
Fiat-Shamir in the Wild⋆

Hieu Nguyen1,2, Uyen Ho1, and Alex Biryukov2

1 Verichains
2 DCS and SnT, University of Luxembourg

alex.biryukov@uni.lu

Abstract. The Fiat-Shamir transformation is a key technique for re-
moving interactivity from cryptographic proof systems in real-world
applications. In this work, we discuss five types of Fiat-Shamir-related
protocol design errors and illustrate them with concrete examples mainly
taken from real-life applications. We discuss countermeasures for such
vulnerabilities.

⋆ For the purpose of open access and in fulfillment of the obligations arising from the
grant agreements, the authors have applied a Creative Commons Attribution 4.0
International (CC BY 4.0) license to any author-accepted manuscript version arising
from this submission.

2 Hieu Nguyen, Uyen Ho, and Alex Biryukov

1 Introduction

Fiat-Shamir transformation [8] is a well-known technique to remove interactivity
from interactive public-coin proof systems. In these systems, the verifier generates
and sends to the prover random values acting as challenges which can only be
solved if the statement being proved is correct (the soundness property). If these
random values can be predicted, it is likely that the prover will be able to forge
proofs for incorrect statements.

The way the Fiat-Shamir transformation works is that it replaces random
values with outputs from a cryptographic hash function3, hashing the verifier
context whenever randomness is needed. Public parameters, the statement being
proved, previously exchanged messages, etc. all contribute to this context. Since
randomness is removed, the verifier becomes deterministic and redundant, thus
making the proof system non-interactive.

The convenience brought by the Fiat-Shamir transformation does not come
without a price. It is fair to say that some security has been sacrificed because
of a larger attack surface when applying the Fiat-Shamir transformation. Not
only must the hash function in use be collision-resistant, the data fed into it also
needs to be correct and complete.

Recall that in probabilistic proof systems, knowing the verifier challenges in
advance helps the prover to forge proofs. As a result, vulnerabilities in Fiat-Shamir
implementations usually cause the security of these systems to be completely
broken.

Another important thing to note is that the Fiat-Shamir transformation allows
for brute-force attacks. A malicious prover does not pay for a failed attempt
to forge a proof. Thus, if a design or implementation flaw increases the proof
system’s soundness error from a negligible value to, for example, 2−32, forging a
proof can become very practical.

In Figure 1, a classification of the vulnerabilities reported in this work is
given. The classification is based on the additional attack surfaces introduced by
applying the Fiat-Shamir transformation. Surprisingly, most vulnerabilities have
multiple case studies found in prominent open-source zero-knowledge proof or
multi-party computation projects.

In the following sections, we will describe in detail different types of practical
Fiat-Shamir transformation-related pitfalls. More precisely, we will identify the
root cause, provide a method to forge proof under a vulnerable cryptographic
scheme, mention its real-world impact, and provide suggestions for countermea-
sures. A quick summary is given in Table 1.

1.1 Comparison to related works

This work can be seen as an extension to both [7] and Section 5.3 of [17]. In [7],
only the missing-public-statement vulnerability is extensively studied. Other
3 Throughout this work, we assume that the Fiat-Shamir transformation requires a

cryptographic hash function although this is not always the case [5].

Fiat-Shamir in the Wild 3

Fig. 1. A classification of the Fiat-Shamir-transformation-related vulnerabilities based
on additional attack surfaces. Bad pseudo-randomness of verifier challenges usually
comes from an incorrect implementation of the Fiat-Shamir transformation, and allows
a direct attack. On the other hand, the unavoidable ability of the prover to restart or
rewind a proof execution may allow for a practical attack to other protocol design and
implementation weaknesses.

Table 1. The Fiat-Shamir-transformation-related vulnerabilities mentioned in this
survey.

Vulnerability Known practical
exploit

Remedy

Missing public statement Sec. 2, [2, 7, 12] Public statement must be
hashed.

Ambiguous encoding Sec. 3, [15] To-be-hashed data must be
decodable.

Missing prover message Sec. 4, [6] All previous prover messasges
must be hashed.

Brute-force attack Sec. 5, [15] Soundness error must be
carefully considered.

Multi-round security loss Sec. 6 Attacker can not win
round-by-round.

4 Hieu Nguyen, Uyen Ho, and Alex Biryukov

vulnerabilities are only briefly mentioned (or not at all). We stress that the
vulnerabilities covered in our paper are all Fiat-Shamir-transformation related,
having the same severity (all lead to proof forging) and, therefore, should deserve
equal attention.

