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Abstract

Peer-to-peer energy trading markets enable users to exchange electricity, di-

rectly offering them increased financial benefits. However, discrepancies often

arise between the electricity volumes committed to in trading auctions and the

volumes actually consumed or injected. Solutions designed to address this issue

often require access to sensitive information that should be kept private.

This paper presents a novel, fully privacy-preserving billing protocol designed

to protect users’ sensitive consumption and production data in the context of

billing protocols for energy trading. Leveraging advanced cryptographic tech-

niques, including fully homomorphic encryption (FHE) and pseudorandom zero

sharing (PRZS), our protocol ensures robust security and confidentiality while

addressing the critical issue of managing discrepancies between promised and

actual electricity volumes. The proposed protocol guarantees that users’ sensi-

tive information remains inaccessible to external parties, including the trading

platform and billing server. By utilizing FHE, the protocol allows computations

on encrypted data without compromising privacy, while PRZS ensures secure

aggregation of individual discrepancies of each household. This combination of

cryptographic primitives maintains data privacy and enhances billing accuracy,

even when fluctuations in energy supply and demand occur.
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We analyze real-time consumption and production data from 100 households

to experimentally validate the effectiveness and efficiency of our billing model.

By implementing a flexible framework compatible with any billing method, we

demonstrate that our protocol can accurately compute individual bills for 100

households in approximately 0.17 seconds.

Keywords: Privacy, Security, Homomorphic Encryption, P2P electricity

market, Billing model, Imbalance cost

1. Introduction

Peer-to-peer (P2P) electricity trading markets allow households to trade with

each other through auction mechanisms, giving them more flexibility as opposed

to trading only with their contracted supplier, often on fixed prices [1]. This flex-

ibility allows households to be more selective about (1) when they trade their

surplus electricity and (2) the selected trading price when they devise their auc-

tion bids. The rational strategy while making these selections is to reduce their

costs (when buying) or increase their revenues (when selling) electricity [2]. Such

markets also encourage local energy production, consumption, and balancing,

bringing environmental benefits to local communities [3].

However, in practice, there are often discrepancies between trading volumes

committed at an auction (bid volumes) and the volumes consumed/injected

by the participating households (actual smart meter readings). This happens

because of the following factors: (1) volatility of the consumption/production

patterns of the households [4], (2) uncertainty in the outputs of local renewable

sources [5], and (3) inaccuracy of the prediction algorithms used by households

to devise their auction bids [6]. To maximize the volumes of energy trading

at the P2P markets, new billing models that minimize these discrepancies by

sharing them among participating households have been proposed [7].

These billing models (and P2P markets in general), however, require more

fine-grain data (such as bid volume, meter readings, and price per trading slot)

to be shared with other households or the market/auction operator [1]. Such fine-
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grain data pose significant privacy risks [8]. Potentially, a malicious actor can

deploy non-intrusive load monitoring techniques [9] and can easily infer sensitive

information about the household occupants such as presence, activities, religion,

health conditions, etc. [10].

There have already been attempts to protect households’ data by designing

privacy-preserving billing protocols for P2P energy trading markets. However,

they have limitations. Solutions such as [11] do not consider the aforementioned

discrepancies and assume perfect fulfillment of promised bids. The ones that

provide privacy-preserving billings while taking the discrepancies into account

either use partially homomorphic encryption, thus having limited expressibility

in their privacy-preserving computations [12, 13, 14], or deploy multiparty com-

putation techniques which come with high communication overhead [15, 16]].

In general, the control over the user’s data is given to the supplier due to the

nature of these protocols. Furthermore, none of these solutions evaluate their

protocols with real-time consumption/production data.

To address these limitations, this paper proposes a novel privacy-preserving

billing protocol that utilizes FHE to calculate encrypted bills that can only be

decrypted by the respective household. More specifically, the novel contributions

of this paper are:

• We design a fully privacy-preserving billing protocol for P2P energy mar-

kets which accommodates discrepancies between electricity volumes com-

mitted and actually consumed/injected by households. We utilize FHE

to encrypt every household’s data with their own key. This enables us to

ensure that the control of a household’s data is never given to any third

party.

• We use real-time consumption data of 100 households, of which 25 are pro-

sumers and 75 are consumers. The prosumers are a mixture of households

with wind turbines, solar panels, or both. We simulate the production of

these renewable sources based on real-time weather conditions.

• We provide a framework implementation that enables fully private billings
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using FHE. Our implementation can be adapted to fit any billing model

and is experimentally evaluated as efficient. We demonstrate that our im-

plementation can perform bill calculations for 100 households in approxi-

mately 3 seconds.

The rest of the paper is organized as follows: in Sect. 2 we discuss research

that has already been done in the field of billings. Then, in Sect. 3 we discuss our

system model, threat model, design requirements, the non-privacy-preserving

billing model we adapt, and the cryptographic primitives we use to make these

models privacy-preserving. Section 4 details our fully privacy-preserving billing

model with universal cost split (UCS), followed by its evaluation in Sect. 5.

Finally, Sect. 6 concludes this paper and lists some future work directions.

2. Related Work

Privacy risks in P2P electricity trading markets (and in smart metering [17]

in general) have previously been highlighted [8]. There have already been at-

tempts to reduce these risks. As follows, we review the privacy-preserving billing

solutions for smart metering before focusing on the ones for P2P electricity trad-

ing markets.

Rial and Danezis [18] proposed a privacy-preserving protocol for time-of-use

billing using fine-grained meter readings, which never leave the user households.

