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Abstract

In this writeup we discuss the soundness of the Basefold multilinear
polynomial commitment scheme [ZCF23] applied to Reed-Solomon codes,
and run with proximity parameters up to the Johnson list decoding bound.
Our security analysis relies on a generalization of the celebrated correlated
agreement theorem from [BCI+20] to linear subcodes of Reed-Solomon
codes, which turns out a by-product of the Guruswami-Sudan decoder
analysis from [BCI+20].

We further highlight a non-linear variant of the subcode correlated
agreement theorem, which is flexible enough to apply to Basefold-like
protocols such as the optimization [Dia24b] of FRI-Binius [DP24], and
which we believe sufficient for proving the security of a recent multilinear
version of STIR [ACFY24b] in the list-decoding regime.
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1 Introduction

A polynomial commitment scheme (PCS) is a cryptographic primitive, in which
one party (the prover) is given the possibility for providing evaluation proofs on
previously committed polynomials, i.e. cryptographic proofs of their value at
arbitrary query points. Polynomial commitment schemes are a key component
of modern argument systems, which essentially are polynomial interactive ora-
cle proofs, that are then turned into a cryptographic argument by instantiating
the ideal PCS (the oracle) with the concrete scheme.1 Polynomial commitment
schemes come in two flavors, serving either univariate polynomials, or multi-
variate, most importantly multilinear, polynomials. Their constructions rely on
various mathematical structures, for example pairings [KZG10, PST13], general
elliptic curves [BCC+16, BBB+18], lattices [AFLN23, CMNW24, NS24], and
groups of unknown order [BFS20, SB23]. An alternative line of constructions
uses error-correcting codes, foremost Reed-Solomon codes and their siblings
from algebraic geometry, for instance [AHIV17, BBHR18, BGKS20, BLNR22,
DP23] or more recently FRI-Binius [DP24] and [HLP24]. (This list is not com-
plete, and neglects constructions from other types of codes.) The constructions
of univariate and multilinear schemes are often closely related, and there are
general transformations for turning univariate schemes into multilinear ones,
see [ZXZS20, BCHO22, CBBZ22, KT23] and [PH23].

Basefold [ZCF23] is a multivariate polynomial commitment scheme built
from foldable codes. Foldable codes, as introduced by Zeilberger, Chen and
Fisch, are error-correcting codes over arbitrary fields, which possess an encod-
ing procedure similar to the Fast Fourier Transform (FFT), and hence admit
a proximity test similar to the Fast Reed Solomon Code Interactive Proof of
Proximity (FRI) [BBHR18]. On very high level, the protocol works as follows.
Multilinear polynomials are mapped to code words so that folding of their “even”
and “odd” parts (in the generalized FFT sense) translates to partial evaluation
of the multilinear. With this parallelism in mind, the value at a query is then
proven via the multivariate sumcheck protocol [LFKN92], intertwined with the
proof of proximity, round by round, sharing the same verifier challenges.

Although random foldable codes have acceptable metrics [ZCF23], the most
important use cases remain Reed-Solomon codes (in all facets, over binary fields
[DP24], over elliptic curves [BCKL21, BCKL22] or the circle curve [HLP24]),
due to their amenability for a tighter and more extensive soundness analysis.
This brings us to the main purpose of this write-up: We specialise the soundness
analysis from [ZCF23] to the case of Reed-Solomon codes, and extend it to
the list decoding regime, allowing proximity parameters up to the Guruswami-
Sudan-Johnson bound 1 − √ρ, where ρ is the rate of the code. Concretely,

1We are aware that this simplistic view falls short of many technical aspects of code based
constructions, in particular in the list decoding regime. However, for the sake of brevity we
keep with the term PCS.
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we make use of the celebrated correlated agreement theorem from Ben-Sasson,
et al. [BCI+20] to establish a soundness proof in a round-by-round manner,
similar to that of FRI therein. In fact, in the unique decoding regime there are
no additional difficulties beyond the increased complexity of the protocol itself
(in comparison to FRI). In the list decoding regime however, things are slightly
more delicate. Correlated agreement alone is not sufficient to link a successful
folding with the sumcheck specialization, and we need to take a closer look at
the Guruswami-Sudan decoder analysis from [BCI+20] in order to generalize
the statement accordingly. This leads to two strengthenings of the correlated
agreement theorem:

• One for linear subcodes of Reed-Solomon codes, sufficient for Basefold
and FRI-Binius [DP24] with its specifically structured evaluation inner
product; and

• a non-linear generalization, which turns out useful in the analysis of Base-
fold for more expressive inner products, such as multi-query evaluation
proofs or the recent optimizations of FRI-Binius [Dia24a] and [Dia24b].

The obtained soundness error of the complete protocol is essentially the sum
of the round-wise errors imposed by the (strengthened) correlated agreement
theorem, yielding the same proof sizes as FRI as an univariate PCS, without
the the overhead of generic univariate-to-multivariate transformations such as
the ones from [BCHO22, CBBZ22] or [PH23].

In a concurrent work [ACFY24b] the authors elaborate WHIR, a multilin-
ear variant of STIR [ACFY24a]. Their soundness analysis in the list decod-
ing regime relies on a conjecture called mutual correlated agreement, which is
stronger than the above mentioned non-linear generalization of the subcode
agreement. We are confident that our generalization is sufficient for proving
soundness of their protocol, but this will be addressed in a separate document.

The write-up is organized as follows. In Section 2 we introduce notation and
basic facts on multilinear polynomials. Section 3 recaps the Basefold protocol
for the specific case of Reed-Solomon codes, over finite fields with a smooth
multiplicFRIBinius:Galoisative subgroup. We sketch the underlying mechan-
ics of our soundness proof, and explain the need of strengthened correlated
agreement. In the following Section 4, we then go over the corner pillars of
the Guruswami-Sudan list decoder analysis from [BCI+20] and derive the above
mentioned strengthenings of the correlated agreement theorem. While this part,
considered in full depth, is the most challenging, we stress the fact that it can
be easily understood on high-level, without going into the algebraic knits and
grits of the decoder analysis. Section 5 is the core of the document: We prove
soundness of Reed-Solomon Basefold in the plain oracle model, for proximity
parameters up to the Johnson bound. As aforementioned, the proof is in the
spirit of that of FRI in [BCI+20] and makes use of the correlated agreement
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strengthening from Section 4. The remainder of the document, Section 6, is de-
voted to generalizations of Basefold: Its adaption to other FFTs is outlined in
Section 6.1, Basefold for more expressive inner products is addressed in Section
6.2), and FRI-Binius, in its optimized form [Dia24b], is discussed in Section 6.3.

Acknowledgements. The author would like to thank: Ben E. Diamond
and Jim Posen for posing the question addressed in this write-up; Swastik Kop-
party for his feedback on Section 4; Giacomo Fenzi for his feedback and for
sharing an early version of [ACFY24b]; and Al Kindi for a thorough proof read.

2 Preliminaries

An interactive proof [BS84, BM88, GMR89] between two parties is an interac-
tive protocol, in which one party (the prover) wishes to convince another party
(the verifier) upon the validity of a claimed statement. An interactive oracle
proof (IOP) [BCS16, RRR16], or an interactive oracle proof in the plain or-
acle model, is an information-theoretic model of an interactive proof in which
the prover is able to commit data strings via oracles. Oracles serve the ideal
functionality of a binding and hiding commitment, and allow partial revelations
(local openings) at arbitrary positions of the string, the queries from the verifier.
The oracles we use will be of the form f ∈ FD, where D is some well-defined
subset of a finite field F , and the queries will be points x ∈ D selected by the
verifier.

The interactive oracle proofs discussed in this document will be as follows.
Given some functions g0, . . . , gM ∈ FD committed by the prover, the interactive
oracle proof of (g0, . . . , gM ) belonging to a claimed relation R, is comprised of a
fixed number of rounds, and has a public coin verifier : In each round the verifier
sends a random challenge, and the prover answers with (the commitments to)
some other set of functions, besides some plain message data. We shall use
the common terms that the prover sends (or, shares) the functions to (resp.,
with) the verifier, and the verifier queries the functions, knowing that these
are secured by oracles and not accessible by the verifier in full length. After
these rounds, the verifier queries the functions it has received in the course of
protocol at a fixed number of random positions (from their respective domain
of definition), an uses the local openings in order to decide whether to accept
or reject. Although not touched by this document, we assume that the reader
is aware of the fact that in the random oracle model, interactive oracle proofs
with a public coin verifier can be compiled into non-interactive arguments of
knowledge via the BCS-transform [BCS16], see also [CY24].

Let F be a finite field of arbitrary characteristic. We denote the set of
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univariate polynomials of degree less than 2n by

Pn = F [X]<2n ,

for any integer n ≥ 0. The n-dimensional Boolean hypercube over F is the
set Hn = {0, 1}n, regarded as a subset of Fn, and a multivariate polynomial
P ∈ F [X1, . . . , Xn] in n variables X1, . . . Xn is multilinear, if it is at most linear
in each of its variables, degXi

(P ) ≤ 1 for every i, and thus of the form

P (X1, . . . , Xn) =
∑

i=(i1,...,in)∈{0,1}n

ci ·Xi1
1 · . . . ·Xin

n ,

with coefficients ci ∈ F . For any x⃗ = (x1, . . . , xn) ∈ Fn we write P (x⃗) for the
value P (x1, . . . , xn). Multilinear polynomials are uniquely determined by their
values over the Boolean hypercube, and their coefficients can be computed from
the values by a multidimensional FFT, and vice-versa.