In [17], several of the vulnerabilities are discussed from the theoretical point
of view. By adding multiple concrete examples, this work acts as a practical
complement to it.

2 Missing public statement

This type of vulnerability, usually known as the weak variant of the Fiat-Shamir
transformation, can be found in many modern proof systems [2, 7, 12].

2.1 Root cause

Fiat-Shamir hashing context always includes the public statement to be proved.
If this is not the case, a malicious prover will be able to change the statement
without affecting verifier challenges. This will lead to broken protocol soundness
if the prover can pick which statement to prove. In practice, this is typically the
case. And if the prover can profit from proving a random4 false statement, the
consequences can be severe.

2.2 Case study: PLONK

The scheme PLONK [9] (Permutations over Lagrange-bases for Oecumenical
Non-interactive arguments of Knowledge) is a SNARK (Succinct Non-interactive
ARgument of Knowledge) released in 2019. Since then, PLONK has been widely
adopted due to its extensibility to support beyond-arithmetic polynomial con-
straints such as permutation (polynomials’ evaluations over a domain is the same
as theirs or other polynomials’ under an optionally predefined permutation) or
lookup (each evaluation of a polynomial over a domain is contained in a table
possibly made up from the evaluations of another polynomial).

This section provides only some of the main points on the technical side of
PLONK that are required to understand the related attacks. Additional details
will be provided on the fly when needed. For the full specification, see [9].

First of all, PLONK makes use of a polynomial commitment scheme that
allows a prover to commit to a polynomial and, later on, prove to a verifier the
correctness of the committed polynomial’s evaluations at certain points chosen
by the verifier.

Originally designed to prove the correctness of computation over an arithmetic
circuit that supports only addition and multiplication gates, the (simplified) Fiat-
Shamir-transformed PLONK prover algorithm is as follows. Recall that challenges
4 The prover does not have full control over the statement for which he can forge a

proof since it depends on verifier challenges derived from a hash function. As a result,
the statement (or part of it) should look random.

Fiat-Shamir in the Wild 5

are derived by invoking a cryptographic hash function with the current verifier
context as input.

– Round 1: Compute 3 wire polynomials a(X), b(X), c(X) and output their
polynomial commitments. These polynomials are constructed from the values
associated with the wires of the circuit, captured during an honest execution
of the computation.

– Round 2: Derive permutation challenges β, γ, compute the permutation
polynomial5 z(X) and output its polynomial commitment.

– Round 3: Derive a quotient challenge α, compute the quotient polynomial t(X)
(as described in Equation 1 below), and output its polynomial commitment.

– Round 4 & 5: Derive an evaluation challenge ξ, evaluate the committed
polynomials at the desired points (ξ and others), and output the evaluations
together with their proofs of correctness.

Finally, the PLONK verifier checks that:

– All polynomial evaluation proofs are correct.
– All polynomial constraints are satisfied when evaluated at ξ. In other words,

the following aggregate constraint must hold at ξ:

t(X) = 1
ZH(X) (a(X)b(X)qM (X) + a(X)qL(X) + b(X)qR(X)

+ c(X)qO(X) + qC(X) + P (X))

+ α

ZH(X) ((a(X) + βX + γ)(b(X) + βk1X + γ)

(c(X) + βk2X + γ)z(X))

+ −α

ZH(X) ((a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)

(c(X) + βSσ3(X) + γ)z(Xω))

+ α2

ZH(X) ((z(X) − 1)L1(X))

(1)

where P (X) is the polynomial constructed from the public input/output
signals of the circuit. Other unmentioned terms are public or circuit-related
parameters known to both the prover and the verifier. For example, the
polynomials qM , qL, qR, qO, qC , Sσ1, Sσ2, Sσ3 are defined by the circuit.

The flaw The vulnerability is fairly simple: P (X) is not included in the Fiat-
Shamir hashing context. This means that changing P (X) will not result in
rerandomization of the challenges (β, γ, α, ξ).
5 From protocol design perspective, a permutation constraint over the wire polynomials

will be converted to arithmetic constraints involving this polynomial, at the cost of
an additional round (this round).

