
Tightly Secure Threshold Signatures over
Pairing-Free Groups

Renas Bacho 1,2 Benedikt Wagner 3

October 3, 2024

1 CISPA Helmholtz Center for Information Security
renas.bacho@cispa.de

2 Saarland University, Saarbrücken, Germany

3 Ethereum Foundation
benedikt.wagner@ethereum.org

Abstract

Threshold signatures have been drawing lots of attention in recent years. Of particular interest
are threshold signatures that are proven secure under adaptive corruptions (NIST Call 2023). Sadly,
existing constructions with provable adaptive security suffer from at least one of the following
drawbacks: (i) strong idealizations such as the algebraic group model (AGM), (ii) an unnatural
restriction on the corruption threshold being t/2 where t is the signing threshold, or (iii) prohibitively
large security loss under established assumptions. Notably, point (iii) has received little to no attention
in the literature on this subject.

In this work, we introduce Twinkle-T, a new threshold signature scheme which overcomes these
limitations. Twinkle-T is the first scheme to have a fully tight security proof under up to t adaptive
corruptions without relying on the AGM. It also has a signing protocol consisting of only three
rounds and thus matches the currently best threshold signature with full adaptive security Twinkle
(Eurocrypt 2024) in the pairing-free discrete logarithm setting. We prove security from a standard
non-interactive assumption, namely, the Decisional Diffie-Hellman (DDH) assumption.

Keywords: Threshold Signatures, Tightness, Adaptive Security, Pairing-Free Groups

https://orcid.org/0009-0007-7037-2458
https://orcid.org/0000-0002-4620-7264
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }

Contents
1 Introduction 3

1.1 Our Contribution . 4
1.2 More on Related Work . 5
1.3 Paper Organization . 5

2 Technical Overview 5
2.1 Twinkle and its Security Proof . 6
2.2 Towards Tight Threshold Partitioning . 7
2.3 Reducing the Number of Rounds . 8

3 Preliminaries 10
3.1 Threshold Signatures . 10
3.2 Tagged Linear Function Families . 12

4 Non-Interactive Arguments for Tagged Linear Functions 13

5 Our Construction 15
5.1 Construction . 15
5.2 Security Analysis . 16

6 Instantiations and Efficiency 24

A More Details on Non-Interactive Argument Systems 32
A.1 Formal Definitions . 32
A.2 Proofs for Our Construction . 35

B Details on Instantiations 38
B.1 Instantiation from Algebraic One-More CDH . 38
B.2 Instantiation from DDH . 38

C Pseudocode 40

2

1 Introduction
Multi-party variants of digital signatures have recently garnered a lot of attention due to their ability to
distribute trust across multiple parties, a feature that proves beneficial in a range of modern applications,
including cryptocurrencies. Arguably, one of the most prominent example of multi-party signatures are
threshold signatures [Des88, DF90, Ped91]. In a (t + 1)-out-of-n threshold signature scheme, the secret
key sk for a public key pk is secret-shared among n signers, ensuring correctness and security:

• Correctness. Any subset of t + 1 signers can collaborate to execute a signing protocol that produces
a valid signature σ for a message m. This signature can then be verified against the public key pk
and the message m.

• Security. No malicious coalition of t or fewer signers can generate a valid signature. This has to
hold even if some of them have maliciously participated in signing interactions with honest parties
before.

The growing interest in threshold signatures – and threshold cryptography more broadly – has even
resulted in ongoing efforts towards standardization [BP22].
Progress in Pairing-Free Groups. Motivated by the appealing features of pairing-free cyclic
groups [TZ22, TZ23], recent research has focused on constructing threshold signature schemes in such
groups [KG20, BCK+22, TZ23, CKM23b, Lin24, BLT+24, KRT24]. In our work, we also focus on
pairing-free constructions, in the random oracle model (ROM). Notably, in this setting, there has been
significant progress in terms of security guarantees:

• Non-Interactive Assumptions. While early constructions had to rely on interactive assumptions
for their security proof, Tessaro and Zhu [TZ23] pioneered a shift towards more conservative,
non-interactive assumptions.

• Adaptive Security. Early schemes are analyzed only under static corruptions, where the adversary
must corrupt parties before learning the public key. More recent developments have tackled the
stronger, more realistic scenario where the adversary can adaptively corrupt parties at any time.
Namely, Crites et al. [CKM23b] showed a restricted form of adaptive security for their scheme,
where the adversary is only allowed to corrupt t/2 parties, under an interactive assumption. After
that, Bacho et al. [BLT+24] introduced the first fully adaptive (up to t corruptions) scheme in the
pairing-free setting, called Twinkle. In contrast to the scheme by Crites et al., this scheme is even
proven secure under a non-interactive assumption.

It is worth saying that these security improvements have been achieved with minimal impact on commu-
nication complexity and round efficiency, while also avoiding idealized models like the algebraic group
model (AGM) [FKL18].
Concrete Security. In this work, we observe that an important dimension in terms of security
guarantees has not been considered: namely, the concrete security level guaranteed by the security
proof. Most prior schemes [KG20, CKM21, BTZ22, TZ23, CKM23b, Lin24, KRT24] rely on the Forking
Lemma [BN06, BDL19], a technique known to yield loose security bounds. Concretely, for any adversary
A that breaks security of the scheme with probability ϵ and makes at most Q random oracle and
signing queries, there is a reduction that runs in approximately the same time and breaks the underlying
assumption with probability ϵ′. The relation between ϵ, Q, and ϵ′ is1

ϵ ≤
√

Θ(Q) · ϵ′.

In other words, if we assume that the underlying assumption is κ-bit secure (ϵ′ ≤ 2−κ), then the scheme
only guarantees a (κ− log Q)/2-bit security level. In practice, if the scheme is instantiated with a group
providing 128-bit security, the resulting security level would be only 44 bits for Q ≈ 240. Bacho et
al. [BLT+24] circumvent the use of the Forking Lemma in their construction of Twinkle, allowing them to

1In this overview, we ignore additional statistical terms that are independent of the underlying assumption when giving
security bounds. We also ignore the running times of reductions and the fact that many of these schemes rely on less standard
interactive assumptions [KG20, BCK+22, CKM23b]. Further, the recent schemes Sparkle+ [CKM23a] and KRT [KRT24]
also include an additive term related loosely to the security of a standard signature scheme.

3

achieve full adaptive security. As a side effect, this also leads to an improvement in concrete security.
Specifically, the security bound is

ϵ ≤ Θ(Q) · ϵ′.

While this is a clear improvement, it still leads to weak concrete security guarantees. Specifically, assuming
128-bit security for DDH and Q ≈ 240, we are left with only 128− 40 = 88 bits of security for Twinkle.
A tightly secure scheme, i.e., a scheme with a bound ϵ ≤ O(1) · ϵ′ for a small constant, with the same
qualitative guarantees as Twinkle remains an open problem.

1.1 Our Contribution
We solve this open problem by presenting Twinkle-T, the first tightly secure threshold signature scheme.
We only rely on the random oracle model and not on any other idealizations such as generic or algebraic
group models. Our scheme achieves the following:

• Full Adaptivity. Twinkle-T is secure in the presence of an adversary that makes up to t < n adaptive
corruptions.

• Non-Interactive Assumptions. Twinkle-T can be instantiated using the same assumptions as Twinkle,
for instance, based on DDH over pairing-free prime order groups.

• Tight Security. In contrast to Twinkle, we can give a tight security proof for Twinkle-T.

Concretely, while Twinkle guarantees a security level of at most 88 bits over a 128-bit secure group,
our scheme is 127-bit secure. At the same time, we emphasize that the efficiency of our schemes stay
within a practical regime, and we achieve this without increasing the number of rounds compared to
Twinkle [BLT+24]. That is, our signing protocol consists of only three rounds. Consequently, we view our
result as a strict improvement over Twinkle. We also emphasize that even in the pairing-friendly setting
or the statically secure setting, we are not aware of any tightly secure construction from a standard
assumption. For a comparison of threshold signature schemes in pairing-free cyclic groups, see Table 1.

Scheme Rounds Adaptive Assumption Security Loss
Frost [KG20, BCK+22] 2 ✗ AOMDL Θ(Q/ϵ)
Frost2 [CKM21, BTZ22, BCK+22] 2 ✗ AOMDL Θ(Q/ϵ)
Frost3 [RRJ+22, CGRS23] 2 ✗ AOMDL Θ(Q/ϵ)
TZ [TZ23] 2 ✗ DLOG Θ(Q/ϵ)
Lindell [Lin24] 3 ✗ DLOG Θ(Q/ϵ)
Classic-S [Mak22] 3 ✗ DLOG Θ(Q/ϵ)
Sparkle [CKM23b] 3 ✓ AOMDL Θ(Q/ϵ)
Sparkle+ [CKM23a] 3 ✓ AOMDL Θ(Q/ϵ)
Zero-S [Mak22] 3 ✓ DLOG Θ(Q/ϵ)
TwinkleAOMCDH [BLT+24] 3 ✓ AOMCDH Θ(Q)
TwinkleDDH [BLT+24] 3 ✓ DDH Θ(Q)
KRT [KRT24] 5 ✓ DLOG Θ(Q3/ϵ)
Twinkle-TAOMCDH (ours) 3 ✓ AOMCDH Θ(1)
Twinkle-TDDH (ours) 3 ✓ DDH Θ(1)

Table 1: Comparison of threshold signature schemes in pairing-free cyclic groups. We assume a trusted dealer
distributing key shares securely. We do not consider proofs in the algebraic group model (AGM). We do not
consider schemes assuming a broadcast channel [CGJ+99, SS01, AF04, GJKR07, BHK+24, GS24]. We denote the
total number of random oracle and signing queries by Q, and the advantage of an adversary against the scheme
by ϵ. In [BCK+22], the authors show that Frost achieves the stronger security notion of TS-SUF-3 with a security
loss of Θ(n2Q2/ϵ). The same holds for TZ [TZ23]. Further, Sparkle+ and KRT also include an additive term in
their security loss related loosely to the security of a standard signature scheme. For simplicity, we omit these
terms, which is in favor of them. Lindell, Classic-S, and Zero-S UC-realize an ideal functionality for computing
Schnorr signatures, which are known to have an inherent security loss of Ω(Q/ϵ) [Seu12].

4

1.2 More on Related Work
As a starting point for further reading, we give references to relevant related work, particularly, on
adaptively secure threshold signatures, other multi-signature variants, and the study of tight security.
Adaptively Secure Threshold Signatures. Initial works [CGJ+99, FMY99, JL00, LP01, AF04,
ADN06, WQL09] on threshold cryptography use the single inconsistent player (SIP) technique to
design adaptively secure threshold signatures. These approaches, however, require a lot of interaction
rounds. Notably, none of these constructions has a tight security proof. More critically, existing
impossibility results for their underlying signature schemes [Cor00, HJK12, Seu12, KK12] rule out any
tight security proofs. Recent works [LJY14, BL22, DR24] establish adaptive security for BLS-type
threshold signatures. Among these, only [BL22] gives a tight security proof, but relies on the AGM
and the OMDL assumption. Threshold Schnorr signatures have recently gained a lot of attention and
several adaptively secure schemes have been proposed [Mak22, CKM23a, CKM23b, KRT24, BLSW24].
Among these, only [CKM23b, BLSW24] give a tight security proof, again by relying on the AGM and the
AOMDL assumption. Importantly, existing impossibility results for Schnorr-type signatures rule out tight
security proofs in the ROM [Seu12] from standard assumptions. Adaptively secure threshold ECDSA
signatures are given in [CGG+20], but only for the case t = n− 1.
Other Multi-Party Signatures. Multi-signatures are a form of threshold signatures where t = n− 1,
meaning all n parties need to participate in the signing protocol, and each party can independently generate
its keys. This allows to avoid the need of a distributed key generation (DKG) protocol, as used in threshold
signatures. Since their introduction [IN83], a large amount of works have emerged [MOR01, Bol03, BN06,
LOS+06, BCJ08, BJ10], and especially in recent years [BDN18, MPSW19, DEF+19, NRSW20, NRS21,
AB21, BD21, BTT22, FSZ22, TZ23]. Further, some works also focus on tightness [BN06, RY07, BNN07,
BJ08, QLH12, FH20, PW23, PW24, BW24]. Since there is no joint threshold public key pk in multi-
signatures and generally adaptive security is not considered, other techniques are needed to construct
tightly secure threshold signatures. Existing approaches to obtain tightness in multi-signatures are
via lossy identification [AFLT12], requiring more than one key per signer [PW23], and the Katz-Wang
pseudorandom bit sampling [KW03]. Crucially, none of these techniques translates to the threshold setting
with adaptive corruptions (cf. Section 2). There has recently also been an increase in works on lattice-
based threshold signatures [GKS24, dPKM+24, EKT24, CATZ24]. Blind threshold and multi-signatures
have also appeared very recently [CKM+23c, KRB+24].
Tightness in General. Tightness has also been considered for other types of signatures, e.g., structure-
preserving signatures [HJ12, GHKP18, CKP+23, AHN+23], lattice- and isogeny-based signatures [EKP20,
PW22], and identity-based signatures and encryption [HKS15, HJP18, KYY18, PW21, HKK+24].

1.3 Paper Organization
We structure this paper as follows. In Section 2, we give an informal technical overview of our results.
Then, in Section 3, we introduce our notation, the definition of threshold signatures, and the definition of
tagged linear function families following [BLT+24]. For our construction, we will use a novel efficient
construction of a non-interactive argument system related to these tagged linear function families. This
construction is the focus of Section 4. Then, in Section 5, we present our threshold signature construction
generically from any tagged linear function family. In Section 6, we instantiate the tagged linear function
families as in [BLT+24] and discuss the efficiency of the resulting constructions.

2 Technical Overview
In this section, we explain the challenges we face and the ideas we use to overcome them. For simplicity,
we only consider an instantiation based on a one-more variant of CDH over a cyclic group G with
generator g of prime order p. In the main body, we abstractly present the construction using tagged
linear functions [BLT+24], which can be instantiated from DDH.

5

2.1 Twinkle and its Security Proof
Recall that Twinkle [BLT+24] is the first (t + 1)-out-of-n threshold signature to achieve fully adaptive
security in the random oracle model. Technically, this is accomplished by avoiding rewinding, which
typically results in highly non-tight security bounds. As such, Twinkle serves as a natural starting point
for our solution. While we encourage readers to refer to the technical overview in [BLT+24] for a deeper
understanding, we will focus here on explaining the aspects of Twinkle relevant to our construction.
Twinkle Signatures. Consider a public key pk = gsk and public key shares pki = gski , where ski = f(i)
and sk = f(0) for a polynomial f of degree t. A Twinkle signature for a message m has two components:

• The element pk(2) = hsk, where h = H(m) for random oracle H. This is computed by t + 1 signers
revealing pk(2)

i = hski . Intuitively, no t colluding signers can compute hsk.

• A proof that pk(2) = hsk, which is derived from a Σ-protocol with transcript ((R(1), R(2)), c, s),
computed interactively by t + 1 signers in three rounds.

To securely implement this, the computation of these two parts must be interleaved as follows:

1. Round 1. Each signer i computes pk(2)
i , samples a random ri ∈ Zp, and defines nonces R

(1)
i = gri ,

R
(2)
i = hri . They send a commitment comi = H̃(R(1)

i , R
(2)
i , pk(2)

i) for a random oracle H̃. Intuitively,
this round ensures that parties choose independent nonces.

2. Round 2. Signers open their commitments by revealing R
(1)
i , R

(2)
i , pk(2)

i . If any opening fails, the
protocol aborts. Otherwise, pk(2) is computed as above, and R(1) (resp. R(2)) as the product of all
R

(1)
i (resp. R

(2)
i).

3. Round 3. The challenge c = H̄(pk, pk(2), R(1), R(2), m) is derived from a random oracle H̄. Each
signer computes a response si based on c and their (ski, ri). These responses are distributed and
combined into a final response s. The signature consists of pk(2) and (c, s). Intuitively (c, s) is a
sound proof that pk(2) = hsk.

We refer to variables R
(1)
i , R(1) as the g-side and pk(2)

i , pk(2), R
(2)
i , R(2) as the h-side of the protocol. In

the following, we explain the source of the security loss of Twinkle mentioned in the introduction.
Security without Signing. We begin by assuming the adversary does not make any signing queries.
The adversary is given the public key pk and all public key shares pki, then corrupts up to t signers,
learning their secret keys ski. It eventually outputs a signature (pk(2), (c, s)) for a message m∗ and wins if
the signature is valid. Intuitively, we want to use such an adversary to break CDH. Consider a reduction
that takes a CDH challenge (g, X, Y) ∈ G3 and defines pk := X. The reduction sets up appropriate
public key shares pki and runs the adversary, simulating the random oracle by defining H(m) := Y δm for
random δm. The adversary’s forgery contains pk(2) and a proof that pk(2) = H(m∗)sk = Y δm∗ , from which
the reduction computes the CDH solution Y sk using δm∗ . However, handling adaptive corruptions is a
challenge: when setting up the public key shares, the reduction can only choose up to t signers for which
it knows their secret key shares. Since corruptions are adaptive, the adversary may corrupt signers the
reduction has not chosen. To manage this, Twinkle employs a one-more variant2 of CDH. In this variant,
the reduction receives (g, X = pk, Y) and all valid public key shares pki

3. It also gets t-time oracle access
to an oracle that outputs ski on input i. This oracle allows the reduction to handle adaptive corruptions.
Importantly, the reduction must avoid rewinding to ensure it makes only t oracle queries. Otherwise, an
adaptive adversary may corrupt more than t distinct parties over its two executions. For more details
see [BLT+24].
Simulating Signing Queries – Non-Tightly. Based on what we have discussed so far, the reduction
for Twinkle would be tight. The security loss arises when the reduction needs to simulate honest signers
during signing interactions. This process involves two key steps:

2The assumption we sketch here is slightly simplified. Also, we point out again that by phrasing the scheme abstractly
and replacing (g, x) 7→ gx with a suitable function, the interactive assumption can be avoided.

