
Can KANs Do It? Toward Interpretable Deep
Learning-based Side-channel Analysis

Kota Yoshida1⋆, Sengim Karayalcin2⋆, and Stjepan Picek3

1 Ritsumeikan University, Japan
y0sh1d4@fc.ritsumei.ac.jp

2 Leiden University, The Netherlands
s.karayalcin@liacs.leidenuniv.nl

3 Radboud University, The Netherlands
stjepan.picek@ru.nl

Abstract. Recently, deep learning-based side-channel analysis (DLSCA)
has emerged as a serious threat against cryptographic implementations.
These methods can efficiently break implementations protected with var-
ious countermeasures while needing limited manual intervention. To ef-
fectively protect implementation, it is therefore crucial to be able to in-
terpret how these models are defeating countermeasures. Several works
have attempted to gain a better understanding of the mechanics of these
models. However, a fine-grained description remains elusive. To help
tackle this challenge, we propose using Kolmogorov-Arnold Networks
(KANs). These neural networks were recently introduced and showed
competitive performance to multilayer perceptrons (MLPs) on small-
scale tasks while being easier to interpret. In this work, we show that
KANs are well suited to SCA, performing similarly to MLPs across both
simulated and real-world traces. Furthermore, we find specific strategies
that the trained models learn for combining mask shares and are able to
measure what points in the trace are relevant.

1 Introduction

Since the seminal work of Kocher [17], side-channel analysis (SCA) has received
significant attention from the research community. In such attacks, the rela-
tionship between secret dependant computations and (physical) leakages (e.g.,
timing [16] and power consumption [17]) from cryptographic implementations
is exploited to extract secret keys. To assess the security of cryptographic im-
plementations under worst-case assumptions, Chari et al. [7] proposed template
attacks. For these attacks, the adversary uses a copy of the device they are at-
tacking with known key(s), i.e., a profiling device, to create a model for the
computation of the target device. This model can then be used to attack the
target device more efficiently. However, classical profiling attack techniques still
require significant manual intervention in the feature engineering phase [31,2,20].

⋆ equal contribution



2 K. Yoshida et al.

To address this limitation, deep learning-based profiling attacks have re-
cently emerged with the promise to automate much of the labor-intensive as-
pects of side-channel attacks [23,6,14,22,27,11]. In these works, neural networks
are trained to directly predict sensitive intermediate values from traces of pro-
tected implementations leading to state-of-the-art attacking results. While these
models result in (more) automated and efficient attacks than classical profiling
methods, there are still several open challenges that limit the reliability of deep
learning-based SCA in practice [30].

One of the key limitations of using neural networks is that the (trained) net-
works are a black-box. In the context of SCA, a network resulting in key retrieval
clearly indicates that exploitable leakage is present in the traces, but actionable
feedback about what information is leaking and where is difficult to extract. To
address this challenge, several works have explored input attribution methods
to visualize what parts of the trace are contributing to the neural networks pre-
dictions [12,26,24,45]. Further works attempted to gain a better understanding
of the internal operations of the neural network [41,27]. Finally, in [42], a spe-
cific type of network architecture is used that is more interpretable. While these
works make significant progress towards understanding aspects of the trained
networks, only [42] provides explanations on the internals that reflect on how
networks are combining secret shares to avoid masking countermeasures. How-
ever, this requires specialized architectures and results in significantly degraded
attack performance.

To address this gap, we propose using the recently introduced Kolmogorov-
Arnold Networks (KAN) [21]. KANs are a novel alternative to the widely used
multilayer perceptron (MLP) with several key benefits for our application. KANs
can achieve similar performance to MLPs with much fewer trainable parameters
on several tasks and result in (qualitatively) far more interpretable networks.
Considering the challenges related to explaining how neural networks effectively
break implementations discussed above and the fact that (relatively) small mod-
els often work quite well in SCA [45,27], exploring whether KANs can provide
competitive performance while improving interpretability is relevant. With sim-
ulation and real traces, we demonstrate that KANs can achieve comparable per-
formance to MLPs and can interpret what profiling models learned in DLSCA.

The main contributions of this paper are as follows:

1. This is the first report on applying KANs in SCA. We demonstrate that
KAN performs similarly to MLP in DLSCA. KANs can effectively retrieve
the sub-key from (the truncated) ASCAD traces in ≈ 300 traces, which is
comparable to early, less-optimized4 MLPs [3].

2. We simulate side-channel leakage and show the function learned by KANs.
More precisely, we simulated Hamming weight (HW) leakage from a software-
implemented cryptographic algorithm with a masking countermeasure. Fo-
cusing on LSB labeling, we showed that KANs learned an expectation maxi-

4 We note that better performance has been achieved for this target with more opti-
mized architectures [45,38] or hyperparameter search [32,1], but similar performance
improvements should be possible for KANs with more research.



Title Suppressed Due to Excessive Length 3

mization function for each leakage pattern. This function can achieve 53.74%
accuracy on the 2-share masking countermeasure, which indicates that more
shares are needed to mitigate SCA risks.

3. We evaluated the interpretability of KANs with the ASCAD dataset, which
contains power traces acquired from software-implemented AES with a 2-
share masking countermeasure. We showed that the same result as the sim-
ulation can be obtained with real traces.

In this paper, we first introduce relevant SCA background in Section 2. In
Section 3, we introduce KANs. In Section 4, we discuss relevant related work
on interpretability in DLSCA. We then test whether KANs can be effectively
used on simulated and real traces in Section 5 and Section 6, both in terms
of performance and interpretability. Then, we discuss the results in Section 7.
Finally, in Section 8, we provide conclusions and discuss avenues for future work.