6 Hieu Nguyen, Uyen Ho, and Alex Biryukov

The attack The attack strategy is as follows:

1. Pick arbitrary a(X), b(X), c(X), z(X), t(X). All challenges are now deter-
mined.

2. Deduce a value pξ such that the aggregate constraint (1) is satisfied at ξ
when P (ξ) = pξ.

3. Choose a suitable P (X) such that P (ξ) = pξ.
4. Follow the rest of the prover algorithm (Round 4 & 5) as usual.

Note that Step 3 is achievable only if there is at least one public signal, say
P (1), that can be randomized (i.e. it can take an arbitrary value and can still
pass further application-level logic checks with high probability) so that P (ξ)
and other public signals can be fixed to the desired values. Whether or not this
condition can be satisfied is application-specific. In practice, it is actually very
likely to hold. For example, a privacy-preserving payment application should have
one of the public signals acting as a random nonce to prevent double spending
transactions.

2.3 Real-world impact

Not only PLONK, but also many proof systems including Bulletproofs, Hyrax,
Spartan, Wesolowski’s VDF, etc. have implementations vulnerable to this flaw;
and it is even possible to create unlimited money on a blockchain network
by exploiting the weakness [7]. Older victims include voting protocols such as
sVote [12] and Helios [2].

2.4 Remedy

The public statement that is being proved must be included in the Fiat-Shamir
hashing context. Public parameters should also be considered as part of the
public statement. If the statement is too large (e.g., a statement about the
honest computation of a large circuit), hashing its succinct form is fine. One
needs to ensure that the changeable parts of a statement are all involved in the
generation of the challenges. Note that statements are usually made from filling
in an application-specific template, and changeable parts are those that appear
at the placeholders.

3 Ambiguous encoding

The case study given for this vulnerability was discovered by a team led by the
first author. It was presented at Blackhat USA 2023 as part of TSSHOCK [15].

Fiat-Shamir in the Wild 7

Fig. 2. Applying the Fiat-Shamir transformation involves an encoding scheme.

3.1 Root cause

Deriving a random challenge with the Fiat-Shamir transformation always involves
some encoding scheme applied to an object, usually a list of integers. The
encoding result E(object) is then fed into a cryptographic hash function H (see
Figure 2).

In case the encoding is ambiguous, that is, different objects may have
the same E(object), the whole transformation process will never be collision
resistant: one can choose object1 and object2 such that H(E(object1)) is
equal to H(E(object2)) regardless of H.

3.2 Case study: dlnproof

The scheme dlnproof (formalized as the Ring-Pedersen Parameters proof in [4])
is an argument system used for proving knowledge of a discrete log modulo a
composite number N . The protocol is similar to Schnorr’s [16] and is given in
Figure 3. There are 2 main differences:

– The group order ϕ(N) is unknown to the verifier.
– The challenge space is only {0, 1}.6 As a result, proof repetition is required to

achieve negligible soundness error. This is done in parallel: the prover sends
α0, α1, ..., the verifier replies with c0, c1, . . . , and the prover sends τ0, τ1,
The verifier only accepts if all triples (αi, ci, τi) are valid. In this case, the
Fiat-Shamir hashing context consists of N, g, h, α0, α1,

The flaw The following Golang code snippet is taken from a vulnerable library:
6 This can be seen as a consequence of having the group order unknown to the verifier.

In Schnorr’s protocol, there is an important security argument called extractibility: If
the prover can solve two different challenges c1, c2 under the same α, one can extract
the secret discrete log value from the prover’s messages (hence, the prover must know
the secret). However, this only works when the difference between the two challenges
∆c = c1 − c2 is invertible modulo the group order. When the group order is unknown,
∆c must be ±1 to ensure this property.

https://github.com/bnb-chain/tss-lib/blob/v1.3.5/common/hash.go

8 Hieu Nguyen, Uyen Ho, and Alex Biryukov

Fig. 3. Schnorr-like protocol for proving knowledge of logg h modulo N .

for i := range in {
data = append(data, ptrs[i]...)
data = append(data, hashInputDelimiter) // safety delimiter

}

Here, data holds the result of encoding a list containing N, g, h, α0, α1, It is
constructed by joining ptrs[i] with a constant delimiter. In fact, each ptrs[i]
is the byte representation corresponding to one of the integers. Clearly, this
encoding scheme is ambiguous. For example, letting the delimiter be "(DELIM)",
then ["a(DELIM)a", "a"] and ["a", "a(DELIM)a"] are both encoded to the
same byte string: "a(DELIM)a(DELIM)a".

