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Abstract. In this work, we put forth the notion of dynamic zk-SNARKs.
A dynamic zk-SNARK is a zk-SNARK that has an additional update al-
gorithm. The update algorithm takes as input a valid source statement-
witness pair (x,w) ∈ L along with a verifying proof π, and a valid target
statement-witness pair (x′,w′) ∈ L. It outputs a verifying proof π′ for
(x′,w′) in sublinear time (for (x,w) and (x′,w′) with small Hamming
distance) potentially with the help of a data structure. To the best of our
knowledge, none of the commonly-used zk-SNARKs are dynamic—a sin-
gle update in (x,w) can be handled only by recomputing the proof, which
requires at least linear time. After presenting the formal definition of dy-
namic zk-SNARKs, we provide two constructions. The first one is based
on recursive SNARKs and has O(logn) update time. However it suffers
from heuristic security—it must encode the random oracle in the SNARK
circuit. The second one and our central contribution, Dynaverse, is based
solely on KZG commitments and has O(

√
n logn) update time. Our pre-

liminary evaluation shows, that, while worse asymptotically, Dynaverse
outperforms the recursive-based approach by at least one order of mag-
nitude.

1 Introduction

Data structures are fundamental tools in computer science, enabling us to
efficienly update the result of a computation whenever data inputs change.
In this paper we put forth the problem of “data structures for zk-SNARKs”
and accordingly introduce the notion of dynamic zk-SNARKs—SNARKs with
efficiently-updatable proofs. Consider for example the following “commit-and-
prove” map-reduce application where a dynamic zk-SNARK is useful: A prover
Merkle-commits to a set of elements x1, . . . , xn outputting a commitment d.
Then the prover provides a proof π for the public statement (d, cnt), where cnt
is the number of elements xi satisfying a fixed predicate (e.g., signature verifi-
cation under a public key). Now, whenever any element xi of the Merkle tree
changes (e.g., during a database update), a dynamic zk-SNARK would provide
a way to update π to π′ efficiently without requiring proof recomputation—just
as the Merkle commitment can be efficiently updated without recomputation.
Defining dynamic zk-SNARKs. Our first contribution is to define dynamic
zk-SNARKs—see Definition 2. Naturally, a dynamic zk-SNARK for a language
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Table 1. Circuit-specific Dynaverse performance w/o and with IPA [2]. k is the number
of updates between source and target statements and with n the number of multipli-
cation and addition gates. For universal Dynaverse, all complexities remain the same
except for G that runs in n

√
n outputting public parameters pp of size n

√
n.

scheme key generation prove update verify proof prover key verifier key
G P U V |π| |pk| |vk|

Dynaverse n n logn k
√
n logn

√
n
√
n n

√
n

Dynaverse (IPA) n n logn k
√
n logn logn logn n logn

L is a SNARK (G,P, V ) with an additional update algorithm U : Algorithm U ,
run by the prover, takes as input a valid source statement-witness pair (x,w) ∈
L along with a verifying proof π, and a valid target statement-witness pair
(x′,w′) ∈ L. It outputs a verifying proof π′ for (x′,w′) without running P from
scratch, potentially with the help of a data structure aux. In particular, we are
only interested in an algorithm U whose running time for a single change in
(x,w) is sublinear. To the best of our knowledge, none of the commonly-used
zk-SNARKs (such as Groth16 [12], Plonk [11], Bulletproofs [3], Orion [26]) are
dynamic: A single update in (x,w) can be handled only by recomputing the
proof, which requires at least linear time. Most of the times, this is due to the
use of Fiat-Shamir, that outputs randomness crucially depending on all circuit
wires, or the use of polynomial division, which is sensitive to the changes on the
divident polynomial that encodes the wire assignments.

Existing dynamic proof systems. While dynamic zk-SNARKs have not been
formally defined before in their generality, there have been some constructions of
dynamic proof systems for specific types of computation in the literature. Those
generally fall into two categories. Constructions in the first category crucially
rely on recursive zk-SNARKs [1]. For example, Incremental Verifiable Computa-
tion (IVC) [24] uses recursive zk-SNARKs to support dynamic chain computa-
tions and Reckle trees [17] use recursive zk-SNARKs to support dynamic batch
proofs in vector commitments. However, recursive zk-SNARKs are not known
to be practical, and the ones that seem to be (e.g., Plonky2 [23]), encode a
random oracle in the SNARK circuit, leading to only heuristic security proofs.
Constructions in the second category do not use recursive zk-SNARKs (thus
potentially more practical and provably secure) but have limited expressiveness.
For example, authenticated data structures [22] and updatable vector commit-
ments [6,21] are dynamic proof systems for simple data structure queries, such
as membership, range search and vector queries. Other examples include certain
constructions for batch-membership proofs, e.g., [4], as well as functional vector
commitments supporting linear functions, e.g., [5].

Summary of our contributions. The main question we are asking in this
work is whether we can build dynamic zk-SNARKs for general purpose compu-
tation. We answer this question in the affirmative and provide two constructions:
The first one is a “folklore construction” that is using recursive SNARKs—see
Section 3.1. It has excellent asymptotic complexities (O(log n) update time) but
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inherits the practicality and heuristic security issues outlined before. Our sec-
ond construction, Dynaverse, is not using recursive SNARKs and is based solely
on KZG commitments [13]. It has O(

√
n log n) update time and is summarized

in the following section. An initial unoptimized implementation (see Section 6)
shows that Dynaverse is at least an order of magnitude faster, in terms of up-
dates, than the recursive approach. The detailed complexities of our KZG-based
construction are shown in Table 1.

1.1 Dynaverse: A dynamic zk-SNARK without recursion

We now summarize Dynaverse—the central contribution of this paper: From
Plonkish arithmitization [11], recall that the wire assignment of a circuit C with
n addition gates, n multiplication gates, n0 public inputs and wire-consistency
permutation σ (of size N = 6n + n0) can be described with six n-sized vectors
z1, z2, z3, z4, z5, z6 and one n0-sized vector z7 such that: (i) z1 and z4 store the
left inputs of addition and multiplication gates respectively; (ii) z2 and z5 store
the right inputs of addition and multiplication gates respectively; (iii) z3 and
z6 store the outputs of addition and multiplication gates respectively; (iv) z7
stores the public inputs. Also recall that z = [z1 z2 z3 z4 z5 z6 z7] is a satisfying
assignment of C if and only if

– z[i] = z[σ[i]], for all i = 1, . . . , 6n+ n0 (copy constraint).
– z[i] + z[n+ i] = z[2n+ i], for all i = 1, . . . , n (add gate constraint).
– z[3n+ i] · z[4n+ i] = z[5n+ i], for all i = 1, . . . , n (mult gate constraint).

At a very high level, most known zk-SNARKs (e.g., [11]) commit to z and
provide a proof π that z satisfies all three relations above. Our task is to find a
way to do that so that π is efficiently updatable whenever some z wires change.
First step: Dynamo, a dynamic permutation SNARK. The most crucial
piece of our construction is Dynamo, a dynamic permutation SNARK (or per-
mutation argument, as is commonly known) that we build with O(1) proof size
and O(1) update time—see Section 4. In particular, Dynamo allows a prover
to commit to z using KZG [13] and provide a proof that the copy constraint
is satisfied for a given σ. Dynamo’s proof can be updated, whenever say, the z
values of a k-size cycle in σ change, in O(k) time. To the best of our knowledge,
this is the first permutation SNARK with such an updatability property, and
it could potentially have other applications. To construct Dynamo, the prover
KZG-commits to z with a standard univariate Lagrange polynomial, i.e.,

[z(X)] =

[∑
i

Li(X) · zi

]
,

where [z(X)] is the KZG commitment of polynomial z(X). The permutation σ
is KZG-committed to with another carefully-constructed bivariate polynomial

[σ(X,Y )] =

[∑
i

Li(X) · (Y i + Y σ−1(i))

]
,
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which is held by the verifier. Our main observation is that the polynomial∑
i

zi · (Y i + Y σ−1(i))

is identically 0 if and only z satisfies the copy constraint. Dynamo provides a
proof for exactly that, on input commitment [z(X)] (from prover) and [σ(X,Y )]
(from verifier). Importantly, the Dynamo proof consists of 15 group elements (see
Table 2), all of which can be expressed as linear combinations of z and other
fixed polynomials (see Theorem 2). Therefore all group elements are efficiently
updatable with a single group operation.
Second step: Dynamically enforcing gate constraints. To complete the
construction of Dynaverse, what is left to do is provide a proof π that the com-
mitment z also satisfies the gate constraints, in a way that π is also updatable.
The most challenging part of this step is to deal with multiplication constraints:
To prove multiplication constraints, we use a standard approach from Plonk [11],
namely a zero test on {1, . . . , n} for the polynomial

τ(X) = z(3n+X) · z(4n+X)− z(5n+X) ,

which is done by returning a commitment to the quotient polynomial A(X) =
τ(X)/

∏
i(X − i). Unfortunately the commitment [A(X)] is not efficiently up-

datable: A single change in z will completely change the quotient polynomial
and therefore the update would take at least linear time (We note here that the
same idea applied to addition constraints yields a quotient polynomial that is
efficiently updatable, due to the linearity of addition!)
Addressing the expensive division problem: Bucketization. A natural
way to address the expensive division problem is to “bucketize” the first 6 · n
entries of vector z into 6 ·m buckets of size m, where m =

√
n. Let zij be the

m-sized bucket that starts at position (i− 1)+ (j − 1)m+1 of z for i = 1, . . . , 6
and j = 1, . . . ,m. Now the prover will commit to 6 · m buckets outputting
6 ·m commitments [zij(X)]. Due to this bucketization, we can prove multiplica-
tion constraints by providing m commitments of smaller quotient polynomials
[Ai(X)] (instead of a single commitment of one large A(X)), with the effect that
any update can be handled in m =

√
n time since whenever a wire changes,

we only need to update the quotient commitment [Ai(X)] of the bucket that
contains it. Therefore the update time of this approach becomes O(

√
n) and the

proof size also becomes O(
√
n). Thankfully though, by using a proof system for

pairing equations [2], we reduce the proof size and verification time to O(log n).
Wrapping up: Adjusting the permutation SNARK. We finally note that
due to bucketization, we cannot apply Dynamo for copy constraints any more:
Dynamo was meant to be applied to the whole vector z. Instead, what we do is
apply a slight generalization of Dynamo to each bucket zij , called Dynamix—see
Section 4.1. Dynamix provides proofs that the local values of zij are consistent
with the overall permutation σ. An illustration of how Dynaverse performs buck-
etization, uses quotient proofs and Dynamix proofs is shown in Figure 6.
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2 Preliminaries

Roots of unity and vectors. For m power of two, we denote with ω the
m-th root of unity in a field F, i.e., ωm = 1. We also use Ω to denote the
set of m-th roots of unity, i.e., Ω = {ω, . . . , ωm}. The Lagrange polynomial is
Li(X) = ωi(Xm − 1)/m(X − ωi) such that Li(ω

i) = 1 and Li(ω
j) = 0 (i ̸= j).

[n] is the set {1, . . . , n} and [n1, n2] is the set {n1, n1 + 1, . . . , n2 − 1, n2}.
Bilinear groups. Let ppbl := (p,G,GT , e, g) ← Gbl(1λ) denote the pairing
parameters. In particular G is a group of prime order p, g is a generator of G
and pairing function e : G × G → GT is such that ∀u,w ∈ G and a, b ∈ Zp,
it is e(ua, wb) = e(u,w)ab. We note here that our actual implementation is
using asymmetric pairings for efficiency, but we use symmetric pairings in our
presentation for notational convenience.
KZG commitments. Let (p,G,GT , e, g)← Gbl(1λ) be bilinear pairing param-
eters and let secret α ∈ F be chosen at random. A trusted party outputs the
elements g, gα, . . . , gα

q

for some polynomially-large q. For univariate polynomial
f(X) over variable X, the KZG commitment [13] of f is gf(α), which we write
as [f(X)]. The celebrated KZG commitment [13] allows a prover to commit to a
polynomial f(X) via [f(X)] and run a zero-check, i.e., prove that the commit-
ted polynomial satisfies f(xi) = 0 for a set of points x1, . . . , xt. To do that, the
prover computes the quotient polynomial q(X) = f(X)/

∏
i∈[t](X−xi) and out-

puts the commitment [q(X)] as a proof. To verify, the verifier uses the bilinear
map to check that

e([f(X)], g) = e

[q(X)],

∏
i∈[t]

(X − xi)

 .

