

fi(r) ≡ 0 (mod pi) or fi(r) = 0

where the moduli pi may either be known or bounded below by a known value.

This de�nition includes modular Coppersmith problems, integer Copper-
smith problems, and Coppersmith problems with mixed moduli, but our focus
in this work is multivariate problems with at least one modular constraint and
where multiples Ni of moduli pi are known. This includes many interesting ap-
plications of Coppersmith's method. Implementations of this method almost all
follow the same general outline:

1. Combine polynomials in F to generate a set of constrained shift polynomials.
2. Construct a lattice basis using the shift polynomials.
3. Run a lattice reduction algorithm to obtain a reduced basis.
4. Interpret short vectors in the lattice in a way that reveals root r.

Steps 2, 3, and 4 are well understood at this point and vary little between
applications. However, step 1 is where all of the challenge lies.

2.2 Shift polynomial selection

Coppersmith's original work considered systems of a single, univariate f with
known modulus p [13]. All shift polynomials are of the form xif j , and Cop-
persmith showed that lattice reduction succeeds for this selection of shift poly-
nomials when logp X ≲ 1/ deg f , which is provably optimal [11]. May gave a
generalization of Coppersmith's result where p is unknown, but a multiple N
of p is known [28]. Coppersmith observed that the same shift polynomials and
lattice methods may work in principal for multivariate polynomials, but did not
explore this in depth.

Jochemsz and May considered systems of a single, multivariate f with known
modulus p (and also the integer variant) [22]. They describe a shift polynomial
strategy based on the monomial sets constructed by considering monomials in
xtfk. In Appendix A, they show how their generalized and heuristic strategy
reproduces the same bounds for problems studied by Boneh and Durfee [7] and
Blömer and May [5].

More recently, Meers and Nowakowski studied systems of multiple multivari-
ate polynomials with known modulus p [33]. They describe a heuristic strategy
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for choosing a set of monomials and give an algorithm for selecting shift poly-
nomials from the set of monomials. The algorithm is based on searching combi-
nations of input polynomials for which the leading monomial of the product is
in the monomial set. They claim their method is globally optimal, but we show
that it is not.

Although it has long been a goal to develop a truly generalized strategy for se-
lecting shift polynomials, it is far more common in the literature to �nd problem-
speci�c strategies. As more intricate shift polynomial strategies are developed
and analyzed, the bounds on recoverable roots slowly increase. Take for example
the Modular Inversion Hidden Number Problem (MIHNP) from Boneh et al. in
2001 [8] which studies ℓ polynomials of the form fi(α,x) = αxi+ci1α+ci2xi+ci3
modulo p. They give concrete and asymptotic shift polynomial strategies that
succeed for logp Xi < 1/3 and 2/3. Better strategies were proposed in 2014 [44]
and 2018 [46], culminating the breakthrough result by Xu et al. at Crypto
2019 [47] that logp Xi < ℓ/(ℓ + 1) is heuristically and asymptotically solvable.
The results were re�ned further in 2023 [48].

Similar incremental improvements in shift polynomial strategies appear for
the Elliptic Curve Hidden Number Problem [45,49] and RSA-CRT with small
private exponents [26,4,23,20,43], not to mention the many RSA partial key
exposure variants [16,1,40,42,30,31]. These improvements demonstrate that the
existing generalized multivariate shift-polynomial strategies are insu�cient for
maximizing the recoverable bounds using Coppersmith's method.

2.3 Lattice basis construction

Given a set of shift polynomials S where all nonzero terms involve monomials
in M, there are a couple of ways to build the lattice. Coppersmith's original
work [13] builds an extended lattice basis of dimension |M| + |S| and �nds a
projected sublattice Λ of dimension |M|. Each coordinate in Λ corresponds to a
monomial in M, and it is equivalent (up to scaling) to the following:{(

am
m(X)

)
m∈M

∣∣∣ ∑
m∈M

cmam satis�es the constraint of
∑

m∈M
cmm ∈ S

}
.

That is, the lattice vectors represent solutions to a linearized version of S. This
is the primal lattice.

Howgrave-Graham gave an alternative consruction [21]. If all f ∈ S satisfy
the same constraint (such as a shared root modulo p), then a basis of the dual
lattice ΛS is given by{

(cmm(X))m∈M | f(x) =
∑

m∈M
cmm(x) ∈ S

}
.
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For example, the Howgrave-Graham lattice of S = {N,Nx1, Nx2, x1x2 + ax1 +
b, x1x

2
2 + ax1x2 + bx2} is spanned by the rows of the basis matrix

N 0 0 0 0
0 NX1 0 0 0
0 0 NX2 0 0
b aX1 0 X1X2 0
0 0 bX2 aX1X2 X1X

2
2

 .

The vectors in the lattice correspond to (scaled coe�cient vectors of) polynomi-
als. When S sorted by a monomial order yields a triangular basis (also known as
suitability), the dual lattice is full rank, has dimension |M|, and has determinant

detΛS =
∏
f∈S

LT(f)(X).

The primal lattice is useful for integer constraints or when the modulus is
known. The dual lattice is useful when the shift polynomials share a common
modular constraint. When the modulus is known, Howgrave-Graham showed
that the primal and dual Coppersmith constructions are related by lattice dual-
ity. This work focuses on modular Coppersmith problems with a known multiple
of the modulus, so we will use the dual construction.

2.4 Lattice reduction

Given a lattice Λ of rank d, a lattice reduction algorithm outputs a reduced basis
B′ of Λ consisting of short, nearly orthogonal vectors. The LLL algorithm [24]
runs in polynomial time, and the basis vectors in the output satisfy

∥b′i∥ ≤ 2
d(d−1)

4(d+1−i) detΛ1/(d+1−i) and ∥b′i∥ ≤ 2d−1λi(Λ)

where λi(Λ) is the i
th minimum of the lattice, or the minimum radius of a ball at

the origin containing i linearly independent vectors. These bounds are found in
[27] and [35], and analogous bounds can be derived for more modern reduction
algorithms capable of reducing lattices of large rank [39].

2.5 Root recovery

In the primal lattice, the existence of a bounded root r ∈ Zℓ implies the existence

of a short vector
(

m(r)
m(X)

)
m∈M

with max norm ≤ 1. We hope that this vector is

uniquely short and found by lattice reduction, so r can be recovered.
In the dual lattice, a short vector corresponds to a polynomial g with small

coe�cients. g is an integer linear combination of polynomials in S, so it satis�es
the same constraint (for example g(r) ≡ 0 (mod p)). The following result of
Håstad [18] and Howgrave-Graham [21] is used to show that g(r) = 0 over the
integers, not just modulo p. We refer to this as the HHG bound.1

1 This is often referred to as the Howgrave-Graham bound, but as May notes [29], it
appears in Håstad's earlier work as well.
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Lemma 1 (Håstad/Howgrave-Graham). Let v be a vector in a dual Cop-
persmith lattice of dimension n and g ∈ Z[x] the corresponding polynomial. If
g(r) ≡ 0 (mod p) for |r| < X and ∥v∥ < p/

√
n, then g(r) = 0.

To recover the small root, we hope to �nd at least ℓ polynomials satisfying
this bound. These polynomials share a common root over the integers, and the
following heuristic is used to conclude that the root can be found, using Gröbner
bases for example.

Heuristic 1 The algebraic variety corresponding to the ideal in Q[x] of polyno-
mials recovered by lattice reduction is zero-dimensional.

When S is suitable and all polynomials in S share a root modulo p, the following
condition describes when Coppersmith's method heuristically succeeds.

2
|S|(|S|−1)

4

∏
f∈S

LT(f)(X) <

(
p√
|S|

)|S|+1−ℓ

(1)

It is common to see this in an asymptotic form, where we consider arbitrarily
large p, which scales independently of |S|, and |S| scales independently of ℓ.∏

f∈S

LT(f)(X) < p|S| (2)

2.6 On the possibility of a non-heuristic algorithm

In [14], Coppersmith showed that an e�cient provable approach to solving mul-
tivariate Coppersmith problems is not possible. More accurately, he shows that
a method to �nd small solutions to modular equation ax2

1+ bx2− c ≡ 0 (mod p)
implies an e�cient solution to a NP-complete problem from number theory.

Despite this inherent limitation, there has been great progress in solving mul-
tivariate problems by considering non-polynomial-time subroutines and making
heuristic assumptions. For example, Gröbner basis computation has doubly ex-
ponential worst-case running time, but practical implementations are quite ef-
�cient. In line with previous work, our focus is also on developing a heuristic
approach which is well supported by practical experiments.

3 Ideals

In this section, we explore how shift polynomials can be represented as members
of an ideal in Z[x]. Prior work has also shown the connection between shift
polynomials and ideals [2], but we hope to elaborate on this in greater depth.

Ideals in a ring represent combinations of the ideal's generators F ⊂ Z[x]:

J = ⟨F⟩ = {
∑
i

aifi | ai ∈ Z[x], fi ∈ F}.
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This recalls the common shift polynomial strategy of multiplying input poly-
nomials by monomials: if f has a root modulo p, then xjf has the same root
modulo p. Indeed, if the generators of an ideal share a root modulo p, then so do
all the elements in the ideal. Addition and multiplication are de�ned for ideals:

J + J ′ = {f + f ′ | f ∈ J, f ′ ∈ J ′} J × J ′ = {
∑
i

fif
′
i | fi ∈ J, f ′

i ∈ J ′}.

Multiplication recalls the common shift polynomial strategy of multiplicities. If
N and f share a root modulo p, then N2, Nf , and f2 share a root modulo
p2, have multiplicity 2, and belong to the ideal ⟨N, f⟩2. Ideals of this form are
considered in [2]. If polynomials in J share a root modulo p and polynomials in
J ′ share the same root modulo p′, then polynomials in J + J ′ share the root
modulo gcd(p, p′), and polynomials in J × J ′ share the root modulo pp′.

In general, any sort of shift polynomial strategy that involves taking polyno-
mial combinations input polynomials can be represented as �nding members of
an ideal. This encompases all shift polynomial strategies we are aware of, includ-
ing the linear algebra�based strategy in [46,47,48], the exponent tricks in [25] or
the technique of unravelled linearization [19].

3.1 Unravelled linearization

In 2009, Herrmann and May proposed a novel technique for shift polynomial
selection called unravelled linearization [19]. In essence, they observed that in
the input relation f(x) = x2

1 − x2 + ax1 + b ≡ 0 (mod p), it helps to group
together (�linearize�) the terms (x2

1 − x2) 7→ u into a new bounded variable, so
g(x, u) = u+ax1+ b ≡ 0 (mod p). Next, they calculate polynomials of the form
gi,j = xj

1g
i, and �nally they back-substitute (�unravel�) x2

1 7→ u+ x2 into gi,j to
eliminate all monomials that are a multiple of x2

1. This decreases the resulting
lattice determinant and increases the power of the attack.

There is a simple way of representing unravelled linearization with ideals.
We introduce a new variable u and new polynomial ful(x1, x2, u) = x2

1 − u− x2.
Observe that g ∈ ⟨f, p, ful⟩ ⊂ Z[x, u] and g has a small root modulo p bounded
by (X1, X2, X

2
1 + X2). Furthermore, pk−igi,j ∈ ⟨f, p, ful⟩k, and the unravelling

of this polynomial is in ⟨f, p⟩k + ⟨ful⟩. If we have a monomial ordering where
u < x2

1, then reduction by ⟨ful⟩ corresponds to eliminating all monomials that are
a multiple of x2

1. We essentially perform unravelled linearization by augmenting
the multivariate Coppersmith problem with an additional polynomial ful ∈ F ′

with an integer constraint.

3.2 Determining the shift polynomial ideal

For constrained input polynomials F and desired root r, de�ne

Ĵpi
= ⟨{f ∈ F | f(r) ≡ 0 (mod pi)}⟩ and Ĵ∞ = ⟨{f ∈ F | f(r) = 0}⟩ .
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If all modular relations share the same modulus p, then we may select multiplicity
k and de�ne the ideal

Jk = Ĵk
p + Ĵ∞

which has the property that for f ∈ Jk, f(r) ≡ 0 (mod pk).
However, we also consider situations where the relations involve multiple

moduli. This includes moduli that are distinct RSA semiprimes [32] or di�erent
powers of an unknown divisor p [25]. Let P be the set of distinct moduli and
let Q be a set of pairwise coprime divisors of the pi. For the sake of notation,
we treat ∞ as a modulus and say everything divides ∞. Then for multiplicity

k ∈ Z|Q|
≥0 , we de�ne

Jk =
∑
e∈E

∏
i

Ĵei
pi

where Ek =

e ∈ Z|P |
≥0

∣∣∣∏
j

q
kj

j divides
∏
i

peii

 .