2 Side-channel Analysis

2.1 Profiling SCA with Deep Learning

In the profiled SCA scenario, the adversary has access to a clone device on which
they have access to the secret key(s) [7]. The adversary’s first step is to create
a model (with uncertainty) to predict a secret-dependant intermediate value
of cryptographic operations from side-channel leakage. Since the intermediate
value depends on a key, the adversary can reveal the key from the intermediate
value. Here, we consider that the cryptographic algorithm is AES, and the side-
channel leakage is the target device’s power consumption. The intermediate value
is generally set to the output of the AES Sbox, i.e., SBox[pi ⊕ ki] where pi and
ki are the i’th bytes of the plaintext and key, respectively.

The adversary prepares a dataset that consists of measured power traces
(input) Xp and corresponding intermediate values (label) Yp. These intermediate
values can be transformed to effectively train the model using a leakage model
representing how the value influences the physical measurements. The adversary
trains a neural network-based classification model parameterized with trainable
θ, Mθ : X 7→ Y with the dataset with gradient descent to minimize a loss
function. This step is commonly denoted by the training or profiling step.

The second step is to reveal the most likely secret key using the trained
model Mθ and newly acquired traces Xa from the target device. The adversary
can leverage to score key candidates k ∈ K according to the log-likelihood of the
intermediate values yk the model predicts:

score(k) =
∑

xi∈Xa

log(M(xi)θ(x[yk,i])). (1)

These scores can then be ordered, which allows us to rank the key candi-
dates accordingly. As only the actual key k∗ should generate intermediate values
processed in the traces, the highest rank key should be the correct one if the



4 K. Yoshida et al.

model is well-trained. By simulating different attacks with varying random sub-
sets of attack traces, we can effectively simulate different attacks and estimate
the guessing entropy of the correct key by taking the average rank of the correct
key over these simulated attacks [35].

2.2 Leakage Models and Labeling Techniques

The Hamming weight (HW) leakage model is generally assumed when attacking
software implemented AES [30]. In this model, we can observe power consump-
tion correlated to the HW of the transferred value on the data bus.

A template attack, a typical profiled SCA technique, sets the HW of the in-
termediate value (i.e., Sbox output) as the prediction target. On the other hand,
the HW labeling can be problematic for SCA using machine (deep) learning
because of label imbalance problems [29]. As such, Identity[3] and bitwise[46]
labelings are frequently used. The Identity labeling sets the target intermedi-
ate value directly as a classification target. The bitwise labeling sets a specific
bit of the target intermediate value as a classification target. Specific leakage
models that assume bitwise leakage are the least significant bit(LSB) and most
significant bit(MSB) leakage models. This label can be regarded as focusing on
a specific wire on the data bus, which can occur if there is some physical bias
towards that wire in the power/EM measurements.

3 Kolmogorov–Arnold Networks

Kolmogorov–Arnold Networks (KANs) are a novel type of neural network archi-
tecture introduced by Liu et al. [21] based on the Kolmogorov-Arnold represen-
tation theorem [18]. In this section, we aim to give a (relatively) brief overview
of the main concepts behind KANs and discuss the benefits concerning inter-
pretability. For a more comprehensive introduction and discussion of benefits/-
downsides, we refer the reader to [21].

3.1 Kolmogorov-Arnold Representation Theorem

The Kolmogorov-Arnold representation theorem [18] states that any multivariate
continuous function f(X) : [0, 1]n 7→ R can be represented by a finite superpo-
sition of univariate functions:

f(x1, · · · , xn) =

2n+1∑
q=1

Φq(

n∑
p=1

ϕq,p(xp)). (2)

Here, ϕq,p are univariate functions s.t. ϕq,p : [0, 1] 7→ R and Φq : R 7→ R.
As these are all univariate functions, we can parameterize each as a basis spline
curve [8] composed of local learnable basis spline functions. The spline function
has two hyperparameters: the grid size and the order. Larger grid size/order
allow more complex functions to be represented, but the functions may face
optimization problems.



Title Suppressed Due to Excessive Length 5

3.2 KAN Architecture

The key insight in [21] is then that these functions Φq can be used as a network
layer, analogous to fully connected layers in multilayer perceptrons and that
these layers can be stacked to create deeper networks. A KAN layer with nin

input and nout output variables is expressed as:

Φ = {ϕq,p|p ∈ {1, · · · , nin}, q ∈ {1, · · · , nout}}. (3)

The function in Eq. (2) is then a composition of two of these layers where the
first has n inputs and 2n+ 1 outputs and the second has 2n+ 1 inputs and one
output. Deeper networks are a further concatenation of an arbitrary number of
these layers. Hereafter, we define a representation of KAN’s network architecture
by an integer array [n0, n1, ..., nL] where ni is the number of nodes in the i-th
layer of the KAN’s graph by following the paper [21].

3.3 Interpretability of KANs

In this section, we discuss why KANs are more interpretable than other types
of networks. The key attributes that result in easier interpretation are that the
number of parameters to achieve similar accuracy is lower and that each of the
learned activation functions ϕq,p can be easily visualized. This allows for a more
intuitive understanding of the information flow in a network when compared to
the more opaque nature of (large) weight matrices in MLPs.

To illustrate, Figure 1 contains a KAN[2,1,1] with two inputs x, y, which can
be either 0 or 1. In the figure, we can see a plot of the learned activation function
on each edge. We can see that the initial two activation functions are linear, i.e.,
0 if the input is 0 and 1 if the input is 1, and these are summed together in the
first node. Then, the final activation with inputs ranging from (rescaled) 0-2 is
1 if its input is around 1 and 0 otherwise. This results in a function that is 1 if
x ̸= y and thus implements an XOR operation on these two inputs. For more
examples, we again refer to [21].

