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Abstract

We propose a new cryptographic primitive called “selective batched identity-based encryp-
tion” (Selective Batched IBE) and its thresholdized version. The new primitive allows encrypt-
ing messages with specific identities and batch labels, where the latter can represent, for ex-
ample, a block number on a blockchain. Given an arbitrary subset of identities for a particular
batch, our primitive enables efficient issuance of a single decryption key that can be used to
decrypt all ciphertexts having identities that are included in the subset while preserving the
privacy of all ciphertexts having identities that are excluded from the subset. At the heart of
our construction is a new technique that enables public aggregation (i.e. without knowledge of
any secrets) of any subset of identities, into a succinct digest. This digest is used to derive, via
a master secret key, a single succinct decryption key for all the identities that were digested in
this batch. In a threshold system, where the master key is distributed as secret shares among
multiple authorities, our method significantly reduces the communication (and in some cases,
computation) overhead for the authorities. It achieves this by making their costs for key is-
suance independent of the batch size.

We present a concrete instantiation of a Selective Batched IBE scheme based on the KZG
polynomial commitment scheme by Kate et al. (Asiacrypt’10) and a modified form of the BLS
signature scheme by Boneh et al. (Asiacrypt’01). The construction is proven secure in the
generic group model (GGM).

In a blockchain setting, the new construction can be used for achieving mempool privacy
by encrypting transactions to a block, opening only the transactions included in a given block
and hiding the transactions that are not included in it. With the thresholdized version, multi-
ple authorities (validators) can collaboratively manage the decryption process. Other possible
applications include scalable support via blockchain for fairness of dishonest majority MPC,
and conditional batched threshold decryption that can be used for implementing secure Dutch
auctions and privacy preserving options trading.
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1 Introduction

This paper studies problems related to efficient batch decryption of identity-based encryption
(IBE), and particularly threshold batch decryption in a blockchain setting. The solutions we pro-
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pose support conditional batched threshold decryption of arbitrary subsets of ciphertexts, and can
be used to provide a scalable support via blockchain for fair dishonest majority MPC.

Both standard threshold encryption and threshold identity-based encryption have received
much attention in the blockchain setting. For example, (standard) threshold encryption has been
used to achieve mempool privacy [BO22] (further discussed below), and threshold IBE has been
used to achieve “encryption to the future” [Cam+21; GMR23; Döt+23; Cer+23]. With encryption
to the future, the idea is that if the validators of a particular chain have shared an IBE master
secret key, then during a block they can release decryption keys for the ID which is that block’s
number or the time on which that block is published. Anyone who wants to encrypt a message to
be decrypted at a specific block in the future, or at a specific time, can use the IBE public key with
the appropriate ID. However, a major drawback of this technique is that it decrypts all messages
encrypted to a specific block, and does not enable to dynamically choose which of these messages
to decrypt.

A possible solution to the aforementioned all-or-nothing decryption problem is to encrypt each
message using a separate key. In that case, if there are B ciphertexts to be decrypted, and n
holders of the secret key shares (i.e., the validators, in the blockchain setting), with a decryption
threshold of Ω(n), standard threshold decryption requires these parties to do O(nB) computation
and communication (per party that needs to decrypt the message). This is especially problematic
when trying to achieve mempool privacy, on which we elaborate next.

The goal of mempool privacy stems from the way that transactions are submitted to blockchains.
Before transactions are finalized, they are held in a memory pool (mempool), which is publicly read-
able. That a mempool is public is inherent: it must be readable by all the validators so that they
are able to build the next block, and the design of blockchains as permissionless networks al-
lows for anyone to run a validator. The fact that the mempool is public and contains information
on what transactions will be in future blocks makes it ripe for exploitation. Such exploitation is
widespread, and has been termed miner-extractable value, or MEV.1 The main technique for com-
bating this type of abuse is to encrypt the transactions in the mempool, and to only decrypt the
transactions in a block after the block has been finalized (see, e.g., [Kav+23] and references within).
That way, although the mempool is still public, it is opaque. In addition, since a block has limited
capacity and might not include all transactions submitted to it, it is crucial that the decryption
process can choose to decrypt any subset of the transactions encrypted to the block, while keeping
hidden the transactions outside of this subset. On the other hand, independent threshold decryp-
tion of each transaction incurs a total overhead of O(nB) communication and computation, which
is often too high for modern blockchains that are built to achieve high throughput and very low la-
tency. Several recent works have studied this problem and have proposed solutions (see [Cho+24]
and references within). Specifically, [Cho+24] attempts to do better than O(nB) communication
per validator; they end up with an online phase which has O(n) communication per validator, but
rely on an expensive offline per-block interactive setup phase.2

1This concept was introduced in [Dai+20] which explored transaction reordering and front-running in decentralized
exchanges (DEXs) on the Ethereum blockchain. The term MEV refers to the additional profits validators can extract by
reordering, censoring, or including transactions in a specific way within a block. This result was groundbreaking
because it highlighted a significant and underexplored vulnerability in decentralized finance (DeFi) systems. This
result has since been highly influential in research on blockchain economics, consensus protocols, and DeFi security.

2As was previously mentioned, IBE for “encryption to the future” can be used as a way around the O(nB) work per
validator. That is, in each round, the validators collaboratively compute and publish a single decryption key correspond-
ing to the current block number. This single key can be used to decrypt an arbitrary number of ciphertexts that have
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1.1 Our results

We introduce and construct a new primitive, which we call Selective Batched Identity Based
Encryption (Selective Batched IBE). This new notion solves the efficiency problem described above
for threshold decryption, and also has several other interesting applications, in both the threshold
and the non-threshold setting. Our new notion works as follows.

• As with standard IBE, encryptions are done with respect to some ID. In addition, an encryp-
tion also specifies a batch label.

• Any set of IDs, up to a pre-specified maximum batch size, can be publicly aggregated to pro-
duce a succinct digest.

• A succinct decryption key can be computed from this digest, a specified batch label, and a
master secret key. This computation is done in constant time relative to the batch size. The
key can then be used to decrypt any ciphertext that was encrypted with respect to any ID in
the digest and the matching batch label.

• Optionally, the decryption key computation can be thresholdized.

We have the following contributions in this work.

• In Section 4, we formally define the notion of Selective Batched Identity Based Encryption
(Selective Batched IBE).

• In Section 5, we provide an efficient construction for Selective Batched IBE based on Type-3
pairings and prove its security in the Generic Group Model (GGM).

• In Section 6, we discuss different optimizations which can be used to speed up the diges-
tion and decryption process in our basic construction and an efficient way to add non-
malleability for mempool privacy application.

• In Appendix A, we define a threshold verison of Selective Batched IBE, called Thresholdiz-
able Selective Batched IBE , and efficiently extend our non-threshold construction to the
threshold version.

• In Section 7, we discuss the implementation of our scheme and analyze its concrete perfor-
mance, both in the threshold and non-threshold setting.

• In Section 1.2, we provide many interesting applications of our primitive.

1.2 Cryptographic Applications

Our construction opens up an avenue for a wide range of applications. We begin by describing an
application to fair dishonest-majority MPC via blockchain, and then describe other applications
of conditional batched threshold decryption.

been encrypted towards this block. Notice, however, that this decryption is all-or-nothing and opens all ciphertexts with
the corresponding ID. This is not a suitable solution since a block might not be able to include all transactions that were
submitted to it. Therefore it must be possible to decrypt any subset of the transactions that submitted to a block, while
keeping the other transactions hidden. As such, threshold IBE fails to solve the efficiency problem in the mempool
privacy case.
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Fair Dishonest majority MPC via Blockchain. Secure Multi-party Computation (MPC) allows
two or more parties to compute any public function over their privately-held inputs, without
revealing any information beyond the result of the computation. An extremely desirable property
of such a MPC protocol is fairness, namely ensuring that either all parties learn the output or no
one does. Unfortunately, in a dishonest majority setting (where the adversary can actively corrupt
more than half the number of parties), achieving fairness is impossible [Cle86] in general in the
standard MPC model [Gol09]. Yet this property is crucial for applications like sealed-bid auctions
and contract signing, where information asymmetry can be exploited by a malicious party.

An intriguing method introduced in [Cho+17] suggests achieving fairness through witness
encryption (WE) and public bulletin boards such as blockchains. The parties execute an unfair
MPC protocol, completely off-chain, to compute a WE ciphertext of the output, rather than the
output itself. The construction ingeniously employs a “release token” as a witness for decrypting
the WE ciphertext. First, each party generates a secret share of the release token, ensuring that
the token value is shared between all parties. The statement used for encrypting the output with
WE is designed so that its valid witness is a proof of publishing the full release token on a public
bulletin board. This proof can correspond, for example, for a signature of the blockchain on all
shares of the release token. To decrypt the output, a party must have all shares of the release token
be published on the blockchain. As a result, all shares are available to all parties, not only to the last
party to provide its share.

While the result in [Cho+17] is theoretical, requiring general-purpose WE which is prohibitively
inefficient, we observe that a slightly modified version of their idea can be efficiently instantiated
using our Selective Batched IBE primitive. Instead of computing a WE encryption, the MPC com-
putes an encryption to a specific ID that identifies this MPC session, and a specific block label.
Additionally, before executing the MPC, the MPC participants deploy a smart contract that stores
the public keys of all MPC participants. The smart contract requires that only given a signature
from each of these participants on the ID, the output of the MPC computation can be released.
(Essentially, the signature of participant i corresponds to the agreement of this participant to the
publication of the output.) The blockchain follows this smart contract, and includes this instance
ID in the digest of IDs whose decryption is enabled, only if all participants provided their signa-
tures.

This construction has several nice properties. First, it enables a blockchain to support fairness
for an arbitrary number of MPC instances, while running between its validators a single threshold
computation whose overhead is independent of the number of MPC instances. This property
is crucial for scaling, since blockchain validators typically already have a high load related to
executing transactions and achieving consensus. Second, the validators do not need to decrypt
the results of each MPC session. They merely compute (in constant time) the decryption key that
enables the decryption of every MPC session for which all release approvals were given. Third, we
observe that our specific construction of Selective Batched IBE based on pairing-friendly groups,
is compatible with the popular SPDZ MPC framework [Dam+12] which is one of the most efficient
MPC protocol for performing general-purpose (unfair) secure computation in a dishonest majority
setting. In [SA19; Dal+20], it is shown that the SPDZ framework (which natively works over a
field) can be efficiently extended to perform secure computation over groups. In the context of fair
MPC application, the parties would be required to securely emulate the encryption procedure of
our Selective Batched IBE construction, which requires just 6 group exponentiations, using MPC.
Based on the results provided in [Dal+20], we estimate that the overhead of adding fairness to
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an unfair two-party SPDZ MPC would be less than 20 ms (resp. 500 ms) when using SPDZ MPC
protocol in a LAN (resp. WAN) setting .

Conditional Batched Threshold Decryption. Our construction enables a form of conditional
batch threshold decryption of ciphertexts.

• The fact the decryption is conditional enables to decide at the last minute which ciphertexts
will be decrypted.

• The threshold property enables to distribute trust between multiple servers or validators.

• The batch property enables scalability, since the threshold computation of the servers is in-
dependent of the number of ciphertexts.

Let us elaborate more on the “batch” and the “conditional decryption” properties.

The “batch label” notion In its simplest form, the batch label can correspond to an event that
progresses monotonically along a single dimension. The most obvious examples are batch labels
corresponding to a block id or to the time. In particular, the latter option implements time-lock
encryption (see [RSW96] and followup work). This implementation of time-lock encryption is more
efficient than the notion based on moderately-hard computation, while trust becomes dependent
on the assumption that the server (or a large enough number of the servers in a threshold setting)
are not malicious.

A more complex batch label can correspond to a combination of multiple events in different
dimensions. For example, it could correspond to the event “(the USD/EUR exchange rate is above
1 OR the GBP/JPY rate is below 200) AND the date is January 1, 2025”. The servers responsible
for producing the decryption key for batches will only compute the relevant decryption key when
this condition holds.

Conditional decryption The server, or group of servers sharing the master secret key, can decide
to enable decryption for any arbitrary subset of the ciphertexts that have the same batch label.
There are many examples where this subset cannot be predicted in advance, and the decision
about which ciphertexts are decrypted is non-monotone. Sample examples are the Dutch auction
application described below, and the fair-MPC application. As another example, consider the case
where each transaction submitted to a block has a maximal fee that its sender is willing to pay, and
an upper bound on the amount of gas that the transaction might consume. A block has limited
capacity in terms of gas, and therefore the validators need to solve a knapsack problem in order to
find which subset of submitted transactions will maximize their revenues. The decision on which
transactions to decrypt is based on the solution to this problem.

