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Abstract. This paper reveals a critical flaw in the design of ARADI, a
recently proposed low-latency block cipher by NSA researchers – Patri-
cia Greene, Mark Motley, and Bryan Weeks. The weakness exploits the
specific composition of Toffoli gates in the round function of ARADI’s
nonlinear layer, and it allows the extension of a given algebraic distin-
guisher to one extra round without any change in the data complexity.
More precisely, we show that the cube-sum values, though depending
on the secret key bits, are always equal in two of the state words. Such
a structural property is difficult to obtain by the direct application of
division property and has never been seen before in any state-of-the-art
block cipher. We call this structural property weakly-composed-Toffoli
gates, and introduce a theoretical framework which can describe it in
general terms. We present algebraic distinguishers that reach 8 out of 16
rounds of ARADI. Most notably, we show that these distinguishers have
better data complexities than the division property-based distinguishers
for the same number of rounds. We further investigate whether changing
the linear layer or the order of composition of Toffoli gates could avoid
this property. We give a negative answer to the same and show that it is
impossible to prevent this structural property unless the nonlinear layer
is re-designed. As a side result, we provide a key-recovery attack on 10
rounds ARADI with 2124 data and 2177 time for a 256-bit key. Our work
highlights the significance of security analysis during the cipher design
phase, and shows that these strong structural distinguishers could have
been avoided during this phase.

Keywords: ARADI· Algebraic attacks · Division property · Cube attacks ·
Toffoli gates

1 Introduction

In the evolving cryptography landscape, block ciphers play a pivotal role in
safeguarding sensitive data, particularly in memory encryption systems where
low latency is crucial. Memory encryption is vital for protecting data as it moves
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between the processor and memory, ensuring confidentiality and integrity against
attacks targeting vulnerable memory contents.

Memory encryption faces several challenges, primarily balancing performance
and security. Achieving low latency is critical to prevent delays and excessive en-
ergy consumption, especially in real-time and mobile applications and embedded
systems. Additionally, memory encryption must resist physical attacks. Design-
ing secure ciphers that can withstand these challenges, particularly in multicore
and virtualized environments, while protecting non-volatile memory from attacks
remains a complex challenge.

Low-latency block ciphers have been a topic of significant interest, especially
for memory encryption systems. Several designs have emerged over the years,
focusing on achieving high performance without compromising cryptographic
strength. Among these, PRINCE [12] stands as an early influential design, fol-
lowed by improvements such as PRINCEv2 [13]. Other noteworthy examples
include MANTIS [7], which targets lightweight applications, and QARMA [3],
designed with flexibility and security in mind. Recent designs continue to push
the boundaries of efficiency and security, including SPEEDY [25], ORTHROS [6],
QARMAv2 [4]. SCARF [14], BipBip [8], Sonic and SuperSonic [9], Gleook [1] and
Twinkle [29].

ARADI, a modern low-latency block cipher with 128-bit block size and 256-
bit key size, mainly designed for memory encryption use-case, was recently
made public by the US National Security Agency (NSA) [18]. Unlike other aca-
demic publications of new symmetric primitives, the choices behind the design
of ARADI were not made explicit by the authors. So, this primitive’s resilience
must be thoroughly investigated against a range of cryptanalytic techniques to
have confidence in its security.

This article delves into the algebraic cryptanalysis of ARADI, leveraging al-
gebraic methods to explore potential weaknesses in its structure. In the following,
we first discuss the related works on ARADI, and then describe our contributions
in detail.

1.1 Related Works on ARADI

After its publication not much research on the security of ARADI has been pub-
lished after its publication, and nothing is peer-reviewed yet. In Bellini et al. [10],
the authors utilize the automated tool CLAASP [11] to analyze the ARADI ci-
pher using a combination of techniques, including: statistical black-box analysis
such as avalanche and diffusion tests, (up to 9 rounds) differential and linear
trails, (8 rounds) impossible trails, and (5-round) neural distinguishers. They
also include a preliminary algebraic analysis revealing an integral distinguisher
reaching 7 rounds of ARADI with 2124 data. The authors also show that in
some instances, the algebraic degree grows more slowly, reaching only 60 after 5
rounds, which leads to an integral distinguisher with a data complexity of 261.

In another unpublished note, Avanzi, Dunkelman, and Ghosh [5] evaluate
ARADI’s recent design and question whether it offers significant improvements
over existing low-latency block ciphers in terms of area-latency trade-offs. They
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highlight an issue related to the LLAMA mode of operation, particularly with
the varying length of initialization vectors (IVs), that compromises the integrity
and confidentiality of ciphertexts. Later, the same weakness was acknowledged
by ARADI’s designers in their updated Eprint report.

1.2 Our Contributions

The work by Bellini et al. [10] did not consider any structural aspects of ARADI.
Instead, the provided results are obtained by modeling ARADI in CLAASP, and
then running the toolkit. Avanzi et al.’s [5] work also did not look at any cipher-
specific property. On the other hand, this work takes an in-depth look inside the
structure of ARADI and reveals new structural weaknesses leading to several
algebraic distinguishers. Our contributions in detail are as follows.

Degree bounds with division property. We provide the mixed integer lin-
ear programming-based modeling of the three-subset division property of ARADI
(see Section 3). Consequently, using this model, we obtain better algebraic distin-
guishers than Bellini et al. in terms of number of rounds and data complexities.

New structural property of ARADI. We present a structural property
called weakly-composed-Toffoli gates that exploits the composition of Toffoli
gates in the nonlinear layer. In simple terms, the state update with the first
two Toffoli gates strongly depends on the algebraic normal form of the output
bits of two state words. We introduce a general theoretical framework that de-
scribes this property (Theorem 1). The notable feature of the property is that
it permits the extension of an r-round algebraic distinguisher to r + 1 rounds
with the same data complexity as of r-round distinguisher. The r + 1 rounds
distinguisher, though depending on the key bits, always has equal cube-sum (4)
values in two of the state words. It is to be noted that such a property has never
been found before in any state-of-the-art block cipher. Also, the dependence on
key bits makes it difficult to obtain them directly by division property.

Improved distinguishers. Using the weakly-composed-Toffoli gates property
in Theorem 1, we give several algebraic distinguishers reaching 8 rounds of
ARADI. Compared to Bellini et al. and division property-based distinguish-
ers, the data complexities of these structural distinguishers are lower. Table 1
compares all distinguishers in three different settings.

(Im)possibility of fixing the structural distinguishers. We show that
the aforementioned property is independent of the choice of the linear layer.
Furthermore, we investigate all possible combinations of Toffoli gates for 4 state
words and find that results similar to Theorem 1 still hold. Consequently, we
show that it is impossible to prevent this property without re-designing the
nonlinear layer.
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Table 1. A comparison of algebraic distinguishers for ARADI with Theorem 1 (using
cubes from Table 4), three-subset division property (using cubes from Table 2) and
Bellini et al. [10].