Observe that for all e ∈ E, f ∈∏i Ĵ
ei
pi
satis�es f(r) ≡ 0 (mod

∏
i p

ei
i ), so f ∈ Jk

satis�es f(r) ≡ 0 (mod
∏

j q
kj

j ). One can e�ciently compute Jk from smaller
multiplicities Jk′ using dynamic programming. Also note that this de�nition
agrees with the previous one for P = {p,∞} and Q = {p}.

4 Optimal shift polynomial selection

We can construct the ideal which contains all shift polynomials of a given multi-
plicity, but it remains an important question how to select the shift polynomials
for inclusion in the dual lattice. In this section, we provide a provably optimal
strategy that requires selecting a set of monomials in advance. While the main
focus of this paper is modular Coppersmith problems, we note that this strategy
applies equally well to integer Coppersmith problems.

The concept of constructing shift polynomials from a preselected set of mono-
mials is a common one. This framework was used by Jochemsz and May in
2006 [22], and more recently by Meers and Nowakowski in 2023 [33]. The auto-
mated method of Meers and Nowakowski involves taking input polynomials and
�nding some product of their leading monomials that divides each monomial in
the preselected set M. They claim that their method �nds the optimal set of
shift polynomials. We will show that, even for their example application, this is
not the case.

4.1 Gröbner bases over Euclidean domains

Our algorithm is based on the theory of Gröbner bases over pricipal ideal domains
and Euclidean domains. For our purposes, this is used to �nd Gröbner bases for
ideals in Z[x]. While there are some crucial di�erences compared to the more
familiar case of ideals in Q[x], many of the properties of Gröbner bases over
�elds have analogues in our setting.
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Gröbner bases have been used many times before in Coppersmith-like prob-
lems, but not in this setting. As discussed in section 2.5, Gröbner bases for
ideals in Q[x] are frequently used to �nd the small root following lattice reduc-
tion. Some more recent works replace this ring with Fp[x] and use the Chinese
remainder theorem to reconstruct the zero-dimensional variety [33,48,49]. Her-
rmann and May also used Gröbner bases in 2010 to �nd a nontrivial relationship
between unravelled linearization variables [20].

Gröbner bases are de�ned relative to a monomial ordering. There are many
di�erent valid orderings, but we typically use the weight order de�ned by the
bounds on the unknown variables. If small roots are bounded by |r| < X, then
we order monomials by <X , where m1 < m2 if m1(X) < m2(X). In case of ties,
we fall back to lexicographic order.2

The textbook of Becker and Weispfenning [3] describes an algorithm to �nd
what they call a D-Gröbner basis G of an ideal J ∈ R[x] where R is a principal
ideal domain. G is a �nite subset of J that generates the ideal. We rely on this
additional property of D-Gröbner bases, adapted from [3, Exercise 10.5].

Lemma 2 (Becker and Weispfenning). Let J ∈ R[x] be an ideal, and let G
be a D-Gröbner basis of J . Every nonzero f ∈ J is top-D-reducible modulo G.
That is, there exists g ∈ G where LT(g)|LT(f).

Further, we use the fact that if R is a Euclidean domain, a polynomial f has
a unique normal form f ′ with respect to Gröbner basis G [3, Theorem 10.23].
f − f ′ ∈ ⟨G⟩ and all terms in f ′ are irreducible by G.

To illustrate the di�erence between Gröbner bases and D-Gröbner bases,
consider the polynomials f1(x) = 10 and f2(x) = 3x2 + 7. The ideal ⟨f1, f2⟩ ∈
Q[x] is trivial, because 1

10f1 = 1 is in the ideal, so the Gröbner basis is simply {1}.
However, since 10 is not invertible in Z, the D-Gröbner basis of ideal ⟨f1, f2⟩ ∈
Z[x] is {x2+9, 10}. We note that x2+9 ≡ 3−1(3x2+7) (mod 10), so the process
of computing the D-Gröbner basis was able to implicitly do arithmetic modulo
10 in order to make one of the polynomials monic. The lemma from Becker and
Weispfenning then states that the leading term of any polynomial in the ideal is
divisible by either x2 or 10. If we have a Coppersmith ideal of the form ⟨N, f⟩ for
monic quadratic f and known modulus N , this aligns with common choices of
shift polynomials {N,Nx, f, fx}. However, the power of D-Gröbner basis to �nd
shift polynomials is much greater, as is demonstrated by the following algorithm.

4.2 Finding shift polynomials based on monomials

Our method for �nding the optimal shift polynomials within an ideal is given in
Algorithm 1. We call attention to two important steps in this algorithm. First,
in line 1 we compute the �nite set of monomials M with the property that if

2 We take advantage of this tie-breaking when using unravelled linearization. If we are
using the unravelled linearization u = x2

1−x2, as in Section 3.1, and set the weights
to (logX1, logX2, 2 logX1), then the tie-breaking of lexicographic order leads to
u < x2

1 as desired.
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Algorithm 1: OptimalShiftPolys

Input : Ideal J , monomial setM, monomial ordering <
Output: Shift polynomials S

1 M← �nite superset ofM s.t. all monomials appearing in S belong toM.
2 G← D-Gröbner basis of (J,<)

3 S ← {}
4 for m ∈M do

5 T ← {g ∈ G | LM(g) divides m}
6 if T ̸= ∅ then
7 g ← argming∈T |LC(g)|
8 h← g m

LM(g)
// Ensure LM(h) = m

9 h′ ← LT(h) + normal_formG(h− LT(h))

10 S ← S ∪ {h′}
11 Find the linear subspace of span(S) where all coe�cients of m ∈M\M are 0
12 S ← basis of this subspace
13 return S

f is in normal form and LM(f) ∈ M, then all monomials in f are in M. This
seems complicated, but if < is a weighted monomial ordering, thenM can simply
be the �nite set of monomials ≤ max< M. Second, the operation on line 11 is
done by interpreting span(S) as a vector space of coe�cients over Z and using
standard row operations on the basis to zero out desired coe�cients. In practice,
both of these steps are often skipped because M = M, but we include them
here for completeness.

Additionally, the computation of the normal form on line 9 is not strictly
necessary for this section, but it is important for Section 5. In the context of
our full approach to solving Coppersmith-style problems, this normalization step
also has the e�ect of ensuring the dual lattice basis is size-reduced before lattice
reduction.

4.3 Optimality of the algorithm

We claim that Algorithm 1 is optimal for a given choice of monomials, but we
must de�ne our notion of optimality. In essence, the selection of shift polynomials
must perform at least as well as any other choice. Speci�cally, if the process of
building a basis for the dual lattice, reducing the basis, and �nding suitably short
vectors is guaranteed to succeed for one choice of shift polynomials, it should
succeed for the optimal choice of shift polynomials as well. We use a combination
of properties of both lattices and Gröbner bases to prove that the optimal set
of shift polynomials for a given set of monomials is unique (up to unimodular
transformations) and is found by our algorithm.

For a particular ideal J and choice of monomials M, the dual lattice con-
struction speci�es a natural embedding φ : J → Z|M| that converts shift poly-
nomials to scaled integer coe�cient vectors. When the nonzero terms of f only
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involve monomials in M (f is �de�ned over� M), the mapping φ is invertible.
Furthermore, φ is additively homomorphic: φ(f + g) = φ(f) + φ(g), so adding
together polynomials in the ideal corresponds to adding together vectors in a
lattice. When the shift polynomials are de�ned over M, the dual lattice ΛS is
the span of vectors {φ(f) | f ∈ S}.

If we consider two sets of shift polynomials (S1 and S2), the set-union of shift
polynomial sets corresponds to the lattice-union of dual lattices:

ΛS1∪S2
= ΛS1

∪ ΛS2
.

Thus ΛS1
is a sublattice of ΛS1∪S2

, informing the following de�nition.

De�nition 2 (Optimal Dual Lattice). Let J ⊂ Z[x] be an ideal, and M a set
of monomials. Any subset S ⊂ J of shift polynomials de�ned over M de�nes a
dual lattice ΛS . The optimal dual lattice Λ∗ for M has the property that Λ∗ ⊃ ΛS
over all valid choices of S.

Lemma 3. The optimal dual lattice is unique.

Proof. Consider two optimal lattices ΛS1 and ΛS2 . S1 ∪ S2 ⊂ J is de�ned over
M, so ΛS1

⊂ ΛS1∪S2
⊂ ΛS1

by lattice union and optimality of ΛS1
. Thus ΛS1

=
ΛS1∪S2

. The same is true of ΛS2
, so therefore ΛS1

= ΛS2
.

The de�nition of optimality based on sublattices is also useful for bounding
the length of vectors found by lattice reduction. We recall from section 2.4 that
reduced basis vectors can be bounded by the successive minima λi of a lattice.

Lemma 4. For all S de�ned over M, the optimal dual lattice Λ∗ for M satis�es

λi(Λ
∗) ≤ λi(ΛS) for 1 ≤ i ≤ rank(ΛS).

Proof. Since ΛS ⊂ Λ∗, any ball that contains i linearly independent vectors in
ΛS also contains the same in Λ∗.

For full-rank dual lattices, as are typically considered in modular Copper-
smith problems, this means that the strongest bounds on reduced vector lenghs
are obtained by considering the optimal lattice. Finally, we arrive at the main
result of this section.

Theorem 1. Let S be the shift polynomials returned by Algorithm 1 for ideal
J , monomial set M and monomial ordering <. Then {φ(f) | f ∈ S} is a basis
for the optimal lattice.

Proof. The elements of S are Z-linearly independent, so if ΛS is optimal, then S
de�nes a basis. It su�ces to show that for all possible shift polynomial sets S ′,
ΛS′ ⊂ ΛS . Let v ∈ ΛS′ be a vector, and let f = φ−1(v) ∈ J be the polynomial
whose embedding into the dual lattice is v. By the homomorphic property of φ,
if f is in the integer linear span of S, then v ∈ ΛS , proving ΛS′ ⊂ ΛS .
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f is de�ned over M, so f ∈ span(S) if f ∈ span(S). We will iteratively
subtract integer multiples of elements of S until f = 0. Since S ⊂ J , f ∈ J after
each subtraction. First, if f = 0, then we are done. If f ̸= 0, then let m = LM(f)
and let T, g, h, h′ be the corresponding values in Algorithm 1. T is nonempty by
Lemma 2.

Since LM(h′) = m and h′ ∈ S, subtract an integer multiple of h′ from f so
the coe�cient of m in f is in {0, 1, . . . , |LC(h′)|−1}. Note that LC(h′) = LC(g).
Assume that that this coe�cient is nonzero. Since f ∈ J , Lemma 2 shows there
exists ĝ ∈ G where LT(ĝ)|LT(f). LM(ĝ)|LM(f) and LM(f) = m, so ĝ ∈ T , but
LC(ĝ)|LC(f) ⇒ |LC(ĝ)| ≤ |LC(g)|−1, contradicting the minimality of |LC(g)|
in T . Thus the coe�cient of m in f is zero, and we have eliminated the leading
term. Repeat until f = 0.

4.4 Bene�ts of our approach

We compare our strategy to that of Meers and Nowakowski [33]. To solve the
Commutative Isogeny Hidden Number Problem for CSURF key exchange, they
consider a system of two polynomials modulo prime N with known c.

f = (c1 + x1)
2 + 12(c1 + x1)− 4(c1 + x1)(c2 + x2)

2 − 8(c2 + x2)
2 + 36

g = (c3 + x3)
2 + 12(c3 + x3)− 4(c3 + x3)(c1 + x1)

2 − 8(c1 + x1)
2 + 36

Meers and Nowakoswki's strategy for multiplicity 2 �rst builds a set M of 33
monomials, then it �nds a set of �optimal� shift polynomials by considering
products of LM(f) and LM(g) that multiply to elements in M. However, their
algorithm is sensitive to the choice of monomial order. Using lexicographic or-
der x3 < x2 < x1 results in a lattice with determinant X49

1 X30
2 X27

3 N54, but
lexicographic order x2 < x1 < x3 results in improved determinant proportional
to N52. Degree lexicographic order gives N53. Their de�nition of optimality im-
plicitly requires �xing a monomial order, and choosing incorrectly leads to worse
performance in practice.

