
Universally Composable SNARKs with Transparent Setup
without Programmable Random Oracle

Christian Badertscher1, Matteo Campanelli2, Michele Ciampi3, Luigi Russo4, and Luisa Siniscalchi5

1 IOG
2 No affiliation

3 The University of Edinburgh
4 EURECOM

5 Technical University of Denmark

Abstract. Non-interactive zero-knowledge (NIZK) proofs allow a prover to convince a verifier
about the validity of an NP-statement by sending a single message and without disclosing any ad-
ditional information (besides the validity of the statement). Single-message cryptographic proofs
are very versatile, which has made them widely used both in theory and in practice. This is
particularly true for succinct proofs, where the length of the message is sublinear in the size of
the NP relation. This versatility, unfortunately, comes at a price, since any NIZK proof system
requires some form of setup, like a common reference string. One way to circumvent the need for
a setup is by relying on a Random Oracle. Unfortunately, if the Random Oracle is modeled as
a Global resource that the simulator is not allowed to program, then it is impossible to obtain
a secure NIZK. This impossibility has been circumvented by allowing the simulator (and the
real-world adversary) to program the RO, and allowing the honest parties to check, via a special
interface, if the RO outputs have been programmed.
In this work, we show that this impossibility can be circumvented by meaningfully weakening the
Universal Composability framework following the model proposed by Broadnax et al. (Eurocrypt
2017). In this model, the ideal world functionalities are allowed to interact with oracles that have
quasi-polynomial time capabilities.
As our main result, we propose the first composable NIZK proof system that relies on a global
(non-programmable) random oracle as its only form of setup. The NIZK scheme we propose is
witness-succinct (with proofs logarithmic in the size of the witness). Our results break both the
barrier of programmability of the random oracle and of polylogarithmic proof size for UC-secure
NIZKs with transparent setups.
We are able to construct our NIZK using the framework proposed by Ganesh et al. (Eurocrypt
2023), which requires—among other building blocks—a polynomial commitment scheme with
special features and a polynomial encoding scheme (a primitive that appropriately masks a
witness as a polynomial). As a core technical contribution, we show a polynomial commitment
of this type using a basic component of Bulletproofs as a building block, as well as a polynomial
encoding based on techniques completely different from the ones from Ganesh et al..

Table of Contents

Universally Composable SNARKs with Transparent Setup without Programmable Random
Oracle . 1

Christian Badertscher1, Matteo Campanelli2, Michele Ciampi3, Luigi Russo4, and Luisa
Siniscalchi5

1 Introduction . 2
1.1 Technical Overview . 4
1.2 Future Work and Alternative Instantiations . 9

2 Basic Preliminaries and Notation . 9
3 The NIZK Functionality with an Adjoined Oracle . 9

3.1 Global Random Oracles . 10
3.2 Constructions with Setup . 10
3.3 Weakening the Ideal Functionality . 11
3.4 Definition of the Oracle-Adjoined NIZK Functionality . 12

4 Our Protocol ΠTS-R that Realizes FO
NIZK . 12

4.1 Section’s preliminaries . 12
4.2 Description of ΠTS-R . 13

5 Constructing the Building Blocks for ΠTS-R . 14
5.1 Putting it All Together . 15
5.2 Instantiation of the Polynomial Encoding Scheme . 16
5.3 Instantiation of the Succinct Polynomial Commitment Scheme . 17
5.4 Instantiation of the Succinct Simulation-Extractable NIZK . 19

A Standard NIZK Functionality . 22
B Discrete Logarithm Assumption. 22
C Decisional Diffie-Hellman Assumption . 22
D Preliminaries on Non-Interactive Arguments . 22
E Dense Samplable Puzzle (DSP) system . 24
F The Shielded Oracle Framework [BDH+17] . 25
G Definitions of the Building Blocks of [GKO+23] . 27

G.1 Succinct Polynomial Commitment Scheme . 27
G.2 Simulation Extractability . 29

H Our Polynomial Encoding Scheme . 29
H.1 Additional Preliminaries . 29
H.2 Further leakage-resilience properties of additive secret sharing . 30
H.3 Further Analysis of admdet-Linear Leakage . 32
H.4 Secret-Sharing Based Polynomial Encoding Scheme . 32

I Proof of Theorem 1 . 33
J Proofs for the Security of BP-PC . 36

J.1 Proof of Theorem 5 . 36
J.2 Proof of Theorem 6 . 38
J.3 Proof of Theorem 7 . 47

K The compiler ΠGKOPTT of [GKO+23] . 47

1 Introduction

A proof system allows two entities, a prover and a verifier, to interact so that, at the end of the
interaction, the verifier can be convinced of the validity of some NP statement. Informally, a proof
system is zero-knowledge (ZK) [GMR85] if the verifier, upon receiving the proof, learns nothing more
than the fact that the statement is true (e.g., any secret/witness the prover may need to issue the proof
is protected). In the non-interactive scenario, a proof consists of one message sent from the prover to
the verifier. These kinds of proofs, introduced in [BFM88], are called Non-Interactive Zero-Knowledge
(NIZK) proofs. NIZK proofs are particularly useful and easy to use due to their publicly verifiable
nature. This means that any verifier that has access to a proof, can verify it. This flexibility of NIZK

proofs has been proven to be remarkably useful in privacy-preserving applications or to instantiate
more complex cryptographic primitives.
Succinctness and setup in NIZKs. Nowadays we have quite efficient NIZK schemes with strong
succinctness properties, i.e., the size of the proofs is extremely small compared to the size of the
statement being proven. Unfortunately, there is a big catch in the use of NIZK proofs: the security of
a NIZK protocol holds as long as the prover and the verifier have access to a pre-agreed setup. Most
commonly deployed NIZKs are based on the existence of a common reference string (CRS). A common
reference string is a bitstring that must be generated by a third party that is trusted to: 1) generate
the CRS according to a predetermined randomized algorithm; and 2) never reveal the random coins
used to generate the CRS.