3To recall, valid public key shares here are exponentiated evaluations of a degree-t polynomial f with X = gf(0).

6

• Simulating the g-side. The reduction can simulate the g-side and the responses si using random
oracles on equivalence classes – a sophisticated technique introduced in [BLT+24] to avoid using a
broadcast channel. We will come back to this later.

• Simulating the h-side. The reduction translates the g-side into the h-side, i.e., computes (pk(2)
i , R

(2)
i)

from (pki, R
(1)
i). This introduces a security loss proportional to the number of signing queries, Q.

For now, let us focus on simulating the h-side given the g-side. The reduction partitions the message
space into two subspaces:

• The g-space. For messages in this space, H(m) = gδm . The reduction can simulate the h-side given
the g-side and δm, e.g., pk(2)

i = pkδm
i .

• The Y -space. For these messages, H(m) = Y δm . The reduction uses a forgery on such messages to
solve one-more CDH as explained above.

The reduction succeeds if all signing queries fall within the g-space, and the forgery is in the Y -space.
This happens with probability 1/Q using well-known partitioning techniques.

2.2 Towards Tight Threshold Partitioning
Thus far, we have outlined the design and analysis of Twinkle [BLT+24] and discussed the reasons behind
its security loss. We will now shift our focus to our solution, explaining how we can achieve tight security.
For now, we will not focus on preserving the round complexity of Twinkle.
Pseudorandom Bits. In standard single-signer signatures, a prominent technique to enable tight
partitioning is Katz and Wang’s pseudorandom bit approach [KW03]. Here, instead of signing m, the
signer signs the pair (m, bm), where bm ∈ {0, 1} is pseudorandomly derived from the message and included
in the signature. Using our terminology from above, this minimal modification allows tight partitioning:
for each message m, the reduction places (m, bm) in the g-space and (m, 1− bm) in the Y -space. With
this, the reduction can simulate signing queries for every message. On the other hand, as the bit bm∗

remains pseudorandom for the forgery message m∗, the adversary forges a signature for (m∗, 1 − bm∗)
with probability 1/2. In this case, the reduction can break the underlying assumption.
... and Pseudorandom Paths. Unfortunately, implementing the pseudorandom bit approach in a
multi-signer setting is highly challenging, as noted in recent works [PW23, PW24] on multi-signatures.
Namely, since each signer selects the pseudorandom bit bm independently, they would generate different
bits, resulting in different h = H(m, bm) values, breaking the scheme’s correctness. To address this, Pan
and Wagner [PW23, PW24] have introduced the pseudorandom paths technique. In this method, each
signer holds two public keys and pseudorandomly choses which one to use for a given message. Critically,
the technique exploits that signers have independent keys, and results in exponentially many potential
key combinations. Therefore, it is not at all clear how to apply this technique to threshold signatures,
where a single public key represents all signers. In fact, how to use their approach to get a tightly secure
multi-signature scheme with key aggregation is still an open problem.
Let’s Rewind a Bit: Ad Hoc Partitioning. It appears that the Katz-Wang technique is not well suited
for our setting. Returning to the single-signer setting, an earlier approach by Bellare and Rogaway [BR96]
extends the message not with a pseudorandom bit, but with a λ-bit4 random salt ρ. In this approach,
partitioning is done in a more ad hoc manner: for each query H(m, ρ) on a fresh pair (m, ρ), the pair
is generally placed in the Y -space. However, when signing, the reduction selects a random ρ ∈ {0, 1}λ,
assigns (m, ρ) to the g-space, and proceeds with the signature. The high entropy of ρ ensures that this
pair has not been placed in the Y -space before. As the forgery message m∗ has never been signed, it can
only be in the Y -space and the reduction succeeds. From the single-signer perspective, it is not clear
why ad hoc partitioning should be any better than the Katz-Wang technique. Clearly, it results in larger
signatures, and in fact, Katz and Wang’s method was intended as an improvement. Surprisingly, however,
we find that the Bellare-Rogaway technique is far more suitable for the multi-signer setting.
Ad Hoc Partitioning in a Distributed Setting. To implement ad hoc partitioning in the multi-signer
setting, we must ensure that each signer contributes entropy to the selection of the message-dependent

4Throughout, λ denotes the security parameter.

7

group element h. In particular, no malicious signer should be able to predict or bias the choice of h. The
first prototype of our scheme proceeds as follows:

1. Each participating signer i samples a random ρi ∈ {0, 1}λ and sends ρi to the other signers.

2. The signers then run Twinkle, using (m, (ρi)i) as the message, which means that h = H(m, (ρi)i).

Although an adversary can choose its ρi based on the honest signers’ values, the tight ad hoc partitioning
remains intact. Namely, when an honest signer j starts participating in the protocol for a message m,
the reduction samples a random ρj . From that moment on, the reduction places every (m, (ρi)i) that is
queried and contains ρj at the appropriate position into the g-space. Then, it sends ρi to the adversary,
and simulates the remainder of the protocol as in Twinkle. Every other input to the random oracle is
placed into the Y -space. The entropy of this single ρj makes the argument from above go through.
Compressing the Signature. Our prototype has a major issue: verifying the signature requires knowing
all the ρi’s, which would require including them in the signature, leading to a signature size of at least
(t + 1)λ bits. This is far from ideal, and almost as large as a trivial threshold signature5. To address this,
we observe that the unbiasedness of the individual ρi’s is only needed by the reduction during signing. In
particular, the ad hoc partitioning ensures that every message that has not been signed is in the Y -space,
so the individual ρi’s are not necessary for tightness when it comes to the forgery. With this in mind,
we can compress the ρi’s into a short ρ = Ĥ(m, (ρi)i), run Twinkle on message (m, ρ), and include only ρ
in the signature. The proof requires an additional step to ensure that ρ is not used before the ρi’s are
revealed, but the tight security still holds. As an intermediate result, we achieve a tightly secure protocol
with four rounds.

2.3 Reducing the Number of Rounds
Our last goal is to reduce the number of rounds to match the round complexity of Twinkle. As it turns
out, the primary technical challenge lies in simulating the g-side, rather than the h-side. To tackle this,
we must modify the inner workings of Twinkle and make adjustments to Twinkle’s proof technique.
Eliminating The Commitment Round. A promising approach to reducing the number of rounds is
by eliminating the first round of Twinkle, where signers send their commitments comi. However, doing so
without further modifications would allow malicious signers to bias the combined nonce R(1), leading to
insecure schemes [DEF+19, NRS21]. Interestingly, recent works on multi-signatures have securely removed
such an additional commitment round by utilizing homomorphic trapdoor commitments [DOTT21, PW23,
PW24]. Unfortunately, multi-signatures are designed for non-adaptive security models, where there is a
single honest signer, and we find that this technique is incompatible with adaptive security. Specifically,
in these constructions, the signing protocol for a message m involves a commitment key ckm, which is
derived using a random oracle. To simulate the honest signer, the reduction must embed a trapdoor into
ckm. Crucially, the generation of this trapdoor depends on the public key of the sole honest signer. In
threshold signatures, however, there are multiple honest signers, and more critically, when generating ckm,
there is no way to predict which signers will still be honest when ckm is eventually used. While the joint
public key could be used to generate the trapdoor, this would only allow to simulate final signatures, but
not signature shares of honest signers.
Merging Rounds – Naively. Rather than eliminating an entire round, we could consider merging our
additional ρi-round into the first round of Twinkle. The challenge with this approach is that the first
round of Twinkle already depends on h. Specifically, signers commit to both the g-side and the h-side
via comi = H̃(R(1)

i , R
(2)
i , pk(2)

i), where R
(2)
i = hri and pk(2)

i = hski . To compute h, however, signers first
need to know all the ρi values. To explore a potential solution, it is helpful to understand what would
go wrong if we simply omitted the h-side from the commitments, i.e., defined comi = H̃(R(1)

i). This
would allow us to merge the two rounds, with signers computing and revealing their h-side after the
merged first round. Intuitively, this naive approach introduces a security flaw: while malicious signers
would be unable to bias the combined nonce R(1) due to the commitments, they would gain full control
over the combined nonce R(2). Crucially, the adversary would know the random oracle input for the
challenge c = H̄(pk, pk(2), R(1), R(2), m) before the reduction, As a consequence, the reduction cannot use
any random oracle programming techniques to simulate honest signers.

5A trivial threshold signature would just be the concatenation of single-signer signatures from at least t + 1 signers.

8

Twinkle’s Proof. To better understand the issues caused by naively merging the first two rounds,
we must first examine how the reduction in Twinkle uses the commitments. For simplicity, consider a
scenario with one honest signer i and one malicious signer j, while also ignoring pk(2)

i for now6. The
reduction begins by sending a random commitment comi. Upon receiving comj from the malicious signer,
it extracts R

(1)
j and R

(2)
j by searching through the random oracle queries. If no preimage is found, the

malicious party will almost certainly fail to open the commitment in the next round. Once R
(1)
j and R

(2)
j

are extracted, the reduction chooses a challenge c, samples a random response si, and generates R
(1)
i

and R
(2)
i using honest-verifier zero-knowledge. It then calculates the combined nonces R(1) and R(2), and

programs the random oracles so that comi = H̃(R(1)
i , R

(2)
i) and c = H̄(pk, R(1), R(2), m). The entropy in

R(1) ensures that the random oracles remain unprogrammed until this point. The reduction finally reveals
R

(1)
i and R

(2)
i to the adversary and continues the protocol, relying on honest-verifier zero-knowledge to

send si as the final response. This strategy hinges on the reduction knowing the random oracle input to
H̄ before the adversary does. If the h-side were omitted from the commitments, the reduction could not
extract R

(2)
j and could not compute the combined nonce R(2). As a consequence, the reduction could not

program H̄ accordingly, making it impossible for the reduction to generate the g-side (R(1)
i , si) without

the secret key ski.
Our Intuition. To address this issue, we make a key observation: if R

(2)
j is computed honestly as

R
(2)
j = hrj , then it is uniquely determined by R

(1)
j = grj . Even better: we know that messages we have to

sign are in the g-space (cf. Section 2.1), i.e., h = gδm for a δm known to the reduction. This implies that
R

(2)
j = hrj = (R(1)

j)δm , allowing the reduction to compute R
(2)
j directly from R

(1)
j . In other words, having

the adversary commit to the g-side is as good as committing to both sides. Of course, this intuition relies
on R

(1)
j and R

(2)
j sharing the same discrete logarithm with respect to g and h. To ensure the reduction

only deals with this case, we need an efficient way for honest signers to verify this relationship and abort
if it fails. Luckily, we can design a very efficient non-interactive zero-knowledge argument for that7.
Concretely, signers would now only commit to the g-side, but when they open the commitments and
reveal the h-side, they provide a non-interactive argument that the g-side and h-side are consistent8 –
i.e., that R

(1)
j and R

(2)
j share the same discrete logarithm rj , and pkj and pk(2)

j share the same discrete
logarithm skj . In the security proof, the reduction would extract the g-side from the commitments,
precompute the h-side using δm, and then program H̄ as done in the Twinkle proof. Soundness guarantees
that the precomputed h-side will match whatever the malicious signer sends, while zero-knowledge allows
the reduction to simulate the argument without needing the discrete logarithms ri and ski.
Adaptive Security Madness. We have made significant progress, and it may seem like we are finished.
However, a final technical issue arises when considering adaptive corruptions. To illustrate this, consider
an honest signer i. Suppose the reduction has simulated a non-interactive argument π for this signer
during a signing interaction. If the adversary later corrupts signer i, the reduction must query its
one-more CDH oracle to obtain ski and provide it to the adversary, as outlined in Section 2.1. However,
the reduction also needs to provide the entire internal state of that signer. In particular, this includes
the random coins that signer i would have used to generate π in the protocol. Since the proof was not
computed honestly by the reduction, there is no straightforward way to retrieve these coins. This issue
has already been pointed out informally in recent work [BLSW24]. Their solution involves relying on
secure erasures, requiring each party to erase their random coins after computing π. As we want to
avoid secure erasures, we instead rely on a non-standard notion of zero-knowledge inspired by explainable
arguments [HK22]. Specifically, we require that the zero-knowledge simulator can provide well-distributed
random coins for any simulated proof as soon as it learns the witness. We show that our non-interactive
argument achieves this notion.

6The complexity of Twinkle’s proof largely stems from the more intricate scenarios where multiple honest signers receive
inconsistent commitments from the adversary. To handle this, the authors introduced the use of random oracles on
equivalence classes, a technique we will also adopt in our proof. For the purposes of this overview, however, we can illustrate
the key challenges and our solution by considering a simplified setting.

7Since we later aim for an instantiation from DDH, we need an efficient non-interactive argument system for general
tagged linear functions, which we show can be designed both generically and efficiently.

8Note that this non-interactive argument does not have to be included in the signature.

9

3 Preliminaries
We denote the security parameter by λ and assume that all algorithms get λ in unary as input. For a
finite set S, we write x $← S to denote that x is sampled uniformly at random from S. For a probabilistic
algorithm A, we write s := A(x; ϱ) to denote output assignment when A is run on input x with random
coins ϱ. If ϱ is sampled uniformly at random, we also write s ← A(x). Further, we write s ∈ A(x) to
denote that s is a possible output of A on input x (i.e., there exist random coins ϱ such that s = A(x; ρ)).
For an integer x ∈ N, we define JxK := {0, . . . , x} and [x] := {1, . . . , x}. In all our games, if not specified
otherwise, numerical variables are implicitly initialized with 0, and lists and sets are initialized with ∅.
We use standard cryptographic terminology such as negligible, overwhelming, and PPT.

3.1 Threshold Signatures
We define the syntax and security of (three-round) threshold signatures with trusted key generation,
following previous works [BLT+24].
Syntax. A (t, n)-threshold signature scheme is a tuple of PPT algorithms TS = (Setup, Gen, Sig, Ver)
defined as follows. The setup algorithm Setup(1λ) outputs system parameters par, and the key generation
algorithm Gen(par) outputs a public key pk and secret key shares sk1, . . . , skn. Further, the signing
protocol Sig is split into four algorithms (Sig0, Sig1, Sig2, Combine). Roughly, each algorithm Sigj specifies
how a signer locally computes its protocol message pmj+1 for the subsequent round and updates its
internal state. In more detail, Sig0(S, i, ski, m) takes as input the signer set S, the index of the signer
i ∈ [n], its secret key share ski, and the message m to be signed, and it outputs a protocol message pm1
and a state St1. And Sigj for j ∈ [2] takes as input the signer’s current state and the list Mj of all
protocol messages from the previous round, and it outputs a protocol message pmj+1 and an updated
state Stj+1. Finally, the combine algorithm Combine(S, m,M1,M2,M3) allows to convert the transcript
of all protocol messages into a compact signature σ, which can then be verified using the verification
algorithm Ver(pk, m, σ). Completeness of the scheme then requires for all such parameters and keys, a
signature generated from a signing protocol among t + 1 honestly behaving parties outputs a signature
for which Ver outputs 1.

Definition 1 (Threshold Signature Scheme). Let t < n be natural numbers. A (three-round) (t, n)-
threshold signature scheme is a tuple of PPT algorithms TS = (Setup, Gen, Sig, Ver) with the following
syntax:

• Setup(1λ)→ par takes as input the security parameter 1λ and outputs public system parameters par,
where par implicitly defines sets of public keys, secret keys, messages and signatures. We assume
that all other algorithms implicitly take par as input.

• Gen(par) → (pk, sk1, . . . , skn) takes as input system parameters par, and outputs a public key pk
and secret key shares sk1, . . . , skn.

• Sig = (Sig0, Sig1, Sig2, Combine) is split into four algorithms:

– Sig0(S, i, ski, m)→ (pm1, St1) takes as input a signer set S ⊆ [n], an index i ∈ [n], a secret key
share ski, and a message m, and outputs a protocol message pm1 and a state St1.

– Sig1(St1,M1)→ (pm2, St2) takes as input a state St1 and a tupleM1 = (pm1,1, . . . , pm1,l) of
protocol messages, and outputs a protocol message pm2 and a state St2.

– Sig2(St2,M2) → pm3 takes as input a state St2 and a tuple M2 = (pm2,1, . . . , pm2,l) of
protocol messages, and outputs a protocol message pm3.

– Combine(S, m,M1,M2,M3) → σ takes as input a signer set S ⊆ [n], a message m, tuples
M1 = (pm1,1, . . . , pm1,l),M2 = (pm2,1, . . . , pm2,l), and M3 = (pm3,1, . . . , pm3,l) of protocol
messages, and outputs a signature σ.

• Ver(pk, m, σ)→ b is deterministic, takes as input a public key pk, a message m, and a signature σ,
and outputs a decision bit b ∈ {0, 1}.