Round Data (log2(·) scale)
Theorem 1 Division property Bellini et al. [10]

4 4 4 28
5 16 16 84
6 84 92 113
7 113 116 124
8 124 124 -

Key recovery attack. We report a key recovery attack on 10 rounds ARADI
using the 8-round distinguisher. The attack requires 2124 data and 2177 time.
Though the key recovery attack is not the focus of this work and provided as a
side result, it is the first one in literature using the algebraic distinguishers.

We provide the source codes of our implementations for verification and com-
putation of values provided in all tables at https://github.com/Crypto-TII/
aradi_structural_algebraic_distinguisher.

1.3 Outline of the Paper

The remainder of the paper is organized as follows. In Section 2, we recall the
basics of algebraic attacks and give the specification of ARADI along with our
attack setting. Section 3 provides the MILP modeling for the three-subset divi-
sion trails of ARADI and our experimental results on algebraic degrees. Sections
4 and 5 introduces the weakly-composed-Toffoli gates structural property of
ARADI and the related distinguishers, respectively. In Section 6, we investigate
the possibility of fixing these structural distinguishers. We provide a key recov-
ery attack on 10 rounds ARADI in Section 7. Finally, we conclude the paper in
Section 8 with future research directions.

2 Preliminaries

In this section, we describe the notation used throughout the paper, briefly ex-
plain the fundamentals of algebraic attacks, and give an overview of the ARADI
block cipher. In the end, we discuss the attack setting for ARADI that we use
throughout the paper.

2.1 Notation

Let A be a set and Ã be the complementary set of A. We denote its cardinality
by |A|. Given two sets A and B, A ∪ B denotes the union of A and B. By
F2 = {0, 1}, we denote the finite field with two elements and Fn

2 denotes the
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n-dimensional vector space of F2. Let x, y ∈ Fn
2 such that x = (x0, . . . , xn−1)

and y = (y0, . . . , yn−1). Then, we use x⊙y and x+y to denote the bitwise AND
and bitwise XOR, respectively. Note that ‘+’ may also denote other kinds of
addition (such as integer addition or field addition), and the meaning should be
clear from the context. We say x ⪯ y, if xi ≤ yi for all i.

Let f : Fn
2 7→ F2 be a Boolean function. We define its Algebraic Normal Form

(ANF) as f(x) =
∑

u∈Fn
2
aux

u where au ∈ F2 and xu =
∏n−1

i=0 xui
i is a monomial.

We denote the coefficient au of the monomial xu in the ANF of f by Coef (xu)
and therefore, Coef (xu) = au. For a given u, the coefficient Coef (xu) can be
computed as follows [15].

Coef (xu) =
∑
x⪯u

f(x) . (1)

The algebraic degree of f is given as

deg(f) = max
u∈Fn

2

{wt(u) | Coef (xu) ̸= 0}

where wt(u) represents the Hamming weight of the vector u.

2.2 Algebraic Attacks

In our context, algebraic attacks are common cryptanalytic techniques against
symmetric key ciphers. The main idea of an algebraic attack is to exploit the
algebraic degree of a Boolean function, i.e., for an n-variable Boolean function
with deg(f) = d (with d < n − 1), summing the outputs of f over any (d + 1)-
dimensional affine subspace, the final value will always be zero. This idea is at
the core of several variants of algebraic attacks, namely higher-order differential
distinguishers [24], integral distinguishers [16,23], cube attacks [17,2].

Consider a block cipher with n-bit block size and m-bit key size. Let p =
(p0, . . . , pn−1) be n public (plaintext) bit variables and k = (k0, . . . , km−1) be m
secret bit variables. Then, any output bit of a block cipher can be regarded as a
Boolean function f : Fm

2 × Fn
2 7→ F2 given by

f(k, p) =
∑
u∈Fn

2

∑
v∈Fm

2

Coef (pu · kv) · pu · kv (2)

Given a set of indices I = {i0, i1, . . . , id−1} ⊂ {0, 1, . . . , n − 1} with p(I)
denoting the monomial

∏
i∈I pi, (2) can be alternatively written [17] as

f(k, p) = p(I) · t( pi
i∈Ĩ

; k0, . . . , km−1) + q(p0, . . . , pn−1, k0, . . . , km−1), (3)

where Coef (p(I)) = t(pii∈Ĩ ; k0, . . . , km−1) and the Boolean function q misses at
least one variable from {pi | i ∈ I}. Let CI denote the set of n-bit vectors p
such that {pi}i∈I can take all possible values while {pi}i∈Ĩ are fixed to some
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constant. We call CI as the d-dimensional cube corresponding to cube indices I.
Furthermore, for a fixed key, we have∑

p∈CI

f(p) = Coef (p(I)) . (4)

The left term in (4) is called as cube-sum. If the algebraic degree in cube variables
{pi | i ∈ I} is less than the cube-dimension d for all keys, then the cube-sum is
always 0, i.e., Coef (p(I)) = 0.

A useful tool to check whether the value of Coef (p(I)) equals 0 is the division
property, introduced by Todo [26]. The technique offers a systematic and auto-
mated approach to probe the algebraic structure of Boolean functions, especially
when their ANF is too complex to compute [28,20,31,27,19,30]. Specifically, the
bit-based division property can give an indication of the value of Coef (p(I)) in
the targeted Boolean function [20,27,19,30,21,22]. We introduce the technical
details of division property on-site in Section 3 when immediately necessary.

2.3 Specification of ARADI

ARADI is a low-latency block cipher proposed by the US National Security
Agency researchers Greene et al. [18]. The block size and key size are 128 and
256 bits, respectively. The ARADI round function is an substitution permutation
network design and consists of three operations, namely the S-box layer π, the
i-th linear map Λi, and the i-th round key addition τki

. The cipher consists of
16 rounds and is given by

τk16 ◦
15
ì
ì

i=0

(Λi mod 4 ◦ π ◦ τki), (5)

where the composition is read from right to left.
The round function operates on a 128-bit state arranged into four 32-bit

words W,X,Y,Z. We now briefly explain the individual operations of round
function.

The S-box layer π. The S-box layer is based on the Toffoli gate applied to
three 32-bit words a, b, c, so that (a, b, c) 7→ (a, b, c + a ⊙ b). The input state
(W,X,Y,Z) is transformed by π as follows:

X ← X +W ⊙ Y, Z ← Z + X ⊙ Y, Y ← Y +W ⊙ Z, W ← W + X ⊙ Z. (6)

The linear layer Λi. At round i, the input state (W,X,Y,Z) is transformed
by Λi as follows:

Λi(W,X,Y,Z)→ (Li(W), Li(X), Li(Y), Li(Z)), (7)
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where Li is an involutory linear map on 32-bit words. Let the 32-bit input to Li

be composed of two 16-bit words u and l. Then Li is given by

(u, l)→ (u+ Sai
16(u) + Sci

16(l), l + Sai
16(l) + Sbi

16(u)), (8)

where the operation Sm
16(·) denotes the left circular shift of a 16-bit word by m

positions. We refer the reader to [18][Section 3.1] for the exact shift offsets.