Fig. 1: Simple KAN implementing x⊕ y.



6 K. Yoshida et al.

4 Related Work

As deep learning-based side-channel analysis (DLSCA) has grown in popularity
over recent years [30], several works have investigated the interpretability/ex-
plainability perspectives. In general, we can divide the works into those that
concentrate on the input (features) and those that concentrate on the inner
workings of the neural network model.

Earlier works introduced input attribution methods that identify which parts
of the input traces influence the network’s predictions [12]. Works in this area
include using gradient visualization methods [24], heatmaps [45], Layerwise Rel-
evance Propagation [12,26], and saliency maps [12]. Wouters et al. used gradient
input to understand the impact of the filter size on desynchronized traces [38].
Further research in this direction directly compared these feature attribution
methods with classical leakage visualization tools [10]. Schamberger et al. in-
troduced the concept of n-occlusion to examine how the window of occlusion
impacts key recovery [34]. Later, Yap et al. developed a novel approach based on
occlusion to find minimal sample points for a neural network key recovery [43].
Besides works that investigate the importance of features for a neural network,
there are also works that concentrate on feature engineering techniques (selection
or construction of points of interest). Rioja et al. considered using metaheuristics
known as Estimation of Distribution Algorithms to help automate the selection
of the PoIs in both unprotected and masking settings [33]. Wu et al. used a
triplet network to transform and reduce the dimensionality of the traces into
relevant embeddings that consist of important leakage information for a better
attack [39]. Further works on features engineering utilize autoencoders to re-
move the effects of hiding countermeasures [40] and to transform traces to other
targets to facilitate transfer learning [19]. (Conditional) generative adversarial
networks have also been used to translate traces between modalities [9] and for
feature selection [13].

While these works effectively highlight/select which parts of the traces are
utilized by the networks, the internal processes of the network largely remain a
black-box. Van der Valk et al. first explored using Vector Canonical Correlation
Analysis to compare neural network internal representations. Subsequently, Wu
et al. [41] explored ablating layers of trained networks to investigate what specific
layers are doing in the network, focusing on challenges related to the portability
of the networks. Perin et al. provided a metric based on the Information Bot-
tleneck theory to visualize the information the deep neural network is learning
for each epoch [25]. Perin et al. [28] employed probes on networks trained to
circumvent the masking countermeasure and visualize where in the network se-
cret shares are recombined to the target values. Yap et al. [42] proposed using
an adapted network structure to be able to extract SAT equations from trained
networks and precisely show the internal workings of networks. Zaid et al. de-
signed a generative model by combining it with a stochastic attack using an
autoencoder called Conditional Variational Autoencoder, providing equations of
the leakage in the trace through the autoencoder’s weights [44].



Title Suppressed Due to Excessive Length 7

The above papers show several methods that can provide a broad under-
standing of the ’behavior’ of the network by 1) showing important input fea-
tures [12,26,24,45] or 2) in which layers certain information is processed [41,27].
Still, only the work in [42] attempts to gain a more precise understanding of the
internals of the networks, but this requires a specialized architecture, resulting
in reduced attack performance and computationally costly training procedures.
This makes applying these models in practice much more difficult, especially
when considering practical targets with long traces.

5 Simulations

5.1 KAN Parameters

In this section, we always use batch size 256 and train for 3000 steps. The
optimizer is Adam [15] with a learning rate of 1e-3. The grid and k parameters
are both set to 3. The outputs of the KAN are transformed using a softmax
function to rescale to a probability function, and the loss function is categorical-
crossentropy. Based on the recommendations by Liu et al. that KAN’s training
starts from a simple setup, especially a small KAN shape and small grid size5,
we run some basic experiments with minimal KANs (i.e., from KAN[2, 1, 2] to
KAN[2, 3, 2]) and determine that the additional nodes do not improve accuracy.
As such, we use KAN[#inputs, 1, 2] unless mentioned otherwise.

5.2 Bitwise Leakage

We first examine how KANs fit a Boolean masking scheme where a single bit
for each share is leaked. In this case, we simulate n points corresponding to n
shares and include the leakage for 1 bit in each of these. We add noise with 0
mean and varying standard deviations to each of these points to simulate more
or less noisy side-channel traces. The label for each of these simulated traces is
then the recombination (or bitwise XOR) of these shares. The number of KAN’s
output is set to 2 and activated by the softmax function. The output represents
the confidence value corresponding to the prediction output of 0 or 1.

The results with low noise in Figure 2 show a pattern for increasing security
orders (which we verify also holds for higher/lower orders). The basic algorithm
that we can visually identify in the graph and activations in Figure 2 is to first
linearly add the leakage for several shares together in a single node, and subse-
quently apply a periodic activation with a number of highs/lows that correspond
to the masking order. To illustrate, imagine recombining 3 shares with perfect
information. We first sum the 3 shares together, i.e., 1 + 1 + 0. Clearly, if the
result is even, the 1-bits cancel each other out, and the result should be 0. Con-
versely, if the result is odd, i.e., 1 + 0 + 0, the result should be 1. More generally,
we can compute xor for n-shares, s1, · · · sn ∈ {0, 1} by taking (

∑n
i=1 si) mod 2.

To achieve these results, KAN can fit sinusoid-like activations (top activations in
5 https://github.com/KindXiaoming/pykan



8 K. Yoshida et al.

Figure 2 and Figure 3) that are on/off (1/0) when inputs are even or odd. Note
that intermediate values can be rescaled while keeping the algorithm identical;
if inputs are scaled by 0.5, then as opposed to even/odd, the functions can fit
on these ranges (whole vs. not whole numbers) similarly.