Our de�nition of optimality is independent of monomial order. Algorithm 1
�nds the optimal lattice for shift polynomial ideal ⟨N, f, g⟩2 has determinant
proportional to N51; this improvement is possible because the Gröbner basis
calculation �nds nontrivial polynomial combinations of f and g. For example,
degree lexicographic order gives LM(f) = x1x

2
2 and LM(g) = x2

1x3. For mono-
mial m = x2

2x
2
3, Algorithm 2 in [33] checks that neither LM(f) nor LM(g) divide

m, and it returns the �optimal� shift polynomial N2x2
2x

3
3. Using the Gröbner

basis, we �nd a shift polynomial with leading term Nx2
2x

3
3:

(−x1x3 + (−c3 − 2)x1 + (−c1 + 2)x3)Nf + (x2
2 − 4−1x1 + 2c2x2)Ng.

This shift polynomial decreases the lattice determinant and contributes to the
optimal lattice construction.
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5 Monomial selection

Section 4 describes how to select shift polynomials within an ideal based on a set
M of monomials, but it does not explain how to pickM. This matters, because if
M is too small, suitably short vectors may not exist in the optimal dual lattice,
and if M is too large, LLL reduction may not �nd the short vectors that do
exist. In this section, we describe a monomial set Mbig that is provably large
enough, and we describe a heuristic method to �nd a small subset Msub ⊂ Mbig

with useful bounds on the shortest vector.
Our methods assume that multiple N of modulus p is known. We have p ≤ N ,

and in some cases, an even tighter upper bound P on p may be known. This
setting has the nice property that Algorithm 1 outputs shift polynomials S that
are (M, <)-suitable.

De�nition 3 ([33]). Given monomial set M and monomial ordering <, a set
of shift polynomials S is (M, <)-suitable if every f ∈ S is de�ned over M, and
for each m ∈ M, there is a unique f ∈ S with LM(f) = m.

Since N ≡ 0 (mod p), N ∈ J and Lemma 2 guarantees that the D-Gröbner
basis of J includes a polynomial with leading monomial 1. Thus T in Algorithm 1
is always nonempty, and S is by construction (M, <)-suitable. The correspond-
ing span of S is full rank, so the projection of the linear subspace is also full rank,
and there exists a triangular basis S of this subspace that is (M, <)-suitable.

5.1 Provably good monomial selection

(M, <)-suitability allows us to construct triangular lattice bases, and the Gram-
Schmit norm ∥b∗∥ of a particular row in the basis is given by diagonal element
LT(f)(X) of the corresponding f ∈ S. This property allows us to prove the
following.

Lemma 5. Let M be any monomial set. We are given bounds X and ideal J in
which all polynomials share a root modulo p. An upper bound P ≥ p is known.
De�ne

Mbig = {m | m(X) < P}.
Let Λ be the optimal dual lattice of M and J . If v ∈ Λ satis�es the bound

of Håstad/Howgrave-Graham, then the corresponding polynomial is de�ned over
M∩Mbig.

Proof. Let B be the triangular basis of Λ found by Algorithm 1 with monomial
ordering <X and v ∈ Λ satisfying the HHG bound. Let g = φ−1(x) be the
corresponding polynomial. Assume g is not de�ned over M ∩ Mbig, and let
m be the largest monomial in M \ Mbig with nonzero coe�cient. The row
in B corresponding to leading monomial m has Gram-Schmidt norm ∥b∗m∥ ≥
m(X) ≥ P ≥ p, so because v is an integer linear combination of rows of B and
the coe�cient of m in g is nonzero, v includes at least one copy of bm. Thus
∥v∥ ≥ ∥b∗m∥, contradicting the claim that v satis�es the HHG bound.
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In other words, it is unhelpful to consider any monomials not inMbig; this set
is �big enough� to guarantee that the optimal dual lattice includes all su�ciently
short vectors for a particular ideal (if any exist at all). Running Algorithm 1 on
Mbig therefore automatically produces optimal shift polynomials and a corre-
sponding Coppersmith lattice, eliminating the need for hand-crafted strategies.

Depending on bounds X and P , the set Mbig, and therefore the lattice
rank, may be large. While modern lattice reduction algorithms [39] are often
capable of reducing large lattices in practice, the large rank is computationally
expensive and the lattice bounds may not guarantee that short vectors are found.
To improve our choice of monomials further, we must examine the sublattice
structure of optimal Coppersmith lattices.

5.2 Sublattice structure

Coppersmith lattices have a rich sublattice structure. This sublattice structure
leads to one of the major open questions of prior research: Coppersmith's method
often far outperforms expectations, �nding lattice vectors signi�cantly shorter
than the determinant bound predicts. These unexpectedly short vectors belong
to dense sublattices, or sublattices Λsub ⊂ Λ where

det(Λsub)
1/ rank(Λsub) < det(Λ)1/ rank(Λ),

so understanding the sublattice structure has two bene�ts. First, it helps us close
the gap between theoretical performance of Coppersmith's method and exper-
imental results. Second, if we directly construct a su�ciently dense sublattice
of the optimal Coppersmith lattice, the decreased rank leads to faster lattice
reduction and improved practical performance.

There are limits to this approach. For example, some of the sublattice struc-
ture is due to the existence of a small modular root, and a direct construction of
these sublattices would imply a more e�cient solution to Coppersmith problems
that does not involve lattice reduction. As described in Section 2.5, a small mod-
ular root directly implies the existence of a small vector in the primal lattice.
When the root is small enough to be found by lattice reduction, it belongs to
a dense sublattice of rank 1 in the primal lattice. By duality [35], this implies
the existence of a dense sublattice of rank |S| − 1 in the dual lattice. Although
knowledge of this sublattice does not lead to a more e�cient construction, it
does explain the gap between theoretical predictions and practical performance
in works such as [19].

Additionally, the structure of the shift polynomial ideal can also explain some
of the sublattice structure. If the optimal dual lattice for ideal J includes dense
sublattices (such as due to the existence of a small modular root), then there is a
polynomial g ∈ J with unexpectedly small coe�cients. The polynomial g2 ∈ J2

will also have small coe�cients, implying the existence of dense sublattices in
the optimal dual lattice for ideal J2. These complex dense sublattices are hard
to analyze, but easy to avoid in practice: simply use as small a multiplicity as
possible. This sublattice structure explains the gap between theory in practice
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in works such as [12], particularly the entries in Table 1 which report an LLL
factor ≈ 0.5.

While some of the sublattice structure is explained by the existence of a
small modular root or exacerbated by the choice of shift polynomial ideal, it is
not enough to fully explain the gap between theory and practice; much of the
sublattice structure actually depends on the coe�cient values of the shift poly-
nomials. Fortunately, there is a straightforward way to investigate the remaining
sublattice structure. First, replace the modulus p of a Coppersmith instance with
a prime p′ of the same size. This is to destroy any sublattice structure caused by
small modular roots, as a root modulo p is no longer a root modulo p′. Second,
build the optimal dual lattice for Mbig and reduce. Lattice reduction �nds vec-
tors that approximate the lattice minima, so the shortest vectors of the output
basis span a dense sublattice. Although this is an a posteriori construction of a
dense sublattice basis, we can examine this sublattice (by computing its Hermite
Normal Form) for clues about performing a priori construction.

We have done this, and we �nd that there are two predominant explanations
for sublattice structure due to the coe�cient values of the shift polynomials.

5.3 Sparse polynomials and graph search

The use of normal forms relative to a Gröbner basis in line 9 of Algorithm 1
typically results in sparse shift polynomials. This means that many of the entries
in the dual lattice basis are 0, and we can often use this sparsity to �nd dense
sublattices. For example, consider the dual bases for S = {N,Nx, x2 + a} and
Ssub = {N, x2 + a}:

B =

N 0 0
0 NX 0
a 0 X2

 Bsub =

(
N 0 0
a 0 X2

)

Basis B has determinant N2X3 and rank 3. Because of the sparsity of polynomi-
als in Ssub, observe that the second column of Bsub is always zero (and thus can
be eliminated without a�ecting the lattice vector lengths). This makes it easy
to compute that the lattice spanned by Bsub has determinant NX2 and rank 2.
Since (NX2)1/2 < (N2X3)1/3, this is a dense sublattice.

While the sublattice is easy to identify in this toy example, the problem
becomes more di�cult when S contains hundreds or thousands of sparse poly-
nomials. We must search over all possible subsets of S, consider subsets that
contain all-zero columns in the corresponding basis matrix (so the determinant
is easy to compute), and compare the density of the sublattice to the density
of the original lattice. The main contribution of this section is a method based
on graph optimization algorithms that performs these steps, automatically and
e�ciently identifying these dense sublattices.

The requirement for all-zero columns is related to shift polynomial suitability.
If S is (M, <)-suitable, and Ssub ⊂ S is (Msub, <)-suitable, then this means
Ssub is de�ned over Msub, and the columns corresponding to monomials M \
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Msub are necessarily all zero. Recall that a (M, <)-suitable S has determinant
det(ΛS) =

∏
f∈S LT(f)(X) and rank S. Our algorithm involves a directed graph

that encodes information about shift polynomial suitability.
The directed graph represents dependencies between monomials in polyno-

mials in S. Given a (M, <)-suitable set of shift polynomials S, we de�ne a graph
G with vertices M and directed edges (m1,m2) if m1 ̸= m2 and ∃f ∈ S with
LM(f) = m1 and the coe�cient of m2 in f is nonzero. Once again, consider the
({1, x, x2}, <)-suitable S = {N,Nx, x2 + a}. The corresponding graph follows.

1 x x2

Directed edges denote dependencies for (Msub, <)-suitable subsets Ssub ⊂ S.
If x2 ∈ Msub, then x2 + a ∈ Ssub, implying 1 ∈ Msub. Indeed, {N, x2 + a} is
a ({1, x2}, <)-suitable set. Finding a suitable subset is therefore equivalent to
�nding a subgraph where there are no edges leading out of the subgraph (so
there are no unmet dependencies). This is called a closure.

De�nition 4 (Graph Closure). Let G = (V,E) be a directed graph. V ′ ⊂ V is
a closure if there exists no directed edge (v1, v2) ∈ E with v1 ∈ V ′ and v2 ∈ V \V ′.

Picard [38] studied the problem of �nding a closure of maximum total weight
in a vertex-weighted directed graph. He proposed an algorithm which e�ciently
�nds the maximal closure by reducing the problem to an equivalent maximal �ow
problem and solving with the Ford-Fulkerson algorithm. We will use Picard's al-
gorithm as a subroutine to �nd a (Msub, <)-suitable proper subset Ssub ⊊ S
with better determinant bounds if one exists. This process is documented in Al-
gorithm 2. Intuitively, we want to �nd subsets with small determinant, or min-
imize the product

∏
f∈Ssub

LT(f)(X). If we weight vertices by − log LT(f)(X),

then we search for closures which maximize the sum of weights.3

Theorem 2. Algorithm 2 is correct. On inputX,M,S, it returns proper, nonempty
subset Msub and corresponding (Msub, <)-suitable Ssub ⊊ S where

det(ΛSsub)
1/|Ssub| < det(ΛS)

1/|S|

if such a proper subset exists, otherwise it returns ⊥.
Proof. Observe that any closure of G corresponds to a suitable subset of S. Con-
sider closuresM′ = ∅ andM′ = M; these closures have weight

∑
m∈M′ wm = 0.

Note that for closure M′ and corresponding S ′ ⊂ S,

det(ΛS′)1/|S
′| < det(ΛS)

1/|S| ⇔
∏
f∈S′

LT(f)(X) <
∏
f∈S

LT(f)(X)|S
′|/|S|

⇔
∑
f∈S′

log2 LT(f)(X) <
|S ′|
|S|

∑
g∈S

log2(LT(g)(X)) ⇔ 0 <
∑

m∈M′

wm.