The requirement of a CRS inherently introduces a critical point of failure. This is because [GO94]
shows that we can trust neither the prover nor the verifier to generate such a CRS. One way to
generate the CRS without relying on a single trusted party could be via a distributed protocol, e.g.,
via a multi-party (MPC) computation protocol [Yao86, GMW87]. There are two problems with this
approach: 1) it is not clear what incentives the parties running the multi-party computation protocol
have in being honest (and so which proportion of them we can reliably assume to be honest); and 2) if
we want to securely generate the CRS in the case where the majority of the parties may be corrupted,
then we may need a CRS to run the MPC protocol itself. Even in the case where we can securely run
an MPC protocol, in practice, things can go wrong. For example, ZCash generated the CRS for their
NIZK scheme, using an MPC protocol. It was later discovered that an adversary that had access to
the transcript of the MPC protocol could break the soundness of the NIZK proof [Swi19], and hence,
double-spend coins.

A better form of setup is one that is transparent, in the sense that its generation procedure should
be simple, not contain any trapdoor and such that it should be easy to convince users that the setup
was indeed generated correctly. A type of setup widely accepted to be transparent is the Random
Oracle (RO). In this model, the security of the NIZK protocol is proven assuming that the prover
and verifier have access to a trusted party that behaves like a random function. In practice, the RO
is heuristically replaced by a cryptographic hash function (e.g., SHA-256), hence, there is no need to
generate any ad hoc CRS as described in the previous paragraph.

Most of the approaches based on the RO methodology rely on the unrealistic assumption that the
RO (hence the hash function) is used by only one instance of the cryptographic protocol. Technically
speaking, the security of NIZK is guaranteed only as long as the RO is used as a local resource. This
makes the usage of this ideal setup non-transparent, and furthermore, in practice, the RO is replaced
by a single hash function which is used in many other applications as well (for example SHA-256).
Therefore, it would be much more desirable and realistic to consider NIZK protocols that remain secure
even if the same hash function is used across different sessions, following for example the Global RO
model introduced by Canetti et al. [CJS14].
How to design NIZK in the Global RO. What makes it difficult to prove results in the Global
RO setting, is that the simulator cannot program the random oracle. Indeed, as recalled in [CV22],
it is impossible to realize a NIZK proof system in the non-programmable RO (NPRO) model unless
we introduce additional setup assumptions (e.g., a CRS). In the same work the authors show that
it is in fact possible to build NIZKs assuming the existence of a NPRO if we allow the simulator to
run in super-polynomial time. The notion of super-polynomial time simulation (SPS) was introduced
in [Pas03], and allowed to already circumvent known impossibility results, yielding to a two-round
zero-knowledge protocol, assuming no setup and no RO. In [Pas04] it is shown that two rounds are
necessary and sufficient for quasi-polynomial time simulatable arguments, hence, super-polynomial
time alone does not suffice to obtain NIZK. Despite [CV22] providing a positive results, their NIZK
proof is secure only in the standalone setting (non-composable), and it does not enjoy any form of
succinctness6.
Our research question. In this work, we investigate whether the same result can be obtained in a
composable setting while providing a scheme with succinct proof size.

Is it possible to construct a composable NIZK proof system, where the only available setup is
a Global (non-programmable) Random Oracle?

In this work, we answer the above questions in a positive sense by considering a relaxed (but still
meaningful) version of the zero-knowledge functionality. We formally prove our results in the UC with
6 In this work we say a proof system has succinct proofs if their size is sublinear in the size of the witness.

3

shielded oracles [BDH+17] (more details on this follow), providing a scheme that relies only on standard
polynomial-time falsifiable assumptions. Given the above positive findings, we make a step forward and
we ask whether our NIZK satisfies some form of succinctness. Only very recently thanks to the results
of [GKO+23, CF24] we had constructions of UC-NIZK that have proof size sub-linear in both the
theorem and the witness size. However, these constructions need to rely on an additional local setup
(e.g., programming the random oracle or a structured local CRS) due to the impossibility mentioned
above. Our final scheme is witness succinct and makes use only of a Global RO as its setup. In a bit
more detail, we prove the following.
Theorem 1 (informal). Assuming the hardness of the Discrete Logarithm and Decisional Diffie-
Hellman assumptions against probabilistic-polynomial time adversaries, there exists a composable NIZK
proof system with succinct proofs—specifically, logarithmic in the witness size—assuming that the only
available setup is a Global (non-programmable) Random Oracle.

Our results break both the barrier of programmability of the random oracle and of polylogarithmic
proof size for UC-secure NIZKs with transparent setups (see Table 1).

1.1 Technical Overview

Circumventing the impossibility. We study the security of NIZK proofs in the Universal Com-
posable (UC) [Can01] setting. In this, the NIZK properties are captured by an ideal functionality
FNIZK parametrized by an NP-relation R. This functionality, upon receiving a statement-witness pair
(denoted with (x, w)) from a prover, checks if the pair belongs to R, and if this is the case, it generates
a string (the proof) π. The functionality then records the entry (x, π) and sends π to the verifier. If
the functionality is invoked with the pair (x′, π′) by any party (verifier), and this pair is recorded, then
the functionality returns 1, else it returns 0.