Their protocol allows users to compute their bill locally and prove its correctness

without disclosing any fine-grained consumption with the help of zero-knowledge

proofs. Realizing that even the final bill may leak users’ private information,

Danezis et al. [19] have proposed to add some small amount of noise to the final

bill so that they can offer strong privacy guarantees. This is achieved by using

differential privacy. One disadvantage of this method is that ‘noise’ corresponds

to real money, which users must pay to preserve their privacy. To address this

limitation, the authors proposed a complementary billing protocol that relies

on a cryptographic oblivious mechanism to support rebates. With the help of

this additional protocol, a user can deposit an initial monetary value that can
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support positive and negative noise added to their bills while ensuring that the

funds they pay always cover the cost of their consumption.

Erkin and Tsudik [20] proposed privacy-preserving spatial and temporal ag-

gregation of smart metering data. Their solution for temporary aggregation is

suitable for private billing. Each smart meter generates random numbers equal

to the number of time slots in a billing period. These random numbers are used

to encrypt each fine-grained metering data with the smart meter manufacturer’s

homomorphic public key. The aggregation is either computed on the supplier

side or on the smart meter itself. Although none of the individual smart me-

ter readings are leaked to the supplier or the manufacturer, the manufacturer

also has access to users’ monthly bills. Jawurek et al. [21] have taken a simi-

lar approach. They proposed a privacy-preserving billing protocol that relies on

zero-knowledge proofs based on Pedersen commitments performed by a plug-in

privacy component placed into the communication link between the smart meter

and supplier.

Danezis et al. [22] proposed complex non-linear billing protocols for smart

meter readings that deploy multi-party computation (based on secret sharing

techniques). The limitation of these protocols is that they rely on several semi-

honest authorities to maintain the privacy of user’s inputs. Similarly, Ababneh et

al. [23] proposed a scheme for privacy-preserving electricity billing that deploys

secret sharing and blinding techniques. In their proposed scheme, each smart

meter blinds each of its meter readings and secretly shares them with its peers,

along with aggregating all the blinded readings for all time slots per billing

period. This aggregated value is then shared with a lead smart meter. The lead

smart meter then verifies that both the blinded aggregate values are the same

and shares this value with the supplier. The supplier then unblinds the aggregate

value and uses it to calculate the final user bill. The limitation of this scheme is

its high communication cost, as it requires many-to-many communication links

among the smart meters themselves.

Inspired by the existing solutions for privacy-preserving billing for smart

metering, there have already been attempts to provide billing solutions for P2P
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electricity markets that protect users’ privacy.

Abidin et al. [24] proposed a simple billing protocol for the P2P electricity

trading market. Each smart meter calculates a fine-grained bill per time slot

and then masks it before sending the masked bill to a supplier. When summed

up in a billing period, the masked values are selected to cancel each other. Once

the supplier gets all the masked values from a smart meter for the billing period,

it aggregates them, resulting in the user’s monthly bill (as the random numbers

cancel each other). Their work, however, does not consider individual deviations

of households in the bill calculation and assumes perfect fulfillment. In addition,

since the bills are computed at the smart meters, changes to the billing model

would require changes to all smart meters, which, in some cases, might not be

possible/practical.

Thandi and Mustafa [12] proposed the first privacy-preserving billing solu-

tion for P2P trading markets that considers discrepancies between what vol-

umes households commit and what volumes they finally consume/deliver dur-

ing a trading period. Their idea enables these discrepancies to be traded in the

retail market. They deploy a partial homomorphic encryption scheme to calcu-

late what volumes are traded at the retail and the P2P market, respectively.

Hutu and Mustafa [13] improved the solutions proposed in [12] by proposing

privacy-preserving billing protocols that can accommodate several (more com-

plex) billing models for reducing users’ bills by (more) fairly splitting the cost

amongst all users through the deployment of weighting in the calculations of

each user’s individual contribution towards the overall discrepancy. All the cal-

culations are computed using a partial homomorphic encryption scheme.

Erdayandi et al. [14] deployed a blockchain to store hashes of the committed

volumes by the smart meters and the real meter readings. These readings are

later used to verify the user bill. The final bill of consumers is calculated by

prosumers, and vice versa, using a partial homomorphic encryption scheme. For

example, for each billing period, a consumer is matched with several prosumers,

who receive encrypted data from the consumer and calculate the consumer’s en-

crypted bill. The bill is then sent to the supplier, who can decrypt it and obtain
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the user’s bill. Alqahtani and Mustafa [15] further improved the billing models

by incorporating different zones, encouraging in-zone trades, and reducing user

bills. In [16], the same authors further improve [15] by involving a collaboration

of different entities performing bill computation with verification of correctness.

Their solution also mitigates the potential impact on individuals’ privacy result-

ing from internal collusion. They propose three different approaches, resulting

in different levels of privacy protection and performance. Both of these solu-

tions deploy multi-party computation techniques to ensure that the bills are

calculated in a privacy-preserving manner.

In summary, existing solutions either assume perfect fulfillment of promised

bids [11] or use partially homomorphic encryption schemes [12, 13, 14]. Thus,

they have limited expressibility in their privacy-preserving computations, and

do not enable full control of the data by the users. Some existing solutions [15,

16] also use multi-party computation techniques, thus introducing too much

communication overhead.

To address these limitations, we propose a novel privacy-preserving billing

protocol for P2P electricity markets that utilizes fully homomorphic encryption

to calculate encrypted bills, which can only be decrypted by a participating

user.

3. Preliminaries

This section describes our solution’s system model, specifically what entities

participate in making it work. We then proceed to our threat model and the

assumptions we make. Finally, we conclude by detailing our solution’s design

requirements.