The key addition layer. This operation XORs a 128-bit round key to the
state. The round keys are generated by the dedicated key scheduling algorithm
as explained below.

The key schedule algorithm. ARADI’s key schedule operates on an array
of eight 32-bit registers. Let Ki

0,K
i
1, . . . ,K

i
7 denote the state at i-th step, then

the i-th 128-bit round key rki equals Ki
0∥Ki

1∥Ki
2∥Ki

3 for even index round and
Ki

4∥Ki
5∥Ki

6∥Ki
7 otherwise.

At each step, words {0, 1} and {4, 5} (resp. {2, 3} and {6, 7}) of state are
updated by the 64-bit invertible linear map M0 (resp. M1). Then, a word per-
mutation Pj is applied where P0 = (12)(56) and P1 = (14)(36), and j is the
round modulo 2.

The linear maps M0 and M1 operates on a pair of 32-bit words a and b are
given by

M0(a, b) = (S1
32(a) + b, S3

32(b) + S1
32(a) + b)

M1(a, b) = (S9
32(a) + b, S28

32(b) + S9
32(a) + b) (9)

where S32 is a left circular shift on a 32-bit word.

2.4 Attack Setting for ARADI

In our analysis of ARADI, we denote the cipher’s state after r rounds using
the 32-bit words Wr,Xr,Yr,Zr. The Boolean functions of the i-th bit of each
word after r rounds is represented by Wr

i ,X
r
i ,Y

r
i ,Z

r
i . The sets of bit indices

for the input words (plaintext) W0,X0,Y0,Z0 are denoted as Iw, Ix, Iy, Iz ⊆
{0, 1, . . . , 31}.

We refer the indices in Iw, Ix, Iy, Iz collectively as the cube indices of di-
mension d, and satisfying |Iw| + |Ix| + |Iy| + |Iz| = d < 127. These index sets
Iw, Ix, Iy, Iz are sometimes referred to as cube-index sets. The corresponding set
of plaintext variables

{W0
i | i ∈ Iw}

⋃
{X0

i | i ∈ Ix}
⋃
{Y0

i | i ∈ Iy}
⋃
{Z0

i | i ∈ Iz} (10)

is referred to as cube variables.
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A monomial m corresponding to cube-index sets Iw, Ix, Iy, Iz is defined as
follows.

m := W0(Iw)X0(Ix)Y0(Iy)Z0(Iz)

=
∏

i ∈ Iw

W0
i ·

∏
i ∈ Ix

X0
i ·

∏
i ∈ Iy

Y0
i ·

∏
i ∈ Iz

Z0
i (11)

In the remaining part of the paper, we aim to find Iw, Ix, Iy, Iz so that
CoeWr

i
(m), CoeXr

i
(m), CoeYr

i
(m) and CoeZr

i
(m) are either zero (degree in cube

variables set (10)) or have certain structural relationships.

3 Degree Bounds with Division Property

In this section, we present integral distinguishers for the round-reduced ARADI
by computing the upper bounds on the algebraic degree using the three-subset
bit-based division property (3SBDP) [20]. We begin with a brief description of
Mixed Integer Linear Programming (MILP) models for the propagation rules
of the 3SBDP in ARADI. Subsequently, we provide degree bounds for round-
reduced ARADI, leading to several integral distinguishers.

3.1 MILP Modeling

ARADI block cipher consists of the following basic operations: bitwise XOR,
bitwise AND, bitwise ROTATION, and bitwise XOR with a constant. To model
these operations in MILP, along with the bitwise COPY, which is essential for the
division property search, we need the following constraints. Let a, b, b1, b2, . . . , bn
be binary variables. Then, the above operations can be modeled as follows [20].

– Bitwise XOR: (b1, . . . , bn)
XOR−−−→ a : a = b1 + b2 + . . .+ bn

– Bitwise AND: (b1, . . . , bn)
AND−−−→ a : a = bi for 1 ≤ i ≤ n

– Bitwise COPY: a COPY−−−−→ (b1, . . . , bn) : a ≥ bi for 1 ≤ i ≤ n, and b1 + b2 +
. . .+ bn ≥ x

– Bitwise XOR with constant 1: a XOR+1−−−−−→ b : b ≥ a.

Algorithm 1 provides the three-subset bit-based division property MILP
modeling of r rounds ARADI using the above basic operations. The exact mod-
eling of underlying functions RoundkeyXOR, S-box, Linear-map in Algorithm 1 is
discussed in Appendix A.

3.2 Upper Bounds on Algebraic Degree

We use Algorithm 1 to compute the upper bounds of algebraic degree of a
monomial corresponding to the cube-index sets Iw, Ix, Iy and Iz in the ANF
of Wr

i , Xr
i , Yr

i , and Zr
i for a given output bit i and after r rounds. The entire
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Algorithm 1: MILP model for 3SBDP of r rounds ARADI
Input: Empty model M, number of rounds r, key variables k0, . . . , k255
Output: MILP model M

1 M.addV ar ← w0
i , x

0
i , y

0
i , z

0
i , for i = 0, . . . , 31

2 M.addV ar ← rk0
i , a

0
i , for i = 0, . . . , 127

3 RoundkeyXOR(M, a0
0, . . . , a

0
31, w

0
0, . . . , w

0
31, rk

0
0, . . . , rk

0
31)

4 RoundkeyXOR(M, a0
32, . . . , a

0
63, x

0
0, . . . , x

0
31, rk

0
32, . . . , rk

0
63)

5 RoundkeyXOR(M, a0
64, . . . , a

0
95, y

0
0 , . . . , y

0
31, rk

0
64, . . . , rk

0
95)

6 RoundkeyXOR(M, a0
96, . . . , a

0
127, z

0
0 , . . . , z

0
31, rk

0
96, . . . , rk

0
127)

7 for j = 0 to r − 1 do
8 M.addV ar ← bji , c

j
i , d

j
i , e

j
i , for i = 0, . . . , 31

9 S-box(M, bj0, . . . , b
j
31, c

j
0, . . . , c

j
31, d

j
0, . . . , d

j
31, e

j
0, . . . , e

j
31, a

j
0, . . . , a

j
127)

10 M.addV ar ← pji , q
j
i , s

j
i , t

j+1
i , for i = 0, . . . , 31

11 Linear-map(M, j mod 4, pj0, . . . , p
j
31, b

j
0, . . . , b

j
31)

12 Linear-map(M, j mod 4, qj0, . . . , q
j
31, c

j
0, . . . , c

j
31)

13 Linear-map(M, j mod 4, sj0, . . . , s
j
31, d

j
0, . . . , d

j
31)

14 Linear-map(M, j mod 4, tj0, . . . , t
j
31, e

j
0, . . . , e

j
31)

15 M.addV ar ← wj+1
i , xj+1

i , yj+1
i , zj+1

i , for i = 0, . . . , 31

16 M.addV ar ← rkj+1
i , for i = 0, . . . , 127

17 RoundkeyXOR(M, wj+1
0 , . . . , wj+1

31 , pj0, . . . , p
j
31, rk

j
0, . . . , rk

j
31)