The n-dimensional Lagrange kernel (also called eq() in several works) is the
multilinear polynomial

L(X1, . . . , Xn, Y1, . . . , Yn) =

n∏
i=1

(1− (Xi + Yi) + 2 ·Xi · Yi),

where we will use the same notation for different dimensions n, without caus-
ing confusion. In particular, for y⃗ = (y1, . . . , yn) ∈ {0, 1}n its specialization
L(X1, . . . , Xn, y⃗) = L(X1, . . . , Xn, y1, . . . , yn) is the unique multilinear from
F [X1, . . . , Xn] which evaluates to 1 at y⃗, and is equal to 0 elsewhere on Hn.
This property induces that for arbitrary multilinear P ∈ F [X1, . . . , Xn] and
y⃗ ∈ Fn, the inner product

⟨P,L( . , y⃗)⟩Hn
=
∑
x⃗∈Hn

P (x⃗) · L(x⃗, y⃗) = P (y⃗),

and thus yields the value of P at y⃗. We shall call this inner product the evalu-
ation inner product.

The multivariate sumcheck protocol [LFKN92] is an interactive proof for
that a multivariate polynomial G ∈ F [X1, . . . , Xn] satisfies∑

x⃗∈Hn

G(x⃗) = s.

Typically, the multivariate G is a virtual polynomial, a composition of commit-
ted multilinears, and its maximum individual degree d = maxi degXi

(G) is at
least 2. Although we shall describe our protocols in a self-contained manner, we
quickly sketch the protocol, as it is an ingredient of Basefold. Before the first
round the prover claims the refinement polynomial

q0(X) =
∑

(x2,...,xn)∈Hn−1

G(X,x2, . . . , xn),
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which is of degree at most d. The verifier checks the sanity condition that
s = q0(0) + q0(1), chooses a random λ1, and asks the prover to prove the
specialized claim

q0(λ1) =
∑

(x2,...,xn)∈Hn−1

G(λ1, x2, . . . , xn)

instead. The protocol continues in the same manner, letting the prover provide
refinement polynomials

qi(X) =
∑

(x2,...,xn)∈Hn−(i+1)

G(λ1, . . . , λi, X, xi+2, . . . , xn),

for i = 1, . . . , n − 2 as response of the received challenges λ2, . . . , λn−1. In the
last step the verifier samples λn ←$ F , which eventually reduces the sumcheck
claim to that

qn−2(λn) = G(λ1, . . . , λn),

a evaluation claim for the multivariate polynomial G at the random point λ⃗ =
(λ1, . . . , λn), comprised of the random challenges received in the course of the
protocol. For a detailed treatment of the sumcheck protocol, and its importance
to multivariate proofs in general, we refer to [Tha23] and the references therein.

3 Basefold for Reed-Solomon codes

In this section we describe Basefold [ZCF23] for the simplest case of Reed-
Solomon codes, i.e. over a finite field F of characteristic p > 2, with a smooth
multiplicative group, meaning that

Gn = {x ∈ F : x2n = 1}

is a multiplicative subgroup of order |Gn| = 2n, for a given fixed integer n ≥ 1.
For such a smooth group (as well as any subgroup and its cosets) interpolation
and evaluation of polynomials can be done via the Fast Fourier Transform and
its inverse. Likewise, there is the FRI low degree test [BBHR18] for the Reed-
Solomon code

C0 = RS2n [F,D] =
{
q(x)|x∈D : q(X) ∈Pn

}
,

generated by the space of polynomials Pn = F [X]<2n of degree at most 2n,
over any evaluation domain D which is a union of cosets of Gn. We fix the
evaluation domain D, and with it the rate ρ = 2n/|D| of the code. The FRI
protocol goes along the chain of projected domains

D = D0
π−→ D1

π−→ . . .
π−→ Dn,
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where the domain size halves under each application of π(x) = x2, and their
codes Ck = RS2n−k [F,Dk] of the same rate, generated by the space of polyno-
mials Pn−k of degree less than 2n−k, for k = 0, . . . , n. We assume that the
reader is familiar with the mechanics of FRI, the round-wise folding of odd and
even parts.

In Reed-Solomon Basefold, a multilinear polynomial P ∈ F [X1, . . . , Xn] is
committed through its univariate representation p(X) ∈Pn, which determined
from its values over the Boolean hypercube Hn = {0, 1}n,

p(X) =

2n−1∑
i=0

P (i1, . . . , in) ·Xi, (1)

where (i1, . . . , in) ∈ {0, 1}n are the bits of i = i1+i2·2+. . .+in·2n−1. Concretely,
it is committed as word f ∈ C0, by evaluating p(X) on the evaluation domain
D. (Note that (1) establishes a one-to-one correspondence between the space
of multilinear polynomials from F [X1, . . . , Xn] and the space Pn of univariate
polynomials of degree less than 2n.)

With the identification (1) in mind, the even and odd part p0(X), p1(X) of
the univariate representation p(X), subject to

p(X) = p0(X
2) +X · p1(X2),

correspond to the prefixed polynomials P (0, X2, . . . , Xn) and P (1, X2, . . . , Xn),
and more generally, any linear combination of the form

pλ1
(X) = (1− λ1) · p0(X) + λ1 · p1(X)

corresponds to the specialization Pλ1(X2, . . . , Xn) = P (λ1, X2, . . . , Xn) of the
multilinear polynomial. In other words, FRI-like folding corresponds to partial
evaluation of the multilinear representation2, and repeating the argument we
conclude that, eventually the last oracle of the folding cascade corresponds to
the value

v = P (λ1, . . . , λn),

where λ1, . . . , λn are the randomnesses drawn in the course of the protocol. To
leverage this observation for custom, non-random, queries ω⃗ = (ω1, . . . , ωn) ∈
Fn, Basefold considers the evaluation inner product

v =
〈
L(ω⃗, . ), P ( . )

〉
Hn

=
∑
x⃗∈Hn

L(ω⃗, x⃗) · P (x⃗),

and proves it via the multivariate sumcheck protocol intertwined with the folding
rounds of the FRI proximity test: In each round, both reductions, the one of
the sumcheck protocol and the one of FRI, use the same randomness.

2This and similar connections have been used in previous constructions, see [BCHO22,
CBBZ22, Ham22, KT23] and [PH23].
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3.1 The protocol

We slightly deviate from the presentation in [ZCF23] in regards to how the
prover provides the sumcheck polynomials

qi(X) =
∑

x⃗=(xi+2,...,xn)∈Hn−(i+1)

L((λ1, . . . , λi, X, x⃗), ω⃗) · P (λ1, . . . , λi, X, x⃗), (2)

determined by the round challenges λ1, . . . , λi, where i = 1, . . . , n − 1. Instead
of (2) we let the prover send the linear polynomial

Λi(X) =
∑

x⃗=(xi+2,...,xn)∈Hn−(i+1)

L(x⃗, (ωi+2, . . . , ωn)) · P (λ1, . . . , λi, X, x⃗), (3)

from which the quadratic sumcheck polynomial are derived via

qi(X) = L(λ1, . . . , λi, ω1, . . . , ωi) · L(X,ωi+1) · Λi(X). (4)

(The equality is an immediate consequence of the tensor product structure of
the Lagrangian.) Although this can be seen as prover optimization (see also
[Gru24, DT24]), the reason for this change is a different one: It allows to relate
the folding specialization on the FRI-side of the protocol with the refinement
on the sumcheck side, by means of the correlated agreement theorem for linear
subcodes of Reed-Solomon codes. (See the sketch of soundness in the following
section.)

The concrete protocol, formulated as interactive oracle proof is as follows.

Protocol 1 (Reed-Solomon Basefold [ZCF23]). Let P ∈ F [X1, . . . , Xn] be a
multilinear polynomial, ω⃗ = (ω1, . . . , ωn) be any query from Fn, and v = P (ω⃗).
The prover takes the Reed-Solomon code word f0 ∈ C0 corresponding to the
univariate representation of P , computes the linear polynomial Λ0(X) as in (3)
and shares

f0,Λ0(X),

and s0 = v with the verifier. Then both engage in the following protocol, con-
sisting of a commit phase and a subsequent query phase.

1. Commit phase. This is the multivariate sumcheck protocol intertwined
with the folding cascade of FRI, using n reduction steps.

(a) In round i, 1 ≤ i ≤ n − 1, the verifier previously received fi−1 ∈
FDi−1 , Λi−1(X) from the prover, and knows the value si−1. It checks
that the sumcheck polynomial qi−1(X) determined from Λi−1(X) us-
ing (4) satisfies

qi−1 = qi−1(0) + qi−1(1),

and returns a random scalar λi ←$ F to the prover.
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(In the first round i = 1, Formula (4) collapses to q0(X) = L(X,ω1) ·
Λ0(X).)