(a) 4 shares (b) 5 shares

Fig. 2: Low-noise KAN models for bitwise leakage.

With higher noise values added to the inputs, the pattern of additional peak-
s/valleys for higher masking orders remains. In Figure 3, we see that the learned
activations in the output layer closely resemble those in Figure 2. The main
difference between these scenarios is in the input layer, where we see that the
activation remains 1/0 for inputs corresponding to the distributions of the leak-
age.

(a) 4 shares (b) 5 shares

Fig. 3: Higher-noise KAN models for bitwise leakage.



Title Suppressed Due to Excessive Length 9

Finally, when we consider scenarios with additional uninformative samples
in Figure 4, as is a common scenario in practical SCA, we see that the KANs
still learn similar structures and effectively ignore additional samples.

Fig. 4: 4 share KAN [10, 5, 1, 2] with uninformative samples.

5.3 HW Leakage

We next look at how KANs learn from 8-bit HW leakage on the 2-share Boolean
masking scheme. We trained KAN with simulation traces without noise. The
label for these simulated traces is then the LSB of XOR of these shares. The
left of Figure 5 shows the trained KAN’s graph. To obtain a more interpretable
KAN graph, we set linear functions to activations belonging to input nodes, and
the trained graph is shown in the center of Figure 5. Here, we considered sine,
quartic, and other functions in addition to linear functions to make the input
activation symbolic. As the error of the input activation can be corrected in
the subsequent ones, we first adopted the simplest one: a linear function. Since
it decreases the classification accuracy to 53.10%, we set a larger grid size to
enhance the representation and re-train the KAN. We chose the grid size of 17
because the intermediate node’s output (HW (s1) + HW (s2)) has 17 patterns.
The last graph is shown on the right of Figure 5, and it achieves 53.26% accuracy.
According to the graph, the intermediate node calculates HW (s1) + HW (s2),
and the activations belonging to output nodes determine the confidence of each
class (LSB = 0 or LSB = 1).

Let us consider the occurrence distribution of 0 and 1 of LSB. The HW
leakage model supposes all the lines on the data bus to contribute equally to



10 K. Yoshida et al.

set linear
change
grid size

𝑠𝑠0 𝑠𝑠1

LSB = 0 LSB = 1 LSB = 0 LSB = 1 LSB = 0 LSB = 1

𝑠𝑠0 𝑠𝑠1 𝑠𝑠0 𝑠𝑠1
Accuracy = 53.63% Accuracy = 53.10% Accuracy = 53.26%

Fig. 5: Interpretation procedure for profiling model on 2-share Boolean masking
using KAN.

power consumption. We cannot distinguish combinations with the same HW:
e.g., both HW of “01” and “10” are 1. On the other hand, some combinations have
a biased frequency of occurrence; we consider the aggregation based on HW(s1)+
HW(s2), which is the output of the intermediate node of the finally obtained
KAN (right one) in Figure 5. Table 1 provides the number of occurrences of
each LSB in all patterns of HW(s1) + HW(s2). A reasonable way to predict
LSB by using HW(s1) + HW(s2) is by choosing ones with a higher expected
value on each combination, such as the greyed cells in Table 1. Hereafter, we
denote this approach by “expected value maximization (EVM) strategy”. This
strategy achieves 53.74% accuracy on 2-share masking; it is close to the KAN’s
accuracy. Figure 6 plots the results in Table 1 and their differences. Looking
at the difference graph, we can see that it matches the graph learned by the
KAN. From these results, we can consider that KANs have learned the EVM
strategy because the activation in the KAN closely matches the graph of the
EVM strategy, and their accuracy is comparable.

6 Real-world Targets

6.1 ASCAD Datasets

ASCADv1 dataset [3] is a public dataset for evaluating side-channel attacks.
The dataset contains power traces acquired from software-implemented AES-
128 running on ATMega8515, which has a masking countermeasure. The dataset
provides plaintexts, ciphertexts, keys, masks, and traces. It is divided into profil-
ing and attack subsets to evaluate profiling attack scenarios. It has two variants
depending on how the key is provided during the trace acquisition. The fixed key
dataset was acquired with a single key in both the profiling and attack subsets.
There are 50 000 traces in the profiling and 10 000 traces in the attack subset.
The variable key dataset was acquired with a random key in the profiling and
a single key in the attack subset. There are 200 000 traces in the profiling and
100 000 traces in the attack subset. To evaluate elementary attacks, the first two



Title Suppressed Due to Excessive Length 11

Table 1: Number of occurrences of each LSB in HW(s1) + HW(s2)
HW(s1) + HW(s2) LSB(s1 ⊕ s2) = 0 LSB(s1 ⊕ s2) = 1

0 1 0
1 14 2
2 92 28
3 378 182
4 1092 728
5 2366 2002
6 4004 4004
7 5434 6006
8 6006 6864
9 5434 6006
10 4004 4004
11 2366 2002
12 1092 728
13 378 182
14 92 28
15 14 2
16 1 0

Fig. 6: Expectation value graph for the EVM strategy.

bytes of the AES state during the first round are not masked. Our attack exper-
iments reported in the rest of the paper only target the third SBox processing
during the first round, as it is the first masked byte. Each trace has 700 (fixed
key) and 1400 (variable key) sample points, covering the calculation of the first
round, as recommended by the authors of the datasets.



12 K. Yoshida et al.

Table 2: List of known leakages about the third byte in the first round.
Name Type Definition of the target variable
snr1 unmasked SBox output SBox(p[3]⊕ k[3])
snr2 masked SBox output SBox(p[3]⊕ k[3])⊕ rout
snr3 common SBox output mask rout
snr4 masked SBox output in linear part SBox(p[3]⊕ k[3])⊕ r[3]
snr5 SBox output mask in linear part r[3]

(a) ASCADv1 fixed key dataset (b) ASCADv1 variable key dataset

Fig. 7: SNR value of each snr. The sample points highlighted in red indicate the
largest peak and its location.

