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Abstract

We show that there exists a unitary quantum oracle relative to which quantum commitments exist but
no (efficiently verifiable) one-way state generators exist. Both have been widely considered candidates for
replacing one-way functions as the minimal assumption for cryptography—the weakest cryptographic
assumption implied by all of computational cryptography. Recent work has shown that commitments
can be constructed from one-way state generators, but the other direction has remained open. Our
results rule out any black-box construction, and thus settle this crucial open problem, suggesting that
quantum commitments (as well as its equivalency class of EFI pairs, quantum oblivious transfer, and
secure quantum multiparty computation) appear to be strictly weakest among all known cryptographic
primitives.
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1 Introduction
In classical cryptography, one-way functions (OWF) serve as a minimal assumption. That is to say, the
existence of nearly any other classical cryptographic primitive implies the existence of one-way functions.
Furthermore, many cryptographic primitives (termed “Minicrypt primitives”), such as pseudorandom genera-
tors (PRG), pseudorandom functions (PRF), secret-key encryption and authentication, digital signatures,
efficient-far-indistinguishable distributions (EFID), and commitments, are equivalent to one-way functions.

Many of these Minicrypt primitives can be generalized to the setting of quantum states, producing fully
quantum primitives such as pseudorandom unitaries (PRU) and pseudorandom states (PRS) [JLS18], one-way
state generators (OWSG) [MY22b, MY22a], one-way puzzles (OWPuzz) [KT23], efficient-far-indistinguishable
quantum state pairs (EFI) [BCQ23], and quantum bit commitments (QBC) [DMS00]. A recent sequence
of works has shown that although these primitives can be built from one-way functions [JLS18, MY22a,
KT23, BCQ23, MY22b], they may exist even if one-way functions do not [Kre21, KQST23, LMW23]. The
classical versions of these fully quantum primitives are known to be equivalent and jointly minimal for classical
cryptography, and so a central question in quantum cryptography is whether the same is true for the quantum
generalizations.

What is the minimal computational assumption for quantum cryptography?

In particular, one-way state generators (which generalize one-way functions) and quantum commitments
(equivalent to EFI pairs by [BCQ23]) have received much attention, as the potential minimal assumptions for
fully quantum cryptography, with most other such primitives implying one [JLS18, MY22a, BBSS23] or the
other [MY22b, AQY22, QRZ24]. In the classical setting, one-way functions and classical commitments are
equivalent and jointly minimal. This motivates the crucial question:

Are commitments and one-wayness equivalent in the quantum setting?

Recent work has given a partial answer by showing that quantum commitments can be constructed from
OWSG [KT23, BJ24]. However, the other direction—showing whether OWSG can be constructed from
quantum commitments—has remained open.1 We resolve this by showing that OWSG cannot be constructed
from quantum commitments in a black-box way. That is, we give a unitary quantum oracle relative to which
quantum commitments exist, but every OWSG is insecure.

Theorem 1.1 (informal). There is no black-box construction of (efficiently verifiable) one-way state generators
from quantum bit commitments.

As a direct consequence, we also rule out black-box constructions of a large collection of primitives that
imply efficiently verifiable one-way puzzles and one-way state generators. In fact, our main theorem is
stronger. Since our separating oracle allows us to build two stronger cryptographic primitives—(inefficiently
verifiable) one-way puzzles, and a single-copy version of pseudorandom states—both of which are separately
known to imply quantum commitments [KT23, MY22b], this gives us a stronger separation:

Theorem 1.2 (informal). There is no black-box construction of (efficiently verifiable) one-way state generators
from either single-copy pseudorandom states or (inefficiently verifiable) one-way puzzles.

The efficiency of verifying one-wayness. In classical cryptography, one-wayness is inherently verifiable:
that is, given a successful inversion of a one-way function, we can always run the function in the forward
direction to check if the inversion was correct. On the other hand, the literature on quantum one-wayness
distinguishes between efficiently verifiable [MY22a, CGG24] and inefficiently verifiable (or “statistically
verifiable”) [BJ24, KT23] versions. This is because there is no built-in way to verify the inversion of a

1Note that [BJ24] shows that a variant of OWSG that allows verification to be inefficient is, in fact, equivalent to quantum
commitments. However, it is not known how to construct the standard version of OWSG which requires verification to be
efficient.
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quantum operation that traces out some registers.2 However, it has remained unclear whether these two
versions of quantum one-wayness are—as is the case in the classical setting—in fact equivalent.3

Can efficiently verifiable quantum one-wayness be constructed from statistically verifiable quantum
one-wayness?

As a corollary to our main theorem, we are able to answer this in the negative:

Corollary 1.3 (informal). There is no black-box construction of either efficiently verifiable one-way state
generators or efficiently verifiable one-way puzzles from either statistically verifiable one-way state generators
or statistically verifiable one-way puzzles.

In other words, in the quantum setting, one-wayness is not efficiently verifiable inherently. Efficiently
verifiable one-wayness is a stronger assumption.

Conceptual impact of our results. Our results show that quantum commitments—together with their
equivalence class of EFI pairs, quantum oblivious transfer, secure quantum multiparty computation, and
statistically verifiable one-way state generators—are strictly weaker than nearly all other known computational
cryptography. This motivates defining a new world in the spirit of Impagliazzo [Imp95]. Impagliazzo
defines five possible worlds, including Cryptomania (in which classical public-key cryptography exists), and
Minicrypt (in which only one-way functions exist). (The three remaining worlds—Pessiland, Heuristica, and
Algorithmica—do not allow classical cryptography.) The recent work on quantum cryptography has spoken
of a Microcrypt, in which one-way function do not exist, but pseudorandom unitaries and states exist (and
consequently many other quantum cryptographic primitives).

We suggest the introduction of a new world to the Impagliazzo hierarchy, Entanglementia, a world in
which only the bare minimum of (quantum) cryptography is possible, and the only secure computational
cryptography that exists is the cryptography that is equivalent to quantum commitments. We propose the
name Entanglementia4 because it is a world in which the central cryptographic protocols—such as quantum
commitments, oblivious transfer, and secure multiparty computation—seem to inherently require parties to
maintain coherent entanglement between them. Specifically, verification in Entanglementia often requires a
challenger to maintain a register that is coherently entangled with the adversary. Entanglementia primitives
and assumptions that do not maintain entanglement—such as statistically verifiable OWSG and EFI—are
inherently not efficiently verifiable.

1.1 Open Problems
We suggest the following open problems for future work:

1. Are there black-box constructions of pure-output OWSGs from efficiently verifiable mixed-output OWSGs?
We show that there is no black-box construction of efficiently verifiable OWSGs from statistically verifiable
OWSGs. This distinction between efficient/statistical verifiability is only meaningful for OWSGs that
produce mixed states, since any OWSG that produces pure states can be efficiently verified using
a SWAP test. This suggests that pure-output OWSGs are qualitatively different. Can a black-box
reduction be ruled out?

2. This work suggests that EFI pairs, quantum commitments, and their equivalency class of Entanglementia
primitives appear to be uniquely minimal among the known computational assumptions for (quantum)
cryptography. Can EFI pairs be constructed from all of computational cryptography? Or are there
computational assumptions that are even weaker than EFI but still useful for some cryptography?

2One-way state generators in their most general form can output mixed states, while one-way puzzles can sample a puzzle by
measuring a quantum register. Both can be implemented by a unitary operation followed by the tracing out of some subset of
registers.

3[CGG24] observe that an oracle separation between efficiently verifiable and statistically verifiable one-way puzzles follows
from [Kre21]. However, the question for the more fundamentally quantum one-way state generators has remained open.