Our protocols rely heavily on the KZG zero-check.
KZG variable check. We will be using KZG commitments on bivariate polyno-
mials f(X,Y ) as well, in which case the trusted setup outputs {gαiβj}i,j=0,...,q,
for random α and β, or {[XiY j ]}i,j=0,...,q. Variable check is a useful tool to ensure
a polynomial does not contain a specific variable. In particular, when a prover
commits to polynomial f(X), we want to ensure that variable Y is not present.
To do that, we ask the prover to provide a KZG commitment to f(X) · Y q as
well, and we use the pairing to check whether

e([f(X)], [Y q]) = e([f(X) · Y q], g) .

Clearly, if Y was present in f(X), the prover would not have been able to com-
pute [f(X) ·Y q] since the commitment [Y q+1] is not output as part of the setup.
Indexed relations and permutation relation. We use i to denote an indexed
relation, i.e., the description of the circuit checking a public statement x and
a witness w. We slightly abuse notation and write (x,w) ∈ i iff running i on
(x,w) returns 1, so i is both the description of the computation and the set
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of valid tuples in the language. For example, the indexed relation iP = [n, σ],
where σ is a permutation of size n over domain F, contains those w such that
w[i] = w[σ[i]] for all i (Note x = ∅.)
Plonkish arithmetization. Per Plonkish arithmetization [7,11], an index iC =
[n, n0, σ] is an indexed relation for a fan-in 2 arithmetic circuit C over F with n0

input gates (n0 ≤ n), n addition gates and n multiplication gates (padding can
handle the general case), where:

– Gate 1 to n are addition gates, gate n+1 to 2n are multiplication gates, and
gates 2n+ 1 to 2n+ n0 are input gates (holding the public statement).

– σ ∈ [6n+ n0]
6n+n0 is a permutation vector describing the wire connections.

For every addition gate i (1 ≤ i ≤ n), its left input, right input and output
are labeled by i, n+ i, 2n+ i respectively. Similarly, for every multiplication
gate i (n+ 1 ≤ i ≤ 2n) its left input, right input and output are labeled by
2n + i, 3n + i, 4n + i respectively. Input wires are labeled from 6n + 1 to
6n + n0. For example, if addition gate i’s right input is connected to input
wire j, then we may have σ[6n+ j] = n+ i.

For any fixed index iC = [n, n0, σ] describing a circuit C, an instance of public
inputs x ∈ Fn0 , and a witness w ∈ F6n, let z = [w;x] ∈ F6n+n0 . We have
(x,w) ∈ iC if and only if the following hold: (a) (∅, z) ∈ iP = [6n + n0, σ]. (b)
∀i ∈ [n], z[i] + z[n+ i] = z[2n+ i] and z[3n+ i] · z[4n+ i] = z[5n+ i].
Extractors. Following [12] we write (a; b)← (A||EA)(x) to indicate that adver-
sary A and extractor E are given the same input x and output a and b respec-
tively. We write EA to indicate that E also takes as input A’s state, including
any random coins.

zk-SNARKs. We now present the definition of circuit-specific zk-SNARKs [12].
For zk-SNARKs with universal setup, algorithm G below is separated into two al-
gorithms, a universal generation G(1λ)→ pp and an indexer I(pp, i)→ (pk, vk).
To avoid complexity in our presentation, all our constructions are presented as
circuit-specific, but we show how to turn them into universal. In both circuit-
specific and universal zk-SNARKs, algorithm G must be trusted.

Definition 1 (zk-SNARKs). A zero-knowledge succinct non-interactive ar-
gument of knowledge (zk-SNARK) for an indexed relation i is a tuple of PPT
algorithms S = (G,P,V) with the following interface:

– G(1λ, i)→ (pk, vk) : Given security parameter 1λ, outputs prover key pk and
verifier key vk.

– P(pk,x,w) → (π, aux) : Given proving key pk, instance x, and witness w,
outputs proof π.

– V(vk,x, π) → 0/1 : Given verification key vk, instance x, and a proof π,
outputs accept or reject.

A zk-SNARK S should have polylog-sized proofs and satisfy the following prop-
erties.
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– Completeness: Let G(1λ, i) → (pk, vk). We say that S satisfies completeness
if for any i, for any (x,w) ∈ i, if π ← P(pk,x,w), then V (vk,x, π)→ 1.

– Knowledge Soundness: We say that S satisfies knowledge soundness if for any
PPT adversary A and for any i there exists a PPT extractor EA such that

Pr

G(1
λ, i)→ (pk, vk); ((x, π);w)← (A||EA)(pk, vk)

:

V(vk,x, π)→ 1 ∧ (x,w) /∈ R


is negligible.

– Zero Knowledge: Fix any i and (x,w) ∈ i. Let D be the distribution of π as
output by the experiment below.
1. G(1λ, i)→ (pk, vk).
2. π ← P(pk,x,w).

We say that S satisfies zero-knowledge if there exists a PPT simulator S
such that the distribution D̃ of π̃ output by the following experiment is
computationally-indistinguishable from D.
1. (t, pk, vk)← S(1λ, i).
2. π̃ ← S(t, pk, vk,x).

The zero-knowledge definition naturally extends to statistical/perfect zero-
knowledge.

Algebraic group model and q-DLOG assumption. For our security anal-
ysis, we will use the algebraic group model from [10]. In our protocols, by an
algebraic adversary A we refer to a PPT algorithm which satisfies the follow-
ing: Given lists of initial group elements L ∈ Gn, whenever A outputs a group
element g ∈ G, it also outputs a vector g ∈ Fn such that g =

∏
j∈[n] L[j]

g[j].
Finally, as in [10,11], our security also rests on the q-DLOG assumption, which
we present in the following.

Assumption 1 (q-DLOG) Fix integer q. For any PPT adversary A, given
ppbl ← Gbl(1λ) and (g, gτ , . . . , gτ

q

) where τ
$← F, the probability of A outputting

τ is negl(λ).

We also present two standard lemmata with respect to the algebraic group
model (polynomial check and variable check) in a more general form that will
be useful for our proofs—see Appendix C.

3 Dynamic zk-SNARKs definition and a construction
based on recursion

In this section we present the formal definition of dynamic zk-SNARKs and
a first construction satisfying our definition (yet using a random oracle inside a
SNARK circuit) based on recursive SNARKs. Our dynamic zk-SNARKs defini-
tion (Definition 1) is an extension of the original zk-SNARKs definition in two
ways, as we explain below.
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First we require an updatability property, stating that there should be an up-
date algorithm U , such that, on input a valid instance (x,w) along with its proof
π, a “data structure” aux and another valid instance (x′,w′) that has “small”
Hamming distance k from (x, w), it should be able to output the updated proof
π′ (along with the updated data structure aux′) in time strictly less than T (P),
where P is the prove algorithm of the SNARK. Note the requirement for “small”
Hamming distance is necessary: If, say, a linear number of positions change from
(x,w) to (x′,w′), it will be impossible to update the proof is sublinear time: If
such an algorithm existed, it would have to ignore some of the updates.

Second, we must slightly modify the definition for zero-knowledge. Now the
simulator is asked to simulate not a single proof, but a series of honestly-
generated proofs that are produced by running the update algorithm.

Definition 2 (Dynamic zk-SNARKs). A dynamic zero-knowledge succinct
non-interactive argument of knowledge (dynamic zk-SNARK) for an indexed re-
lation i is a tuple of PPT algorithms DS = (G,P,U ,V) with the following inter-
face:

– G(1λ, i) → (pk, upk, vk) : Given 1λ and an indexed relation i, outputs a
proving key pk, an update key upk and a verification key vk.

– P(pk,x,w) → (π, aux) : Given proving key pk, instance x, and witness w,
outputs a proof π and an extra auxiliary information aux.

– U(upk,x′,w′,x,w, π, aux)→ (π′, aux′) : Given update key upk, new instance
x′, new witness w′, the previous proof π for instance x and witness w and
auxiliary information aux, outputs a new proof π′ for x′ and w′, and new
auxiliary information aux′.

– V(vk,x, π) → 0/1 : Given verification key vk, instance x, and a proof π,
outputs accept or reject.

A dynamic zk-SNARK DS should have polylog-sized proofs and satisfy the fol-
lowing properties.

– Updatability: We say that DS satisfies updatability if there is a function
f(|x| + |w|) = o(|x| + |w|) such that algorithm U(upk,x′,w′,x,w, π, aux)
runs in time O(k · f(|x|+ |w|)), where k is the Hamming distance of vectors
x||w and x′||w′.4

– Completeness: Let (pk, upk, vk) ← G(1λ, i). We say that DS satisfies com-
pleteness if for any i, for any (x0,w0) ∈ i, . . . , (xℓ,wℓ) ∈ i, if (π0, aux0)←
P(pk,x0,w0) and, (πi+1, auxi+1) ← U(upk,xi+1,wi+1,xi,wi, πi, auxi), for
i = 0, . . . , ℓ− 1, then V (vk,xℓ, πℓ)→ 1.

– Knowledge Soundness: We say that DS satisfies knowledge soundness if for
any PPT adversary A and for any i there exists a PPT extractor EA such

4 Note that for k = o (T (P)/f(|x|+ |w|)), where T (P) is the prover’s runtime, this is
o(T (P)), as desired. Besides, for simplicity of notation, we write x′,w′,x,w as ex-
plicit inputs of U but, in practice, it suffices to receive the old and new instance/wit-
ness elements at the k modified positions.



Dynamic zk-SNARKs 9

that

Pr

(pk, upk, vk)← G(1
λ, i); ((x, π);w)← (A||EA)(pk, upk, vk)

:

V(vk,x, π)→ 1 ∧ (x,w) /∈ R


is negligible.

– Zero Knowledge: Fix any i and (x0,w0) ∈ i, . . . , (xℓ,wℓ) ∈ i for some poly-
nomially bounded ℓ. Let D be the distribution of (π0, . . . , πℓ) as output by the
experiment below.
1. (pk, upk, vk)← G(1λ, i).
2. (π0, aux0)← P(pk,x0,w0).
3. (πi+1, auxi+1)← U(upk,xi+1,wi+1,xi,wi, πi, auxi), for i = 0, . . . , ℓ− 1.

We say that DS satisfies zero-knowledge if there exists a PPT simulator S
such that the distribution D̃ of (π̃0, . . . , π̃ℓ) output by the following experiment
is computationally-indistinguishable from D.
1. (t, pk, upk, vk)← S(1λ, i).
2. (π̃0, . . . , π̃ℓ)← S(t, pk, upk, vk,x0, . . . ,xℓ).

The zero-knowledge definition naturally extends to statistical / perfect zero-
knowledge.

3.1 Dynamic zk-SNARKs from recursive zk-SNARKs

We now provide a dynamic zk-SNARK scheme that satisfies our definition
and uses a recursive SNARK as a black box. Our construction is similar to the
recent scheme of Nguyen et al. [16] that builds a highly parallelizable SNARK
from Proof-Carrying-Data (PCD), with necessary modifications to make it up-
datable (See below for an explanation of differences.) Suppose now S is a zk-
SNARK protocol that we will use as a black box. Recall that S has the following
interface:

– S.G(1λ, i)→ (pk, vk). The circuit-specific setup algorithm.
– S.P(pk,x,w)→ π. The prover algorithm.
– S.V(vk,x, π)→ 0/1. The verifier algorithm.