Sample applications Let us further explore some applications that our construction can support.

• Secure Dutch auctions on the blockchain: A Dutch auction is an auction where the price starts
high and gradually decreases, and the first bidder to accept the current price wins. This type
of auction helps determine the market value by finding the highest acceptable price, with
a process that is transparent and visible to all participants. We would like to implement
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this type of auction in a non-interactive manner, while hiding all bids except for the highest
one(s).3

Suppose that the price of the good for sale, i.e. the item being auctioned, has a price resolu-
tion of m values (say, m = 1000), and that bidder i wants to bid a price of bi ∈ [1,m]. This
bidder submits m encryptions with batch labels 1, . . . ,m, where the encryption with label bi
is of a 1 value, and all encryptions with labels greater than bi are of 0. (The encryptions of
labels smaller than bi can be arbitrary.) All bidders write a smart contract which begins with
decrypting all encryptions with label m. If all these encryptions are of 0, then in the next
block the encryptions with label m−1 are decrypted, etc. This process stops when one of the
decrypted values is 1. When this happens, the bidder (or bidders) who encrypted a 1 value
for the current label are declared the winners and have to pay a price equal to the current
label. No further values are decrypted. It is easy to verify that this process implements the
Dutch auction and hides all bids except for the winning ones. In terms of latency, each price
point is decrypted in a separate block, but given the existence of low-latency blockchains,
such as as Aptos, Sui or Solana, with sub-second block latency, the overall run time of the
auction can be sufficiently fast for many applications. As for efficiency, a single blockchain
can support a very large number of auctions, since a single threshold computation by the
validators enables to decrypt the bids of all relevant auctions, and the decryption itself can
be done publicly and does not require threshold computation.

• Mempool privacy: Our result enables users to submit transactions to a specific block, where
the details of each transaction are encrypted using its unique ID and a batch label equal to
the block number. Once the validators agree on the transactions that will be included in the
block, they aggregate the IDs of these transactions to produce a succinct digest. Given this
digest, the validators compute a succinct decryption key for this block. The computation
of this decryption key is the only procedure requiring access to a secret (namely, the master
secret key), and is thus the only operation that must be computed by a threshold compu-
tation. Finally, given the succinct decryption key of this block, it is possible to decrypt all
transactions that were included in the digest. All other transactions that were submitted to
the block but were not included in it, remain hidden.

We observe that in this specific application, a ciphertext encrypts a signed transaction coming
from a specific sender address, associated with the public key of the signature on the trans-
action. While the authors of [Cho+24] use CCA security for achieving non-malleability, we
point out that CCA security is actually an overkill for the form of non-malleability required
here. This is because in the mempool setting, ciphertexts are associated with a signature
public key, and the decryption oracle only decrypts messages that are signed. This enables
to achieve non-malleability more cheaply, replacing the NIZK proofs of [Cho+24] with a
signature scheme. We refer the readers to Section 6.4 for details.

• Options trading: European options are a type of financial derivative that grants the holder
the right, but not the obligation, to buy or sell an underlying asset at a predetermined price
on a specified date, known as the expiration date. The defining feature of European options
is that they can only be exercised on the expiration date, not before. Our construction can

3A Dutch auction is roughly the interactive equivalent of the (non-interactive) first-price sealed-bid auction. So a
non-interactive implementation of a Dutch auction is also an implementation of a sealed-bid first-price auction.
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be used to hide the terms of such options until the expiration date, and only reveal and
execute an option if its holder chooses to execute it. More specifically, every option is en-
crypted with a batch label that is equal to its expiration date, and with an ID that identifies
its holder. Before or at the expiration date, the holder of the option must send a signed exe-
cution command. A digest of all options which were authorized to be executed is computed.
Afterwards, the server that has the master key publishes the corresponding decryption key
that enables to decrypt and execute these options.

2 Technical Overview

Standard IBE versus Selective Batched IBE. In a standard Identity-Based Encryption (IBE) scheme,
we have a universe I of public identities (for example, these could be email ids) and users can cre-
ate a ciphertext ct w.r.t any id ∈ I so that ct can be decrypted given the identity specific-secret
key skid. These identity-specific secret keys skid are typically issued by an authority (resp. a set
of authorities) holding a master secret key msk (resp. shares of msk) which is used to derive the
identity-specific secret key skid.

We would like to extend this standard IBE to a batched setting where we have a pool of cipher-
texts {ct1, . . . , ctn} and each ctj is a ciphertext w.r.t. some identity idj ∈ I. Given a dynamically
selected4 public batch of identities S ⊆ I, we would like the authority to release a secret key skS
which is succinct (i.e., independent of the size of set S), and which enables the decryption of all ci-
phertexts ctj where idj ∈ S while ensuring that all ciphertexts ctj corresponding to idj /∈ S remain
hidden.

A naive solution to achieve this would be to simply have skS be the set of standard IBE secret
keys for the individual identities in the batch S, i.e, skS = {skj |idj ∈ S}. While this works, the
secret key skS here has size proportional to |S|which is not succinct.

Boneh-Franklin IBE. Our starting point is the (standard) IBE scheme of Boneh-Franklin [BF01],
hereafter referred to as BF-IBE. Here, the master secret key msk is the signing key of a BLS signature
scheme [BLS01] and skid is simply a BLS signature on id using the signing key msk. Recall that a
BLS signature scheme is defined on a pairing-friendly group (G1,G2,GT ) of prime order p with
group operation + : Gi × Gi → Gi and a pairing operation ◦ : G2 × G1 → GT . For a group
Gi with generator gi, we will use the notation [x]i to represent the group element x · gi in the
group Gi where x ∈ Zp. The signer holds a signing key msk ∈ Zp and publishes a verification
key vk = [msk]2. The signature on a message m ∈ {0, 1}∗ is simply σm = msk ·H(m) ∈ G1 where
H : {0, 1}∗ → G1 is a hash function modeled as Random Oracle. To verify a claimed signature σ
on a message m, the following pairing check is performed.

[1]2 ◦ σ = vk ◦H(m)

Coming back to the BF-IBE construction, the authority holds a BLS signing key msk and uses it to
derive an identity-specific secret key skid := σid = msk ·H(id). To encrypt a message m ∈ GT w.r.t.
identity id, the encryptor samples a random r ← Zp and produces the following ciphertext

ct = (ct1, ct2) = (r · [1]2, r · (vk ◦H(id)) +m)

4By “dynamic”, we mean that the subset S of identities can be selected after the ciphertexts have been created.
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Given an identity secret key skid := σid, the message can be recovered as ct2 − (ct1 ◦ skid).

Extension to the batched setting using an accumulator. We would like to extend the above basic
BF-IBE construction to the batched setting. As mentioned earlier, simply concatenating the indi-
vidual skid values of all ids in the batch S ⊆ I doesn’t lead to a succinct key for the batch. To
remedy this, we use a cryptographic accumulator scheme. Such a scheme enables compressing
a set S = {s1, . . . , sn} of items into a succinct public digest d. Using the set S and digest d, it is
possible to compute a short cryptographic proof πs proving that a specific element s is contained
in S. The verification algorithm, given the digest d, claimed element s and proof πs, outputs a bit
indicating either accept or reject. The completeness of the scheme ensures that correctly generated
proofs πs for s ∈ S always pass the verification check, whereas soundness ensures that it is hard
for a computationally bounded adversary to compute valid proofs πs for s /∈ S.

Given such an accumulator scheme, a natural approach is to create a succinct digest d for the
public batch of identities S = {id1, . . . , idn}, and then compute a succinct secret key for the batch
by setting skS to be a BLS signature on the digest d, i.e. skS := σS = msk · H(d) ∈ G1. Now,
one could hope to create an encryption scheme where a ciphertext ct, generated w.r.t. a specific
identity id, is decryptable given a triple (d, πid, skS) as a witness, and if and only if the following
two conditions hold: 1) πid is a valid membership proof of id w.r.t. the digest d, 2) skS is a valid
signature on the digest d.

Challenges and next steps. Although the above template conceptually works, it is not clear how
to build an efficient encryption scheme satisfying the required properties and, in general, it seems
to require a general purpose witness encryption [Gar+13; Gar+16; Tsa22; VWW22] which requires
strong cryptographic assumptions and/or is often inefficient in practice.

We utilize the observation in [Gar+24] that the BF-IBE construction can be seen as a special
case of a general technique which transforms a public linear constraint system, defined over some
cryptographically hard, pairing-friendly groups, into an efficient witness encryption scheme. In
such a constraint system, each constraint involves some public group elements (which are part
of the statement) and some private group elements (which are part of the witness). The “linear-
ity” condition requires that the witness group elements are never paired with each other in the
constraint. To be specific, we can consider the following linear constraint system containing n
constraints and m witness elements.

a1,1 ◦ w1 + . . .+ a1,m ◦ wm = b1

a2,1 ◦ w1 + . . .+ a2,m ◦ wm = b2

. . . = . . .

an,1 ◦ w1 + . . .+ an,m ◦ wm = bn

where {ai,j}i∈[n],j∈[m] and {bi}i∈[n] are public group elements in G2 and GT respectively whereas
{wi}i∈[m] are private witness elements in G1 (highlighted in grey ). The above system of con-
straints can be succinctly expressed as

A ◦ w = b
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where

A =

a1,1 . . . a1,m
...

...
...

an,1 . . . an,m

 , w =

 w1

...
wm

 , b =

b1
...
bn


Given such a constraint system, a message m ∈ GT can be witness-encrypted in the following

way (analogous to BF-IBE encryption).

ct = (ct1, ct2) = (rT ·A, rT · b+m)

where r← Zn
p is a randomly sampled column vector and rT denotes its transpose. Intuitively,

one could think of the term rT · b as a one-time-pad that is applied to the message m.

Given a witness w, the message can be recovered from ct by simply computing ct2 − ct1 ◦ w
(again analogous to BF-IBE decryption).

Recall from our template discussed earlier that in the context of batched IBE, we want to create
an encryption scheme where a ciphertext ct, generated w.r.t. a specific identity id, is decryptable
given a witness triple w = (d, πid, skS), iff the following two conditions hold: 1) πid is a valid
membership proof of id w.r.t. the digest d, 2) skS is a valid signature on the digest d. Each of these
two conditions will induce a constraint on the witness w. Therefore, in order for us to utilize the
aforementioned general technique of building an encryption scheme from a constraint system, we
need to select our cryptographic ingredients, namely the accumulator and signature scheme, in a
careful way so that the induced constraints are linear w.r.t. the witness w.

Observation 1. Our first obervation is that the well-known KZG commitment scheme [KZG10]
satisfies the required property of linear verification. Let d denote the digest created out of a set
S ⊆ I = Zp. Without going too much into the details of the KZG scheme, we note that the digest
d is created by interpolating a univariate polynomial f whose roots are all the elements in set
S, and evaluating it at a secret point τ “in the exponent”. In other words, d is simply [f(τ)]1.
The verification of a membership proof πid ∈ G1 w.r.t. id ∈ I involves checking the following
constraint.

[1]2 ◦ d = ([τ ]2 − [id]2) ◦ πid

where [τ ]2 is a public group element generated during a one-time setup phase.

Observation 2. Unfortunately, the BLS signature scheme [BLS01], which we have been discussing
so far in the context of BF-IBE, does not satisfy the desired property of linear verification in our
context. To be more specific, while the BLS verification constraint is linear w.r.t. a signature (which
is the skS part of our witness w), it is not linear w.r.t. the message being signed (which is the digest
d part of our witness w). In our context, the unmodified BLS verification constraint would look as
follows,

[1]2 ◦ skS = vk ◦H( d )
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As we can see, this constraint involves applying the hash function H on the digest d, which is
a highly non-linear operation! It turns out that by adding a slight modification to the BLS signature
scheme, we can restore linearity to the constraint. Let α← G1 be a random group element whose
discrete logarithm is unknown to any party. Then, the modified BLS scheme would sign a message
m ∈ G1 as σm := msk · (m+α). The verification constraint for a claimed signature σ on a message
m ∈ G1 would simply check whether [1]2 ◦σ = vk◦ (m+α) holds. Translating the notations to our
context, where we need to sign the digest d to produce skS , the verification constraint would be,

[1]2 ◦ skS = vk ◦ ( d + α)

We note that this modification to the BLS scheme does not come for free. Firstly, it requires α
to be generated as part of the setup. Secondly, if α is reused for signing more than once, then it
can be used to forge signatures5. Thirdly, there is concrete forgery attack against this scheme in
Type-1 and Type-2 pairing group (even when α is used only once)6. The first two limitations can
be easily addressed by generating a fresh r as the output of a random oracle on a nonce (which
could be the batch label in our context). To address the third limitation, we restrict ourselves to
Type-3 pairing groups and prove the security of our overall scheme in the GGM.