4The ending -mentia means “in the mind”.
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3. Single-copy pseudorandom states with output longer than key (1PRS) are known to imply quan-
tum commitments [MY22b]. Furthermore, 1PRS appears to be a weak primitive: it can be built
from OWF [MY22b] or PRS [GJMZ23], but does not imply OWF [KQST23], PRS [CCS24], or even
OWSG [this work] in a black-box way. Similarly, (inefficiently verifiable) one-way puzzles (OWPuzz)
are known to be implied by OWSG and imply quantum commitments [KT23]. However, the status of
1PRS and OWPuzz is unclear: Can 1PRS and OWPuzz be shown to be separated from commitments
and therefore be stronger cryptographic primitives, or are they also contained in Entanglementia?

1.2 Concurrent Work
The work of [BMM+24]: Behera, Malavolta, Morimae, Mour, and Yamakawa independently and
concurrently demonstrate a result similar to ours. Similarly to our result, they show an oracle separation
between quantum commitments and both OWSG and efficiently verifiable one-way puzzles. Our full set of
results is, in some sense, incomparable. We additionally show that 1PRS is separated from OWSG, and
they additionally show that primitives such as private-key quantum money are separated from QEFID pairs
(classical EFI distribution pairs that are quantum-samplable). We note that they do not consider the common
Haar random state model, instead defining a different quantum reference state, and therefore have different
proof techniques.

The work of [CCS24]: We were recently made aware of updates to the paper of Chen, Coladangelo, and
Sattath [CCS24], which will independently and concurrently provide a similar extension of the common Haar
random state model to a unitary oracle model with a swap unitary similar to ours. Their proof technique is
also similar to ours, although in their simulation of the swap oracle with copies of the reference state, they do
not use the indistinguishability result of [Zha24]. We therefore believe that our presentation is conceptually
simpler.

1.3 Acknowledgements
The authors thank Prabhanjan Ananth for helpful discussions about recent results on the common Haar
random state model, Fermi Ma for suggesting a new interpretation of the main result of this paper, and Rahul
Jain for giving the authors insights into the impact and implications of this work. The authors also thank
Eli Goldin, Henry Yuen, and Mark Zhandry, for helpful discussions related to this work, and Amit Behera,
Giulio Malavolta, Tomoyuki Morimae, Tamer Mour, and Takashi Yamakawa for their helpful discussions
related to their concurrent work. JB is supported by Henry Yuen’s AFORS (award FA9550-21-1-036) and
NSF CAREER (award CCF2144219). This work was done in part while the B.N. was visiting the Simons
Institute for the Theory of Computing, supported by NSF QLCI Grant No. 2016245.

2 Technical overview
Our main technical contribution is a polynomial-space attack against one-way state generators constructed
relative to either quantum reference states, or quantum swap oracles.

Ruling out one-way state generators relative to common reference states. To rule out one-way
state generators relative to any common reference quantum state oracle, we notice that the quantum OR
attack used in [CCS24] can be extended to a so-called “threshold search” attack. A threshold search algorithm
takes as input a set of m measurements M and O(log2m log n) copies of a quantum state, and outputs any
measurement that has greater than 1/3 chance of accepting, promised that there exists one that is accepted
with probability at least 3/4. For one-way state generators, the measurement corresponding to k is to simply
run verification with key k on O(λ) copies of the input state. By the correctness of the one-way state
generator, the promise of threshold search is satisfied. Furthermore, because we are taking O(λ) copies of the
input state, a measurement that accepts with probability 1/3 means that the input state passes verification
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with key k′ with probability 1 − O(1/λ). Thus, this attack breaks the one-wayness of any one-way state
generator.

To implement this attack in polynomial space, we observe that the algorithm from [WB24], combined
with a space efficient pseudo-random generator from [GR21], provides a UnitaryPSPACE implementation of
threshold search.

We further note that in some common reference state models, such as those of [MNY24, Qia24], or the
common Haar random state model of [CCS24, AGL24], it has been shown that quantum commitments and
EFI pairs exist even relative to adversaries that have unbounded computation—but a polynomial number of
samples of the common reference state. Thus, for these reference states we arrive at a separation between
EFI pairs and one-way state generators relative to state preparation oracles.5

Extending the result to unitary oracles. Having a separation relative to a non-standard quantum oracle
is somewhat undesirable. For instance, it does not by itself rule out black-box reductions that uncompute
the primitive. We therefore further show how to extend many results in common reference quantum state
models to a new model with a unitary oracle that we call the swap oracle model. Given a sequence of
states {|φm〉}m∈N that are all orthogonal to |0m〉,6 the swap oracle Om swaps |0m〉 and α |φm〉, for a random
complex phase α, and leaves all other states the same.

Thanks to the result of [Zha24] on the indistinguishability of decohering entanglement in phase-invariant
state families and using ideas inspired by [JLS18], we show that algorithms in this swap model can be
simulated by algorithms in the common reference quantum state model. For any algorithm using the swap
model, a simulator can take many copies of the common reference quantum state, coherently perform the
folk-lore super swap test to pick out the |φm〉 and |0m〉 components of the input state, and replace them with
the other state. Proving that the algorithm works to simulate the original swap model algorithm up to an
arbitrary inverse polynomial error requires careful analysis of the symmetric subspace projector. We finally
observe that for any common reference states that are randomly chosen (as opposed to the fixed states in the
auxiliary input model of [MNY24, Qia24]), we can remove randomness in the oracle by standard techniques
adapted from [AK07].

With this simulator, we essentially show an equivalence between the swap oracle model (for which the
oracle is a unitary), and the common reference quantum state model, resolving many of the complaints of the
common reference quantum state model, for example the inability to un-compute the reference states. Since
the common reference quantum state model has been extremely useful for showing oracle separations, we
hope that our results will make it easier to find oracle separations between cryptographic primitives relative
to the more standard unitary oracles.

3 Preliminaries
3.1 Quantum basics
For a bit string x ∈ {0, 1}∗, we denote by |x| its length (not its Hamming weight). When x describes an
instance of a computational problem, we will often use λ = |x| to denote its size.

A function δ : N→ [0, 1] is an inverse polynomial if there exists a polynomial p such that δ(n) ≤ 1/p(n)
for all sufficiently large n. A function ε : N→ [0, 1] is negligible if for every polynomial p(n), for all sufficiently
large n we have ε(n) ≤ 1/p(n).

A register R is a named finite-dimensional complex Hilbert space. If A,B,C are registers, for example,
then the concatenation ABC denotes the tensor product of the associated Hilbert spaces. We abbreviate the
tensor product state |0〉⊗n as |0n〉. For a linear transformation L and register R, we write LR to indicate that
L acts on R, and similarly we write ρR to indicate that a state ρ is in the register R. We write Tr[·] to denote
trace, and TrR[·] to denote the partial trace over a register R.

5The result of [CCS24] additionally constructs single-copy psuedo-random states (1PRS), so our results also imply a separation
between them and one-way state generators.

6We note that being orthogonal to |0m〉 is required in order for the oracle to be unitary, but any state family can be modified
to one that is orthogonal, for example by appending a |1〉 to the end.
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We denote the set of linear transformations on R by L(R), and linear transformations from R to another
register S by L(R,S). We denote the set of positive semidefinite operators on a register R by Pos(R). The set
of density matrices on R is denoted S(R). For a pure state |ϕ〉, we write ϕ to denote the density matrix |ϕ〉〈ϕ|.
We denote the identity transformation by id. For an operator X ∈ L(R), we define ‖X‖∞ to be its operator
norm, and ‖X‖1 = Tr[|X|] to denote its trace norm, where |X| =

√
X†X. We write td(ρ, σ) = 1

2‖ρ− σ‖1 to
denote the trace distance between two density matrices ρ, σ, and F(ρ, σ) = ‖√ρ

√
σ‖21 for the fidelity between

ρ, σ.