At a high level, our protocol for i = [n, n0, σ] works as follows. Consider a
binary tree with n leaves, where each leaf i is a small circuit Ci verifying the
integrity of one addition gate and one multiplication gate, and each internal
node is a small circuit D verifying the proofs of its children. (This is where a
recursive SNARK is needed.) In particular, for every leaf i, its circuit checks
if the gate constraints hold for the i-the addition and multiplication gates. In
order to ensure that each leaf circuit i verifies the correct indices from z, we
hard-code the 6 indices σ(jn + i) for j ∈ [0, 5] in it, i.e., our construction has
a circuit-specific setup phase.5 Likewise, for internal nodes, we hard-code the
specific (vkL, vkR) keys corresponding to its children node circuits.
5 It is possible to avoid this by committing to the permutation cycles and correspond-

ing indices in a separate step and then providing them as input to a “generic” leaf
circuit, together with their proofs of opening, as in [16]. Our current design choice
allows us to simplify the presentation.
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- Public Input: hi

- Witness: (mj)j∈[0,5]

- Computation:
1. Check m0 +m1 = m2, m3 ·m4 = m5.
2. Check hi =

∏
j∈[0,5]

H(mj ,jn+i)

H(mj ,σ(jn+i))
. Note that the values of σ(jn + i) are

hard-coded into Ci.
3. Return true.

Fig. 1. The leaf circuit Ci.

The above check guarantees that the input values in each circuit satisfy the
gate constraints. We also need to ensure that collectively the values of z that
the prover used satisfy the copy constraints, which may need to span checking
across different circuits Ci. For this, we use an incremental multiplicative hash
function [9] to calculate the product

hi =
∏

j∈[0,5]

H(mj , jn+ i)

H(mj , σ(jn+ i))
(1)

for each circuit, where H is a random oracle. Subsequently, each internal circuit D
first recursively verifies the two proofs of its children nodes, and then it calculates
the product of their hash values. It is easy to see that at the root of the recursion
tree the produced hash hroot satisfies

hroot ·
∏

i∈[n0]

H(x[i], 6n+ i)

H(x[i], σ[6n+ i])
= 1 (2)

if the input values satisfy the copy constraints. The leaf circuit Ci is shown in
Figure 1 and the internal circuit D is shown in Figure 2. Note that, to preserve
zero-knowledge and avoid revealing the partial product term hl · hr, the root
node takes as public statement the product over the hash values of the public
inputs and checks the result of the multiplication is 1.
Updates. Updates of values are handled in a straightforward manner. Each
change to an input circuit value corresponds to changes to a set of wire values.
For each wire j that is updated, all proofs for the respective leaf circuits that
are affected and their ancestor nodes must be recomputed, together with their
hi values, leading to O(log n) time. We present our final protocol in Figure 3.

Theorem 1. The protocol of Figure 3 achieves the following complexities.

1. G runs in O(n) time, outputs pk and upk of O(n) size and vk of O(n0) size;
2. P runs in O(n) time and outputs a proof π of O(1) size;
3. U runs in O(k log n) time, where k is the Hamming distance of w||x and

w′||x′.
4. V runs in O(n0) time.
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- Public Input: h
- Witness: πL, πR, hL, hR

- Computation:
1. Check S.V(vkL, hL, πL) and S.V(vkR, hR, πR). Note that specific vkL and

vkR keys are hard-coded for each D.
2. if D is the root node, check h · hL · hR = 1. Else, check hL · hR = h.
3. Return true.

Fig. 2. The internal circuit D with hard-coded vkL, vkR .

– G(1λ, [n, n0, σ])→ (pk, upk, vk) :
- For each leaf node i = 1, . . . , n, run

(pkCi
, vkCi)← S.G(1λ, Ci) .

- For each internal node D, run

(pkD, vkD)← S.G(1λ,D) .

- Set pk = upk = ({(pkCi
, vkCi)}i∈[n], {(pkD, vkD)}D).

- Set vk = (vkroot, vkσ = {[σ(6n+ i)]}i∈[n0]).

– P(pk,x,w)→ (π, aux):
- For i = 1, . . . , n, compute hi as in Equation 1.
- Compute hpub as in Equation 2.
- For all leaves i = 1, . . . , n, πCi ← S.P(pkCi

, hi, (w[jn+ i])j∈[0,5]).
- For all internal nodes D, πD ← S.P(pkD, hL · hR, (πL, πR, hL, hR)).
- For the root, πroot ← S.P(pkD, hpub, (πL, πR, hL, hR)).
- Output π = πroot. Include all proofs and hpub in aux.

– U(upk,x′,w′,x,w, π, aux)→ (π′, aux′):
- Determine the set of affected values due to the update from w||x to w′||x′.
- Update corresponding hi, and πCi , πD from leaf to root.
- Update related terms in π and aux to π′ and aux′.

– V(vk,x, π)→ 0/1:
- Compute hpub as in Equation 2.
- Check S.V(vkroot, hpub, πroot).

Fig. 3. Our dynamic zk-SNARKs from recursive zk-SNARKs.

Proof. Clearly, the performance of our dynamic zk-SNARK depends on the
choice of the underlying zk-SNARK. Assuming that, for a circuit C the zk-
SNARK S has O(|C|) setup time, O(|C|) prover time, and verification time and
proof size poly-logarithmic in the size of C, we can state the following. The run-
time of G and P is O(n) as each of the circuits in our recursion is of constant size.
The verification time and proof size after recursion are O(n0) and O(1), respec-
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tively. Finally, for each affected recursion tree leaf after an update, computing
the new proofs along the recursion tree path takes time O(log n), including the
time to compute the new hi values. If k is the Hamming distance between w;x
and w′;x′, then this takes time O(k log n) for all affected leafs. Note that, if
necessary, the new hpub can be computed via O(k) field operations. ⊓⊔

Heuristic security of our construction. Since our protocol requires instan-
tiating the hash function H that models a random oracle inside the evaluated
circuits, we can only heuristically argue about its security as follows. (We note
that this a common issue of several prior works on efficient recursive proof com-
position, e.g. [8,14,16]). Knowledge soundness follows from the same property
of the underlying zk-SNARK. Given πroot, we can recursively extract accepting
witnesses for each of the D nodes and eventually the Ci leaf nodes. This ensures
the extracted witnesses form a [6n + n0] size array that satisfies the gate con-
straints. Modeling H as a random oracle, the probability the extracted witnesses
contain differing pre-images for the same index i, including the [n0] input indices
evaluated by the verifier, is negligible. Otherwise, the extracted witnesses array
also satisfies the copy constraints, hence (x,w) ∈ iC . Zero-knowledge is derived
by the zero-knowledge of the underlying zk-SNARK, since the only information
received by the verifier is πroot which can be independently simulated after each
update.

Similarities with Mangrove [16]. We note that a similar approach was used
in [16] to build scalable and parallelizable zk-SNARKs. As in our protocol, they
also use an incremental hash function to parallelize checking the copy constraints.
For efficiency purposes, they choose to instantiate their H as a universal hash
function but to make their protocol secure its parameters must be chosen after
the witness has been committed, e.g., via a Merkle tree. (This step can then be
made non-interactive via the Fiat-Shamir heuristic.) Subsequently, all circuits Ci
need to verify the providedw entries with respect to the Merkle root. Considering
our goal of building dynamic zk-SNARKs, committing to the witness vector w
introduces an important issue to updatability. Each change to w changes the
Merkle tree root, hence, the Merkle proofs for all n circuits Ci have to be re-
computed, making updates as costly as running the original prover. Instead, our
adopted approach avoids this, at the cost of embedding costly hash computations
in each leaf circuit.

4 Dynamo: A new dynamic permutation SNARK

Our first step towards building a general dynamic zk-SNARK (i.e., for iC)
without using recursive zk-SNARKs is to build a recursion-free dynamic per-
mutation argument for iP = [m,σ]. Indeed, in this section we present Dynamo,
a new zero-knowledge dynamic permutation argument for iP = [m,σ]. Dynamo
has optimal asymptotic complexities: Its proof size is O(1) and its update com-
plexity is O(k), where k is the Hamming distance between two valid neighboring



Dynamic zk-SNARKs 13

witness vectors z and z′, i.e., two vectors z and z′ satisfying z[i] = z[σ[i]] and
z′[i] = z′[σ[i]] for i = 1, . . . ,m, for fixed σ.

To the best of our knowledge, Dynamo is the first permutation argument that
is dynamic—all other permutation arguments (e.g., the one used in Plonk [11])
require at least linear time to handle a small update in the witness. The reason
for that is mostly due to the use of Fiat-Shamir, where the randomness used
depends on all the entries of the witness vector, yielding proofs that cannot be
efficiently updated.
Our starting point: Permutation polynomial. Given a permutation σ of
size m and a vector z of size m, one can define a permutation polynomial s(Y )
over a finite field F as

s(Y ) =
∑
i∈[m]

(z[i]− z[σ[i]]) · Y i.

Note that s(Y ), by a simple change of variable, can also be written as

s(Y ) =
∑
i∈[m]

z[i] ·
(
Y i − Y σ−1[i]

)
=

∑
i∈[m]

z[i] · y[i] ,

where, for ease of notation, we write

y[i] =
(
Y i − Y σ−1[i]

)
.

It is easy to see that (∅, z) ∈ iP = [m,σ] if and only if s(Y ) = 0 for all Y . We
build our permutation argument on this idea: In particular, we have a prover
commit to a vector z and provide a proof that, for a given σ, s(Y ) is the zero
polynomial.
Computing the proof. To compute the proof, the prover will commit to two
polynomials, z(X) and bivariate v(X,Y ), using Lagrange interpolation and KZG
commitments. In particular z(X) encodes the z elements (z(ωi) = z[i] for all
i = 1, . . . ,m), i.e.,

z(X) =
∑
i∈[m]

Li(X) · z[i] (3)

and v(X,Y ) encodes z[i] · y[i] (v(ωi, Y ) = z[i]y[i] for all i = 1, . . . ,m), i.e.,

v(X,Y ) =
∑
i∈[m]

Li(X) · z[i] · y[i] . (4)

The input of the verifier is an honestly-computed commitment to a bivariate
polynomial u(X,Y ) that encodes the permutation σ in a natural manner, i.e.,

u(X,Y ) =
∑
i∈[m]

Li(X) · y[i] . (5)

Now to prove that the commitments to the polynomials z(X), v(X,Y ) and
u(X,Y ) satisfy s(Y ) = 0 the prover must provide two additional proofs (in
addition to the commitment of z and v) as we detail in the following.
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Zero-check. First the prover must prove that for all i = 1, . . . ,m it is v(ωi, Y ) =
u(ωi, Y )·z(ωi). This is a standard zero-check (as in Plonk [11]) for the polynomial
v(X,Y )− u(X,Y ) · z(X) on the set (Ω, Y ), where Ω = {ω, . . . , ωm}. The proof
for that is a KZG commitment to the quotient polynomial

α(X,Y ) =
v(X,Y )− u(X,Y ) · z(X)

Xm − 1
. (6)

Sum-check. Finally, the prover will have to provide a proof that∑
i∈[m]

v(ωi, Y ) = 0 .