18 RoundkeyXOR(M, xj+1
0 , . . . , xj+1

31 , qj0, . . . , q
j
31, rk

j
32, . . . , rk

j
63)

19 RoundkeyXOR(M, yj+1
0 , . . . , yj+1

31 , sj0, . . . , s
j
31, rk

j
64, . . . , rk

j
95)

20 RoundkeyXOR(M, zj+1
0 , . . . , zj+1

31 , tj0, . . . , t
j
31, rk

j
96, . . . , rk

j
127)

21 return MILP model M

Algorithm 2: MILP model for computing the upper bound on degree
Input: Empty model M, number of rounds r, key variables k0, . . . , k255, bit

position target, Indices sets IW, IX, IY, IZ
Output: Degree upper bound of targeted output bit

1 Model R rounds ARADI using Algorithm 1
2 S = wr

0∥ . . . ∥wr
31∥xr

0∥ . . . ∥xr
31∥yr

0∥ . . . ∥yr
31∥zr0∥ . . . ∥zr31

3 for i = 0 to 127 do
4 if i = target then
5 M.addConstr(Si = 1)

6 else
7 M.addConstr(Si = 0)

8 M.setObjective(
∑

i∈IW
w0

i +
∑

i∈IX
x0
i +

∑
i∈IY

y0
i +

∑
i∈IZ

z0i ,Maximize)

9 return Objective value

algorithm to compute the degree upper bounds for each state bit is explained in
Algorithm 2.

In Table 2, we give the degree bounds for the monomials corresponding to
the cube-index sets in the second column, for up to 8 rounds using Algorithm
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2. We provide the minimum and maximum degrees computed for Wr
i , Xr

i , Yr
i

and Zr
i for i ∈ {0, 1, . . . , 31}. The degrees of Wr

i and Yr
i remain the same for

the respective bits, and similarly, the degrees of Xr
i and Zr

i remain the same.
Therefore, we present the degree bounds for Wr

i and Yr
i in a single column, and

the degree bounds for Xr
i and Zr

i in another column.
For rounds 4 and 5, we find several indices i ∈ {0, 1, . . . , 31} for which the

degrees remain min (column 3 and 5). In rounds 6, 7, and 8 the degrees remain
constant and lower than the dimension of the cubes for all i.

Table 2. Index sets and the corresponding minimum and maximum algebraic degrees
of Wr

i , Xr
i , Yr

i and Zr
i in all i ∈ {0, 1, . . . , 31} up to 8 rounds using division property.

Round Indices Degree in Wr
i ,Y

r
i Degree in Xr

i ,Z
r
i Cube

r min max min max dimension

4

IW = {0}

3 4 3 4 4
IX = {0}
IY = {0}
IZ = {0}

5

IW = {0, . . . , 4}

15 16 15 16 16
IX = {0, . . . , 4}
IY = {0, . . . , 4}
IZ = {0, . . . , 4}

6

IW = {0, . . . , 22}

92 92 90 90 92
IX = {0, . . . , 22}
IY = {0, . . . , 22}
IZ = {0, . . . , 22}

7

IW = {0, . . . , 28}

116 116 115 115 116
IX = {0, . . . , 28}
IY = {0, . . . , 28}
IZ = {0, . . . , 28}

8

IW = {0, . . . , 30}

124 124 123 123 124
IX = {0, . . . , 30}
IY = {0, . . . , 30}
IZ = {0, . . . , 30}

Remark 1. We use Gurobi 11 as the underlying MILP solver and run all exper-
iments in this paper on a machine with two AMD EPYC processors (x86_64
architecture).

In the next section, we will explain a structural weakness in the non-linear layer
of the cipher, which will lead to better distinguishers.
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4 New Structural Property of ARADI

In this section, we present a structural property of ARADI’s round function
by exploiting the composition of Toffoli gates. We call it the weakly-composed-
Toffoli gates property. This property allows to extend a given r rounds integral
distinguisher to r + 1 rounds integral distinguisher without changing the data
complexity.

We first explain this property with an example and then provide its math-
ematical details in Theorem 1. Recall that we use Wr

i ,X
r
i ,Y

r
i , and Zr

i to rep-
resent the Boolean functions corresponding to the i-th bit of the 32-bit words
Wr,Xr,Yr, and Zr of ARADI after r rounds, respectively. Furthermore, Iw, Ix,
Iy, Iz ⊆ {0, 1, . . . , 31} denote the sets corresponding to bit indices of input words
(plaintext words) W0,X0,Y0, Z0 (see Section 2.4).

4.1 Weakly-composed-Toffoli Gates

We start with an example to explain what we mean by weakly-composed-Toffoli
Gates for ARADI.

Example 1. Let Iw = {0, 1, . . . , 15}, Ix = ϕ, Iy = ϕ and Iz = ϕ. We set all plain-
text bits corresponding to Ĩw, Ĩx, Ĩy, Ĩz as constant zero. Then, after 4 rounds,
the cube-sum of the outputs of 216 plaintexts is always zero. More precisely
for the monomial m = W0(Iw)X0(Ix)Y0(Iy)Z0(Iz), we have CoeW4

i
(m) = 0,

CoeX4
i
(m) = 0, CoeY4

i
(m) = 0 and CoeZ4

i
(m) = 0, for all i = 0, . . . , 31. Notice

that this can be easily verified with the division property (Section 3).
Interestingly, we also find that the cube-sum of the outputs of 216 plaintexts

after 5 rounds are exactly equal in two of the state words. In particular, we find
that

CoeX5
i
(m) = CoeZ5

i
(m), for all i = 0, . . . , 31. (12)

We repeated Example 1 with 216 keys and for all these keys, we observe this
structural pattern. This can be verified using ARADI encryption source code pro-
vided at https://github.com/Crypto-TII/aradi_structural_algebraic_
distinguisher. Here, we give the explicit values of these coefficients for some
keys in Table 3.

In order to understand the reasoning behind the structural pattern in Table 3,
we look at the composition of Toffoli gates and how the state words are updated
in the 5-th round. The first Toffoli gate is applied on (W4,Y4,X4) resulting in

X5 = L0(X
4 +W4 ⊙ Y4) = L0(X

4) + L0(W
4 ⊙ Y4), (13)

where L0 is the linear map.
Next, the second Toffoli gate is applied on (X4+W4⊙Y4,Y4,Z4) which gives

the value of Z5 as follows.

Z5 = L0(Z
4 + (X4 +W4 ⊙ Y4)⊙ Y4)

= L0(Z
4) + L0(X

4 ⊙ Y4) + L0(W
4 ⊙ Y4) (14)
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Table 3. A 5-round distinguisher of ARADI with equal coefficients of monomial m
(marked in red) in two words after 5 rounds. Here Iw = {0, 1, . . . , 15}, Ix = ϕ, Iy = ϕ
and Iz = ϕ. The plaintext bits corresponding to Ĩw, Ĩx, Ĩy, Ĩz are set as constant zero.