3.1. System Model

The system model used in this work consists of the following entities:

• Users: entities that use electricity in their households. Users who can only

consume electricity are known as consumers, and ones who consume and
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produce electricity (e.g., by using renewable energy sources) are called

prosumers.

• Suppliers: entities that provide electricity to users in retail markets. They

also purchase electricity from users at a feed-in tariff. Additionally, sup-

pliers act as a fallback option in case of discrepancies in the P2P market.

• Grid operator: entities that manage the injection and output of electricity

to/from the grid are known as grid operators. They ensure that the grid

remains balanced to avoid outages. It is assumed that the grid operators

have an additional role of aggregating the household input data required

for our billing models. Thus, we use the terms grid operator and aggregator

interchangeably.

• Market operator: entities responsible for executing the auction mechanism

that matches prosumers and consumers for P2P trading.

• Smart meter: used to measure the volume of electricity consumed/injected

by the users from/into the grid. They facilitate P2P trading by performing

functions and providing information necessary for our proposed billing

models to work.

3.2. Threat Model and Assumptions

We assume the existence of honest-but-curious adversaries: the grid operator,

users, and suppliers act according to the protocol but are curious about the

information they receive. The threat model for the market operators is borrowed

from the work done by Botelho Da Gama et al. [25] and assumes an active

adversary running the P2P auction mechanism. We assume that the SMs are

tamper-proof and that the prosumers and consumers act rationally. All entities

in our billing models are assumed to communicate over secure and authenticated

communication channels. Finally, we assume that a household can only sell or

buy electricity from P2P market at a given time; it cannot do both.

8



3.3. Design Requirements

We split the design requirements for our billing models into functional, se-

curity, and privacy requirements.

3.3.1. Functional Requirements

The functional requirements of our billing models are as follows:

• Accomodation of deviations: The billing models should handle positive

or negative deviations from all households and should be able to function

in the presence of any arbitrary number of deviations for each time period.

• Fairness: The incurred penalties due to deviations should be split amongst

all the deviating entities.

3.3.2. Security and Privacy Requirements

The security and privacy requirements of our billing models are as follows:

• Authenticity of consumption/production data: The aggregator should

validate the integrity and origin of all production-/consumption-specific

data.

• Non-repudiation of calculated bills: The bills calculated by the ag-

gregator should be authenticated as such.

• Unlinkability of prosumers and consumers: Any third party should

not be able to link a pair of prosumers and consumers who trade.

• Confidentiality of billing data: Any data that can classify consump-

tion/production patterns of a household should not be accessible by any

third party in plain. Only the encrypted version of this data should be

available.
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Algorithm 1 Billing Model for Retail Markets for each user per time slot [7]

Input: Individual consumer demand per time slot (Cdem
i,t ), Individual prosumer supply

per time slot (P sup
i,t ), RP, FiT

Output: Consumer bill per time slot (Cbill), Prosumer reward per time slot (Prew).

1: Cbill = Cdem
i,t × RP

2: Prew = P sup
i,t × FiT

3.4. Billing Models

We briefly revisit the billing model with the UCS proposed by Madhusudan

et al. in [7]. We start with the billing model for retail markets only (the status

quo). We then describe a P2P market with RM (the status quo) acting as a

fall-back option. Finally, we present a billing model with UCS as listed in [7].

3.4.1. Billing Model for Retail Markets – the status quo

Algorithm 1 presents a billing model that is used in current retail markets.

In this billing model, customers buy/sell their electricity from/to suppliers they

have a contract with. The model inputs a customer’s consumption and pro-

duction, in addition to the retail and feed-in tariff set by the entities in retail

markets. Note that Algorithm 1 describes a billing model for an individual user

per time slot. A consumer (C) is charged a retail price (RP) per kWh for the

electricity they consume in each timeslot; similarly, a prosumer (P) gets paid

a feed-in tariff (FiT) per kWh of electricity they inject to the grid for each

timeslot. The supplier’s balance (S) is derived from the difference between their

earnings through billing consumers and expenditure through paying prosumers.

3.4.2. P2P market with RM as Back-up

This P2P market uses the retail market as a backup in case there is a devi-

ation in the volume of electricity that was committed to be consumed/supplied

and the actual volume delivered. Each customer has an individual deviation

(InDevx) where x=p for a prosumer and x=c for a consumer. Figure 1 depicts

how such an interaction would look like. Briefly, P2P trading markets run as

follows:
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Figure 1: P2P market with RM as a fall-back option.

• Consumers/Prosumers submit bids/offers for electricity;

• A market operator (e.g., trading platform) clears the P2P market. It de-

termines the total cleared volume of electricity at the market, the market

clearance price and the consumers/prosumers whose bids/offers have been

accepted. Consumers/Prosumers whose bids have not been accepted use

the RM to meet their needs.

• Finally, meter readings from the smart meters of consumers/prosumers

are used to calculate their bills/rewards. Suppose the data from the smart

meters of prosumers/consumers whose bids have been accepted is not the

same as their respective committed value in the bid/offer. In that case,

the RM compensates for the difference (deviation). This could come with

an extra cost for some of the prosumers/consumers.

In all future billing models, we do not explicitly list the supplier balance as

that is not the main focus of this work and it is straightforward to calculate it.

The balance of a supplier (Sbal) is always the difference between their income

Sinc = demand x RP and their expenditure Sexp = supply x FiT.