3 We actually seek to �nd small det(ΛSsub)
1/|Ssub|, which requires di�erent weights.
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Algorithm 2: SuitableSubset

Input : Bounds X, monomial setM and (M, <)-suitable S
Output:Msub ⊊M and (Msub, <)-suitable Ssub ⊊ S with better

determinant bounds if one exists, else ⊥
1 E ← {(m1,m2) | ∃f ∈ S with LM(f) = m1 and m2 ̸= m1 is a monomial in f}
2 Construct directed graph G ← (M, E)
3 for fm ∈ S with LM(fm) = m do

// Set weight of vertex m ∈M
4 wm ← − log2(LT(fm)(X)) + 1

|S|
∑

g∈S log2(LT(g)(X))

5 Msub ← maximal closure of G with weights {wm}m∈M
6 if

∑
m∈Msub

wm = 0 then

7 return ⊥
8 else

9 Ssub ← {f ∈ S | LM(f) ∈Msub}
10 returnMsub,Ssub

That is, if a proper nonempty subset M′ exists with improved determinant
bounds, then the maximal closure has positive weight. Picard's algorithm �nds
the maximal closure, which corresponds to a proper nonempty subset Msub.
If no such proper nonempty subset exists, then the maximal closure has total
weight 0, and Algorithm 2 returns ⊥.

To obtain Mheur, we begin with Mbig. We �nd that inclusion of f ∈ J∞
in S leads to spurious short vectors that fail to satisfy Heuristic 1, so we set
M′ = Mbig \ LM(J∞), which is easily computed from the Gröbner basis of J∞.
Next, we iteratively apply Algorithm 2 to M′ until no more proper subsets are
found. This �nal set is Mheur.

5.4 Small coe�cients in shift polynomials

In many cases, the graph-based process in Section 5.3 works surprisingly well in
practice, but there are some cases where it fails. In particular, shift polynomials
with small, non-zero coe�cients may lead to dense sublattices. Consider the
lattice bases for S = {N,Nx, x2 − x+ a} and Ssub = {N, x2 − x+ a}:

B =

N 0 0
0 NX 0
a −X X2

 Bsub =

(
N 0 0
a −X X2

)

We can no longer eliminate a column of Bsub, so the determinant calculation
is more involved, and the graph-based search fails to �nd this sublattice. In
these situations, it is often helpful to perform unraveled linearization. For this
example, we may introduce a new variable u = x2 −x with bound U = X2 +X.
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The lattice bases for S ′ = {N,Nx, u+ a} and S ′
sub = {N, u+ a} are then

B′ =

N 0 0
0 NX 0
a 0 U

 B′
sub =

(
N 0 0
a 0 U

)

and the graph-based search is expected to succeed.

6 Asymptotically fast use of precomputation

The monomial selection strategies in Section 5 are powerful and e�ective, but
the cost of Gröbner basis computation becomes increasingly expensive as the
multiplicity grows. This can become problematic in practice due to longer run-
ning times, but it also makes it challenging to analyze the asymptotic behavior
of Coppersmith's method. To remedy this, we propose a strategy based on sym-
bolic precomputation of a set of shift polynomials. To extend this precomputed
set to higher multipliicties, we replace the costly Gröbner basis computations
with polynomial-time operations on polynomially sized sets. Our construction
appears to satisfy a heuristic assumption by [33], enabling us to use their polyno-
mial interpolation strategy to heuristically determine the asymptotic behavior of
our precomputation strategy. As a result, we obtain a shift polynomial strategy
that is fast in practice while simultaneously enabling machine-generated proofs
of asymptotic Coppersmith behavior.

6.1 Symbolic representation of shift polynomials

The algorithms of Section 4 and Section 5 can be performed symbolically when
there is a single modulus p. We use variables c to represent the coe�cients which
are known during an attack, but unknown in advance, and work in the fraction
�eld of the polynomial ring Q[c], which we denote by Kc. We use variable N
to represent the multiple of modulus p, and we specify input relations by the
polynomial ring Kc[N,x]. We build ideals, calculate Gröbner bases, and run
Algorithm 1 in this polynomial ring.

For example, consider the problem of factoring RSA modulus N = pq when
the least signi�cant bits of p are known [34]. N is a known multiple of p, and we
may use relation f(N, x) = c1x+ c2 where x represents the most signi�cant bits,
c1 is a power of two, and c2 represents the known least signi�cant bits. Members
of the ideal J = ⟨N, f⟩ ⊂ Kc[N, x] share a root modulo p, and the Gröbner basis
of J2 is {

N2, Nx+
c2
c1

N, x2 +
2c2
c1

x+
c22
c21

}
.

Therefore, by specifying the symbolic input relations, a desired multiplicity
kpre, and a set of monomials, Algorithm 1 returns a symbolic representation of
the shift polynomials S1. If J∞ is present, we also compute a symbolic represen-
tation of its Gröbner basis. During an attack, once the values of coe�cients c are

19



known, they may be substituted into the precomputed S. Division in fraction
�eld Kc is replaced by inversion modulo Nkpre , so this substitution requires that
the denominators in S are coprime to N . In our example, c1 is a power of two,
which is coprime to the RSA modulus N .

6.2 Extending to higher multiplicities

After substituting in the known coe�cients, we have shift polynomials S1 which
share a root modulo p and belong to an ideal J ⊂ Z[x]. We use S1 to compute
shift polynomials with higher multiplicities to avoid calculating the Gröbner
basis of Jk + J∞ during the attack itself.

Given a desired multiplicity k and parameter t ∈ Zℓ
≥0, we have a three step

process to compute shift polynomials Sk,t,ul ⊂ Jk + J∞. We rely on a �ltration
operation Φ, where if multiple shift polynomials share a leading monomial, we
keep the one with the smallest leading coe�cient:

Φ(S) =
{
argminf∈S,LM(f)=m|LC(f)| | m ∈ LM(S)

}
Computing polynomials in Jk. We recursively construct

Sk = Φ ({ff ′ | (f, f ′) ∈ S1 × Sk−1}) .

This set grows similarly to the monomial sets from Jochemsz and May [22] and
Meers and Nowakowski [33], which consider terms in fk and

∏
i f

k
i respectively.

Computing x-shifts in Jk. In some cases, the bound Xi is small, so it is
bene�cial to include extra monomials involving xi. Using t, we compute

Sk,t = Φ

(
Sk ∪

{
ℓ∏

i=1

xei
i f | f ∈ Sk, 0 ≤ ei ≤ ti∀i ∈ {1, . . . , ℓ}

})
.

This is like the extended strategy in [22] and the y-shifts of Boneh and Durfee [7].

Unravelling into Jk+J∞. As described in Section 5.3, it is empirically helpful
to exclude monomials in LM(J∞) when using unravelled linearization.

Sk,t,ul =
{
normal_formGB(J∞)(f) | f ∈ Sk,t,LM(f) /∈ LM(J∞)

}
.

For this strategy to be e�cient, |Sk,t,ul| cannot grow too quickly, but a naïve
bound on |Sk| ≤ |S1|k is exponential in k. One goal of this section is to show
that for the proper choice of M, the bound is actually polynomial.

6.3 Specifying monomials for precomputation

In order to use Algorithm 1 to �nd a symbolic representation of shift polyno-
mials S1, we must specify a set of monomials M1. Our choice of representation
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is related to the theory of Newton polytopes, which have previously been used
to analyze the asymptotic behavior of Coppersmith's method. To our knowl-
edge, they were �rst used by Blömer and May in 2005 [6] to analyze bivariate
integer Coppersmith problems, and recently Feng, Nitaj, and Pan [17] used sum-
sets theory to connect optimal Coppersmith bounds to the volume of a Newton
polytope.4

Every monomial
∏ℓ

i=1 x
ei
i maps to an integer point (e1, . . . , eℓ) in ℓ-dimensional

space, and our de�nitions implicitly make use of this bijection. The Newton poly-
tope Pf of a polynomial f is the convex hull of its monomials. By convexity, if
Pf and Pg are the Newton polytopes of polynomials f and g, then Minkowski
sum Pf +Pg is the Newton polytope of product fg. We specify M1 using convex
polytopes as well, and a set Mvert of monomials representing the integer vertices
of the polytope P1 = ConvexHull(Mvert):

M1 =

{
ℓ∏

i=1

xei
i

∣∣∣e is an integer point in P1

}
.

Since a multiple of the modulus is known, S1 is (M1, <)-suitable, and the
leading monomials in S1 correspond one-to-one with monomials in M1, which
correspond one-to-one with integer points in a polytope. The sets Sk,Sk,t, and
Sk,t,ul also correspond to polytopes Pk,Pk,t, and Pk,t,ul.

� If P1 and Pk−1 are polytopes corresponding to S1 and Sk−1, then Pk =
P1 + Pk−1 corresponds to Sk. This follows from the properties of Netwon
polytopes and the convexity of P1. By induction, Pk = kP1, a scaled version
(dilation) of P1.

� If Pk corresponds to Sk, then Pk,t is the union of translations of Pk. The
maximum translation in each dimension is ti.

� LM(J∞) corresponds to a union of cones, so Pk,t,ul is the (nonconvex) poly-
tope of Pk,t minus the cones.

These polytopes are depicted in Figure 1.

6.4 Computing lattice properties with polytopes

The dimension of the Coppersmith lattice for a (M, <)-suitable set S is given
by |M|, which happens to be the number of integer points in the polytope:

dimΛS = #(P ∩ Zℓ).

4 An October, 2024 revision of their work introduces a polytope-based shift polynomial
strategy, and introduces the same foundational results of Ehrhart, Brion and Vergne
as in the proof of our Lemma 6. While this section references the prior revision of
Feng et al.'s work, we call attention to this new overlap with results in concurrent
work. However, we note that Feng et al.'s new strategy uses input polynomials to
de�ne a convex polytope, then selects shift polynomials based on dilations of the
polytope. Our strategy is more general and uses a convex polytope to specify shift
polynomials, then directly constructs shift polynomials of higher multiplicity.
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Fig. 1: Polytopes corresponding to our shift polynomial sets. Polytope
P1 is de�ned by vertices Mvert = {1, x3

1, x
3
1x2, x1x

2
2, x

2
2}, and J∞ = ⟨x2

1x2 − x1⟩.
These correspond to the monomials that appear in S1, S2, S2,(0,1), and S2,(0,1),ul.
Polytope P2 is P1 scaled by 2. Polytope P2,(0,1) is P2 along with monomials from
x2 shifts. P2,(0,1),ul eliminates all monomials that are multiples of x2

1x2.

Similarly, the contributions of logXi to the log-determinant can also be expressed
using the polytope:

log
∏

m∈M
m(X) =

∑
xe∈M

ℓ∑
i=1

ei logXi =

ℓ∑
i=1

(∑
e∈P

ei

)
logXi.

As in prior work, we introduce functions sdim, {sxi
}1≤i≤ℓ, and {sCj

}Cj∈LC(S1)

to represent certain terms in the dimension and log-determinant expressions for
the lattice corresponding to Sk,t,ul:

dimΛSk,t,ul
= sdim(k, t)

log detΛSk,t,ul
=

ℓ∑
i=1

sxi
(k, t) logXi +

∑
Cj∈LC(S1)

sCj
(k, t) logCj .

It is clear that sdim and sxi
are weighted sums over integer points in polytopes.

This connection to polytopes allows us to tap into the rich �eld of Ehrhart
theory. A foundational result of the �eld states that the number of integer points
in a k-dilation of a polytope is described by its Ehrhart polynomial. As a result,
we may use Ehrhart theory to bound the complexity of our precomputation strat-
egy. We refer to the introduction of [10] for background on Ehrhart polynomials
and the theorems we cite in this proof.

Lemma 6. Let P1 and S1 be a convex polytope and shift polynomial set as
previously de�ned. Then |Sk| is polynomial in k. Additionally, if J∞ = {0} and
we �x t = 0, then sdim(k,0) and sxi

(k,0) are both polynomial in k with degrees
dimP1 and dimP1 + 1 respectively.