This functionality, in a nutshell, generates a special certificate/proof about the validity of an NP
statement x, only if x comes with a valid witness w. A natural question now is: How is π generated?
In the standard NIZK functionality, π is completely generated by the ideal-world adversary (aka
the simulator). This is quite important, as in the real world, the protocol that realizes the NIZK
functionality will generate π, hence, to argue indistinguishability between real and deal worlds, the
ideal and the real proof must be the same (or at least belong to computational indistinguishable
distributions).

The soundness property of a real-world protocol is captured by the fact that no adversary can
generate a proof π for a false statement x. This comes from the fact that no pair (x, π) for a false
statement x will ever be recorded by the ideal functionality. At the same time, to prove that the scheme
is zero knowledge, we need to design a simulator that can somehow generate a valid proof π without
knowing the witness. Hence, we need a real-world efficient procedure, that allows the simulator to
create valid proof π, without knowing the witness. But it is important to stress that for soundness to
hold we need to guarantee that a corrupted prover cannot use this process. This inherent contradiction
is usually broken by allowing the simulator an additional power that the real-world adversary does not
have. This is done by assuming that the real-world protocol relies on some trusted setup that helps only
the simulator generate fake proofs, but it does not provide any help to the real-world prover. This goes
against the concept of what a global setup is. Indeed, a global setup should expose the same interface
and the same capabilities to all the parties. In the case of random oracles, this additional power is
represented by the ability of the simulator to program the queries made to the RO, a capability that
instead the real-world adversary cannot exploit.

To avoid this common problem, we start from this basic observation. A zero-knowledge simulator
is invoked for a theorem x only when in the ideal world a proof query (x, w) is issued, with (x, w) ∈ R.
Our idea is to give a proof π to the simulator (the ideal world adversary) any time that a valid theorem-
witness pair is generated. But as observed before, in standard NIZK functionality, π is generated by
the ideal adversary and this is quite crucial to argue indistinguishability between real and ideal world.
However, we observe that π can indeed be generated by the NIZK functionality. For example let us
consider an ideal NIZK functionality that, upon receiving a valid statement-witness pair, samples a
special string π and sends it to the adversary and the verifier. This NIZK functionality still captures
the basic properties of zero-knowledge and soundness, but unfortunately, it is not clear how to realize
it. This is because an honest prover in the real-world protocol should be able to generate the same
string π, when creating a proof.

4

To make this functionality realizable, we parametrize the functionality FNIZK by a helper oracle.
This oracle can only be invoked on a statement x, for which a valid witness w exists. When the oracle
is correctly invoked and receives only the statement x, it can run in time T to generate a proof π,
that looks like a real-world proof. Note that the property of zero-knowledge is still captured, as π
is generated without using the witness. But, how T is implemented will determine for what type of
languages this new FNIZK is non-trivial to realize.

In more detail, consider the case when T is exponential. This means that the helper oracle could
generate π = w. In this case, this functionality could only be realized for languages that are in BPP,
as we require that a real-world proof is valid only if it corresponds to a witness for the statement
being proven. But we also note that if, instead, T is just quasi-polynomial time, then the new NIZK
functionality still captures a meaningful notion of zero-knowledge. Indeed, if we can design a protocol
that realizes this new NIZK functionality to prove statements that require more than T =quasi-
polynomial time to be decided then we have again a useful and meaningful zero-knowledge protocol.

In a nutshell, we are enhancing the NIZK functionality with a helper-oracle that can be invoked
both in the ideal and in the real world, which is useful to produce valid proofs only for statements with
valid witnesses. Crucially, this means that the real-world adversary would never be able to use this
helper unless he provides a valid statement-witness pair. Indeed, the helper can be invoked by parties
that have a valid witness for a statement x (hence, in this case, the helper is useless for the party)
and cannot be invoked for statements for which no witness exists (the helper cannot be used to forge
a proof).

We will argue that such a NIZK functionality can be realized assuming as the only form of setup
a global (non-programmable) random oracle. Before showing how our construction works, we need to
describe how to modify the UC framework to enable this quasi-polynomial time helpers/oracles.

Designing the UC-NIZK functionality with shielded oracles. Luckily for us, a modified version
of the UC framework that allows to properly model our new NIZK functionality already exists, and it is
called UC with shielded oracle model [BDH+17]. Shielded oracles, intuitively transform a functionality
F into a weaker functionality FO that gives additional power at the adversarial interface. Notably, the
oracle is allowed to perform quasi-polynomial time computations and assist the functionality and/or the
simulator in simulating. This makes the functionality easier to realize as the simulator has more power:
the simulator has (controlled) access to results that stem from a quasi-polynomial time computation.
However, in view of composition, FO is now the functionality one has to deal with in further protocol
design steps and it is weaker than F. In particular, whatever output O gives at the adversarial interface
must be carefully inspected as it impacts composition with other protocols. That is, the additional
power could be “abused” to attack other protocols, since it is, presumably indirectly, the output of
a computation that cannot be emulated by a polytime environment. Protocols must now be secure
against a new class of environments beyond quasi-polynomial time, denoted by Z[FO], which are all
poly-time processes Z with black-box access to different sessions of FO.

Our first goal is to define an adjoined oracle O for UC-NIZKs that “weakens” the standard zero-
knowledge functionality FNIZK in the above sense in a controlled way that plausibly does not impact the
soundness property and enables composition in other contexts where the zero-knowledge functionality
FNIZK would be used. We have already given a high-level intuition about how we relax FNIZK, but
before describing it in more detail we provide a high-level overview of our construction. This will help
to understand how the simulator works and in particular the motivations behind the design of our new
NIZK functionality and oracle.