The prover computes the Reed-Solomon codeword fi ∈ Ci correspond-
ing to the univariate representation of the specialization Pλ1,...,λi ∈
F [Xi+1, . . . Xn], and its linear polynomial Λi(X) as in (3), and an-
swers the verifier with

fi,Λi(X).

Both take si = qi−1(λi) for the next round.

(In round i = n − 1, Definition (3) reduces to the singleton sum
Λi(X) = P (λ1, . . . , λn−1, X).)

(b) The last round i = n is as the previous rounds, except that the prover
replies on λn ←$ F with the constant c = P (λ1, . . . , λn) for the con-
stant code word fn (no Λn either). Both take sn = qn−1(λn).

The verifier does the final check whether sn = L(ω⃗, λ1, . . . , λn) · c, and proceeds
with the query phase, which consists of s ≥ 1 query rounds:

2. Query Phase. In each of the rounds, the verifier samples a random x0 ←$

D0, and queries the oracles f0, . . . , fn−1 for the values that are needed to
check the consistency relations

fi+1(xi+1) =
f0(xi) + f0(−xi)

2
+ λi ·

f0(xi) + f0(−xi)

2 · xi
,

for every i = 0, . . . , n− 1, along the projection trace of x0, given by x1 =
π1(x0), x2 = π2(x1), . . . , xn = πn(xn−1). (fn is taken as the constant
function c.)

If all verifier checks of the protocol, including those of the sumcheck, pass
then the verifier accepts. (Otherwise, it rejects.)

Of particular importance is the generalization of Protocol 1 to lists (often
called “batches”) of multilinears, as correlated agreement across all the com-
mitted words plays a crucial role in proving soundness of any IOP on top of the
scheme. We keep with a single common query ω⃗ ∈ Fn for the entire batch of
multilinears. Multi-query proofs are discussed in Section 6.2.

Protocol 2 (Batch Reed-Solomon code Basefold). The prover shares the Reed-
Solomon codewords g0, . . . , gM ∈ C0 of the multilinears G0, . . . , GM , together
with their evaluation claims v0, . . . vM at ω⃗ ∈ Fn with the verifier. Then they
engage in the following extension of Protocol 1:

1. In a preceding round i = 0, the verifier sends a random λ0 ←$ F , and the

9



prover answers with the oracle for

f0 =

M∑
k=0

λk
0 · gk. (5)

Then both prover and verifier engage in Protocol 1 on f0 and the claim v0 =∑M
k=0 λ

k
0 · vk. In addition to the checks in Protocol 1, the verifier also checks

that equation (5) holds at every sample x from D0.

Without formal definition, we state the soundness error of Protocol 2, as an
interactive oracle proof of proximity for the evaluation claims, with a proximity
parameter in the list decoding regime,

θ ∈
(
1− ρ

2
, 1−√ρ

)
.

That is, if a (possibly unbounded) algorithm P ∗ succeeds the verifier with a
probability greater than that soundness error, then there exist polynomials

p0(X), . . . , pM (X) ∈Pn

which agree with the committed words g0, . . . , gM on a joint set of density at
least 1− θ, and the multilinear representations P0, . . . , PM of which, satisfy the
evaluation claims Pk(ω⃗) = vk, for each k = 0, . . . ,M .

Theorem 1 (Basefold soundness). Let F and D and C = RS2n [F,D] as above,
and choose a proximity parameter θ = (1 + 1

2m ) · √ρ, where ρ is the rate of C
and m ≥ 3. The soundness error ε of the batch evaluation proof, Protocol 2, is
bounded by

ε < ε(C0,M, 1, θ) +

n∑
i=1

(
1

|F |
+ ε
(
Ci, 1, Bi, θ

))
+ (1− θ)s.

(6)

where ε(Ci,Mi, Bi, θ) is the soundness error of the weighted correlated agreement
theorem, Theorem 4, for subcodes of Ci = RS2n−i [F,Di], on a batch of Mi + 1
words, weight denominator bound Bi = |D|/|Di| = 2i, and proximity parameter
θ.

A formal treatment, including a proof of the theorem, is given in Section
5. Nevertheless, we quickly explain the components of the soundness error in
Theorem 1. The overall sum in the first line of equation (6) corresponds to the
soundness error of the commit phase, expressing the maximum probability for
an adversary, on a set of words (g1, . . . gM ) which does not satisfy the claim of
the proof (which is, there exists a correlated θ-proximate (p1, . . . , pM ) ∈ PM

n

satisfying the evaluation claims) is able to provide oracles f0, f1, . . . , fn with only
few folding inconsistencies, assuming admissible sumcheck refinement claims
Λ0(X), . . . ,Λn−1(X).
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• The first term ε(C0,M, 1, θ) is the error for the batching step of the M+1
given words over D0 = D. This is the same error as given by the regu-
lar (i.e. non-weighted) correlated agreement theorem for linear subcodes,
Theorem 3, and we chose the weighted error only for notational conve-
nience.

• The terms ε(Ci, 1, Bi, θ), i = 1, . . . , n, are the errors for the further, FRI-
like reduction steps, when foldingMi = 2 words over the domainDi, where
the additional 1/|F | term is a remainder contribution to the sumcheck.
One would expect a double as large term, since the sumcheck is quadratic.
However, half of it is already covered by the subcode correlated agreement
theorem, and that half can be even dropped when using the improved non-
linear variant from Section 4.2, see Lemma 2 in Section 6.2.

Finally, the (1− θ)s-term is the soundness error of the query phase: The proba-
bility that a given set of round oracles f0, f1, . . . , fn with a folding inconsistency
set (on which one of the folding checks does not hold) of density at least θ is
not detected by s samples.

Remark 2. As in regular FRI, one can stop the Protocol 1 at any step k,
0 ≤ k < n, and let the prover provide the last oracle fk ∈ FDk in plain, without
the refinement polynomial Λk(X), e.g. via the coefficients of the univariate
representation of Pλ1,...,λk

. The verifier then checks the remaining inner product

L((ω1, . . . , ωk), (λ1, . . . , λk)) ·
∑

x⃗∈Hn−k

L((ωk+1, . . . , ωn), x⃗) · Pλ1,...,λk
(x⃗)

against its expected value sk = qk−1(λk), and accepts if equal. The soundness
error in Theorem 1 is then reduced to the sum of folding errors ranging only
over the corresponding steps.

3.2 Sketch of soundness

The crucial ingredient for proving the soundness of Protocol 2 is the follow-
ing strengthening of the correlated agreement theorem for Reed-Solomon codes
[BCI+20]. It allows to relate the specialization on the FRI-side of the protocol
with the refinement of the sumcheck claim. A proof of the theorem, as well as
its weighted variant Theorem 4, is given in Section 4.1.

Theorem 3 (Correlated agreement for subcodes). Let F be a finite field of
arbitrary characteristic, and C = RSk[F,D] the Reed-Solomon code over F with
evaluation domain D ⊆ K and rate ρ = k/|D|. Let C ′ be a linear subcode of
C , generated by a subspace P ′ of polynomials from F [X]<k. Given a proximity
parameter θ = 1 − √ρ ·

(
1 + 1

2m

)
, with m ≥ 3, and words f0, f1, . . . , fM ∈ FD
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for which ∣∣∣{z ∈ F : d
(
f0 + z · f1 + . . .+ zM · fM ,C ′) < θ

}∣∣∣
|F |

> ε,

where

ε = M ·
(
m+ 1

2

)7
3 · ρ 3

2

· |D|
2

|F |
, (7)

Then there exist polynomials p0, p2, . . . , pM ∈ P ′, and a set A ⊆ D of den-
sity |A|/|D| ≥ 1 − θ on which f0, f1, . . . , fM jointly coincide with the values of
p0, p1, . . . , pM , respectively.

Let us illustrate the role of Theorem 3 in proving soundness in a round-by-
round manner. We do this by means of the first round of Protocol 1, for a given
proximity parameter θ. (The importance of the theorem in the batching round
of Protocol 2 is even easier to explain.)

Suppose that a (possibly malicious) prover is able to provide f0 and Λ0, the
latter of which is sumcheck compliant (i.e. s0 = q0(0) + q0(1)), so that with
noticeable probability the linear combination

fλ1
= (1− λ1) · f0,0 + λ1 · f0,1

is θ-close to a polynomial pλ1
(X) ∈ Pn−1 with a multilinear representation

Pλ1
∈ F [X2, . . . , Xn] satisfying the refinement on the sumcheck side,〈

L((λ1, . ), ω), Pλ1

〉
Hn−1

= q0(λ1).

We wish to conclude that then both f0,0, f0,1 agree with polynomials p0(X), p1(X)
from Pn−1 on a joint set A ⊆ D1 of density at least 1− θ, the multilinear rep-
resentations P0 and P1 of which are sumcheck compliant,

⟨L((0, . ), ω⃗), P0⟩Hn−1 = q0(0), (8)

⟨L((1, . ), ω⃗), P1⟩Hn−1 = q0(1). (9)

It is then easy to see that, over the preimage π−1(A) ⊆ D0, the word f0 agrees
with the combined polynomial p(X) = p0(X

2) + X · p1(X2) from Pn, the
multilinear representation of which satisfies the sumcheck claim, since q0(0) +
q1(0) = s0.