Master key Round Coefficients of monomial m in word
r Wr Xr Yr Zr

a77a0507 6181d046 dc8b0dd8 8e1c60da 4 0 0 0 0
b5972211 8b06df2a c5825749 b61309a3 5 7dad17a7 17171c1c 3ec42fe5 17171c1c

4c11e8d1 f5abb1a2 e03d40be cd6d268c 4 0 0 0 0
b882ef59 64db2c6f 565612b2 3b6a5164 5 47fb9d78 4949e8e8 77957aba 4949e8e8

62a2ddfa c1dda4c7 8c5b112 322d62c3 4 0 0 0 0
a82ba564 167d9e64 639aaa1d ae052fb0 5 5ce9b27a 41417a7a 787f1a40 41417a7a

5ac786d b0780d6 16bae661 6c421677 4 0 0 0 0
279cb2df 42e60421 5cb71c1f 10dcdea4 5 f624a230 11112d2d 20725e2b 11112d2d

In (13) and (14), we observe that the common term is L0(W
4 ⊙ Y4). The

cube-sums of L0(X
4) and L0(Z

4) are zero because the cube-sums of X4 and Z4

are zero, and the linear layer do not increase the algebraic degree. So, the only
way the cube-sum of X5 and Z5 can be equal is when the cube-sum of L0(X

4⊙Y4)
is zero. This can happen when the degree of X4⊙Y4 in cube variables from Iw is
at most 15, i.e., the monomial m is missing in the ANF of each bit of X4 ⊙ Y4.
Once this is satisfied, the same L0(W

4⊙Y4) contributes in the cube-sum values
after 5 rounds. Hence, the cube-sum values of X5 and Z5 are equal in Table 3.

The above distinguisher reveals a potential weakness of the composition of
Toffoli gates in ARADI’s nonlinear layer. In the following section, we give a
theoretical description of this weakness and discuss how to exploit it to construct
an r + 1-round distinguisher from a r-round distinguisher.

4.2 Mathematical Description

Theorem 1. Let r ≥ 2 and Iw, Ix, Iy, Iz ⊆ {0, 1, . . . , 31} such that |Iw|+ |Ix|+
|Iy|+ |Iz| ≤ 127. Define the momomial

m =
∏

i ∈ Iw

W0
i ·

∏
i ∈ Ix

X0
i ·

∏
i ∈ Iy

Y0
i ·

∏
i ∈ Iz

Z0
i .

For each i ∈ {0, . . . , 31}, suppose the following conditions are satisfied.

(a) CoeXr
i
(m) = 0

(b) CoeZr
i
(m) = 0

(c) CoeXr
i⊙Yr

i
(m) = 0

Then, the following holds:

CoeXr+1
i

(m) = CoeZr+1
i

(m)

12



Proof. Consider the r-th round of ARADI. The application of the first Toffoli
gate maps (Wr,Yr,Xr) 7→ (Wr,Yr,Wr ⊙ Yr + Xr). So, for each i ∈ {0, . . . , 31},
we have

CoeWr
i⊙Yr

i +Xr
i
(m) = CoeWr

i⊙Yr
i
(m) + CoeXr

i
(m) (15)

Since CoeXr
i
(m) = 0 (by condition (a)), (15) reduces to

CoeWr
i⊙Yr

i +Xr
i
(m) = CoeWr

i⊙Yr
i
(m). (16)

Similarly, the second Toffoli gate maps

(Xr +Wr ⊙ Yr,Yr,Zr) 7→ (Xr +Wr ⊙ Yr,Yr,Zr + Xr ⊙ Yr +Wr ⊙ Yr).

Again, for each i ∈ {0, . . . , 31}, we have

CoeZr
i+Xr

i⊙Yr
i +Wr

i⊙Yr
i
(m) = CoeZr

i
(m) + CoeXr

i⊙Yr
i
(m) + CoeWr

i⊙Yr
i
(m) (17)

By conditions (b) and (c), (17) reduces to

CoeZr
i+Xr

i⊙Yr
i +Wr

i⊙Yr
i
(m) = CoeWr

i⊙Yr
i
(m). (18)

Now, the same linear layer Lr mod 4 is applied to each word of the state, and
(16) and (18) hold for all i. Thus, we have

Lr mod 4×

 CoeWr
0⊙Yr

0+Xr
0
(m)

...
CoeWr

31⊙Yr
31+Xr

31
(m)

 = Lr mod 4×

 CoeZr
0+Xr

0⊙Yr
0+Wr

0⊙Yr
0
(m)

...
CoeZr

31+Xr
31⊙Yr

31+Wr
31⊙Yr

31
(m)


From the above matrix product, it is evident that CoeXr+1

i
(m) = CoeZr+1

i
(m)

for all i = 0, . . . , 31. This completes the proof. ⊓⊔

Remark 2. Theorem 1 implies that the monomial m is missing in the ANFs of
Xr
i ,Z

r
i ,X

r
i ⊙Yr

i and the coefficients of monomial m in Xr+1
i and Zr+1

i are equal,
for each i ∈ {0, 1, . . . , 31}.

We emphasize that the observation in Theorem 1 could be destroyed easily
given the ARADI’s designers have used different linear mappings for each row.
However, even different linear mappings do not fully prevent from having similar
structural distinguishers. We summarize this observation in Corollary 1.

Corollary 1. Let Lw, Lx, Ly, Lz be four different 32-bit to 32-bit invertible lin-
ear mappings and applied on words W,X,Y,Z, respectively. Suppose the condi-
tions in Theorem 1 are satisfied. Then, the following holds.

L−1
x ×

CoeXr+1
0

(m)
...

CoeXr+1
31

(m)

 = L−1
y ×

CoeZr+1
0

(m)
...

CoeZr
31
(m)
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Proof. The proof is similar to the proof of Theorem 1. We simply replace the
fixed linear layer Lr mod 4 by Lx and Lz.

Application of Theorem 1. By applying Theorem 1, we can extend an integral
distinguisher of r rounds to an integral distinguisher for r + 1 rounds, provided
we identify indices sets Iw, Ix, Iy, Iz for which the conditions mentioned in the
theorem are satisfied. The data complexity of the extended distinguisher remains
the same, as it utilizes the same cube.

5 Structural Distinguishers of ARADI

In this section, we present distinguishers of round reduced ARADI using The-
orem 1. First, we explain the basic idea of constructing indices sets Iw, Ix, Iy,
Iz for cube variables and then provide experimental results for up to 8 rounds
ARADI. In the end, we give another interesting experimental distinguisher for
5 rounds.

5.1 Construction of Cube Indices Set

We use Remark 2 to find indices sets Iw, Ix, Iy, Iz satisfying Theorem 1. We
construct these sets in three steps as follows. Note that we use superscript to
denote these sets at each step and consider all i ∈ {0, 1, . . . , 31}.