10

We require that TS is complete in the following sense. For all par ∈ Setup(1λ), all (pk, sk1, . . . , skn) ∈
Gen(par), all messages m, and all S ⊆ [n] with |S| = t + 1, we have

Pr
[
Ver(pk, m, σ) = 1

∣∣ σ ← TS.Exec(pk, sk1, . . . , skn, S, m)
]

= 1,

where algorithm TS.Exec is defined in Figure 1.

Alg TS.Exec(pk, sk1, . . . , skn, S, m)
01 if |S| ≠ t + 1 ∨ S ̸⊆ [n] : return ⊥
02 parse {i1, . . . , it+1} := S s.t. i1 < · · · < it+1
03 for j ∈ [t + 1] : (pm1,ij

, St1,ij
)← Sig0(S, ij , skij

, m)
04 M1 := (pm1,i1 , . . . , pm1,it+1)
05 for j ∈ [t + 1] : (pm2,ij

, St2,ij
)← Sig1(St1,ij

,M1)
06 M2 := (pm2,i1 , . . . , pm2,it+1)
07 for j ∈ [t + 1] : pm3,ij

← Sig2(St2,ij ,M2)
08 M3 := (pm3,i1 , . . . , pm3,it+1)
09 return σ ← Combine(S, m,M1,M2,M3)

Figure 1: Algorithm TS.Exec for a (three-round) (t, n)-threshold signature scheme TS = (Setup, Gen, Sig, Ver).
The algorithm models an honest execution of the signing protocol.

Security. We define our security game following [BLT+24], which is an interactive version of the
TS-SUF-0 unforgeability notion put forth by Bellare et al. [BTZ22, BCK+22]. We formally define the
security game in Figure 2 and give a verbal description next. The adversary gets system parameters
par and an honestly generated public key pk as input. At any point in time throughout the game, the
adversary can corrupt an honest party i by calling the oracle Corrupt(i), for up to t parties. Upon
corruption, the adversary obtains party i’s secret key ski and the internal state for all signing sessions
party i participated in, both ongoing and completed ones. Further, the adversary can initiate a new
signing session sid with some specified signer set S and message m by calling the oracle Next(sid, S, m).
After initiating a new signing session, the adversary can interact with honest signers in these signing
sessions. We model this for each signing protocol round via the signing oracles Sig0, Sig1, Sig2. For each
oracle Sigj , the adversary can specify an honest signer i and a session identifier sid, conditioned on this
signer is already in the respective round for this session sid (this is checked by an algorithm Allowed). For
Sigj with j ∈ [2], the adversary can further specify the messages of the previous round of other signers.
In particular, the adversary could send different messages to two different honest signers within the same
session, and as such, we do not assume a broadcast channel. Also, the adversary could send messages to
an honest signer i on behalf of another honest signer j that deviate from what signer j actually sent,
and as such, we also do not assume authenticated channels. In the end, the adversary outputs a forgery
(m∗, σ∗) and wins the security game if it never started a signing session for message m∗ and the signature
σ∗ is valid. We note that an interesting research direction is to achieve tight security with a stronger
variant of unforgeability, in which the adversary is allowed to start signing sessions for the forgery m∗.
On Erasures. In this security model, the private state of a signer i for a signing session sid is maintained
in a map as state[sid, i], which is updated after each signing round. Consequently, schemes that rely on
secure erasures could satisfy this security definition. For instance, the scheme could be proven secure by
requiring signers to erase part of the state from an earlier round before it gets corrupted. An example of
that is the threshold signature scheme by Makriyannis [Mak22], which is proven secure using erasures.
However, we emphasize that in our scheme, any state from earlier rounds can be efficiently computed
from the state in the current round and the secret key share. In particular, our scheme does not rely on
secure erasures.

Definition 2 (TS-EUF-CMA Security). Let TS = (Setup, Gen, Sig, Ver) be a (t, n)-threshold signature
scheme. Consider the game TS-EUF-CMA defined in Figure 2. We say that TS is TS-EUF-CMA secure,
if for all PPT adversaries A, the following advantage is negligible:

AdvTS-EUF-CMA
A,TS (λ) := Pr

[
TS-EUF-CMAA

TS(λ)⇒ 1
]
.

11

Game TS-EUF-CMAA
TS(λ)

01 par← Setup(1λ)
02 (pk, sk1, . . . , skn)← Gen(par)
03 Sig := (Next, Sig0, Sig1, Sig2)
04 (m∗, σ∗)← ASig,Corrupt(par, pk)
05 if m∗ ∈ Queried : return 0
06 return Ver(pk, m∗, σ∗)

Oracle Corrupt(i)
07 if |Corrupted| ≥ t : return ⊥
08 Corrupted := Corrupted ∪ {i}
09 return (ski, state[·, i])

Oracle Next(sid, S, m)
10 if |S| ≠ t + 1 ∨ S ̸⊆ [n] : return ⊥
11 if sid ∈ Sessions : return ⊥
12 Sessions := Sessions ∪ {sid}
13 message[sid] := m, signers[sid] := S
14 Queried := Queried ∪ {m}
15 for i ∈ S : round[sid, i] := 0

Oracle Sig0(sid, i)
16 if Allowed(sid, i, 0,⊥) = 0 :
17 return ⊥
18 S := signers[sid], m := message[sid]
19 (pm, St)← Sig0(S, i, ski, m)
20 pm1[sid, i] := pm, state[sid, i] := St
21 round[sid, i] := 1
22 return pm

Oracle Sig1(sid, i,M1)
23 if Allowed(sid, i, 1,M1) = 0 :
24 return ⊥
25 (pm, St)← Sig1(state[sid, i],M1)
26 pm2[sid, i] := pm, state[sid, i] := St
27 round[sid, i] := 2
28 return pm

Oracle Sig2(sid, i,M2)
29 if Allowed(sid, i, 2,M2) = 0 :
30 return ⊥
31 pm← Sig2(state[sid, i],M2)
32 round[sid, i] := 3
33 return pm

Alg Allowed(sid, i, r,M)
34 if sid /∈ Sessions : return 0
35 S := signers[sid], H := S \ Corrupted
36 if i /∈ H : return 0
37 if round[sid, i] ̸= r : return 0
38 if r > 0 :
39 parse (pmi)i∈S :=M
40 if pmi ̸= pmr[sid, i] : return 0
41 return 1

Figure 2: The game TS-EUF-CMA for a (three-round) (t, n)-threshold signature scheme TS = (Setup, Gen,
Sig, Ver) and an adversary A.

3.2 Tagged Linear Function Families
Following [BLT+24], we make use of the abstraction of tagged linear function families. Consider a
field S (the scalars), a set T (the tags), and vector spaces D (the domain) and R (the range) over
S, all parameterized by some public parameters par. Then, a tagged linear function family is a tuple
TLF = (Gen, T) of PPT algorithms, where Gen(1λ) generates such parameters and for given parameters, T
realizes a function T : T ×D → R, such that for any fixed g ∈ T , T(g, ·) is a vector space homomorphism.

Definition 3 (Tagged Linear Function Family). A tagged linear function family (TLFF) is a tuple of
PPT algorithms TLF = (Gen, T) with the following syntax:

• Gen(1λ)→ par takes as input the security parameter 1λ and outputs parameters par. We assume
that par implicitly defines the following sets: a set of scalars Spar, which forms a field; a set of tags
Tpar; a domain Dpar and a range Rpar, where each forms a vector space over Spar. If par is clear
from the context, we omit the subscript par. We naturally denote the operations of these fields and
vector spaces by + and ·, and assume that these operations can be evaluated efficiently.

• T(par, g, x)→ X is deterministic, takes as input parameters par, a tag g ∈ T , and a domain element
x ∈ D, and outputs a range element X ∈ R. For all parameters par, and for all tags g ∈ T , the
function T(par, g, ·) realizes a homomorphism, i.e.,

∀s ∈ S, x, y ∈ D : T(par, g, s · x + y) = s · T(par, g, x) + T(par, g, y).

For T, we also omit the input par if it is clear from the context.

12

A regular tagged linear function family additionally satisfies that for an overwhelming fraction of
pairs (par, g), the images of random domain elements under TLF(g, ·) are uniform over R. We usually
denote the set of such pairs by Reg and call this the regularity set.

Definition 4 (Regular TLFF). Let TLF = (Gen, T) be a tagged linear function family. We say that TLF
is εr-regular, if there is a set Reg (called the regularity set) such that the following two properties hold:

• We have
Pr

[
(par, g) /∈ Reg | par← Gen(1λ), g $← T

]
≤ εr.

• For any fixed (par, g) ∈ Reg, the following distributions are the same:

{(par, g, X) | X $← R} and {(par, g, X) | x $← D, X := T(par, g, x)} .

A second property that we require is translatability. It means that there is an efficient way of
setting up a tag h with a trapdoor from a given tag g, formally (h, td) ← Shift(par, g), such that (1)
for a random g the distribution of (g, h) is statistically close to uniform over T 2, and (2) there are
deterministic polynomial-time algorithms Translate, InvTranslate with Translate(td, T(g, x)) = T(h, x) and
InvTranslate(td, T(h, x)) = T(g, x) for all x ∈ D. That is, images under g can be translated to images
under h and vice versa.

Definition 5 (Translatability). Let TLF = (Gen, T) be a tagged linear function family. We say that
TLF is εt-translatable, if there is a PPT algorithm Shift and a deterministic polynomial-time algorithms
Translate, InvTranslate, such that the following properties hold:

• Well-Distributed Tags. The statistical distance between the following distributions X0 and X1 is
at most εt:

X0 :=
{

(par, g, h)
∣∣ par← Gen(1λ), g $← T , h $← T

}
,

X1 :=
{

(par, g, h)
∣∣ par← Gen(1λ), g $← T , (h, td)← Shift(par, g)

}
.

• Translation Completeness. For every par ∈ Gen(1λ), for any g ∈ T , any x ∈ D, and any
(h, td) ∈ Shift(par, g), we have

Translate(td, T(g, x)) = T(h, x) and InvTranslate(td, T(h, x)) = T(g, x).

The central security property that tagged linear function families need to satisfy is called t-algebraic
translation resistance. Intuitively, 0-algebraic translation resistance states that no efficient adversary that
is given two uniform tags g, h ∈ T and an image X0 = T(g, x0) can compute T(h, x0). Even more, it
asks that this even holds in an interactive one-more fashion: the adversary gets Xi = T(g, xi) for i ∈ JtK
and uniform xi ∈ D, and gets t-time oracle access to an oracle Inv(α0, . . . , αt) that outputs the linear
combination

∑t
i=0 αixi. The adversary wins if it outputs t + 1 elements X ′

i, i ∈ JtK, such that X ′
i and Xi

have the same preimage with respect to tags h and g, respectively.

Definition 6 (Algebraic Translation Resistance). Let TLF = (Gen, T) be a tagged linear function family,
and t ∈ N be a number. Consider the game A-TRAN-RES defined in Figure 3. We say that TLF is
t-algebraic translation resistant, if for any PPT algorithm A, the following advantage is negligible:

Advt-A-TRAN-RES
A,TLF (λ) := Pr

[
t-A-TRAN-RESA

TLF(λ)⇒ 1
]
.

4 Non-Interactive Arguments for Tagged Linear Functions
In our construction, we use a non-interactive zero-knowledge argument system [BFM88]. The relations
we consider are defined for any given tagged linear function family, and are a natural analogue of
discrete logarithm equality.In this section, we sketch the definition of non-interactive arguments and our

13

Game t-A-TRAN-RESA
TLF(λ)

01 par← Gen(1λ)
02 g, h $← T , x0, . . . , xt

$← D
03 for i ∈ JtK : Xi := T(g, xi)
04 (X ′

i)t
i=0 ← AInv(par, g, h, (Xi)t

i=0)
05 if ∀i ∈ JtK(Xi, X ′

i) ∈ Im(par, g, h) :
06 return 1
07 return 0

Oracle Inv(α0, . . . , αt)
08 if q ≥ t : return ⊥
09 q := q + 1
10 x :=

∑t
i=0 αixi

11 return x

Figure 3: Game A-TRAN-RES for a tagged linear function family TLF = (Gen, T) and adversary A, where
Im(par, g, h) is defined as the set of pairs (X, X ′) ∈ R2 such that there is a x ∈ D with T(g, x) = X and
T(h, x) = X ′.

construction. We provide formal details in Appendix A. Notably, our construction is both generic and
concretely efficient.
Explainable Non-Interactive Arguments. Consider any NP relation R of statement-witness pairs
(stmt, witn) ∈ R. Informally, a non-interactive argument system for R, with respect to a random oracle H,
is a pair AS = (Prove, VerProof) of PPT algorithms. The algorithm ProveH takes a pair (stmt, witn) ∈ R
as input and outputs a proof π. The algorithm VerProofH, on input the statement stmt and the proof π,
decides whether to accept or reject the proof. Completeness ensures that honestly generated proofs for
(stmt, witn) ∈ R are accepted. We require our argument system to satisfy zero-knowledge, meaning there
exists an efficient simulator that can generate simulated proofs without knowledge of the witness witn,
by appropriately programming the random oracle H. Additionally, to handle adaptive corruptions while
avoiding the need for secure erasures, we introduce a more nuanced extension of zero-knowledge. In this
notion, the simulator, after having simulated a proof, must be able to generate valid random coins that
lead to this proof after learning the witness. This property is critical for our security reduction, where the
simulator may need to produce proofs on behalf of honest parties and later reconstruct their entire internal
state upon corruption. Without erasures, this internal state includes the random coins used in proof
generation. Following [HK22], we call this notion explainable zero-knowledge, see Definition 9. Lastly, we
require the argument system to be weakly simulation-sound, meaning no efficient adversary can produce
valid proofs for false statements, even after observing simulated proofs. In our application, we do not need
to simulate proofs for invalid statements, which is why we call this notion weak simulation-soundness. In
particular, weak simulation-soundness is implied by explainable zero-knowledge and soundness. Detailed
definitions can be found in Appendix A.1.
The TLF Relation. Let TLF = (Gen, T) be a tagged linear function family. As in Section 3.2, we denote
the scalars, domain, range, and set of tags by S,D,R, and T , respectively. For fixed parameters par and
a tag g ∈ T , we consider the relation RTLF[par, g], which is defined as

RTLF[par, g] :=
{

(stmt, witn) ∈ (T ×R4)×D2
∣∣∣∣ R1 = T(g, r), R2 = T(h, r),

X1 = T(g, x), X2 = T(h, x)

}
.

Here, stmt = (h, R1, R2, X1, X2) is the statement and witn = (r, x) is the witness. Intuitively, for two tags
g, h, valid statements correspond to pairs of images (R1, R2) and (X1, X2) of the same domain element
x and r, respectively. For our analysis (concretely, for zero-knowledge), we will assume that TLF is
εr-regular with regularity set Reg and that (par, g) ∈ Reg.
Construction. We construct a non-interactive argument system AS[TLF] = (Prove, VerProof) for relation
RTLF[par, g] with respect to a random oracle H : {0, 1}∗ → S. Our starting point is the observation that
the mapping D → R2 with x 7→ (X1, X2) and r 7→ (R1, R2) as in the relation is linear. Therefore, we can
easily design a Σ-protocol via a generic template for linear functions. Via the Fiat-Shamir paradigm [FS87],
we get a non-interactive argument system for the sub-statements (h, X1, X2) and (h, R1, R2). To improve
efficiency, we additionally apply a batching step to combine the two sub-statements into one, namely, into
(h, X1 + γR1, X2 + γR2) for a random γ ∈ S. We present the construction in Figure 4. Completeness
follows by inspection. The proofs of explainable zero-knowledge (Lemma 1) and soundness (Lemma 2)
are postponed to Appendix A.2. Combining Lemmata 1 and 2 and Lemma 3, we also obtain weak
simulation-soundness of AS[TLF].

14

Alg ProveH(stmt, witn)
01 parse (h, R1, R2, X1, X2) := stmt
02 parse (r, x) := witn
03 γ := H(0, stmt)
04 X̄ := (R1 + γX1, R2 + γX2)
05 stmt := (h, X̄)
06 witn := x̄ := r + γx ∈ D
07 w $← D, W := φg,h(w) ∈ R2

08 c := H(1, stmt, W)
09 z := cx̄ + w ∈ D
10 return π := (c, z) ∈ S × D

Alg VerProofH(stmt, π)
11 parse (h, R1, R2, X1, X2) := stmt
12 parse (c, z) := π
13 γ := H(0, stmt)
14 X̄ := (R1 + γX1, R2 + γX2)
15 stmt := (h, X̄)
16 W := φg,h(z)− cX̄
17 if H(1, stmt, W) = c : return 1
18 return 0

Figure 4: The non-interactive argument system AS[TLF] = (Prove, VerProof) for relation RTLF[par, g] with
respect to a random oracle H : {0, 1}∗ → S, where TLF = (Gen, T) is a tagged linear function family with scalars,
domain, range, and set of tags by S, D, R, and T , respectively. The function φg,h : D → R2 is defined as
w 7→ (T(g, w), T(h, w)).

Lemma 1. Let TLF = (Gen, T) be a tagged linear function family with set of scalars S, and let
H : {0, 1}∗ → S be a random oracle. Further, assume that TLF is εr-regular with regularity set Reg
and that (par, g) ∈ Reg. Then, AS[TLF] satisfies εxzk-explainable zero-knowledge, with εxzk ≤ QQH/|R|,
where QH denotes the number of random oracle queries and Q denotes the number of queries to oracles
GetProof, GetCoins.