The cost associated with compensating the deviations of the individual pro-

sumers/consumers will have to be distributed amongst all (or some) of the
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Table 1: Abbreviations and Notations

Symbol Description

TDi Total deviation per time slot

S Number of timeslots

InDevi, t Individual deviation of a customer per timeslot t

TP, RP Trading price, Retail price

FiT Feed-in tariff

P2P c
n Total no. of P2P consumers with accepted bids and individ-

ual deviations opposite to the total deviation

Cdem
i,t Individual demand of consumer per time slot

P2Pp
n Total no. of P2P prosumers with accepted bids and individ-

ual deviations opposite the total deviation

P sup
i,t Individual supply of prosumer per time slot

Cbill, Prew Consumer bill, Prosumer reward

c, s,d,md,b Vector of consumptions, supplies, individual deviations,

masked individual deviations, signs of deviations

u,v,y,w Vector of trading prices, retail prices, feed-in tariffs, total

deviations, per time slot

prosumers/consumers to reduce the dependency on the retail market as a fall-

back. There could be different mechanisms to share these costs amongst pro-

sumers/consumers. Madhusudan et al. [7] propose three different methods of

sharing these costs: individual, social, and universal cost split. In this paper, we

focus on UCS.

Note that Table 1 lists the notations used throughout the paper.

3.4.3. Billing model with UCS

This billing model aggregates all the individual deviations of P2P market

users (prosumers and consumers), and the cost of this resulting total deviation is

split amongst the customers whose individual deviation is in the same direction

as the total deviation. This is described below and shown in Algorithm 2.

Interested readers are directed to [7] for a detailed explanation of UCS.
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Algorithm 2 Billing Model with Universal Cost Split UCS (adapted from [7])

Input: Individual consumer/prosumer demand/supply per time slot (Cdem
i,t and P sup

i,t ),

Individual costumer deviation per time slot (InDevi,t), total deviation per time slot (TDt), TP,

RP, FiT, number of consumers/prosumers whose individual deviation is opposite to/aligned

with the total deviation (P2P c
n / P2P p

n)

Output: Customer bill (Cbill) and Prosumer reward (Prew) per user per time slot

1: for each time slot 0 ≤ t < S do

2: if bid Accepted then

3: if TD = 0 then

4: Cbill = Cdem
i,t × TP

5: Prew = P sup
i,t × TP

6: if TD < 0 then

7: Prew = P sup
i,t × TP

8: if InDevi,t = 0 or InDevi,t < 0 then

9: Cbill = Cdem
i,t × TP

10: if InDevi,t > 0 then

11: Cbill = (Cdem
i,t − | TDt

P2Pc
n
|)× TP + | TDt

P2Pc
n
| ×RP

12: if TD > 0 then

13: Cbill = Cdem
i,t × TP

14: if InDevi,t = 0 or InDevi,t < 0 then

15: Prew = P sup
i,t × TP

16: if InDevi,t > 0 then

17: Prew = (P sup
i,t − | TDt

P2P
p
n
|)× TP + | TDt

P2P
p
n
| × FiT

18: if bid not accepted then

19: goto Algorithm 1
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3.5. Cryptographic Primitives

3.5.1. Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) is a powerful tool that allows opera-

tions to be performed on encrypted data. One can encrypt the data and then

send it to a third party, which can still process it without decrypting it. Once

the third party finalizes its operations, it returns the encrypted data back to

the sender, who can then perform its decryption to reveal the resulting output.

In more detail, a client generates a ciphertext c encrypting some data m un-

der a public key pk (to which it knows the corresponding private key sk). Then,

a server holding c and pk, but not the corresponding secret key sk, can then

construct a new ciphertext c
′
that encrypts f(m) for any function f . We call

this step the “homomorphic computation” and say that “f was evaluated homo-

morphically”. Finally, the client can download c′, decrypt it using sk, and obtain

f(m). Since sk remains with the client, FHE allows one to securely outsource

computation to an untrusted party.

Now, we present at a high level the operations available in a generic FHE

scheme allowing plaintext slots.

• HE.paramGen(λ, p): given the security parameter λ and the plaintext pre-

cision p, generates parameters param, which include the ring dimension

N , the ciphertext modulus Q, and the number of slots S.

• HE.keyGen(param): generates the encryption key pk, the decryption key sk,

and also the following special keys, which are also public: relinearization

key rlk; rotation keys rki for 0 ≤ i < N ; and bootstrapping key bk.

• HE.enc(m): outputs a ciphertext c encrypting an S-dimensional vector m

In this case, we write c = Enc(m1, ...,mS).

• HE.dec(c): decrypts c and returns the message m.

• HE.add(c0, c1): consider that c0 and c1 encrypt vectors u and v. This

homomorphic operation outputs c = Enc(w) where w[i] = u[i] + v[i].
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• HE.mult(c0, c1, rlk): consider that c0 and c1 encrypt vectors u and v. This

homomorphic operation outputs c = Enc(w) wherew[i] = u[i]·v[i]. Notice

that it requires the relinearization key.

3.5.2. Pseudo-Random Zero Sharing

We recall a simplified version of the Pseudo-random zero sharing (PRZS)

protocol from Appendix A of [26]. Here, we do not need commitment schemes

in the setup phase since we assume the semi-honest model, i.e., all parties follow

the protocol during its execution, but can retain all the exchanged messages to

be analyzed later aiming to discover secret values. This protocol allows k parties

to generate random-looking shares that add up to zero. Those shares can then

be used to mask values that the users want to send to other users. This is done

by adding the derived shares to the user’s input, akin to a one-time pad. The

PRZS is defined as follows:

• Setup(λ, k): each user 1 ≤ u ≤ k generates PRF keys Ku,v, for 1 ≤ v ≤ k

and u ̸= v and sends Ku,v to user v. The keys are long enough so that the

PRF achieves λ bits of security.