Putting things together. Given these two ingredients (KZG commitments and modified BLS),
we can now express our verification constraints in a form that is linear w.r.t. the witness w =
(d, πid, skS).

[1]2 ◦ d = ([τ ]2 − [id]2) ◦ πid

[1]2 ◦ skS = vk ◦ ( d + α)

Rearranging the above constraint system, we get the following matrix form.

(
[1]2 [id]2 − [τ ]2 0
vk 0 −[1]2

)
︸ ︷︷ ︸

A

◦

 d
πid
skS


︸ ︷︷ ︸

w

=

(
[0]T

−(vk ◦ α)

)
︸ ︷︷ ︸

b

Given such a linear constraint system, a message m can be encrypted by sampling r← Z2
p and

computing

ct = (ct1, ct2) = (rT ·A, rT · b+m)

as described earlier. Given a witness w, the message can be recovered from ct by simply
computing ct2 − ct1 ◦w.

5Given signatures σm1 := msk · (m1 + α) and σm2 := msk · (m2 + α) on messages m1 and m2 respectively, one can
easily get a valid signature σm3 := 2σm1 − σm2 = msk · (2m1 −m2 + α) on message m3 := (2m1 −m2)

6In such groups, one can use vk = [msk]2 to get [msk]1 = msk · [1]1. Given a signature σm1 := msk · (m1 + α) on
message m1, we can derive a signature σm2 := σm1 +msk · [1]1 = msk · (m1 + 1 + α) on message m2 = m1 + 1

11



3 Preliminaries

Notation We use λ to denote a computational security parameter, [n] to represent the set of
integers {1, . . . , n}, x ← S to denote that x is an element sampled uniformly at random from set
S. We use bold-letters to indicate vectors and matrices. For a vector v of length n, we use the
notation vi to indicate the ith co-ordinate of v where i ∈ [n]. By poly(λ) and negl(λ), we mean the
class λO(1) and 1

λω(1) . Given a security parameter λ, we use PPT to denote probabilitic poly(λ)-time
Turing Machines with poly(λ)-sized advice.

3.1 Bilinear Groups

We follow the notation used in [Gar+24], Section 3.1. A bilinear group, denoted as BG, is a set
of three groups (G1,G2,GT ) of prime order p, with a (non-degenerate) bilinear map or pairing,
denoted as e. This map takes one element from G1 and one element from G2 and produces an
element in GT . The groups G1 and G2 are referred to as source groups, while GT is the target
group. The groups G1,G2 have random generators g1, g2, and we use the notation [x]s to represent
x · gs in the group Gs, for s ∈ {1, 2, T}, where x ∈ Zp and the generator of GT is gT = e(g1, g2). The
group operation is additive, and therefore [x]s + [y]s = [x+ y]s.

We can represent the pairing operation e([x]1, [y]2) as [x]1 ◦ [y]2 = [y]2 ◦ [x]1 = [x · y]T . (This
notation makes it easier to write expressions which compose pairings with linear operations.) As a
result, the operation ◦ is commutative and can be applied to vectors of equal length. For example,
for u ∈ (G1)

n,v ∈ (G2)
n, where u = ([u1]1, . . . , [un]1) and v = ([v1]2, . . . , [vn]2), we have that uT ◦

v = [u1v1 + · · ·unvn]T . It is further possible to use this notation for matrix-vector multiplication.
If A ∈ (G1)

n×m and b ∈ (G2)
m, then A ◦ b is the vector in (GT )

n with the coordinates (A1 ◦
b, . . . ,An ◦ b) where Ai is the ith row vector of the matrix A.

3.2 Generic group model (GGM)

At a high level, this model captures the class of ‘generic’ adversaries - adversaries that don’t ex-
ploit concrete representations of the elements of the group and only perform generic group opera-
tions. This model is aimed to captures the possible algebraic attacks that an adversary can perform.
The following description of Shoup’s GGM [Sho97] is taken from [Zha22]. Let p ∈ Z be a positive
integer, and let S ⊆ {0, 1}∗ be a set of strings of cardinality at least p. We will assume an upper
bound is known on the length of strings in S. An arbitrary group G of prime order p is generically
modeled by sampling a random injection L : Zp → S, which we will call the labeling function. We
will think of L(x) as corresponding to (the string representation) of gx, where g ∈ G is a fixed
generator of the group G. All parties are able to make the following queries:

• Labeling queries. The party submits x ∈ Zp, and receives L(x).

• Group operations. The party submits (ℓ1, ℓ2, a1, a2) ∈ S2 × Z2
p. If there exists x1, x2 ∈ Zp

such that L(x1) = ℓ1 and L(x2) = ℓ2, then the party receives L(a1x1 + a2x2). Otherwise, the
party receives ⊥.

We note that the labeling map L need not be explicitly materialized all at once. In fact, it is
typical in security proofs to sample such a map in a lazy fashion as the queries are made. When
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performing such a lazy sampling, we will think of L as a “dictionary” and use x ∈ L to mean the
action of checking whether the element x exists as a “key” in L.

In a bilinear group BG, the parties are equipped with labeling queries and group operations in
Gi, with a random labeling function Li : Zp → Si for Si ⊆ {0, 1}∗ and i ∈ {1, 2, T}. Additionally,
the parties can make the following query for pairing operation [BBG05].

• Pairing operation. The party submits (ℓ1, ℓ2) ∈ S1 × S2. If there exists x1, x2 ∈ Zp such
that L1(x1) = ℓ1 and L2(x2) = ℓ2, then the party receives LT (x1 · x2). Otherwise, the party
receives ⊥.

The typical GGM does not capture an adversary’s ability to “hash” arbitrary strings into the
group To model this, we can extend the GGM with an appropriate hashing oracle as discussed
in [LPS23; Bau+23]. Here, a hash function H : {0, 1}∗ → Zp is sampled at random and parties can
make the following query.

• Hash query. The party submits x ∈ {0, 1}∗ and receives L(H(x)).

Security proofs in the GGM. The security of a cryptographic scheme is usually defined by a
game where two parties, namely the challenger and the adversary, interact as per some specifi-
cation and the challenger finally outputs a bit b indicating the verdict of the game (b = 1 for win
and b = 0 for lose). When writing security proofs in the GGM, the challenger is supposed to sim-
ulate the GGM oracle towards the adversary. Let n ∈ Z be a positive integer. The game usually
involves the challenger sampling some secrets x1, . . . , xn ∈ Zp and leaking L(f(x1, . . . , xn)) to the
adversary for some f .

A standard technique for security proofs in the GGM, introduced in [Sho97], is the following.
Instead of explicitly sampling secret xi ∈ Zp, the challenger replaces it with an indeterminate Xi.
Additionally, the domain of the labeling function is expanded from Zp to Zp[X1, . . . , Xn], the set
of all n variate polynomials with coefficients in Zp. Now, instead of leaking L(f(x1, . . . , xn)) to the
adversary, the challenger leaks L(f(X1, . . . , Xn)). This model, where the challenger substitutes all
the secrets with their corresponding indeterminates, is known as the “symbolic model”. Proving
security in this model boils down to showing independence between a target polynomial and the
polynomials whose labels/encodings are present in the view of the adversary. We will use this
technique in proving the security of our scheme.

3.3 Polynomial Commitment

A polynomial commitment enables the computation of a compact value, denoted as com, for a
polynomial f that may have a high degree over a finite field F. Subsequently, one can compute
concise openings to prove that the polynomial committed to by com evaluates to some value β at
a specific point α. The polynomial commitment must be binding, meaning it should be infeasible
to open the same point to two distinct values. We refer the reader to [KZG10] for the detailed
definition of polynomial commitments.

The KZG polynomial commitment scheme [KZG10] uses as public parameters powers of a
secret point τ in the exponent of a group generator. In the group G1 used in our construction these
would be the values [τ ]1, . . . , [τ

d]1, where d is an upper bound on the degree of the polynomial.
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These parameters are computed in a setup phase, and the value of τ is kept secret. Committing
to a polynomial is done by evaluating it in the exponent at point τ , namely computing [f(τ)]1. A
crucial property is that this computation can be done using the public powers of τ , but without
knowledge of τ itself.

Theorem 3.1 ([KZG10; Chi+20]). If the d-DLOG assumption holds with respect to parameter generation
algorithm of the KZG commitment scheme described in [KZG10], then that commitment scheme is a correct
and binding polynomial commitment scheme in the AGM, according to the definitions of [KZG10; Chi+20].

4 Defining Selective Batched Identity Based Encryption

4.1 Syntax

As in a standard IBE [BF01], a Selective Batched IBE will include a Setup algorithm (with an ad-
ditional parameter for batch size) which generates public parameters and KeyGen algorithm that
generates a public key pk and a master secret key msk. Typically, KeyGen will be executed by a
central authority which privately stores msk and publishes pk publicly. Using the pk, anyone can
encrypt a message m w.r.t. a specific id, along with a batch label t, to produce a ciphertext. In
contrast to a standard IBE where the authority issues identity specific secret keys, our Selective
Batched IBE will enables secret key issuance for a batch of identities. To capture this, we split the
secret key derivation process into two parts: 1) A Digest algorithm that, given a batch of identities,
produces a digest, 2) A ComputeKey algorithm that, given a digest and the batch label, produces a
secret key sk. We note that only the ComputeKey algorithm uses the master secret key. The Digest
algorithm only uses public information that is accessible to all participants. Finally, anyone hold-
ing the digest-batch label-specific key secret key sk can use the Decrypt algorithm to decrypt all
ciphertexts whose identities were part of the digest.

Definition 4.1 (Selective Batched IBE Syntax). A Selective Batched IBE scheme SBIBE is specified
by six algorithms: Setup, KeyGen, Encrypt, Decrypt, Digest, ComputeKey.

• Setup(1λ, 1B) → params: A randomized algorithm that takes as input a security parameter
λ ∈ N and a batch size B = B(λ). It outputs params (system parameters) which includes
a description of the message spaceM, identity space I, batch label space T and ciphertext
space C.

• KeyGen(params)→ (msk, pk): a randomized algorithm that takes as input params and outputs
msk (master secret key) and pk (public key).

• Encrypt(pk,m, id, t) → c: a randomized algorithm that takes as input a message m ∈ M, an
identity id ∈ I, a batch label t ∈ T , public key pk and outputs a ciphertext c ∈ C.

• Digest(pk, {id1, . . . , idB})→ d: a deterministic algorithm that takes as input the public key pk
and a list of identities id1, . . . , idB where each idi ∈ I. It outputs a digest d.

• ComputeKey(msk, d, t) → sk: a deterministic algorithm that takes as input the master secret
key msk, digest d, batch label t and outputs a digest-batch label-specific secret key sk.
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• Decrypt(c, sk, d, {id1, . . . , idB}, id, t) → m: a deterministic algorithm that takes as input a ci-
phertext c, secret key sk, digest d, a list of identities id1, . . . , idB and an identity-batch label
pair (id, t). It outputs a message m ∈M.

Remark. We note that the syntax doesn’t enforce any restrictions on how the batch list {id1, . . . , idB}
is selected as input for the Digest algorithm. We leave this choice to higher-level applications that
use the SBIBE primitive. One such application, namely mempool privacy, is discussed in Sec-
tion 6.4. Other applications are discussed in Section 1.2.

4.2 Correctness, Non-triviality and Security

The above algorithms should satisfy the following requirements.

Definition 4.2 (Selective Batched IBE Correctness). For all λ ∈ N, B ∈ N,m ∈ M, t ∈ T , id ∈
I, S ⊆ I s.t. |S| = B and id ∈ S, the following should hold:

Pr

[
Decrypt(c, sk, d, S, id, t) = m

∣∣∣∣∣
params← Setup(1λ, 1B)

(pk,msk)← KeyGen(params)
c← Encrypt(pk,m, id, t)

d← Digest(pk, S)
sk← ComputeKey(msk, d, t)

]
= 1

Definition 4.3 (Selective Batched IBE Non-triviality/Efficiency). We require that the running time
of ComputeKey be independent of the batch size B (which implies that the digest d and sk are also
independent of B)

Remark. We enforce the above requirement for the following reasons: 1) Without this require-
ment, one could come up with a trivial scheme using standard IBE where the secret key sk for
a set of ids {id1, . . . , idB} and batch label t is simply the standard IBE secret keys for identities
{id1||t, . . . , idB||t}. Here, the running time of ComputeKey and its output sk will be O(B). 2) This
feature, while already useful in a non-threshold setting, becomes even more useful in a threshold
setting where the msk is split among multiple authority members (using a secret sharing scheme)
and they securely emulate the execution of ComputeKey procedure using their share of msk to
produce sk. In such a setting, the above requirement will ensure that the running time and com-
munication cost of the secure emulation is independent of the batch size (which can be a huge cost
saving in practice). We refer the readers to Appendix A for more details regarding the threshold
setting.