Lemma 2. Let TLF = (Gen, T) be a tagged linear function family with set of scalars S, and let
H : {0, 1}∗ → S be a random oracle. Then, AS[TLF] satisfies satisfies εsnd-soundness, with εsnd ≤ 2QH/|S|,
where QH denotes the number of random oracle queries.

5 Our Construction
In this section, we present our construction of three-round threshold signature using the abstraction of
tagged linear function families. For concrete instantiations, we refer to Section 6.

5.1 Construction
Let TLF = (Gen, T) be a tagged linear function family with set of scalars S, domain D, range R, and set
of tags T . Let H : {0, 1}∗ → T , H̄ : {0, 1}∗ → S, and H̃, Ĥ : {0, 1}∗ → {0, 1}2λ be random oracles. Further,
let AS[TLF] = (Prove, VerProof) be a non-interactive argument system for relation RTLF[par, g] as specified
in Section 4. For readability, we omit the random oracle associated to AS in our description. We construct
a tightly secure three-round (t, n)-threshold signature scheme Twinkle-T[TLF] = (Setup, Gen, Sig, Ver). We
assume that there is an implicit injection from [n] into S. Further, let ℓi,S(x) :=

∏
j∈S\{i}(j−x)/(j−i) ∈ S

denote the i-th Lagrange coefficient for all i ∈ [n] and S ⊆ [n], and let ℓi,S := ℓi,S(0). We give a verbal
description of our scheme and present it formally as pseudocode in Figure 8.
Setup and Key Generation. All parties have access to the public parameters par ← TLF.Gen(1λ)
which define the function T, and sets S, T ,D, and R, and to a random tag g $← T . To generate keys,
elements aj

$← D for j ∈ JtK are sampled. These elements form the coefficients of a polynomial of degree
t. For each i ∈ [n], we define the key pair (pki, ski) for the i-th signer as

ski :=
t∑

j=0
ajij , pki := T(g, ski).

The joint public key is defined as pk := pk0 := T(g, a0).
Signing Protocol. Let S ⊆ [n] be a set of signers of size t + 1. We assume that all signers are aware
of the set S and a message m ∈ {0, 1}∗ to be signed. Then, they run the following protocol phases to
compute the signature:

15

1. Randomness Generation and Commitment Phase. Each signer i ∈ S samples ϱi
$← {0, 1}2λ and

ri
$← D. Then, the signer computes

R
(1)
i := T(g, ri), comi := H̃(S, i, R

(1)
i).

It sends pm1 := (ϱi, comi) to the other signers.

2. Opening and Translation Phase. Let M1 = (pm1,j)j∈S be the list of messages output in the first
round, where pm1,j = (ϱj , comj) is sent by signer j ∈ S. First, each signer i ∈ S computes the joint
random string ϱ and derives a tag h from it. This is done by computing

ϱ := Ĥ(S, m, (ϱj)j∈S), h := H(m, ϱ).

Then, the signer computes
pk(2)

i := T(h, ski), R
(2)
i := T(h, ri).

Further, it computes a proof πi := Prove(stmt, witni; ρ) for statement stmt := (h, R
(1)
i , R

(2)
i , pki, pk(2)

i)
with witness witni := (ri, ski) and uniform random coins ρ $← D. It sends pm2 := (pk(2)

i ,

R
(2)
i , R

(1)
i , πi) to the other signers.

3. Response Phase. Let M2 = (pm2,j)j∈S be the list of messages output in the second round, where
pm2,j = (pk(2)

j , R
(2)
j , R

(1)
j , πj) is sent by signer j ∈ S. For j ∈ S, let stmtj := (h, R

(1)
j , R

(2)
j , pkj , pk(2)

j).
Each signer i ∈ S checks that comj = H̃(S, j, R

(1)
j) and VerProof(stmtj , πj) = 1 holds for all j ∈ S.

If one of these equations does not hold, the signer aborts. Otherwise, the signer defines

R(1) :=
∑
j∈S

R
(1)
j , R(2) :=

∑
j∈S

R
(2)
j , pk(2) :=

∑
j∈S

ℓj,S · pk(2)
j .

Then, the signer computes c := H̄(pk, pk(2), R(1), R(2), m, ϱ) and

si := c · ℓi,S · ski + ri.

It sends pm3 := si to the other signers.

The signature is σ := (pk(2), c, s, ϱ) for s :=
∑

j∈S sj and ϱ := Ĥ(S, m, (ϱj)j∈S).
Signature Verification. Let pk be a public key, let m ∈ {0, 1}∗ be a message, and let σ = (pk(2), c, s, ϱ)
be a signature. To verify σ with respect to public key pk and message m, one first computes h := H(m, ϱ),
and R(1) := T(g, s)− c · pk, R(2) := T(h, s)− c · pk(2). Then, one accepts the signature (i.e., outputs 1) if
and only if c = H̄(pk, pk(2), R(1), R(2), m, ϱ).

5.2 Security Analysis
Completeness follows by inspection. We now turn to the security analysis.
Theorem 1. Let TLF = (Gen, T) be a tagged linear function family with set of scalars S, range R, and set
of tags T . Let H : {0, 1}∗ → T , H̄ : {0, 1}∗ → S, and H̃, Ĥ : {0, 1}∗ → {0, 1}2λ be random oracles. Further,
let AS[TLF] = (Prove, VerProof) be a non-interactive argument system for RTLF[par, g]. Assume that TLF
is εr-regular, εt-translatable, and t-algebraic translation resistant. Further, assume that AS[TLF] satisfies
εxzk-explainable zero-knowledge and εsnd-soundness. Then, the scheme Twinkle-T[TLF] is TS-EUF-CMA
secure.

Concretely, for any PPT algorithm A that makes at most QS queries in total to oracles Sig0, Sig1,

Sig2 and at most QH, QH̄, QH̃, QĤ queries to oracles H, H̄, H̃, Ĥ, respectively, there is a PPT algorithm B
with T(B) ≈ T(A) and

AdvTS-EUF-CMA
A,Twinkle-T[TLF](λ) ≤

Q2
S + QSQH̃(t + 1) + QĤ(QS + QH) + Q2

H̃ + Q2
Ĥ

22λ

+ Q2
S(QS + t) + 2QSQH̃

|R|
+ QH̄
|S|

+ QHεt + 2εr

+ 2εxzk + εsnd + Advt-A-TRAN-RES
B,TLF (λ).

16

Proof. Let A be an adversary against the security of TS := Twinkle-T[TLF]. We structure our proof as a
sequence of games G0 to G11 and a reduction to t-algebraic translation resistance.
Game G0: This game is the real security game TS-EUF-CMAA

TS for threshold signatures: the game
samples parameters par′ for TLF and a random tag g $← T . It also samples random coefficients
a0, . . . , at

$← D and computes the public key pk := pk0 := T(g, a0) and secret key shares ski :=
∑t

j=0 ajij

for each i ∈ [n]. Denote the corresponding public key shares by pki := T(g, ski). Then, the game
runs A on input par := (par′, g) and pk with access to signing oracles, corruption oracles, and random
oracles. Concretely, it gets access to random oracles H, H̄, H̃, and Ĥ, which the game provides by standard
lazy sampling using maps h[·], h̄[·], h̃[·], and ĥ[·], respectively. The set of corrupted parties is denoted
by Corrupted. Whenever A calls the signing session oracle Next on some valid input (sid, S, m) (i.e.,
|S| = t + 1, S ⊆ [n], and sid /∈ Sessions), the message m is added to the set Queried. Finally, the
adversary outputs a forgery (m∗, σ∗) and the game outputs 1 if m∗ /∈ Queried, |Corrupted| ≤ t, and
Ver(pk, m∗, σ∗) = 1. By definition, we have

AdvTS-EUF-CMA
A,TS (λ) = Pr [G0 ⇒ 1].

Before we proceed with our analysis, we assume that the adversary always makes exactly t distinct
corruption queries. This is without loss of generality, since one could build a wrapper adversary that
internally runs A, but never issues a corruption query twice, and makes enough corruption queries before
outputting its forgery. Clearly, the wrapper adversary has the same advantage and running time as A.
Game G1: We rule out collisions for H̃ (used for commitments) and Ĥ (used for joint randomness).
Concretely, the game aborts if there are x ̸= x′ such that h̃[x] = h̃[x′] ̸= ⊥ or ĥ[x] = ĥ[x′] ̸= ⊥. By the
birthday bound, we have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
Q2

H̃ + Q2
Ĥ

22λ
.

Subsequent games will make use of an algorithm H̃−1 that on input y searches for an x such that h̃[x] = y.
If no such x is found, the algorithm returns ⊥. Note that the game guarantees the existence of at most
one such preimage of y.
Game G2: In this game, we introduce two initially empty lists L̂ and L and change the game as follows:

• Whenever A calls the signing oracle Sig0 on some valid input (sid, i) (i.e., Allowed(sid, i, 0,⊥) = 1)
and the honest signer i would return its message (ϱi, comi), the game aborts if the random oracle
Ĥ has been queried before on an input of the form (S, m, (ϱ′

j)j∈S) such that ϱ′
i = ϱi. Here, the

signer set S and message m are defined by the session identifier sid. Otherwise, it inserts (S, m, ϱi, i)
into L̂. Since ϱi is sampled uniformly at random from {0, 1}2λ, the probability of abort for a fixed
signing query is bounded by QĤ/22λ. Thus, by a union bound over all signing queries, this abort
happens with probability at most QSQĤ/22λ.

• Whenever the random oracle Ĥ is queried on a fresh input (S, m, (ϱi)i∈S) such that there is a
corresponding entry (S, m, ϱi, i) ∈ L̂, the game samples a random ϱ $← {0, 1}2λ to program Ĥ
as before. Then, the game aborts if the random oracle H has been queried before with (m, ϱ).
Otherwise, the game inserts (m, ϱ) into L. Since ϱ is sampled uniformly at random from {0, 1}2λ,
the probability of this abort for any fixed query to Ĥ is at most QH/22λ. Thus, by a union bound
over all such queries, this abort happens with probability at most QĤQH/22λ.

Overall, we get
|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤

QĤ(QS + QH)
22λ

.

Game G3: In this game, we change how the random oracle H is programmed. Namely, we let the game
sample a random tag h⋄ $← T at the beginning, and implement H as follows:

H(m, ϱ) :=
{

via Shift(par′, g), if (m, ϱ) ∈ L,

via Shift(par′, h⋄), otherwise.

In more detail, the game does the following. For a query H(m, ϱ) for which the hash value h[m, ϱ] is not yet
defined and (m, ϱ) ∈ L, the game samples (h, td)← Shift(par′, g) and sets h[m, ϱ] := h. Further, it stores td

17

in a map tr as tr[m, ϱ] := td. On the other hand, if (m, ϱ) /∈ L, the game samples (h, td)← Shift(par′, h⋄),
and updates the maps tr[m, ϱ] := td and h[m, ϱ] := h. Clearly, G2 and G3 are indistinguishable by the
εt-translatability of TLF, applied to every random oracle query. Concretely, we have

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ QHεt.

Before we proceed with our sequence of games, we point out the following crucial observations: first,
whenever an honest party computes the tag h during the signing protocol, we know that it has been
generated as a shift of g and we know the corresponding trapdoor. As a result, we will be able to
ensure that the game no longer needs secret key shares ski to compute secondary public key shares
pk(2)

i := T(h, ski) and nonces R
(2)
i := T(h, ri) for signing queries. Instead, it can simulate using the

g-side transcript (pki, R
(1)
i) and the trapdoor of the shifted tags. In the remainder of our proof, we use

careful delayed random oracle programming, observability of the random oracle, and an honest-verifier
zero-knowledge-style programming to simulate the remaining parts of the signing queries without ski. As
a result, the secret key ski will only be needed when the adversary corrupts parties.

The second observation is that for the forgery message m∗, no honest signer has ever been queried
with m∗. Thus, m∗ never occurs in L. In particular, the tag in the forgery is a shift of h⋄.
Game G4: We let the game abort if (par′, g) /∈ Reg, where Reg is the regularity set of TLF. By
εr-regularity of TLF, we have

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ εr.

Game G5: In this game, we change how the non-interactive zero-knowledge proofs πi are computed by
the signing oracle Sig1 for honest signers i ∈ S. Namely, we switch from honestly generated proofs πi

to simulated proofs π̃i. Upon an adaptive corruption, we would now have to provide the random coins
used for generating the proofs, as already observed in [BLSW24]. To do this, we rely on the explainable
zero-knowledge notion. Concretely, whenever the game runs the zero-knowledge simulator Sim to simulate
a proof on behalf of an honest signer i, the simulator would now also output a state St associated to
this signer and the session, and the game would store this state (along with signer index i and session
identifier sid). Then, if signer i gets corrupted later, the game would run Sim again using the state St
to obtain random coins ρ̃i explaining the proof π̃i, and it does so for every session sid for which it has
simulated a proof on behalf of signer i. It then includes those random coins in the internal state that it
outputs for the signer i. Clearly, G4 and G5 are indistinguishable by explainable zero-knowledge of AS,
and we get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ εxzk.

Game G6: In this game, we change how the secondary elements (i.e., the h-side) pk(2)
i and R

(2)
i are

computed by the signing oracle Sig1. To recall, in the opening phase of the signing protocol, the signing
oracle for honest party i ∈ S in G5 would compute pk(2)

i := T(h, ski) and R
(2)
i := T(h, ri), where

h := H(m, ϱ) is obtained from ϱ := Ĥ(S, m, (ϱj)j∈S) in the commitment phase. From this game on, pk(2)
i

and R
(2)
i are computed via translation from pki and R

(1)
i using the trapdoor output by Shift(par, g).

Concretely:
pk(2)

i := Translate(tr[m, ϱ], pki), R
(2)
i := Translate(tr[m, ϱ], R

(1)
i).

Note that G3 guarantees knowledge of the trapdoor td = tr[m, ϱ]. In particular, this is a trapdoor for g,
following the observation made after G3. Thus, it follows from the translation completeness of TLF that
the view of A remains unchanged, and we get

Pr [G5 ⇒ 1] = Pr [G6 ⇒ 1].

Game G7: In this game, we change the signing oracle again. Concretely, we change Sig0 for the
commitment phase and Sig1 for the opening phase. To recall, in the commitment phase of the signing
protocol, the signing oracle for honest party i ∈ S in G6 would sample a random element ri

$← D and
send the commitment comi := H̃(S, i, R

(1)
i) for R

(1)
i := T(g, ri). Later, in the opening phase, the oracle

would compute pk(2)
i and R

(2)
i via translation as explained in G6, and send R

(1)
i , R

(2)
i , pk(2)

i along with a
simulated proof π̃. We change this as follows: Instead of sampling an element ri

$← D and computing R
(1)
i

honestly, we let signer i send a random commitment comi
$← {0, 1}2λ in the first round. Additionally, the

18

game inserts an entry (S, i, comi) into a list SimCom that keeps track of these simulated commitments. If
the same commitment has been sampled by the game twice, then the game aborts: i.e., if there is already
an entry (S,′ , i′, comi) ∈ SimCom such that (S,′ , i′) ̸= (S, i). By the birthday bound, this event occurs
only with probability Q2

S/22λ. We identify two situations where the preimage of comi has to be revealed:
First, the game has to output R

(1)
i in the opening phase, and second, when party i gets corrupted, the

value ri has to be given to the adversary. To make the game’s behavior clear in both situations, we make
a case distinction.

• Consider the opening phase or the case where party i gets corrupted before it reaches the opening
phase. In that case, we let the game sample a random ri

$← D, compute R
(1)
i := T(g, ri), and then

check if H̃(S, i, R
(1)
i) is already defined. If it is already defined, then the game aborts. Otherwise, it

defines h̃[S, i, R
(1)
i] := comi and proceeds as before: i.e., in the opening phase, it would output R

(1)
i

(along with R
(2)
i , pk(2)

i , π̃ computed as in G6), and upon a corruption, it would output ri as part of
its state. We reiterate that upon a corruption, random coins for simulated proofs π̃i are generated
by running the zero-knowledge simulator Sim as described in G5.

• Consider the case where party i gets corrupted after the opening phase. In that case, the game has
already defined ri (see the previous case). The game handles the corruption as before (i.e., using
this particular ri).

To bound the event of abort in the above, we use the regularity of TLF, which implies that R
(1)
i is uniform

over the range R. For a fixed signing query, the probability that (S, i, R
(1)
i) matches a previous query

of A is bounded by QH̃/|R|. Thus, by a union bound over all signing queries, the abort happens with
probability at most QSQH̃/|R|. Overall, we get

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ QSQH̃
|R|

+ Q2
S

22λ
.

In the next part of our proof, we use the technique of random oracle programming on equivalence
classes from [BLT+24]. This technique allows to simulate signing queries later using honest-verifier
zero-knowledge, even when the adversary sends inconsistent sets of commitments to different honest
parties. At a high level, this technique allows to identify whether two queries q = (sid, i,M1) and
q′ = (sid′, i′,M′

1) to Sig1 will result in the same combined nonce before all commitments in M1 and
M′

1 have preimages. Recall that in our case M1 := ((ϱj , comj))j∈S , which defines ϱ = Ĥ(S, m, (ϱj)j∈S)
and h = H(m, ϱ). And the combined nonce is computed as R(1) =

∑
j∈S R

(1)
j where comj = H̃(S, j, R

(1)
j).