A starting point for building a NIZK protocol. Our construction is inspired by [CV22], where
the authors construct a standalone (i.e., not composable) NIZK protocol in the SPS + NPRO model.
The scheme proposed in [CV22] works as follows. To prove that a statement x belongs to some
NP-language L, the prover runs a witness-indistinguishable (WI) proof of knowledge (PoK) protocol
ΠPoK, proving either the knowledge of the witness for x or the solution of a puzzle puzz. This puzzle
is sampled by querying the random oracle on input the statement x, thus obtaining a string that is
parsed as a random group element. The solution of the puzzle is represented by its discrete logarithm.

Crucially ΠPoK is proven secure in the NPRO, and the PoK extractor is straight-line (i.e., it does
not perform any rewind to the adversary). The hardness of the puzzle is parametrized in such a way
that it is hard to solve by a polynomial time algorithm, but it is easy to solve by a quasi-polynomial
time algorithm. To simulate a proof, the simulator computes the solution to the puzzle running in
quasi-polynomial time and generates a valid proof using the solution of the puzzle as the witness.

5

This simulated proof, due to the WI property of the underlying scheme, will be guaranteed to be
indistinguishable from the honestly generated proof.

The scheme of [CV22] that we have just sketched, seems to be a promising candidate for our goal.
This is because both the zero-knowledge simulator and the PoK extractor are straight-line, and neither
the simulator nor the PoK extractor need to program the RO. Unfortunately, this is not the case. The
reason is that to hope to get some composability properties, we need to argue that the PoK extractor
successfully extracts the witness for the statement proven by a corrupted prover, while at the same
time, simulated proofs are generated and provided to the adversary. In a nutshell, we need the property
of simulation extractability, and [CV22] does not satisfy this strong notion of security. On top of that,
the scheme of [CV22] does not provide any form of succinctness.
Towards SIM-EXT and succinctness. For the reasons above we will have to follow a slightly
different approach. Instead of using a WIPoK scheme, we take as our main building block a simulation-
extractable NIZK protocol NIZKPRO with the following two properties: 1) no CRS is needed (hence,
the zero-knowledge simulator may need to program the RO) and 2) the PoK extractor only needs to
access the RO queries made by the adversary, and it works in a straight-line manner (i.e., no rewind
is performed).

Equipped with this stronger tool, we can follow the same approach as before, but using NIZKPRO

to prove either the knowledge of a witness for x ∈ L, or the solution of puzz. The puzzle in this
case is sampled by querying the RO on input the session identifier and the theorem to be proven.
Our simulator crucially will not use the simulator of the underlying NIZKPRO, instead, it issues proofs
that are generated by running the prover algorithm of NIZKPRO, but using the solution of puzz as the
witness. To perform extraction from proofs generated by the adversary, our simulator runs the straight
line extractor of NIZKPRO, which by definition does not program the RO.

Note that in our proof we rely on the security of NIZKPRO, specifically, we will have a hybrid
experiment in which the simulator (who programs the RO) of NIZKPRO will actually be used. However,
this will constitute just a step in our proof, and the simulator of NIZKPRO will never be used in the
final simulation of the ideal world.
Intermezzo: how to design FNIZK. In the next paragraph, we will argue how to obtain NIZKPRO,
but let us first explain our design choice for our NIZK functionality FNIZK. As explained above, in the
shielded oracle, our NIZK functionality FNIZK has access to an oracle O that can do quasi-polynomial
time work. A simple solution would be to ask O to solve the puzzles and give the solutions back to
the simulator. This clearly does not work, as the adversary is also allowed to access O, and as such he
could use the solutions to the puzzle to generate accepting proofs for false statements (thus breaking
the soundness). Instead, we design our ideal functionality and oracle to work as follows. Upon receiving
a prove query (prove, sid, x, w), FO

NIZK checks that w is a witness for the NP statement x, and if this
is the case, it sends (sid, x) to O. O now queries the random oracle with input (sid, x), thus obtaining
the puzzle puzz, solves the puzzle running in quasi-polynomial time, and computes a proof π running
NIZKPRO on input the solution of the puzzle as a witness. Then it returns the obtained proof back to
functionality, which records (x, π), and forwards π to the adversary. A verifier can check if the proof π
for a statement x is valid by querying FO

NIZK on input (verify, sid, x, π). If the entry (x, π) has been
recorded by FO

NIZK, then the functionality returns 1, else it returns 0.
The high-level idea here is that the simulator will receive a simulated proof π from the ideal

functionality, any time that in the ideal world, an honest party issues a query (prove, sid, x, w) to
FO

NIZK. At the same time, this mechanism does not help a malicious prover, as simulated proofs can be
issued only for statements that in the ideal world come with a valid witness. For more detail on how
our ideal functionality is formalized, we refer to Section 3.4.