The attack The idea to forge a proof is as follows:

1. Prepare the payloads a0, a1 such that a0, a1 helps forge proof when c = 0 and
c = 1 respectively, and their byte representations satisfy a condition depicted
in Figure 4.

2. Only assign a0 or a1 to αi.
3. If the number of challenge bits 0 (or 1) is equal to the number of a0 (or a1),

rearrange the list of αi according to the challenge bits to forge proof (see
Figure 5). Otherwise, go back to step 1 and retry.

It can be seen that shuffling the list of αi does not change its byte repre-
sentation due to the vulnerability. Consequently, the challenges ci also do not
change.

3.3 Real-world impact

The interesting thing about dlnproof is that it is a building block of the well-
known GG threshold ECDSA design [4,10,11] which is followed by many threshold
ECDSA libraries in practice, and the ambiguous encoding flaw eventually breaks
the security of all affected libraries: A malicious party can recover the private key
of a TSS (threshold signature scheme) group using only a single signature [15].

Fiat-Shamir in the Wild 9

Fig. 4. Byte representations of a0 and a1.

Fig. 5. An example of alpha-shuffling in the case #repetitions = 4.

10 Hieu Nguyen, Uyen Ho, and Alex Biryukov

As of mid-2023, many threshold ECDSA libraries, including those maintained
by Binance, Taurus, Thorchain, etc., were found vulnerable to this flaw. Note that
threshold signature is an important technology, largely used in the blockchain
ecosystem to share the ownership of large funds. Potentially millions to billions of
USD worth of cryptocurrency were found to be at risk. For more details, see [18].

3.4 Remedy

Always use a proper (unambiguous) encoding scheme combined with a collision-
resistant hash function when performing the Fiat-Shamir transformation. A rule
of thumb is to make sure that the to-be-hashed data is uniquely decodable.
Broken hash functions (e.g. MD5, SHA-1), for which collisions have been found,
must also be avoided.

4 Missing prover messages

As the case study given for this vulnerability is published for the first time, we
provide a slightly more complete report compared to the others. For example, its
vulnerable code is included (see Appendix).

4.1 Root cause

In a multi-round protocol, it is important that all the messages sent by the prover
in the previous rounds are included in the hashing context. Missing any of them
may lead to proof forging, as a malicious prover can rewind and change that
message without affecting the currently generated challenge.

4.2 Case study: PLONK

The scheme The basics of PLONK are already described in Section 2.2.

The flaw Here is a short summary of how challenges are computed from a
vulnerable library (for the original code snippet, see Appendix):

– β = H(public inputs, commitments of a(X), b(X), c(X))
– γ = H(β)
– α = H(commitment of z(X))
– ξ = H(commitment of t(X))
– v = H(polynomial evaluations)
– u = H(polynomial evaluation proofs)

where H denotes a cryptographic hash function. As we can see, only the last
prover message is given as input to the hash function when generating a challenge.
Certainly, this Fiat-Shamir transformation is insecure.

Fiat-Shamir in the Wild 11

The attack The goal is to make (1) satisfied when X = ξ for arbitrary P (X).
Because of the flawed Fiat-Shamir transformation, it is possible to do so:

1. Pick an arbitrary t(X) and compute the evaluation challenge ξ which depends
only on t(X).

2. Choose z(X) such that it is evaluated to 0 at ξ and ξω . This will eliminate
β, γ from (1). Now α, which only depends on z(X), is also determined.

3. Finally, pick suitable a(X), b(X), c(X) such that a(ξ), b(ξ), c(ξ) satisfy (1).
The rest of the prover algorithm (rounds 4 & 5) can then be processed
normally.

4.3 Real-world Impact

One of the most popular frameworks for working with SNARKs, SnarkJS, was
found to be vulnerable to this flaw. At the time of writing, it was used by nearly
5400 projects on Github [14]. The vulnerability existed since May 2021 (the first
version supporting PLONK, 0.4.0, was released) until May 2023 (a fix in version
0.7.0 was released). Currently, it is not known whether there is a real-world loss
due to this mistake.

In another practical case study reported in [6], the last challenge is independent
of the last prover message, leading to completely broken security of affected
polynomial commitment schemes.

4.4 Remedy

Always ensure that all prover messages from previous rounds contribute to
the Fiat-Shamir transformation process. One possible approach is to feed the
last generated challenge (together with the most recent prover messages since
then) into the hash function. This makes the output of all previous rounds
recursively involved in the computation of the current challenge, thus eliminating
the vulnerability.