Here we cannot use existing techniques from Plonk [11] since, as we mentioned,
we must avoid Fiat-Shamir. The main idea is to have the prover commit to a
“prefix polynomial” p(X,Y ) such that its evaluation at (ωi, Y ) equals the sum
of the first i terms of the above sum, i.e.,

p(X,Y ) =
∑
i∈[m]

Li(X)

i∑
j=1

v(ωj , Y ) . (7)

Now it is enough to have the prover prove that (i) p(ω, Y ) = v(ω, Y ) (first
term equality); (ii) p(ωm, Y ) = 0 (sum-check correctness); (iii) and the following
“prefix recursion”

p(ωi, Y ) = p(ωi−1, Y ) + v(ωi, Y ) for all i = 2, . . . ,m . (8)

The first two relations are straightforward to prove using a standard KZG evalu-
ation proof: For (i), the proof is a KZG commitment to the quotient polynomial

β(X,Y ) =
p(X,Y )− v(X,Y )

X − ω
(9)

and for (ii), the proof is a KZG commitment to the quotient polynomial

γ(X,Y ) =
p(X,Y )

X − 1
. (10)

Computing a proof for prefix recursion is more involved, and we describe it next.
A proof system for prefix recursion. For Eq. (8) prefix recursion, the prover
provides commitments to polynomials p(X,Y ) and

t(X,Y ) = p(X · ω−1, Y ) (11)

as well as v(X,Y ) and must also provide a proof that these commitments satisfy
Equation 8. Note that as long as t(X,Y ) = p(X · ω−1, Y ), prefix recursion
is reduced to a simple zero-check of p(X,Y ) − t(X,Y ) − v(X,Y ) on the set
{(ω2, Y ), . . . , (ωm, Y )}. However it is easy to see that

p(X,Y )− t(X,Y )− v(X,Y )
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Table 2. The 15 polynomial commitments contained in the Dynamo proof.

Commitments z(X) v(X,Y ) p(X,Y ) t(X,Y ) g(W,Y )
Eq. (3) Eq. (4) Eq. (7) Eq. (11) Eq. (12)

Variable Checks Z(X,W, Y ) V (X,W, Y ) P (X,W, Y ) T (X,W, Y ) G(X,W, Y )

Quotients α(X,Y ) β(X,Y ) γ(X,Y ) δ(X,W, Y ) ε(X,W, Y )
Eq. (6) Eq. (9) Eq. (10) Eq. (13) Eq. (14)

is identically 0, and therefore there is no need to provide a quotient polynomial—
but the verifier will still need to check that this is the case.

So the fundamental problem remaining to solve is to design a proof system
for “polynomial displacement”: Given two commitments to polynomials p(X,Y )
and t(X,Y ) how can we prove that t(X,Y ) = p(X · ω−1, Y )?
A proof system for polynomial displacement. Using ideas from Plonk [11]
we can solve polynomial displacement with Fiat-Shamir: For random r, KZG-
evaluate p(X,Y ) at (α · r, Y ) and t(X,Y ) at (r, Y ), and check whether the eval-
uations are the same. Since we cannot use Fiat-Shamir, we follow a different
approach. We will use an additional variable W . The prover, along with commit-
ments to p(X,Y ) and t(X,Y ), it provides a commitment to another polynomial

g(W,Y ) = p(W,Y ) . (12)

To check that the two commitments p(X,Y ) and g(W,Y ) refer to the same
polynomial, the prover provides a commitment to the quotient polynomial

δ(X,W, Y ) =
p(X,Y )− g(W,Y )

X −W
. (13)

The final check is to ensure that the evaluation of g(W,Y ) at point X · ω−1 is
equal to t(X,Y ). This is easy to do by providing a commitment to the following

ε(X,W, Y ) =
g(W,Y )− t(X,Y )

W −X · ω−1
. (14)

Final variable check. The final thing that the prover must do is variable
checks for the polynomials z(X), v(X,Y ), p(X,Y ), t(X,Y ) and g(W,Y ) as de-
scribed in Appendix C. Let Z(X,W, Y ), V (X,W, Y ), P (X,W, Y ), T (X,W, Y )
and G(X,W, Y ) be the polynomials committed for that purpose. For example,
Z(X,W, Y ) = z(X) ·Y m ·Wm. The other commitments are computed similarly.
Summary. The final Dynamo proof for iP = [m,σ] consists of 15 group elements
that are KZG commitments of 5 committed polynomials, 5 variable checks and
5 committed quotient polynomials—see Table 2.
Computing and updating the proof. There are closed formulas for all poly-
nomials of Table 2. In particular, we have the following theorem, whose proof
can be found in Appendix D.
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– G(1λ, [m,σ])→ (pk, upk, vk) :
- ppbl ← Gbl(1λ);
- Let F = {z, v, p, t, g, Z, V, P, T,G, α, β, γ, δ, ε} be the set of polynomials

from Theorem 2.
- Pick random a, b, c from F for variables X, Y and W respectively.
- Set pk = upk to contain the following KZG commitments, defined in The-

orem 2, and computed using a, b and c directly

{[f1], . . . , [fm]}f∈F .

- Set vk = {[u(X,Y )], [X], [W ], [Xm], [Y mWm], [Wm]} (u is from Eq. (5)).

– P(pk,x,w)→ (π, aux):
- Parse x as ∅ and w as z[1], . . . , z[m].
- Following Theorem 2, output |F| = 15 KZG commitments as π and aux,

i.e., for all f ∈ F output

[f ] =
∏

i∈[m]

[fi]
z[i] .

– U(upk,x′,w′,x,w, π, aux)→ (π′, aux′):
- Parse w as z and w′ as a new valid witness z′. Parse π and aux as {[f ]}f∈F .
- Let J be the set of locations that z and z′ differ and let {δj}j∈J be the

corresponding deltas. Output as π′ and aux′ the new KZG commitments
{[f ′]}f∈F where

[f ′] = [f ] ·
∏
j∈J

[fj ]
δj .

– V(vk,x, π)→ 0/1:
- Parse vk and π as output by G and P respectively.
- Output 1 if and only if all the following relations hold:

e([v], g) · e([−u], [z]) = e([α], [Xm − 1]).
e([p], g) · e([−v], g) = e([β], [X − ω]).
e([p], g) = e([γ], [X − 1]).
[p] · [−t] · [−v] = 1G.
e([p] · [−g], g) = e([δ], [X −W ]).
e([g] · [−t], g) = e([ε], [W −X · ω−1]).
e([z], [Y mWm]]) = e([Z], g).
e([v], [Wm]]) = e([V ], g).
e([p], [Wm]]) = e([P ], g).
e([t], [Wm]]) = e([T ], g).
e([g], [Xm]]) = e([G], g).

Fig. 4. The Dynamo SNARK.
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Theorem 2. Let F = {z, v, p, t, g, Z, V, P, T,G, α, β, γ, δ, ε} be the set of poly-
nomials from Table 2. Every polynomial f ∈ F from can be expressed as

f =
∑
i∈[m]

fi · z[i] ,

where {f1, . . . , fm} is a fixed set of m polynomials.

We note here that Theorem 2 allows us not only to easily compute the
Dynamo proof (e.g., without any division) but also to update the proof in con-
stant time whenever a value z[i] changes.
Final protocol. Our complete circuit-specific Dynamo protocol is shown in
Figure 4. We summarize our protocol in the following theorem.

Theorem 3 (Dynamo). The protocol of Figure 4 is a dynamic SNARK (per
Definition 2) for iP = [m,σ] assuming q-DLOG (see Assumption 1) in the AGM
model. Its complexities are as follows.

1. G runs in O(m) time, outputs pk and upk of O(m) size and vk of O(1) size;
2. P runs in O(m) time and outputs a proof π of O(1) size;
3. U runs in O(k) time, where k is the Hamming distance of w and w′;
4. V runs in O(1) time.

Proof. Completeness and updatability follow naturally from the construction.
For knowledge soundness, we define the following extractor EA(pk, vk):

1. Run the algebraic adversary (x, π)← A(pk, vk).
2. Parse [z] from π. Note that since A is algebraic, it should also outputs vectors

to show how [z] can be computed from pk. Thus EA can reconstruct z̃(X)
such that [z] = [z̃(X)]. Abort if degY z̃ > 0 or degW z̃ > 0.

3. Output w ∈ Fm where w[i] = z̃(ωi), ∀i ∈ [m].

Since verification accepts, all checks in the V algorithm of Figure 4 pass.
Parse π = {[f ]}f∈F . Since A is algebraic, it should also output vectors to show
how [f ] can be computed from pk, and then we can reconstruct

{f̃(X,W, Y )}f∈F

such that [f ] = [f̃(X,W, Y )]. From the zero-checks and variable checks, we have
the following equations.

ṽ(X,Y )− ũ(X,Y )z̃(X) = α̃(X,Y,W )(Xm − 1) (15a)

p̃(X,Y )− ṽ(X,Y ) = β̃(X,Y,W )(X − ω) (15b)
p̃(X,Y ) = γ̃(X,Y,W )(X − 1) (15c)

p̃(X,Y )− t̃(X,Y )− ṽ(X,Y ) = 0 (15d)

p̃(X,Y )− g̃(W,Y ) = δ̃(X,W, Y )(X −W ) (15e)

g̃(W,Y )− t̃(X,Y ) = ε̃(X,W, Y )(W −X · ω−1) (15f)
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From Eqs. (15e) and (15f), we have

p̃(ωi, Y ) = g̃(ωi, Y )

g̃(ωi−1, Y ) = t̃(ωi, Y )
(16)

By combining Eq. (16) with Eqs. (15b) to (15d), we have

p̃(ω, Y ) = ṽ(ω, Y )

p̃(ωi, Y ) = p̃(ωi−1, Y ) + ṽ(ωi, Y ), i ∈ [2,m]

p̃(1, Y ) = 0

(17)

From Eq. (15a), we have u(ωi, Y )z̃(ωi) = ṽ(ωi, Y ). Therefore,

p̃(1, Y ) =
∑
i∈[m]

ṽ(ωi, Y ) =
∑
i∈[m]

u(ωi, Y )z̃(ωi) =
∑
i∈[m]

y[i]z̃(ωi) = 0 ,

which means the output w of EA should be a valid witness. The complexities
of P,U ,V follow naturally from the protocol. For the runtime of G, since this
algorithm exactly knows the secrets a, b and c, it can compute everything from
scratch in linear time. ⊓⊔

Universal protocol. We note that our protocol can be turned into a universal
protocol, introducing an I algorithm. Unfortunately, in the universal version
of our protocol the time complexity of both G and I is Õ(m2) (This is not
going to be an issue for our final protocol, since as we will see we apply the
permutation argument in buckets.) The proof of the following lemma can be
found in Appendix D.

Lemma 1 (Universal Dynamo). There exists a universal version of Dynamo
whose (i) G algorithm runs in O(m2) time and outputs public parameters of
O(m2) size; (ii) I algorithm runs in O(m2) time and outputs pk of O(m) size
and vk of O(1) size. All other complexities are the same.

Finally note, that by following the ideas from [11,20], we can use random
masks for the polynomials and add zero-knowledge to Dynamo. The proof of the
lemma below can be found in Appendix D.

Lemma 2 (Zero-knowledge Dynamo). There is a zero-knowledge version of
Dynamo with the same complexities.

4.1 Dynamix: A generalization of Dynamo

As we will see in the next section, our final dynamic zk-SNARK protocol
will have to apply the permutation argument on

√
N subvectors of z (each

one containing m =
√
N values of z) and therefore we will be using a slight

generalization of Dynamo which we call Dynamix (We need this generalization
because the overall permutation condition holds for the whole vector z and not



Dynamic zk-SNARKs 19

for subvectors of z.) Recall that Dynamo provided a way for a prover to convince
a verifier that, for a given σ it knows a vector z such that∑

i∈[m]

z[i] · (Y i − Y σ−1[i]) = 0 .

With Dynamix, we make two changes to the above relation. First, we allow the
exponents of Y to take arbitrary values si ∈ [N ] and ti ∈ [N ] for some N
that potentially is not equal to m. Second, we require that instead of 0, the sum
equals another polynomial h(Y ), whose commitment the prover will provide. We
therefore define the Dynamix relation as iD = [m,N, s, t] (where s = [si]i∈[m],
t = [ti]i∈[m] and si, ti ∈ [N ]) to contain (∅, (z, h)) such that∑

i∈[m]

z[i] · (Y si − Y ti) = h(Y ) . (18)

We can trivially extend Dynamo to Dynamix in the following fashion.