To establish this, the authors define an equivalence relation ∼ on such queries with the following two
properties. First, the equivalence relation is preserved over time. Second, as soon as all commitments in
M1 and M′

1 have preimages, the equivalence relation defines identical resulting combined nonces, i.e.,
the resulting combined nonces are the same if and only if q ∼ q′. Assuming such an equivalence relation,
the simulation is done as follows. When the reduction has to reveal the nonce R

(1)
i of an honest party

i ∈ S, it first defines c := Cl(q), where Cl := H/ ∼ is an internal random oracle modulo the relation ∼.
Concretely, this means two equivalent triples are mapped to the same output, and this is well-defined as
the relation stays consistent over time. Then, it defines R

(1)
i := T(g, si)− c ·pkℓi,S

i for a randomly sampled
si

$← D. On the other hand, it does not define nonces of any other honest parties at that point and thus
the combined nonce may not be known yet. Instead, the random oracle programming is delayed until the
combined nonce is known. We now proceed with a slightly simplified formalization of this technique and
refer to the original work [BLT+24] for more details.
Game G8: In this game, we introduce a list Pending which keeps track of honest parties i and signing
sessions sid for which the game cannot yet extract preimages of all commitments sent to party i in the
commitment phase. In more detail, the list contains an entry (sid, i,M1) if and only if:

(i) The signing oracle Sig1 has been called with valid input (sid, i,M1), i.e., for this query the game did
not output ⊥ because of Allowed(sid, i, 1,M1) = 0. Further, at that point in time, we have: For every
commitment comj in M1 such that (S, j, comj) /∈ SimCom, the preimage (S, j, R

(1)
j) := H̃−1(comj)

is defined (and thus can be extracted), and

19

(ii) there is a commitment comj in M1 such that H̃−1(comj) = ⊥.

Further, the list is dynamically updated in the following two situations: First, whenever the adversary
calls the signing oracle Sig1 with some valid input (sid, i,M1) and the first condition is satisfied. In that
case, the tuple (sid, i,M1) is added to the list Pending. Second, whenever the map h̃[·] is changed (i.e.,
during queries to H̃ and queries to the corruption and signing oracles). In that case, an existing entry is
removed from the list Pending when the second condition above is not satisfied anymore. In more detail,
whenever the map h̃[·] is changed, the following is done: Initialize an empty list New and run through all
entries (sid, i,M1) ∈ Pending with the following steps:

• Check if the entry still satisfies the condition (ii) above. If this is the case, keep it in Pending.

• Otherwise, remove it from Pending and proceed as follows. Let (sid, i,M1) be this removed tuple.
In particular, all preimages (S, j, R

(1)
j) := H̃−1(comj) are defined and can be extracted, where S

is the signer set associated with the session sid. Determine the combined nonces and secondary
public key

R(1) =
∑
j∈S

R
(1)
j , R̄(2) =

∑
j∈S

R
(2)
j , p̄k(2) =

∑
j∈S

ℓj,Spk(2)
j ,

where the secondary combined nonce and public key are as

p̄k(2) := Translate(tr[m, ϱ], pk), R̄(2) := Translate(tr[m, ϱ], R(1)).

Recall that (sid, i,M1) defines (m, ϱ) and that G3 guarantees knowledge of the trapdoor td = tr[m, ϱ].
And following the observation made after G3, this is a trapdoor for g.

• If (S, R(1), R̄(2), p̄k(2)
, m, ϱ) /∈ New but the value H̄(pk, p̄k(2)

, R(1), R̄(2), m, ϱ) is already defined,
where the message m and randomness ϱ are defined by (sid, i,M1), then the game aborts.

• Otherwise, sample h̄[pk, p̄k(2)
, R(1), R̄(2), m, ϱ] $← S and insert the tuple (S, R(1), R̄(2), p̄k(2)

, m, ϱ)
into the list New.

Further, we introduce an additional abort condition. Namely, the game aborts if the following event
happens: Upon a random oracle query to H̃ for which the hash value is yet undefined and freshly sampled
as com $← {0, 1}2λ, there is already an existing entry (sid, i,M1) ∈ Pending such that com is in M1.
Having said that, the game change is now fully defined. We highlight that the only difference to how
[BLT+24] defines its game change (concretely, the way Pending and New are defined and updated) is
how the secondary combined nonce R̄(2) and public key p̄k(2) are computed. While [BLT+24] obtains
these values via extraction from H̃, we compute them via translation from pk and R(1) using the trapdoor
tr[m, ϱ] for g. Clearly, this does not affect the abort conditions defined in this game. Thus, we can directly
apply the probability analysis for abort from [BLT+24], and get

|Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ QSQH̃(t + 1)
22λ

+ QSQH̃
|R|

.

Game G9: In this game, we introduce two algorithms Equiv and GetChal. The first algorithm allows
to group tuples (sid, i,M1) that have been inserted into list Pending into equivalence classes, while
the second algorithm behaves as a random oracle on these equivalence classes. To clarify again, the
equivalence relation is defined on the set of all triples in Pending and all triples that already have been
removed from Pending, but not on any other tuples. In more detail, two tuples q = (sid, i,M1) and
q′ = (sid′, i′,M′

1) are equivalent if and only if the following conditions are satisfied simultaneously:

• Let S, S′ and m, m′ be the signer sets and messages associated with sid and sid′, respectively. And
let ϱ, ϱ′ be the joint randomness obtained from M1 := ((ϱj , comj))j∈S ,M′

1 := ((ϱ′
j , com′

j))j∈S′ ,
respectively. Then, it holds that S = S′, m = m′, and ϱ = ϱ′.

• Let F ⊆ S be the set of indices j ∈ S such that H̃−1(comj) = ⊥. Analogously, let F ′ ⊆ S′ be the
set of indices j ∈ S′ such that H̃−1(com′

j) = ⊥. Then, it holds that (comj)j∈F = (com′
j)j∈F ′ .

20

• Let G := S\F and G′ := S′\F ′, where F, F ′ are defined as above. We know (S, j, R
(1)
j) := H̃−1(comj)

exists for all j ∈ G. Similarly, (S′, j, R
′(1)
j) := H̃−1(com′

j) exists for all j ∈ G′. We define partially
combined nonces and secondary public key for (sid, i,M1) as

R̃(1) =
∑
j∈G

R
(1)
j , R̃(2) =

∑
j∈G

R
(2)
j , p̃k(2) =

∑
j∈G

ℓj,S · pk(2)
j ,

where R
(2)
j = Translate(tr[m, ϱ], R

(1)
j) and pk(2)

j = Translate(tr[m, ϱ], pkj) for all j ∈ G are computed
via translation. Analogously, we define partially combined nonces R̃′(1), R̃′(2) and secondary public
key p̃k′(2) for (sid′, i′,M′

1) through G′. Then, it holds that (R̃(1), R̃(2), p̃k(2)) = (R̃′(1), R̃′(2), p̃k′(2)).

To summarize, two triples q = (sid, i,M1) and q′ = (sid′, i′,M′
1) are equivalent if and only their signer sets,

messages, joint randomness, partially combined first nonce, partially combined translated nonce and public
key, and remaining commitments match. Again, we refer to the original work [BLT+24] for a proof that this
indeed defines an equivalence relation. With this observation, we define an algorithm GetChal which assigns
each equivalence class a random challenge c $← S in a lazy manner. In more detail, it takes as input a tuple
(sid, i,M1) and checks if there is a tuple (sid′, i′,M′

1) in the same equivalence class (using algorithm
Equiv) that is already assigned a challenge c. In that case, it returns this value c. Otherwise, it assigns
c $← S to (sid, i,M1). With these two algorithms, we change the game as follows. Instead of programming
the random oracle H̄ as h̄[pk, p̄k(2)

, R(1), R̄(2), m, ϱ] $← S whenever an entry (sid, i,M1) is removed from
the list Pending and no abort occurs, we define h̄[pk, p̄k(2)

, R(1), R̄(2), m, ϱ] := GetChal(sid, i,M1). We
claim that this programming does not change the view of the adversary. For this, we need to show that
two different inputs x ̸= x′ to H̄ give independently sampled outputs. Let

x = (pk, p̄k(2)
, R(1), R̄(2), m, ϱ), x′ = (pk, p̄k′(2)

, R′(1), R̄′(2), m′, ϱ′),

and let q := (sid, i,M1) and q′ := (sid′, i′,M′
1) be the associated entries in Pending that were removed.

We recall that the overline symbol in p̄k(2)
, R̄(2) indicates that these values were obtained via translation

from the g-side as introduced in G8. Clearly, if q and q′ were not equivalent at the time of removal of
the later one, then the outputs H̄(x) and H̄(x′) are independent. On the other hand, if q and q′ were
indeed equivalent, then we have that m = m′, ϱ = ϱ′, and (pk(2), R(1), R(2)) = (pk′(2), R′(1), R′(2)), and
thus x = x′. As a result, we get

Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1].

At this point, we are ready to use an honest-verifier zero-knowledge-style simulation to simulate
the remaining parts of signing without secret key shares. In particular, ski will only be needed upon
corruptions. Intuitively, we can do that because now we know the challenge (using algorithm GetChal)
already in the opening phase before fixing honest party’s nonces.
Game G10: In this game, we change the signing oracle and corruption oracle. To recall, in the opening
phase of the signing protocol, the signing oracle Sig1 for honest party i ∈ S would sample a random element
ri

$← D, compute R
(1)
i := T(g, ri), and derive pk(2)

i and R
(2)
i via translation from pki and R

(1)
i , respectively.

Later, in the response phase, the party sends si := cℓi,Sski + ri where c := H̄(pk, pk(2), R(1), R(2), m, ϱ)
and pk(2), R(1), R(2) are the combined secondary public key and nonces. Further, when the party gets
corrupted, it has to send ri as part of its state. We change this as follows. Instead of computing the
challenge c as above, we let signer i derive c after the commitment phase (upon receiving (sid, i,M1))
as follows, considering two cases. First, if (sid, i,M1) has not been added to the list Pending, then the
party sets c := 0. Note that in this case, there is by definition a commitment comj in M1 such that
(S, j, comj) /∈ SimCom and the preimage H̃−1(comj) is not defined yet. Thus, the adversary will not be
able to open the commitment comj in the opening phase and party i will never reach the response phase
for this session (see abort conditions in G8). Otherwise, the party sets c̄ := GetChal(sid, i,M1). In either
case, it samples an si

$← D and computes R
(1)
i := T(g, si)− c̄ · ℓi,S ·pki. Then, it derives pk(2)

i and R
(2)
i via

translation from pki and R
(1)
i as before. Later, in the response phase, it outputs si as its signature share.

Further, when the party gets corrupted after the opening phase, it sets ri := si − c̄ · ℓi,S · ski. Finally, we
let the game abort if c̄ ≠ H̄(pk, pk(2), R(1), R(2), m, ϱ), where pk(2), R(1), R(2) are the combined secondary

21

public key and combined nonces computed after the opening phase. We identify two events where the
abort happens. To establish these, we assume that the signer reaches the response phase. In particular,
we know that the entry (sid, i,M1) has been removed from the list Pending at some point in time.

(1) In the opening phase, A sends a message pm2,j := (pk(2)
j , R

(2)
j , R

(1)
j , πj) such that pk(2)

j ̸= p̄k(2)
j or

R
(2)
j ̸= R̄

(2)
j for

p̄k(2)
j := Translate(tr[m, ϱ], pkj), R̄

(2)
j := Translate(tr[m, ϱ], R

(1)
j)

yielded, but the proof πj still verified. Recall that p̄k(2)
j and R̄

(2)
j were used to define the equivalence

classes for GetChal and thus h̄[pk, p̄k(2)
, R(1), R̄(2), m, ϱ] (see G9 and G8). We now argue that this

event can only happen with negligible probability. For that, we first observe that in this case the
statement is no longer in the language. To see this, recall our relation for the argument system in
Section 4. Without loss of generality, we assume that pk(2)

j ̸= p̄k(2)
j . The other case (i.e., R

(2)
j ̸= R̄

(2)
j)

can be handled analogously. By translation completeness of TLF, we know p̄k(2)
j = T(h, skj) from

pkj = T(g, skj), where h is the tag defined by (sid, i,M1). At the same time, a valid proof πj for
RTLF[par, g] tells us that there exists an x ∈ D such that pkj = T(g, x) and pk(2)

j = T(h, x). From
this, we obtain

T(g, skj) = pkj = T(g, x) =⇒ T(h, skj) = Translate(tr[m, ϱ], pkj) = T(h, x).

But this clearly contradicts the assumption that pk(2)
j ̸= p̄k(2)

j , which shows that the statement
is not in the language. Now, we can bound the probability of this event happening using a
straightforward reduction to weak simulation-soundness of AS[TLF]. By Lemma 3, weak simulation-
soundness is implied by soundness in conjunction with explainable zero-knowledge as εwssnd ≤
εxzk + εsnd. Thus, this event happens with probability at most εxzk + εsnd. And if this event
does not happen, then (p̄k(2)

, R̄(2)) = (pk(2), R(2)), i.e., which implies that h̄ was programmed as
h̄[pk, pk(2), R(1), R(2), m, ϱ] := GetChal(sid, i,M1) when (sid, i,M1) was removed from Pending (see
G8 and G9).

(2) The value GetChal(sid, i,M1) has changed over time and will not match h̄[pk, pk(2), R(1), R(2), m, ϱ]
anymore. However, this event happens only with probability at most Q2

S(QS + t)/|R| [BLT+24].

Overall, we get

|Pr [G9 ⇒ 1]− Pr [G10 ⇒ 1]| ≤ Q2
S(QS + t)
|R|

+ εxzk + εsnd.

Game G11: We no longer assume that (par′, g) ∈ Reg. Clearly, we have

|Pr [G10 ⇒ 1]− Pr [G11 ⇒ 1]| ≤ εr.

It remains to bound the probability that the final game G11 outputs 1. At this stage, observe that we
no longer need secret key shares ski to simulate signing for honest parties, and ski is only needed upon
corruptions.

Final Claim. We now conclude the proof by claiming that

Pr [G11 ⇒ 1] ≤ QH̄
|S|

+ Advt-A-TRAN-RES
B,TLF (λ).

To prove the claim, we make a case distinction regarding the final forgery (m∗, σ∗) where σ∗ =
(pk∗(2), c∗, s∗, ϱ∗). For this, denote h∗ := H(m∗, ϱ∗).

• There is no x0 ∈ D such that T(g, x0) = pk and T(h∗, x0) = pk∗(2). We can bound the probability
of this event using Lemma 5. For this, we build a reduction I that runs in the game defined in
Lemma 5 and succeeds (if some guess of it was correct). The reduction I gets as input parameters

22

par′ for TLF. Then, it samples a random i∗ $← [QH̄] and simulates game G11 for A with the following
change: Upon the i∗-th query x∗ := (pk, pk(2), R(1), R(2), m, ϱ) to random oracle H̄, I outputs its
state along with

g, h := H(m, ϱ), X1 := pk, X2 := pk(2), R1 := R(1), R2 := R(2)

to the game and obtains a challenge c ∈ S. If the hash value H̄(x∗) is already defined, the reduction
aborts. Otherwise, it programs H̄(x∗) := c and continues the simulation. At a later stage, when A
outputs its forgery, the reduction aborts if the query defining c∗ was not x∗. Otherwise, it outputs
s∗ to the game. Note that the random oracle is never reprogrammed at that position, as A is not
allowed to make a signing query for m∗. Further, it is clear that the reduction is successful against
the game from Lemma 5 if the guess i∗ was correct. As the view of A in its interaction with the
reduction is independent of i∗, we can bound the probability of this case by QH̄/|S|.

• There is an x0 ∈ D such that T(g, x0) = pk and T(h∗, x0) = pk∗(2). We can bound the probability
of this event using an efficient reduction B against the t-algebraic translation resistance of TLF.
For this, B gets as input parameters par′ for TLF, tags g, h, and images X0, . . . , Xt ∈ R. Then, it
simulates game G11 for A with the following changes:

– Key Setup. It sets pki := Xi for all i ∈ JtK. In particular, the joint public key is pk = X0.
Further, it sets pki :=

∑
j∈JtK ℓj,S0(i)pkj for all i ∈ [n] \ JtK. Clearly, the public keys have the

same distribution as in G11.
– Target Tag. It sets h⋄ := h for the randomly sampled tag introduced from game G3 on.
– Corruptions. Whenever A queries the corruption oracle on some honest party i, B queries

xi := Inv(ℓ0,S0(i), . . . , ℓt,S0(i)) and returns ski := xi. Clearly, the secret key ski is correctly
distributed. Further, B queries the inversion oracle exactly t times, as A corrupts exactly t
parties during the interaction. We reiterate that this allows to compute the other values in
the corruption oracle as well. Concretely, the nonce ri for a session sid can be computed as
ri := si − c̄ · ℓi,S · ski, where si is the signature share and c̄ is derived as in G10. To obtain the
random coins for simulated proofs, the reduction runs the zero-knowledge simulator Sim on
the witness witni := (ri, ski) and a previously by Sim output state St when it was invoked to
simulate proofs (as described in G5).