5 Brute-force attack

Similarly to Section 3, the case study given for this vulnerability is also part of
TSSHOCK [15].

5.1 Root cause

The soundness property of an interactive proof system means that a dishonest
prover cannot convince the verifier if the statement being proved is false except
with some small probability. It is often possible to amplify the soundness until
the soundness error becomes negligible. This can be achieved by repeating the
proof and accepting only if all proofs are valid.

12 Hieu Nguyen, Uyen Ho, and Alex Biryukov

When applying the Fiat-Shamir transformation to an interactive proof, the
non-interactive version also inherits the soundness error. However, non-interactive
proof allows the prover to generate the challenge deterministically by applying
the hash function to a context. In this case, the malicious actor can just try
different contexts until he/she finds a challenge that helps forging proof for the
false statement without being detected by the verifier.

5.2 Case study: dlnproof with large challenge space

In this case study, a mistake in protocol design is presented, and the Fiat-Shamir
transformation makes exploiting the mistake feasible.

Consider the interactive proof protocol dlnproof described in Section 2.2. dl-
nproof requires repeatedly generating a random challenge bit c ∈ {0, 1}. However,
instead of repeating the interactive proof with binary challenge ci ∈ {0, 1}, the
vulnerable design decides to use a much larger set of challenges in only a single
run (e.g., c is sampled from Z2256 instead of Z2).

The soundness error in this protocol is expected to be inversely proportional to
the size of the challenge space. Unfortunately, it turns out that a larger challenge
set does not result in a better soundness error.

As an explanation, suppose that g, h ∈ Z∗
N , g = h2, and 2 | ord(g). Since 2

has no inverse modulo ord(g), logg h = 1
2 does not exist. However, a proof for

the existence of logg h can still be forged whenever 2 | c by having τ = ρ + c
2 .

Therefore, the soundness error is still 1
2 in this case.

Since repeating the original dlnproof 128 times seems slow, many popular
threshold ECDSA libraries following the GG design [4, 10, 11] use this weak
version of dlnproof to save some computation. The point is that exploiting this
weakness in practice will not be easy. If one wants to recover the TSS private
key with only a few signatures, the malicious exponent (equals 2 in the above
example) needs to be large7 (e.g., 232). This results in a lower soundness error
(1

232) and, more importantly, once a proof forging attempt fails, the attacker will
be immediately punished.

However, when the Fiat-Shamir transformation is applied, the attacker could
simply keep restarting the weak dlnproof version until proof forging succeeds.
This eventually breaks the security of all affected threshold ECDSA libraries [15].

5.3 Real-world impact

Threshold ECDSA libraries by Zengo, Axelar, ING Bank, ... were found to run
into this pitfall [15]. The impact is similar to that of Section 3.3, except that
more signatures are needed to recover the private key of a TSS group.
7 In more details, during the signing protocol of the GG design, the attacker can learn

x mod e where x is a a known multiple of the ECDSA nonce and e is the malicious
exponent. As a result, the ECDSA nonce leakage attack [13] can be applied. It is
clear that the larger the exponent, the more information is leaked and thus the less
signatures are required to launch the attack.

Fiat-Shamir in the Wild 13

5.4 Remedy

The Fiat-Shamir transformation applied to an interactive protocol creates an
attack surface for a malicious prover to mount a brute-force attack, thus the
soundness error of the protocol must be carefully chosen and enforced.

6 Multi-round security loss

6.1 Root cause

If the Fiat-Shamir transformation is applied to a multi-round protocol, a malicious
prover will be able to rewind the proving process to any previous round, keeping
every generated challenge before that round fixed (called a state restoration
attack in [1]). This is opposed to the interactive context in which the prover can
only start at the beginning and all challenges have to be freshly generated.

As a consequence, the security of an interactive, multi-round protocol could
be tremendously reduced (negligible soundness error becomes non-negligible)
when the Fiat-Shamir transformation is applied.

6.2 Case study: Sequential repetition of dlnproof

Consider the case in which the dlnproof protocol is repeated sequentially λ times
to achieve a 2−λ soundness error. It is important to note that this construction
is secure under the interactive setting. However, when the Fiat-Shamir trans-
formation is applied, a malicious prover can carry out the brute force attack
round-by-round. As a result, only a polynomial amount of work (O(λ), on average)
is required to forge a proof.