3.2 The Haar measure
Here we state the definition of the Haar measure and Haar random states.

Definition 3.1 (Haar measure and Haar random states). The Haar measure is the unique left- and right-
invariant probability measure on the unitary group U(d). A Haar random state is sampled by applying a
unitary sampled from the Haar measure to |0〉 (although any initial state would yield the same distribution
over states). We use the notation Haar(d) to refer to the distribution over d-dimensional states drawn from
the Haar measure.

One of the most useful properties of the Haar measure is its concentration properties.

Lemma 3.2 (Concentration of Haar measure [Mec19]). Let N ∈ N. Let µ be the Haar measure on dimension
Ni, and let µ be the Haar measure on a N -dimensional space. Let f be L-Lipshitz function in the Frobenius
norm, mapping N -dimensional unitaries to real numbers. Then the following holds for every t > 0:

Pr
U←µ

[
f(U) ≥ E

V←µ
[f(V )] + t

]
≤ exp

(
− (mini{Ni} − 2)t2

24L2

)
.

We use this for one important corollary, which is the following.

Corollary 3.3 (Haar random states on trace 0 observables). Let |ψ〉 be a n-qubit Haar random state and O
be a trace 0 observable. Then the following holds:

Pr
|ψ〉←Haar(2n)

[
〈ψ|O |ψ〉 ≥ 2−

√
n/2

]
≤ exp

(
−2n/2 − 2

96

)
.

Proof. We note that we can equivalently phrase this probability as being over a Haar random unitary, and
the state U |0〉. The function f(U) = 〈0|U†OU |0〉 is a degree 2-polynomial in U , so f is 2-Lipshitz in the
Frobenius norm. Applying lemma 3.2 to this function and t = 2−

√
n/2 yields the desired result.

3.3 Quantum oracles and the common reference states
Definition 3.4 (Quantum oracle access). Let f : {0, 1}n 7→ {0, 1} be a classical Boolean function, a quantum
query algorithm A(·) queries f via access to a unitary Uf that acts as

Uf |x〉 |b〉 7→ |x〉 |b⊕ f(x)〉 .

Typically quantum oracles must be unitary transformations, however recently a new model of “isometry”
oracles has appeared in the literature [CCS24, AGL24]. This model, which essentially allows access to a very
specific quantum resource (a single quantum state and no way to un-compute it) has been shown to allow
for oracle separations between EFI pairs and PRS. However, the question of boosting these separations to
standard oracles remains an open question.

Definition 3.5 (Common reference quantum state (CRQS) [MNY24, Qia24]). The common reference
quantum state (CRQS) model is an isometry that can be accessed as a quantum oracle. Let V = {Vm}m∈N,
with Vm : C 7→ C2m be a family of isometries such that

Vm |α〉 7→ |α〉 |φm〉 ,
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We call {|φm〉} the family of common reference quantum states.7

A special case of the common reference state model is when the reference state family is drawn uniformly
at random from the Haar measure.

Definition 3.6 (Common Haar random state model (CHRS) [CCS24, AGL24]). The common Haar random
state (CHRS) model is a CRQS isometry where every |ψm〉 is drawn from Haar(2m).

Secure EFI pairs (and thus quantum commitments) as well as 1PRS are known to exist relative to a
CHRS oracle [CCS24, AGL24].

3.4 Cryptographic primitives
Here we define a number of cryptographic primitives, as well as their instantiation in the common Haar
random state model.

Definition 3.7 (Efficient, far, indistinguishable pairs [BCQ23]). A family of pairs of quantum states
{(ρ0,λ, ρ1,λ)}λ is an EFI pair if

• (Efficiently preparable) There exists a family of polynomial-size, time efficient quantum circuits {Cλ}λ
such that TrB[Cλ |b0〉] = ρb,λ.

• (Statistically far) There exists a negligible function µ such that

td(ρ0,λ, ρ1,λ) ≥ 1− µ(λ) .

• (Computationally indistinguishable) There exists a negligible function ν such that for all polynomial-time
quantum adversaries A,

|Pr[A(ρ0,λ) = >]− Pr[A(ρ1,λ) = >]| ≤ ν(λ) .

Definition 3.8 (EFI pairs in the CRQS model). For an EFI pair in a CRQS model, the circuits for
preparing the EFI pair has access to the common reference quantum state oracle, and the computationally
indistinguishability holds for all adversaries who have query access to the common reference quantum state
oracle.

Remark 3.9. We do not formally define quantum bit commitments here, as they are equivalent to EFI pairs
by [BCQ23], and this equivalence extends to the unitary oracle setting, which is our ultimate goal. Interestingly,
whether this equivalence holds in under all CRQS models is not clear, since the formal equivalence between
different flavors of commitments requires the uncomputing of quantum circuits, which cannot necessarily be
done in CRQS models. More specifically it is not known if computationally binding and statistically hiding
commitments are equivalent to statistically binding and computationally hiding commitments in general in
CRQS models (where by “computational” security we mean secure against adversaries that receive only a
polynomial number of copies of the CRQS). This is of course not an issue for the headline results of our
paper, since we ultimately upgrade all our results to a unitary oracle model, in which the equivalences hold
once more. Furthermore, EFI pairs in CRQS models are equivalent to computationally hiding commitments
by the techniques of [MNY24, Qia24] (which extend those of [BCQ23] to CRQS models). For simplicity, we
will therefore mainly only refer to EFI pairs for the rest of this paper.

Next we define a one-way state generator, using the definition from [MY22a].

Definition 3.10 (One-way state generators [MY22b, MY22a]). A one-way state generator (OWSG) is a
collection of QPT algorithms (KeyGen,StateGen,Ver) such that

7[MNY24, Qia24] require that the common reference quantum states are efficiently preparable by a third-party setup algorithm.
Since the states in our setting are prepared by an oracle, we do not make this requirement. Because of this, while the quantum
auxiliary input model and CRQS models of [MNY24, Qia24] are incomparable, both of their models are special cases of the
CRQS model by our definition.
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• KeyGen takes as input the security parameter 1λ and outputs a classical key k ∈ {0, 1}κ.

• StateGen takes as input a classical key k and outputs a m-qubit quantum state ρk.

• Ver takes as input a classical key k and quantum state ρ and outputs either ⊥ or >.

A OWSG satisfies correctness if for all λ,

Pr

[
Ver(k, ρk) accepts : k ← KeyGen(1λ)

ρk ← StateGen(k)

]
≥ 1− negl(λ) .

A OWSG satisfies one-way security if for all polynomial-time quantum adversaries A and polynomials t,

Pr

Ver(k, ρk′) accepts :
k′ ← KeyGen(1λ)
ρk′ ← StateGen(k′)
k ← A

(
1λ, ρ⊗tk′

)
 ≤ negl(λ) .

Note that we follow the convention set by the existing literature and define OWSGs to have efficient
verification, but not necessarily with pure-state outputs.

Definition 3.11 (One-way state generators in the CRQS model). For a one-way state generator in the
CRQS model, both KeyGen and StateGen have access to the common reference quantum state oracle, and
one-way security holds relative to all polynomial-time quantum adversaries that have access to the common
reference quantum state oracle.

Definition 3.12 (One-way puzzle [KT23]). A one-way puzzle (OWPuzz) is a pair of quantum algorithms
(Samp,Ver) such that

1. Samp takes as input a security parameter 1λ and outputs a pair of classical strings (k, s), where
k ∈ {0, 1}λ. Samp must be efficient.