Finally, when A outputs its forgery (m∗, σ∗) and game G11 outputs 1 (which B can check efficiently),
the reduction B takes td∗ := tr[m∗, ϱ∗] and computes the inverse X ′

0 := InvTranslate(td∗, pk∗(2)) for
the tag h∗ := H(m∗, ϱ∗). Recall that (h∗, td∗)← Shift(par′, h) because of the changes in G3. Then,
B computes

X ′
i := T(h, xi) ∀i ∈ Corrupted, X ′

i :=
∑

j∈C∗

ℓj,C∗(i) ·X ′
j ∀i ∈ [n] \ Corrupted,

where C∗ := Corrupted∪{0} (note that this set has size t+1 by game G0), and outputs (X ′
0, . . . , X ′

t)
to the t-algebraic translation resistance game. We argue that this indeed defines a valid solution to
the game: i.e., for all i ∈ JtK, there is a zi ∈ D such that T(g, zi) = Xi and T(h, zi) = X ′

i. Clearly,
this is true for all i ∈ Corrupted by construction. Further, we know by assumption that there is an
x0 ∈ D such that T(g, x0) = pk and T(h∗, x0) = pk∗(2). Thus, by translation completeness of TLF,
it follows that X ′

0 = InvTranslate(td∗, pk∗(2)) = T(h, x0). Further, for all i ∈ [t] \ C∗, we have

X ′
i =

∑
j∈C∗

ℓj,C∗(i) ·X ′
j =

∑
j∈C∗

ℓj,C∗(i) · T(h, xi) = T

h,
∑

j∈C∗

ℓj,C∗(i) · xi

 .

On the other hand, we have

T

g,
∑

j∈C∗

ℓj,C∗(i) · xi

 =
∑

j∈C∗

ℓj,C∗(i) · T(g, xi) =
∑

j∈C∗

ℓj,C∗(i) · pk′
i = X ′

i.

This shows our claim and we conclude the proof.

23

6 Instantiations and Efficiency
We have presented our scheme using the abstraction of tagged linear function families introduced
in [BLT+24]. In particular, we can use the instantiations of tagged linear functions provided in [BLT+24].
Instantiations. We can either instantiate linear functions based on an interactive assumption, or with
minimal overhead from a non-interactive assumption. Both instantiations rely on a cyclic group G of
prime order p and have the following characteristics:

• Based On AOMCDH. One can instantiate the function based on an algebraic variant of one-more
CDH. In this case, we have S = Zp, T = G, D = Zp, and R = G. We denote the resulting threshold
signature scheme by Twinkle-TAOMCDH.

• Based On DDH. One can instantiate the function based on the DDH assumption, which is non-
interactive. In this case, we have S = Zp, T = G2×2, D = Z2

p, and R = G2. We denote the resulting
threshold signature scheme by Twinkle-TDDH.

It has been shown in [BLT+24] that these instantiations are correct and satisfy regularity, translatability,
and algebraic translation resistance. Importantly, algebraic translation resistance is tightly reduced to
AOMCDH and DDH, respectively. We provide more details in Appendix B.
Efficiency. In Table 2, we compare the efficiency and concrete security level of our schemes with previous

Scheme PK SK Sig Comm Sec
Frost [KG20] 33 33 64 98 43
Frost2 [BCK+22]/Frost3 [RRJ+22] 33 33 64 98 43
TZ [TZ23] 33 33 97 130 42
Classic-S [Mak22] 33 33 64 97 43
Sparkle [CKM23b] 33 33 64 97 43
Sparkle+ [CKM23a] 33 66 64 161 43
Zero-S [Mak22] 33 330 64 129 43
KRT [KRT24] 33 660 64 194 3
TwinkleAOMCDH [BLT+24] 33 33 97 163 85
TwinkleDDH [BLT+24] 66 66 162 294 85
Twinkle-TAOMCDH (ours) 33 33 129 259 127
Twinkle-TDDH (ours) 66 66 194 422 127

Table 2: Concrete efficiency and security of threshold signature schemes in pairing-free cyclic groups. We
compare the size of public keys, size of secret keys per signer, signature size, communication cost per signer, and
concrete security - all sizes are given in bytes. In KRT, each signer has 2n + 2 secret keys where n is the total
number of signers. In Zero-S, each signer has n + 1 secret keys, since it assumes point-to-point secret channels.
We take n = 9 for our comparison. In Sparkle+, each signer has two secret keys, since it makes use of an additional
standard signature scheme (we take standard Schnorr for that), which KRT also does. We omit Lindell from our
comparison, since it uses online-extractable NIZK proofs [Fis05]. To compute the concrete security, we take the
security bounds stated in the papers, assume Q = 240 for the number of hash and signing queries each, and
assume that the underlying assumption is 128-bit hard.

constructions. For the comparison, we assume that all schemes are instantiated with the secp256k1 curve
and the SHA-256 hash function. Further, we assume that challenges ci are sampled uniformly from
Zp and have 256 bit-length, although some implementations may use challenges of 128 bit-length. For
concrete security, we assume the underlying assumption is 128-bit hard and that the number of hash
and signing queries each is Q = 240. Overall, our comparison indicates that our constructions only add
a slight overhead in the communication cost and signature size compared to the state-of-the-art fully
adaptive threshold signature Twinkle. As such, our schemes still remain highly practical and simple. In
particular, given the strong security guarantees that our schemes provide, this minor efficiency overhead
is acceptable.

24

References
[AB21] Handan Kilinç Alper and Jeffrey Burdges. Two-round trip schnorr multi-signatures via

delinearized witnesses. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 157–188, Virtual Event, August 2021. Springer, Cham. (Cited
on Page 5.)

[ADN06] Jesús F. Almansa, Ivan Damgård, and Jesper Buus Nielsen. Simplified threshold RSA with
adaptive and proactive security. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 593–611. Springer, Berlin, Heidelberg, May / June 2006. (Cited on
Page 5.)

[AF04] Masayuki Abe and Serge Fehr. Adaptively secure feldman VSS and applications to universally-
composable threshold cryptography. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 317–334. Springer, Berlin, Heidelberg, August 2004. (Cited on Page 4,
5.)

[AFLT12] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. Tightly-
secure signatures from lossy identification schemes. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 572–590. Springer,
Berlin, Heidelberg, April 2012. (Cited on Page 5.)

[AHN+23] Masayuki Abe, Dennis Hofheinz, Ryo Nishimaki, Miyako Ohkubo, and Pan Jiaxin. Compact
structure-preserving signatures with almost tight security. Journal of Cryptology, 36, 08
2023. (Cited on Page 5.)

[BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under
the discrete logarithm assumption and a generalized forking lemma. In Peng Ning, Paul F.
Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 449–458. ACM Press, October
2008. (Cited on Page 5.)

[BCK+22] Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and
Chenzhi Zhu. Better than advertised security for non-interactive threshold signatures. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of
LNCS, pages 517–550. Springer, Cham, August 2022. (Cited on Page 3, 4, 11, 24.)

[BD21] Mihir Bellare and Wei Dai. Chain reductions for multi-signatures and the HBMS scheme. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of
LNCS, pages 650–678. Springer, Cham, December 2021. (Cited on Page 5.)

[BDL19] Mihir Bellare, Wei Dai, and Lucy Li. The local forking lemma and its application to deter-
ministic encryption. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part III, volume 11923 of LNCS, pages 607–636. Springer, Cham, December 2019. (Cited on
Page 3.)

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II,
volume 11273 of LNCS, pages 435–464. Springer, Cham, December 2018. (Cited on Page 5.)

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May
1988. (Cited on Page 13.)

[BFP21] Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez. The one-more discrete logarithm
assumption in the generic group model. In Mehdi Tibouchi and Huaxiong Wang, editors,
ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages 587–617. Springer, Cham,
December 2021. (Cited on Page 38.)

25

[BHK+24] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Yiping Ma, and Tal Rabin. SPRINT:
High-throughput robust distributed Schnorr signatures. In Marc Joye and Gregor Leander,
editors, EUROCRYPT 2024, Part V, volume 14655 of LNCS, pages 62–91. Springer, Cham,
May 2024. (Cited on Page 4.)

[BJ08] Ali Bagherzandi and Stanislaw Jarecki. Multisignatures using proofs of secret key possession,
as secure as the Diffie-Hellman problem. In Rafail Ostrovsky, Roberto De Prisco, and Ivan
Visconti, editors, SCN 08, volume 5229 of LNCS, pages 218–235. Springer, Berlin, Heidelberg,
September 2008. (Cited on Page 5.)

[BJ10] Ali Bagherzandi and Stanislaw Jarecki. Identity-based aggregate and multi-signature schemes
based on RSA. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume
6056 of LNCS, pages 480–498. Springer, Berlin, Heidelberg, May 2010. (Cited on Page 5.)

[BL22] Renas Bacho and Julian Loss. On the adaptive security of the threshold BLS signature
scheme. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS
2022, pages 193–207. ACM Press, November 2022. (Cited on Page 5.)

[BLSW24] Renas Bacho, Julian Loss, Gilad Stern, and Benedikt Wagner. HARTS: High-threshold,
adaptively secure, and robust threshold schnorr signatures. Cryptology ePrint Archive,
Paper 2024/280, 2024. (Cited on Page 5, 9, 18.)

[BLT+24] Renas Bacho, Julian Loss, Stefano Tessaro, Benedikt Wagner, and Chenzhi Zhu. Twinkle:
Threshold signatures from DDH with full adaptive security. In Marc Joye and Gregor Leander,
editors, EUROCRYPT 2024, Part I, volume 14651 of LNCS, pages 429–459. Springer, Cham,
May 2024. (Cited on Page 3, 4, 5, 6, 7, 10, 11, 12, 19, 20, 21, 22, 24, 35, 38, 39.)

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di
Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press, October / November 2006.
(Cited on Page 3, 5.)

[BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signa-
tures. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors,
ICALP 2007, volume 4596 of LNCS, pages 411–422. Springer, Berlin, Heidelberg, July 2007.
(Cited on Page 5.)

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume
2567 of LNCS, pages 31–46. Springer, Berlin, Heidelberg, January 2003. (Cited on Page 5.)

[BP22] Luís T. A. N. Brandão and Rene Peralta. NIST IR 8214C: First call for multi-party
threshold schemes. https://csrc.nist.gov/pubs/ir/8214/c/ipd, 2022. Accessed: 2024-
09-17. (Cited on Page 3.)

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How to sign
with RSA and Rabin. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS,
pages 399–416. Springer, Berlin, Heidelberg, May 1996. (Cited on Page 7.)

[BTT22] Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. MuSig-L: Lattice-based multi-
signature with single-round online phase. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 276–305. Springer, Cham, August
2022. (Cited on Page 5.)

[BTZ22] Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. Stronger security for non-interactive
threshold signatures: BLS and FROST. Cryptology ePrint Archive, Report 2022/833, 2022.
(Cited on Page 3, 4, 11.)

[BW24] Renas Bacho and Benedikt Wagner. Tightly secure non-interactive BLS multi-signatures.
Cryptology ePrint Archive, Paper 2024/1368, 2024. (Cited on Page 5.)

26

https://csrc.nist.gov/pubs/ir/8214/c/ipd

[CATZ24] Rutchathon Chairattana-Apirom, Stefano Tessaro, and Chenzhi Zhu. Partially non-
interactive two-round lattice-based threshold signatures. Cryptology ePrint Archive, Paper
2024/467, 2024. (Cited on Page 5.)

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled.
UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1769–1787.
ACM Press, November 2020. (Cited on Page 5.)

[CGJ+99] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Adaptive
security for threshold cryptosystems. In Michael J. Wiener, editor, CRYPTO’99, volume
1666 of LNCS, pages 98–115. Springer, Berlin, Heidelberg, August 1999. (Cited on Page 4,
5.)

[CGRS23] Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schröder. Practical Schnorr threshold
signatures without the algebraic group model. In Helena Handschuh and Anna Lysyanskaya,
editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 743–773. Springer, Cham,
August 2023. (Cited on Page 4.)

[CKM21] Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove schnorr assuming schnorr:
Security of multi- and threshold signatures. Cryptology ePrint Archive, Report 2021/1375,
2021. (Cited on Page 3, 4.)

[CKM23a] Elizabeth Crites, Chelsea Komlo, and Mary Maller. Fully adaptive schnorr threshold
signatures. Cryptology ePrint Archive, Paper 2023/445, 2023. (Cited on Page 3, 4, 5, 24.)

[CKM23b] Elizabeth C. Crites, Chelsea Komlo, and Mary Maller. Fully adaptive Schnorr threshold
signatures. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part I,
volume 14081 of LNCS, pages 678–709. Springer, Cham, August 2023. (Cited on Page 3, 4,
5, 24.)

[CKM+23c] Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu.
Snowblind: A threshold blind signature in pairing-free groups. In Helena Handschuh and
Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 710–742.
Springer, Cham, August 2023. (Cited on Page 5.)

[CKP+23] Elizabeth C. Crites, Markulf Kohlweiss, Bart Preneel, Mahdi Sedaghat, and Daniel Sla-
manig. Threshold structure-preserving signatures. In Jian Guo and Ron Steinfeld, editors,
ASIACRYPT 2023, Part II, volume 14439 of LNCS, pages 348–382. Springer, Singapore,
December 2023. (Cited on Page 5.)

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 229–235. Springer, Berlin, Heidelberg, August
2000. (Cited on Page 5.)

[DEF+19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and
Igors Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE Symposium
on Security and Privacy, pages 1084–1101. IEEE Computer Society Press, May 2019. (Cited
on Page 5, 8.)

[Des88] Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl Pomerance,
editor, CRYPTO’87, volume 293 of LNCS, pages 120–127. Springer, Berlin, Heidelberg,
August 1988. (Cited on Page 3.)

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, New York, August 1990. (Cited
on Page 3.)

[DOTT21] Ivan Damgård, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi. Two-round n-out-
of-n and multi-signatures and trapdoor commitment from lattices. In Juan Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 99–130. Springer, Cham, May 2021. (Cited
on Page 8.)

27

[dPKM+24] Rafael del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, and
Markku-Juhani Saarinen. Threshold raccoon: Practical threshold signatures from standard
lattice assumptions. In Marc Joye and Gregor Leander, editors, Advances in Cryptology –
EUROCRYPT 2024, pages 219–248, Cham, 2024. Springer Nature Switzerland. (Cited on
Page 5.)

[DR24] Sourav Das and Ling Ren. Adaptively secure BLS threshold signatures from DDH and
co-CDH. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VII, volume
14926 of LNCS, pages 251–284. Springer, Cham, August 2024. (Cited on Page 5.)

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Berlin, Heidelberg,
August 2013. (Cited on Page 39.)

[EKP20] Ali El Kaafarani, Shuichi Katsumata, and Federico Pintore. Lossy CSI-FiSh: Efficient
signature scheme with tight reduction to decisional CSIDH-512. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of
LNCS, pages 157–186. Springer, Cham, May 2020. (Cited on Page 5.)

[EKT24] Thomas Espitau, Shuichi Katsumata, and Kaoru Takemure. Two-round threshold signature
from algebraic one-more learning with errors. In Leonid Reyzin and Douglas Stebila, editors,
CRYPTO 2024, Part VII, volume 14926 of LNCS, pages 387–424. Springer, Cham, August
2024. (Cited on Page 5.)

[FH20] Masayuki Fukumitsu and Shingo Hasegawa. A tightly secure ddh-based multisignature
with public-key aggregation. In 2020 Eighth International Symposium on Computing and
Networking Workshops (CANDARW), pages 321–327, 2020. (Cited on Page 5.)

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online
extractors. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168.
Springer, Berlin, Heidelberg, August 2005. (Cited on Page 24.)

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 33–62. Springer, Cham, August 2018. (Cited on Page 3.)

[FMY99] Yair Frankel, Philip MacKenzie, and Moti Yung. Adaptively-secure distributed public-key
systems. In Jaroslav Nešetřil, editor, Algorithms - ESA’ 99, pages 4–27, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg. (Cited on Page 5.)

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS,
pages 186–194. Springer, Berlin, Heidelberg, August 1987. (Cited on Page 14.)

[FSZ22] Nils Fleischhacker, Mark Simkin, and Zhenfei Zhang. Squirrel: Efficient synchronized
multi-signatures from lattices. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 1109–1123. ACM Press, November 2022. (Cited on Page 5.)

[GHKP18] Romain Gay, Dennis Hofheinz, Lisa Kohl, and Jiaxin Pan. More efficient (almost) tightly
secure structure-preserving signatures. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 230–258. Springer, Cham,
April / May 2018. (Cited on Page 5.)

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed
key generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83,
January 2007. (Cited on Page 4.)

[GKS24] Kamil Doruk Gur, Jonathan Katz, and Tjerand Silde. Two-round threshold lattice-based
signatures from threshold homomorphic encryption. In Post-Quantum Cryptography: 15th
International Workshop, PQCrypto 2024, Oxford, UK, June 12–14, 2024, Proceedings, Part
II, page 266–300, Berlin, Heidelberg, 2024. Springer-Verlag. (Cited on Page 5.)

28

[GS24] Jens Groth and Victor Shoup. Fast batched asynchronous distributed key generation. In
Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part V, volume 14655 of
LNCS, pages 370–400. Springer, Cham, May 2024. (Cited on Page 4.)

[HJ12] Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryption. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 590–607. Springer, Berlin, Heidelberg, August 2012. (Cited on Page 5.)

[HJK12] Dennis Hofheinz, Tibor Jager, and Edward Knapp. Waters signatures with optimal security
reduction. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 66–83. Springer, Berlin, Heidelberg, May 2012. (Cited on
Page 5.)

[HJP18] Dennis Hofheinz, Dingding Jia, and Jiaxin Pan. Identity-based encryption tightly secure
under chosen-ciphertext attacks. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 190–220. Springer, Cham, December
2018. (Cited on Page 5.)