Our definition of security is an adaptation of the standard definition of IBE by Boneh et.
al. [BF01] and captures the fact that any ciphertext c created w.r.t. an identity id∗ and batch la-
bel t∗ remains hidden as long as the id∗ is not included in any of the batches for which sk has been
released. Moreover, we allow each batch label to be used only once as this is what our construction
achieves and suffices for many of the discussed applications (where batch label can be considered
as a “round number”)

Definition 4.4 (Selective Batched Identity Based Encryption Security). We define a security game
ExptSBIBEA,b (1λ, B) with respect to adversary A in the box below.
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We say that a batched IBE scheme is secure if for all B ∈ N, for all PPT adversaries A there
exists some negligible function ϵA such that the following holds:∣∣∣Pr[ExptSBIBEA,0 (1λ, B) = 1]− Pr[ExptSBIBEA,1 (1λ, B) = 1]

∣∣∣ < ϵA(λ).

The security game ExptSBIBEA,b (1λ, B).

Setup: The challenger takes as input the security parameter λ and the batch size B. It
runs params ← Setup(1λ, 1B), and then runs (msk, pk) ← KeyGen(params). Finally, it sends
(params, pk) to A.

The rest of the game proceeds in rounds, as follows.
Pre-challenge queries: Amay issue an arbitrary number of key computation queries:

• A sends a list ids of B identities along with a batch label t to the challenger.

• If a key computation query has already been made with batch label t, the challenger
halts the game.

• Otherwise, the challenger does the following:

– Compute a digest d← Digest(pk, ids) of the ids in ids using public key pk.

– Compute a secret key sk ← ComputeKey(msk, d, t), using the digest d computed
from the previous step.

– Send sk to A.

Challenge round: Once during the game,Amay decide that the current round is the challenge
round. The challenge round proceeds as follows:

• A sends two messages m0,m1 ∈M and an identity-batch label pair (id∗, t∗) on which it
wishes to be challenged.

• If key computation query (ids, t) has already been made with batch label t = t∗ and
where id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger computes c← Encrypt(pk,mb, id
∗, t∗) and sends c to A.

Post-challenge queries: After the challenger round, A may again issue an arbitrary number
of key computation queries, with the additional restriction that A cannot query (t∗, ids) with
id∗ ∈ ids:

• A sends a list ids of B identities along with a batch label t to the challenger.
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• If a key computation query has already been made with batch label t or if t = t∗ and
id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger does the following:

– Compute a digest d← Digest(pk, ids) of the ids in ids using public key pk.

– Compute a secret key sk ← ComputeKey(msk, d, t), using the digest d computed
from the previous step.

– Send sk to A.

Output: At any point in time,A can decide to halt and output a bit b′ ∈ {0, 1}. The game then
halts with the same output b′.

5 Our Selective Batched Identity Based Encryption construction

5.1 Construction

In this section, we will provide a construction of SBIBE scheme based on Kate et. al. [KZG10]
polynomial commitment scheme and the modified BLS signature scheme that we discussed in Sec-
tion 2. We show the formal construction in Fig. 1. The key details of the construction are as follows.
The construction is in a Type-3 asymmetric pairing setting, with groups G1,G2,GT of order p, and
a pairing operation e(G1,G2) → GT . The message space is GT and the identity space is Zp. The
construction also uses a hash function H whose range is G1.

Key generation includes choosing a random master secret key msk← Zp and a random secret
parameter τ ← Zp. The secret key is msk, while the public key includes a powers-of-Tau setting of
order B in G1, namely ([τ ]1, . . . , [τ

B]1, as well as the following two elements in G2, [τ ]2 and [msk]2,
corresponding to raising the generator g2 ∈ G2 to the powers of τ and msk.

The encryption of a message m with identity id to a batch label t, includes computing a matrix
A ∈ (G2)

2×3 and a vector b ∈ (GT )
2. In addition to being dependent on the public key, A

depends on the identity id, whereas b depends on the batch label (and therefore b is identical for
all messages encrypted to this batch label). The encryption is c = (c1, c2) = (rT ·A, rT · b + m),
where r is a random column vector in (Zp)

2. Note that c1 is a vector of dimension 3 in G2, and c2
is an element of GT .

The digest algorithm takes B identities and then interpolates a polynomial of degree B in
Zp whose roots are these identities, and whose leading coefficient is 1. The digest d is the KZG
commitment of this polynomial, namely the value of this polynomial at the point [τ ]1.

The compute-key algorithm outputs the secret key sk := msk · (d+H(t)) ∈ G1. This is the only
algorithm that uses the master secret key msk.

Decryption is computed independently for every ciphertext c. The decryption of a message
with identity id involves interpolating a polynomial which has roots in all identities in the digest,
except for id, and computing a KZG opening proof π using this polynomial. The ciphertext is
parsed as (c1, c2), and decrypted by computing message c2 − c1 ◦ (d, π, sk)T .

Theorem 5.1. Assuming Type-3 pairing groupBG, there exists a construction (Fig. 1) for Selective Batched
IBE which is secure in the Generic group model.
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SBIBE construction

• Setup(1λ, 1B): Output three groups G1,G2,GT of order p, where p is a λ-bit prime, equipped
with generators g1, g2, gT , respectively, and an efficiently computable pairing operation ◦ :
G2 × G1 → GT . Set the message spaceM := GT , identity space I := {0, . . . , p − 1}, and
batch label space T := {0, 1}λ. Also output a randomly sampled hash function H : T → G1.

• KeyGen(params) : Sample msk ← Zp and τ ← Zp. Output msk, pk :=
([τ ]1, . . . , [τ

B]1, [τ ]2, [msk]2).

• Encrypt(pk,m, id, t) : Let A be a matrix in (G2)
2×3 and b be a vector in (GT )

2, defined as
follows.

A :=

(
[1]2 [id]2 − [τ ]2 0

[msk]2 0 −[1]2

)

b :=

(
[0]T

−([msk]2 ◦H(t))

)
Sample a (column) vector r = (r1, r2)← (Zp)

2 and output the ciphertext c where

c = (rT ·A, rT · b+m)

• Digest(pk, {id1, . . . , idB}) : Let f(X) =
∑B

i=0 fi ·Xi be a univariate polynomial of degree B

over Zp with roots at id1, . . . , idB and leading coefficient 1. Output digest d :=
∑B

i=0 fi · [τ i]1.

• ComputeKey(msk, d, t) : Output the secret key sk := msk · (d+H(t)).

• Decrypt(c, sk, d, {id1, . . . , idB}, id, t): Let q(X) =
∑B−1

i=0 qi ·Xi be a univariate polynomial of
degree B − 1 with roots at {id1, . . . , idB} \ {id} and leading coefficient 1. Set π :=

∑B−1
i=0 qi ·

[τ i]1 and set w to be the following vector.

w =

 d
π
sk


Finally, parse c as (c1, c2) and output the decrypted message m∗ := c2 − c1 ◦w.

Figure 1: Our construction for Selective Batched Identity Based Encryption
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5.2 Analysis

5.2.1 Efficiency

We discuss the computation cost of each of the algorithms in Fig. 1. Setup requires O(λ) operations.
KeyGen requires O(B) group exponentiations. Encrypt requires O(1) group exponentiations. Digest
and Decrypt require O(B logB) field multiplications (via DFT) and O(B) group exponentiations.
ComputeKey requires O(1) group operations (independent of batch size B). We summarize the
concrete parameter sizes below in Table 1.

Parameter Size

Public parameters size B|G1|+ 2|G2|
Ciphertext size 3|G2|+ |GT |
Digest size |G1|
Decryption key size |G1|

Table 1: Parameter sizes for our scheme.

5.2.2 Correctness

The correctness of the scheme is straight forward. Given a ciphertext c = (c1, c2), and a witness w
generated as per the specified algorithms, we have the following decrypted message.

m∗ = c2 − c1 ◦w
= rT · b+m− (rT ·A) ◦w

= −r2([msk]2 ◦H(t)) +m−
(
[r1 + r2 ·msk]2, [r1 · id]2 − [r1 · τ ]2,−[r2]2

)
◦

 d
π
sk


= −r2([msk]2 ◦H(t)) +m−

(
[r1 + r2 ·msk]2, [r1 · id]2 − [r1 · τ ]2,−[r2]2

)
◦

 [ΠB
i=1(τ − idi)]1

[ΠB
i=1,idi ̸=id(τ − idi)]1

msk · ([ΠB
i=1(τ − idi)]1 +H(t))


= −r2([msk]2 ◦H(t)) +m− [r1 ·ΠB

i=1(τ − idi) + r2 ·msk ·ΠB
i=1(τ − idi)

− r1 ·ΠB
i=1(τ − idi)− r2 ·msk ·ΠB

i=1(τ − idi)]T + [r2]2 ◦msk ·H(t)

= m

5.2.3 Security

We will prove the security of our scheme in the GGM model equipped with hash queries. In this
model, the challenger will implement the group oracle and the hash oracle (along with an oracle
for key computation queries as defined in the security game ExptSBIBE earlier).
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Theorem 5.2. For all B ∈ N and all unbounded adversariesAmaking at most q queries (including queries
to the group oracle, hash oracle, and key computation queries), we have:∣∣∣Pr[ExptSBIBE,GGMA,0 (1λ, B) = 1]− Pr[ExptSBIBE,GGMA,1 (1λ, B) = 1]

∣∣∣ ≤ 2

(
q +B + 5

2

)
(B + 2)

p

where ExptSBIBE,GGM refers to the same experiment ExptSBIBE as defined in Definition 4.4 except that
we specialize it for our specific Construction (Fig. 1) and model it in the GGM, i.e., all the group and
hash operations performed by the adversary are simulated by the challenger as defined in the GGM model
(Section 3.2). We formally define the experiment below.

The security game ExptSBIBE,GGMA,b (1λ, B).

Setup: The challenger takes as input the security parameter λ and the batch size B. It runs
params ← Setup(1λ, 1B). Let S1 = S2 = ST = {0, 1}p′ where 2p

′ ≥ p and p is a prime (denot-
ing the group order) contained in params. Then it initializes the maps including the labeling
function Li : Zp → S for each i ∈ {1, 2, T} and the hash function H : {0, 1}∗ → Zp. During the
KeyGen phase, it performs the following steps:

• Sample emsk ← S2, msk← Zp. Set L2(msk) := emsk and S2 := S2 \ {emsk}.

• Sample τ ← Zp.

• For i ∈ [B − 1], sample eτ i ← S1 and set L1(τ
i) := eτ i and S1 := S1 \ {eτ i}.

• Sample e′ ← S2 and set L2(τ) = e′ and S2 := S2 \ {e′}.

It sets pk = (L1(τ), . . . , L1(τ
B), L2(τ), L2(msk)) and sends (params, pk) to A.

The rest of the game proceeds in rounds, as follows.
Pre-challenge queries: Amay issue an arbitrary number of the following types of queries:

Labeling query: For each labeling query for group Gi, the challenger receives a value v ∈ Zp

from A. If v /∈ Li, it samples z ← Si, sets Li(v) := z and Si := Si \ {z}. It sends Li(v) to A.

Group operation: For each group operation query for group Gi, the challenger receives
(ℓ1, ℓ2, a1, a2) ∈ ({0, 1}p′)2 × Z2

p. If there doesn’t exists x1, x2 ∈ Zp such that Li(x1) = ℓ1
and Li(x2) = ℓ2, then send ⊥ to A. Otherwise, execute an internal labeling query step on
group Gi with input x3 := a1x1 + a2x2 and send Li(x3) to A.