2. Ver takes as input a pair (k, s) and outputs either ⊥ or >.

A OWPuzz satisfies correctness if for all λ,

Pr
[
Ver(k, s) accepts : (k, s)← Samp(1λ)

]
≥ 1− negl(λ) .

A OWPuzz satisfies security of for all polynomial-time quantum adversaries A

Pr
[
Ver(A(s), s) accepts : (k, s)← Samp(1λ)

]
≤ negl(λ) .

We require that Samp is efficient (QPT), but Ver may be efficient (efficiently verifiable one-way puzzle) or
inefficient (statistically verifiable one-way puzzle). We use the convention from prior work of using OWPuzz
to mean the inefficiently verifiable version, but we specify which version we mean when we believe it may not
be clear from context.

Definition 3.13 (One-way puzzles with sample-efficient verifier in the CRQS model). For a one-way puzzle
with sample-efficient verifier in the CRQS model, both Samp and Ver can make polynomial many calls to the
common reference quantum state oracle, and security holds relative to all polynomial-time quantum adversaries
that have access to the common reference quantum state oracle.

Definition 3.14 (One-way puzzles with sample-inefficient verifier in the CRQS model). A one-way puzzle
with sample-inefficient verifier is a pair of sampling and verification algorithms (Samp,Ver) with the same
syntax as definition 3.12, except that Ver(k, s,

⊗r
i=1 |ψi〉

⊗r
)→ >/⊥ is a time-unbounded algorithm that on

input of any pair classical strings (k, s) halts and outputs >/⊥, where r = r(n) can be arbitrarily function of
n.
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Note that since Ver is allowed to be unbounded in a one-way puzzle, there is a distinction between one-way
puzzles and sample-efficient one-way puzzles in the CRQS model. In order to truly rule out one-way puzzles
in a CRQS model, one should rule out one-way puzzles in the CRQS model that have unbounded query
access to the reference state.

Definition 3.15 (Single-copy pseudo-random states [MY22b]). A single-copy pseudo-random states generator
1PRS is a QPT algorithm Gen that takes as input a key k ∈ {0, 1}λ of length λ and outputs a pure state |ψk〉
on m(λ) > λ qubits.

A 1PRS satisfies the pseudo-randomness property if for all polynomial-time quantum adversaries A and
λ ∈ N, ∣∣∣∣ Pr

k←{0,1}λ
[A(|ψk〉) accepts]− Pr

|ψ〉←Haar(2m(λ))
[A(|ψ〉) accepts]

∣∣∣∣ ≤ negl(λ) .

Definition 3.16 (Single copy pseudo-random states in the CRQS model). For a single-copy pseudo-random
state in the CRQS model, Gen has access to the common reference quantum state oracle, and pseudo-
randomness holds relative to all polynomial-time quantum adversaries that have access to the common
reference quantum state.

3.5 Quantum learning theory
In this section we review results and definitions from quantum learning theory that will be relavent to our
result.

Definition 3.17 (Threshold search [BO24]). Let {Mi}i∈[m] be a collection of 2-outcome measurements. Let
ρ be an unknown quantum state with the promise that there exists an index i such that

Tr[Miρ] ≥ 3/4 .

The threshold search problem is to output a measurement Mj such that Tr[Mjρ] ≥ 1/3.

Theorem 3.18 (Random threshold search [WB24]). There is an algorithm that uses O(log2(m)) space and
samples of ρ, has expected time O(m), and makes intermediate measurements, that solves the threshold search
problem with constant probability.

The algorithm from [WB24] is to fix a threshold θ ∈ [0.4, 0.6], and to repeatedly measure a thresholded
measurement for a randomly sampled Mi on log2(m) copies of the state, testing whether more than a θ
percent of the measurements accepted.

The following theorem allows us to simulate this algorithm in UnitaryPSPACE.

Theorem 3.19 (UnitaryPSPACE-simulation [GR21]). Every quantum algorithm that runs in time T with
space S ≥ log(T ) with unitary operations and intermediate measurements can be simulated by a quantum
algorithm of time T · S2poly log(S) and space O(S · log T ) with only unitary operations and no intermediate
measurements.

This allows us to simulate the threshold search algorithm in UnitaryPSPACE.
Remark 3.20. The result of [GR21] is proven by providing an unconditional pseudo-random generator with
small seed that can be implemented in PSPACE. Since the algorithm of [WB24] just samples O(m) random
measurements and applies controlled versions of them on the input state (controlled on a single output
register that indicates whether any of the previous measurements accepted), it could be applied directly to
threshold search to get a simpler simulation of this algorithm.

This also means that a polynomial-time query algorithm can easily generate a succinct circuit representing
the algorithm, and we really need only an oracle to a UnitaryPSPACE-complete problem, not the ability
to perform any PSPACE computation ourselves. This is in contrast to previous work on this subject,
which provided an oracle called a “QPSPACE” oracle, which essentially made all parties polynomial space
computations with intermediate measurements.
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4 Separation in common reference quantum state models
In this section, we show that there exists an oracle in any common reference state model such that no one-way
state generator exists. Note that, as stated before, [CCS24, AGL24] already showed that in the common
Haar random state model, quantum commitments and EFI pairs exist (additionally, they show that 1PRS
exist), and that the security cannot be broken by an adversary of any complexity that only has access to
polynomial copies of the common Haar state. Together, this will imply an oracle in the common reference
state model relative to which EFI pairs exist but one-way state generators do not.

Theorem 4.1. Let V be a common reference quantum state oracle for any family of reference states. Relative
to (V,UnitaryPSPACE), efficiently verifiable one-way state generators do not exist.

Proof. Let (KeyGen,StateGen,Ver) be a OWSG. In the common Haar random state model, we can assume
that Ver works by calling some quantum circuit (one for each key k) on input |ψ〉A ⊗ (|φ1〉⊗s . . . |φs〉⊗s)B for
some s = poly(λ), and then measuring a bit in the computational basis. Let Uk be said circuit and consider
the following operator that acts on the input for Uk (registers AB), and a copy of a OWSG state in register
C. We define the measurement Πk as follows

Πk =
((

(U†k)CD
)
(|1〉〈1|C ⊗ idB)

(
(Uk)AB

))⊗10λ
.

Claim 4.2. On quantum input (|ψk〉 ⊗ |φ1〉⊗s . . . |φs〉⊗s)⊗10λ, Πk accepts with probability 1− negl(λ).

Proof. By the correctness of the OWSG, running Ver on a copy of |ψk〉 and key k accepts with probability
1− negl(λ). Since the probability that Πk accepts is the probability that 10λ many verifiers (run in parallel)
accept, its accept probability is given by

(1− negl(λ))⊗10λ ≥ 1− 10λ · negl(λ) = 1− negl(λ) .

Here the second line is Bernoulli’s inequality. This completes the proof of the completeness of the algorithm.

Claim 4.3. If Πk accepts with probability ≥ 1/3 for some key k, then the probability that verification accepts
is at least 1− 1

5λ .

Proof. Let p be the probability that Ver accepts when given key k and state |ψ〉. Then it is clear to see that
the probability Πk accepts on the state |ψ〉⊗10λ is

p10λ ≥ 1

3
.

Solving for p, we see that

p ≥ e−
ln(3)
10λ

≥ 1− ln(3)

10λ

≥ 1− 1

5λ
.

Here we use the inequality 1− x ≤ e−x, and then we use the fact that ln(3) ≤ 2. This completes the proof
that the algorithm always provides a key that violates one-way state generator security.