Proof. Because Pk is a k-dilation of P1, |Sk| = #(kP ∩ Zℓ). Thus |Sk| is de-
scribed by the Ehrhart polynomial [15] of P1, which has degree dimP1 ≤ ℓ (the
dimension of the polytope is unrelated to the dimension of the lattice). Since
Sk,t,ul = Sk,t = Sk, sdim(k,0) = |Sk| is polynomial in k.
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We have sxi
(k,0) =

∑
e∈kP ei, which is a sum over integer points in a dilated

polytope, weighted by a homogenous polynomial of degree 1. A result of Brion
and Vergne [9] proves that sxi is a polynomial of degree dimP + 1.

Since |Sk| is polynomial in k, it's simple to prove that |Sk,t| ≤ (max t)ℓ|Sk|
is bounded by a polynomial in k and t, and |Sk,t,ul| is also asymptotically poly-
nomial. This means that Sk,t,ul can be constructed in polynomial time. How-
ever, to analyze the asymptotic behavior further, we need to rely on a heuris-
tic assumption. This assumption is essentially the same as that by Meers and
Nowakowski [33], is well supported by experiment, and was recently partially
justi�ed in theory by Feng, Nitaj, and Pan [17].

Heuristic 2 Let S1 represent a convex polytope, and let Sk,t,ul be as previously
de�ned. Then if Sk,t,ul is suitable, the functions sdim, sxi

, and sCj
which de�ne

the lattice dimension and determinant are polynomials in both k and t and have
maximum total degree ℓ+ 1.

As an example of these polynomials, consider the polytope in Figure 1. We
have that |S1,(0,0)| = 10, |S2,(0,0)| = 29, and |S2,(0,1)| = 36. This is satis�ed by

|Sk,t| = 5k2 + 2kt1 + 3kt2 + t1t2 + 4k + t1 + t2 + 1.

Similarly, sdim(k, t1, t2) = |Sk,t,ul| = 7k+t1+2t2+1 agrees with |S2,(0,1),ul| = 17.

6.5 Asymptotic behavior

Meers and Nowakowski used their heuristic assumption to analyze asymptotic
behavior as k → ∞. We do the same here. The following lemma describes the
bounds X for which a Coppersmith problem is solvable, if we can take p to be
arbitrarily large.

Lemma 7. For a particular multivariate Coppersmith problem, assume each
bound Xi is parametrized by constants ai and bi and variable δ:

logXi = (ai + biδ) log p.

Given a precomputed shift polynomial set S1 with shared root modulo p, let sdim,
sxi , and sCj represent the functions describing the parametrized lattice dimen-
sion and determinant. Assume Heuristics 1 and 2 hold, and assume the leading
coe�cients in S are proportional to p. For su�ciently large p and any τ ≥ 0,
the Coppersmith problem is solvable for δ < δ∗ − ϵ where δ∗ =

lim
k→∞

ksdim(k, kτ )−
∑ℓ

i=1 aisxi(k, kτ )−
∑

Cj∈LC(S1)
sCj

(k, kτ ) logp Cj∑ℓ
i=1 bisxi(k, kτ )

(3)

In particular, for multiplicity k we require

log p = ω

(
sdim(k, kτ )

2∑ℓ
i=1 bisxi

(k, kτ )

)
.

Excluding the �nal root recovery step, this takes time polynomial in ϵ−1.
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Proof. Equation 3 sets t = kτ and combines Heuristic 2 with heuristic inequal-
ity 1. Since the limit converges polynomially quickly, we may take k = Θ(ϵ−1)
and log p = Θ(poly(k)). By Lemma 6, Sk,t,ul can be computed in polynomial
time. The lattice dimension and entry lengths are polynomial in k, so shift poly-
nomial construction and lattice reduction take polynomial time.

6.6 Precomputing symbolic asymptotic bounds

We combine all ideas in this section into Algorithm 3, which symbolically deter-
mines asymptotic bounds for a given multivariate Coppersmith problem. We use
Section 6.1 to compute a symbolic ideal, Section 6.3 to �nd M1, Algorithm 1
to �nd S1, Section 6.2 to �nd symbolic lattice constructions, interpolation to
determine sdim and the other polynomials, and Lemma 7 to �nd asymptotic
bounds.

Algorithm 3: Compute asymptotic bounds for a multivariate Copper-
smith problem

Input : F ,X,kpre,Mvert,Xguess

Output: Asymptotic bounds X
1 Symbolically precompute ideals J∞ and J with multiplicity kpre

2 M← integer points in convex hull ofMvert

3 S ← OptShiftPolys(J,M, <Xguess)
4 Compute Sk,t,ul for various (k, t)
5 Use polynomial interpolation to recover sdim, {sxi}1≤i≤ℓ, and {sCj}Cj∈LC(S)

6 Substitute t = kτ into bound 3 and consider asymptotic behavior as k →∞
7 δ ← Maximize the bound over τ
8 return (τ , δ)

This algorithm, which adapts our methods to the approach of Meers and
Nowakowski [33], allows one to compute asymptotic Coppersmith bounds in a
fully automated way. While this approach still requires careful choice of Mvert,
we believe that it greatly simpli�es the process of proving and verifying asymp-
totic bounds for multivariate Coppersmith problems.

7 Experiments

We compared the performance of our algorithms to over a dozen di�erent ap-
plications of Coppersmith's method, and we report the results in Table 1. Since
there are tradeo�s between recoverable boundary, lattice dimension, and running
time, it is challenging to directly compare compare two shift polynomial selec-
tion strategies. We therefore focus on the following attributes to demonstrate
the capabilities of our new methods.
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� Bounds. For any particular Coppersmith problem, we want to maximize the
size of the recoverable bounds X. For a particular multiplicity, we experi-
mentally determine the maximum X solved by the shift polynomial strategy
in prior work and the maximum solved by our optimal shift polynomial strat-
egy in Section 4 and proven monomial strategy Mbig in Section 5.1.

� Dimension. A smaller lattice dimension typically leads to faster lattice
reduction. For a particular multiplicity, we calculate the rank of the lattice
in the prior work's shift polynomial strategy. We run the graph-based shift
polynomial strategy in Section 5 and record the rank of our lattice.

� Time. For practical attacks, running time can be important. For a particular
multiplicity, we compare their concrete running time against our concrete
running time using our asymptotically fast precomputation-based strategy
in Section 6.

� Asymptotics. A regular feature of Coppersmith papers is asymptotic analy-
sis to determine the maximum recoverable bound as a fraction of the modulus
size. We compare the asymptotic analyses from prior work to the automated
asymptotic analysis described in Section 6.6.

Table 1: Summary of experimental results. We compare the recoverable
bounds, lattice dimension, running time, and asymptotic behavior of our ap-
proaches with prior work, and note whether our generalized techniques are better
(✔✔), equivalent to (✔), or worse (✗) than prior shift polynomial strategies. We
say the strategies are the same if the bounds are within a few bits, the dimension
is within a few, or the time is within a factor of two to allow for small variations.
Full numerical data supporting these results are in Appendix A.

Coppersmith Problem Prior Bounds Dimension Time Asymp.

CIHNP-CSIDH [33] ✔ same ✔ same ✔ same ✔ same
CIHNP-CSURF [33] ✔✔ better ✗ worse ✔ same ✔✔ better

MIHNP [48] ✔✔ better ✗ worse ✔ same ✔✔ better
ECHNP [49] ✔✔ better ✗ worse ✗ worse ✔✔ better

Stereotyped RSA [28] ✔ same ✔ same ✔ same ✔ same
Partial factoring RSA [28] ✔ same ✔ same ✔ same ✔ same

Partial ACD [12] ✔ same ✔ same ✔ same ✔ same
Small RSA priv. exp. d [20] ✔ same ✔✔ better ✔ same ✔ same

RSA Power Gen. [19] ✔ same ✔✔ better ✔✔ better ✔ same
Small CRT-RSA dp, dq [43] ✔ same ✔✔ better ✗ worse ✗ worse
Partial CRT-RSA dp, dq [30] ✔ same ✔ same - -

SMUPE [32] ✔✔ better ✔✔ better - -
Common prime RSA [25] ✔ same ✔ same ✔ same ✔ same

Small Multipower RSA d [25] ✔ same ✔ same ✔ same ✔ same

A number of large-scale trends are apparent in Table 1. First, our prov-
able strategy always performs as well as or better than prior strategies when it
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comes to maximizing recoverable bounds. This demonstrates the reliability of
our optimal shift polynomial selection strategy of Algorithm 1 and our provably
good monomial selection in Section 5.1. Second, our graph-based shift polyno-
mial strategy of Algorithm 2 frequently �nds smaller, and therefore more easily
reduced, lattices. In the cases where this algorithm �nds a larger lattice, it's
because the larger lattice enables recovery with increased bounds. Third, our
precomputation strategy is competitive with prior approaches. However, it re-
quires manual identi�cation of monomials Mvert, and poor choice of monomials
leads to poor performance. Additionally, our symbolic representation is incom-
patible with mixed moduli, so we could not apply this strategy in two cases.
Fourth, precomputation of asymptotic bounds as described in Section 6.6 often
leads to the same bounds as in prior work. However, our Algorithm 3 is also
sensitive to choice of Mvert, and does not always lead to the same bound.5

Full numerical data and additional details about the diverse array of problems
we examined are availible in Appendix A. Although there is not room here to
examine all aspects, we include experimental results from one of the problems
which highlight particular trends in the behavior of our algorithms.

7.1 Experimental setup

We tested the e�ectiveness of our approaches on a number of previously studied
multivaraiate Coppersmith problems. In particular, we evaluated the maximum
bounds X which are solvable at least 50% of the time for particular choices of a
shift polynomial selection strategy. Each shift polynomial strategy was evaluated
against the same 30 randomly generated problem instances. When a shift poly-
nomial strategy requires additional parameters, we report the parameter that
gave the best results. We compare against the strategy that uses all monomials
in Mbig from Lemma 5, the graph-based strategy in Section 5.3, and the pre-
computation strategy in Section 6.2. We also report the lattice dimension and
average running time in seconds for each multiplicity k.

Each experiment was run in single-threaded mode on a Intel Xeon E5-2699v4
CPU running at 2.2GHz. Our implementation was written in Python. We used
SageMath version 10.2 for generic computer algebra tasks, MSolve v0.7.16 for
Gröbner basis computations in Q[x], and �atter7 for lattice reduction.

7.2 Modular Inversion Hidden Number Problem

Boneh, Halevi, and Howgrave-Graham introduced the Modular Inversion Hidden
Number Problem (MIHNP) in 2001 [8]. Xu et al. revisited the problem in [48].

5 An October, 2024 revision of Feng, Nitaj, and Pan's work [17] improves the existing
asymptotic bounds for CSIDH-CSURF beyond both Meers and Nowakowski's work
and our own. This highlights the sensitivity of our approach, as the bounds achieved
for a particular choice ofMvert are not guaranteed to be optimal.

6 https://msolve.lip6.fr/
7 https://github.com/keeganryan/�atter
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For MIHNP, the ℓ input relations have the form

fi(α, x1, . . . , xℓ) = (α+ ci,1)(xi + ci,2)− 1

and share a root modulo a known prime p.

We report the results for MIHNP with four relations in Table 2. The shift
strategy in [48] is only de�ned for multiplicity k ≤ ℓ−2, so their existing �asymp-
totic� bound for four samples is really the maximal bound up to multiplicity 2.

Table 2: MIHNP with ℓ = 4 samples. We use 1000-bit modulus. Hidden
number α is 1000-bits, and the unknown values are lgXi bits long.

[48] All monoms. Graph search Precomputed

k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time

1 0 332 7 4.0 373 16 0.5 373 11 0.4 - - -
2 1 405 16 4.4 410 86 12.2 410 50 6.9 405 16 1.5
3 - - - - 446 296 211.8 446 76 66.0 - - -
4 - - - - - - - 460 221 581.3 442 81 25.7

Existing bound: logp Xi = 0.2432 Our bound: logp Xi = 0.5208

We ran Algorithm 3 on MIHNP with four samples with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 2, Mvert = {
∏

xei
i | ei ∈ {0, 1}}

and got output τi = 0, δ < 0.5208.