1. Choose I1w, I1x , I1y , I1z such that d1 = |I1w|+|I1x |+|I1y |+|I1z | and the algebraic
degree of monomial

m1 =
∏

i ∈ I1
w

W0
i ·

∏
i ∈ I1

x

X0
i ·

∏
i ∈ I1

y

Y0
i ·

∏
i ∈ I1

z

Z0
i .

in Xr
i is at most d1−1. If the algebraic degrees of m1 in both Zr

i and Xr
i ⊙Yr

i

are also at most d1 − 1, then we are done and we set Iw = I1w, Ix = I1x ,
Iy = I1y and Iz = I1z . Else, we move on to the next step.

2. We update (I1w, I1x , I1y , I1z ) to (I2w, I2x , I2y , I2z ) by adding more indices so
that (i) d2 = |I2w|+|I2x |+|I2y |+|I2z |, (ii) d1 < d2 < 127, and (iii) the algebraic
degree of monomial

m2 =
∏

i ∈ I2
w

W0
i ·

∏
i ∈ I2

x

X0
i ·

∏
i ∈ I2

y

Y0
i ·

∏
i ∈ I2

z

Z0
i .

in Xr
i and Zr

i is at most d2 − 1. If the algebraic degree of m2 in Xr
i ⊙ Yr

i is
also at most d2 − 1, then we are done and we set Iw = I2w, Ix = I2x , Iy = I2y
and Iz = I2z . Else, we proceed to the next step.

3. We update (I2w, I2x , I2y , I2z ) to (I3w, I3x , I3y , I3z ) by adding more indices so
that (i) d3 = |I3w|+|I3x |+|I3y |+|I3z |, (ii) d2 < d3 < 127, and (iii) the algebraic
degree of monomial

m3 =
∏

i ∈ I3
w

W0
i ·

∏
i ∈ I3

x

X0
i ·

∏
i ∈ I3

y

Y0
i ·

∏
i ∈ I3

z

Z0
i .
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in Xr
i ⊙ Yr

i is at most d3 − 1. Finally, we set Iw = I3w, Ix = I3x , Iy = I3y and
Iz = I3z .

Note that we use the division property to compute the algebraic degrees in
the above three steps (Section 3).

5.2 Experimental Results

We use the aforementioned approach and give the concrete cube indices sets
with their respective algebraic degrees in Table 4. By Theorem 1, each of the
r-round distinguisher in Table 4 can be easily extended to one additional round.

Table 4. Indices set and the corresponding algebraic degrees for up to 7 rounds. We
evaluate the degrees for each i ∈ {0, 1, . . . , 31} and the table reports the maximum
degree out of all 32 bits.

Round Indices Degree of monomial m in Cube
r Xr

i Zr
i Xr

i ⊙ Yr
i dimension

3

IW = {28, . . . , 31}

2 2 3 4
IX = ϕ
IY = ϕ
IZ = ϕ

4

IW = {0, . . . , 15}

9 9 15 16
IX = ϕ
IY = ϕ
IZ = ϕ

5

IW = {0, . . . , 20}

70 70 83 84IX = {0, . . . , 20}
IY = {0, . . . , 20}
IZ = {0, . . . , 20}

6

IW = {0, . . . , 28}

105 105 112 113IX = {0, . . . , 27}
IY = {0, . . . , 27}
IZ = {0, . . . , 27}

7

IW = {0, . . . , 30}

120 120 123 124IX = {0, . . . , 30}
IY = {0, . . . , 30}
IZ = {0, . . . , 30}

Again the values in Table
We emphasize that the values in Table 4 represent the upper bounds, and

they may improve on further investigations. Moreover, instead of considering all
32 bits, if we focus on a few specific bits, then the cube dimensions (or the data
complexity) can be further reduced.
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5.3 Another 5-round Distinguisher

In Table 5, we report a 5-round distinguisher with data complexity 213. A notable
property of this distinguisher is that consecutive bytes in the cube-sum values
of X5 and Z5 are equal. On the other hand, the 5-round distinguisher in Table 3
requires 216 data and has cube-sum values of complete X5 and Z5 equal.

Table 5. A 5-round distinguisher of ARADI with equal cube-sum values (marked in
blue and red) after 5 rounds. Here Iw = {11, 12, . . . , 23}, Ix = ϕ, Iy = ϕ and Iz = ϕ.
The plaintext bits corresponding to Ĩw, Ĩx, Ĩy, Ĩz are set as constant zero.

Master key Cube-sum values in word
W5 X5 Y5 Z5

f9bd8218 8f19ef37 12e12e0b b0ebb077
924df92e 84848282 43ec091e 81813636

585c1931 abd53e97 b358afdc dca17a08

3fd88155 55c6f9e2 aec73cd7 57ddd4f0
acdcd029 cfcfc6c6 84ca03d4 8d8d8787

cbcaed87 c34cbe54 fe3a8373 b47e6f3a

d2da431e 711c7414 8eef3216 290f6caa
d3293e50 16169a9a ca7f832e 0a0a6969

4ad19d3b 9202f74c e2c558ea e1753797

4c98b38d 70bb8b6a 3fc579bd a23ea6b2
2e628d14 bdbd4141 19a52f08 9d9dc5c5

d8abc0e2 7d624fd5 2a7f6de6 9bc44e5e

Remark 3. We believe the distinguishing property of Table 5 can also be ob-
served for higher rounds. However, due to larger dimensions of cubes and limited
computational resources, we could not find any practical distinguishers for 6 or
more rounds.

6 Impossibility of Fixing Structural Distinguishers

In this section, we investigate whether avoiding the structural patterns of ARADI
as given in Sections 4 and 5 is possible. We discuss whether changing the linear
layer or the order of composition of Toffoli gates could avoid these patterns.
Ultimately, we answer the posed question negatively based on our experimental
results.

6.1 Changing the Linear Layer

The linear layer of ARADI applies the same mapping Lr mod 4 to each word of
the state at r-th round. This is one of the major reasons why such structural pat-
terns are clearly noticed. So, having different linear mappings for each row may
break these patterns. However, we can still observe new deterministic patterns
by applying Corollary 1. So, the crucial observation here is that the structural
patterns of ARADI (in Sections 4 and 5) are independent of the linear layer.
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6.2 Changing the Composition of Toffoli Gates

The nonlinear layer of ARADI applies 4 Toffoli gates to words W,X,Y,Z in a
specific sequence (see Section 2.3). In total there are

(
4
2

)
possible ways the first

Toffoli gate can be computed, i.e., by taking bitwise AND of either of W ⊙ X,
W ⊙ Y, W ⊙ Z, X ⊙ Y, X ⊙ Z and Y ⊙ Z.

We compute the algebraic degree growth for each product term for up to 7
rounds in Table 6. We notice that the degrees are consistently less than the cube
dimension after each round (except for Wr

i ⊙ Yr
i , for which the degree drops in

round 7). Hence, from Table 6, it is evident that if we change the order in which
the state words are updated without altering the word combination for the AND
operation, the cube-sum of the first updated word will be zero. Thus, similar to
Theorem 1, in this case as well, we can extend the distinguishers from r rounds
to r + 1 rounds.