To show (8) and (9) we reduce the quadratic sumcheck compliance to con-
sistency with the linear polynomial Λ0. By Equation (4), sumcheck compliance
translates to

L(λ1, ω1) ·
〈
L( . , ω2, . . . , ωn), Pλ1

〉
Hn−1

= L(λ1, ω1) · Λ0(λ1),

12



and hence, except for a set of probability 1/|F | (for the zero of L( . , ω1)), we
get that 〈

L( . , ω2, . . . , ωm), Pλ1

〉
Hn−1

= Λ0(λ1),

which, after centering, reads as〈
L( . , ω2, . . . , ωm), Pλ1

− Λ0(λ1)
〉
Hn−1

= 0.

By linearity, Λ0(λ1) = (1− λ1) · Λ0(0) + λ1 · Λ0(1), and we conclude that, with
noticable probability the random linear combination of the centered parts,

f ′
λ1

= (1− λ1) · (f0,0 − Λ0(0))︸ ︷︷ ︸
=:f ′

0,0

+λ1 · (f0,1 − Λ0(1))︸ ︷︷ ︸
=:f ′

0,1

,

is θ-close to the centered polynomial p′λ1
= pλ1 − Λ0(λ1), which belongs to the

space

P ′
n−1 =

{
u(X) ∈Pn−1 : ⟨L( . , ω2, . . . , ωn), U⟩Hn−1

= 0
}
.

This subspace defines a linear subcode C ′
1 of the Reed-Solomon code C1, and by

Theorem 3 we eventually conclude the following: Both centered words f ′
0,0, f

′
0,1

agree with polynomials p′0(X), p′1(X) from P ′
n−1 on a joint set A ⊆ D1 of

density ≥ 1 − θ. Back in terms of non-centered functions, both even and odd
parts f0,0 and f0,1 agree over A with the respective polynomials

p0(X) = p′0(X) + Λ0(0),

p1(X) = p′1(X) + Λ0(1),

from Pn−1, which moreover are consistent with the sumcheck side of the pro-
tocol: Their multilinear representations P0, P1 ∈ F [X2, . . . , Xn] satisfy

⟨L( . , ω2, . . . , ωn), P0⟩Hn−1
= Λ0(0),

⟨L( . , ω2, . . . , ωn), P1⟩Hn−1
= Λ0(1).

Again by (4) the latter two constraints imply the sumcheck compliance, equation
(8) and (9).

The complete argument in Section 5 faces the same technicalities as the
soundness proof for FRI in [BCI+20]: It takes care of the FRI consistency sets,
by means of weights (for the conditional probability of that the folding checks
on f1, . . . , fi−1 hold “above” a point x ∈ Di), and the weighted variant of the
correlated agreement theorem, Theorem 4.

4 Correlated agreement with constraints

In this section we discuss how the correlated agreement theorem for linear sub-
codes, Theorem 3 as well as its non-linear generalization, Section 4.2, are ob-
tained from the Guruswami-Sudan list decoder analysis [BCI+20]. To this end,
we give a sufficiently detailed overview of [BCI+20, full version, Chapter 5].
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Let F = Fq be a finite field (of arbitrary characteristic), and C = RSk[F,D]
be the Reed-Solomon code of rate ρ = k/|D| generated by P = F [X]<k, the
set of all polynomials of degree less than k ≥ 1, using an arbitrary evaluation
set D ⊆ F of size |D|. We fix a proximity parameter

θ = 1−
(
1 +

1

2 ·m

)
· √ρ,

with integer m ≥ 3 being the multiplicity parameter for the Guruswami-Sudan
list decoder.

Assume that we have given words f0, f1 ∈ FD so that S = {z ∈ F :
d(f0 + z · f1,C ) < θ} is of size

|S| >
(
m+ 1

2

)7
3 · ρ 3

2

· |D|2, (10)

and let
Pz ∈P, z ∈ S, (11)

be an arbitrary selection of θ-proximates, satisfying d(f0 + z · f1, Pz) < θ for
every z ∈ S. (Here d is the fractional Hammming distance over D. Weighted
agreement is discussed later on.) In order to understand list decoding across
different z’s, [BCI+20] analyze the decoder over the rational function field K =
F (Z) in the indeterminate Z.

The proof starts with determining

Q(X,Y, Z) ∈ F [X,Y, Z],

a (carefully selected) polynomial variant of the Guruswami-Sudan interpolant
for the K-valued word

f0 + Z · f1,

meaning that Q(x, f0(x) +Z · f1(x), Z) = 0 in K, with multiplicity at least the
given parameter m, for each x ∈ D. (This is Step 1 in [BCI+20, Chapter 5].)
Let

Q(X,Y, Z) = C(X,Z) ·
∏
i

Ri(X,Y, Z)ei

be its decomposition into irreducible polynomials.

The main part of the proof, Step 2 to Step 7 in [BCI+20, Chapter 5], is then
devoted to showing that one3of the irreducible factors Ri(X,Y, Z) is in fact of
the form Y −P (X,Z), with degX(P ) < k and degZ(P ) ≤ 1, and hence leads to
a solution

Y = P (X,Z) = p0(X) + Z · p1(X), (12)

3Namely, any factor which covers a sufficiently large fraction of the claimed proximates.
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with p0(X), p1(X) ∈ P = F [X]<k. The proof uses techniques used in factor-
izing bivariates over finite fields (i.e. computing a power series solution from a
simple root) carried over to an algebraic extension of K; a step that requires
certain familiarity with algebraic function fields.

Proposition 1 ([BCI+20], Proposition 5.5). Under the above assumptions,
there exists a polynomial P (X,Z) ∈ F [X,Z] of degree degX P < k, degZ P ≤ 1,
and so that

|{z ∈ S : P (X, z) = Pz(X)}| > |S|
2 · ℓm

,

where ℓm =
(
m+ 1

2

)
/
√
ρ is the Guruswami-Sudan list size bound for multi-

plicity parameter m ≥ 3. In a nutshell, the factor ℓm reflects the pigeon-hole principle for at most list size many

irreducible factors, the additional factor 2 is for excluding poles of the sufficiently many coefficients of the power series solution.

The analysis generalizes to more expressive linear combinations, in particular
to the case f0 + Z · f1 + . . . + ZM · fM , with f0, . . . , fM ∈ FD for any M ≥ 1,
while the larger degree in Z demands the size of the set

S = {z ∈ F : d(f0 + z · f1 + . . .+ zM · fM ,P) < θ}

being scaled by the degree M ,

|S| > M ·
(
m+ 1

2

)7
3 · ρ 3

2

· |D|2. (13)

This generalization is proven in [BCI+20, Section 6.2], and we cite it as a sepa-
rate proposition.

Proposition 2 ([BCI+20], Section 6.2). Under the above assumptions, there
exists a polynomial P (X,Z) ∈ F [X,Z] of degree degX P < k, degZ P ≤ M ,
and so that

|{z ∈ S : P (X, z) = Pz(X)}| > |S|
2 · ℓm

,

where ℓm =
(
m+ 1

2

)
/
√
ρ is the Guruswami-Sudan list size bound for multiplic-

ity parameter m ≥ 3.

Proposition 1 and respectively Proposition 2 are the core results from which
correlated agreement, as well as a weighted variant of it, are derived. For details,
see Step 8 in [BCI+20, Chapter 5] and more generally [BCI+20, Chapter 6] for
regular correlated agreement, and [BCI+20, Section 7] for the weighted variant.

4.1 For subcodes . . .

Let us now extend the list decoder analysis to an arbitrary linear subcode C ′

of C = RSk[F,D]. We directly do this for the general case f0, . . . , fM ∈ FD
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covered by Proposition 2. Assume that for every z ∈ S as claimed we even have
proximity to the subcode,

d(f0 + z · f1 + . . .+ zM · fM ,C ′) < θ,

and take any selection of proximates Pz(X), z ∈ S, from the linear subspace
P ′ ⊆P behind C ′. We claim that then, the polynomial

P (X,Z) = p0(X) + Z · p1(X) + . . .+ ZM · pM (X)

from Proposition 2 additionally satisfies that

p0(X), p1(X), . . . , pM (X) ∈P ′,

and thus belong to the subcode C ′.

To see this, assume that C ′ is generated by a single linear constraint, and
thus its space of polynomials is P ′ = {p ∈ P : Λp = 0}, where Λ is a linear
functional on P = F [X]<k. (The general case bears no additional difficulties.)
Since

|S|
2 · ℓm

≥M ·
(
m+ 1

2

)6
6 · ρ

· |D|2 ≥ 3.7 ·M · |D|2 (14)

even for the smallest choices of |D| andm, regardless of ρ < 1, there exist at least
M + 1 different points z0, z1, . . . , zM ∈ S for which P (X, zi) = Pzi(X) ∈ P ′.
By linearity,

0 = ΛP (X, zi) = Λp0(X) + zi · Λp1(X) + . . .+ zMi · ΛpM (X),

for each zi, and we conclude that

Λp0(X) = Λp1(X) = . . . = ΛpM (X) = 0,

showing that all pi(X) belong to the subcode ∈ C ′, as claimed. (If C ′ is defined
by several linear functionals, then 0 = Λpi(X) for each of the functionals Λ,
yielding the same conclusion.)