We end this paragraph by recalling from [BDH+17] that UC with shielded oracles implies security
in the SPS model, it therefore remains impossible in the shielded oracle model to construct a NIZK
proof without additional setup. We note that other UC models have been considered where quasi-
polynomial time resources are available, such as UC with helpers (or angels) [PS04,CLP10]. However
these notions are stronger than the shielded oracle framework, hence we naturally decided to go with
the weakest notion, which notably is fully compatible with the UC framework, i.e., protocols proven
secure in the UC framework remain secure in our framework.
Implementing FNIZK via the [GKO+23] approach. We are left to argue how we design one of
our main building blocks NIZKPRO. We recall that we want a simulation-extractable NIZK that only
uses a RO as its setup, and that has a straight-line PoK extractor that does not program the RO.
Moreover, we need NIZKPRO to be succinct. The scheme that comes near to our ideal candidate, is the

6

one proposed in [GKO+23] . The protocol [GKO+23] is described as a compiler, that takes as input 1)
a succinct (non-UC) simulation-extractable NIZK argument, and 2) a special polynomial commitment.
The output of the compiler is a UC NIZK in the global RO model, whose setup consists of the setups
of the input protocols. Since the underlying tools proposed by [GKO+23] assume the existence of a
structured CRS (i.e., a CRS that cannot be generated by simply querying the RO), in order to obtain
NIZKPRO, we need to propose different instantiations of these tools based on transparent building
blocks.
Constructing the right building blocks. We start by observing that we can adopt as a succinct
(non-UC) simulation-extractable NIZK the version of Bulletproofs [BBB+18] presented in [DG23].
As a consequence, our main efforts is on obtaining a new special polynomial commitment, whose only
setup is the RO. We call the polynomial commitment special because [GKO+23] adds certain additional
properties compared to standard ones for polynomial commitments (e.g., evaluation binding)7. Some of
these properties are specific to the polynomial commitment scheme (or, PCS) alone. One such property
is that the polynomial opening proofs should be unique, i.e., it should be infeasible for an adversary to
come up with two valid proofs for the same evaluation point. Other required properties have to do with
the PCS when used in conjunction with yet another type of primitive, a polynomial encoding scheme
(PES). Informally, this is a way to encode vectors into polynomials in order to provide some amount
of hiding (even when the underlying PCS is not hiding). The properties we require in this sense are:
ϕ Evaluation hiding. This property refers to leakage-resilience features of the polynomial commit-

ment with respect to a PES. A little bit more precisely, consider the following game. Let m0, m1 be
two vectors of which we are picking one at random by sampling a random bit b←$ {0, 1}. We then
encode the vector mb into a polynomial f and show the adversary a polynomial commitment to
f together with r evaluations/proofs (w.r.t the commitment) on points selected by the adversary.
The property of ϕ-evaluation hiding holds intuitively if no adversary can distinguish m0 by m1
above if we “inject” ϕ(r) random points (in a precise technical sense) into the encoding f in the
game above.

ϕ-Non-Extrapolation. This property is similar in flavor to the one before but requires that, after
showing the adversary r evaluations/proofs, it should be infeasible for them to compute a valid
proof for a new evaluation point even when the committed polynomial “encodes” the all-zero vector.
To the best of our knowledge, there is no polynomial commitment scheme relying only on the

RO in literature with all of the above properties (with respect to some PES). In our work, we prove
that a polynomial commitment scheme based on Bulletproofs of [BBB+18,DG23] does satisfy all the
properties we need when paired with an appropriate PES based on secret sharing (or SS-PES) which
we also introduce in this work and which was the main source of technical challenges. We provide
further details in Section 5.3, while below we give a high-level overview.

A stepping-stone observation is that a building block of Bulletproofs itself— its inner-product
argument, or BP-IPA—has several properties that we can use as a bridge to our desired features.
After formalizing a simple polynomial commitment based on BP-IPA we can prove evaluation binding
(the standard minimal property for polynomial commitments) through standard techniques based on
DLOG and the unique-proofs property by leveraging previous results in [DG23].
Polynomial encodings from new techniques. A more substantial challenge is finding a suitable
polynomial encoding scheme that, together with the PCS above, would have ϕ-evaluation hiding (on the
other hand, ϕ-non-extrapolation can be proven almost straightforwardly once established the former
property). The approach to polynomial encoding from [GKO+23] cannot unfortunately work in our
setting. Here are some intuitions on why. The building blocks used in [GKO+23] are, respectively,
KZG [KZG10], as a PCS and a simple PES, called the Lagrange encoding, based on parsing a vector
as a tuple of evaluations of a polynomial in a known domain and extending it with random evaluations
(the same paper proposes also another encoding scheme but this is not important for our discussion).
The authors of [GKO+23] are able to prove that KZG with the Lagrange PES satisfies ϕ-evaluation
hiding for a very small ϕ8. Unfortunately for us, it is easy to observe that the polynomial encoding(s)

7 We stress that we do not require the polynomial commitment to be extractable or zero-knowledge. In
particular, it is hard to require zero-knowledge because this property clashes with the constraint of having
unique proofs we discuss later.

8 A smaller ϕ is in general better. An intuition is that: the larger the ϕ the more randomness one needs to
“mask” a polynomial encoding the witness in order to guarantee the desired hiding properties.

7

Setup Prog. RO? Assumptions UC model Proof Size

[GKO+23] Trusted no xPKE + SDH standard Oλ(1)

[CF24] Transp. yes — standard Oλ(polylog(n))

This work Transp. no DLOG+DDH shielded
oracles Oλ(log n)

Table 1: Comparison with other work on UC witness-succinct NIZKs. xPKE stands for eXtended
Power Knowledge of Exponent. The work in [CF24] has no other assumption besides the RO, but
it does require a programmable RO, specifically, it assumes the restricted form of programmability
of [CDG+18].

proposed in [GKO+23] cannot achieve ϕ-evaluation hiding when used with a Bulletproofs-flavored PCS
like ours.