• GenShare(u, count): define ai := PRFKu,i
(count) and bi := PRFKi,u

(count)

for i ̸= u. Then, the user u’s share is defined as su =
∑k

i=1 ai −
∑k

j=1 bj .

Note that
∑k

u=1 su = 0. Also, each su is pseudorandom, i.e., indistinguish-

able from a random value.

4. Privacy-Enhanced Billing Models

We introduce a privacy-preserving variant of the universal cost-split billing

model that collectively enables customers to settle their electricity bills fully

privacy-preserving while reducing the dependency on retail markets.

4.1. Overview

Before going into the details, we review how this model works. Figure 2

provides a schematic representation of this model.
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Figure 2: Overview of our privacy-preserving billing model.

For each time slot, each user participates in the auction held on the trading

platform [as shown in step (1)]. The customers selected for P2P trading send

their consumption, production, and deviation data encrypted to the grid oper-

ator [as shown in step (2)]. The grid operator then runs the privacy-preserving

billing model, i.e., for each customer, the grid operator calculates the encrypted

bill/reward using only this encrypted data. Consequently, they output the en-

crypted bill/reward. Upon receiving the encrypted bill/reward, the customer

decrypts it with their secret key to reveal how much they owe/are owed to/by

the supplier. The customer then performs or receives the payment [as shown in

step (3)].

4.2. Setup Phase

Before utilizing the billing models, we need to perform the steps necessary

to generate the required cryptographic keys for the utilized cryptographic prim-

itives, i.e., PRZS [26] and FHE [27].

As discussed in Sec. 3.5, each of these primitives has a setup phase that has

to be executed once for a set of users utilizing our billing models to receive their

keys. After generating these keys, users can use them in P2P electricity trading.

Specifically, for PRZS, the participant needs to execute the Setup(λ, k) where

λ is the desired security parameter and k is the number of participants. The
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output of this setup is the PRF keys required to generate masking shares for

the individual deviations.

For FHE, the users must execute HE.paramGen(λ, p) and HE.keyGen(param)

to generate the necessary key pair for encrypting and decrypting their devia-

tions, consumptions, and productions.

By the end of this setup phase, all participants must have the required

cryptographic keys.

4.3. Client Setup for Billing Model with Universal Cost Split

Our billing model is divided into client setup and server-side execution. The

client setup details each household’s steps to send encrypted consumption, pro-

duction, and deviation data to the grid operator’s server.

Upon receiving the required data, the grid operator executes the billing

algorithm to derive the bills and rewards (in encrypted form) for each client,

i.e., the users.

These steps are depicted in Alg. 3. During the client setup, the SMs on

the client’s side collect the energy consumption and/or production for each

time slot. The SM computes deviations compared to their committed values in

the P2P market using this data. Naively, the SMs can encrypt each of these

measurements in a different ciphertext and send it to the server (grid operator)

to be processed. However, that would sub-utilize the FHE ciphertexts since

they can encrypt a vector. Hence, for efficiency, the SMs first collect several

measurements, populate a vector, encrypt it, and then send the ciphertext to

the grid operator.

Moreover, the SM encrypts each deviation’s sign to simplify the homomor-

phic computation performed on the server side. More specifically, the grid op-

erator has to compute values that depend on whether the deviation is negative

or positive. Thus, given a ciphertext encrypting the deviation, the grid operator

would have to compute a homomorphic comparison, which is rather expen-

sive. However, if the grid operator already has a ciphertext encrypting the sign,
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the homomorphic comparison is replaced by two homomorphic multiplications,

which is more computationally efficient.

Algorithm 3 Client Data Collection

Input: Vector of consumptions (c), Vector of supplies (s), Vector of individ-

ual deviations (d), Vector of masked deviations (md), Vector of deviation signs

(b), Number of slots (S), Client’s secret key (sk), Global Count (count), Individ-

ual consumption/supply of each consumer/prosumer per time slot (Cdem
i,t ,Psup

i,t ),

Individual deviation per customer per time slot (InDevi,t).

Output: Ciphertexts cc, cd, cs, and cb encrypting, respectively, vectors of

consumptions, individual devitations, supplies, and bits.

1: c = (0, ..., 0) ∈ ZS → Vector of consumptions

2: s = (0, ..., 0) ∈ ZS → Vector of supplies

3: d = (0, ..., 0) ∈ ZS → Individual deviations

4: md = (0, ..., 0) ∈ ZS → Masked individual deviations

5: b = (0, ..., 0) ∈ ZS → Signs of deviations

6: for each time slot 0 ≤ t < S do

7: c[t] = Cdem
i,t

8: s[t] = Psup
i,t

9: d[t] = InDevi,t

10: if InDevi,t ≤ 0 then

11: b[t] = 1

12: st = GenShare(id, count||t) ∈ Z2ℓ

13: md[t] = st + d[t] mod 2ℓ

14: cc = HE.encsk(c)

15: cs = HE.encsk(s)

16: cd = HE.encsk(d)

17: cb = HE.encsk(b)

18: Send cc, cs, cd, cb,md to the server

The way Alg. 3 proceeds is as follows:

• Lines 6-9: The SM collects the measurements of consumption, production,
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individual deviations, and signs of deviations for the required number of

time slots.

• Lines 10-13: The SM collects consumption and production data and then

computes the individual deviations and their signs. Additionally, each

household derives its masking value st and calculates the masked indi-

vidual deviation md[t] per time slot t.