From this sharpening of Proposition 2, both regular as well as weighted
correlated agreement of P (X,Z) are proven as in [BCI+20, Section 6 and 7],
without any changes. We only cite the weighted variant; the regular case is
already mentioned in Theorem 3. Given a sub-probability measure µ on D, and
f ∈ FD, we write

agreeµ(f,C
′) ≥ 1− θ

if there exists a polynomial p(X) ∈P ′ such that µ({x ∈ D : f(x) = p(x)}) ≥
1− θ.

Theorem 4. (Weighted correlated agreement for subcodes) Let C ′ be a linear
subcode of RSk[F,D], and choose θ = 1−√ρ·

(
1 + 1

2·m
)
, for some integer m ≥ 3,
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where ρ = k/|D|. Assume a density function δ : D −→ [0, 1] ∩Q with common
denominator B ≥ 1, i.e. for all x in D

δ(x) =
mx

B
,

for an integer value mx ∈ [0, B], and let µ be the sub-probability measure with
density δ, defined by µ({x}) = δ(x)/|D|. If for f0, f1, . . . , fM ∈ FD,∣∣{z ∈ F : agreeµ(f0 + z · f1 + . . .+ zM · fM ,C ′) ≥ 1− θ

}∣∣
|F |

> ε(C ,M,B, θ),

where

ε(C ,M,B, θ) =
M

|F |
·
(
m+ 1

2

)
√
ρ

·max

((
m+ 1

2

)6
3 · ρ

· |D|2, 2 · (B · |D|+ 1)

)
,

then there exist polynomials p0(X), p1(X), . . . , pM (X) belonging to the subcode
C ′, and a set A with µ(A) ≥ 1 − θ on which f0, f1, . . . , fM coincide with
p0(X), p1(X), . . . , pM (X), respectively.

4.2 . . . and beyond

We emphasize the fact, that Proposition 2 applies also to a more general setting,
in which the subspace of polynomials is characterized by a challenge-dependent
function

Γ : P × F −→ F,

a polynomial (in the coordinates of an arbitrary basis) of typically small total
degree d = deg Γ, and

S =
{
z ∈ F : ∃Pz(X) ∈P s.t.

d(f0 + z · f1 + . . .+ zM · fM , Pz) < θ ∧ Γ(Pz, z) = 0
}
,

where as before P = F [X]<k. In many applications, such as a Basefold proof
for inner products with less-structured multilinears (see Section 6.2), we have
d = 2.

As before, given the usual size bound (13) for S, and choosing the proximates
accordingly (i.e., satisfying Γ), the polynomial P (X,Z) = p0(X) + Z · p1(X) +
. . .+ ZM · pM (X) from Proposition 2 satisfies that

Γ(p0 + z · p1 + . . .+ zM · pM , z) = 0

for z from a fraction of S, of size larger than

|S|
2 · ℓm

≥M ·
(
m+ 1

2

)6
6 · ρ

· |D|2 > 3.7 ·M · |D|2
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regardless of the choice of m and ρ < 1. Thus if d ·M +1 ≤ 3.7 ·M · |D|2 (which
in the case d = 2 holds even for smallest domains), we obtain that

Γ(p0 + Z · p1 + . . .+ ZM · pM , Z) = 0

as a formal identity. In other words, the θ-proximate P (X,Z) satisfies the Γ-
constraint over K, and in particular at every Z = z. Regular and weighted
correlated agreement of P (X,Z) is proven as before. We again cite only the
weighted variant.

Theorem 5. (Non-linear generalization of Theorem 4) Let C = RSk[F,D] be
the Reed-Solomon code generated by the space of polynomials P = F [X]<k,
and let Γ : P × F −→ F be of total degree d = 2. As in Theorem 4, we
take θ = 1 − √ρ ·

(
1 + 1

2·m
)
for some integer m ≥ 3, where ρ = k/|D|, and

let µ be the sub-probability measure with density δ : D −→ [0, 1] ∩ Q. If for
f0, f1, . . . , fM ∈ FD,∣∣∣∣{z ∈ F :

∃Pz(X) ∈P s.t. Γ(Pz, z) = 0
∧ agreeµ(f0 + z · f1 + . . .+ zM · fM , Pz) ≥ 1− θ

}∣∣∣∣
|F |

> ε(C ,M,B, θ),

where

ε(C ,M,B, θ) =
M

|F |
·
(
m+ 1

2

)
√
ρ

·max

((
m+ 1

2

)6
3 · ρ

· |D|2, 2 · (B · |D|+ 1)

)
,

with B ≥ 1 being the common denominator of δ, then there exist polynomials
p0(X), . . . , pM (X) ∈P such that

Γ(p0 + Z · p1 + . . .+ ZM · pm, Z) = 0 ∈ F [Z],

and which coincide with f0, f1, . . . , fM , respectively, on a joint set A of weight
µ(A) ≥ 1− θ.

Remark 6. The soundness error of the non-weighted variant of Theorem 5 is
equal to ε(C ,M,B, θ) with B = 1.

5 Soundness in the oracle model

In this section we prove Theorem 1, i.e. the soundness error of the batch variant
of Basefold for Reed-Solomon codes, Protocol 2, as an interactive oracle proof
of the relation

R =

(g0, . . . , gM ) :

∃p0, . . . , pM ∈ F [X]<2n s.t.
d((g0, . . . , gM ), (p0, . . . , pM )) < θ

∧
∧M

k=0 Pk(ω1, . . . , ωM ) = vk

 , (15)
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for given words g0, . . . , gM ∈ FD0 , query ω⃗ = (ω1, . . . , ωn), and evaluation
claims v0, . . . , vM . (In words, a tuple of words (g0, . . . , gM ) belong to R if it
has a θ-proximate (p0, . . . , pM ), in the correlated agreement sense, the multi-
linear representations P0, . . . , PM of which satisfies the evaluation claims.) The
proximity parameter θ is taken from the list decoding regime, that is θ = 1− α
with

α =

(
1 +

1

2m

)
· √ρ,

where ρ = 2n/|D| is the rate of the Reed-Solomon code C = RS2n [F,D], and
m ≥ 3 is the multiplicity parameter of the Guruswami-Sudan list decoder. As
the soundness proof of FRI [BCI+20, Chapter 8.2], the analysis of Basefold is
done in a round-by-round manner, considering each round of the protocol as a
probabilistic reduction from one relation to another, simpler relation, thereby
defining its own soundness error. These errors are runtime independent and
depend only on protocol parameters, making a translation into the formal terms
of round-by-round soundness straight-forward. We postpone that step to an
extended version of the writeup.

Although we confine ourselves to the list decoding regime, we stress the fact
that this is merely for brevity. The entire analysis can be carried over verbatim
to the unique decoding regime, using the respective adaptions of Theorem 3 and
Theorem 4.

Let us denote Fi the space of polynomials of the Reed-Solomon code Ci =
RS2n−i [F,Di] over the projected domain Di = πi(D), i = 0, . . . , n. As sketched
in Section 3.2, the linear subcodes C ′

i < Ci, defined by the subspaces

F ′
i = {p(X) ∈ Fi : P (ωi+1, . . . , ωn) = 0}, (16)

will play a crucial role in the soundness analysis of Protocol 2. This is the
“punctured” space of all polynomials from Fi, the multilinear representation of
which has a zero at the given query. (In the edge case i = n, definition (16) is
understood as F ′

n = {0}.)

For an agreement parameter α ∈ (0, 1), and integer r, 0 ≤ r ≤ n, we say
that a prover P ∗ succeeds the commitment phase with r rounds, if in interaction
with the verifier it is able to provide

f0,Λ0, f1,Λ1, f2,Λ2, . . . ,Λr−1, and fr,

such that with q−1(X) :=
∑

Xk · vk and the other qi(X) as in (4) we have

qi−1(λi) = qi(0) + qi(1),

for all i = 0, . . . , r−1, and f0, f1, . . . , fr define a sufficiently consistent fold-down
of g0, . . . , gM to a sumcheck compliant codeword from Cr. That is, there exists
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pr(X) ∈ Fr with its multilinear representation Pr satisfying

L((ω1, . . . , ωr), (λ1, . . . , λr)) · Pr(ωr+1, . . . , ωn) = qr−1(λr)

= L((ω1, . . . , ωr), (λ1, . . . , λr)) · Λr−1(λr) (17)

and for which∣∣∣∣{x ∈ D0 :
(f0, . . . , fr) satisfy all folding checks along x

∧ fr(π
r(x)) = pr(π

r(x))

}∣∣∣∣ ≥ α · |D0|. (18)

(Note that in the edge case r = 0, Equation (17) collapses to Pr(ω1, . . . , ωn) =
q−1(λ0) =

∑
k λ

k
0 · vk, and for r = n, Pr(ωr+1, . . . , ωn) in Equation 17 collapses

to the constant Pr ∈ F .) Any such (f0,Λ0, f1,Λ1, . . . , fr) will be called α-good
for (λ0, . . . , λr).