Pairing operation: The challenger receives (ℓ1, ℓ2) ∈ {0, 1}p
′ × {0, 1}p′ . If there doesn’t exist

x1, x2 ∈ Zp such that L1(x1) = ℓ1 and L2(x2) = ℓ2, then the challenger sends ⊥ to A. Other-
wise, it computes x3 = x1 · x2. It executes an internal labeling query step for group GT with
input x3 and sends LT (x3) to A.
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Hash query: For each hash query, the challenger receives a string s ∈ {0, 1}∗ from A. If
s /∈ H , the challenger samples z ← Zp. It sets H(s) := z and executes an internal labeling
query step for group G1 with input z. It sends L1(z) to A.

Key computation query:

• A sends a list ids of B identities, S = {id1, . . . , idB} ⊆ I, along with a batch label t ∈ T
to the challenger.

• If a key computation query has already been made with batch label t, the challenger
halts the game.

• Otherwise, the challenger does the following:

– Let f(X) =
∑B

i=0 fi · Xi be a univariate polynomial of degree B over Zp with
roots at id1, . . . , idB and leading coefficient 1. If f(τ) /∈ L1, then execute an internal
labeling query step for group G1 with input f(τ).

– If t /∈ H , execute an internal hash query step with input t.

– Let P := (f(τ)+H(t)) ·msk. If P /∈ L1, then execute an internal labeling query step
for group G1 with input P .

– Finally, send the secret key sk := L1(P ) to A.

Challenge round: Once during the game,Amay decide that the current round is the challenge
round. The challenge round proceeds as follows:

• A sends two messages m0,m1 ∈ {0, 1}p
′

and an identity-batch label pair (id∗, t∗) on
which it wishes to be challenged.

• If key computation query (ids, t) has already been made with batch label t = t∗ and
where id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger executes the following steps.

– If t∗ /∈ H , execute a hash query step internally using input t∗.

– Let A be a matrix and b be a vector defined as follows.

A :=

(
1 id∗ − τ 0

msk 0 −1

)

b :=

(
0

−H(t∗) ·msk

)
– Sample a (column) vector r← (Z∗

p)
2. Compute a list y of four Zp values where

y = (rT ·A, rT · b)
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– Parse y as (y0, y1, y2, y3). For each i ∈ {0, 1, 2, 3}, execute an internal labeling query
step for group G2 with input yi.

– Send the ciphertext c = (L2(y0), L2(y1), L2(y2), L2(y3 + L−1
2 (mb))) to A

Post-challenge queries: After the challenger round, A may again issue an arbitrary number
of all the query types that were part of Pre-challenge queries with the following additional
restriction on key computation queries: A cannot query (t∗, ids) with id∗ ∈ ids. More formally,
we have the following:

Key computation query:

• A sends a list ids of B identities along with a batch label t to the challenger.

• If a key computation query has already been made with batch label t or if t = t∗ and
id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger executes the same steps as described in the Pre-challenge
queries.

Output: At any point in time,A can decide to halt and output a bit b′ ∈ {0, 1}. The game then
halts with the same output b′.

Proof. To prove Thm. 5.2, we will proceed in two steps. In the first step, we will show that the
difference between symbolic versions of the experiments ExptSBIBE,GGMA,0 and ExptSBIBE,GGMA,1 , de-

noted by ExptSBIBE,SMA,0 and ExptSBIBE,SMA,1 respectively, is zero (Lemma 5.3). In the second step, we

will show that for b ∈ {0, 1}, the difference between ExptSBIBE,GGMA,b and ExptSBIBE,SMA,b is at most

ϵ =
(
q+B+5

2

) (B+2)
p (Lemma 5.4). Combining these two steps implies the following:

ExptSBIBE,GGMA,0 ≈ϵ Expt
SBIBE,SM
A,0 ≡ ExptSBIBE,SMA,1 ≈ϵ Expt

SBIBE,GGM
A,1

which implies that ExptSBIBE,GGMA,0 ≈2ϵ Expt
SBIBE,GGM
A,1 and completes the proof of Thm. 5.2.

Corollary 5.2.1. For p = O(2λ), B = poly(λ) and q = poly(λ) and all unbounded adversaries A making
at most q queries (including queries to the group oracle, hash oracle, and key computation queries), we have:∣∣∣Pr[ExptSBIBE,GGMA,0 (1λ, B) = 1]− Pr[ExptSBIBE,GGMA,1 (1λ, B) = 1]

∣∣∣ ≤ negl(λ)

Lemma 5.3. For all B ∈ N and all unbounded adversaries A, we have:∣∣∣Pr[ExptSBIBE,SMA,0 (1λ, B) = 1]− Pr[ExptSBIBE,SMA,1 (1λ, B) = 1]
∣∣∣ = 0

The security game ExptSBIBE,SMA,b (1λ, B).

Setup: The challenger takes as input the security parameter λ and the batch size B. It runs
params ← Setup(1λ, 1B). Let S1 = S2 = ST = {0, 1}p′ where 2p

′ ≥ p and p is a prime (denot-
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ing the group order) contained in params. Then it initializes the maps including the labeling
function Li : Zp → S for each i ∈ {1, 2, T} and the hash function H : {0, 1}∗ → Zp. During the
KeyGen phase, it performs the following steps:

• Sample emsk ← S2, sets L2(Xmsk) := emsk where Xmsk is an indeterminate corresponding
to the master secret key msk. Set S2 := S2 \ {emsk}.

• Let Xτ be an indeterminate.

• For i ∈ [B − 1], sample eτ i ← S1 and set L1(X
i
τ ) := eτ i and S1 := S1 \ {eτ i}.

• Also, sample e′ ← S2 and set L2(Xτ ) := e′ and S2 := S2 \ {e′}.

It sets pk = (L1(Xτ ), . . . , L1(X
B
τ ), L2(Xτ ), L2(Xmsk)) and sends (params, pk) to A.

The rest of the game proceeds in rounds, as follows.
Pre-challenge queries: Amay issue an arbitrary number of the following types of queries:

Labeling query: For each labeling query for group Gi, the challenger receives a value v ∈ Zp

from A. If v /∈ Li, it samples z ← Si, sets Li(v) := z and Si := Si \ {z}. It sends Li(v) to A.

Group operation: For each group operation query for group Gi, the challenger receives

(ℓ1, ℓ2, a1, a2) ∈ {0, 1}p
′2 × Z2

p. If there doesn’t exist polynomials x1, x2 ∈ Zp[∗] such that
L(x1) = ℓ1 and L(x2) = ℓ2, then send ⊥ to A. Otherwise, execute an internal labeling query
step for group Gi with polynomial x3 = a1x1 + a2x2 and send Li(x3) to A.

Pairing operation: The challenger receives (ℓ1, ℓ2) ∈ {0, 1}p
′ × {0, 1}p′ . If there doesn’t exist

polynomials x1, x2 ∈ Zp[∗] such that L1(x1) = ℓ1 and L2(x2) = ℓ2, then the challenger sends
⊥ toA. Otherwise, it computes polynomial x3 = x1 ·x2. It executes an internal labeling query
step for group GT with input x3 and sends LT (x3) to A.

Hash query: For each hash query, the challenger receives a string s ∈ {0, 1}∗ from A. If
s /∈ H , then the challenger sets H(s) := Xs , where Xs is an indeterminate, and executes an
internal labeling query step for group G1 with input Xs. It sends L1(H(s)) to A.

Key computation query:

• A sends a list ids of B identities, S = {id1, . . . , idB} ⊆ I, along with a batch label t ∈ T
to the challenger.

• If a key computation query has already been made with batch label t, the challenger
halts the game.

• Otherwise, the challenger does the following:
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– Let f(Xτ ) =
∑B

i=0 fi · Xi
τ be a univariate polynomial of degree B over Zp with

roots at id1, . . . , idB and leading coefficient 1. If f(Xτ ) /∈ L1, the challenger samples
z ← {0, 1}∗ and sets L1(f(Xτ )) := z.

– If t /∈ H , it executes a hash query step with input t.

– Let P := (f(Xτ ) +H(t)) ·Xmsk be a polynomial where the indeterminates are Xτ ,
H(t) and Xmsk. If P /∈ L1, the challenger samples z ← {0, 1}∗ and sets L1(P ) := z.

– Finally, it sends the secret key sk := L1(P ) to A.

Challenge round: Once during the game,Amay decide that the current round is the challenge
round. The challenge round proceeds as follows:

• A sends two messages m0,m1 ∈ {0, 1}∗ and an identity-batch label pair (id∗, t∗) on
which it wishes to be challenged.

• If key computation query (ids, t) has already been made with batch label t = t∗ and
where id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger executes the following steps.

– If t∗ /∈ H , execute a hash query step internally using input t∗.

– Let A be a matrix and b be a vector defined as follows.

A :=

(
1 id∗ −Xτ 0

Xmsk 0 −1

)

b :=

(
0

−H(t∗) ·Xmsk

)

– Let Xr :=

(
Xr1

Xr2

)
be a vector of two indeterminates. Compute a list y of four

polynomials where

y = (Xr
T ·A,Xr

T · b)

– Parse y as (y0, y1, y2, y3). For each i ∈ {0, 1, 2, 3}, set L2(yi)← {0, 1}∗.

– Send the ciphertext c = (L2(y0), L2(y1), L2(y2), L2(y3 + L−1
2 (mb))) to A

Post-challenge queries: After the challenger round, A may again issue an arbitrary number
of key computation queries, with the additional restriction that A cannot query (t∗, ids) with
id∗ ∈ ids:

• A sends a list ids of B identities along with a batch label t to the challenger.

• If a key computation query has already been made with batch label t or if t = t∗ and
id∗ ∈ ids, the challenger halts the game.
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• Otherwise, the challenger executes the same steps as described in the Pre-challenge
queries.

Output: At any point in time,A can decide to halt and output a bit b′ ∈ {0, 1}. The game then
halts with the same output b′.

Proof. To prove the above lemma, we will introduce an intermediate hybrid experiment ExptHyb,SMA (1λ, B)
and show that for b ∈ {0, 1}, the following holds:

ExptSBIBE,SMA,b (1λ, B) ≡ ExptHyb,SMA (1λ, B) (1)

ExptHyb,SM
A (1λ, B) is same as ExptSBIBE,SMA,b (1λ, B) except that the fourth component of the ci-

phertext c in the challenge round is computed as follows:

• The challenger defines an indeterminate u and sets L2(u)← S2 and updates S2 := S2\L2(u).

• The challenger sets the fourth component of ciphertext c to be L2(u).

To prove Eq. (1), we need to show that the polynomial y3 involved in the ciphertext of challenge
round of ExptSBIBE,SMA,b (1λ, B) is independent of the polynomials corresponding to all the other
group element encodings which are in the view of adversary.

Without loss of generality, we will assume that the adversary makes n key computation queries
with batch labels t1, . . . , tn and requests a challenge on ti∗ = t∗ for some i∗ ∈ [n] and identity id∗.
We will use f i to denote the degree B univariate polynomial having as roots the ids used in the ith

key computation query. Without loss of generality, we will assume that the hash queries are made
on all the batch labels t1, . . . , tn.

We will now list down the polynomials corresponding to the encodings held by the adversary.

L1 =

{
1, {Xi

τ}i∈[B], {H(ti)}i∈[n], {(f i(Xτ ) +H(ti)) ·Xmsk)}i∈[n]

}

L2 =

{
1, Xτ , Xmsk, Xr1 +Xr2 ·Xmsk︸ ︷︷ ︸

rT ·a1

, Xr1(id
∗ −Xτ )︸ ︷︷ ︸

rT ·a2

,−Xr2︸ ︷︷ ︸
rT ·a3

}

The polynomial y3 involved in ExptSBIBE,SMA,b is (−Xr2 · H(ti∗) · Xmsk) and we wish to show
that it is outside the span of L1 ⊗ L2, i.e., it is linearly independent of the list of polynomials
obtained by multiplying polynomials in L1 with polynomials in L2. Let’s assume, for the sake of
contradiction, that this is not the case, i.e., y3 happens to be a linear combination of polynomials
in L1 ⊗ L2. Then, by inspection, we have the following observations about the coefficients of the
polynomials involved in the linear combination:

• Let S1 ⊆ L1 and S2 ⊂ L2 be the following sets:

S1 =

{
1, {Xi

τ}i∈[B], {H(ti)}i∈[n], {(f i(Xτ ) +H(ti)) ·Xmsk)}i∈[n]

}
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S2 =

{
1, Xτ , Xmsk

}

The coefficients of the polynomials in S1 ⊗ S2 will be zero because the monomials in such
polynomials do not occur in the target polynomial and are not present as monomials in other
polynomials inL1 ⊗ L2 (therefore they cannot be cancelled out).