• Lines 14-18: After the billing cycle (i.e., the required number of timeslots),

the SM homomorphically encrypts these vectors and sends them to the

grid operator.

4.4. Server’s Billing Model with Universal Cost Split

Upon receiving the encrypted data from the SMs, the server (grid operator)

executes a homomorphic version of Algorithm 2, which we describe in detail in

Alg. 4. As each ciphertext encrypts a vector of dimension S, where S denotes

the total measurements (billing cycle length) in the vector, the homomorphic

version is equivalent to running Alg. 2 in parallel for S different inputs in a

privacy-preserving way.

All the branches, i.e., if/else statements of the original algorithm are com-

puted homomorphically based on the fact that the code “if B then f(x) else

g(x)”, where B is a Boolean value, is equivalent to “B*f(x) + (1 - B)*g(x)”.

Hence, if B equals 1, we end up with f(x). Otherwise, f(x) is multiplied by zero

and we have g(x).

For the branches that depend on the individual deviations, note that the SM

uploads encryptions of bits that indicate whether InDevx ≤ 0 or not. Thus, we

homomorphically compute the bill and the reward corresponding to both cases,

i.e., InDevx ≤ 0 or InDevx > 0.

Finally, we multiply those bills and rewards by the ciphertexts cb and 1−cb,

with the bits corresponding to signs of the individual deviations, so that only

the correct bills and rewards are multiplied by one while the others are nullified.
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Algorithm 4 Client Bill Calculation (by server)
Input: Number of slots S. Ciphertexts cc, cd, cs, and cb encrypting, respectively, vectors

of consumptions, individual devitations, supplies, and bits. Vectors u,v,y,w consisting of

trading prices, retail prices, feed-in tariffs, and total deviations per timeslot, respectively.

Vectors mdu, for 1 ≤ u ≤ k, containing the masked individual deviations of each user u.

Output: Ciphertexts cbill/prew encrypting the bills/rewards for each time slot.

1: u = (TP0, ...,TPS−1) ∈ ZS ▷ Trading price per time slot

2: v = (RP0, ...,RPS−1) ∈ ZS ▷ Retail price per time slot

3: y = (FiT0, ...,FiTS−1) ∈ ZS ▷ Feed-in tariff per time slot

4: w =
∑k

u=1 mdu ∈ ZS ▷ Total deviation per time slot

5: Let w(0) ∈ {0, 1}S such that w(0)[i] = 1 iff w[i] = 0

6: Let w(<0) ∈ {0, 1}S such that w(<0)[i] = 1 iff w[i] < 0

7: Let w(>0) ∈ {0, 1}S such that w(>0)[i] = 1 iff w[i] > 0

8: c′b = HE.NOT(cb)

▷ Block corresponding to TDi = 0

9: c
(0)
bill = cc · u

10: p
(0)
rew = cs · u

▷ Block corresponding to TDi < 0

11: p
(<0)
rew = cs · u

▷ If InDevi,t ≤ 0

12: c
(<0)
bill = cb · cc · u

▷ If InDevi,t > 0

13: c
(<0)
bill += c′b · (cc · u+ w

P2Pc
n
· (v − u))

▷ Block corresponding to TDi > 0

14: c
(>0)
bill = cc · u

▷ If InDevi,t ≤ 0

15: p
(>0)
rew = cb · cs · u

▷ If InDevi,t > 0

16: p
(>0)
rew += c′b · (cs · u+ w

P2Pc
n
⊙ (y − u))

▷ Combine bills and rewards for all possible TDi

17: cbill = c
(0)
bill ·w

(0) + c
(<0)
bill ·w(<0) + c

(>0)
bill ·w(>0)

18: prew = c
(0)
rew ·w(0) + c

(<0)
rew ·w(<0) + c

(>0)
rew ·w(>0)
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The same strategy is used for the if/else of Alg. 2 that depends on the total

deviation. Since this value is clear for the server (because it is obtained via an

additive secret sharing protocol), the server can produce, on its own, the bits

corresponding to the following three cases: total deviation is less than, equal to,

or greater than zero. Then, we homomorphically compute the bills and rewards

corresponding to each of these three cases, and multiply by those bits so that

we only keep the correct bills and rewards.

For example, if, for the fourth time slot the total deviation (w) is zero, then

we have w(0)[4] = 1 while w(<0)[4] = w(>0)[4] = 0. Then, as shown in lines 17

and 18 of Alg. 4, we compute the bills/rewards using the formulas of the three

possible cases, i.e.:

c
(0)
bill has in its S slots the bills computed as if all the total deviations were

0, whereas c
(<0)
bill encrypts bills considering negative total deviations, and c

(>0)
bill

encrypts bills considering positive total deviations. Hence, at the end of the

algorithm, when we compute

cbill = c
(0)
bill ·w

(0) + c
(<0)
bill ·w(<0) + c

(>0)
bill ·w(>0)

the fourth slot of the message encrypted by cbill will encrypt the bill correspond-

ing to the fourth timeslot where TD4 = 0. The same argument applies to all the

other slots and the rewards.

4.5. Bill settlement

After the successful execution of Alg. 4, the client receives either cbill or

creward. Upon receiving these encrypted bills/rewards, they can decrypt them

using the private key generated during the setup phase (see Sec 4.2). Once

decrypted, the client can pay the required amount to the supplier or request a

reward from the supplier.
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5. Evaluation

5.1. Security Analysis

The security and privacy requirements of our billing models (as listed in

Sec. 3.2) are (1) Authenticity of consumption/production data, (2) Non-

repudiation of calculated bills, (3) Unlinkability of prosumers and con-

sumers, and (4) Confidentiality of billing data.