The soundness proof of Protocol 2 goes along the following lines. Starting
with the relation R−1 = R as defined above, each round of the commit phase,
0 ≤ r ≤ n, is a randomized reduction from a transcript

trr−1 = (λ0, f0,Λ0, λ1, f1,Λ1, . . . , λi−1, fi−1,Λr−1)

belonging Ri−1 (where for r = 0 we take tr−1 = (g0, . . . , gM )) so that its
continuation

tri = tri−1∥(λi, fi,Λi)

is a member of

Ri =

{
(λ0, f0,Λ0, . . . , λi, fi,Λi) :

(f0,Λ0, . . . , fi)
is α-good for(λ0, . . . , λi)

}
,

with α-goodness as defined above. (In the edge case i = r, there is no Λr in
the definition of Rr.) The error of such a reduction step will be given from the
subcode correlated agreement theorem (Theorem 3) in the first step, and its
weighted variant, Theorem 4, in the FFT-like folding steps. The overall error is
then dominated by the sum of the round-wise errors.

Lemma 1 (Soundness commit phase). Take a proximity parameter θ = 1 −(
1 + 1

2·m
)
·√ρ, with m ≥ 3. Suppose that a (possibly computationally unbounded)

algorithm P ∗ succeeds the commitment phase with r ≥ 0 rounds with probability
larger than

εC = ε0 + ε1 + . . .+ εr,

where ε0 = ε(Ci,M, θ) is the soundness error from Theorem 3, and

εi := ε(Ci, 1, Bi, θ) +
1

|F |
,

with ε(Ci, 1, Bi, θ) being the soundness error from Theorem 4, where Bi =
|D|/|Di| = 2i. Then (g0, . . . , gM ) belongs to R.
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Proof. We prove the Lemma by induction on r, 0 ≤ r ≤ n. We start by proving
the base case r = 0. If with probability greater than ε0 = ε(C0,M, θ), the
prover is able to answer with an α-good f0 ∈ FD0 , where α = 1 − θ, then in
particular the folding of the centered functions g′k = gk − vk are θ-proximate to
the subcode C ′

0 of C0, with probability

Pr

[
λ0 : ∃p′0 ∈ F ′

0 s.t. agree

(
M∑
k=0

g′k · λk
0 , p

′
0(X)

)
≥ α

]
> ε(C0,M, θ),

where F ′
0 is as defined above. By the correlated agreement theorem for sub-

codes, Theorem 3, we conclude that there exists polynomials

p′0(X), . . . , p′M (X) ∈ F ′
0

which agree with g0, . . . , gM on a joint set of density ≥ α. Over the same set
the non-centered polynomials

p′0(X) + v0, . . . , p
′
M (X) + vM ∈ F0

agree with g0, . . . , gM . Their multilinear representations Pk ∈ F [X1, . . . , Xn]
satisfy Pk(ω⃗) = vk, showing that (g1, . . . , gM ) ∈ R.

Assume that the Lemma holds for r, where 0 ≤ r < n, and that a prover P ∗

succeeds the commitment phase for (r+1) rounds with probability greater than
(ε1+. . .+εr)+εr+1. Then the set T of transcripts trr = (λ0, f0,Λ0, . . . , λr, fr,Λr)
for which the conditional success probability of P ∗ is greater than εr+1, and thus

Pr

[
λr+1 :

∃fr+1 s.t.
(
f0,Λ0, . . . , fr,Λr, fr+1)

)
is α-good for (λ0, . . . , λr+1)

]
> εr+1,

has probability Pr[T] > ε0 + . . .+ εr. By the definition of α-goodness, for each
of these λr+1 there exists a sumcheck compliant polynomial pr+1 ∈ Fr+1 so
that

agreeνr
((1− λr+1) · fr,0 + λr+1 · fr,1, pr+1) ≥ α,

where νr is the sub-probability measure with density function

δr(y) :=

∣∣{x ∈ π−(r+1)(y) : (f0, . . . , fr) satisfies all folding checks along x
}∣∣∣∣π−(r+1)(y)

∣∣ ,

for y ∈ Dr+1. (The claimed weighted agreement is an application of the law
of total probability, using the conditional probabilities given by δr(y).) Us-
ing sumcheck compliance as in our proof sketch from Section 3.2, we conclude
that except for a set of λr+1 of probability 1/|F | (for the possible zero of the
Lagrangian in formula (4)), and thus still of probability greater than

εr+1 −
1

|F |
= ε(Cr+1, 1, Br+1, θ),
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the polynomial p′r+1 = pr+1 − Λr(λr+1) is from the subcode F ′
r+1 as defined

above, and the centered parts f ′
r,0 = fr,0 −Λr(0) and f ′

r,1 = fr,1 −Λr(1) satisfy

agreeνr
((1− λr+1) · f ′

r,0 + λr+1 · f ′
r,1, p′r+1) ≥ α,

altogether

Pr

[
λr+1 :

∃p′r+1 ∈ F ′
r+1 s.t.

agreeνr

(
(1− λr+1) · f ′

r,0 + λr+1 · f ′
r,1, p

′
r+1

)
≥ α,

]
> ε(Cr+1, 1, Br+1, θ).

By Theorem 4, we conclude that f ′
r,0 and f ′

r,1 agree with some

p′r,0(X), p′r,1(X) ∈ F ′
r+1

on a set Ar+1 ⊆ Dr+1 of weight νr(Ar+1) ≥ 1 − θ. Over the same set, the
non-centered parts fr,0 and fr,1 agree with

pr,0(X) = p′r,0(X) + Λr(0), pr,1(X) = p′r,1(X) + Λr(1) ∈ Fr+1,

the multilinear representations Pr,0, Pr,1 of which satisfy

Pr,0(ωr+2, . . . , ωn) = Λr(0),

Pr,1(ωr+2, . . . , ωn) = Λr(1).

(In the edge case r+1 = n the two equations collapse to Pn−1,0 = Λn−1(0) and
Pn−1,1 = Λn−1(1).) Over the preimage Ar = π−1(Ar+1), the word fr coincides
with the values of

pr(X) = pr,0(X
2) +X · pr,1(X2) ∈ Fr,

and by construction its multilinear representation Pr satisfies

Pr(ωr+1, ωr+2, . . . , ωn) = (1− ωr+1) · Λr(0) + ωr+1 · Λr(1)

= L(ωr+1, 0) · Λr(0) + L(ωr+1, 1) · Λr(1),

and hence is sumcheck compliant,

L(ω1, . . . , ωr, λ1, . . . , λr) · Pr(ωr+1, ωr+2, . . . , ωn) = qr(0) + qr(1) = qr−1(λr).

Furthermore, the set of x ∈ π−r(Ar) on which all folding checks against hold
against f0, . . . , fr, is of density

|{x ∈ π−r(Ar) : all folding checks hold for f0, . . . , fr}|
|D0|

=
1

|D0|
·
∑

y∈Ar+1

δ(y) ·
∣∣∣π−(r+1)(y)

∣∣∣ = 1

|Dr+1|
·
∑

y∈Ar+1

δ(y) = νr(Ar+1),

which is at least α. Putting everything together, the prover message (f0,Λ0, . . . , fr)
is α-good for (λ0, . . . , λr). Since the probability of P ∗ producing such a trace
is greater than ε1 + . . . + εr, we conclude from the induction hypothesis that
(g0, . . . , gM ) belongs to R, completing the proof of the Lemma.
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With Lemma 1 the soundness error of the entire Protocol 2 is obtained within
a minor additional step: Considering the query phase as probabilistic reduction
from Rn to the verifier relation

Rn+1 =

{
(λ0, f0,Λ0, . . . , λn, fn),

(x1, . . . , xs)
:
fn ∈ Cn ∧ all verifier checks hold for
(λ0, . . . , λn) and samples x1, . . . xs

}
,

its soundness error corresponds to the probability that a prover message t =
(f0,Λ0, . . . , fn) which is not α-good for (λ0, . . . , λn) being not detected by s
random samples. A message t is not α-good, if either one of the sumcheck
equations fail, or the folding consistency set is of density < α. The former is
always detected, and the latter is detected except with probability

εQ < αs.

Eventually, the soundness error of the entire oracle proof is dominated by sum
of the roundwise errors

ε < εC + (1− θ)s,

completing the proof of Theorem 1.

6 Generalizations

In this section we discuss several generalizations of Basefold, and how the sound-
ness analysis from Section 5 extends to these cases. First of all, in Section 6.1,
we quickly discuss the adaption of Basefold to different FFT environments,
with emphasis on the additive FFT over binary fields. Then in Section 6.2, we
generalize the type of sumcheck expressions to be proven by Basefold, cover-
ing multi-query evaluation proofs as well as the recent FRI-Binius optimization
[Dia24b], which we shortly discuss in Section 6.3.

6.1 Other FFTs

Adapting Basefold to other FFT-encodable algebraic geometry codes is merely
a technical step. For simplicity, and in particular in view of Section 6.3, we
restrict ourselves to Reed-Solomon codes over binary fields, with the additive
FFT [LCH14] used for encoding. Other codes such as EC-FFT codes [BCKL21]
or Circle Codes [HLP24] are treated likewise.