[HK22] Lucjan Hanzlik and Kamil Kluczniak. Explainable arguments. In Ittay Eyal and Juan A.
Garay, editors, FC 2022, volume 13411 of LNCS, pages 59–79. Springer, Cham, May 2022.
(Cited on Page 9, 14, 32.)

[HKK+24] Goichiro Hanaoka, Shuichi Katsumata, Kei Kimura, Kaoru Takemure, and Shota Yamada.
Tighter adaptive IBEs and VRFs: Revisiting waters’ artificial abort. Cryptology ePrint
Archive, Paper 2024/1481, 2024. (Cited on Page 5.)

[HKS15] Dennis Hofheinz, Jessica Koch, and Christoph Striecks. Identity-based encryption with
(almost) tight security in the multi-instance, multi-ciphertext setting. In Jonathan Katz,
editor, PKC 2015, volume 9020 of LNCS, pages 799–822. Springer, Berlin, Heidelberg,
March / April 2015. (Cited on Page 5.)

[IN83] Kazuharu Itakura and Katsuhiro Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research & Development, (71):1–8, 1983. (Cited on Page 5.)

[JL00] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography: Intro-
ducing concurrency, removing erasures. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 221–242. Springer, Berlin, Heidelberg, May 2000. (Cited on Page 5.)

[KG20] Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr threshold
signatures. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, SAC
2020, volume 12804 of LNCS, pages 34–65. Springer, Cham, October 2020. (Cited on Page 3,
4, 24.)

[KK12] Saqib A. Kakvi and Eike Kiltz. Optimal security proofs for full domain hash, revisited. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 537–553. Springer, Berlin, Heidelberg, April 2012. (Cited on Page 5.)

[KRB+24] Ioanna Karantaidou, Omar Renawi, Foteini Baldimtsi, Nikolaos Kamarinakis, Jonathan
Katz, and Julian Loss. Blind multisignatures for anonymous tokens with decentralized
issuance. Cryptology ePrint Archive, Paper 2024/1406, 2024. (Cited on Page 5.)

[KRT24] Shuichi Katsumata, Michael Reichle, and Kaoru Takemure. Adaptively secure 5 round
threshold signatures from MLWE/MSIS and DL with rewinding. In Leonid Reyzin and
Douglas Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS, pages 459–491.
Springer, Cham, August 2024. (Cited on Page 3, 4, 5, 24.)

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight
security reductions. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM
CCS 2003, pages 155–164. ACM Press, October 2003. (Cited on Page 5, 7.)

29

[KYY18] Shuichi Katsumata, Shota Yamada, and Takashi Yamakawa. Tighter security proofs for
GPV-IBE in the quantum random oracle model. In Thomas Peyrin and Steven Galbraith,
editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 253–282. Springer, Cham,
December 2018. (Cited on Page 5.)

[Lin24] Yehuda Lindell. Simple three-round multiparty schnorr signing with full simulatability. CiC,
1(1):25, 2024. (Cited on Page 3, 4.)

[LJY14] Benoît Libert, Marc Joye, and Moti Yung. Born and raised distributively: fully distributed
non-interactive adaptively-secure threshold signatures with short shares. In Magnús M.
Halldórsson and Shlomi Dolev, editors, 33rd ACM PODC, pages 303–312. ACM, July 2014.
(Cited on Page 5.)

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential
aggregate signatures and multisignatures without random oracles. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 465–485. Springer, Berlin, Heidelberg,
May / June 2006. (Cited on Page 5.)

[LP01] Anna Lysyanskaya and Chris Peikert. Adaptive security in the threshold setting: From
cryptosystems to signature schemes. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248
of LNCS, pages 331–350. Springer, Berlin, Heidelberg, December 2001. (Cited on Page 5.)

[Mak22] Nikolaos Makriyannis. On the classic protocol for MPC schnorr signatures. Cryptology
ePrint Archive, Paper 2022/1332, 2022. (Cited on Page 4, 5, 11, 24.)

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures:
Extended abstract. In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001,
pages 245–254. ACM Press, November 2001. (Cited on Page 5.)

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr
multi-signatures with applications to bitcoin. Des. Codes Cryptography, 87(9):2139–2164,
September 2019. (Cited on Page 5.)

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr multi-
signatures. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825
of LNCS, pages 189–221, Virtual Event, August 2021. Springer, Cham. (Cited on Page 5, 8,
38.)

[NRSW20] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN: Schnorr multi-
signatures with verifiably deterministic nonces. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages 1717–1731. ACM Press, November
2020. (Cited on Page 5.)

[Ped91] Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended abstract)
(rump session). In Donald W. Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages
522–526. Springer, Berlin, Heidelberg, April 1991. (Cited on Page 3.)

[PW21] Jiaxin Pan and Benedikt Wagner. Short identity-based signatures with tight security from
lattices. In Jung Hee Cheon and Jean-Pierre Tillich, editors, Post-Quantum Cryptography,
pages 360–379, Cham, 2021. Springer International Publishing. (Cited on Page 5.)

[PW22] Jiaxin Pan and Benedikt Wagner. Lattice-based signatures with tight adaptive corruptions
and more. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022,
Part II, volume 13178 of LNCS, pages 347–378. Springer, Cham, March 2022. (Cited on
Page 5.)

[PW23] Jiaxin Pan and Benedikt Wagner. Chopsticks: Fork-free two-round multi-signatures from non-
interactive assumptions. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 597–627. Springer, Cham, April 2023. (Cited on
Page 5, 7, 8.)

30

[PW24] Jiaxin Pan and Benedikt Wagner. Toothpicks: More efficient fork-free two-round multi-
signatures. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part I, volume
14651 of LNCS, pages 460–489. Springer, Cham, May 2024. (Cited on Page 5, 7, 8.)

[QLH12] Haifeng Qian, Xiangxue Li, and Xinli Huang. Tightly secure non-interactive multisignatures
in the plain public key model. Informatica (Vilnius), 3, 01 2012. (Cited on Page 5.)

[RRJ+22] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique Schröder.
ROAST: Robust asynchronous schnorr threshold signatures. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2551–2564. ACM Press,
November 2022. (Cited on Page 4, 24.)

[RY07] Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In Moni Naor, editor, EUROCRYPT 2007, volume
4515 of LNCS, pages 228–245. Springer, Berlin, Heidelberg, May 2007. (Cited on Page 5.)

[Seu12] Yannick Seurin. On the exact security of Schnorr-type signatures in the random oracle
model. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 554–571. Springer, Berlin, Heidelberg, April 2012. (Cited on Page 4, 5.)

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Berlin, Heidelberg,
May 1997. (Cited on Page 38.)

[SS01] Douglas R. Stinson and Reto Strobl. Provably secure distributed Schnorr signatures and a
(t, n) threshold scheme for implicit certificates. In Vijay Varadharajan and Yi Mu, editors,
ACISP 01, volume 2119 of LNCS, pages 417–434. Springer, Berlin, Heidelberg, July 2001.
(Cited on Page 4.)

[TZ22] Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures with exponential
security. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II,
volume 13276 of LNCS, pages 782–811. Springer, Cham, May / June 2022. (Cited on Page 3.)

[TZ23] Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes from linear hash
functions. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 628–658. Springer, Cham, April 2023. (Cited on Page 3, 4, 5, 24.)

[WQL09] Zecheng Wang, Haifeng Qian, and Zhibin Li. Adaptively secure threshold signature scheme
in the standard model. Informatica, 20(4):591–612, dec 2009. (Cited on Page 5.)

31

Appendix

A More Details on Non-Interactive Argument Systems
In this section, we give formal definitions and proofs for non-interactive argument systems.

A.1 Formal Definitions
Here, we define non-interactive argument systems for NP relations. We focus on argument systems in
the random oracle model. For all definitions related to argument systems, we do not explicitly define an
advantage of the form Adv·

·(λ), but rather use εxzk to convey that for our instantiation this will hold for
any potentially unbounded adversary, assuming only polynomially many random oracle queries. Before we
can give the definition of an argument systems, we first formally define what we mean by an NP relation.

Definition 7 (NP Relation). Let R be a relation containing pairs (stmt, witn), which is implicitly
parameterized by the security parameter λ. We say that R is an NP relation and call stmt the statement
and witn the witness, if the following hold:

• Size Constraints. There are polynomials poly1 and poly2 such that for all (stmt, witn) ∈ R, we have
|stmt| ≤ poly1(λ) and |witn| ≤ poly2(|stmt|).

• Efficiently Decidable. The relation can be decided deterministically in polynomial time, i.e., there is
a deterministic polynomial time algorithm that takes as input a pair (stmt, witn) and outputs 1 if
and only if (stmt, witn) ∈ R.

For such a relation, we define the induced language LR ⊆ {0, 1}∗ by

LR :=
{

stmt ∈ {0, 1}∗ | ∃witn ∈ {0, 1}∗ : (stmt, witn) ∈ R
}

.

Definition 8 (Non-Interactive Argument System). Let R be an NP relation and H be a random
oracle. A non-interactive argument system for R with respect to H : X → Y is defined to be a pair
AS = (Prove, VerProof) of PPT algorithms with oracle access to H and the following syntax:

• ProveH(stmt, witn) → π takes as input a statement stmt and a witness witn, and outputs a
proof π. We assume that the random coins are uniform over {0, 1}ℓ(λ), i.e., we can write
π := ProveH(stmt, witn; ρ) for ρ $← {0, 1}ℓ(λ).

• VerProofH(stmt, π)→ b is deterministic, takes as input a statement stmt and a proof π, and outputs
a decision bit b ∈ {0, 1}.

Further, we require that the argument system is complete in the following sense: For any pair (stmt, witn) ∈
R, we have

Pr
[
VerProofH(stmt, π) = 1 | π ← ProveH(stmt, witn)

]
= 1,

where the probability is taken over the random coins of Prove and the random oracle H, which may be
queried by external algorithms in an arbitrary way.

We need non-interactive arguments that are zero-knowledge, i.e., there is an efficient simulator that
can generate proofs without access to the witness, which is typically accomplished by programming the
random oracle. Note, however, that standard zero-knowledge is not enough in the context of adaptive
corruptions: say the reduction simulates a proof on behalf of some honest party. When the adversary
later corrupts this honest party, it would expect to learn the witness and well-distributed random coins
that have been used to generate the proof from the witness. Therefore, we need a stronger form of
zero-knowledge, in which the simulator can create appropriate random coins once it learns the witness. A
similar notion called explainable arguments has been introduced by Hanzlik and Kluczniak [HK22]. We
call our definition explainable zero-knowledge. In our definition, the adversary runs in one of two games,
and has to say in which game it runs. In the first game, it gets access to honestly generated proofs, for
which it can later ask the game to reveal the random coins that have been used. In the second game,
proofs are provided by the simulator without access to the witness. When the adversary wants to learn

32

Game X-ZKA
AS,Sim,b(λ)

01 b′ ← AGetProofb,GetCoinsb,H(1λ)
02 return b′

Oracle GetProof0(pid, stmt, witn)
03 if St[pid] ̸= ⊥ : return ⊥
04 if (stmt, witn) /∈ R : return ⊥
05 ρ $← {0, 1}ℓ(λ)

, St[pid] := ρ
06 π := ProveH(stmt, witn; ρ)
07 return π

Oracle GetCoins0(pid)
08 ρ := St[pid]
09 return ρ

Oracle H(x)
10 if h[x] = ⊥ : h $← Y
11 return h[x]

Oracle GetProof1(pid, stmt, witn)
12 if St[pid] ̸= ⊥ : return ⊥
13 if (stmt, witn) /∈ R : return ⊥
14 (π, St, h′[·])← Sim(0, h[·], stmt)
15 St[pid] := (St, witn), h[·] := h′[·]
16 return π

Oracle GetCoins1(pid)
17 (St, witn) := St[pid]
18 return ρ := Sim(1, h[·], St, witn)

Figure 5: The games X-ZK modeling explainable zero-knowledge for a non-interactive argument system
AS = (Prove, VerProof) for an NP relation R with respect to a random oracle H : X → Y and an adversary A.
Note that the simulator Sim can update the random oracle in oracle GetProof1 by outputting a new map h′.

random coins, the witness is given to the simulator, and the simulator is expected to generate the random
coins. To formalize that the simulator can program the random oracle, we allow the simulator to output
a new map that lazily implements the random oracle.

Definition 9 (Explainable Zero-Knowledge). Let R be an NP relation and H : X → Y be a random
oracle. Let AS be a non-interactive argument system for R. We say that AS satisfies εxzk-explainable
zero-knowledge, if there is a PPT algorithm Sim (called the simulator) such that for any algorithm A, we
have ∣∣∣Pr

[
X-ZKA

AS,Sim,0(λ)⇒ 1
]
− Pr

[
X-ZKA

AS,Sim,1(λ)⇒ 1
]∣∣∣ ≤ εxzk,

where the games X-ZKA
AS,Sim,b(λ) are defined in Figure 5. The term εxzk is allowed to depend on the

number of random oracle queries A makes.

Next, we define a weak form of simulation-soundness in presence of explained proofs. That is, in our
simulation-soundness game, the adversary gets access to simulated proofs and random coins that are
output by the simulator, similar to the second game of explainable zero-knowledge. Then, the goal of the
adversary is to output a proof that verifies for a wrong statement. In our definition, the adversary does
not get access to simulated proofs for invalid statements.

Game W-SIM-SNDA
AS,Sim(λ)

01 AGetProof1,GetCoins1,H,ForgeProof(1λ)
02 return win

Oracle ForgeProof(stmt, π)
03 if stmt ∈ LR : return
04 if VerProofH(stmt, π) = 1 : win := 1

Figure 6: The game W-SIM-SND modeling weak simulation-soundness for a non-interactive argument system
AS = (Prove, VerProof) for an NP relation R with respect to a random oracle H : X → Y and an adversary A.
Oracles GetProof1, GetCoins1, H are as in Figure 5.

Definition 10 (Weak Simulation-Soundness). Let R be an NP relation and H : X → Y be a random
oracle. Let AS be a non-interactive argument system for R and Sim be a PPT algorithm. Then, we say
that AS satisfies εwssnd-weak simulation-soundness with respect to Sim, if for any algorithm A, we have

Pr
[
W-SIM-SNDA

AS,Sim(λ)⇒ 1
]
≤ εwssnd,

where the game W-SIM-SNDA
AS,Sim(λ) is defined in Figure 6. The term εwssnd is allowed to depend on

the number of random oracle queries A makes.

33

As said before, we do not give the adversary access to simulated proofs for invalid statements. It is
well-known that in this case, simulation-soundness follows from standard soundness, as defined next, and
zero-knowledge. We show this for completeness in Lemma 3.

Definition 11 (Soundness). Let R be an NP relation and H : X → Y be a random oracle. Let AS be
a non-interactive argument system for NP. Then, we say that AS satisfies εsnd-soundness, if for any
algorithm A, we have

Pr
[
VerProofH(stmt, π) = 1 ∧ stmt /∈ LR | (stmt, π)← AH(1λ)

]
≤ εsnd.

The term εsnd is allowed to depend on the number of random oracle queries A makes.

Lemma 3. Let R be an NP relation and H : X → Y be a random oracle. Let AS be a non-interactive
argument system for R and Sim be a PPT algorithm. Assume that AS satisfies εsnd-soundness and that
it satisfies εxzk-explainable zero-knowledge with simulator Sim. Then, it satisfies εwssnd-weak simulation-
soundness with respect to Sim, where

εwssnd ≤ εxzk + εsnd.

Proof. Let A be any algorithm. Our goal is to show that

Pr
[
W-SIM-SNDA

AS,Sim(λ)⇒ 1
]
≤ εxzk + εsnd.

Recall that in W-SIM-SNDA
AS,Sim(λ), the adversary A gets access to oracles GetProof1, GetCoins1, H,

ForgeProof, and the game outputs the variable win (see Figure 6). Now, consider a game G, which
is exactly as experiment W-SIM-SNDA

AS,Sim(λ), but the oracles GetProof1, GetCoins1 are replaced
by the oracles GetProof0, GetCoins0 given in Figure 5. We claim that it follows from εxzk-explainable
zero-knowledge that ∣∣∣Pr

[
W-SIM-SNDA

AS,Sim(λ)⇒ 1
]
− Pr [G⇒ 1]

∣∣∣ ≤ εxzk.

To see why this holds, consider the following (potentially inefficient reduction), running in X-ZKA
AS,Sim,b(λ)

for some b ∈ {0, 1}:

• The reduction gets access to oracles GetProofb, GetCoinsb, H.

• The reduction runs A on oracles GetProofb, GetCoinsb, H, ForgeProof. It simulates ForgeProof
and sets win accordingly via brute-force, but without making any additional queries to H.

• Finally, the reduction outputs win.

Clearly, if b = 0, the reduction perfectly simulates G for A, whereas if b = 1, it perfectly simulates
W-SIM-SNDA

AS,Sim(λ). As the number of random oracle queries does not increase, the claim follows.
Hence, it remains to bound the probability that G outputs 1. This can easily be done via an (again,
inefficient) reduction breaking soundness. This reduction is as follows:

• The reduction runs in the soundness game, i.e., it has access to a random oracle H.

• The reduction simulates game G honestly for A. Note that in G, the random oracle is never
programmed.

• Simulation of oracle ForgeProof is potentially inefficient but does not increase the number of
random oracle queries.

• When A makes the first query ForgeProof(stmt, π) for which win = 1 is set, the reduction terminates
with output (stmt, π).

As the reduction makes as many random oracle queries as A and breaks soundness whenever G outputs
1, we get

Pr [G⇒ 1] ≤ εsnd.