1. Instead of using y[i] = Y i − Y σ−1(i) in KZG commitments [v] (Eq. (4)) and
[u] (Eq. (5)), we use y[i] = Y si − Y ti .

2. Since the right-hand side of the sum-check equation changes from 0 to h(Y ),
the prover must commit to an additional polynomial h(Y ) as defined in
Equation 18. Note that along with [h(Y )], the prover provides a commitment
[H(Y )] for variable check.

3. Since the right-hand side of the sum-check equation changes from 0 to h(Y ),
the quotient polynomial γ(X,Y ) (Eq. (10)) is now computed as

γ(X,Y ) =
p(X,Y )− h(Y )

X − 1
.

4. Note that the polynomial p(X,Y ) − t(X,Y ) − v(X,Y ) is not identically 0
anymore. We will therefore need a zero-check on {(ω2, Y ), . . . , (ωm, Y )}. In
particular, the prover will have to commit to

p(X,Y )− t(X,Y )− v(X,Y )

(Xm − 1)(X − ω)−1
,

which after careful calculation, this is equal to −ω · h(Y )/m—therefore this
part does not require a new commitment since the prover has already com-
mitted to h(Y ).

5. The third pairing equation in V becomes

e([p] · [−h], g) = e([γ], [X − 1]] .

All in all, the Dynamix proof contains 17 group elements, 2 more than the Dynamo
one. We provide the detailed Dynamix protocol in Figure 9 in the Appendix.
Zero-knowledge and universality follow exactly in the same way as in Dynamo.
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Theorem 4 (Dynamix). The protocol of Figure 9 is a dynamic SNARK (per
Definition 2) for iD = [m,N, s, t] assuming q-DLOG (see Assumption 1) in the
AGM model. Its complexities are as follows.

1. G runs in O(min{m logN,N}) time and outputs pk and upk of O(m) size
and vk of O(1) size;

2. P runs in O(m) time and outputs a proof π of O(1) size;
3. U runs in O(k) time, where k is the Hamming distance of w and w′;
4. V runs in O(1) time.

Proof. The proof is almost the same as the proof of Theorem 3. The main differ-
ence is the runtime of G. In particular, in G, we need to calculate {bsi , bti}i∈[m]

where si, ti are bounded by N . We can either compute {bj}j∈[N ] in O(N) time,
or compute each bsi , bti in O(logN) time through a fast exponentiation trick for
every i ∈ [m]. ⊓⊔

Lemma 3 (Universal Dynamix). There exists a universal version of Dynamix
whose (i) G algorithm runs in O(m ·min{m logN,N}) time and outputs public
parameters of O(m2) size; (ii) I algorithm runs in O(m2) time and outputs pk
and upk of O(m) size and vk of O(1) size. All other complexities are the same.

The proof of Lemma 3 is a combination of proof of Lemma 1 and proof of
Theorem 4. Finally, by following the same zk-masking techniques as in Dynamo,
we have the following.

Lemma 4 (Zero-knowledge Dynamix). There is a zero-knowledge version of
Dynamix with the same complexities.

5 Dynaverse: A dynamic zk-SNARK without recursion

In this section, we present Dynaverse, a general-purpose dynamic zk-SNARK
(i.e., for i = [n, n0, σ]) without recursion. Dynaverse is using the Dynamix SNARK
from Section 4.1. Dynaverse is a circuit-specific dynamic zk-SNARK that has
O(n) setup time, O(k ·

√
n) update time (where k is the Hamming distance be-

tween the statements) and O(log n) proof size. The universal version of Dynaverse
has O(n

√
n) universal setup time and O(n) circuit-setup time. We note here that

Dynaverse’s update algorithm is trivially parallelizable.

Background and problem with Plonk approach. Recall that for any fixed
index iC = [n, n0, σ] describing a circuit C, an instance of public inputs x ∈ Fn0 ,
and a witness w ∈ F6n, we set z = [w;x] ∈ F6n+n0 . We have (x,w) ∈ iC if and
only if the following hold:

– Copy constraint: (∅, z) ∈ iP = [6n+ n0, σ].
– Gate constraint: ∀i ∈ [n], z[i]+z[n+i] = z[2n+i],z[3n+i]·z[4n+i] = z[5n+i].
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Let us focus on updatability of gate constraints and will come back to copy
constraints later. Dynaverse will be using a similar technique with Plonk [11].
Recall that in Plonk, instead of committing to one large vector z, the prover
commits to six vectors of size n (Subvector z7 is of size n0 and contains the
public statement.) In particular one can write z as

[z1 z2 z3 z4 z5 z6 z7],

where z1 holds the left inputs of all addition gates, z2 holds the right inputs of all
addition gates, z3 holds the outputs of all addition gates, z4 holds the left inputs
of all multiplication gates, z5 holds the right inputs of all multiplication gates,
and z6 holds the outputs of all multiplication gates. Let zt(X) (for t = 1, . . . , 6)
be the Lagrange polynomials that the prover uses to commit to those subvectors
(We use φ to denote the n-th root of unity used in those Lagrange polynomials.)

Clearly, to prove that the committed polynomials zt(X) satisfy the gate
constraints we need to prove that

z1(X) + z2(X) = z3(X) for all X = φ, . . . , φn ,

z4(X) · z5(X) = z6(X) for all X = φ, . . . , φn .

Note that the addition contraint is easy to check due to the fact that [zt(X)]’s
are additively homomorphic and therefore all the verifier has to do is to check
whether [z3(X)] = [z1(X)] · [z2(X)]. Similarly, the prover can update the com-
mitments in constant time when a value changes.

However, the same does not hold for the multiplication constraint. In par-
ticular note that checking the multiplication constraint requires a zero-check for
the polynomial z4(X) · z5(X)− z6(X) on the set Φ = {φ, . . . , φn} which can be
done via a commitment to the quotient polynomial

A(X) =
z4(X) · z5(X)− z6(X)

Xn − 1
.

However, as opposed to the addition constraint, if a single entry of say, z4,
changes, the quotient polynomial A(X) changes completely and must be recom-
puted from scratch. Unfortunately, this takes at least linear time.
Our main technique: Enforcing gate constraints on subvectors. To ad-
dress the linear update time of the multiplication gate constraints update, we
follow a natural approach. We divide each vector zt into the m =

√
n succesive

subvectors zt1, . . . , ztm of m values each. The prover will therefore provide m
polynomial commitments for each vector zt (note that for these commitments
we are using m-th roots of unity), for a total of 6 ·m commitments, i.e., the com-
mitments [zt1(X)], . . . , [ztm(X)] for t = 1, . . . , 6. First, notice that the addition
constraint is handled exactly as before.

For the multiplication constraint, the prover must now provide m commit-
ments to the following quotient polynomials

Ai(X) =
z4i(X) · z5i(X)− z6i(X)

Xm − 1
for i = 1, . . . ,m . (19)
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– G(1λ, [n, n0, σ])→ (pk, upk, vk) :

- ppbl ← Gbl(1λ).
- Set m =

√
n and N = 6n+ n0.

- Pick random a, b, c from F for variables X, Y and W respectively.
- For t = 1, . . . , 6, for i = 1, . . . ,m, call

G′a,b,c,ppbl(1
λ, [m,N, sti, tti])→ (pkti, upkti, vkti) ,

where sti and tti are defined in Equation 20.
- Set pk = {pkti}t,i, upk = {upkti}t,i and vk = {vkti}t,i.

– P(pk,x,w)→ (π, aux):
- Parse x as z7 and w as {zt1, . . . , ztm}t=1,...,6.
- For t = 1, . . . , 6, for i = 1, . . . ,m call P ′(pkti, ∅, zti)→ (πti, auxti).
- For i = 1, . . . ,m, compute the commitments [Ai(X)] as in Equation 19.
- Proof π contains {πti}t,i and {[Ai(X)]}i, and aux contains {auxti}t,i.

– U(upk,x′,w′,x,w, π, aux)→ (π′, aux′):
- Parse (x,w) as z and (x′,w′) as a new valid witness z′.
- Let C be the set of tuples (t, i) that correspond to updated subvectors zti.
- For every (t, i) ∈ C call

U ′(upkti, ∅, z
′
ti, ∅, zti, πti, auxti)→ (π′

ti, aux
′
ti) .

- Let I = {i : (t, i) ∈ C ∧ t ≥ 4}.
- For every i ∈ I recompute [A′

i(X)] as in Equation 19.
- Output the updated proofs {π′

ti} and the updated commitments [A′
i(X)]

as the updated proof π′ and {aux′ti} as aux′.

– V(vk,x, π)→ 0/1:
- Extract from π the commitments [zti(X)] for t = 1, . . . , 6 and i = 1, . . . ,m;
- Check the addition constraints, i.e., that for all i = 1, . . . ,m it is

[z1i(X)] · [z2i(X)] = [z3i(X)] .

- Check the multiplication constraints, i.e., that, for all i = 1, . . . ,m it is

e([z4i(X)], [z5i(X)]) · e([−z6i(X)], g) = e([Ai(X)], [Xm − 1]) .

- Check the Dynamix proofs, i.e., for all t = 1, . . . , 6 and i = 1, . . . ,m it is

V ′(vkti, ∅, πti)→ 1 .

- Parse x as z[6n+ 1 . . . 6n+ n0]. Set hx(Y ) =
∑6n+n0

i=6n+1 z[i](Y
i + Y σ−1(i)).

Check whether [hx(Y )] ·
∏6

t=1

∏m
i=1[hti(Y )] = 1G, where [hti(Y )] is ex-

tracted from the Dynamix proof πti.

Fig. 5. Dynaverse SNARK using Dynamix SNARK (G′,P ′,V ′) as a black box.
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Fig. 6. The Dynaverse dynamic SNARK. The initial 6n-sized witness [z1 . . . z6] is split
into subvectors zij of size m =

√
n, which are KZG-committed to [zij ]. For each

[zij ], we provide a Dynamix proof with respect to the permutation σ. For every [zij ]
participating in multiplications (i = 4, 5, 6) we provide commitments to the quotient
polynomials Ai(X).

Wrapping up: Enforcing copy constraints across subvectors. Note now
that the final thing that the prover must do is to convince the verifier that

[zt1(X)], . . . , [ztm(X)] for t = 1, . . . , 6

are consistent with σ and [z7(X)]—the commitment of the public input com-
puted by the verifier. To do that, we will do 6 ·m invocations of the Dynamix
protocol from Section 4.1, one for each one of the 6 ·m subvectors. In particular,
for vector zti that covers the m-sized range [x, y] from the original z vector (in
particular x = (t− 1) · n+ (i− 1)m+ 1 and y = x+m− 1), set

sti = [x x+ 1 . . . y] and tti = [σ−1(x) σ−1(x+ 1) . . . σ−1(y)] . (20)

Then the prover will output the proof that is output by a Dynamix argument for
[m,N, sti, tti].
Final proof and verification. The final proof consists of 6 ·m Dynamix proofs
and m commitments to the quotient polynomials from Equation 19. To verify
the final proof the verifier first verifies the Dynamix proofs and the quotient
polynomials Ai. Then the verifier computes a commitment to the h polynomial
corresponding to the public statement, i.e.,

hx(Y ) =

6n+n0∑
i=6n+1

z[i](Y i + Y σ−1(i))
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and checks whether

[hx(Y )] ·
6∏

t=1

m∏
i=1

[hti(Y )] = 1G ,

where [hti] is the commitment to the polynomial h corresponding to the Dynamix
proof for the zti vector. A pictorial description of Dynaverse is shown in Figure 6.
Our complete protocol is shown in Figure 5.

Theorem 5 (Dynaverse). The protocol of Figure 5 is a dynamic SNARK (per
Definition 2) for iC = [n, n0, σ] assuming q-DLOG (see Assumption 1) in the
AGM model. Its complexities are as follows.