Let F be a finite binary field, i.e. a finite field of characteristic 2. Instead
of subgroups of the multiplicative group, the additive FFT takes subgroups of
the additive group, i.e. F2-linear subspaces of F as the domains. Similar to the
regular case, the FFT works along a chain of projected subspaces

U = U0
π1−→ U1

π2−→ . . .
πn−→ Un, (19)
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where
πi(x) = x · (x− bi),

with bi ∈ F , are suitably chosen quadratic maps4which halve the size of the sub-
spaces in each of the steps, until ending up with a singleton domain Un. (Recall
that quadratic maps are F2-linear.) As “twiddle functions” ti : Ui −→ F one
may take again ti(X) = X, for i = 0, . . . , n−1, or a properly normalized5variant
if one desires an optimized butterfly network.

Given a function f ∈ FU over U = U0, with values in F (or more generally,
an extension of F ), the additive FFT computes the coefficients of the interpolant

p(X) =

2n−1∑
i=0

ci · bn,i(X)

with respect to a polynomial basis Bn = {bn,i(X)}, which is different to the
monomial one, defined by the projection chain and the twiddle functions,

bn,i(X) = t0(X)i0 · (t1 ◦ π1)(X)i1 · . . . · (tn−1 ◦ πn−1 ◦ . . . ◦ π1)(X)in−1 ,

where (i0, . . . , in−1) are the bits of i =
∑n−1

k=0 ik · 2k. By the degrees of ti and
πi, these polynomials are of degree less than 2n and hence form a basis of Pn.
As in the multiplicative case, the algorithm is based on the decomposition of a
function fi ∈ KUi into “even” and “odd” parts,

fi(x) = fi,0(πi+1(x)) + ti(x) · fi,1(πi+1(x)), (20)

which are computed by value, using a “butterfly” along the fibers of the projec-
tion, which are of the form {x, x+ bi+1}, see formula (21) below.

Likewise additive FRI [BBHR18], which proves proximity to the Reed-
Solomon code C0 = RS2n [F,D] over an evaluation domain D, a disjoint coset
union of U0, goes along the projected domains

D = D0
π1−→ D1

π2−→ . . .
πn−→ Dn,

which are also halved in each step. Starting with f0 ∈ FD, FRI recursively
takes random linear combinations of the “even” and “odd” parts,

fi+1(πi+1(x)) = fi,0(πi+1(x)) + λi · fi,1(πi+1(x)),

thereby reducing the initial proximity claim to gradually simpler claims, which
are with respect to the codes Ci = RS2n−i [F,Di] over the projected domains,
for i = 1, . . . , n.

4In fact, if Ui = ui + Vi with Vi being a non-affine subspace, then any quadratic map of
the above form, which annihilates a basis vector of Vi, is fine.

5The proper normalization is so that ti(x + bi+1) = ti(x) + 1. Equivalently, one may
integrate normalization into the projection, see [GM10, LCH14, DP24].
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In regards to Basefold, a multilinear P ∈ F [X1, . . . , Xn] is again represented
as a univariate polynomial p(X) ∈Pn via

p(X) =

2n−1∑
i=0

P (i0, . . . , in−1) · bn,i(X),

and committed as word from C0. By the recursive structure of the polynomial
basis, this identification preserves the connection between partial substitution
and FRI-like folding of even and odd parts. With this different FFT environ-
ment, Protocol 1 and 2 remain essentially unchanged, except that “even” and
“odd” parts are computed (and verified) via(

fi,0(πi+1(x))
fi,1(πi+1(x))

)
=

(
1 ti(x)
1 ti(x+ bi+1)

)−1

·
(

fi(x)
fi(x+ bi+1)

)
. (21)

The subcode correlated agreement theorem from Section 4.1 is valid for fields
over arbitrary characteristic (as does its non-linear generalization), and hence
Theorem 1 with its proof from Section 5 holds verbatim.

6.2 More expressive inner products

Protocol 1 and its batched variant Protocol 2 are easily extended to more ex-
pressive hypercube sums than the evaluation inner product for a single query
on the multilinears G0, . . . , GM . For simplicity, we restrict to assertions of the
form

⟨Gk, R⟩Hn = vk, (22)

sharing the same R ∈ F [X1, . . . , Xn] for k = 0, . . . ,M , any succinct evaluable
multilinear. This simple case covers linear combinations of Lagrangians, as used
in multi-point evaluation proofs, or the expression used by the row-batched
optimization of FRI-Binius, which we address in Section 6.3.

For assertions of the form (22), the sumcheck is still quadratic, but since R
is in general not decomposable as a Lagrangian L( . , ω⃗), we cannot work with
linear refinement polynomials as we did in Section 3. This rules out a reduction
of the soundness analysis to correlated agreement for linear subcodes, Theorem
4. Instead, we return to the regular sumcheck convention and let the prover
directly provide the quadratic polynomials

qi(X) =
〈
P (λ1, . . . , λi, X, . ), R(λ1, . . . , λi, X, . )

〉
Hn−i−1

,

in each of the rounds i = 0, . . . , n−1, and correlated agreement with the needed
additional algebraic properties will be guaranteed by the non-linear generaliza-
tion Theorem 5.
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The differences to Section 5 are again merely technical. The relation to be
proven is

R =

(g0, . . . , gM ) :

∃p0, . . . , pM ∈ F [X]<2n s.t.
d((g0, . . . , gM ), (p0, . . . , pM )) < θ

∧
∧M

k=0⟨Pk, R⟩Hn
= vk

 , (23)

and the further relations R1, . . . ,Rn, including the notion of prover success and
α-goodness of prover messages are as in Section 5, except for replacing Λi(X) by
qi(X), and adapting the sumcheck compliance formula accordingly. Soundness
of the commit phase, is as done for Lemma 1, with the main difference that
we work with non-linear constraints imposed by the sumcheck refinements, and
no centering is needed. Notably, the use of Theorem 5 slightly tightens the
soundness error from Lemma 1, allowing the sumcheck error being completely
covered by the soundness error of the correlated agreement theorem.

Lemma 2 (Soundness commit phase). Take a proximity parameter θ = 1 −(
1 + 1

2·m
)
·√ρ, with m ≥ 3. Suppose that a (possibly computationally unbounded)

algorithm P ∗ succeeds the commitment phase with r ≥ 0 rounds with probability
larger than

εC = ε0 + ε1 + . . .+ εr,

where
εi := ε(Ci,Mi, Bi, θ)

is the soundness error from Theorem 5 for M0 = M , B0 = 1, and Mi = 1,
Bi = |D|/|Di| = 2i otherwise. Then (g0, . . . , gM ) belongs to R.

Proof. We only point out the differences to the proof of Lemma 1, which essen-
tially are due to the usage of Theorem 5 and its non-linear constraint Γ.

In the base case r = 0 for the batching round, we choose the constraint
Γ0 : F0 × F −→ F defined by

Γ0(p, z) = ⟨P,R⟩Hn
−

M∑
k=0

vk · zk,

which is of degree M in z, and linear in the coordinates of P. In particular,
Γ(p0 + Z · p1 + . . .+ ZM · pM , Z) is still of degree ≤ M , and by the discussion
preceding Theorem 5 shows the existence of

p0(X), . . . , pM (X) ∈ F0

which agree with g0, . . . , gM on a joint set of density ≥ 1 − θ, and moreover
Γ0(p0 + Z · p1 + . . .+ ZM · pM , Z) = 0 ∈ F [Z]. Thus,

M∑
k=0

(⟨Pk, R⟩Hn
− vk) · Zk = 0
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as a formal identity, showing that each Pk satisfies its sumcheck claim.

In the induction step from r to r + 1, where 1 ≤ r ≤ n − 1, the non-linear
constraint Γr : Fr+1 × F −→ F is

Γr(p, z) = ⟨P,R(λ1, . . . , λr, z, . )⟩Hn−r−1
− qr(z),

where qr(z) is the claimed sumcheck polynomial. Here, the total degree of Γr is
d = 2. (In the edge case r = n− 1, Fr+1 is the space of constants Fn, and the
inner product reduces to the singleton sum Γn−1(p, z) = p ·R(λ1, . . . , λn−1, z).)
By the induction assumption, the set T of up-to-round-r transcripts for which

Pr

[
λr+1 :

∃pr+1 ∈ Fr+1 s.t. Γ(pr+1, λr+1) = 0
∧ agreeνr

((1− λr+1) · fr,0 + λr+1 · fr,1, pr+1) ≥ α

]
> εr+1 = ε(Cr+1, 1, Br+1, θ),

is of probability Pr[T] > ε0+ . . .+εr. (We use the same sub-probability measure
νr as in Section 5). We apply Theorem 5 to conclude that fr,0 and fr,1 agree
over a joint set Ar+1 of density νr(Ar+1) ≥ 1− θ with polynomials

pr,0(X), pr,1(X) ∈ Fr+1,

satisfying Γr((1 − Z) · pr,0 + Z · pr,1, Z) = 0 ∈ F [Z]. In particular Γ(pr,0, 0) =
Γ(pr,1, 1) = 0, meaning that their multilinear representations Pr,0 and Pr,1 sat-
isfy

⟨Pr,0, R(λ1, . . . , λr, 0)⟩Hn−r−1
= qr(0),

⟨Pr,1, R(λ1, . . . , λr, 1)⟩Hn−r−1
= qr(1).