The lemma follows.

34

A.2 Proofs for Our Construction
Here, we prove Lemmata 1 and 2. Before we do that, we show a generic statistical lemma that will turn
out to be useful. Intuitively, it states that the aggregation step of our argument system is sound. We also
recall a useful statistical lemma taken from [BLT+24].

Lemma 4. Let TLF = (Gen, T) be a tagged linear function family. For every fixed parameters par and
tags g, h ∈ T , define the set

Im(par, g, h) :=
{

(X1, X2) ∈ R2 ∣∣ ∃x ∈ D : T(g, x) = X1 ∧ T(h, x) = X2
}

.

Then, for any (even unbounded) algorithm A, we have

Pr

(X /∈ I ∨R /∈ I) ∧ X̄ ∈ I

∣∣∣∣∣∣
par← Gen(1λ),
(g, h, R, X)← A(par),
γ $← S, X̄ := R + γX

 ≤ 1
|S|

,

where I := Im(par, g, h) and R, X, X̄ ∈ R2.

Proof. Consider the experiment in the statement, and define I := Im(par, g, h) ⊆ R2. Then, it is easy
to see that I is a subspace of the S-vector space R2. Hence, there is a subspace U ⊆ R2 such that
U ⊕ I = R2, i.e., any W ∈ R2 can be written as W = UW + IW for some uniquely defined UW ∈ U and
IW ∈ I. Now, let X, R, X̄ be as in the experiment. Then, write X = UX + IX and R = UR + IR with
UX , UR ∈ U and VX , VR ∈ I. With that, note that

X̄ = R + γX = (UR + γUX)︸ ︷︷ ︸
∈U

+ (IR + γIX)︸ ︷︷ ︸
∈I

.

In particular, the probability that we want to bound becomes

Pr
[
X̄ ∈ I | R /∈ I ∨X /∈ I

]
≤ Pr

γ
[UR + γUX = 0 | UR ̸= 0 ∨ UX ̸= 0] ≤ 1

|S|
.

Lemma 5 ([BLT+24]). Let TLF = (Gen, T) be a tagged linear function family. For every fixed parameters
par and tags g, h ∈ T , define the set

Im(par, g, h) :=
{

(X1, X2) ∈ R2 ∣∣ ∃x ∈ D : T(g, x) = X1 ∧ T(h, x) = X2
}

.

Then, for any (even unbounded) algorithm A, we have

Pr

 (X1, X2) /∈ Im(par, g, h)
∧ T(g, s) = c ·X1 + R1
∧ T(h, s) = c ·X2 + R2

∣∣∣∣∣∣
par← Gen(1λ),
(St, g, h, X1, X2, R1, R2)← A(par),
c $← S, s← A(St, c)

 ≤ 1
|S|

.

Proof of Lemma 1. We prove explainable zero-knowledge of AS[TLF]. To this end, we give an efficient
simulator Sim, which has two jobs:

• Simulating Proofs. On input (0, h[·], stmt), where h[·] is the map defining the current state of the
random oracle H : {0, 1}∗ → S and stmt is a valid statement, the simulator needs to simulate a
proof π for this statement. It is allowed to program the random oracle by outputting a new map
h′[·] that represents the new state of the random oracle.

• Simulating Random Coins. At some later point in time, the simulator may get input (1, h[·], St, witn),
where again h[·] represents the random oracle, St is a state the simulator can output when simulating
a proof, and witn is a witness for the statement for which it simulated the proof. The task of the
simulator is to output well-distributed random coins ρ such that π could have been generated using
the witness and these coins. In the case of AS[TLF], the random coins are simply w $← D.

35

We now describe how the simulator works for our scheme AS[TLF]:

• Sim(0, h[·], stmt)→ (π, St, h′[·]):

1. Parse the statement as (h, R1, R2, X1, X2) := stmt.
2. Set γ := H(0, stmt), which potentially updates map h[·].
3. Define X̄ := (R1 + γX1, R2 + γX2) and stmt := (h, X̄).
4. Sample c $← S and z $← D and set W := φg,h(z)− cX̄.
5. If h[1, stmt, W] ̸= ⊥, abort. Otherwise, set h[1, stmt, W] := c.
6. Set π := (c, z) and St := (γ, c, z).
7. Define h′[·] to be the map h[·] with all the changes so far.
8. Return (π, St, h′[·]).

• Sim(1, h[·], St, witn)→ ρ:

1. Parse (γ, z, c) := St and (r, x) := witn.
2. Set witn := x̄ := r + γx and return ρ := w := z − cx̄.

We now turn to the analysis of our simulator. First, it is clear that Sim is PPT. Second, we need to
argue that for any algorithm A, making at most QH queries to H and Q queries to the oracles GetProof
and GetCoins and running either in the game with honestly generated proofs or with the simulator, the
distinguishing advantage is bounded by εxzk as in the lemma. To this end, we first bound the probability
that the simulator will ever abort. Namely, by regularity of TLF and the assumption that (par, g) is in
the regularity set, we know that the first component of φg,h(z) for z $← D is uniformly distributed over R,
and so is the first component of W = φg,h(z)− cX̄. Therefore, for any fixed invocation of the simulator,
the probability that it aborts because h[1, stmt, W] is already defined is at most QH/|R|. With a union
bound over the at most Q invocations of the simulator, the probability of an abort is therefore bounded
by QQH/|R|. Now, condition on no abort happening. In this case, note that the simulator performs
the aggregation step (computing X̄ from (R1, R2) and (X1, X2)) exactly as the honest prover algorithm
would do. Therefore, it is sufficient to observe that for any x̄ ∈ D, the following distributions are the
same:

• Real Distribution. Output (x̄, w, c, z), where w $← D, c $← S, and z := cx̄ + w.

• Simulated Distribution. Output (x̄, w, c, z), where z $← D, c $← S, and w := z − cx̄.

This is clear, concluding the proof.

Proof of Lemma 2. We prove soundness of AS[TLF]. To this end, consider the soundness experiment for
an adversary A. The adversary A is assumed to have access to the parameters par, g specifying the relation
RTLF[par, g]. It gets access to the random oracle H : {0, 1}∗ → S and the security parameter 1λ as input.
The adversary outputs a statement stmt = (h, R1, R2, X1, X2) ∈ T ×R4 and a proof π = (c, z) ∈ S × D.
The adversary wins the game if the statement is invalid, but the proof verifies, i.e., if the following hold:

1. We have (X1, X2) /∈ Im(par, g, h) or (R1, R2) /∈ Im(par, g, h), using the notation of Lemmata 4 and 5.

2. We have H(1, stmt, W) = c for γ := H(0, stmt), X̄ := (R1 + γX1, R2 + γX2), stmt := (h, X̄), and
W := φg,h(z)− cX̄.

We now consider the following events BatchBreak:

• Event BatchBreak: This event occurs, if X̄ ∈ Im(par, g, h).

• Event Win: This event occurs, if A wins, as specified above. Our goal is to bound the probability of
this event.

36

We can use Lemma 4 and a union bound over all QH random oracle queries to get

Pr [BatchBreak] ≤ QH
|S|

.

Now, condition on BatchBreak not occurring. Then in particular, we have that X̄ /∈ Im(par, g, h). We can
therefore easily build a reduction that runs in the experiment in Lemma 5: it would guess the random
oracle query H(1, stmt, W) associated with the adversaries output. When this query occurs, it would
output its state and g, h, X̄, W to the experiment in Lemma 5 and program the random oracle to the
challenge that it receives back. Finally, when A terminates and the guess was correct (which happens
with probability 1/QH), it would output z to the experiment. By Lemma 5, we have

Pr [Win] ≤ Pr [BatchBreak] + Pr [Win | ¬BatchBreak] ≤ QH
|S|

+ QH
|S|

= 2QH
|S|

.

37

B Details on Instantiations
Here, we provide more details on the instantiations of tagged linear function families, which are taken
from [BLT+24].

B.1 Instantiation from Algebraic One-More CDH
We use the tagged linear function family TLFAOMCDH = (GenAOMCDH, TAOMCDH) from [BLT+24] based on
the AOMCDH assumption. We first recall the AOMCDH assumption.

Definition 12 (AOMCDH Assumption). Let GGen be a group generation algorithm. That is, on input
1λ, it outputs the description of a prime order group G. The description contains the prime order p and
a generator g of G, and a description of the group operation. Consider the game AOMCDH in Figure 7.
We say that the t-AOMCDH assumption holds relative to GGen, if for all PPT algorithms A, the following
advantage is negligible:

Advt-AOMCDH
A,GGen (λ) := Pr

[
t-AOMCDHA

GGen(λ)⇒ 1
]
.

Game t-AOMCDHA
GGen(λ)

01 (G, g, p)← GGen(1λ)
02 h $← G, x0, . . . , xt

$← Zp

03 for i ∈ JtK : Xi := gxi

04 (X ′
i)t

i=0 ← AInv(G, g, p, h, (Xi)t
i=0)

05 if ∀i ∈ JtK X ′
i = hxi : return 1

06 return 0

Oracle Inv(α0, . . . , αt)
07 if q ≥ t : return ⊥
08 q := q + 1
09 x :=

∑t
i=0 αixi

10 return x

Figure 7: The game AOMCDH from the definition of the AOMCDH assumption for an adversary A.

The authors [BLT+24] show that this assumption is implied by the algebraic one-more discrete
logarithm (AOMDL) assumption [NRS21] in the algebraic group model. Further, Bauer et al. [BFP21] give
a bound for AOMDL in the generic group model (GGM) [Sho97]. As a direct implication, the advantage
of any adversary against AOMCDH is bounded by the same probability, namely Θ

(
t2/(p− t2) + 1/p

)
.

The tagged linear function family TLFAOMCDH = (GenAOMCDH, TAOMCDH) based on AOMCDH is defined
as follows. Let GGen be an algorithm that takes as input 1λ and outputs the description of a group
G of prime order p with generator g ∈ G. Algorithm GenAOMCDH runs GGen and outputs parameters
par = (G, g, p). These parameters define the following sets of scalars, tags, and the domain and range,
respectively:

S := Zp, T := G, D := Zp, R := G.

Given a tag h ∈ G and an input element x ∈ Zp, the tagged linear function TAOMCDH is defined as

TAOMCDH(h, x) := hx ∈ G.

Lemma 6 ([BLT+24]). The tagged linear function family TLFAOMCDH is εr-regular and εt-translatable
with εr ≤ 1/p and εt ≤ 2/p. Further, let t ∈ N be polynomial in λ, and assume that the t-AOMCDH
assumption holds relative to GGen. Then, TLFAOMCDH is t-algebraic translation resistant. Concretely, for
any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

Advt-A-TRAN-RES
A,TLFAOMCDH

(λ) ≤ Advt-AOMCDH
B,GGen (λ) + 1

p
.

B.2 Instantiation from DDH
We use the tagged linear function family TLFDDH = (GenDDH, TDDH) from [BLT+24] based on the DDH
assumption. We first recall the DDH assumption.

38

Definition 13 (DDH Assumption). Let GGen be a group generation algorithm. That is, on input 1λ,
it outputs the description of a prime order group G. The description contains the prime order p and
a generator g of G, and a description of the group operation. We say that the DDH assumption holds
relative to GGen, if for all PPT algorithms A, the following advantage is negligible:

AdvDDH
A,GGen(λ) :=

∣∣∣∣ Pr
[
A(G, p, g, h, ga, ha) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
h $← G, a $← Zp

]
−Pr

[
A(G, p, g, h, u, v) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
h, u, v $← G

] ∣∣∣∣.
We make use of the implicit notation for group elements from [EHK+13]. That is, we write [A] ∈ Ga×b

for the matrix of group elements with exponents given by the matrix A ∈ Za×b
p , i.e., if A = (Ai,j)i∈[a],j∈[b],

then [A] := (gAi,j)i∈[a],j∈[b]. The tagged linear function family TLFDDH = (GenDDH, TDDH) based on DDH
is defined as follows. Let GGen be an algorithm that takes as input 1λ and outputs the description of a
group G of prime order p with generator g ∈ G. Algorithm GenDDH runs GGen and outputs parameters
par = (G, g, p). These parameters define the following sets of scalars, tags, and the domain and range,
respectively:

S := Zp, T := G2×2, D := Z2
p, R := G2.

Given a tag [G] ∈ G2×2 and an input element x ∈ Z2
p, the tagged linear function TDDH is defined as

TDDH([G], x) := [Gx] ∈ G2.

Lemma 7 ([BLT+24]). The tagged linear function family TLFDDH is εr-regular and εt-translatable with
εr ≤ (p + 1)/p2 and εt ≤ (3 + 3p)/p2. Further, let t ∈ N be polynomial in λ, and assume that the DDH
assumption holds relative to GGen. Then, TLFDDH is t-algebraic translation resistant. Concretely, for any
PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

Advt-A-TRAN-RES
A,TLFDDH

(λ) ≤ AdvDDH
B,GGen(λ) + 4

p
+ 2

p2 .

39

C Pseudocode

Alg Setup(1λ)
11 par′ ← TLF.Gen(1λ), g $← T
12 return par := (par′, g)

Alg Gen(par)
13 a0, . . . , at

$← D
14 for i ∈ [n] : ski :=

∑t
j=0 ajij

15 pk := pk0 := T(g, a0)
16 return (pk, sk1, . . . , skn)

Alg Sig0(S, i, ski, m)
17 ϱi

$← {0, 1}2λ
, ri

$← D
18 R

(1)
i := T(g, ri)

19 comi := H̃(S, i, R
(1)
i)

20 pm1 := (ϱi, comi)
21 St1 := (S, i, ski, m, ri, pm1)
22 return (pm1, St1)

Alg Sig1(St1,M1)
23 parse (S, i, ski, m, ri, pm1) := St1
24 parse ((ϱj , comj))j∈S :=M1
25 if (ϱi, comi) ̸= pm1 : return ⊥
26 ϱ := Ĥ(S, m, (ϱj)j∈S)
27 h := H(m, ϱ)
28 pk(2)

i := T(h, ski)
29 R

(2)
i := T(h, ri)

30 stmt := (h, R
(1)
i , R

(2)
i , pki, pk(2)

i)
31 witn := (ri, ski)
32 ρ $← D
33 πi := Prove(stmt, witn; ρ)
34 pm2 := (pk(2)

i , R
(2)
i , R

(1)
i , πi)

35 St2 := (M1, St1, h, ϱ, ρ, pm2)
36 return (pm2, St2)

Alg Sig2(St2,M2)
37 parse (M1, St1, h, ϱ, ρ, pm2) := St2
38 parse (S, i, ski, m, ri, pm1) := St1
39 parse ((ϱj , comj))j∈S :=M1

40 parse ((pk(2)
j , R

(2)
j , R

(1)
j , πj))j∈S :=M2

41 if (pk(2)
i , R

(2)
i , R

(1)
i , πi) ̸= pm2 :

42 return ⊥
43 for j ∈ S :
44 stmtj := (h, R

(1)
j , R

(2)
j , pkj , pk(2)

j)
45 if ∃j ∈ S s.t. H̃(S, j, R

(1)
j) ̸= comj

46 ∨ VerProof(stmtj , πj) = 0 : return ⊥
47 R(1) :=

∑
j∈S R

(1)
j

48 R(2) :=
∑

j∈S R
(2)
j

49 pk(2) :=
∑

j∈S ℓj,S · pk(2)
j

50 c := H̄(pk, pk(2), R(1), R(2), m, ϱ)
51 si := c · ℓi,S · ski + ri

52 return pm3 := si

Alg Combine(S, m,M1,M2,M3)
53 parse ((ϱj , comj))j∈S :=M1

54 parse ((pk(2)
j , R

(2)
j , R

(1)
j , πj))j∈S :=M2

55 parse (sj)j∈S :=M3

56 R(1) :=
∑

j∈S R
(1)
j

57 R(2) :=
∑

j∈S R
(2)
j

58 pk(2) :=
∑

j∈S ℓj,S · pk(2)
j

59 ϱ := Ĥ(S, m, (ϱj)j∈S)
60 c := H̄(pk, pk(2), R(1), R(2), m, ϱ)
61 s :=

∑
j∈S sj

62 return σ := (pk(2), c, s, ϱ)

Alg Ver(pk, m, σ)
63 parse (pk(2), c, s, ϱ) := σ
64 h := H(m, ϱ)
65 R(1) := T(g, s)− c · pk
66 R(2) := T(h, s)− c · pk(2)

67 if c = H̄(pk, pk(2), R(1), R(2), m, ϱ) :
68 return 1
69 return 0

Figure 8: The three-round (t, n)-threshold signature scheme Twinkle-T[TLF] = (Setup, Gen, Sig, Ver) for a tagged
linear function family TLF. The scheme AS[TLF] = (Prove, VerProof) is as in Section 4.

40

	Introduction
	Our Contribution
	More on Related Work
	Paper Organization

	Technical Overview
	Twinkle and its Security Proof
	Towards Tight Threshold Partitioning
	Reducing the Number of Rounds

	Preliminaries
	Threshold Signatures
	Tagged Linear Function Families

	Non-Interactive Arguments for Tagged Linear Functions
	Our Construction
	Construction
	Security Analysis

	Instantiations and Efficiency
	More Details on Non-Interactive Argument Systems
	Formal Definitions
	Proofs for Our Construction

	Details on Instantiations
	Instantiation from Algebraic One-More CDH
	Instantiation from DDH

	Pseudocode