The countermeasure implementation has two masked states; the linear part
is secured by 16 different masks with a table re-computation method, and the
SubBytes processing is secured by the same input and output mask pair used for
each state element. This means the leakage about an unprotected intermediate
value (unmasked SBox output), which is strongly related to the key, is expected
to be hidden. On the other hand, the leakage of shares made by the masking



Title Suppressed Due to Excessive Length 13

procedure can be observed from traces. Hereafter, we call these known leakages
snr1-5 following Benadjila et al. [3], as shown in Table 2. Each snr2-3 and
snr4-5 pair is supposed to correspond to the pair of share1 and share2 in the
simulation in the previous section. Figure 7 shows the SNR (F -test) value of
each snr. The snr1 has small values overall; it essentially indicates no first-
order leakage. The snr2-5 have some peaks, indicating leakage for each share.
The snr4-5 are relatively high, respectively, and snr2-3 are smaller.

6.2 Revealing What Models Learned

We trained MLP and KAN using the ASCAD dataset. Models receive all sample
points: 700 on fixed key and 1400 points on variable key dataset. To select
the MLP architecture, we considered model architecture MLPexp from [36] and
MLPbest from [3]. The former is designed for the LSB labeling, and the latter is
for the Identity labeling. These achieved almost the same classification accuracy
with LSB labeling, but the MLPexp is significantly smaller architecture than the
MLPbest; thus, we picked MLPexp in this paper. The architecture of MLPexp is
[#inputs, 20, 10, 2] and has ReLU activation for each intermediate layer. KAN
is set to [#input_samples, 5, 1, 2]. To design this architecture, we considered
that the number of inputs significantly increased from the simulation settings in
Section 5. We added a new layer after the input layer intended to aggregate and
organize features from traces. The number of nodes in the layer was set to 5 as
the minimum number that each node can represent snr1-5, respectively. Note
that this does not guarantee each node actually represents a separate share in
the trained KAN.

Table 3 lists the classification accuracy of models on the test set. The MLPs
achieved 60.46% on the fixed key and 58.00% on the variable key datasets. The
KANs achieved 61.18% on the fixed key and 59.17% on the variable key datasets.
These results indicate that MLP and KAN achieved similar classification accu-
racy on each dataset. In addition, we calculated guessing entropy with these
trained models (Figure 8). The number of traces for GE = 0 is listed in Table 3.
The classification accuracy of MLPs was slightly lower than KANs. However, the
number of traces to achieve GE = 0 was lower for MLP than for KANs. We as-
sume this happened because the GE calculation is affected by both classification
accuracy and confidence in each prediction.

Table 3: Attack results on ASCADv1 dataset with MLP and KAN
Classification accuracy #traces to achieve GE = 0

Model fixed key variable key fixed key variable key
MLP 60.46% 58.00% 222 388
KAN 61.18% 59.17% 315 476

Figure 9 shows the models’ input-based sensitivity. The sensitivity of the
MLP model is the partial derivative of the model output with regard to the given



14 K. Yoshida et al.

(a) ASCADv1 fixed key dataset. (b) ASCADv1 variable key dataset.

Fig. 8: Guessing entropy with MLP and KAN.

input, the same approach as [36]. The sensitivity of the KAN model is calculated
by summing output_range/input_range of activations belonging to each input
sample, which is the score for the importance of each node (inputs) used for
pruning KAN nodes [21]. Since KAN and MLP achieved similar classification
accuracy and showed similar sensitivity distributions, this suggests that they
learned a similar function. We can see sample points with high sensitivity that
coincide with the points corresponding to the peaks of snr3, 4, and 5. Since the
peak positions of snr3 and 5 are almost the same, and the model did not focus
on snr2, it is reasonable to assume that the principal part of the learned function
focuses on the pair of snr4 and 5.

(a) ASCADv1 fixed key. (b) ASCADv1 variable key.

Fig. 9: Sensitivity results.



Title Suppressed Due to Excessive Length 15

Next, we trained KANs with the peak point of the snr4 and 5. The chosen
sample point pairs are 517 (snr4) and 156 (snr5) on the fixed key dataset and
1071 (snr4) and 188 (snr5) on the variable key dataset. Since the number of
input nodes is reduced to 2, the KAN’s architecture is the same as the simulation:
KAN[2, 1, 2]. The trained KANs’ graphs are shown in Figure 10, which was
trained using the same settings as the simulation, and the grid size is set to 17,
where the input activations are set to the linear function for the same reasons as
in the simulation. These KANs achieved 56.79% classification accuracy for the
fixed key and 55.33% for the variable key dataset. Comparing KAN’s graph on
the right of Figure 5 and Figure 10, they have the same input activations and
similar output activations. This indicates that KANs learned the same graph as
the simulation, which is the EVM strategy, from real traces (ASCADv1 dataset).
On the other hand, the classification accuracy of the KANs trained with real
traces is higher than that of the simulation. In the next section, we discuss this
is due to imbalance leakage from the data bus.

LSB = 0 LSB = 1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠

(a) ASCADv1 fixed key dataset.

LSB = 0 LSB = 1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠

(b) ASCADv1 variable key dataset.

Fig. 10: Trained KAN’s graph.