• The coefficients of terms generated by the following completion will be zero for the same
reason as above. {

1, {Xi
τ}i∈[B], {H(ti)}i∈[n]

}
⊗

{
−Xr2︸ ︷︷ ︸
rT ·a3

}

• Similarly, the coefficients of the polynomials generated by the following completion will be
zero as they contain monomials of the form H(ti) ·Xr2 ·X2

msk and H(ti) ·Xmsk ·Xr1 ·Xτ which
are neither present in the target polynomial nor in other polynomials in L1 ⊗ L2.{

(f i(Xτ ) +H(ti)) ·Xmsk)}i∈[n]

}
⊗

{
Xr1 +Xr2 ·Xmsk︸ ︷︷ ︸

rT ·a1

, Xr1(id
∗ −Xτ )︸ ︷︷ ︸

rT ·a2

}

• The coefficients of terms generated by the following completion will be zero.{
{H(ti)}i∈[n]

}
⊗

{
Xr1(id

∗ −Xτ )︸ ︷︷ ︸
rT·a2

}

The reason is that it generates polynomials having monomials of the form H(ti) · Xr1 · Xτ .
Since these monomials occur neither in the target polynomial, nor as monomials in the poly-
nomials generated by other terms in L1 ⊗ L2, their coefficients will be zero.

• The coefficients of terms generated by the following completion will be zero.{
{H(ti)}i∈[n]

}
⊗

{
Xr1 +Xr2 ·Xmsk︸ ︷︷ ︸

rT·a1

}

The polynomials generated by this completion contains monomials of the form H(ti) ·Xr1 .

The only other completion which generates this polynomial is

{
{H(ti)}i∈[n]

}
⊗

{
Xr1(id

∗ −Xτ )︸ ︷︷ ︸
rT·a2

}
.

However, by previous observation, the coefficient of all terms of those completion are zero
which, in turn, forces the coefficient of all terms in this completion to be also zero.
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Finally, we are left with the following completion terms.

S1 :=

{
{Xi

τ}i∈[B]

}
⊗

{
Xr1 +Xr2 ·Xmsk︸ ︷︷ ︸

rT ·a1

, Xr1(id
∗ −Xτ )︸ ︷︷ ︸

rT ·a2

}

S2 :=

{
{(f i(Xτ ) +H(ti)) ·Xmsk)}i∈[n]

}
⊗

{
−Xr2︸ ︷︷ ︸
rT ·a3

}

We note that each polynomial in S2 has a monomial of the form H(ti) ·Xmsk ·Xr2 . For all i ∈
[n], i ̸= i∗, the coefficients of such polynomials would be zero as the monomial is neither present
in the target polynomial nor in the other polynomials generated by the remaining completion.
Hence, we are left with the following polynomials in the completion.

({
{Xi

τ}i∈[B]

}
⊗

{
Xr1 +Xr2 ·Xmsk︸ ︷︷ ︸

rT ·a1

, Xr1(id
∗ −Xτ )︸ ︷︷ ︸

rT ·a2

})⋃{
− (f i∗(Xτ ) +H(ti∗)) ·Xmsk) ·Xr2

}

=

{
{Xi

τ · (Xr1 +Xr2 ·Xmsk)}i∈[B], {Xi
τ ·Xr1(id

∗ −Xτ )}i∈[B],−(f i∗(Xτ ) +H(ti∗)) ·Xmsk ·Xr2

}
Recall that the target polynomial y3 is (−Xr2 · H(ti∗) · Xmsk). Let {ci, di}i∈[0,B], e ∈ Zp be

coefficients s.t.

−Xr2 ·H(ti∗) ·Xmsk =
B∑
i=0

ci ·Xi
τ · (Xr1 +Xr2 ·Xmsk)

+
B∑
i=0

di ·Xi
τ ·Xr1(id

∗ −Xτ )

− e(f i∗(Xτ ) +H(ti∗)) ·Xmsk ·Xr2

From the above, it is clear that e = 1 to get the (−Xr2 ·H(ti∗) ·Xmsk) monomial on the R.H.S.
This implies that

∑B
i=0 ci ·Xi

τ = f i∗(Xτ ) so that the monomials involving Xr2 , Xmsk vanish on the
R.H.S. Hence, we have the following remaining constraint.

f i∗(Xτ ) ·Xr1 =

B∑
i=0

di ·Xi
τ ·Xr1 · (Xτ − id∗)

The above constraint implies that id∗ is a root of the polynomial f i∗(Xτ ) which is a contradic-
tion as per the rules of the security game.

Lemma 5.4. For all B ∈ N and all unbounded adversaries A making at most q queries (including queries
to the group oracle, hash oracle, and key computation queries), for b ∈ {0, 1}, we have:∣∣∣Pr[ExptSBIBE,GGMA,b (1λ, B) = 1]− Pr[ExptSBIBE,SMA,b (1λ, B) = 1]

∣∣∣ ≤ (q +B + 5

2

)
(B + 2)

p
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Proof. To prove this, we consider the following experiment7: At the end of ExptSBIBE,SMA,b , the chal-

lenger samples uniformly random values from Zp for all the indeterminates involved in ExptSBIBE,SMA,b

and replaces all the polynomials with their evaluations. This is a perfect simulation of ExptSBIBE,GGMA,b

unless the following bad event happens: The sampled values result in a an identical evaluation of
polynomials which are not identical. For any pair of polynomials (f1, f2), of total degree (d1, d2)

respectively, we can bound the probability of this bad event happening to be at most max(d1,d2)
p us-

ing Schwartz-Zippel lemma [Sch80; Zip79]. There are q+B+5 polynomials in total across all three
groups (q polynomials from queries and B+5 polynomials from the setup phase) with maximum
total degree at most B + 2. Therefore, union bounding across all possible pairs of polynomials
gives us a maximum failure probability of

(
q+B+5

2

) (B+2)
p .

6 Extensions and Optimizations

6.1 Thresholdizing the scheme

In our Selective Batched IBE scheme as defined in Definition 4.1, the master secret-key msk is
held by a central authority which runs ComputeKey procedure to derive the batch label specific
secret keys sk and distribute them as necessary. In many applications, including the ones we have
discussed in the introduction, it is favorable to distribute this trust among multiple authorities.
Specifically, instead of a single authority holding the complete msk, we would like to have multi-
ple, let’s say n, authorities where each authority i ∈ [n] holds a “partial” master secret key mski
(e.g., in the form of secret shares of msk). In such a distributed setting, it is highly desirable to con-
struct a scheme where multiple authorities can securely issue the batch label specific secret keys sk
without leaking their “partial” master secret key mski. We observe that our construction in Fig. 1
readily admits such an efficient threshold version. This is due to the fact that the ComputeKey pro-
cedure in our construction simply computes a BLS-like signature which can be efficiently thresh-
oldized as observed in prior works [Bol03]. For completeness, we define Thresholdizable Selective
Batched Identity Based Encryption in Appendix A and show how our non-threshold construction
can be modified to obtain a threshold version.

6.2 Outsourcing the digest computation

In our construction, the digest d = Digest(pk, {id1, . . . , idB}) is computed as a KZG commitment
to the polynomial f(X) =

∑B
i=0 fi ·Xi that has roots at id1, . . . , idB and leading coefficient 1. The

digest is d :=
∑B

i=0 fi · [τ i]1.
We note that the work of computing the digest d = Digest(pk, {id1, . . . , idB}) can be outsourced

to a single server, such that the result can be efficiently verified by everyone. The main observation
is that, since the polynomial f(X) can be represented as f(X) =

∏B
i=1(X − idi) then for any value

z in the field, the value f(z) can be efficiently computed using only B multiplications, which is
much faster than interpolating the polynomial and computing the digest.

Verification can thus be implemented using the Fiat-Shamir paradigm:

7We note that the master theorem proved in [BBG05] cannot be directly applied here as the adversary can make
oracle queries other than standard group operations such as key computation queries. To account for this difference,
we redo the analysis here which essentially follows the same style that is used in proving the master theorem.
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• The server which computed the digest d computes a random field point z = H(d), and
computes y = f(z).

• To provide an evaluation proof for the KZG commitment d, it computes the quotient polyno-
mial q(X) = f(X)−y

X−z and then computes and publishes a KZG evaluation proof π = [q(τ)]1.

• Given d and π, anyone can compute z = H(d) and then efficiently compute y = f(z). Then
the proof can be verified by checking that [1]2 ◦ (d− y) = ([τ ]2 − [z]2) ◦ π.

One can use the well-known Schwartz-Zippel lemma [Sch80; Zip79] to show that the above
procedure satisifies soundness.

The work of computing the group multiplications in d :=
∑B

i=0 fi · [τ i]1 can also be distributed
among m servers. The result can be efficiently verified by everyone, given that they have access
to the polynomial f(X). (Computing f(X) itself is non-trivial, as it is essentially computing an
interpolation.)

Assume that this work is distributed between m servers such that server k = 1, . . . ,m com-
putes dk :=

∑k·B/m−1
i=(k−1)·B/m fi · [τ i]1. (To simplify the notation we assume that B/m is an integer.)

Then, given these results from the servers it is easy to compute d =
∑m

k=1 dk. The work of each
server is roughly 1/m the work of computing d. The main remaining issue is how to efficiently
verify that each dk is computed correctly (or, in the case of outsourcing to a single server, verifying
that it computed d correctly). We note that server k actually computes a KZG commitment dk for
the polynomial fk =

∑kB/m−1
i=(k−1)B/m fi ·Xi. This polynomial is of degree kB

m − 1 ≤ B. Therefore dk

can be verified using the same procedure outlined above for verifying d.8

6.3 Batching the Decryption Procedure

For some applications, such as mempool privacy, the decryption of all ciphertexts in a batch will
be done by a single party. A naive application of Decrypt will result in a total decryption time of
O(B2 logB). We discuss below how to improve this time. Note that in this section, we refer to
“time” as the total number of group and field operations required to perform a task.

Note that the computation that dominates the running time for decryption is the computa-
tion of KZG commitment opening proofs. The time for computing all the B proofs naively is
O(B2 logB), whereas the time for the remaining work after the opening proofs are finished is
simply O(B). The work of [FK23] shows how to compute a set of opening proofs for a KZG com-
mitment much more efficiently than the naive approach. Specifically, assume as in our decryp-
tion procedure we have a KZG commitment to a polynomial of degree B, and we need opening
proofs for each of its B roots. [FK23] show that if the polynomial has been constructed so the
roots are all part of some set of roots of unity Ω, then it is possible to compute all openings in

8It is possible to do an efficient optimistic verification of the work of the servers, in the sense that if all servers are
honest then the result can be efficiently verified without interpolating f(X). Otherwise, after interpolating f(X) it is
possible to identify which server k provided an incorrect dk value. The proof process is as follows. First, a value z is
computed as H(d1, . . . , dm). Then each server provides yk = fk(z) and a proof that the polynomial committed to by
dk has the output yk at the point z. The verifier computes f(z) and verifies that it is equal to

∑m
k=1 yk. If d =

∑m
k=1 dk

is not a commitment to f(X), the by the Schwartz-Zippel theorem this check fails with all but negligible probability.
(Note that this is not a check that each dk is computed correctly, but rather that d =

∑m
k=1 dk is correct, which is the

property that we need.
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time O(|Ω| log|Ω|). Specifically, if we want to support a maximum batch size B, we can set Ω
such that |Ω| = B, and then as long as we choose the IDs from Ω, we can batch-decrypt in time
O(B logB + B) = O(B logB). In addition, [FK23] show that even if the roots of the polynomial
are chosen arbitrarily, it is still possible to compute the B openings in time O(|Ω| log2|Ω|). So if the
particular application requires more flexibility in choosing IDs, it is still possible to batch-decrypt
in time O(B log2B +B) = O(B log2B).

The batch decryption procedure BatchDecrypt.

BatchDecrypt({c1, . . . , cB}, sk, d, {id1, . . . , idB}, id, t):

• (KZG opening proof computation) Use [FK23] to derive openings π1, . . . , πB for the
roots {id1, . . . , idB} of the polynomial πi (X − idi), with respect to digest d.

• (Decryption) For each i ∈ [B]:

1. Set

wi =

 d
πi
sk

 .

2. Parse ci as (ci,1, ci,2), and set mi = ci,2 − ci,1 ◦w.

• Output {m1, . . . ,mB}.