This leaves us with the task of building a PES from a different approach. Our setting has in fact a
number of additional challenges compared to [GKO+23], which we now sketch. Their starting point
as a PCS is KZG, which is a completely non-interactive polynomial commitment relying on DLOG
hardness (plus more) whose proof consists of a constant number of group elements. In contrast, our
design based on BP-IPA, is highly interactive before applying Fiat-Shamir and its transcript consists
of “folded” versions of previous transcript elements, creating non-trivial connections among them, this
makes it harder to argue a hiding property like the one we are interested in.

As a consequence of the above, we need to use completely different techniques from the ones
in [GKO+23]. Our approach to build the encoding scheme is described in Section 5.2. Internally,
it uses additive secret sharing and an encryption scheme.Ignoring many details, given a vector w, its
polynomial encoding consists of a polynomial fw whose coefficients include (s1, . . . , sℓ, sℓ+1, . . .), where
the si-s are additive secret shares of some secret value. Being able to show the hiding properties for
PES and PCS of the type we want (e.g., ϕ evaluation hiding) eventually boils down to showing that the
leakage from polynomial evaluation proofs for fw does not allow an adversary to distinguish whether
si-s are shares of a given secret or they are random values.

We first observe that the type of leakage in our polynomial commitment (based on BP-IPA) can be
reduced to the leakage of linear combinations of the coefficients (s1, . . . , sℓ, sℓ+1, . . .) of the evaluated
polynomial. Therefore, we define a “leakage-resiliance” flavored game for additive secret sharing (Def-
inition 23 in the Appendix) that captures this type of leakage: an adversary A can query the vector of
(alleged) shares and try to gather information on them receiving a linear combination of its choice. In
a few more details, A has access to an oracle that, on input a vector θ, returns the linear combination∑

i θisi; the adversary can ask at most ℓ such queries; at the end of the game, the adversary wins if it
is able to guess whether the si-s are random or shares of a given secret.

With this notion under our belt, we can then prove our desired security if we are able i) to reason
about what type of constraint on the vectors θ would be sufficient for an adversary not to win in
the above game, and (ii) to later show that the “linear combination” leakage in BP-IPA satisfies the
constraints identified in step (i). It is relatively straightforward to identify a general meta-property of
such constraints for (i), but it is quite more challenging to realize step (ii). The resulting analysis is
highly non-trivial and requires showing that with overwhelming probability a determinant det(M) is
non-zero, where the matrix M is (intuitively) derived by the vectors θ describing the leakage of the
BP-IPA protocol. In Lemma 2 (in the Appendix) we prove this core result. We leave as future work
further applications of our techniques and formal connections between them and computational or
leakage-resilient secret sharing.

Related work. Other than the prior works we have already mentioned, in concurrent and indepen-
dent work [CF24] the authors design a succinct NIZK in the global programmable random oracle
of [CDG+18]. In this, everyone can program the random oracle, but honest parties can detect if a
query has been programmed. This verification is done via a special command that the parties issue to
the random oracle that should be used on any query. In our work instead, we rely on the simpler (and
strictly less powerful) global random oracle of [CJS14] that does not allow anyone to program hence,
it does not require the parties to verify every query during the execution of the real-world protocol.

8

1.2 Future Work and Alternative Instantiations

The instantiations we obtain achieve logarithmic proof size but verification time linear in the witness. In
order to obtain a more balanced efficiency profile (e.g., poly-logarithmic proof size and poly-logarithmic
verification time) one would need to look for different instantiations of the polynomial commitment
and NIZK with the required properties.

For polynomial commitments, we see as a plausible candidate the Dory polynomial commitment [Lee21],
which is transparent and achieves both logarithmic opening size and logarithmic verification time. Dory
is, at its heart, a Bulletproofs-based polynomial commitment but reduces the verification time through
an appropriately crafted verification key and the use of commitments to vectors of group elements
in a bilinear setting. It may be possible to prove unique-response of variants of Dory using some of
the techniques in [DG23], but at the moment this is still an open problem. We find it plausible that
the ϕ-evaluation hiding profile of Dory is similar to that of the Bulletproofs polynomial commitment
scheme presented here.

For what concerns transparent simulation-extractable NIZKs with succinct proofs, we see as a
possible candidate the NIZK Spartan [Set20]. As of now, however, the only version of Spartan explicitly
proved as simulation-extractable uses Hyrax [WTs+18] with openings of size square root and square
root verification time [DG23]9 We find it plausible that the techniques in [DG23] may be generalized
to instantiations with n1/c efficiency for c ≥ 2. However, the authors are not aware of currently known
simulation-extractability results for transparent NIZKs with polylogarithmic proof size and verification.
This is therefore a promising open problem.

2 Basic Preliminaries and Notation

For additional preliminaries we refer the reader to the Appendix. We use the notation [x, y] to denote
{x, x + 1, . . . , y}, for some positive integer x, y where x < y. The notation x←$ X indicates sampling
x from the uniform distribution defined over X. We write F[X] to denote polynomials over a finite field
F. For an integer d ≥ 1, we denote the polynomials with a degree less than d as F<d[X] ⊆ F[X]. The
security parameter is denoted with λ. If f is some function (possibly in other parameters), we denote
by Oλ(f) the class O(poly(λ) · f). Given two vectors a, b ∈ Fn we denote by c = a ◦b their Hadamard
product, that is ci = ai · bi for i ∈ [n]. For m ∈ [n] we denote by v[:m] the prefix (v1, . . . , vm−1) and by
v[m:] the suffix (vm, . . . , vn). Let G be a multiplicative group. If g and v are vectors of n elements in
G and F, respectively, then we denote by gv the product

∏
i gvi

i . We denote by M⊺ the transpose of a
matrix M .