This example illustrates many interesting features of our approach. First,
although alpha is unknown, it is not small. We only have the trivial bound
|α| < p. While prior works manually manipulated the fi to eliminate α, our
weighted monomial ordering recognizes α ≫ xi, and Algorithm 1 automatically
�nds shift polynomials with small leading monomial, or shift polynomials that
don't include α.

This example also illustrates a drawback of our approach. While the approach
in [48] provides asymptotic analysis for ℓ → ∞, our approach only applies to �xed
values of ℓ, and as ℓ increases, Gröbner basis calculations become probitively
expensive.

We also observe that the strategy of using all monomials in Mbig leads to
lattices with large rank and long running times. This is improved by applying
the graph-based strategy, which �nds smaller lattices with equivalent bounds.
However, the graph-based strategy still requires Gröbner basis calculations, and
it becomes expensive at high multiplicities as well. The precomputed strategy
has worse practical bounds, but it has easily analyzed asymptotic bounds and
is fast in practice. While no single strategy is perfect, each has its own bene�ts
when applied to the multivariate Coppersmith problem.
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8 Future Work

As a �nal note, we brie�y discuss directions for future work. Although e�ec-
tive for solving multivariate polynomials with known modulus, our graph-based
methods are ine�ective against integer Coppersmith problems or the General
Approximate Common Divisors problem of Cohn and Heninger [12] where no
multiple of the modulus is known; the challenge is calculating the determinant
of Coppersmith lattices that are not full-rank. Our approach also does not cap-
ture the multi-step approaches used by Peng et al. [37] or May et al. [30], which
construct multiple Coppersmith lattices to gain partial information about the
roots. While our work resolves some open questions and greatly simpli�es the
use of Coppersmith's method, we look forward to seeing future improvements to
the capabilities of Coppersmith's method for �nding small roots.
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in part by a gift from Google.
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A Experimental Data

A.1 Commutative Isogeny Hidden Number Problem

The Commutative Isogeny Hidden Number Problem (CI-HNP) was proposed by
Meers and Nowakowski to study the bit security of isogeny-based key exchange
schemes [33]. The problem asks whether it is possible to recover a shared elliptic
curve based on the most signi�cant bits of a Di�e-Hellman style key. They
examine CI-HNP for both CSIDH and CSURF key exchanges.

For CSIDH, the input relations have the form

f = (c1 + x1)(c2 + x2) + 2(c1 + x1)− 2(c2 + x2) + 12

g = (c3 + x3)(c2 + x2) + 2(c2 + x2)− 2(c3 + x3) + 12

h = (c1 + x1)(c3 + x3)− 2(c1 + x1) + 2(c3 + x3) + 12

and share a root modulo a prime p. For CSURF, the input relations are

f = (c1 + x1)
2 + 12(c1 + x1)− 4(c1 + x1)(c2 + x2)

2 − 8(c2 + x2)
2 + 36

g = (c3 + x3)
2 + 12(c3 + x3)− 4(c3 + x3)(c1 + x1)

2 − 8(c1 + x1)
2 + 36.

We ran our shift polynomial strategies on CI-HNP for both CSIDH and CSURF,
and report the results in Table 3 and Table 4 respectively.

Table 3: CI-HNP for CSIDH. Largest solvable bound for 512-bit modulus p.
Note that [33] is only compatible if the multiplicity is divisible by 3.

[33] All monoms. Graph search Precomputed
k lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 - - - 169 20 0.5 169 8 0.5 - - -
2 - - - 189 56 3.4 189 26 2.4 - - -
3 194 27 1.7 199 120 25.3 199 60 16.3 194 27 2.3
4 - - - 204 286 248.9 204 115 87.0 - - -
5 - - - 210 455 1029.1 210 125 169.2 - - -
6 210 125 98.9 - - - 213 215 528.2 210 125 94.4
7 - - - - - - 215 339 1406.6 - - -
8 - - - - - - 216 502 3158.2 - - -
9 216 343 1871.6 - - - - - - 216 343 1178.9

Existing bound: logp Xi = 0.4583 Our bound: logp Xi = 0.4583

We ran Algorithm 3 on CIHNP-CSIDH with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 3, Mvert = {
3∏

i=1

xei
i | ei ∈ {0, 2}}

and got output
τ = (0, 0, 0), δ < 0.4583.

This matches the existing bounds of Xi < p11/24 [33].
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Table 4: CI-HNP for CSURF. Largest solvable bound for 512-bit modulus
p. Note that [33] is only compatible if the multiplicity is divisible by 2. In the
all-monomial strategy with k = 2, we have X11 ≈ p2, so whichever value is larger
determines |Mbig|. We report the maximum size, which is 364.

[33] All monoms. Graph search Precomputed
k lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 - - - 71 120 8.6 69 48 7.0 - - -
2 74 33 1.7 93 364 258.3 91 145 119.5 74 34 2.3
3 - - - 103 680 2554.7 101 324 1124.8 - - -
4 96 165 111.0 - - - - - - 97 173 110.7

Existing bound: logp Xi = 0.2439 Our bound: logp Xi = 0.2528

We ran Algorithm 3 on CIHNP-CSURF with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 2,

Mvert = {1, x4
1x3, x

3
3, x

4
1, x

3
1x

2
2x3, x

3
1x

2
2, x

2
2, x

2
1x

2
3, x

2
2x

2
3, x1x

2
2x

3
3}

and got output
τ = (0, 0, 0), δ < 0.2528.

This improves Meers and Nowakowski's bounds [33] of Xi < p10/41.8

A.2 Modular Inversion Hidden Number Problem

Boneh, Halevi, and Howgrave-Graham introduced the Modular Inversion Hidden
Number Problem (MIHNP) in 2001 [8]. Xu et al. revisited the problem in [48].
For MIHNP, the ℓ input relations have the form

fi(α, x1, . . . , xℓ) = (α+ ci,1)(xi + ci,2)− 1

and share a root modulo a known prime p.
Because the bound A on α is large (A = p), prior approaches use resultants

to manually construct input relations that do not include α. However, since our
monomial ordering includes the size of α, our Gröbner basis strategies automat-
ically �nd shift polynomials that do not include α.

We ran our shift polynomial strategies on MIHNP for three, four, and �ve
relations, and we report the results in Table 5, Table 6, and Table 7 respectively.
The shift strategy in [48] is parameterized by (n′, d′, t′), which using our variable
names is (ℓ − 1, k, t). Their strategy is only de�ned for 0 ≤ t ≤ k and k ≤
ℓ−2, so their result is not asymptotic in multiplicity k. To compute the existing
theoretical bound, we evaluate maxk,t λ̂(ℓ − 1, k, t) where λ̂ is de�ned in [48,
Section VI.A].

8 An October, 2024 revision of Feng, Nitaj, and Pan's work [17] improves the bounds
for CIHNP-CSURF to logp Xi < 8/31 ≈ 0.2580.
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Table 5: MIHNP with ℓ = 3 samples.

[48] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 0 248 4 4.6 331 21 0.6 332 8 0.4 - - -
2 - - - - 371 67 5.6 372 26 3.7 372 27 4.4
3 - - - - 390 187 85.6 390 60 27.8 - - -
4 - - - - 401 386 837.9 401 115 152.1 401 125 74.4

Existing bound: logp Xi = 0.0000 Our bound: logp Xi = 0.4444

Table 6: MIHNP with ℓ = 4 samples.

[48] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 0 332 7 4.0 373 16 0.5 373 11 0.4 - - -
2 1 405 16 4.4 410 86 12.2 410 50 6.9 405 16 1.5
3 - - - - 446 296 211.8 446 76 66.0 - - -
4 - - - - - - - 460 221 581.3 442 81 25.7

Existing bound: logp Xi = 0.2432 Our bound: logp Xi = 0.5208

Table 7: MIHNP with ℓ = 5 samples.

[48] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 0 373 11 5.0 398 22 1.0 398 16 1.0 - - -
2 1 449 30 5.6 451 148 40.5 451 31 10.1 451 32 9.9
3 0 451 46 5.4 480 610 3136.8 480 192 312.3 - - -
4 - - - - - - - 496 303 2408.5 487 243 474.2

Existing bound: logp Xi = 0.3708 Our bound: logp Xi = 0.5577

We ran Algorithm 3 on MIHNP with ℓ ∈ {3, 4, 5} samples with input

logp A = 1, logp Xi = δ, logp Xguess,i = 0.1, kpre = 2,

Mvert =

{
{∏ℓ

i=1 x
ei
i | ei ∈ {0, 2}} ℓ = 3

{∏ℓ
i=1 x

ei
i | ei ∈ {0, 1}} ℓ ∈ {4, 5}

and got output

τi = 0, δ <


0.4444 ℓ = 3

0.5208 ℓ = 4

0.5577 ℓ = 5.

A.3 Elliptic Curve Hidden Number Problem

The Elliptic Curve Hidden Number Problem (ECHNP) was proposed by Shani in
2017 [41] and studied by Xu et al. in 2022 [49]. The problem studies the hardness
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of recovering a shared Elliptic Curve Di�e Hellman secret from an oracle that
computes most signi�cant bits.

For ECHNP, the ℓ− 1 input relations have the form

x2
1xi+1 + Eix1xi+1 +Dixi+1 + Cix

2
1 +Bix1 +Ai ≡ 0 (mod p)

where known values {a, b, h0, h1, . . . , hℓ−1, xQ1 , . . . xQℓ−1
} are used to compute

Ai = hi(h0 − xQi)
2 − 2h2

0xQi − 2(a+ x2
Qi
)h0 − 2axQi − 4b

Bi = 2(hi(h0 − xQi
)− 2h0xQi

− a− x2
Qi
)

Ci = hi − 2xQi

Di = (h0 − xQi
)2

Ei = 2(h0 − xQi
),

and the relations share a root modulo a known prime p.
We ran our shift polynomial strategies on ECHNP for three, four, and �ve

relations, and we report the results in Tables 8, 9, and 10 respectively. The shift
strategy in [49] is parameterized by (n′, d′, t′), which using our variable names is
(ℓ, k, t). Their strategy is only de�ned for 1 ≤ k < ℓ and 0 ≤ t ≤ 2k− 1, so their
result is not asymptotic in multiplicity k. To compute the existing theoretical
bound, we evaluate maxk,t S(ℓ, k, t) where S is de�ned in [49, Section 4.2].

Table 8: ECHNP with 3 samples. We consider 256-bit modulus p. The shift
strategy in [49] is parameterized by (n′, d′, t′), which using our variable names
is (3, k, t).

[49] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 1 60 14 0.6 64 35 1.8 64 19 1.3 58 19 5.9
2 3 68 32 2.4 78 210 102.2 78 111 58.1 64 108 33.0
3 2 68 48 3.3 85 715 2418.1 83 397 1217.1 66 366 569.8

Existing bound: logp Xi = 0.2083 Our bound: logp Xi = 0.3090

Table 9: ECHNP with 4 samples. We consider 256-bit modulus p. The shift
strategy in [49] is parameterized by (n′, d′, t′), which using our variable names
is (4, k, t). We do not run our precomputation strategy because computing the
symbolic Gröbner basis was too expensive with the large number of variables.

[49] All monoms. Graph search
k 2 lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 1 69 22 1.3 72 56 3.5 72 26 2.9
2 3 79 60 9.8 87 252 215.1 87 172 130.3

Existing bound: logp Xi = 0.2772
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Table 10: ECHNP with 5 samples. We consider 256-bit modulus p. The shift
strategy in [49] is parameterized by (n′, d′, t′), which using our variable names
is (5, k, t). We do not run our precomputation strategy because computing the
symbolic Gröbner basis was too expensive with the large number of variables.

[49] All monoms. Graph search
k 2 lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 1 75 32 2.3 77 84 8.7 78 42 5.9
2 2 87 94 21.9 92 462 1301.5 92 309 895.2

Existing bound: logp Xi = 0.3224

We ran Algorithm 3 on MIHNP with 3 samples with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 1,

Mvert = {1, x2
1, x

2
2, x

2
3, x

2
4, x

2
1x

2
2, x

2
1x

2
3, x

2
1x

2
4, x2x3x4}

and got output
τi = 0, δ < 0.3090.

This improves on the previous asymptotic bounds for three ECHNP samples.