In summary, irrespective of which product term we select out of the 6 pos-
sible combinations for the first Toffoli gate, we still have observations similar to
Theorem 1. Thus, the main takeaway is that ARADI’s nonlinear layer needs to
be re-designed to prevent these structural distinguishes, which are not noticeable
in other state-of-the-art block ciphers.

7 Key Recovery Attacks

This section presents a key recovery attack on 10 rounds ARADI. We first provide
some observations related to the key-scheduling of ARADI, and then give the
details of key recovery attack.

7.1 Observation on ARADI Key Schedule

Let rk0, rk1, . . . , rkr denote the 128-bit round keys for r rounds ARADI. Further,
rkij denotes the j-th 32-bit word of rki, for j ∈ {0, 1, 2, 3} and i = 0, . . . , r.
Moreover, by rkij [k] we mean the k-th bit of rkij . Then, for any i, the following
holds for the ARADI key schedule algorithm.

1. rki+2
1 = truncate(M0(rk

i+1
0 , rki+1

1 ), 32)

2. rki+2
3 = truncate(M1(rk

i+1
2 , rki+1

3 ), 32)

Here M0 and M1 are two 64-bit to 64-bit linear maps (see (9)) and truncate(·, 32)
gives the first 32 bits of the output of M0 or M1.

The above observation shows that two keywords of round i+ 2 can be fully
determined from the keywords of round i+ 1. This means for rounds i+ 1 and
i+2, the entropy of round keys rki+1 and rki+2 is 192 bits rather than 256 bits.
However, recovering rki+1 and rki+2 is not equivalent to recovering the master
key. This is because two additional intermediate keywords must be guessed to
invert the key schedule.
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Table 6. Index sets and the corresponding algebraic degrees for up to 7 rounds for all
possible AND combinations for the first Toffoli gate. We evaluate the degrees for each
i ∈ {0, 1, . . . , 31}, and the table reports the maximum degree out of all 32 bits.

Round Indices Degree of monomial m in Cube
r Xr

i ⊙ Yr
i Wr

i ⊙ Xr
i Wr

i ⊙ Yr
i Wr

i ⊙ Zr
i Xr

i ⊙ Zr
i Yr

i ⊙ Zr
i dimension

3

IW = {28, . . . , 31}

3 3 3 3 3 3 4IX = ϕ
IY = ϕ
IZ = ϕ

4

IW = {0, . . . , 15}

15 15 16 15 14 15 16IX = ϕ
IY = ϕ
IZ = ϕ

5

IW = {0, . . . , 20}

83 83 84 83 80 83 84IX = {0, . . . , 20}
IY = {0, . . . , 20}
IZ = {0, . . . , 20}

6

IW = {0, . . . , 28}

112 112 113 112 112 112 113IX = {0, . . . , 27}
IY = {0, . . . , 27}
IZ = {0, . . . , 27}

7

IW = {0, . . . , 30}

123 123 123 123 123 123 124IX = {0, . . . , 30}
IY = {0, . . . , 30}
IZ = {0, . . . , 30}

7.2 A Key Recovery Attack on 10-round ARADI

Figure 1 shows the high-level overview of the 10-round key recovery attack on
ARADI. In the figure, the words W,X,Y and Z are shown by rows 0, 1, 2 and
3, respectively.

We use the 8-round integral distinguisher (cube dimension 124, Table 2) in
our attack. So, the cube-sum after 8 rounds is zero in each cell (shown in green
in Figure 1). We add 2 rounds to this distinguisher to mount 10-round key
recovery attack. In our attack, we use the fact that each column of the state
after 2 rounds of partial decryption depends on 3 columns of 9-th round state
and 9 columns of 10-th round state. For instance, the bits in column 0 after
8-th round key addition depend on columns {0, 5, 24} of 9-th round and columns
{0, 5, 6, 11, 13, 23, 24, 28, 30} of 10-th round (shown with gray cells). Accordingly,
if we guess round key bits corresponding to these columns we can compute the
zero-th column after the round 8 key addition. This procedure is shown in the
figure for column 0.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Cube variable

Constant

After 8 rounds

Cube-sum: zero

9-th round

Guess partial rk9

Guess partial rk10 Ciphertext

Fig. 1. An overview of 10-round key recovery attack on ARADI. After partial decryp-
tion for 2 rounds, matching is done at positions as shown by green squares with lines
(column 0). The gray boxes highlight the round key bits which needs to be guessed to
compute the respective state columns.

We now explain the detailed attack steps along with their respective com-
plexities for column 0 only. We first define SK and CT as the set of round key
bits and ciphertext bits which are needed to partially decrypt two rounds. More
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precisely, we have

SK = {rk90[0], rk91[0], rk92[0], rk93[0], rk90[5], rk91[5], rk92[5], rk93[5],
rk90[24], rk

9
1[24], rk

9
2[24], rk

9
3[24], rk

10
0 [0], rk101 [0], rk102 [0], rk103 [0],

rk100 [0], rk101 [0], rk102 [0], rk103 [0], rk100 [5], rk101 [5], rk102 [5], rk103 [5],

rk100 [6], rk101 [6], rk102 [6], rk103 [6], rk100 [11], rk101 [11], rk102 [11], rk103 [11],

rk100 [13], rk101 [13], rk102 [13], rk103 [13], rk100 [23], rk101 [23], rk102 [23], rk103 [23],

rk100 [24], rk101 [24], rk102 [24], rk103 [24], rk100 [28], rk101 [28], rk102 [28], rk103 [28],

rk100 [30], rk101 [30], rk102 [30], rk103 [30] },

and

CT ={W10
0 ,W10

5 ,W10
6 ,W10

11,W
10
13,W

10
23,W

10
24,W

10
28,W

10
30,

X10
0 ,X10

5 ,X10
6 ,X10

11,X
10
13,X

10
23,X

10
24,X

10
28,X

10
30,

Y10
0 ,Y10

5 ,Y10
6 ,Y10

11,Y
10
13,Y

10
23,Y

10
24,Y

10
28,Y

10
30,

Z10
0 ,Z10

5 ,Z10
6 ,Z10

11,Z
10
13,Z

10
23,Z

10
24,Z

10
28,Z

10
30 } .

Note that |SK| = 48 and |CT | = 36. The attack steps are as follows.

Step 1: Preparing plaintexts. We prepare a set of 2124 plaintexts with cube
indices corresponding to the fifth row of Table 2. We denote this set by P.

Step 2: Querying ARADI oracle and storing ciphertexts. For each p ∈ P,
we query 10-round ARADI oracle and store the ciphertexts in the set C. This
step requires 2124 encryption queries (1 query = 10-round ARADI), and 2124 ·128
bits of memory.

Step 3: Key recovery phase. For the zero-th column, we recover key bits as
follows.

3.1 For each guess sk of SK, we compute the values
⊕

W8
0,
⊕

X8
0,
⊕

Y8
0 and⊕

Z8
0, by partially decrypting all 2124 ciphertexts. Note that for the partial

decryption, we only need 36 bits of each ciphertext which are given by set
CT . This step requires 248 · 2124 2-round decryptions.