If Π = (P, V) is an interactive argument system in the random oracle model, we denote by ΠFS =
(PFS, VFS) the non-interactive version of that argument compiled in the standard manner through
Fiat-Shamir transform [FS87]. We refer the reader to [DG23] (Sections 2.3 and 2.4) for additional
details.

3 The NIZK Functionality with an Adjoined Oracle

In this work, we use the Universal Composability (UC) framework [Can01] to formulate our security
claims. UC follows the simulation-based paradigm where the security of a protocol is defined with
respect to an ideal world where a trusted party, the functionality F, performs an idealized computation.
A protocol Π securely realizes F in the real world if for any real world adversary A, there exists an
ideal world adversary Sim, called the simulator, such that the real-world protocol execution, and the
ideal-world protocol execution are indistinguishable to any environment:

∀A∃Sim∀Z : Exec(F, Sim,Z) ≈ Exec(Π,A,Z).

Since the ideal functionality F is by definition what we want to achieve in terms of security, the real
world must thus be secure too. On an intuitive level, this notion is composable: if a higher-level protocol
uses F to achieve some task, then F can be safely replaced by the protocol realizing it, as this must go
9 We remark that the variant of Spartan mentioned above could be used in this work as an alternative

instantiation of the SIM-EXT NIZK. However, while this improves the NIZK verification time going from
Oλ(n) to Oλ(

√
n), it provides only a concrete efficiency improvement for our final verifier: its total running

time is in fact dominated by the verification of BP-PC which is Oλ(n).

9

unnoticed to the higher level protocol as otherwise, we would have found a distinguisher. Finally, we
point out that simulating for the dummy adversary is complete; that is, if there exists a simulator for
the adversary that just follows the environment’s instructions, then the above statement is implied.

3.1 Global Random Oracles

We are going to use one version of the global random oracle defined in [CDG+18], that is not pro-
grammable but observable. The random oracle functionality GRO can be invoked with two commands:
query and observe. GRO answers all new query command via “lazy sampling” from the domain and
stores them locally in a list Q. A repeated query requires a simple lookup in Q. Some query queries
are marked “illegitimate” and can be observed via observe command. We now recall the definition
of an illegitimate query. Each party is associated with its party identifier pid and a session identifier
sid. When a party queries GRO with the command (query, x), the query is parsed as (s, x′) where s
denotes the session identifier associated with the party. A query is marked as illegitimate if the sid
field of the query differs from the sid associated with the party making the query. In other words,
these are the queries made outside the context of the current session execution. We formally define
the functionality GRO in Fig. 1. Intuitively, observing these illegitimate queries is helpful for proving
security of protocols. The ideal adversary (or the simulator) can a priori only observe queries made
by the corrupt party during the protocol session (and of course query as it pleases to emulate honest
parties in this session). However, the environment has direct access to the random oracle also outside
the current session and without observability, the simulator would remain oblivious to these additional
queries. Therefore, the formulation in [CDG+18] discloses such queries to the simulator via observe
command. Note that any GRO query for session sid made by a party (or the simulator) participating
in the session identified by sid will never be marked as illegitimate. Thus, any query made by the
simulator itself is not recorded by the functionality and hence cannot be observed by anyone. This is
crucial for proving UC security (as this gives an edge to the simulator over the real-world adversary:
the simulator “knows” all queries, while the real-world adversary does not).

As shown in [BCH+20], with a specific treatment of random oracles in [BHZ21] as global setup,
a global subroutine can be fully captured in standard UC. A global subroutine can be imagined as a
module that a protocol uses as a subroutine, but which might be available to more than this protocol
only. In a nutshell, if π is proven to realize ϕ in the presence of a global subroutine γ, then the
environment can access this subroutine in both, the ideal and the real world, which must be taken care
of by the protocol. The framework presented in [BCH+20] defines a new UC-protocol M[π, γ] that is
an execution enclave of π and γ. M[π, γ] provides the environment access to the main parties of π and
γ in a way that does not change the behavior of the protocol or the set of machines. The clue is that
M[π, γ] itself is a normal UC protocol and the emulation is perfect under certain mild conditions on π
and γ that are met for the comparably simple case of a GRO [BHZ21]. Formally:

Definition 1 (UC emulation with global subroutines [BCH+20]). Let π, ϕ and γ be protocols.
We say that π ξ-UC-emulates ϕ in the presence of γ if protocol M[π, γ] ξ-UC-emulates protocol M[ϕ, γ].

While the above is a general formulation, in our work we are mainly considering γ := IDEAL(FO)
as well as ϕ := IDEAL(F), for which we can use the shorthand notation M[π,GRO] and M[F,GRO],
respectively to say that π realizes F in the presence of global setup GRO.

3.2 Constructions with Setup

When realizing NIZKs, we typically rely on setup assumptions, that is, any protocol ΠNIZK realizing
FNIZK needs some setup to give the simulator some edge in simulating. Intuitively, if Π worked in the
plain model, then the simulator, who needs to extract a witness from valid proofs generated by an
attacker, would imply that the protocol cannot be zero-knowledge, as the extraction strategy would be
a simple poly-time algorithm that could be equivalently run in the real world. Likewise, the simulator
is expected to come up with valid proofs for honest parties without knowing their witnesses. If this
was possible by a plain poly-time algorithm, the NIZK system would not be a knowledge argument.
Therefore, constructing a NIZK typically requires some non-trivial setup, such as a common reference
string or a random oracle that the simulator could program. In the former case, the simulator can
embed a trapdoor in the ideal world (which is not possible in the real world), and in the latter case,
the simulator can tune random-oracle outputs to its liking. We can denote this construction of ΠNIZK as

10

Functionality 1: GRO

GRO is parametrized by the output length ℓ(λ).
– Query Upon receiving a query (query, x), from some party P = (pid, sid) or from the adversary

Sim do:
• Look up v if there is a pair (x, v) for some v ∈ {0, 1}ℓ(λ) in the (initially empty) list Q of past

queries. Else, choose uniformly v ∈ {0, 1}ℓ(λ) and store the pair (x, v) in Q.
• Parse x as (s, x′). If sid ̸= s then add (s, x′, v) to the (initially empty) list of illegitimate queries

for SID s, that is denoted by Q|s.
• Return v to P.