6.3 Remedy

It is always important to check if applying the Fiat-Shamir transformation is
appropriate. From a practical point of view, the two graphs of prover states
presented in Figure 6 give some hints to this. Let P denote the dishonest prover.
Let A → B denote the event that P moves from state A to B. Pr[S0 → acc], the
so-called soundness error, must be negligible in both cases.

In Protocol 2, we have Pr[S0 → acc] < Pr[S1 → acc] since S1 is closer to
accept. Therefore, it makes sense for P , after the transitions S0 → S1 → rej, to
rewind to S1 instead of S0 as less work needs to be undone and the probability of
acceptance in S1 is higher. As a result, the ability to rewind to any previous round
does give P more power. The Fiat-Shamir transformation should be avoided in
this case. Note that the sequential repetition of dlnproof is similar to Protocol 2
(the occurrence of a "good" challenge bit (probability 1

2 per round) immediately
causes P to fall into the reject state).

On the other hand, a similar analysis of Protocol 1 shows that there is no clear
advantage in rewinding to S1, so it might be possible to apply the Fiat-Shamir
transformation in this case. In fact, Protocol 1 is similar to the round-by-round

14 Hieu Nguyen, Uyen Ho, and Alex Biryukov

soundness concept in [3] where the undecided states act as doomed states and
all Pr[Bi] must be small to keep Pr[S0 → acc] negligible. Note that the PLONK
protocol has a pattern similar to Protocol 1 (in each round of PLONK, a "bad"
challenge can only occur with negligible probability but allows P to forge a valid
proof, thus reaching the accept state).

When applying the Fiat-Shamir transformation is not appropriate, one can try
switching to an alternative protocol (e.g., parallel instead of sequential repetition
of dlnproof).

Fig. 6. Examples of protocol patterns that may be safe (Protocol 1) or unsafe (Protocol
2) to apply the Fiat-Shamir transformation. The graphs represent the state transitions
of a dishonest prover starting in an undecided state S0 due to imperfect soundness. Bi

denotes the event that the verifier picks a "bad" challenge at round i, which increases
the dishonest prover’s chance to reach the accept state. In Protocol 1, Bi immediately
leads to accept while in Protocol 2, Bc

i immediately leads to reject.

7 Responsible disclosure

The practical case studies of three out of five vulnerabilities presented in this
survey were discovered by us recently.

– Ambiguous encoding and brute-force attack: Together, these two vulnerabili-
ties affect many popular open-source threshold ECDSA libraries. Detailed
information on the disclosure process can be found at [18].

– Missing prover message: We reported the vulnerability to team Iden3 (SnarkJS
maintainer) in mid-2023. After confirming the exploitability, the team asked

Fiat-Shamir in the Wild 15

us to delay the public disclosure to search for vulnerable projects. A fix for
this vulnerability was planned prior to our report.

8 Acknowledgements

We would like to thank the anonymous reviewers at CSCML 2024 for their useful
comments that help improve the paper. This research was funded in part by the
Luxembourg National Research Fund (FNR), project CryptoFin C22/IS/17415825
it is in the scope of grant reference NCER22/IS/16570468/NCER-FT.

Appendix

This appendix contains the vulnerable code that demonstrates the missing prover
message vulnerability described in Section 4.2. The code is written in Javascript
and is extracted from the SnarkJS project at Github:

– Version: 0.6.11
– Path: /src/plonk_verify.js
– Function: calculateChallanges

const transcript1 = new Uint8Array(zkey.nPublic*n8r + G1.F.n8*2*3);
for (let i=0; i<zkey.nPublic; i++) {

Fr.toRprBE(transcript1, i*n8r, A.slice((i)*n8r, (i+1)*n8r));
}
G1.toRprUncompressed(transcript1, zkey.nPublic*n8r + 0, proof.A);
G1.toRprUncompressed(transcript1, zkey.nPublic*n8r + G1.F.n8*2, proof.B);
G1.toRprUncompressed(transcript1, zkey.nPublic*n8r + G1.F.n8*4, proof.C);

ch.beta = hashToFr(transcript1);

const transcript2 = new Uint8Array(n8r);
Fr.toRprBE(transcript2, 0, ch.beta);
ch.gamma = hashToFr(transcript2);
...