1. G runs in O(n+n0) time and outputs pk of O(n) size and vk of O(
√
n+n0)

size;
2. P runs in O(n log n) time and outputs a proof π of O(

√
n) size;

3. U runs in O(k
√
n log n) time, where k is the Hamming distance of w,w′;

4. V runs in O(n0 +
√
n) time.

Proof. Completeness and updatability follow naturally from the construction.
For knowledge soundness, we can build an extractor by calling the extractor
of Dynamix to extract the witness which satisfies the copy constraints. The
verification algorithm can also ensure that this extracted witness also satis-
fies the gate constraints. The complexities of P,U and V follow naturally from
the protocol. For the runtime of G, although the runtime of G in Dynamix is
O(min{m logN,N}), we can directly compute {bj}j∈[N ] and let each G′ reuse
these values. Hence, the runtime of G is O(N +m2) = O(n+ n0). ⊓⊔

Lemma 5 (Universal Dynaverse). There is a universal version of Dynaverse
whose (i) G algorithm runs in O(n

√
n) time and outputs public parameters of

O(n
√
n) size; (ii) I algorithm runs in O(n

√
n) time and outputs pk of O(n) size

and vk of O(
√
n+ n0) size. All other complexities are the same.

Lemma 6 (Zero-knowledge Dynaverse). There is a zero-knowledge version
of Dynaverse with the same complexities.

The proof for universal Dynaverse follows the same techniques as before. The
proof for zero-knowledge is presented in Appendix D.
Concretely reducing the Dynaverse proof size. One of the main drawback of
Dynaverse is that the constant in the Õ(

√
n) update time/proof size is too large.

More specifically, we have 6
√
n sub-vectors, and for copy constraints we need to

run Dynamix for each sub-vector. One Dynamix proof contains 17 groups elements
and for one update we need to update all of them. Overall, a Dynaverse proof
contains 17× 6

√
n = 102

√
n groups elements. However, for gate constraints, we

only need
√
n groups elements—[Ai]. To concetely improve the proof size we will

run Dynamix on O(1) number of length-O(n) sub-vectors while still remaining
O(
√
n log n) update time for gate constraints. For that, we need to address the

following problems.
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Fig. 7. The optimized Dynaverse dynamic SNARK. The addition wires are committed
with three commitments [z1], [z2] and [z3] of n-sized vectors. The multiplication wires
are committed in two ways, i.e., first with three commitments [z4], [z5] and [z6] of n-
sized vectors and then with 3m commitments of m-sized vectors, as before. Overall we
reduce the number of Dynamix proofs to six, we maintain the quotients polynomials,
and we provide additional subvector proofs, denoted with “⊆”, to ensure consistency
between [zi] and [zij ] for i = 4, 5, 6.

1. For the universal setup of Dynamix, the runtime of G and I and the size of
pp output by I will go to O(n2).

2. We need to deal with the inconsistency between [z] for Dynamix of length
O(n) and [z] for gate constraints of length O(

√
n).

For the first problem, there is no simple way to avoid that so we decide to
consider only circuit-specific setup for this optimization, and then the runtime of
G for Dynamix is O(n). For the second problem, we need to introduce a natural
trick to show the consistency. See Figure 7. First, we split z into [zi]i∈[1,6] of 6
n-sized vectors. For z1, z2, z3, we are dealing with addition gates, i.e.,

z1[i] + z2[i] = z3[i], ∀i ∈ [n] .

Therefore for z1, z2, z3 we do not require further partition to achieve sublinear
update time.

In order to achieve sublinear update time for z4, z5, z6 (multiplication gates),
we follow the idea in the original Dynaverse to partition them into sub-vectors
of length

√
n. However, we still want to apply the protocol for copy constraints

on the whole vectors z4, z5, z6, so we use two-layer interpolations (same as the
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technique introduced in [25]): In particular, ∀i ∈ {4, 5, 6}, let m =
√
n,

zi(X1, X2) =
∑
j∈[m]

∑
k∈[m]

Lj(X1)Lk(X2)zi[(j − 1)m+ k] ,

zi,j(X2) =
∑
k∈[m]

Lk(X2)zi[(j − 1)m+ k] ,

then the consistency between them can be shown by the following check:

zi(X1, X2) = qi,j(X1, X2)(X1 − ωj) + zi,j(X2) .

Here, we use two variables X1, X2 to avoid super-linear key size increment [25].
Now, we can finally apply a variant of Dynamix with bi-variate polynomials
zi(X1, X2) (and we also need to modify all other polynomials to fit into this bi-
variate setting) to z4, z5, z6 to achieve constant update time on copy constraints,
while maintaining O(

√
n) update time on gate constraints with small constants.

After this optimization, the new proof size will be 4
√
n+O(1) group elements,

which is over 20× smaller than original Dynaverse. Note this optimization will
not improve the asymptotic complexities for Dynaverse (except that the size of
vk will be improved from O(

√
n + n0) to O(n0)) because the update algorithm

and proof size are still lower-bounded by Õ(
√
n) for gate constraints.

Asymptotically reducing the Dynaverse proof size to O(log n). Bünz et
al. [2] introduced IPA proofs for pairings, a way to delegate a pairing equation
with n terms and have it proved with a proof of log n size—see Appendix B.
By using this technique, the Dynaverse proof size and verification time can be
reduced to O(log n). To do that, recall that a Dynaverse verifier must compute
the following equation for every i ∈ [6m]:

e([pi], g) = e([vi], g) · e([βi], [X − ω]) .

If V picks r
$← F, then it only needs to check the following combination:∏

i∈[6m]

e([pi], g
ri−1

) =
∏

i∈[6m]

e([vi], g
ri−1

) ·
∏

i∈[6m]

e([βi], [X − ω]r
i−1

) , (21)

Next, P can compute three products E1, E2, E3 in Eq. (21) and provide proofs
πIPA,1, πIPA,2, πIPA,3 for each product so that V just needs to check the IPA proofs
and whether E1 = E2 · E3. Such methods can be applied to all O(

√
n) simi-

lar equations that V needs to verify. Therefore, finally we can get a variant of
Dynaverse with O(log n) proof size and verification time.

Lemma 7 (Dynaverse with IPA). There exists a variant of Dynaverse whose
proof size and verification time is O(log n). All other complexities are the same.
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6 Evaluation

In this section, we measure the performance of the optimized Dynaverse. We
do not consider the reduction of proof size to O(log n) using IPA because it is
not concretely efficient. Our baseline is the recursive approach from Section 3.1.
Again, recall that the baseline approach cannot be proven formally secure, due to
the fact it requires a random oracle be encoded in the SNARK circuit.
Implementation details. We implement both constructions in Rust (it is not
trivial to adapt the implementation of [16] into a dynamic SNARK in practice)
and use Rayon [19] for parallelism. For our optimized Dynaverse, we use the
BLS12-381 implementation [27] for bilinear pairings. We implement the baseline
using the Plonky2 proof system [23], which is a Goldilocks field based recursive
proof system. However, Dynaverse is based on BLS12-318 elliptic curve which
is slower than Goldilocks field based operations due to the large size of the
prime modulus. This difference in fields negatively affects the performance of
Dynaverse. Previous works have noted that implementing incremental multiset
hashing requires the hash function output to be several thousand bits long [15].
To overcome this limitation, we adopt the elliptic curve-based incremental mul-
tiset hashing approach proposed by Maitin-Shepard et al. [15]. Specifically, we
use the EcGFp5 curve [18], based on the GF(p5) extension of the Goldilocks
field, and apply the Poseidon hash within our circuits.
Hardware. Experiments are executed on an AWS EC2 c7i.48xlarge instance
with Intel Xeon Scalable CPU with 3.2 GHz, 192 cores and 384 GB of RAM.
All the experiments are parallelized and use as many threads as possible.
Experimental setting. Based on our Plonkish arithmetization with index
i = [n, n0, σ] (see Section 2), we run experiments for random circuits with size
parameter n from 218 to 224. More specifically, we first run G and P to get
the initial proof, and then pick a random location of the witness to modify and
update the proof. Although for many valid updates in practice, the Hamming
distance between z, z′ ∈ F6n+n0 is usually some k > 1, we find that both pro-
tocols are “almost” fully parallelizable: For a set of k updates, the recursive
approach can start at most k threads at the same time to update the recursive
tree on k paths from leaves to root, while ours can also use k threads, each for
one update. Therefore, to simplify the experimental settings, we only pick one
random location to update and compare the metrics.
Results and comparison. We list the experimental results in Table 3. Our
update time is 10× to 20× faster than the baseline while still keeping the veri-
fication time and proof size relatively small.

– Comparing to the baseline with O(log n) update time, our protocol with
O(
√
n log n) update time is concretely faster because of the small constants

(optimization in Fig. 7) and the inefficiency of SNARK recursion.
– The baseline has much faster verification time because it only needs to go

through the public input and verify a constant-size SNARK proof.
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Table 3. Comparison of one random update between baseline and Dynaverse.

Baseline (Section 3.1) Dynaverse

L = log2 n Update (s) Verify (s) Proof (KiB) Update (s) Verify (s) Proof (KiB)

18 3.82 ≤0.006 129.8 0.15 0.78 96

20 4.53 ≤0.006 129.8 0.18 1.03 192

22 4.63 ≤0.006 129.8 0.24 1.58 384

24 5.09 ≤0.006 129.8 0.38 2.40 768
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A Auxiliary lemmas

Lemma 8. Suppose f(X1, . . . , Xs) ∈ F≤d[X1, . . . , Xs] is a non-zero s-variate
polynomial over variable X1, . . . , Xs such that every variable has degree at most
d (total degree at most sd). Pick r1, . . . , rs

$← F. Then the univariate polynomial
g(X) := f(r1X, . . . , rsX) is zero polynomial with probability at most d/|F|.

Proof. Group the terms of f(X1, . . . , Xs) by the same total degree into the
following form:

f(X1, . . . , Xs) =

sd∑
l=0

∑
(i1,...,is):i1+...+is=l

ai1,...,isX
i1
1 . . . Xis

s .

Then we have

g(X) := f(r1X, . . . , rsX) =

sd∑
l=0

X l
∑

(i1,...,is):i1+...+is=l

ai1,...,isr
i1
1 . . . riss .

Since f(X1, . . . , Xs) is non-zero, we assume ai′1,...,i′s ̸= 0 and let l′ = i′1+ . . .+
i′s. Consider the following multivariate polynomial:

h(X1, . . . , Xs) :=
∑

(i1,...,is):i1+...+is=l′

ai1,...,isX
i1
1 . . . Xis

s .

The number of roots (a1, . . . , as) ∈ Fs of h(X1, . . . , Xs) is at most |F|s−1 · d =
d|F|s−1, thus

Pr
[
h(r1, . . . , rs) = 0

∣∣∣ r1, . . . , rs $← F
]
≤ d|F|s−1

|F|s
=

d

|F|
.

https://github.com/zkcrypto/bls12_381
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Finally, we have

Pr
[
g(X) is zero polynomial

∣∣∣ r1, . . . , rs $← F
]

≤Pr

 ∑
(i1,...,is):i1+...+is=l′

ai1,...,isr
i1
1 . . . riss = 0

∣∣∣∣∣∣ r1, . . . , rs $← F


=Pr

[
h(r1, . . . , rs) = 0

∣∣∣ r1, . . . , rs $← F
]
≤ d

|F|
.

⊓⊔
The following lemma is Lemma 1 from [20] that is helpful to prove the zero-

knowledge property. We refer to [20] to see its formal proof.
Lemma 9 ([20]). Let S ⊂ F and ZS(X) :=

∏
a∈S(X−a). Fix a polynomial f ∈

F[X] and any distinct values x1, . . . , xk ∈ F \ S. Then the following distribution
is uniform in Fk:
1. Choose a random polynomial ρ← F(≤k−1)[X] of degree k − 1 and define

f̃(X) := f(X) + ZS(X)ρ(X) .