Over the preimage Ar = π−1(Ar+1), the word fr coincides with the values of

pr(X) = pr,0(X
2) +X · pr,1(X2) ∈ Fr,

and by construction its multilinear representation Pr satisfies

⟨Pr, R(λ1, . . . , λr, . )⟩Hn−r
= ⟨Pr,0, R(λ1, . . . , λr, 0)⟩Hn−r−1

+ ⟨Pr,1, R(λ1, . . . , λr, 1)⟩Hn−r−1
= qr(0) + qr(1) = qr−1(λr),

and hence is sumcheck compliant. The density of the folding consistency set for
the oracles f0, . . . , fr is shown as in Lemma 1, yielding that (f0, q0(X), . . . , fr)
is α-good for (λ1, . . . , λr). This completes the proof of the lemma.

6.3 FRI-Binius

FRI-Binius [DP24] is a small-field polynomial commitment scheme, in which
multilinears over some small field F (for example, F = F2) are committed via
a “packed” representation over some larger field

E > F.
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We restrict ourselves to the case of binary fields and Reed-Solomon codes, and
for brevity we omit certain details which are not essential for the core of the
construction.

Let F be a field of characteristic two, and E be an extension field of dimen-
sion d = dimE/F , with an (additive) FFT domain D of size |D| > n. Fix a
basis {β1, . . . , βd} of E/F , then any collection6of small-field multilinears

P1, . . . Pd ∈ F [X1, . . . , Xn]

is committed via the “packed” multilinear

P =

d∑
i=1

βi · Pi ∈ E[X1, . . . , Xn], (24)

over the larger field E, as code word f from C = RS2n [E,D], using the same
identification of multilinears and univariates as before. Conversely, given any
P ∈ E[X1, . . . , Xn] it can be uniquely decomposed into component polynomials
P1, . . . , Pd ∈ F [X1, . . . , Xn] satisfying (24).

Now, for a given a query ω⃗ ∈ Qn from any other field Q ≥ F (the query
field, typically a cryptographically large extension), we wish to prove the values

vi = Pi(ω⃗) ∈ Q, i = 1, . . . , d, (25)

by means of the packed polynomial P . While in [DP24], these claims are ex-
pressed as an evaluation inner product over the tensor algebra Q⊗E, we largely
avoid the notion of tensor algebras, and directly describe the row-batched opti-
mization from [Dia24b]:

Let d′ = dimQ/F and {γ1, . . . , γd′} be a basis of Q/F , and write

vi =

d′∑
j=1

vi,j · γj and L(ω⃗, . ) =

d′∑
j=1

γj · Lω⃗,j( . ) (26)

with vi,j ∈ F and component multilinears Lω⃗,j ∈ F [X1, . . . , Xn]. Then the
claims (25) are equivalent to that

⟨P,Lω⃗,j⟩Hn =

d∑
i=1

βi · ⟨Pi, Lω⃗,j⟩Hn =

d∑
i=1

βi · vi,j ,

for each j = 1, . . . , d′, which is then proven via the random linear combination〈
P,

d′∑
j=1

λj−1 · Lω⃗,j

〉
Hn

=

d′∑
j=1

λj−1 ·
d∑

i=1

βi · vi,j , (27)

6In FRI-Binius these polynomials are a Lagrange decomposition of a larger multilinear over
F .
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where λ is taken from a cryptographically large extension K of E. This is done
using Basefold from Section 6.2, adapted to the additive FFT as described in
Section 6.1. Note that the polynomials Lω⃗,j are multilinear, and more impor-
tantly, they can be evaluated simultaneously, still in a succinct manner, at any
point λ⃗ ∈ Kn. (This can be done by means of tensor algebra operations7, see
[DP24].) The protocol for a batch of packed multilinears is as follows.

Protocol 3 (Optimized FRI-Binius [Dia24b]). Let F , E and Q as above. Given
multilinears G0, . . . , GM ∈ E[X1, . . . , Xn] over E, committed as Reed-Solomon

code words g0, . . . , gM ∈ C = RS2n [E,D], and evaluation claims v
(k)
i ∈ Q,

i = 1, . . . , d, k = 0, . . . ,M for their component polynomials Gk,i, at some query
ω⃗ ∈ Qn.

1. The verifier sends a random λ←$ K, from an extension field K of E, to
the prover.

2. Both prover and the verifier now run Basefold from Section 6.2, with prox-
imity parameter θ = (1+ 1

2m ) · √ρ and s ≥ 1 samples, on G0, . . . , GM for

their inner products ⟨Gk, Lω⃗,λ⟩Hn
= v

(k)
λ , 0 ≤ k ≤M , where

Lω⃗,λ =

d′∑
j=1

λj−1 · Lω⃗,j , v
(k)
λ =

d′∑
j=1

d∑
i=1

λj−1 · βi · v(k)i,j . (28)

using the decomposition of Lω⃗ and v
(k)
i as in (26).

Protocol 3 is an interactive oracle proof for the relation

R =

(g0, . . . , gM ) :

∃p0, . . . , pM ∈ E[X]<2n s.t.
d((g0, . . . , gM ), (p0, . . . , pM )) < θ

∧
∧M

k=0

∧[E:F ]
i=1 Pk,i(ω1, . . . , ωn) = v

(k)
i

 , (29)

and its soundness error is the soundness error of Basefold, plus the error the
first round of the protocol, which is random reduction from R to

R′ =

(g0, . . . , gM ) :

∃p0, . . . , pM ∈ E[X]<2n s.t.
d((g0, . . . , gM ), (p0, . . . , pM )) < θ

∧
∧M

k=0⟨Pk, Lω⃗,λ⟩Hn = v
(k)
λ

 . (30)

The error of this round is proven as for any other interactive oracle proof on
top of Basefold, taking into account the size of

L =

{
(p0, . . . , pM ) ∈

(
E[X]<2n

)M
: d((p0, . . . , pM ), (g0, . . . , gM )) < θ

}
,

7The values Lω⃗,j(λ⃗) are the rows of the Lagrangian L(ω⃗t, λ⃗) evaluated in the tensor algebra

Q ⊗ K, where ω⃗t is an element in the vertical embedding of Q, and λ⃗ is an element in the
horizontal embedding of K.
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the list of all correlated θ-proximates, which is bounded by

|L| ≤
m+ 1

2√
ρ

,

the Guruswami-Sudan bound for RS2n [E(Z), D], over E(Z) the field of rational
functions over E.8

Theorem 7 (FRI-Binius soundness). The soundness error ε of Protocol 3 as
an interactive oracle proof for the relation R defined in (29), is bounded by

ε < ℓm ·
d′ − 1

|K|
+ εBF (C ,M, θ, s),

where εBF (C ,M, θ, s) is the soundness error of Basefold for inner products (Sec-
tion 6.2) for the code C = RS2n [K,D] over the extension field K, with batch
size M + 1, proximity parameter θ =

(
1 + 1

2m

)
· √ρ, where m ≥ 3, and s ≥ 1

samples, and ℓm =
m+ 1

2√
ρ is the Guruswami-Sudan list size bound.

Proof. Write ε1 = ℓm · d
′−1
|K| and ε2 = εBF (C ,M, θ, s), and let L be the (possibly

empty) list of all correlated θ-proximates of (g0, . . . , gM ), bounded by ℓm as
above.

Assume that a (possibly computationally unbounded) algorithm P ∗ passes

the verifier on given words g0, . . . , gM ∈ ED and claims v
(k)
i ∈ Q, 1 ≤ i ≤ d,

0 ≤ k ≤M , with a probability larger than ε1 + ε2. Then the number of “good”
λ, on which P ∗ is able to succeed the Basefold verifier with a (conditional)
probability larger than ε2, is at bounded from below by

|{λ ∈ K : Pr[P ∗ succeeds|λ] > ε2}| > ℓm · (d′ − 1)

For each such “good” λ, the soundness of Basefold from Section 6.2 enforces that
(g0, . . . , gM ) belongs to the relationR′ defined in (30), meaning there exists some

(p0, . . . , pM ) ∈ L for which ⟨Pk, Lω⃗,λ⟩ = v
(k)
λ for every k = 0, . . . ,M . By the size

bound on L and the pigeon-hole principle, at least one of the proximates from
L, which we again denote by (p0, . . . , pM ), has (d′ − 1) different λ1, . . . , λd′−1

for which
⟨Pk, Lω⃗,λi

⟩ = v
(k)
λi

,

for every i = 1, . . . , d′−1 and k = 0, . . . ,M . Both Lω⃗,λ and v
(k)
λ are polynomials

in λ of degree at most d′−1, and we conclude from their definitions in (28) that

⟨Pk, Lω⃗,j⟩ =
d∑

i=1

βi · v(k)i,j ,

for every j = 1, . . . , d′ and k = 0, . . . ,M . In other words, ⟨Pk,i, Lω⃗,j⟩ = v
(k)
i , for

all i and k. This shows that (g0, . . . , gM ) belongs to R, proving the theorem.
8The Guruswami-Sudan list size bound applies to infinite fields as well. See the discussion

in the appendix of [Hab22].
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