The algorithm for breaking a one-way state generator is to run threshold search on O(λ2) many copies of
the input state, and return the key corresponding to the measurement that threshold search outputs. Note
that we need O(λ) for every Πk and threshold search requires O(log(m)) = O(λ) copies of the input state,
which is itself O(λ) copies of the one-way state generator state, to run.
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From the first claim, the promise of threshold search is met, so threshold search outputs a key such
that Tr[Πkρ] ≥ 1/3 with constant probability. From the second claim, we know that the key will be
accepted by the verifier with probability at least 1− 1

5λ , which contradicts one-way state generator security.
Finally, as noted in theorem 4.1, the threshold search algorithm can be implemented with oracle access to a
UnitaryPSPACE-complete problem. This completes the proof of theorem 4.1.

We can apply our attack to the common Haar random state model to get an oracle separation between
1PRS and one-way state generators.

Theorem 4.4. In the common Haar random state model, 1PRS exists and one-way state generators do not.

Proof. [CCS24, AGL24] prove that in the common Haar reference state model, EFI pairs exist relative to all
polynomial-sample adversaries (with unbounded computation otherwise). Since the common Haar reference
state model is a CRQS model, theorem 4.1 implies that one-way state generators do not exist.

We also note that since our attack works against all common reference quantum state models, a weaker
separation, between EFI pairs and one-way state generators, can be similarly attained with a deterministic
oracle if one instead takes the quantum auxiliary input model from [MNY24, Qia24].8

4.1 One-way puzzles in the common Haar random state model
In this section, we provide a construction of inefficiently verifiable one-way puzzles in the common Haar
random state model. We also note that our adversary (from theorem 4.1) breaks all sample-efficient one-way
puzzles in the common Haar random state model.

Corollary 4.5. Let V be a common reference quantum state oracle for any family of reference states. Relative
to (V,UnitaryALL), sample-efficient one-way puzzles do not exist.

Proof. The adversary for one-way puzzles is similar to the adversary from theorem 4.1, except that instead of
requiring 10λ copies of |ψk〉, it simply copies s into 10λ registers and runs threshold search on {Πk}. The
same proof shows that the adversary will retrieve a key that is accepted by the verifier with non-negligible
probability.

Formally, to get an adversary that calls an oracle, we can define the “inefficient one-way puzzle verification”
problem, where the instance is a description of the one-way puzzle, the input is a classical pair of strings
|k, s〉, and copies of the common reference quantum state, and the output is the result of the verification.
Since verification exists, this is a problem in UnitaryALL. We further note that our adversary uses the same
amount of space as the verifier for the one-way puzzle does, but since verification for a one-way puzzle is not
required to be space efficient, our verifier might not be. If the verifier happens to be polynomial space, this
adversary will also be polynomial space.

As noted in the discussion, sample-efficient one-way puzzles were already ruled out by the LOCC
indistinguishably results of [AGL24], but we believe our proof is simpler and thus might be of independent
interest to the reader.

We now present our construction of sample-inefficient one-way puzzles. The construction of OWPuzz relies
heavily on the classical shadow tomography [HKP20], so here we first describe how to sample classical shadow
tomography and also the theoretical guarantee of classical shadows. Assume we have N copies of a state ρ
and we want to estimate the observables O1, . . . , OM with the copies of ρ. One can do this by just doing
independent random Clifford measurements over all the copies of ρ. Namely, we can sample random Clifford
unitaries C1, . . . , CN , and then measure CiρC†i and record their measurement results b1, . . . , bN . We call the
collection of bi, Ci the classical shadow tomography of the state ρ, denoted as ShadowGen(ρ,N), which can be
sampled without prior knowledge of the observables. The theoretical guarantee is shown in the following
lemma.

8The quantum auxiliary input model, as defined in [MNY24, Qia24] is a special type of CRQS model (by our definition), in
which the common reference quantum state for each value of the security parameter (or input size) is a predetermined fixed state.
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Lemma 4.6 (Classical shadow tomography, adapted from [HKP20]). For any n-qubit observables O1, . . . , OM ,
and accuracy parameter ε, δ ∈ [0, 1]. Let N ≥ 204

ε2 log(2M/δ)max1≤i≤M Tr
[
O2
i

]
. Then for any n-qubit state

ρ, let ShadowGen(ρ,N) be the classical shadow tomography of N copies of ρ. Then there is a time-unbounded
classical algorithm that can give an estimation ôi on all the observables Tr[Oiρ] given ShadowGen(ρ,N) such
that

|ôi − Tr[Oiρ]| ≤ ε∀i ∈ [1,M ]

with probability at least 1− δ.

Now we can describe the puzzle:

• The sampler Samp takes 10000 copies of each l-qubit CHRS state for n ≤ l ≤ 2n. For each l ∈ [n, 2n],
the sampler chooses a random bit kl ∈ {0, 1} and then generates a classical shadow tomography of
10000 copies of (Zkl1 ⊗ id) |ψl〉. The sampler will output kn . . . k2n as the key and the collection of
ShadowGen((Zkl

1 ⊗ id) |ψl〉〈ψl| (Zkl
1 ⊗ id)) as the puzzle.

• The verifier Ver of the puzzle relies on lemma 4.6. For any l ∈ [n, 2n], the verifier takes as input kl and
ShadowGen((Zkl

1 ⊗ id) |ψl〉〈ψl| (Zkl
1 ⊗ id)). The verifier estimates the observable (Zkl1 ⊗ id) |ψl〉〈ψl| (Zkl1 ⊗ id)

on the state ρ = (Zkl1 ⊗ id) |ψl〉〈ψl| (Zkl1 ⊗ id) according to the classical shadow tomography. The verifier
accepts if for at least 3n/4 different l, the estimation of the corresponding observable is greater than
1/2. The estimation of (Zkl1 ⊗ id) |ψl〉〈ψl| (Zkl1 ⊗ id) needs the classical description of |ψl〉, which can be
done if the verifier has access to exponentially many copies of |ψl〉.

According to lemma 4.6, set ε = 1/3 and δ = 1/10, the probability that the estimate of Zkl1 ⊗ id deviates
by at least 1/2 is less than 1/10 when the number of copies of the classical shadow N ≥ 204 ·9 · log(2 ·100), for
which 10000 copy is enough. Since (Zkl1 ⊗ id) |ψl〉 measures 1 on (Zkl1 ⊗ id) |ψl〉〈ψl| (Zkl1 ⊗ id), the probability
that the estimation is lower than 1/2 is at most 1/10. Thus by the Chernoff bound over all n keys, the
probability that a puzzle is not accepted by the verifier (i.e. more than 1/4 of the puzzles have an estimate
lower than 1/2) is exponentially small, which shows OWPuzz correctness.

As for the security, first we show that for any adversary A that does not have access to the common
Haar random states, A can find a key that passes the test with only exponentially small probability. This
is because |ψl〉 and (Zkl ⊗ id) |ψl〉 are essentially symmetric if the adversary has no information about |ψ〉,
so the best he can do is to guess the key randomly. Therefore the adversary can guess each kl correctly
with probability at most 1/2, and if the adversary does not guess the correct key, the probability that the
estimation of (Zkl1 ⊗ id) |ψl〉〈ψl| (Zkl1 ⊗ id) is greater than 1/2 is at most 1/10 according to lemma 4.6 and
| 〈ψl|(Z1 ⊗ id)|ψl〉 |2 does not exceed 1/10 except for exponentially small probability. Then by Chernoff bound,
the adversary can pass the verification (i.e., more than 1/2 of the puzzles have an estimate greater than 1/2)
with only exponentially small probability.