3.2 If
⊕

W8
0 = 0,

⊕
X8
0 = 0,

⊕
Y8
0 = 0 and

⊕
Z8
0 = 0, we add sk as a possible

48-bit key candidate.

At the end of step 3, we reduce the key space from 248 to 244 since we are
checking values at 4 positions.
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Discussion on further filtering of key space. We repeat step 3 for other
columns (by updating the sets SK and CT based on the column index), and con-
sidering the reduced key space and independent round key bits at each iteration.
In the worst case, we have to repeat step 3 in total 32 times. Thus, the overall
complexity to recover rk9 and rk10 is then dominated by 32 · 248 · 2124 2-round
decryptions.

Having recovered rk9 and rk10, the remaining 64 bits needed for inverting
the key schedule (see Section 7.1) can be obtained by exhaustive search.

Attack complexities. Combining all the previous steps, the entire 10-round
attack has the following complexities.

Data = 2124

Memory = 2124 · 128 = 2131 bits

Time = 2124 + 32 · 248 · 2124 + 264 ≈ 2177
(19)

7.3 Improving Number of Rounds for Key Recovery

While the main goal of this work was to investigate the deterministic structural
patterns of ARADI, which the direct application of division property could not
obtain, we provided the 10-round key recovery attack for the sake of complete-
ness. It is possible that by exploiting more properties of ARADI’s key schedule,
one may append three rounds to our 8 rounds distinguisher resulting in 11-round
key recovery attack. However, based on our current analysis, we do not see a triv-
ial way to achieve this. One of the main reason is we need to guess round key bits
for at least 32 columns and the data complexity is too high for the distinguisher.
We leave an analysis of adding more rounds for key recovery as a future work.

8 Conclusions

In this paper, we presented structural algebraic distinguishers for round-reduced
ARADI (up to 8 rounds) by exploiting the composition of Toffoli gates in the
round function. These distinguishers are difficult to obtain with the direct appli-
cation of division property, and have lower data complexities than the existing
algebraic distinguishers. We showed that the weakness is inherent to Toffoli gates,
independent of the linear layer, and therefore, non-trivial to avoid. We also give
a key recovery attack on 10 rounds, leaving the security margin of ARADI to
only 6 rounds.

We believe the complexities of our distinguishers can be reduced as the pro-
vided degrees are merely the upper bounds. Similarly, the number of rounds
can also be improved. Moreover, extension of Table 5 distinguishers (where two
consecutive bytes are equal) to more rounds, and understanding its theoretical
reasoning would be interesting. On an another note, exploiting ARADI’s key-
schedule to add more rounds for key recovery may be possible. We leave all these
problems as a future work.
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A MILP Models for Underlying Components of ARADI

Algorithm 3: MILP model for RoundkeyXOR
Input:M, [a0, . . . , a31], [b0, . . . , b31], [c0, . . . , c31]

1 for i = 0 to 31 do
2 M.addConstr ← ai = bi + ci

3 returnM

Algorithm 4: MILP model for S-box
Input:M, [b0, . . . , b31], [c0, . . . , c31], [d0, . . . , d31], [e0, . . . , e31], [a0, . . . , a127]

1 for i = 0 to 31 do
2 SB(M, [bi, ci, di, ei], [ai, ai+32, ai+64, ai+96])

3 returnM
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Algorithm 5: MILP model for SB
Input:M, [x0, . . . , x3], [y0, . . . , y3]

1 M.addV ar ← pi, for i = 0, . . . , 7
2 M.addV ar ← qi, for i = 0, . . . , 4
3 M.addV ar ← ri, for i = 0, . . . , 8
4 M.addV ar ← si, for i = 0, . . . , 3
5 M.addV ar ← ti, for i = 0, . . . , 9

6 M.addConstr ← x0 ≥ pi, for i = 0, . . . , 7; M.addConstr ←
∑7

i=0 pi ≥ x0

7 M.addConstr ← x1 ≥ qi, for i = 0, . . . , 4; M.addConstr ←
∑4

i=0 qi ≥ x1

8 M.addConstr ← x2 ≥ ri, for i = 0, . . . , 8; M.addConstr ←
∑8

i=0 ri ≥ x2

9 M.addConstr ← x3 ≥ si, for i = 0, . . . , 3; M.addConstr ←
∑3

i=0 si ≥ x3

10 M.addConstr ← t0 = p0; M.addConstr ← t0 = r0; M.addConstr ← t0 = s0
11 M.addConstr ← t1 = p1; M.addConstr ← t1 = r1;
12 M.addConstr ← t2 = q0; M.addConstr ← t2 = r2;
13 M.addConstr ← t3 = q1; M.addConstr ← t3 = s1;
14 M.addConstr ← y0 = t0 + t1 + p2 + t2 + t3;

15 M.addConstr ← t4 = p3; M.addConstr ← t3 = r3;
16 M.addConstr ← y1 = t4 + q2;

17 M.addConstr ← t5 = p4; M.addConstr ← t5 = q3; M.addConstr ← t5 = r4
18 M.addConstr ← t6 = p5; M.addConstr ← t6 = r5;
19 M.addConstr ← t7 = p6; M.addConstr ← t7 = s2;
20 M.addConstr ← y2 = t5 + t6 + t7 + r6;

21 M.addConstr ← t8 = p7; M.addConstr ← t8 = r7;
22 M.addConstr ← t9 = q4; M.addConstr ← t9 = r8;
23 M.addConstr ← y3 = t8 + t9 + s4;

24 returnM
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Algorithm 6: MILP model for Linear-map
Input:M, j, [x0, . . . , x31], [y0, . . . , y31]

1 a = [11, 10, 9, 8]; b = [8, 9, 4, 9]; c = [14, 11, 14, 7]
2 for i = 0 to 31 do
3 M.addV ar ← ui, M.addV ar ← vi, M.addV ar ← wi

4 M.addConstr ← xi ≥ ui

5 M.addConstr ← xi ≥ vi
6 M.addConstr ← xi ≥ wi

7 M.addConstr ← ui + vi + wi ≥ xi

8 ul = u0∥ · · · ∥u15; ur = u16∥ · · · ∥u31

9 vl = v0∥ · · · ∥v15; vr = v16∥ · · · ∥v31
10 wl = w0∥ · · · ∥w15; wr = w16∥ · · · ∥w31

11 vl ← Circular-shift(vl, a[j])
12 wr ← Circular-shift(wr, c[j])
13 for i = 0 to 15 do
14 M.addV ar ← Li

15 M.addConstr ← Li = ul
i + vli

16 M.addConstr ← yi = Li + wr
i

17 vr ← Circular-shift(vr, a[j])
18 wl ← Circular-shift(wl, b[j])
19 for i = 0 to 15 do
20 M.addV ar ← Ri

21 M.addConstr ← Ri = ur
i + vri

22 M.addConstr ← yi+16 = Ri + wl
i

23 returnM

Algorithm 7: Circular-shift
Input: 16-bit vector u, integer i (< 16)
Output: 16-bit vector

1 ushifted ← (u≪ i) | (u≫ (16− i))
2 return ushifted
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