6.4 Non-Malleability for Mempool Privacy

As mentioned in [Cho+24], the application of mempool privacy has a specific requirement that
ciphertexts need to be authenticated, and must satisfy a form of non-malleability. Specifically, a
ciphertext encrypts a signed transaction coming from a specific sender address; this address is
associated with the public key of the signature on the transaction. Only the sender, who possesses
the signing key, is allowed to submit the ciphertext for decryption, and if an encrypted transaction
has not yet made it to a block, the transaction details must be hidden from any adversary who
does not possess the secret key for the transaction sender address, even if this adversary can
submit arbitrary decryption requests on any other ciphertext from any other sender address.

The authors of [Cho+24] state that “adding non-malleability to ciphertexts corresponds closely
to securing [the] encryption scheme against chosen ciphertexts.” We point out that achieving the
form of non-malleability required here is actually weaker than CCA security. This is because CCA
security does not associate ciphertexts with signature public keys, and requires indistinguisha-
bility even if an adversary can submit arbitrary ciphertexts for decryption, as long as they are
not equal to the challenge ciphertext. In our setting, ciphertexts are inherently associated with a
signature public key, since they encrypt a signed message under that public key, and our decryp-
tion oracle is more restrictive: it only decrypts messages that are signed, and we assume that the
adversary does not have the signing key corresponding to the challenge ciphertext.

We can use this fact to achieve non-malleability significantly more cheaply than [Cho+24],
which uses NIZK proofs to add full CCA2-security to their encryption. In contrast, we can sim-
ply use a signature scheme. We will use the decryption functionality below. At a high level, the
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decryption functionality works as follows, assuming it has access to whatever signature scheme
is being used to sign transactions on the chain. First, it associates every ID with a signature public
key. We do this by setting the ID to be a hash of the public key, i.e., id = H(pk). But the function-
ality could also maintain a table of ID-public key mappings. Second, whenever the decryption
functionality takes as input a ciphertext ct to be decrypted during block t with associated id id, it
requires a signature on the block number t that is valid with respect to the public key pk = H−1(id).
If this signature fails to verify, then the functionality refuses to add this ID to the set of approved
IDs to be decrypted during block t.

We note that for simplicity, the functionality as written assumes that each party submits at most
one encrypted transaction per block from their address. It is easy to extend to the more general
case, as follows: for each transaction to be submitted, the sender chooses a nonce x, and sets the ID
of the ciphertext to be id = H(pk, x). Then, when accepting transactions, the functionality requires
a signature on message (t, x) instead of just t.

We now describe the decryption functionality formally.

The decryption functionality.

Setup: We assume the decryption functionality is initialized with a SBIBE keypair (pkSBIBE,msk)
and block size B. We also assume the functionality has access to a random oracle H which
maps arbitrary strings to the ID space of SBIBE. This functionality is stateful, and maintains
lists At of IDs that have been authorized to be decrypted during block t.

Decryption authorization: The functionality takes in messages of the form ⟨id, t, pk, ct, σ⟩,
which indicates that the party holding the blockchain account corresponding to public key pk
is authorizing decryption of ct during block t. The functionality does the following:

1. Check that id = H(pk). If not, halt and respond with ⊥.

2. Check that σ is a valid signature over the message t with public key pk. If not, halt and
respond with ⊥.

3. Add id to the list At to record the id id as authorized to decrypt during block t.

Block transactions decryption: The functionality also handles block decryption queries of
the form ⟨t, {id1, . . . , idB}⟩. It does the following:

1. If there is an i such that idi is not in the list At, halt and respond with ⊥.

2. Compute the digest d← Digest(pkSBIBE, {id1, . . . , idB}).

3. Compute the decryption key sk ← ComputeKey(msk, d, t) which allows for decryption
of ciphertexts encrypted to any id in {id1, . . . , idB} for block t.

4. Respond with sk.

We define the security game below, where an adversary attempts to distinguish against a ci-
phertext that has not yet made it into a block.
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The security game Exptmempool
A,b (1λ, B).

Setup:

1. Generate SBIBE keypair mskSBIBE, pkSBIBE.

2. Generate transaction signing keypair sk, pk which will be used to sign the challenge
plaintext.

3. Send pkSBIBE and pk to A.

Handling queries: At any time, both before and after the challenge round,A can submit de-
cryption authorization and block transaction decryption queries, and the challenger responds
to them exactly as defined in the functionality above. In addition, A can ask for a signature
on any message t with respect to the signing key sk.

Challenge: At any time A can send (t∗,m0,m1) and ask for the challenge ciphertext, with
the restriction that t∗ has not already passed, and that A has not queried for a signature on
t∗. The challenger will then sign mb with sk to get σ, generate id ← H(pk), and then encrypt
using Encrypt(pkSBIBE, (mb, σ), id, t

∗) and send the result to A. Finally, A outputs a bit b′.

Claim. LetA be a PPT adversary. Then assuming SBIBE is secure under Definition 4.4, and the signature
scheme satisfies standard existential unforgeability, then∣∣∣Pr[Exptmempool

A,0 (1λ, B) = 1]− Pr[Exptmempool
A,1 (1λ, B) = 1]

∣∣∣ < ϵA(λ).

Proof sketch. Assume there is an A which can distinguish between the two experiments. This
means it distinguishes a ciphertext encrypted under SBIBE which has been encrypted under id =
H(pk), and round t∗ where pk is a signature scheme public key whose corresponding signing key
is not known to A, and where A has not received a signature over t∗.

There are two cases, conditioned on whether id was included in a decryption key skSBIBE which
was given to A from the decryption functionality.

First, assume that id was indeed included in some decryption key. Recall from the definition
of the decryption functionality that this would only happen if A was able to provide a signature
on t∗. This contradicts existential unforgeability of the signature scheme.

Assume now that id was never included in any decryption key skSBIBE given to A. Then by
distinguishing, A directly contradicts security of the SBIBE scheme as defined in Definition 4.4.

7 Concrete Performance

In this section, we discuss the concrete performance of our scheme. We have implemented our
Selective Batched IBE scheme in rust, using the arkworks framework [con22] and the BLS12-381
curve. The benchmarks were run using a Google Cloud VM of type t2d-standard-4, with a
four-core AMD EPYC Milan CPU and 16GB of RAM. Table 2 shows the time taken to compute a
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digest, to compute a decryption key, to encrypt, and to decrypt, with respect to several different
batch sizes. We have omitted benchmarking the setup time, since our setup is simply a KZG setup
plus a BLS key-generation, both of which are standard and have been well-studied.

Batch Size Digest Computation Key Computation Encryption Decryption

100 11.5ms 720µs 6.4ms 9.1ms

1,000 104.4ms 643µs 6.5ms 88.7ms

10,000 877ms 681µs 6.4ms 778.5ms

100,000 8.6s 759µs 6.4ms 8.6s

Table 2: Running times of each procedure in our scheme for varying batch sizes.

Mempool Privacy: Comparison with [Cho+24] and related works In addition to implement-
ing the vanilla version of our scheme, we also implemented the extensions in Sections 6.1, 6.3
and 6.4, in order to compare the performance of our scheme with that of [Cho+24]. That is, we
implemented a version of our scheme with threshold decryption key computation, with batched
decryption using [FK23], and with signature verification over the submitted ciphertexts. We used
the ed25519-dalek library for signatures.

Batch Size [Cho+24] w/o Setup [Cho+24] w/ Setup Ours

8 83.218ms 18.08s 30.96ms

32 337.5ms 18.34s 114.7ms

128 1.422s 19.42s 462.1ms

512 6.02s 24.02s 1.92s

Table 3: Total time to decrypt by batch size: comparison with [Cho+24].

In order to get an accurate comparison, we used the code from [Cho+24]9 to re-run their
benchmarks using the same Google Cloud VM of type t2d-standard-4 which we used for
benchmarking our scheme. We instantiated our scheme with the same threshold parameters
(n = 16, t = 4) as in their benchmark, and with IDs chosen as roots of unity to enable the fast
version of [FK23] during decryption. Section 7 below gives, for both our scheme and theirs, the
total time for a single batch decryption. Recall that [Cho+24] require an expensive, per-batch-
decryption setup phase. The MPC protocol for computing this setup phase was not implemented
by them, as far as we know, but [Cho+24] estimates in their paper that it would take around 18
seconds. We have included the time for their scheme both with and without this setup cost.

For completeness, in Table 4, we also provide a comparison of asymptotic communication
and computation cost for performing selective batched threshold decryption. We also mention
whether a per batch setup phase is required. Note that all the mentioned approaches require
a global one-time setup phase, as is typical in threshold cryptosystems, so we don’t show this
explicitly in the table.

9URL is https://github.com/guruvamsi-policharla/batched-threshold-encryption.
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Computation

Scheme Comm. Total Private Per batch setup phase required ?

[ElG86; CG99] O(nB) O(B) O(B) No

Ferveo [BO22] O(nB) O(B) O(B) No

Choudhuri et. al. [Cho+24] O(n) O(B logB) O(B logB) Yes

This work O(n) O(B logB) O(1) No

Table 4: Comparison of the costs required for performing selective batched threshold decryption
for a batch size B and n servers. The communication and computation costs are per server and
are represented in terms of the number of group elements and group operations respectively. It
also shows whether the servers need to perform a setup phase for every batch.
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A Thresholdizable Selective Batched Identity Based Encryption

In this section, we describe a threshold version of the Selective Batched IBE scheme which we
defined in Definition 4.1. At a high-level, this threshold version is aimed to capture settings where
one would like to distribute the trust of key issuance across multiple authorities. Specifically,
instead of a single authority holding the complete msk, we would like to have multiple, let’s say
n, authorities where each authority i ∈ [n] holds a “partial” master secret key mski (e.g., in the
form of secret shares of msk). Accordingly, the ComputeKey procedure (as defined in Selective
Batched IBE) will be split into two parts: 1) ComputeKeyShare algorithm which will be used by
each authority to produce a partial secret key w.r.t a specific batch using its private partial master
secret key mski, 2) ComputeKeyAggregate algorithm which can be used to combine the partial secret
key w.r.t a specific batch into a full secret key.

In the following sections, we will formally define the syntax and semantics of Thresholdizable
Selective Batched IBE . We will then present a construction of Thresholdizable Selective Batched
IBE (which is a straightforward adaptation of our Selective Batched IBE construction) and ana-
lyze it. For the ease of readability, we will highlight all the differences between Thresholdizable
Selective Batched IBE and Selective Batched IBE in blue.

A.1 Syntax

Definition A.1 (Thresholdizable Selective Batched IBE Syntax). A Thresholdizable Selective Batched
IBE scheme TSBIBE is specified by seven algorithms: Setup, KeyGen, Encrypt, Decrypt, Digest,
ComputeKeyShare,ComputeKeyAggregate.

• Setup(1λ, 1B, 1n) → params: A randomized algorithm that takes as input a security param-
eter λ ∈ N, a batch size B = B(λ) and number of authorities n = n(λ). It outputs params
(system parameters) which includes a description of the message spaceM, identity space I,
batch label space T and ciphertext space C.

• KeyGen(params) → ({mski}i∈[n], {pki}i∈[n], pk): a randomized algorithm that takes as input
params and outputs n many mski (partial master secret key), n many pki (partial public key)
and a single pk (global public key).

• Encrypt(pk,m, id, t) → c: a randomized algorithm that takes as input a message m ∈ M, an
identity id ∈ I, a batch label t ∈ T , global public key pk and outputs a ciphertext c ∈ C.

• Digest(pk, {id1, . . . , idB})→ d: a deterministic algorithm that takes as input the global public
key pk and a list of identities id1, . . . , idB where each idi ∈ I. It outputs a digest d.

• ComputeKeyShare(mski, d, t) → ski: a deterministic algorithm that takes as input the partial
master secret key mski, digest d, batch label t and outputs a partial digest-batch label-specific
secret key ski.
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• ComputeKeyAggregate({pki}i∈[n], {ski}i∈[n], d, t)→ sk: a deterministic algorithm that takes as
input all the partial public keys {pki}i∈[n] and all the partial digest-batch label-specific secret
key {ski}i∈[n] and outputs a digest-batch label-specific secret key sk.

• Decrypt(c, sk, d, {id1, . . . , idB}, id, t) → m: a deterministic algorithm that takes as input a ci-
phertext c, secret key sk, digest d, a list of identities id1, . . . , idB and an identity-batch label
pair (id, t). It outputs a message m ∈M.

A.2 Correctness, Non-triviality and Security

The above algorithms should satisfy the following requirements.

For correctness, we generalize the correctness requirement of the (non-threshold) Selective Batched
IBE to allow the adversary to (statically) corrupt at most half the number of authorities, get their
partial master secret-keys, and observe the partial secret-keys issued by uncorrupted authorities
for arbitrary inputs of the adversary’s choice.