2. Output (f̃(x1), . . . , f̃(xk)) ∈ Fk.

B Inner Product Arguments

Bünz et al. [2] give a non-interactive IPA which allows a prover to show that
for r ∈ F (r could be 1F) and EA, EB , Er ∈ GT , they know (A,B) ∈ Gm

1 ×Gm
2

such that EA, EB are pairing commitments to A,B, and Er is the inner pairing
product with respect to r = [r2(i−1)]i∈[m]:

Er = ⟨Ar,B⟩ =
∏

i∈[m]

e(A[i]r
2(i−1)

,B[i]) .

More specifically, it is an argument for the following relation:

Rm
IPA =





x = (gβ ∈ G1, h
α ∈ G2, r ∈ F,

EA, EB , Er ∈ GT ),

w = (r = [r2(i−1)]i∈[m],A ∈ Gm
1 ,

B ∈ Gm
2 ,vA = [hβ2(i−1)

]i∈[m],

vB = [gα
2(i−1)

]i∈[m]))


:

g
$← G1, h

$← G2,

α, β
$← F

∧ EA = ⟨A,vA⟩
∧ EB = ⟨vB,B⟩
∧ Er = ⟨Ar,B⟩


We give an abstraction for their non-interactive argument for Rm

IPA:

– GIPA(1λ,m) → (pk, vk) : Outputs pk = ([gα
i

]i∈[0,2m−2], [h
βi

]i∈[0,2m−2]) and
vk = (gβ , hα).

– PIPA(pk,xIPA,wIPA)→ π : Outputs a proof π that (xIPA,wIPA) ∈ Rm
IPA.

– VIPA(vk,xIPA, π)→ 0/1 : Verifies the proof π that (xIPA,wIPA) ∈ Rm
IPA.

PIPA takes O(m) time, VIPA takes O(logm) time (using the optimization in
Section 5 of [2]), and the proof size is |π| = O(logm).
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C Algebraic Group Model

Pairings for polynomial check. In our protocols, we may need to check the fol-
lowing is a zero polynomial∑

i∈[t]

f1,i(X1, . . . , Xs) · f2,i(X1, . . . , Xs) ≡ 0 (Polynomial check)

for polynomials f1,i, f2,i (i ∈ [t]) over variables X1, . . . , Xs. Instead of sending
the whole polynomials to the verifier, the prover computes

[f1,i(X1, . . . , Xs)], [f2,i(X1, . . . , Xs)],∀i ∈ [t]

so that the verifier checks if∏
i∈[t]

e([f1,i(X1, . . . , Xs)], [f2,i(X1, . . . , Xs)]) = 1 (Pairing check)

The following lemma states that it suffices to use pairing checks instead of poly-
nomial checks.

Lemma 10. For any PPT algebraic adversary A, given ppbl ← Gbl(1λ) and
L = {ghi(α1,...,αs)}h as the initial list (hi(X1, . . . , Xs) are some pre-defined public
polynomials), the following probability is negligible under q-DLOG assumption:

Pr


Cl,i = [fl,i(X1, . . . , Xs)], ∀i ∈ [t], l ∈ {1, 2}

∧
∑
i∈[t]

f1,i(X1, . . . , Xs) · f2,i(X1, . . . , Xs) ̸≡ 0

∧
∏
i∈[t]

e(C1,i, C2,i) = 1

:
{Cl,i}i∈[t],l∈{1,2}

← A(ppbl,L)


Proof. Suppose A is an adversary as described in the lemma statement. Here,
we construct another adversary A∗ for q-DLOG assumption:

A∗(ppbl, (g, g
τ , . . . , gτ

q

)) :

1. Pick r1, . . . , rs
$← F. Let α1 := r1τ, . . . , αs := rsτ . Compute

L =
{
ghi(α1,...,αs) = ghi(r1τ,...,rsτ)

}
h

and sends ppbl and L to A.
2. Receive {Cl,i}i∈[t],l∈{1,2} fromA. Note that sinceA is algebraic,A should

also outputs vectors to show how each group element in (C1,i, C2,i)i∈[t]

can be computed from L. Thus A∗ can reconstruct fl,i(X1, . . . , Xs) such
that

Cl,i = [fl,i(X1, . . . , Xs)], ∀i ∈ [t], l ∈ {1, 2}.
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3. If the following holds:∑
i∈[t]

f1,i(X1, . . . , Xs) · f2,i(X1, . . . , Xs) ̸≡ 0 ∧

∏
i∈[t]

e([f1,i(X1, . . . , Xs)], [f2,i(X1, . . . , Xs)]) = 1 ,

thenA∗ knows that
∑

i∈[t] f1,i(X1, . . . , Xs)·f2,i(X1, . . . , Xs) is a non-zero
polynomial which evaluates 0 on (α1, . . . , αs). According to Lemma 8,
g(X) :=

∑
i∈[t] f1,i(r1X, . . . , rsX) · f2,i(r1X, . . . , rsX) is a zero poly-

nomial with probability at most d/|F| (d the maximum degree of any
variable in

∑
i∈[t] f1,i(X1, . . . , Xs) ·f2,i(X1, . . . , Xs)), which is negligible.

Factor g(X) and output the root τ .

Therefore, if A can success with non-negligible probability, then A∗ can also
break q-DLOG with non-negligible probability. ⊓⊔

Variable check. Suppose for pp = {ghi(α1,...,αs)}h, d1, . . . , ds are the maximum
degree of X1, . . . , Xs among hi(X1, . . . , Xs), i.e.,

di = max
i

degXi
hi(X1, . . . , Xs), for i ∈ [s]

If we want to check that a polynomial f(X1, . . . , Xs) is only over variables
X2, X3, . . . , Xs without X1, i.e., degX1

f(X1, . . . , Xs) = 0, then the prover can
computes [f(X1, . . . , Xs)] and [f(X1, . . . , Xs)X

d1
1 ] so that the verifier can check

if

e([f(X1, . . . , Xs)], [X
d1
1 ]) = e([f(X1, . . . , Xs)X

d1
1 ], g) (Variable check)

Similarly, we can check the following to ensure f has no variable X1, X3:

e([f(X1, . . . , Xs)], [X
d1
1 Xd3

3 ]) = e([f(X1, . . . , Xs)X
d1
1 Xd3

3 ], g)

The following lemma states that it suffices to use variable checks to ensure some
f is not a polynomial over some variable(s).

Lemma 11. For any PPT algebraic adversary A, given ppbl ← Gbl(1λ) and
L = {ghi(α1,...,αs)

l }h as the initial list (hi(X1, . . . , Xs) are pre-defined public
polynomials) where d1, . . . , ds are the maximum degree of X1, . . . , Xs among
hi(X1, . . . , Xs), the following probability is negligible under q-DLOG assump-
tion:

Pr

 C = [f(X1, . . . , Xs)], C
′ = [f ′(X1, . . . , Xs)]

∧degX1
f(X1, . . . , Xs) > 0

∧e([C, [Xd1
1 ]2) = e(C ′, g2)

: (C,C ′)← A(ppbl,L)


Similar results apply for other variable(s).
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Proof. We only consider the case for l = 1 and variable X1. Suppose A is an
adversary as described in the lemma statement. Here, we construct another
adversary A∗ for q-DLOG assumption:

A∗(ppbl, (g1, g
τ
1 , . . . , g

τq

1 ), (g2, g
τ
2 , . . . , g

τq

2 )) :

1. Pick r1, . . . , rs
$← F. Let α1 := r1τ, . . . , αs := rsτ . Compute

L =
{
g
hl,i(α1,...,αs)
l = g

hl,i(r1τ,...,rsτ)
l

}
l∈{1,2},h

and sends ppbl and L to A.
2. Receive (C,C ′) from A. Note that since A is algebraic, A should also

outputs vectors to show how (C,C ′) can be computed from L. Thus A∗

can reconstruct f(X1, . . . , Xs), f
′(X1, . . . , Xs) such that

C = [f(X1, . . . , Xs)], C
′ = [f ′(X1, . . . , Xs)].

Note that degX1
f(X1, . . . , Xs) ≤ d1, degX1

f ′(X1, . . . , Xs) ≤ d1.
3. If the following holds:

degX1
f(X1, . . . , Xs) > 0

∧ e([f(X1, . . . , Xs)], [X
d1
1 ]) = e([f ′(X1, . . . , Xs)], g) ,

then A∗ knows that f(X1, . . . , Xs) ·Xd1
1 − f ′(X1, . . . , Xs) is a non-zero

polynomial which evaluates 0 on (α1, . . . , αs). According to Lemma 8,
the polynomial g(X) := f(r1X, . . . , rsX) · (r1X)d1 − f ′(r1X, . . . , rsX)
is a zero polynomial with probability at most d/|F| (d the maximum
degree of any variable in f(X1, . . . , Xs) ·Xd1

1 − f ′(X1, . . . , Xs)), which is
negligible. Factor g(X) and output the root τ .

Therefore, if A can success with non-negligible probability, then A∗ can also
break q-DLOG with non-negligible probability. ⊓⊔

D Other proofs

D.1 Proof of Theorem 2.

Proof. All the above fi can be directly calculated from the definition of f . In
particular,

– zi(X) = Li(X);
– vi(X,Y ) = y[i]Li(X);
– pi(X,Y ) = y[i]

∑m
j=i Lj(X);

– ti(X,Y ) = y[i]
∑m

j=i Lj(X · ω−1);
– gi(W,Y ) = y[i]

∑m
j=i Lj(W );

– Zi(X,W, Y ) = Y m ·Wm · Li(X);
– Vi(X,W, Y ) = Wm · y[i]Li(X);
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– Pi(X,W, Y ) = Wm · y[i]
∑m

j=i Lj(X);
– Ti(X,W, Y ) = Wm · y[i]

∑m
j=i Lj(X · ω−1);

– Gi(X,W, Y ) = Xm · y[i]
∑m

j=i Lj(W );
– αi(X,Y ) = Li(X)(y[i]−u(X,Y ))

Xm−1 ;

– βi(X,Y ) = y[i] ·
∑m

j=i+1 Lj(X)

X−ω ;

– γi(X,Y ) = y[i] ·
∑m−1

j=i Lj(X)

X−1 ;
– δi(X,W, Y ) = y[i] ·

∑m
j=i

Lj(X)−Lj(W )
X−W ;

– εi(X,W, Y ) = y[i] ·
∑m

j=i
Lj(W )−Lj(X·ω−1)

W−X·ω−1 .
⊓⊔

D.2 Proof of Lemma 1

We present the universal protocol in Fig. 8. We only need to show the com-
plexity of G and I here (all other parts are the same as the proof of the circuit-
specific version). For the runtime of G, since this algorithm exactly knows the
secrets a, b, c, it can computes everything from scratch in O(m2) time. For the
runtime of I, let us take a look at every f ∈ F :

– [zi], [vi], [pi], [gi]. Directly extracted/computed from pp in O(m2) time.
– [ti(X,Y )] = [y[i]

∑m
j=i Lj(X · ω−1)]. Similar to [pi]. Note that

Lj(X · ω−1) =
ωj((X · ω−1)m − 1)

m(X · ω−1 − ωj)
=

ωj+1(Xm − 1)

m(X − ωj+1)
= Lj+1(X) .

– [Zi], [Vi], [Pi], [Ti], [Gi] are similar to [zi], [vi], [pi], [ti], [gi].

– [αi(X,Y )] = [Li(X)(y[i]−u(X,Y ))
Xm−1 ]. Expand this polynomial,

Li(X)(y[i]− u(X,Y ))

Xm − 1

=
∑

j∈[m]\i

y[j](ωjLi(X)− ωiLj(X))

m(ωj − ωi)
− ωi(Li(X)− 1)y[i]

m(X − ωi)
,

which can be computed from [Y j Li(X)−1
X−ωi ] and [Y jLi(X)] in O(m2) time.