A.4 Stereotyped RSA

One of Coppersmith's original applications was recovering an RSA plaintext from
�xed a�ne padding [13]. Given modulus N , padding a and ciphertext c, recover
bounded message x by solving the modular polynomial The input relation is
therefore

f(x) = (a+ x)3 − c ≡ 0 (mod N).

We use an alternative shift polynomial strategy by May [28] to solve this problem.
Although this is a univariate example, it serves as a baseline to validate our
approach. We use the shift polynomial strategy in [28], which is parametrized
by the multiplicity k and parameter t. We ran our shift polynomial strategies on
the stereotyped RSA problem and report the results in Tables 11.

Table 11: Stereotyped RSA Largest solvable bounds for 1000-bit N .

[28] All monoms. Graph search Precomputed
k t lgX Dim. Time lgX Dim. Time lgX Dim. Time lgX Dim. Time
1 2 199 5 0.0 199 6 0.1 199 6 0.2 166 4 0.1
2 2 249 8 0.1 249 9 0.3 249 9 0.2 237 7 0.1
4 2 285 14 0.4 285 15 0.7 285 15 0.8 281 13 0.4
6 2 299 20 0.9 299 21 1.6 299 21 1.6 297 19 0.9
8 2 307 26 1.7 307 27 3.2 307 27 3.2 306 25 1.8
10 2 312 32 2.6 312 33 5.6 312 33 5.7 311 31 3.0
12 2 315 38 4.6 315 39 9.7 315 39 9.7 314 37 5.0
14 2 317 44 7.2 317 45 16.1 317 45 16.1 317 43 7.5
16 2 319 50 10.7 319 51 23.5 319 51 24.4 319 49 11.1
18 2 321 56 12.9 321 57 33.9 321 57 34.6 320 55 14.3
20 2 322 62 17.0 322 63 52.7 322 63 55.8 322 61 19.4
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Existing bound: logN X = 0.3333 Our bound: logN X = 0.3333

We ran Algorithm 3 on the stereotyped RSA problem with input

logN X = δ, logN Xguess,i = 0.1, kpre = 1, Mvert = {1, x3}

and got output
τ = 0, δ < 0.3333.

This agrees with existing asymptotic bounds of X < N1/3 [13].
Observe that our strategies of using all monomials or graph search are com-

petitive with the previous strategy, but the cost of Gröbner basis calculation is
problematic at high multiplicity. The precomputed strategy avoids this cost, and
even though it performs worse at low multiplicities, it has the correct asymptotic
behavior.

A.5 RSA factoring with high bits known

We examine the problem of factoring RSA modulus N = pq when the most
signi�cant bits of p are known. This involves modular relations

N ≡ 0 (mod p)

x+ a ≡ 0 (mod p).

We use the shift polynomial strategy by May [28], which is parametrized by the
multiplicity k and parameter t. We ran our shift polynomial strategies on this
problem and report the results in Table 12.

Table 12: RSA partial factoring Largest solvable bounds for 2048-bit N

[28] All monoms. Graph search Precomputed
k t lgX Dim. Time lgX Dim. Time lgX Dim. Time lgX Dim. Time
1 2 340 3 0.0 340 4 0.1 340 4 0.0 340 3 0.1
5 6 464 11 0.3 464 12 0.5 464 12 0.5 464 11 0.4
10 11 486 21 1.9 486 22 3.1 486 22 2.9 486 21 2.1
15 16 494 31 7.7 494 32 12.3 494 32 11.5 494 31 9.1
20 21 498 41 18.4 498 42 29.0 498 42 28.5 498 41 22.9
25 25 500 50 56.4 500 52 63.8 500 52 72.9 500 51 60.4

Existing bound: logp X = 0.5 Our bound: logp X = 0.5

We ran Algorithm 3 on the RSA partial factoring problem with

logp X = δ, logp Xguess = 0.1, kpre = 1, Mvert = {1, x}

and got output
τ = 1.0000, δ < 0.5000.

This agrees with existing asymptotic bounds of X < N1/4 [28].
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A.6 Partial Approximate Common Divisors

Heninger and Cohn studied the Partial Approximate Common Divisors (PACD)
problem in [12]. Input relations are de�ned modulo p, and a multiple N of p is
known. PACD also involves ℓ samples ci which are close to multiples of p. The
input relations are therefore{

N ≡ 0 (mod p)

ci − xi ≡ 0 (mod p) 1 ≤ i ≤ ℓ.

We ran our shift polynomial strategies on PACD for ℓ ∈ {1, 2, 3} samples and
report the results in Tables 13, 14, and 15 respectively. In all cases, we used
1000-bit N and 400-bit p.

Table 13: PACD with ℓ = 1 sample.

[12] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 3 99 4 0.0 99 5 0.3 99 5 0.1 99 4 0.3
5 12 140 13 0.4 142 15 1.0 142 15 0.8 142 14 0.5
10 25 150 26 3.6 150 27 4.9 150 27 4.8 150 26 4.0
15 37 153 38 11.9 153 40 15.3 153 40 15.2 153 39 12.6
20 50 155 51 27.6 155 52 42.3 155 52 42.3 155 51 35.7
25 61 155 62 90.3 156 65 112.9 156 65 112.2 156 64 88.2

Existing bound: logp Xi = 0.4000 Our bound: logp Xi = 0.4000

Table 14: PACD with ℓ = 2 samples.

[12] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 2 174 6 0.1 174 6 0.3 174 6 0.2 - - -
3 5 216 21 1.1 216 21 1.4 216 21 1.4 216 26 1.5
6 10 231 66 20.8 231 66 23.1 231 66 23.0 231 64 20.2
9 14 237 120 164.6 237 136 213.1 237 136 215.5 237 147 208.6
12 19 241 210 753.7 241 210 949.4 241 210 946.4 241 225 925.2

Existing bound: logp Xi = 0.6324 Our bound: logp Xi = 0.6321

Table 15: PACD with ℓ = 3 samples.

[12] All monoms. Graph search Precomputed
k t lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 1 198 4 0.1 198 10 0.5 198 10 0.2 - - -
2 3 243 20 0.9 243 20 1.3 243 20 1.1 - - -
3 4 256 35 4.0 256 35 4.5 256 35 4.6 255 96 7.4
4 6 261 84 26.9 261 84 32.7 261 84 28.1 - - -
5 7 268 120 67.4 268 120 104.9 268 120 91.2 - - -
6 8 271 165 293.7 271 165 298.9 271 165 298.3 271 328 451.1
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Existing bound: logp Xi = 0.7368 Our bound: logp Xi = 0.7368

We ran Algorithm 3 on PACD with ℓ = 1 sample with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 1, Mvert = {1, x1}

and got output

τi = 1.5000, δ < 0.4000.

We also ran Algorithm 3 on PACD with ℓ ∈ {2, 3} samples with input

logp Xi = δ, logp Xguess,i = 0.1, kpre = 3, Mvert = {1, x4
1, x

4
2, . . . , x

4
ℓ}

and got output {
τi = 0.3811, δ < 0.6321 ℓ = 2

τi = 0.0240, δ < 0.7368 ℓ = 3.

This is nearly the previous bound of logp δ < (logN p)1/ℓ.

A.7 RSA with small private exponent

Boneh and Durfee showed that recovering a small RSA private exponent from a
public key (N, e) is possible by solving the small inverse problem [7]. In partic-
ular, they consider the relation

x1x2 − x1(N + 1)− 1 ≡ 0 (mod e)

which has small modular root (r1, r2) with |r1| < eδ and |r2| < e1/2. In 2010,
Herrmann and May used unravelled linearization

u = x1x2 − 1

to simplify analysis of the problem's solveable bounds [20].

We ran our shift polynomial strategies on the RSA with small private expo-
nent problem and report the results in Table 16.

Table 16: RSA with small private exponent. Maximally recoverable bound
for size of RSA private exponent for 1000-bit modulus and full-size exponent. In
our strategies with k = 7, variations in modulus e lead to variations in |Mbig|.
We report the maximum size for our all-monomial and graph strategy, which are
746 and 42 respectively.
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[20] All monoms. Graph search Precomputed
k t lgX1 Dim. Time lgX1 Dim. Time lgX1 Dim. Time lgX1 Dim. Time
2 1 243 7 0.3 240 40 1.5 - - - - - -
3 1 259 11 0.3 259 83 7.7 259 8 0.9 259 15 0.5
4 2 263 19 1.1 263 174 66.1 263 14 2.3 - - -
5 2 267 27 1.8 267 308 432.0 267 22 3.8 - - -
6 3 270 37 3.8 270 493 2391.7 270 31 7.2 270 40 3.5
7 3 272 48 7.5 271 746 5418.1 272 42 13.3 - - -
8 3 274 60 12.1 - - - 274 50 22.0 - - -
9 4 275 75 24.7 - - - 275 63 39.9 275 77 22.1

Existing bound: logN X1 = 0.2928 Our bound: logN X1 = 0.2925

We ran Algorithm 3 on the small RSA private exponent problem with input

logN (X1, X2, U) = (δ,
1

2
,
1

2
+ δ), logN Xguess = (0.1, 0.5, 0.6), kpre = 3,

Mvert = {1, x3
1, u

3, x2u
3}

and got output
τ = (0, 0.1230, 0), δ < 0.2925.

This is nearly the existing bound of logN Xi < 1−
√
2
2 .

Note that τ2 > 0; our algorithm automatically found the x2-shifts that were
central to [7]. Our automatically determined bound is slightly worse, but we note
that a higher precomputed multiplicity gets even closer, and speculate that the

gap may be related to the irrationality of 1−
√
2
2 .

Our performance is comparable to [20], but observe that graph search �nds
a smaller sublattice.

A.8 RSA Power Generators

Herrmann and May studied the problem of state recovery attacks on RSA-based
random number generators [19]. In this problem, an adversary is given the most-
signi�cant bits ci of states obtained from repeated exponentiation. The task is to
recover the unknown least-signi�cant bits. For public modulus N and ℓ outputs,
this yields the relations

(xi + ci)
2 − (xi+1 + ci+1) ≡ 0 (mod N) for 1 ≤ i ≤ ℓ− 1.

Herrmann and May introduce the concept of unravelled linearization, adding

x2
i − ui − xi+1 = 0 for 1 ≤ i ≤ ℓ− 1.

We ran our shift polynomial strategies on the Power Generator state recov-
ery problem for ℓ ∈ {2, 3}, and report the results in Table 17 and Table 18
respectively.
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Table 17: RSA Power Generators with ℓ = 2 samples Largest bit leakage
leading to recovery of RSA RNG states with 1024-bit modulus.

[19] All monoms. Graph search Precomputed
k lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 340 3 0.1 339 13 0.5 340 3 0.2 - - -
2 371 6 0.2 371 34 1.5 371 6 0.4 371 6 0.3
3 378 16 1.0 378 95 16.5 378 10 1.0 - - -
4 385 25 0.8 385 161 97.1 385 15 2.0 385 15 0.8
5 388 36 7.2 388 308 785.6 388 21 4.2 - - -
6 392 49 22.5 391 444 2744.1 391 28 7.3 391 28 2.6
Existing bound: logN Xi = 0.4000 Our bound: logN Xi = 0.4000

We ran Algorithm 3 on the RSA Power Generator problem with input

logN Xi = δ, logN Ui = 2δ, logN Xguess,i = 0.1, kpre = 2,

Mvert = {1, x2
1, x2, u

2
1}

and got output
τ = (0, 0, 0), δ < 0.4000.

This matches the existing bounds of Xi < N2/5 for two outputs [19].

Table 18: RSA Power Generators with ℓ = 3 samples Largest bit leakage
leading to recovery of RSA RNG states with 1024-bit modulus.

[19] All monoms. Graph search Precomputed
k lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time lgXi Dim. Time
1 - - - 339 28 1.0 340 6 0.4 - - -
2 392 7 0.3 392 108 15.5 392 7 1.3 - - -
3 397 22 1.7 402 308 459.7 402 21 5.0 - - -
4 413 39 1.7 - - - 413 22 16.3 413 22 2.2
5 419 62 10.5 - - - 423 50 77.9 - - -
6 427 93 61.2 - - - 429 93 172.2 - - -
7 430 132 448.5 - - - 433 95 369.7 - - -
8 433 181 5910.4 - - - 437 159 862.7 435 95 50.7
Existing bound: logN Xi = 0.4615 Our bound: logN Xi = 0.4615

We ran Algorithm 3 on the RSA Power Generator problem with input

logN Xi = δ, logN Ui = 2δ, logN Xguess,i = 0.1, kpre = 4,

Mvert = {1, x4
1, x

2
2, x3, u

4
1, u

2
2}

and got output
τ = (0, 0, 0, 0, 0), δ < 0.4615.