const transcript3 = new Uint8Array(G1.F.n8*2);
G1.toRprUncompressed(transcript3, 0, proof.Z);
ch.alpha = hashToFr(transcript3);
...

const transcript4 = new Uint8Array(G1.F.n8*2*3);
G1.toRprUncompressed(transcript4, 0, proof.T1);
G1.toRprUncompressed(transcript4, G1.F.n8*2, proof.T2);
G1.toRprUncompressed(transcript4, G1.F.n8*4, proof.T3);
ch.xi = hashToFr(transcript4);

https://github.com/iden3/snarkjs/blob/v0.6.11/src/plonk_verify.js

16 Hieu Nguyen, Uyen Ho, and Alex Biryukov

...

const transcript5 = new Uint8Array(n8r*7);
Fr.toRprBE(transcript5, 0, proof.eval_a);
Fr.toRprBE(transcript5, n8r, proof.eval_b);
Fr.toRprBE(transcript5, n8r*2, proof.eval_c);
Fr.toRprBE(transcript5, n8r*3, proof.eval_s1);
Fr.toRprBE(transcript5, n8r*4, proof.eval_s2);
Fr.toRprBE(transcript5, n8r*5, proof.eval_zw);
Fr.toRprBE(transcript5, n8r*6, proof.eval_r);
ch.v = [];
ch.v[1] = hashToFr(transcript5);
...

const transcript6 = new Uint8Array(G1.F.n8*2*2);
G1.toRprUncompressed(transcript6, 0, proof.Wxi);
G1.toRprUncompressed(transcript6, G1.F.n8*2, proof.Wxiw);
res.u = hashToFr(curve, transcript6);
...

References

1. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Theory of
Cryptography: 14th International Conference, TCC 2016-B, Beijing, China, October
31-November 3, 2016, Proceedings, Part II 14. pp. 31–60. Springer (2016)

2. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Advances in Cryptology–
ASIACRYPT 2012: 18th International Conference on the Theory and Application
of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Pro-
ceedings 18. pp. 626–643. Springer (2012)

3. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive (2018)

4. Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N., Peled, U.: UC non-
interactive, proactive, threshold ECDSA with identifiable aborts. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
pp. 1769–1787 (2020)

5. Chen, Y., Lombardi, A., Ma, F., Quach, W.: Does Fiat-Shamir require a cryp-
tographic hash function? In: Annual International Cryptology Conference. pp.
334–363. Springer (2021)

6. Ciobotaru, O., Peter, M., Velichkov, V.: The last challenge attack: Exploiting a
vulnerable implementation of the Fiat-Shamir transform in a KZG-based SNARK.
Cryptology ePrint Archive (2024)

7. Dao, Q., Miller, J., Wright, O., Grubbs, P.: Weak Fiat-Shamir attacks on modern
proof systems. In: 2023 IEEE Symposium on Security and Privacy (SP). pp. 199–216.
IEEE (2023)

8. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Conference on the theory and application of cryptographic
techniques. pp. 186–194. Springer (1986)

Fiat-Shamir in the Wild 17

9. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over Lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive (2019)

10. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1179–1194 (2018)

11. Gennaro, R., Goldfeder, S.: One round threshold ECDSA with identifiable abort.
Cryptology ePrint Archive (2020)

12. Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your election
outcome. In: 2020 IEEE Symposium on Security and Privacy (SP). pp. 644–660.
IEEE (2020)

13. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Designs, Codes and Cryptography 23, 283–290 (2001)

14. Iden3: Snarkjs repository, https://github.com/iden3/snarkjs/
15. Nguyen, H., Nguyen, K., Nguyen, G., Nguyen, T., Nguyen, Q.: New key extrac-

tion attacks on threshold ECDSA implementations (2023), https://github.com/
verichains/tsshock/blob/main/verichains-tsshock-wp-v1.0.pdf

16. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of cryptology
4, 161–174 (1991)

17. Thaler, J.: Proofs, arguments, and zero-knowledge. Foundations and Trends® in
Privacy and Security 4(2–4), 117–660 (2022)

18. Verichains: TSSHOCK, https://www.verichains.io/tsshock/

https://github.com/iden3/snarkjs/
https://github.com/verichains/tsshock/blob/main/verichains-tsshock-wp-v1.0.pdf
https://github.com/verichains/tsshock/blob/main/verichains-tsshock-wp-v1.0.pdf
https://www.verichains.io/tsshock/

	Fiat-Shamir in the Wild