The following lemma shows that adversaries that only get a polynomial number of copies of the Haar
random state can not distinguish them from the case when they got a different Haar random state than the
puzzle generator.

Lemma 4.7 (LOCC Haar indistinguishability, adapted from [AGL24]). For positive integers s, t, n1, . . . , ns,
define

ρAB :=

s⊗
i=1

E
|ψi〉←Haar(2ni )

[
(|ψi〉〈ψi|⊗t)Ai ⊗ (|ψi〉〈ψi|⊗t)Bi

]
σAB :=

s⊗
i=1

E
|ψi〉←Haar(2ni )

[
(|ψi〉〈ψi|⊗t)Ai

]
⊗

s⊗
i=1

E
|φi〉←Haar(2ni )

[
(|φi〉〈φi|⊗t)Bi

]
,

where A = (A1, . . . ,As), B = (B1, . . . ,Bs). Then ρAB and σAB are O(
∑s
i=1 t

2/2ni)-LOCC indistinguishable.

Notice that the one-way puzzle can be viewed as an LOCC-protocol between the sampler and the adversary,
thus according to lemma 4.7, the oracle can be replaced by an oracle that is sampled from fresh Haar random
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states up to an exponentially small factor, which does not provide any information about the common Haar
random state. Thus by a hybrid argument, any adversary with access to polynomially many copies of the
common Haar random states can only guess half of the key. We formalize this idea in the following lemma.

Theorem 4.8. For any adversary A{|ψl〉} with access to polynomially many copies of the CHRS states, if
the sampler samples a puzzle (k, s) and inputs the puzzle s to A{|ψl〉}, then A can guess at most 3/5 fraction
of all the keys except for exponentially small probability.

Proof. Consider the adversary A{|ψ′
l〉}. The algorithm is exactly the same algorithm as A|ψl〉 but the |ψ′l〉 are

independently sampled Haar random states. Then essentially the adversary gains no information about k.
For any l, if we replace k with k ⊕ 1 and replace |ψl〉 with (Z1 ⊗ id) |ψl〉, then the distribution of the shadow
tomography is exactly is the same, while the key is flipped. Thus the probability that A|ψ′

l〉 can guess the
correct kl does not exceed 1/2.

So what’s the case for the real-world adversary A{|ψl〉}? We can construct the following non-local game.

• Alice runs the algorithm Samp{|ψl〉}(1n) samples a pair of puzzle (k, s) and sends s to Bob.

• Bob runs A{|ψl〉}(s) and outputs a key k′. Bob then sends k′ back to Alice.

• Alice compares k and k′. If 3/5 fraction of all the bits agree, then Alice accepts. Otherwise Alice rejects.

This is an LOCC protocol and the acceptance probability is exactly the probability that A can guess at least
3/5 of all the keys. According to lemma 4.7, we can replace the CHRS oracle on Bob’s side with freshly
sampled random states, with only a O(t2n/2n) overhead. If we replace the CHRS oracle, we get the following
idealized game,

• Alice runs the algorithm Samp{|ψl〉}(1n) samples a pair of puzzle (k, s) and sends s to Bob.

• Bob runs A{|ψ′
l〉}(s) and outputs a key k′. Bob then sends k′ back to Alice.

• Alice compares k and k′. If 3/5 fraction of all the bits agree, then Alice accepts. Otherwise Alice rejects.

For the idealized game, as we have analyzed before, the adversary can guess each kl with probability only
1/2, so according to the Chernoff bound, Alice accepts only with exponentially small probability. So in the
original game, Alice also accepts with exponentially small probability.

Corollary 4.9. For any adversary A{|ψl〉} with access to polynomially many copies of the CHRS states,
A|ψl〉 takes a puzzle s as input and output a key k′. k′ can pass the verification with only exponentially small
probability.

Proof. According to theorem 4.8, k′ coincides with at most 3/5 fractions of the bit strings. For any l that
k′l 6= kl, 〈ψl|Zkl1 ⊗ I|ψl〉 is negligible except for exponentially small probability from corollary 3.3. Thus there
exists two negligble functions δ and ε such that

Pr
|ψ〉←Haar(2l)

[
Tr

[
(Z

k′l
1 ⊗ id) |ψl〉〈ψl| (Z

k′l
1 Z

kl
1 ⊗ id) |ψl〉〈ψl| (Zkl1 ⊗ id)

]
≥ ε(n)

]
≤ δ(n) .

Since we take 10000 copies of classical shadow tomography, the estimation of the observable deviates from the
expectation at most 1/3 with probability at least 9/10, so each wrong key will pass the test (estimation greater
than 1/2) with probability at most 1/10, but 1/10 + 3/5 = 7/10 < 3/4, so according to the Chernoff bound,
the acceptance probability (at least 3/4 of the estimation is greater than 1/2) is exponentially small.

Putting this together with the non-existance of efficiently verificable one-way puzzles from our previous
lemma, or [AGL24], we have the following.

Corollary 4.10. In the common Haar random state model, inefficiently verifiable one-way puzzles exist but
efficiently verifiable one-way puzzles do not exist.
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5 Separation in the Haar random swap oracle model
In the previous section, we showed that in CHRS model, one-way state generators do not exist. In this section,
we show how to lift this result to a swap oracle around a Haar random state, as well as results pertaining to
the existence of certain primitives. In particular, given a state |ψ〉, define the swap oracle to be the following:

Definition 5.1 (Swap oracle). Let |ψ〉 be a n-qubit state, then the swap oracle Oψ is defined as follows:

Oψ = |0n〉〈ψ|+ |ψ〉〈0n|+ id⊥ .

where we assume WLOG that |ψ〉 is orthogonal to |0n〉, since if not, we can always append a single |1〉 to it
in order to make it orthogonal. Here id⊥ is the identity on the subspace orthogonal to span{|0n〉 , |ψ〉}. For a
family of states Ψ, the swap oracle OΨ is a family of oracles that each swap around the corresponding state
in the state family.

We can instantiate the swap model with any common reference quantum state model, but for this paper
we will define the Haar random swap oracle as follows.

Definition 5.2 (Haar random swap oracle). Let {|φm〉}m∈N be a collection of states sampled from the Haar
measure on 2m − 1 dimensions, where |φm〉 is a state on m qubits, conditioned in being orthogonal to |0〉.9
The Haar random swap oracle is the collection of unitaries:

O|Haar〉 = O{|φm〉} .

Next, we show that one can use copies of the Haar random state to simulate calls to the Haar random
swap oracle, at an inverse polynomial trace distance error. We note that a very similar swap oracle over two
Haar random state was considered in the work of [Zha24], where he proved a very similar state simulation
technique. We adapt his proof strategy for our case.

9We note that we add the condition that |ψm〉 is orthogonal to |0〉 so that the swap oracle is a unitary. However, for all
polynomials, poly(m)-copies of a Haar random state on 2m-dimensions has negligible trace distance to poly(m)-copies of a Haar
random state on 2m − 1 dimensions, so making this change is indistinguishable to any adversary that makes poly(m) calls to the
swap oracle, which is what we consider below. Thus, it will often be convenient—and it will add only negligible error to our
analysis—to consider the state prepared by the oracle as if it were Haar random on the full 2m-dimensional space.
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Algorithm 1. Algorithm for simulating swap oracle Oψ.
Input: Unknown quantum state ρ in register R and 2q(λ) + 1 copies of |ψ〉, orthogonal to |0n〉.

1. Coherently measure R using the POVM {|0n〉〈0n| , id− |0n〉〈0n|}, saving the result in register A1.

(a) If the measurement result in A1 has outcome |0n〉〈0n|, swap out register R with a fresh copy
of |ψ〉.