This matches the existing bounds of Xi < N6/13 for three outputs [19].

41



A.9 RSA-CRT with small private exponents

We consider the problem of RSA-CRT with small private exponents, �rst ex-
plored in [26], with the best current results due to Takayasu, Lu, and Peng [43].
The problem considers RSA modulus N = pq with public exponent e and
small private exponents (dp, dq) satisfying edp ≡ 1 (mod p − 1) and edq ≡ 1
(mod q − 1). This is rewritten as the following relations

−1− x3(x1 − 1) ≡ 0 (mod e)

−1− x4(x2 − 1) ≡ 0 (mod e)

x1x2 −N = 0.

with shared root (p, q,
edp−1
p−1 ,

edq−1
q−1 ) and bounds X = (1/2, 1/2, 1/2+ δ, 1/2+ δ)

for e ≈ N . Thus dp ≈ X3/X1. We introduce the unraveled linearization

u1 = x1 + x2 u2 = x3x1 + x4x2 + 2

u3 = x3 + x4 − 1 u4 = x3x4

u5 = x3x4x1 + x3x4x2 − x3x1 − x4x2 + x3 + x4 − 1

and ran our shift polynomial strategies on the problem of RSA with small CRT
exponents and report the results in Table 19.

Table 19: RSA-CRT with small secret exponents. Maximum bound for
private exponents dp and dq for 1000-bit modulus N and full-size prime e. The
strategy of [43] yields a lattice of dimension 177 or 179 for k = 8, so we report
the smaller value.

[43] Graph search Precomputed

k lg X3

X1
Dim. Time lg X3

X1
Dim. Time lg X3

X1
Dim. Time

4 33 31 5.9 33 15 42.2 33 21 1.8
5 33 31 3.7 39 40 174.3 - - -
6 52 84 28.8 51 42 779.8 - - -
7 52 84 30.0 56 88 2204.6 - - -
8 62 177 308.5 62 89 7189.0 43 102 33.3

Existing bound: logN
X3

X1
= 0.1220 Our bound: logN

X3

X1
= 0.0468

We ran Algorithm 3 on the small RSA-CRT exponent problem with input

logN X = (
1

2
,
1

2
,
1

2
+ δ,

1

2
+ δ), logN U = (

1

2
, 1 + δ,

1

2
+ δ, 1 + 2δ,

3

2
+ 2δ),

logN Xguess = (0.5, 0.5, 0.65, 0.65), kpre = 4,

Mvert = {1, u1, u
2
2, u

2
3, u

2
4, u

2
5, u1u

2
3, u1u

2
5, u2u3, u2u4, u2u5}

We �xed τ = 0 because Algorithm 3 was too slow otherwise and got output

δ < 0.0486.
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This is worse than the existing bound of logN
X3

X1
< 1

2 − 1√
7
.

As seen in Table 19, even though Mbig was too large to run our strategy on
all monomials, our graph-based search algorithm found sublattices of approxi-
mately half the dimension of [43]. Compared to the complicated multi-page shift
polynomial selection strategy in prior works, this demonstrates the value and
e�ectiveness of our automated approach.

A.10 Partial Key Exposure attacks on CRT-RSA

In 2021, May, Nowakowski, and Sarkar studied Partial Key Exposure attacks on
CRT-RSA [30]. They analyze the case of RSA public exponent e that scales with
modulus N = pq. An attacker learns the least-signi�cant (or most-signi�cant)
bits of private CRT exponents dp, dq. May et al.'s strategy has two steps: �rst,
recover (edp − 1)/(p− 1) and (edq − 1)/(q− 1) using a Coppersmith-style attack
(for the case of least-signi�cant bits). Second, use these values to factor N using
a second Coppersmith-style attack.

If c1, c2 are the b least-signi�cant bits of dp, dq, then the former step has the
relation

(N − 1)x1x2 − (ec2 − 1)x1 − (ec1 − 1)x2 − e2c1c2 + c1 + c2 − 1 ≡ 0 (mod 2be).

In practice, the Singular and Magma Gröbner basis solvers we tested were
unable to e�ciently handle moduli of this form. As a result of the limitations of
these tools, we were unable to apply our methods to this step.

The second step, given a = (edp − 1)/(p− 1) recovered in the �rst step, has
relations

x+ (ec1 + a− 1)(2−be−1 mod aN) ≡ 0 (mod ap)

a ≡ 0 (mod a)

N ≡ 0 (mod p).

For multiplicity (k1, k2), we can combine these relations to get shift polynomials
with shared root modulo ak1pk2 .

We ran our shift polynomial strategies on May et al.'s second step for per-
forming Partial Key Exposure attacks on CRT-RSA. We report the results in
Table 20.

Table 20: Partial Key Exposure attacks on RSA-CRT. Largest solvable
bound for 1024-bit modulus N with 64-bit e, which is studied in [30]. Since the
input relations have mixed moduli, we don't run our precomputation strategy.
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[30] All monoms. Graph search
k lgX1 Dim. Time lgX1 Dim. Time lgX1 Dim. Time
1, 1 60 2 0.0 210 3 0.1 210 3 0.3
2, 1 231 3 0.0 231 3 0.2 231 3 0.4
4, 2 265 5 0.1 265 5 0.6 265 5 0.6
6, 3 279 7 0.1 279 7 1.4 279 7 1.5
8, 4 287 9 0.2 287 9 3.4 287 9 3.6
10, 5 292 11 0.3 292 11 8.8 292 11 9.0
12, 6 296 13 0.3 296 13 16.0 296 13 15.3
14, 7 299 15 0.5 299 15 28.2 299 15 28.8
16, 8 301 17 0.7 301 17 46.4 301 17 47.3
18, 9 302 19 0.9 302 ≤ 20 72.9 302 19 78.8
20, 10 304 21 1.4 304 ≤ 22 77.1 304 21 115.0

Our strategies match the performance of May et al.

A.11 Systems of Modular Univariate Polynomial Equations

In 2008, May and Ritzenhofen studied systems of modular univariate polynomial
equations (SMUPE) [32]. This problem involves input relations with mutually
coprime moduli, and the original application was polynomially related messages
encrypted under separate public keys. For our experiments, we consider two
messages with a�ne padding RSA-encrypted over two di�erent public keys with
di�erent public exponents. This leads to the relations

f1 = (x+ a1)
3 − c1 ≡ 0 (mod N1)

f2 = (x+ a2)
5 − c2 ≡ 0 (mod N2).

We ran our shift polynomial strategies on SMUPE and report the results in
Table 21. May and Ritzenhofen's approach only produces relations with a shared
root modulo a power of N5

1N
3
2 , but our ideal selection strategies can produce

shift polynomials for any multiplicity.

Table 21: SMUPE. Largest solvable bound for a�ne-padded messages with
1024-bit moduli N1, N2 and public exponents (3, 5). Since the input relations
have mixed moduli, we don't run our precomputation strategy.

[32] All monoms. Graph search
k lgX Dim. Time lgX Dim. Time lgX Dim. Time

(1, 1) - - - 292 8 0.4 292 8 0.2
(2, 1) - - - 369 9 0.3 369 9 0.3
(2, 2) - - - 371 12 0.6 371 12 0.6
(3, 2) - - - 419 13 0.9 419 13 0.9
(3, 3) - - - 419 15 1.4 419 13 1.4
(4, 3) - - - 443 17 2.2 443 17 2.2
(4, 4) - - - 443 19 3.5 443 17 3.6
(5, 3) 282 30 5.2 461 18 3.2 461 18 3.3
(5, 4) - - - 461 20 5.0 461 18 5.0
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Our strategies signi�cantly exceed the performance of [32]. This is because
our method �nds novel shift polynomials, such as {f1f2, N1f2, N2f1, N1N2},
which all share a root modulo N1N2.

A.12 Common Prime RSA

In 2014, Lu et al. studied the Common Prime RSA problem [25]. In this problem,
the factors p, q of RSA modulus N have multiplicative orders which share a
common prime g. That is, p = 2ag + 1 and q = 2bg + 1. The public and private
exponents are e and d respectively. Lu et al. construct the following constrained
relations, which have a shared root at (d, p+ q − 1):

N − 1 ≡ 0 (mod g)

e− x1 ≡ 0 (mod g)

N − x2 ≡ 0 (mod g2).

We ran our shift polynomial strategies on the Common Prime RSA problem and
report the results in Table 22.

Table 22: Common Prime RSA. Largest solvable bound for 1000-bit modulus
N with 450-bit g, which is studied in [25]. Since the input relations have mixed
moduli, we don't run our precomputation strategy.

[25] All monoms. Graph search Precomputed
k lgX Dim. Time lgX Dim. Time lgX Dim. Time lgX Dim. Time
1 132 4 0.1 132 4 0.5 132 4 0.1 - - -
2 207 7 0.2 207 7 0.2 207 7 0.2 - - -
3 234 12 0.4 234 12 0.7 234 12 0.5 - - -
4 257 19 0.7 257 20 1.1 257 19 1.1 - - -
5 272 25 1.4 272 25 2.0 272 25 2.0 - - -
6 285 33 3.1 285 33 4.5 285 33 4.2 283 40 4.5
7 292 43 5.9 292 43 7.5 292 43 7.4 - - -
8 300 52 10.1 300 52 12.4 300 52 12.7 - - -
9 305 65 21.3 305 65 27.0 305 65 26.4 - - -
10 310 77 30.3 310 77 37.1 310 76 37.6 - - -
11 314 90 43.8 314 90 60.5 314 90 59.6 - - -
12 317 105 90.8 317 106 119.8 317 105 115.9 317 111 92.5

Existing bound: logp Xi = 0.8100 Our bound: logp Xi = 0.8098

We ran Algorithm 3 on the Common prime RSA problem with

logp X1 = δ, logp X2 = 1.1111, logp X1,guess = 0.1, kpre = 6,

Mvert = {1, x7
1, x

5
2}

and got output
τ = (0.1659, 0.2306), δ < 0.8098.

This nearly matches the existing asymptotic bounds of X1 < N4(0.45)3 [25].
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A.13 Small Secret Exponent with Multi-Power RSA

In 2014, Lu et al. studied attacks on Multi-Power RSA with small secret expo-
nents [25]. In this problem, RSA moduli have the form N = prq and the private
exponent d is small. Lu et al.'s method is based on the observation that ed−1 is
a multiple of pr−1, and N is a multiple of pr. For r = 3, this gives the relations

ex− 1 ≡ 0 (mod p2)

N ≡ 0 (mod p3).

We ran our shift polynomial strategies on the small secret exponent multi-
power RSA problem and report the results in Table 23.

Table 23: Small Secret Exponent with Multi-Power RSA. Largest solvable
bound for 2048-bit modulus N with r = 3 and 2048-bit e, which is studied in [25].
Since the input relations have mixed moduli, we don't run our precomputation
strategy.

[25] All monoms. Graph search Precomputed
k lgX Dim. Time lgX Dim. Time lgX Dim. Time lgX Dim. Time
10 594 9 0.4 594 9 0.8 594 9 0.8 - - -
20 680 16 1.1 680 16 3.5 680 16 3.2 - - -
30 706 22 4.4 706 22 15.5 706 22 15.1 704 21 4.1
40 718 29 11.9 718 29 47.9 718 29 47.9 - - -
50 728 35 20.8 728 36 124.3 728 36 122.5 - - -
60 734 42 33.5 734 42 279.5 734 42 269.5 733 41 33.8

Existing bound: logp Xi = 1.5000 Our bound: logp Xi = 1.5000

We ran Algorithm 3 on the Small Exponent Multi-Power RSA problem with

logp X = δ, logp Xguess = 0.1, kpre = 6, Mvert = {1, x4}

and got output
τ = 0, δ < 1.5000.

This matches the existing asymptotic bounds of X < p3(3−1)/(3+1) [25].
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