– γi(X,Y ) = y[i] ·
∑m−1

j=i Lj(X)

X−1 . Note that when i ∈ [m− 1],

Li(X)

X − 1
=

ωi(Xm − 1)

m(X − ωi)(X − 1)
=

Li(X)− ωiL1(X)

ωi − 1
,

then [γi] can be computed from [Y jLi(X)] in O(m2) time.

– βi(X,Y ) = y[i] ·
∑m

j=i+1 Lj(X)

X−ω . Similar to [γi].

– δi(X,W, Y ) = y[i] ·
∑m

j=i
Lj(X)−Lj(W )

X−W . Compute from [Y j Li(X)−Li(W )
X−W ] in

O(m2) time.

– εi(X,W, Y ) = y[i] ·
∑m

j=i
Lj(W )−Lj(X·ω−1)

W−X·ω−1 . Similar to [δi].
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– G(1λ,m)→ (pp) :
- ppbl ← Gbl(1λ);
- Pick random a, b, c from F for variables X, Y and W respectively. Let
c′ = c · ω−1.

- Set pp = ppbl and all the following:

{[ai], [aibmcm]}i∈[m] {[aibj ], [aibjcm], [bjci], [ambjci]}i,j∈[m]

{[Li(a)b
j ], [Li(a)b

jcm], [bjLi(c)], [ambjLi(c)]}i∈[m],j∈[0,m]{[
bj

Li(a)− 1

a− ωi

]
,

[
bj

Li(a)− Li(c)

a− c

]
,

[
bj

Li(a)− Li(c
′)

a− c′

]}
i,j∈[m]

– I(pp, [m,σ])→ (pk, upk, vk) :
- Let F = {z, v, p, t, g, Z, V, P, T,G, α, β, γ, δ, ε} be the set of polynomials from

Theorem 2.
- Set pk = upk to contain the following, computed using pp

{[f1], . . . , [fm]}f∈F .

- Set vk = {[u(X,Y )], [X], [W ], [Xm], [Y mWm], [Wm]} (u is from Eq. (5)).

Fig. 8. The universal Dynamo SNARK. P, U , V are the same as Fig. 4.

D.3 Proof of Lemma 2

We introduce how to add zero-knowledge for Dynamo here. Following the idea
of [11,20], we can use random mask polynomials. More specifically, we introduce
masks for z, v, p, t, g:

zzk(X) = z(X) + ρz · (Xm − 1) ,

vzk(X,Y ) = v(X,Y ) + ρv · (Xm − 1) ,

pzk(X,Y ) = p(X,Y ) + (ρ(2)p X2 + ρ(1)p X + ρ(0)p ) · (Xm − 1) ,

tzk(X,Y ) = t(X,Y ) + (ρ(2)p (Xω−1)2 + ρ(1)p (Xω−1) + ρ(0)p ) · (Xm − 1) ,

gzk(W,Y ) = g(W,Y ) + (ρ(2)p W 2 + ρ(1)p W + ρ(0)p ) · (Wm − 1) ,

where the randomness ρz, ρv, ρ
(2)
p , ρ

(1)
p , ρ

(0)
p

$← F should be picked at the begin-
ning of Pzk and U zk.

Based on zzk, vzk, pzk, tzk, gzk, we can naturally derive corresponding Zzk,
V zk, P zk, T zk, Gzk for variable checks. However, for new quotient polynomials
αzk, βzk, γzk, δzk, εzk, we need to carefully calculate their forms. Replace z, v, p, t, g
in Eqs. (6), (9), (10), (13) and (14) with zzk, vzk, pzk, tzk, gzk, we have

– αzk(X,Y ) = α(X,Y ) + ρv − ρzu(X,Y ) ;
– βzk(X,Y ) = β(X,Y ) + ((ρ

(2)
p X2 + ρ

(1)
p X + ρ

(0)
p )− ρv) · X

m−1
X−ω ;
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– γzk(X,Y ) = γ(X,Y ) + (ρ
(2)
p X2 + ρ

(1)
p X + ρ

(0)
p ) · X

m−1
X−1 ;

– δzk(X,W, Y ) = δ(X,W, Y ) + ρ
(2)
p

(Xm+2−Wm+2)−(X2−W 2)
X−W +

ρ
(1)
p (X

m+1−Wm+1

X−W − 1) + ρ
(0)
p

Xm−Wm

X−W ;

– εzk(X,W, Y ) = ε(X,W, Y ) + ρ
(2)
p

(Wm+2−(Xω−1)m+2)−(W 2−(Xω−1)2)
W−Xω−1 +

ρ
(1)
p (W

m+1−(Xω−1)m+1

W−Xω−1 − 1) + ρ
(0)
p

Wm−(Xω−1)m

W−Xω−1 .

Now we can use

F zk = {zzk, vzk, pzk, tzk, gzk, Zzk, V zk, P zk, T zk, Gzk, αzk, βzk, γzk, δzk, εzk}

instead for Dynamo to achieve zero knowledge. We omit the redundant illus-
tration for minor changes in the keys (basically we need O(1) number of new
prover keys to help update the group elements in F zk) and the detailed protocol
of zero-knowledge Dynamo.

We only show here a simulator for Zero-knowledge property:

S(1λ, i)→ (t, pk, upk, vk) :
Follow every step of G(1λ, [m,σ]), and output (t = (a, b, c), pk, upk, vk).

S(t, pk, upk, vk,x0, . . . ,xl)→ (π̃0, . . . , π̃l) :
For every i ∈ [0, l],
(a) For every f ∈ {z, v, p, t, g}, pick τf

$← F and let [̃f zk] = [τf ]. Also
compute the variable-check polynomials for f from (a, b, c).

(b) For every f ∈ {α, β, γ, δ, ε}, compute [̃f zk] as following:

˜[αzk] =

[
τv − u(a, b)τz

am − 1

]
[̃βzk] =

[
τp − τv
a− ω

]
[̃γzk] =

[
τp

a− 1

]
[̃δzk] =

[
τp − τg
a− c

]
[̃εzk] =

[
τg − τt
c− a

]
(c) Output all the group elements computed above in πi.

Now we argue S correctly simulates a prover. Recall that Ω = {ωi}i∈[m].

For fixed polynomial z(X) and a value a, if a /∈ Ω and ρz
$← F, then according

to Lemma 9, zzk(a) = z(a) + ρz(a
m − 1) is also uniform in F.

For fixed polynomial v(X, b) and a value a, if a /∈ Ω and ρv
$← F, then

according to Lemma 9, vzk(a, b) = v(a, b) + ρv(a
m − 1) is also uniform in F.

For fixed polynomial p(X, b) and value a, c, ω−1a, if a, c, ω−1a /∈ Ω and
ρ
(2)
p , ρ

(1)
p , ρ

(0)
p

$← F, then according to Lemma 9 and the following calculation,

pzk(a, b) = p(a, b) + (ρ(2)p a2 + ρ(1)p a+ ρ(0)p )(am − 1)

gzk(c, b) = p(c, b) + (ρ(2)p c2 + ρ(1)p c+ ρ(0)p )(cm − 1)

tzk(a, b) = p(ω−1a, b) + (ρ(2)p (ω−1a)2 + ρ(1)p (ω−1a) + ρ(0)p )((ω−1a)m − 1)

(pzk(a, b), gzk(c, b), tzk(a, b)) is also uniform.



38 W. Wang et al.

Above all, as long as a, c, ω−1a /∈ Ω (which is of overwhelming probability),

(zzk(a), vzk(a, b), pzk(a, b), gzk(c, b), tzk(a, b))

is uniform in F5 and thus S can perfectly simulate [f zk]f∈{z,v,p,g,t}. Based on
the codes of the prover and the simulator, [f zk]f∈{Z,V,P,G,T,α,β,γ,δ,ε} are exactly
determined by [f zk]f∈{z,v,p,g,t}. Therefore, S can successfully simulate a prover.

D.4 Proof of Lemma 6

We briefly introduce how to add zero knowledge to Dynaverse here. The
intuition is also to add mask polynomials, following the next two steps:

1. Similar to the way we add zero knowledge to Dynamo, we add mask polyno-
mials to F in Dynamix. However, we cannot put [h] in πti because it could
leak some information about w. We should remove all [h], [H] in the proof
and fix the equations with h with the following trick. Note that we can
compute γzk

ti as

γzk
ti (X,Y ) =

pzkti (X,Y )− hti(Y )

X − 1
,

then we have∑
t∈[1,6],i∈[m]

hti(Y ) =
∑

t∈[1,6],i∈[m]

pzkti (X,Y )− (X − 1)
∑

t∈[1,6],i∈[m]

γzk
ti (X,Y ) .

Replace all the [γti] in the proof with one group element [γzk] where

γzk(X,Y ) =
∑

t∈[1,6],i∈[m]

γzk
ti (X,Y ) .

Then for [hx(Y )]·
∏6

t=1

∏m
i=1[hti(Y )]

?
= 1G, V can verify the following instead

e([hx], g) ·

 ∏
i∈[m],t∈[1,6]

e([pzkti ], g)

 · e([−γzk], [X − 1])
?
= 1GT

.

[γzk] can be simulated from [hx] and [pzkti ].
And for e([p] · [−t] · [−v], g) ?

= e([−ωh
m ], [ (X

m−1)
(X−ω) ]), a new quotient polynomial

should be computed as follows (and can be easily simulated):

pzk(X,Y )− tzk(X,Y )− vzk(X,Y )

(Xm − 1)(X − ω)−1
.

2. We also need to add masks for zt,i for t ∈ {4, 5, 6} and Ai should also be
modified due to changes in Eq. (19).

E The Dynamix detailed protocol
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– G(1λ, [m,N, s, t])→ (pk, upk, vk) :
- ppbl ← Gbl(1λ).
- Let F = {z, v, p, t, g, h, Z, V, P, T,G,H, α, β, γ, δ, ε} be the set of polynomi-

als from Theorem 2, including h and H from Equation 18.
- Pick random a, b, c from F for variables X, Y and W respectively.
- Set pk = upk to contain the following KZG commitments, defined in The-

orem 2, and computed using a, b and c directly

{[f1], . . . , [fm]}f∈F .

- Set

vk = {[u], [X], [W ], [Xm], [(Xm−1)(X−ω)−1], [Y NWm], [Wm], [XmWm]} ,

where u is u(X,Y ) =
∑

i∈[m] Li(X) · (Y si − Y ti).

– P(pk,x,w)→ (π, aux):
- Parse x as ∅ and w as z[1], . . . , z[m].
- Output |F| = 17 KZG commitments as π and aux, i.e., for all f ∈ F output

[f ] =
∏

i∈[m]

[fi]
z[i] .

– U(upk,x′,w′,x,w, π, aux)→ (π′, aux′):
- Parse w as z and w′ as a new valid witness z′. Parse π and aux as {[f ]}f∈F .
- Let J be the set of locations that z and z′ differ and let {δj}j∈J be the

corresponding deltas. Output as π′ and aux′ the new KZG commitments
{[f ′]}f∈F where

[f ′] = [f ] ·
∏
j∈J

[fj ]
δj .

– V(vk,x, π)→ 0/1:
- Parse vk and π as output by G and P respectively.
- Output 1 if and only if all the following relations hold:

e([v], g) · e([−u], [z]) = e([α], [Xm − 1]).
e([p], g) · e([−v], g) = e([β], [X − ω]).
e([p] · [−h], g) = e([γ], [X − 1]).
e([p] · [−t] · [−v], g) = e([−ωh/m], [(Xm − 1) · (X − ω)−1]).
e([p] · [−g], g) = e([δ], [X −W ]).
e([g] · [−t], g) = e([ε], [W −X · ω−1]).
e([z], [Y NWm]]) = e([Z], g).
e([v], [Wm]]) = e([V ], g).
e([p], [Wm]]) = e([P ], g).
e([t], [Wm]]) = e([T ], g).
e([g], [Xm]]) = e([G], g).
e([h], [XmWm]]) = e([H], g).

Fig. 9. The Dynamix SNARK.
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