(b) If the measurement result in A1 has outcome id − |0n〉〈0n|, perform a symmetric subspace
projector Π

q(λ)+1
sym on register R and q(λ) other registers containing fresh copies of |ψ〉, saving

the result in register A2.
i. If the measurement result in A2 has outcome Πsym, swap out register R with an ancilla

register containing the state |0n〉.

2. Coherently measure register R using the POVM {|0n〉〈0n| , id − |0n〉〈0n|}, writing the result to
register A2.

3. Coherently measure register R and |ψ〉⊗q(λ) using a symmetric subspace projector Π
q(λ)+1
sym , writing

the result to register A1.

4. Return the R register.

Before proving that the algorithm works, we will need to use the following facts, one about the post-
measurement state of the symmetric subspace projector and another about Haar random states.

Lemma 5.3. Let |φ〉 be a state perpendicular to |ψ〉, then the post-measurement state after applying the
symmetric subspace projector (i.e. the sum over all permutations of l+1 registers) and accepting on |φ〉⊗|ψ〉⊗l
is

1

l + 1

l∑
i=0

|ψ〉⊗i |φ〉 |ψ〉⊗l−i

Similarly, the post-measurement sate after applying the symmetric subspace projector and rejecting is given by

l

l + 1
|φ〉 |ψ〉⊗l − 1

l + 1

l∑
i=1

|φ〉⊗i |φ〉 |ψ〉⊗l−i .

Proof. From [Har13], the symmetric subspace projector is given by

Πsym
l+1 =

1

(l + 1)!

∑
π∈Sl+1

Pπ .

Where Pπ acts on n registers by permuting the registers. Note that we can split Sl+1 into cosets of Sl, where
the representative of the i’th coset is the swap (1, i). Then we have the following

1

(l + 1)!

∑
π∈Sl+1

|φ〉 ⊗ |ψ〉⊗l = 1

(l + 1)!

∑
i∈[l+1]

P(1,i)

∑
π′∈Sl

id⊗ Pπ′ |φ〉 ⊗ |ψ〉⊗l

=
1

l + 1

∑
i∈[l+1]

P(1,i) |φ〉 ⊗ |ψ〉
⊗l

=
1

l + 1

l∑
i=0

|ψ〉⊗i |φ〉 |ψ〉⊗l−i ,
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as desired. To compute the state after the anti-symmetric subspace projector is applied, we simply take
id − Πsym

l+1 , i.e. subtract the above state from the original state. Taking the difference yields the desired
state.

We adapt the following lemma from [Zha24].

Lemma 5.4 ([Zha24]). Let |ψ〉 be an n-qubit state drawn from a phase invariant distribution10 and AOψ

be a quantum oracle algorithm that makes p(λ) = poly(λ) many queries to the swap oracle Oψ. Let Ores
ψ be

a simulation that maintains a reservoir register res containing up to p(λ) copies of |ψ〉, and performs the
following unitary for each query:

Ores =
∑

k∈[p(λ)]

|0n〉A |ψ
k〉res〈ψ|A 〈ψ

k−1|res + |ψ〉A |ψ
k−1〉res〈0

n|A 〈ψ
k|res + id⊥ .

where A is the query register of the algorithm and res is the reservoir state, with |ψk〉 representing the the
state of the reservoir containing k copies of |ψ〉.

Then we have that for all input states ρ,

E
ψ←Haar

[
AOψ (ρ)

]
= E
ψ←Haar

[
AO

res
ψ (ρ)

]
.

Proof. This follows directly by an application of the proofs of Lemmas 5.5 and 5.9 of [Zha24] to Oψ.11

We note that Ores uses a perfect projective measurement onto the state |ψ〉. It remains to show how to
implement this using copies of the state |ψ〉. Like [Zha24], we use a technique from [JLS18], implementing
a projection on the symmetric subspace of polynomially many copies of |ψ〉. We show how to do this for
completeness. We combine them in the following lemma where we extend lemma 5.4 to an algorithm that
takes as input copies of the state |ψ〉, sampled from the Haar measure.

Lemma 5.5 (Swap oracle from sample access). Let |ψ〉 be an n-qubit Haar random quantum state and AOψ
be a polynomial-space quantum oracle algorithm that makes p(λ) = poly(λ) many queries to the swap oracle
Oψ. Then for every ε > 0, there exists a polynomial-space quantum algorithm B(|ψ〉⊗p(λ)

(
12
ε

)
, ·) that such

for all ρ,
td

(
Eψ←Haar(2n)

[
B(|ψ〉⊗p(λ)

(
12
ε

)
, ρ)

]
,Eψ←Haar(2n)

[
AOψ (ρ)

])
≤ ε .

Proof. B proceeds by simulating A, where for each of the oracle queries made by A, it uses (2t(λ) + 1) many
copies of |ψ〉 to run algorithm 1. Note that since ε is a constant and p is a polynomial, B runs in polynomial
space. In order to analyze the error bound with the ideal algorithm, we step through the algorithm for a pure
state |φ〉〈φ|, and the result will extend by linearity.12 First note that we can always find phases such that

|φ〉 = α0 |0n〉+ αψ |ψ〉+ α⊥ |φ⊥〉 .

Then after performing the first measurement, we have the following state mixed state:

|0n〉〈0n| |φ〉 ⊗ |1〉A1
+ (id− |0n〉〈0n|) |φ〉 ⊗ |0〉A1

= α0 |0n〉 ⊗ |1〉A1
+ (αψ |ψ〉+ α⊥ |φ⊥〉)⊗ |0〉A1

.

10A distribution on quantum states over a subspace is phase invariant if it is invariant to applying a uniformly random phase
to each basis state of the subspace [Zha24]. In particular, note that the Haar measure is phase invariant.

11The lemmas in [Zha24] are stated for a slightly different oracle. The oracle of [Zha24] has an index register and uses a
reservoir of many copies of each state from an indexed collection of different Haar random states. Furthermore, the oracle—at
least when queried on index 0—swaps in two different Haar states. Formally the lemmas do not apply to our case. However, the
proofs of the lemmas do not make use of these differences with our setting and therefore apply directly to our oracle as a special
case.

12For the sake of brevity, we drop the expectation over the Haar measure and use kets, but all equations should be taken as
being averaged over the Haar measure in |ψ〉.
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Conditioned on A1 being 1, we swap in one of our copies of |ψ〉, and in the 0 branch we perform a
multi-SWAP test with q(λ) copies of the state |ψ〉〈ψ| to project on the the symmetric subspace and its
complement. To save space, we analyze each branch of the superposition separately, and we will re-combine
them later. From lemma 5.4, the state in the branch where A1 is 1 is indistinguishable (over the Haar
measure) to the following, after tracing out extra copies of|ψ〉.

α0 |ψ〉 |10〉A1A2
.

For the term with coefficient αψ, the SWAP test will pass with probability 1 and leave the following state

αψ |ψ〉t(λ)+1 |01〉A1A2
.

For the term α⊥ |φ⊥〉, we apply our observation about the post-measurement state of the symmetric subspace
projector to get

α⊥
t(λ) + 1

t(λ)∑
i=0

|ψ〉⊗i |φ⊥〉 |ψ〉t(λ)−i |01〉A1A2

+
α⊥

t(λ) + 1

t(λ) |φ⊥〉 |ψ〉⊗t(λ) − t(λ)∑
i=1

|ψ〉⊗i |φ⊥〉 |ψ〉t(λ)−i
 |00〉A1A2

.