Definition A.2 (Thresholdizable Selective Batched IBE Correctness). For all λ ∈ N, B ∈ N, n ∈ N,m ∈
M, t ∈ T , id ∈ I, S ⊆ I s.t. |S| = B and id ∈ S, Cor ⊂ [n] s.t. |Cor| ≤

⌊
n−1
2

⌋
and for any unbounded

adversary A, the following should hold:

Pr

[
Decrypt(c, sk, d, S, id, t) = m

∣∣∣∣∣

params← Setup(1λ, 1B, 1n)
({mski}i∈[n], {pki}i∈[n], pk)← KeyGen(params)

c← Encrypt(pk,m, id, t)
d← Digest(pk, S)

∀i ∈ [n] \ Cor, ski ← ComputeKeyShare(mski, d, t)

∀i ∈ Cor, ski ← A{ComputeKeyShare(mskk,·,·)}k∈[n]\Cor({mskj}j∈Cor,
{pkj}j∈[n]\Cor, pk,m, id, t, c, S)

sk← ComputeKeyAggregate({pki}i∈[n], {ski}i∈[n], d, t)

]
= 1

Definition A.3 (Thresholdizable Selective Batched IBE Non-triviality/Efficiency). We require that
the running time of ComputeKeyShare and ComputeKeyAggregate be independent of the batch size
B (which implies that the digest d and sk are also independent of B). We also require that the
running time of ComputeKeyShare and the size of sk be independent of the number of authorities
n.

For security, we generalize the security requirement of the (non-threshold) Selective Batched IBE
to allow the adversary to (statically) corrupt at most half the number of authorities, get their par-
tial master secret-keys, and observe the partial secret-keys issued by uncorrupted authorities for
arbitrary inputs of the adversary’s choice while constrained to the same rules as defined earlier in
the non-threshold version.

Definition A.4 (Thresholdizable Selective Batched IBE Security). We define a security game ExptTSBIBEA,b (1λ, B, n)
with respect to adversary A in the box below.

We say that a Thresholdizable Selective Batched IBE scheme is secure if for all n ∈ N, B ∈ N,
for all PPT adversaries A, for all Cor ⊂ [n] s.t. |Cor| ≤

⌊
n−1
2

⌋
, there exists some negligible function

ϵA such that the following holds:
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∣∣∣Pr[ExptTSBIBEA,0 (1λ, B, n,Cor) = 1]− Pr[ExptTSBIBEA,1 (1λ, B, n,Cor) = 1]
∣∣∣ < ϵA(λ).

The security game ExptTSBIBEA,b (1λ, B, n,Cor).

Setup: The challenger takes as input the security parameter λ and the batch size B. It runs
params← Setup(1λ, 1B, 1n), and then runs
({mski}i∈[n], {pki}i∈[n], pk)← KeyGen(params).
Finally, it sends (params, pk, {mski}i∈Cor, {pki}i∈[n]) to A.

The rest of the game proceeds in rounds, as follows.
Pre-challenge queries: Amay issue an arbitrary number of key computation queries:

• A sends a list ids of B identities along with a batch label t to the challenger.

• If a key computation query has already been made with batch label t, the challenger
halts the game.

• Otherwise, the challenger does the following:

– Compute a digest d← Digest(pk, ids) of the ids in ids using public key pk.

– For all i ∈ [n] \ Cor, compute a partial secret key
ski ← ComputeKeyShare(mski, d, t), using the digest d computed from the previous
step.

– Send {ski}i∈[n]\Cor to A.

Challenge round: Once during the game,Amay decide that the current round is the challenge
round. The challenge round proceeds as follows:

• A sends two messages m0,m1 ∈M and an identity-batch label pair (id∗, t∗) on which it
wishes to be challenged.

• If key computation query (ids, t) has already been made with batch label t = t∗ and
where id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger computes c← Encrypt(pk,mb, id
∗, t∗) and sends c to A.

Post-challenge queries: After the challenger round, A may again issue an arbitrary number
of key computation queries, with the additional restriction that A cannot query (t∗, ids) with
id∗ ∈ ids:

• A sends a list ids of B identities along with a batch label t to the challenger.

• If a key computation query has already been made with batch label t or if t = t∗ and
id∗ ∈ ids, the challenger halts the game.
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• Otherwise, the challenger does the following:

– Compute a digest d← Digest(pk, ids) of the ids in ids using public key pk.

– For all i ∈ [n] \ Cor, compute a partial secret key
ski ← ComputeKeyShare(mski, d, t), using the digest d computed from the previous
step.

– Send {ski}i∈[n]\Cor to A.

Output: At any point in time,A can decide to halt and output a bit b′ ∈ {0, 1}. The game then
halts with the same output b′.

A.3 Construction

Theorem A.5. Assuming Type-3 pairing group BG, there exists a construction ( Fig. 2) for Thresholdizable
Selective Batched IBE which is secure in the Generic group model.

A.4 Correctness

The correctness follows directly from the correctness of our non-threshold version of the scheme
along with the robustness property of threshold BLS signatures [Bol03].

A.5 Security

We will prove the security of our construction in the GGM model equipped with oblivious sam-
pling. In this model, the challenger will implement the group oracle and the hash oracle (along
with an oracle for key computation queries as defined in the security game).

Theorem A.6. For all p = O(2λ), B = poly(λ), n = poly(λ), for all Cor ⊂ [n] s.t. |Cor| ≤
⌊
n−1
2

⌋
, and

all unbounded adversaries A making at most q = poly(λ) queries (including queries to the group oracle,
hash oracle, and key computation queries), we have∣∣∣Pr[ExptTSBIBE,GGMA,0 (1λ, B, n,Cor) = 1]− Pr[ExptTSBIBE,GGMA,1 (1λ, B, n,Cor) = 1]

∣∣∣ ≤ negl(λ)

where ExptTSBIBE,GGM refers to the same experiment ExptTSBIBE as defined in Definition A.4 except
that we specialize it for our specific Construction (Fig. 2) and model it in the GGM, i.e., all the group and
hash operations performed by the adversary are simulated by the challenger as defined in the GGM model
(Section 3.2). This is done in a manner similar to ExptSBIBE,GGM in Thm. 5.2.

Proof. To prove the above theorem, we will show that the security of the threshold version of our
construction w.r.t ExptTSBIBE,GGM can be reduced to the security of the non-threshold version of
our construction w.r.t. ExptSBIBE,GGM.

Assume, for the sake of contradiction, that Thm. A.6 is false. Then, there exists p = O(2λ), B =
poly(λ), n = poly(λ), Cor ⊂ [n] s.t. |Cor| ≤

⌊
n−1
2

⌋
, there exists an adversary A making at most q

queries s.t. there exists a polynomial polyA where

∣∣∣Pr[ExptTSBIBE,GGMA,0 (1λ, B, n,Cor) = 1]− Pr[ExptTSBIBE,GGMA,1 (1λ, B, n,Cor) = 1]
∣∣∣ > 1

polyA(λ)
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• Setup(1λ, 1B, 1n): Output three groups G1,G2,GT of order p, where p is a λ-bit prime,
equipped with generators g1, g2, gT , respectively, and an efficiently computable pairing
operation ◦ : G2 × G1 → GT . Set the message space M := GT , identity space I :=
{0, . . . , p − 1}, and tag space T := {0, 1}λ. Also output a randomly sampled hash func-
tion H : T → G1.

• KeyGen(params) : Sample msk ← Zp and τ ← Zp. Set {mski}i∈[n] ←
ShamirShare(msk,

⌊
n−1
2

⌋
, n), i.e, n shamir shares of msk using a degree

⌊
n−1
2

⌋
poly-

nomial. For all i ∈ [n], set pki := [mski]2. Output {mski}i∈[n], {pki}i∈[n], pk :=

([τ ]1, . . . , [τ
B]1, [τ ]2, [msk]2).

• Encrypt(pk,m, id, t) : Let A be a matrix in (G2)
2×3 and b be a vector in (GT )

2, defined as
follows.

A :=

(
[1]2 [id]2 − [τ ]2 0

[msk]2 0 −[1]2

)

b :=

(
[0]T

−([msk]2 ◦H(t))

)
Sample a (column) vector r = (r1, r2)← (Zp)

2 and output the ciphertext c where

c = (rT ·A, rT · b+m)

• Digest(pk, {id1, . . . , idB}) : Let f(X) =
∑B

i=0 fi ·Xi be a univariate polynomial of degree B

over Zp with roots at id1, . . . , idB and leading coefficient 1. Output digest d :=
∑B

i=0 fi · [τ i]1.

• ComputeKeyShare(mski, d, t) : Output the partial secret key ski := mski · (d+H(t)).

• ComputeKeyAggregate({pki}i∈[n], {ski}i∈[n], d, t): Let U = {i|i ∈ [n], [1]2 ◦ ski = pki ◦ (d +

H(t))}. Let V = {v1, . . . , vk} ⊆ U be any arbitrary subset of U of size k =
⌊
n−1
2

⌋
+ 1

and let Li(0) = Πj ̸=i
(−vj)
(vi−vj)

be the ith Lagrange coefficient for all i ∈ [k]. Output sk =

L1(0) · skv1 + . . .+ Lk(0) · skvk .

• Decrypt(c, sk, d, {id1, . . . , idB}, id, t): Let q(X) =
∑B−1

i=0 qi ·Xi be a univariate polynomial of
degree B − 1 with roots at {id1, . . . , idB} \ {id} and leading coefficient 1. Set π :=

∑B−1
i=0 qi ·

[τ i]1 and set w to be the following vector.

w =

 d
π
sk


Finally, parse c as (c1, c2) and output the decrypted message m∗ := c2 − c1 ◦w.

Figure 2: Our construction for Thresholdizable Selective Batched IBE
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We will now construct an adversary B which will contradict Corollary 5.2.1. The adversary B
works as follows:

• If |Cor| <
⌊
n−1
2

⌋
, let Cor′ = Cor ∪ S where S ⊆ [n] \ Cor is an arbitrary subset s.t. |S| =⌊

n−1
2

⌋
− |Cor|.

• During the Setup and KeyGen phase, B performs the following steps:

– Receive (params, pk) from the challenger.

– For all i ∈ Cor′, sample mski ← Zp and perform a G2 labeling query step using input
mski to obtain pki = [mski]2.

– Let U = Cor′∪{0}. For all u ∈ U , let Lu be the lagrange polynomial of degree
⌊
n−1
2

⌋
+1.

– Set pk0 := pk.

– For all i ∈ [n] \Cor′, perform G2 group operation queries to obtain pki :=
∑

∀u∈U Lu(i) ·
pku.

– Send (params, pk, {mski}i∈Cor, {pki}i∈[n]) to A.

• During the key computation queries (during pre-challenge and post-challenge phases), B per-
forms the following steps.

– It receives a list ids of B identities along with a batch label t and forwards it to the
challenger.

– If the challenger halts the game, then B also halts.

– Otherwise, B receives sk from the challenger and performs the following steps.

* Compute a digest d ← Digest(pk, ids) of the ids in ids using public key pk and G1

group operation queries.

* Perform a hash query step to obtain H(t).

* For i ∈ Cor′, perform a G2 group operation query to obtain ski := mski · (d+H(t)).

* Let U = Cor′ ∪ {0}. For all u ∈ U , let Lu be the lagrange polynomial of degree⌊
n−1
2

⌋
+ 1.

* Set sk0 := sk.

* For all i ∈ [n] \Cor′, use G2 group operation queries to get ski :=
∑

∀u∈U Lu(i) · sku.

* Send {ski}i∈[n]\Cor to A.

• During the challenge round, B forwards transparently forwards the messages received from
A to the challenger and vice-versa.

• For all labeling queries, group operation queries, hash queries and pairing operation queries
received from A, forward it to the challenger, and then forward the response received back
to A.

By construction of B, the following holds:

Pr[ExptSBIBE,GGMB,0 (1λ, B) = 1] = Pr[ExptTSBIBE,GGMA,0 (1λ, B, n,Cor) = 1]

42



Pr[ExptSBIBE,GGMB,1 (1λ, B) = 1] = Pr[ExptTSBIBE,GGMA,1 (1λ, B, n,Cor) = 1]

Moreover, the adversary B makes at most q′ = poly(q, n) = poly(λ) queries to the challenger.
Hence, we get that,∣∣∣Pr[ExptSBIBE,GGMB,0 (1λ, B) = 1]− Pr[ExptSBIBE,GGMB,1 (1λ, B) = 1]

∣∣∣ > 1

polyA(λ)

which contradicts Corollary 5.2.1.
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