6.3 Imbalanced Leakage on Real-world Targets

To discuss why the classification accuracy of KANs trained with real traces
is higher than that of the simulation, we first list the classification accuracy
for each method and dataset for each target bit in Table 4. The classification
accuracy of the EVM strategy was calculated by counting all combinations for
each target bit. To calculate the classification accuracy for the KAN for the
simulation dataset, we trained KAN[2,1,2] with the same setup as in Section 5
by changing the label to each target bit. For KAN with the ASCAD dataset, we
trained KANs with two PoI settings; one used all sample points for input, and the
other used only sample points of snr4-5. A typical HW leakage model considers



16 K. Yoshida et al.

each wire (bit) on the data bus to contribute equally to power consumption. The
EVM strategy and KAN on the simulation achieve almost the same accuracy
for each target bit because they consider the typical HW leakage model. On the
other hand, it can be seen from Table 4 that KANs’ accuracies on the ASCAD
dataset are biased towards the LSB.

We hypothesize that the reason for the bias is the power contribution of each
wire is imbalanced in the ASCAD dataset. To confirm this, we trained linear
regression models so that they predict trace amplitude from data on the bus. The
target sample points are 156 (snr5) and 517 (snr4) for the ASCADv1 fixed key
dataset and 188 (snr5) and 1071 (snr4) for the variable key dataset. For example,
a linear regression model, which predicts snr5 on ASCADv1 fixed-key dataset,
is represented as y = α0b0 +α1b1 + · · ·+α7b7 +C, where y is predicted value of
the sample point (156), b0, ..., b7 are values (0 or 1) of each bit expected to be
transferred on the data bus, α0, ..., α7 are coefficients corresponding to the bits,
and C is a constant. Figure 11 plots the classification accuracy of each KAN and
the sum of coefficients from the regression models (snr4 and 5) for each target
bit. The plots show that there is a correlation between the classification accuracy
and the coefficients. This indicates that the power contribution of each wire is
imbalanced in the ASCAD dataset, and it affects the bias of the classification
accuracy between the target bits. As the LSB wire contributes most to the power
consumption (see Figure 11), neural network models trained on the LSB achieve
higher accuracy than for other bits and models in simulation.

Table 4: Classification accuracy for each target bit.
Target bit

Method Dataset PoI 0 1 2 3
EVM strategy Simulation - 53.74% 53.74% 53.74% 53.74%
KAN[2,1,2] Simulation - 53.36% 53.36% 53.61% 53.70%

KAN[700,5,1,2] ASCADv1 fixed key All 61.29% 54.78% 52.18% 50.53%
KAN[2,5,1,2] ASCADv1 fixed key [156, 517] 56.80% 52.86% 51.17% 51.48%

KAN[1400,5,1,2] ASCADv1 variable key All 57.97% 50.20% 50.06% 50.00%
KAN[2,5,1,2] ASCADv1 variable key [188, 1071] 55.17% 51.17% 50.61% 50.42%

Target bit
Method Dataset PoI 4 5 6 7

EVM strategy Simulation - 53.74% 53.74% 53.74% 53.74%
KAN[2,1,2] Simulation - 53.72% 53.80% 53.85% 53.59%

KAN[700,5,1,2] ASCADv1 fixed key All 53.86% 50.73% 50.11% 51.01%
KAN[2,5,1,2] ASCADv1 fixed key [156, 517] 52.99% 50.24% 50.45% 50.51%

KAN[1400,5,1,2] ASCADv1 variable key All 50.02% 49.84% 49.76% 50.02%
KAN[2,5,1,2] ASCADv1 variable key [188, 1071] 51.49% 50.17% 49.85% 49.76%



Title Suppressed Due to Excessive Length 17

Target bit = 0

1

23

4

56
7

(a) ASCADv1 fixed key dataset.

Target bit = 0

123 4
56 7

(b) ASCADv1 variable key dataset.

Fig. 11: Correlation between classification accuracy and sum of coefficients in
regression models.

7 Discussion

As showcased by our results in Section 5, KANs can effectively learn understand-
able mechanisms to combine mask shares in both bitwise and Hamming weight
leakage models. In these smaller settings, the model plots clearly show activation
patterns that match either an EVM strategy for HW simulations or a switching
strategy for bit-leakage simulations. These explanations are significantly more
fine-grained than those accomplished in the simulation experiments from [42].
Yap et al. can decompose the operations into a SAT equation where they can
deduce what samples are being recombined, while our results show the precise
strategy by which the models recombine shares. Further experiments with ir-
relevant input features also showcase that KANs learn to ignore those features
quickly and that the standard model visualization functionality clearly shows
what features are (ir)relevant. Altogether, these results indicate that KANs can
generate explanations at the input level by attributing predictions to specific
input features, matching the input visualization tools from related works [10],
while also providing solid explanations of how models are actually recombining
shares, improving over [42].

When we subsequently consider targeting real-world traces, we show with in-
put visualization tools that the network learns from the correct leakage points.
Moreover, when we select the most important points and retrain the KAN on
those, we can match the learned combination scheme to the strategies found
in simulations. While it is plausible that the same can be done directly for
the models trained on full traces, selecting features makes it significantly easier
as the models are much smaller, allowing for a much simpler visual inspection
of the resulting network graphs. The attack performance of the model is also
reasonable, being competitive with MLP models and significantly outperform-



18 K. Yoshida et al.

ing architectures specialized for interpretability6. While the performance here
is behind state-of-the-art models [45,38,32,1], further work in optimizing KAN
training setups should help close this gap.