In the next step, for all of the branches that have |01〉A1A2
, we swap out the first register with a fresh ancilla

containing |0n〉. Again, from lemma 5.4, the state is indistinguishble over the Haar measure from

α0 |ψ〉 |ψ〉⊗t(λ) |10〉A + αψ |0n〉 |ψ〉⊗t(λ) |01〉A

+
α⊥

t(λ) + 1

|0n〉 |ψ〉⊗t(λ) + t(λ)∑
i=1

|0〉 |ψ〉i−1 |φ⊥〉 |ψ〉t(λ)−i
 |01〉A

+
α⊥

t(λ) + 1

t(λ) |φ⊥〉 |ψ〉⊗t(λ) − t(λ)∑
i=1

|ψ〉⊗i |φ⊥〉 |ψ〉t(λ)−i
 |00〉A .

Re-arranging terms, we have the following state on all the registers after performing the first half of algorithm 1.

α0 |ψ〉 |ψ〉⊗t(λ) |10〉A + αψ |0n〉 |ψ〉⊗t(λ) |01〉A +
α⊥t(λ)

t(λ) + 1
|φ⊥〉 |ψ〉⊗t(λ) |00〉A

+
α⊥

t(λ) + 1

|0n〉 |ψ〉⊗t(λ) + t(λ)∑
i=1

|0n〉 |ψ〉i−1 |φ⊥〉 |ψ〉t(λ)−i
 |01〉A

− α⊥
t(λ) + 1

t(λ)∑
i=1

|ψ〉⊗i |φ⊥〉 |ψ〉t(λ)−i
 |00〉A .

Note that the trace of the absolute value final line is equal to |α⊥|2 (2t(λ) + 1)/(t(λ) + 1)2. Thus, we
can instead consider the following state, remembering that we have incurred a trace distance cost of
|α⊥|2 (2t(λ) + 1)/(t(λ) + 1)2 ≤ 2 |α⊥|2 /(t(λ) + 1).

α0 |ψ〉 |ψ〉⊗t(λ) |10〉A + αψ |0〉 |ψ〉⊗t(λ) |01〉A +
α⊥t(λ)

t(λ) + 1
|φ⊥〉 |ψ〉⊗t(λ) |00〉A .
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For this state we can cleanly trace out the t(λ) registers which contain |ψ〉⊗t(λ), which means the state on
the rest was close in trace distance to

|φhalf〉 = α0 |ψ〉 |10〉A + αψ |0〉 |01〉A +
α⊥t(λ)

t(λ) + 1
|φ⊥〉 |00〉A .

The final half of the algorithm is the same as the first, except with the A1 and A2 registers swapped, so the
state after the algorithm is done will be close to the following state.

|φfinal〉 = α0 |ψ〉A + αψ |0〉+
α⊥t(λ)

2

(t(λ) + 1)2
|φ⊥〉 .

By the same argument as before, the trace distance between the second half of the algorithm acting on |φhalf〉
and |φfinal〉 is at most

2 |α⊥t(λ)/(t(λ) + 1)|2 t(λ)
(t(λ) + 1)2

≤ 2 |α⊥|2

t(λ) + 1
.

Here we used the fact that the new amplitude of |φ⊥〉 is α⊥t(λ)/(t(λ) + 1) and plugged it into the trace
distance calculation from before. By the triangle inequality, the trace distance between the actual state of
the algorithm and |φfinal〉 is at most

td(|φfinal〉〈φfinal| , ρalg) ≤
2 |α⊥|2

t(λ) + 1
+

2 |α⊥|2

t(λ) + 1
≤ 4 |α⊥|2

t(λ) + 1
≤ 4

t(λ) + 1
.

Finally, we can write down the state after the ideal swap as

|φideal〉 = α0 |ψ〉+ αψ |0〉+ α⊥ |φ⊥〉 .

We can compute directly the trace distance between the two states to get the following bound

td(|φfinal〉〈φfinal| , |φideal〉〈φideal|) ≤
2t(λ) + 1

(t+ 1)2
≤ 2

t(λ) + 1
.

Applying the triangle inequality for trace distance, we get that the trace distance between the state of the
algorithm on the first register and the ideal state is upper bounded by

td(ρalg, |φideal〉〈φideal|) ≤
6

t(λ) + 1
.

Setting t(λ) = 6p(λ)
ε − 1, we get a trace distance error of at most ε/p(λ). For an algorithm that makes p(λ)

calls to the oracle, we apply the triangle inequality to every call to get a total error bound of ε over the
course of the entire algorithm AOψ . This means that the algorithm requires 12p(λ)

ε copies of the state |ψ〉, as
desired. Finally, we note that since this bound holds for all pure states, we can write all mixed states as a
mixture of pure states and apply this to each of them, so this applies to all entangled inputs too.

With these lemmas, we can show that since EFI pairs exist in the common Haar random state model,
they also exist in the corresponding swap model. We apply the result to the common Haar random state
model to get the following corollaries.

Corollary 5.6. EFI pairs exist relative to (O|Haar〉,UnitaryPSPACE).

Proof. The construction of EFI pairs runs the construction in the common Haar random state model, using
the swap oracle to generate copies of the desired states.

Assume for the sake of contradiction that there is an adversary A that breaks the EFI pairs relative to
(OV ,UnitaryPSPACE). Then there exists a polynomial q such that

|Pr[1← A(ρ0)]− Pr[1← A(ρ1)]| ≥
1

q(λ)
.
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We apply lemma 5.5 with ε = 1/(2q(λ)), which gives us an adversary relative to (O|Haar〉,UnitaryPSPACE)
that breaks the indistinguishability of the EFI pair with probability 1/2q(λ). This contradicts the security of
the EFI pair in the common reference quantum state model, and thus the construction must be secure in the
swap model.

We can apply the same idea to 1PRS and OWPuzz, so if they exist relative to any common reference
quantum state model, they exist in the corresponding swap model as well. Similarly, we can show that no
one-way state generators exist relative to any swap model.

Corollary 5.7. Relative to (O|Haar〉,UnitaryPSPACE), efficiently verifiable one-way state generators do not
exist.

Proof. Assume for the sake of contradiction that there is a construction of one-way state generators in
some swap model that is secure against UnitaryPSPACE adversaries. Then consider the construction in the
corresponding state model that simulates swap oracle calls using lemma 5.5, with ε = 1

λ .
Then for every k, the output of the one-way state generator in the common reference quantum state

model is within 1/λ of the state in the swap model, and thus no adversary, even an adversary who has access
to the swap oracle, can break the one-wayness of the construction with probability greater than 1/λ+negl(λ).
Applying the parallel repetition theorem of [BQSY24], we can amplify the security of our weak one-way state
generators to standard one-way state generators.

Thus, if one-way state generators exist in the swap model, we can find a construction in the common
reference quantum state model, contradicting theorem 4.1. So, we conclude that one-way state generators do
not exist in any swap model, relative to UnitaryPSPACE adversaries.

Applying the previous corollaries to the Haar random swap oracle model, we finally get our main result:

Theorem 5.8. Relative to (O|Haar〉,UnitaryPSPACE), EFI pairs, 1PRS, and OWPuzz exist, but one-way state
generators do not.

Thus, we have achieved a unitary oracle that separates one-way state generators from EFI pairs, 1PRS,
and OWPuzz. Note that the oracle we provide is a randomized unitary oracle—that is, it is a unitary oracle
that is chosen from a probability distribution. However, we note that this is not a disadvantage, as if we
desire a fixed deterministic unitary oracle, this can easily be achieved as well by applying the techniques
of [AK07, proof of Theorem 1.1] to O|Haar〉.
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