Authenticity of consumption/production data is guaranteed by our

assumption that SM’s are tamper-proof. They collect data about the volume

of electricity being consumed/produced without any alteration, perform the

necessary operations and communicate this to the grid operator. Additionally,

the provided data is also signed by the SM for non-repudiation and authenticity.

Non-repudiation of calculated bills is guaranteed due to the requirement

for grid operators to sign all computed bills/rewards before sending them to

the respective households. We assume that the signing algorithm guarantees

the properties of unforgeability and verifiability ; thus, we can guarantee the

fulfillment of this property.

Unlinkability of prosumers and consumers is guaranteed by the proto-

col used by the market operator for running the privacy-preserving P2P auction

to match trading bids and offers from prosumers and consumers and derive a

trading price per timeslot. Protocols such as the one proposed by Botelho Da

Gama [25] guarantee unlinkability of prosumers and consumers who trade.

Confidentiality of billing data is guaranteed by the primitives we use

for our billing model. The utilized pseudo-random zero sharing [26] is formally

proven to provide pseudo-randomness, i.e., the masked individual deviations

calculated in Alg. 3 are indistinguishable from truly random values. Since we

assume passive adversaries, they cannot gain any information about the indi-

vidual deviations of the households from the masked values. Additionally, our

utilized FHE algorithms for calculating the bills is formally proven to be IND-

CPA secure [27], i.e., the encrypted volumes and deviations do not leak any

information about each household’s actual volumes and deviations.
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Hence, using these two primitives to calculate the bills/rewards for house-

holds does not leak any private information and guarantees the fulfillment of

this property.

5.2. Theoretical analysis

Our protocol composes two different primitives, namely, PRZS and FHE.

Since PRZS only uses symmetric encryption, its time complexity is negligible

compared to the cost of FHE. The only important point to notice about PRZS

is that the communication in the setup phase is quadratic in the number of

users, i.e., if we use groups of k users, each user has to send about k2 keys.

Given that each key typically has λ bits, the communication cost of this setup

step is Θ(k2 · λ) bits per user.

An important metric in FHE schemes is the depth of the homomorphic

computation to be evaluated, which is the number of ciphertext-ciphertexts

multiplications that must be performed in sequence. By inspecting Alg. 4, we

can see that the depth is only 1. Indeed, one can see that the variable c
(<0)
bill is

the one with the longest chain of multiplications, but it turns out that it is of

the form

c
(<0)
bill = cb · cc · u+ c′b · cc · u+ c′b · p

where u and p are plaintexts and cb, cc, and c′b are ciphertexts.

Since the multiplicative depth is only 1, the client can instantiate the FHE

scheme with a very small ciphertext modulus, for example, Q = 264. For gen-

erality, we consider then Q = O(1), i.e., a constant. For such small modulus,

we can obtain λ bits of security by setting N = Θ(λ) with very small hidden

constant. For instance, for λ = 128, it is possible to choose N = 1024. Hence,

the size of each ciphertext is 2N logQ = O(λ).

By analyzing Alg. 3, we see that the only overhead the client has compared

to the original setup algorithm with no privacy guarantee is the sequence of 4

encryptions at the end, which just cost time O(λ log λ). Also, the communication

cost is just O(λ), since the client just has to upload those 4 ciphertexts to the
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server. However, notice that since each ciphertext encrypts S = Θ(λ) messages,

the overhead compared to the plaintext version is just O(1).

To analyze the cost of Alg. 4, i.e., how the server processes the queries, we

can focus on the homomorphic multiplications, as they are far more costly than

the other operations. We can see that the number of multiplications is con-

stant and, actually, very close to the number of multiplications performed by

the original algorithm, which runs in clear. Thus, we can measure the overhead

by estimating the cost of one homomorphic multiplication divided by the cost

of one multiplication in clear. The latter just costs one instruction. However,

one homomorphic multiplication is performed with two or three degree-N poly-

nomial multiplications, which can be performed in time O(N logN) using Fast

Fourier Transform. Again, remember that each homomorphic operation acts on

S = Θ(N) slots in parallel, thus, the amortized cost is O(logN). Because we

can set N = O(λ), the overhead of Alg. 4 is then just O(log λ).

Summarizing, to add privacy guarantees to the algorithms, we have almost

no overhead in the communication, i.e., O(1), and a very small overhead for the

server running time, i.e., O(log λ), where λ is the security parameter which is

typically set as 128. In Sect. 5.3, we show concrete numbers obtained with some

experiments to measure the overhead in practice.

5.3. Simulations

5.3.1. Use-case

To empirically evaluate our proposed solution, we simulate and analyse the

following use-case.

There is a local community of 100 households, of which 75 are consumers

and 25 prosumers. The RES owned by the prosumers are as follows: 15 pro-

sumers have photovoltaic (PV), 5 consumers have wind turbines (WTs), and

the remaining five prosumers have both.

Each household submits a bid/offer to a P2P trading market for each time

slot. The market runs a double auction to select the winning bids/offers and

to determine the trading price. The households whose bids are accepted are ex-
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pected to fulfill their obligation (committed via their bids) by demanding/supplying

the corresponding volumes of electricity. After the trading period, real data from

the SMs are used to calculate individual bills. Households whose bids are re-

jected trade on the retail market, while households whose bids are accepted

trade on the P2P market (and the retail market if their SM data deviates from

their committed volume of electricity in their bids/offers).