In general, KANs seem like a viable alternative to MLPs in terms of attack
performance. On the side of interpratability, KANs clearly improve over MLPs.
For now, the only real downside to using KANs seems to be the computational
overhead of training them with larger input dimensions. In our computing en-
vironment7, training KAN[700,5,1,2] in #steps = 5000 and batch_size = 256
takes 6 hours, and KAN[1400,5,1,2] in #steps = 7000 and batch_size = 256
takes 13 hours. In contrast, the training of MLPs is finished within 15 minutes.
However, as mentioned in [21], no significant effort has been put into optimizing
implementations and considering the interest of the ML community in utiliz-
ing KANs (see, e.g., [5,4,37]) it seems reasonable to expect the computational
performance to be improved.

8 Conclusions and Future Work

In this paper, we propose using KANs as an alternative to MLPs for side-channel
analysis. Overall, our results across both simulated and real-world traces indicate
that KANs can be competitive regarding attack performance. Furthermore, we
can reverse-engineer the method the networks use to recombine mask shares
on simulations. Subsequently, we train KANs on the ASCAD dataset, resulting
in a key recovery in ≈ 300 traces, performing competitively with a basic MLP
from [3]. Moreover, we can find the share combination methods from simulations
in the trained networks.

In future work, we plan to interpret profiling models using other labeling tech-
niques, especially Identity labeling. We also plan to explore whether embedding
KAN layers as part of larger networks, e.g., to replace the fully connected parts
of CNNs from [45], can be an effective strategy to mitigate the computational
overhead of training KANs on full traces.

References

1. R. Y. Acharya, F. Ganji, and D. Forte. Information theory-based evolution of
neural networks for side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2023(1):401–437, 2023.

2. C. Archambeau, E. Peeters, F. Standaert, and J. Quisquater. Template attacks
in principal subspaces. In L. Goubin and M. Matsui, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings, volume 4249 of Lecture Notes in Com-
puter Science, pages 1–14. Springer, 2006.

6 In [42] retrieving a key-byte from the ASCADv1 fixed key dataset requires 7222
traces.

7 Intel Core i7-13800H CPU, Nvidia GeForce RTX 4060 Laptop GPU, and 64GB DDR
memory



Title Suppressed Due to Excessive Length 19

3. R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas. Deep learning for
side-channel analysis and introduction to ASCAD database. J. Cryptographic En-
gineering, 10(2):163–188, 2020.

4. Z. Bozorgasl and H. Chen. Wav-kan: Wavelet kolmogorov-arnold networks. CoRR,
abs/2405.12832, 2024.

5. R. Bresson, G. Nikolentzos, G. Panagopoulos, M. Chatzianastasis, J. Pang, and
M. Vazirgiannis. Kagnns: Kolmogorov-arnold networks meet graph learning.
CoRR, abs/2406.18380, 2024.

6. E. Cagli, C. Dumas, and E. Prouff. Convolutional neural networks with data
augmentation against jitter-based countermeasures - profiling attacks without pre-
processing. In W. Fischer and N. Homma, editors, Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer
Science, pages 45–68. Springer, 2017.

7. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. K. Jr., Ç. K.
Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers, volume 2523 of Lecture Notes in Computer Science, pages 13–28.
Springer, 2002.

8. C. De Boor and C. De Boor. A practical guide to splines, volume 27. springer New
York, 1978.

9. C. Genevey-Metat, A. Heuser, and B. Gérard. Trace-to-trace translation for SCA.
In V. Grosso and T. Pöppelmann, editors, Smart Card Research and Advanced
Applications - 20th International Conference, CARDIS 2021, Lübeck, Germany,
November 11-12, 2021, Revised Selected Papers, volume 13173 of Lecture Notes in
Computer Science, pages 24–43. Springer, 2021.

10. A. Golder, A. Bhat, and A. Raychowdhury. Exploration into the explainability
of neural network models for power side-channel analysis. In I. Savidis, A. Sasan,
H. Thapliyal, and R. F. DeMara, editors, GLSVLSI ’22: Great Lakes Symposium
on VLSI 2022, Irvine CA USA, June 6 - 8, 2022, pages 59–64. ACM, 2022.

11. S. Hajra, S. Chowdhury, and D. Mukhopadhyay. Estranet: An efficient shift-
invariant transformer network for side-channel analysis. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2024(1):336–374, 2024.

12. B. Hettwer, S. Gehrer, and T. Güneysu. Deep neural network attribution methods
for leakage analysis and symmetric key recovery. In K. G. Paterson and D. Stebila,
editors, Selected Areas in Cryptography - SAC 2019 - 26th International Confer-
ence, Waterloo, ON, Canada, August 12-16, 2019, Revised Selected Papers, volume
11959 of Lecture Notes in Computer Science, pages 645–666. Springer, 2019.

13. S. Karayalcin, M. Krcek, L. Wu, S. Picek, and G. Perin. It’s a kind of magic:
A novel conditional GAN framework for efficient profiling side-channel analysis.
IACR Cryptol. ePrint Arch., page 1108, 2023.

14. J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic. Make some noise. unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 148–
179, 2019.

15. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio
and Y. LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.



20 K. Yoshida et al.

16. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Proceedings of CRYPTO’96, volume 1109 of LNCS, pages
104–113. Springer-Verlag, 1996.

17. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’99, pages 388–397, London, UK, UK, 1999. Springer-Verlag.

18. A. N. Kolmogorov. On the representation of continuous functions of many variables
by superposition of continuous functions of one variable and addition. In Doklady
Akademii Nauk, volume 114, pages 953–956. Russian Academy of Sciences, 1957.

19. M. Krcek and G. Perin. Autoencoder-enabled model portability for reducing hyper-
parameter tuning efforts in side-channel analysis. J. Cryptogr. Eng., 14(3):475–497,
2024.

20. L. Lerman, R. Poussier, O. Markowitch, and F. Standaert. Template attacks versus
machine learning revisited and the curse of dimensionality in side-channel analysis:
extended version. J. Cryptogr. Eng., 8(4):301–313, 2018.

21. Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljacic, T. Y. Hou, and
M. Tegmark. KAN: kolmogorov-arnold networks. CoRR, abs/2404.19756, 2024.

22. X. Lu, C. Zhang, P. Cao, D. Gu, and H. Lu. Pay attention to raw traces: A
deep learning architecture for end-to-end profiling attacks. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021, Issue 3:235–274, 2021.

23. H. Maghrebi, T. Portigliatti, and E. Prouff. Breaking cryptographic implemen-
tations using deep learning techniques. In International Conference on Security,
Privacy, and Applied Cryptography Engineering, pages 3–26. Springer, 2016.

24. L. Masure, C. Dumas, and E. Prouff. A comprehensive study of deep learning for
side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):348–
375, 2020.

25. G. Perin, I. Buhan, and S. Picek. Learning when to stop: A mutual information
approach to prevent overfitting in profiled side-channel analysis. In S. Bhasin and
F. De Santis, editors, Constructive Side-Channel Analysis and Secure Design, pages
53–81, Cham, 2021. Springer International Publishing.

26. G. Perin, B. Ege, and L. Chmielewski. Neural network model assessment for side-
channel analysis. Cryptology ePrint Archive, Paper 2019/722, 2019.

27. G. Perin, L. Wu, and S. Picek. Exploring feature selection scenarios for deep
learning-based side-channel analysis. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2022(4):828–861, Aug. 2022.

28. G. Perin, L. Wu, and S. Picek. I know what your layers did: Layer-wise explain-
ability of deep learning side-channel analysis. IACR Cryptol. ePrint Arch., page
1087, 2022.

29. S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni. The curse of class im-
balance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):209–237, 2019.

30. S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina. SoK: Deep learning-based
physical side-channel analysis. ACM Comput. Surv., 55(11):227:1–227:35, 2023.

31. C. Rechberger and E. Oswald. Practical template attacks. In C. H. Lim and
M. Yung, editors, Information Security Applications, 5th International Workshop,
WISA 2004, Jeju Island, Korea, August 23-25, 2004, Revised Selected Papers, vol-
ume 3325 of Lecture Notes in Computer Science, pages 440–456. Springer, 2004.

32. J. Rijsdijk, L. Wu, G. Perin, and S. Picek. Reinforcement learning for hyperparam-
eter tuning in deep learning-based side-channel analysis. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(3):677–707, 2021.



Title Suppressed Due to Excessive Length 21

33. U. Rioja, L. Batina, J. L. Flores, and I. Armendariz. Auto-tune pois: Estimation
of distribution algorithms for efficient side-channel analysis. Computer Networks,
198:108405, 2021.

34. T. Schamberger, M. Egger, and L. Tebelmann. Hide and seek: Using occlusion tech-
niques for side-channel leakage attribution in cnns. In J. Zhou, L. Batina, Z. Li,
J. Lin, E. Losiouk, S. Majumdar, D. Mashima, W. Meng, S. Picek, M. A. Rahman,
J. Shao, M. Shimaoka, E. Soremekun, C. Su, J. S. Teh, A. Udovenko, C. Wang,
L. Zhang, and Y. Zhauniarovich, editors, Applied Cryptography and Network Se-
curity Workshops, pages 139–158, Cham, 2023. Springer Nature Switzerland.

35. F. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis of
side-channel key recovery attacks. In A. Joux, editor, Advances in Cryptology
- EUROCRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings, volume 5479 of Lecture Notes in Computer Science, pages 443–461.
Springer, 2009.

36. B. Timon. Non-profiled deep learning-based side-channel attacks with sensitivity
analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):107–131, 2019.

37. C. J. Vaca-Rubio, L. Blanco, R. Pereira, and M. Caus. Kolmogorov-arnold networks
(kans) for time series analysis. CoRR, abs/2405.08790, 2024.

38. L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel. Revisiting a methodology
for efficient cnn architectures in profiling attacks. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2020(3):147–168, Jun. 2020.

39. L. Wu, G. Perin, and S. Picek. The Best of Two Worlds: Deep Learning-assisted
Template Attack. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2022(3):413–437, Jun. 2022.

40. L. Wu and S. Picek. Remove some noise: On pre-processing of side-channel
measurements with autoencoders. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(4):389–415, 2020.

41. L. Wu, Y.-S. Won, D. Jap, G. Perin, S. Bhasin, and S. Picek. Ablation analysis
for multi-device deep learning-based physical side-channel analysis. IEEE Trans-
actions on Dependable and Secure Computing, 21(3):1331–1341, 2024.

42. T. Yap, A. Benamira, S. Bhasin, and T. Peyrin. Peek into the black-box: In-
terpretable neural network using SAT equations in side-channel analysis. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2023(2):24–53, 2023.

43. T. Yap, S. Bhasin, and S. Picek. OccPoIs: Points of interest based on neural
network’s key recovery in side-channel analysis through occlusion. Cryptology
ePrint Archive, Paper 2023/1055, 2023.

44. G. Zaid, L. Bossuet, M. Carbone, A. Habrard, and A. Venelli. Conditional vari-
ational autoencoder based on stochastic attacks. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2023(2):310–357, Mar. 2023.

45. G. Zaid, L. Bossuet, A. Habrard, and A. Venelli. Methodology for efficient cnn
architectures in profiling attacks. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2020(1):1–36, Nov. 2019.

46. L. Zhang, X. Xing, J. Fan, Z. Wang, and S. Wang. Multilabel deep learning-
based side-channel attack. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
40(6):1207–1216, 2021.


	Can KANs Do It? Toward Interpretable Deep Learning-based Side-channel Analysis