The grid operator calculates households’ bills. Households can collectively

choose to be billed daily, weekly, or monthly.

5.3.2. Data Generation

We use real and simulated data in our experiments. The type of data we use

are consumption data for 100 households, PV generation data for 20 households,

and WT generation data for 10 households; committed volumes of electricity at

the P2P market by the households whose bids/offers are accepted; and trading

prices at the P2P market as well as the prices at the retail market.

Using one-hour trading slots, we gather/simulate data for the Brussels region

from 1 to 7 July 2020.

Real consumption data collected from 61 Belgian households as part of the

Linear project [28] are used as example data and a base for generating the

consumption data for 39 households. For this data generation, we follow the

following approach for each household. We randomly select one of the 61 house-

holds and multiply their consumption data with a randomly selected coefficient

from the range [0.9 – 1.1]. In summary, for the consumption data of households,

we use real data from 61 real households and synthetic data for 39 households

derived from real data.

For the PV generation data, we randomly choose a PV capacity from the set

[2.3, 3.6, 4.7] KWp for each household with PVs. Related to the strength of the

solar radiation at a particular time slot, we set a PV output equal to the per-

centage of its capacity for each PV. For example, on 7 July 2023 at 13:15 CEST

in Belgium, PVs with total capacity of 7.677,34 MWp generated 5.658,64 MW

energy, resulting in a conversion coefficient of 0.737 [29]. To incorporate further
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deviations in their outcome, we multiplied each PV outcome by a coefficient

randomly chosen from the range [0.9 – 1.1].

Similarly, for the WT generation data, for each of the households with WTs,

we randomly chose a WT capacity from the following set [1.0, 1.5, 2.0] KWp.

Related to the strength of the wind at a particular time slot, we set an output

equal to the percentage of its capacity for each WT. For example, on 7 July 2023

at 13:15 CEST in Belgium, WTs with total capacity of 2.525,9 MWp generated

only 180,06 MW energy, resulting in a conversion coefficient of 0.0712 [30]. To

incorporate further deviations in their outcome, we multiplied each WT outcome

by a coefficient randomly chosen from the range [0.9 – 1.1].

The real demand/supply data of prosumers is then calculated by subtracting

their PV/WTs generation data from their consumption/supply data per each

time slot.

We generate the predicted volume of each household from their consump-

tion/supply data. We assume that 10% of households have a perfect prediction

algorithm; 60% – good, 20% – not so good, and 10% – quite bad. We ran-

domly select 10% of the households and make their predicted volume equal to

their actual consumption/supply data. We randomly select 60% of the remain-

ing households whose predicted volume deviates from their actual consump-

tion/generation profile with [1–10%]. We randomly select 20% of the remain-

ing households whose predicted volume deviates from their actual consump-

tion/generation profile with [11-20%]. The predictions of the remaining 10%

of the households deviate greatly from their actual consumption/supply data

[21-100%].

The code to transform the weather data into PV/WT data and generate the

household production/consumption data is available here: https://github.

com/3MI-Labs/private-billings-data-generation.

5.3.3. Simulation Framework

The private-billing library was created to demonstrate the performance of

a privacy-preserving billing model. This Python library contains two primary
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modules:

1. a core module focused on executing the steps in the billing model, and

2. server and client implementations that can be used to (automatically)

exchange data between the parties involved in the billing algorithm.

The library provides the Universal Cost Split (UCS) billing model [7] as a default

implementation. It has been organized such that future work can expand it, to

implement and test other innovative privacy-preserving billing models. To our

knowledge, this is the first such library in existence. It is publicly available at

https://github.com/3MI-Labs/private-billings.

To execute the experiment set and measure the desired data, the library

was slightly modified. These modifications do not impact the performance of

the library. The source of the experiment library can be found here: https:

//github.com/3MI-Labs/private-billings-experiment.

5.3.4. Simulation Results

We have also performed simulations to demonstrate the feasibility of our

proposed solution in a real-world P2P market setting.

Computational cost. We split the computational cost into two parts: cost per

trading slot and cost per billing period.

Our experiments were run one at a time on a near-idle PC. The machine we

ran our simulations on had the following specifications: 13th Gen Intel® Core™

i7-13700H @ 5 GHz and 16 GB RAM.

We split our experiments based on the number of participating households,

i.e., 12, 25, 50, or 100. As depicted in Fig. 3, we obtained the following results:

• The time taken to perform encryption (hide data) of all data increases

sub-linearly with the number of households. For 12 households, it takes

∼ 1 second compared to ∼ 3 seconds for 100 households.

• The average time for bill computation is ∼ 0.17 seconds for all our exper-

iments, i.e, irrespective of the number of households.
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Figure 3: Average computation time for all households and billing periods

• The time taken to reveal the encrypted bills is nearly constant ∼ 0.10

seconds per household.

6. Conclusions and Future Work

This paper presented a fully privacy-preserving billing model based on uni-

versal cost-split that handles discrepancies between committed and consumed/injected

volumes of electricity. Our billing model can calculate bills/rewards for various

participating households within ∼ 0.17 seconds, showing its feasibility when de-

ployed in a real-world setting. In addition, we also implemented a framework to

enable private billings using FHE that can be adapted to support any billing

model of choice.

In future work, we plan to execute the simulations of our billing model

in a completely distributed fashion, i.e., the server and clients are situated in

geographically different locations. Additionally, we assume that our adversary

is honest but curious (or passive). While this fits our use case, as future work,

we plan to formally prove our billing protocol to be secure in the presence of an

actively malicious adversary that can take any arbitrary action to sabotage the

execution of the protocol.
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