– Observe Upon receiving a request (observe, sid) from the adversary Sim, return the list Q|sid of
illegitimate queries for SID sid to the adversary.

Fig. 1: Functionality for Global Random Oracle GRO [CDG+18]

FSetup
ΠNIZK=⇒ FNIZK, where the right-hand side indicates the constructed functionality, while the left-hand

side depicts the setup assumption.
When viewing cryptographic protocols as constructions as above, it is apparent that a weaker

left-hand side would be more beneficial. For example, a programmable CRS as a setup is a strong
assumption and has furthermore undesirable consequences when deploying a protocol in practice: the
CRS must be generated in a trustworthy ceremony (as otherwise, some malicious party might apply
the simulator’s trick). Likewise, a programmable random oracle is a session-specific random function,
however in reality a hash function is not tied to a specific session but is global. Therefore, it would be
beneficial in theory and practice, if we could work with transparent setups (not programming of any
CRS needed) and a non-programmable random oracle as the (heuristic) ideal model of a hash function.
However, in this model, realizing FNIZK is not possible [Pas04].

3.3 Weakening the Ideal Functionality

When sticking to a non-programmable setup like the ones mentioned above, the remaining option is
therefore to weaken the right-hand side of the construction FSetup

ΠNIZK=⇒ F∗
NIZK, where F∗

NIZK is a NIZK-
like functionality that must admit more capabilities at the adversarial interface than FNIZK. However,
looking at the functionality, what “weakening” is reasonable and still reflects a reasonable UC-NIZK
that can be used in applications? It appears that the standard UC-NIZK functionality (cf. Fig. 5 for
reference in the Appendix) cannot be reasonably weakened in a straightforward sense, as its guarantees
(soundness and zero-knowledge) seem pretty minimal.

In a foundational paper [BDH+17], Broadnax et al. introduced a concept called shielded oracles.
Shielded oracles, intuitively speaking, transform a functionality F into a weaker functionality FO that
gives additional power at the adversarial interface. Notably, the oracle is allowed to perform quasi-
polynomial time computations and assist the functionality and/or the simulator in simulating. This
makes the functionality easier to realize as the simulator has more power: the simulator has (controlled)
access to results that stem from a quasi-polynomial time computation. However, in view of composition,
FO is now the functionality one has to deal with in further protocol design steps and it is weaker than
F. In particular, whatever output O gives at the adversarial interface must be carefully inspected as it
impacts composition with other protocols. That is, the additional power could be “abused” to attack
other protocols, since it is, presumably indirectly, the output of a computation that cannot be emulated
by a poly-time environment. Protocols must now be secure against a new class of environments beyond
quasi-polynomial time, denoted by Z[FO], which are all poly-time processes Z with black-box access
to different sessions of FO.

The objective in this work is to define an adjoined oracle O for UC-NIZKs that “weakens” FNIZK
in the above sense in a controlled way that plausibly does not impact its use when composed in other
contexts where FNIZK would be used. Perhaps surprisingly, we achieve this by having the oracle only
compute specifically crafted proofs for selected statements that preserve the zero-knowledge property
(simulation without knowing the honest user’s witness), leveraging some quasi-polynomial power.

11

As for the other property, soundness, we must ensure that for Z[FO
NIZK] (1) it is non-trivial to

generate proofs for any statement, jeopardizing soundness of the protocol itself, and (2) the additional
power is essentially useless to attack other protocols, as it is easy to foil the additional power. We do
this by restricting the quasi-polynomial time computations to specific instances that are verifiably tied
to a session (using proper domain separation). Thus, all additional power Z[FO

NIZK] has compared to
Z alone is a proof-generation oracle for statements that are tied to certain sessions and thus easy to
shield against.

We give a brief overview of the main definitions of the framework of [BDH+17] in Appendix F.
Adjoined oracle and global subroutines. Not surprisingly, the shielded oracle framework, building
on standard UC, can be used with global subroutines in the straightforward way. In particular, notice
that F can always have subroutines in standard UC and applying the transformation M[F,GRO] does
merely expose that particular subroutine to the environment Z, but leaving the input-output behavior
identical as well as imposing only a small runtime overhead. That is, UC-emulation with shielded
oracles and global subroutines is obtained by considering the UC protocol M[FO,GRO] instead of
the UC protocol IDEAL(FO) in the definitions above, which leaves in particular the composition
theorem [BDH+17, Thm. 9] intact as it only relies on the properties of standard UC protocol execution.
In case the adjoined oracle needs to make an external call to the GRO, it would formally instruct the
functionality F to do it instead and pass the return value back to the oracle, which means that O does
not issue any non-standard external-write as demanded by Definition 10.

3.4 Definition of the Oracle-Adjoined NIZK Functionality

The N -party functionality for non-interactive zero-knowledge FO
NIZK is described in Figure 2. We observe

that FO in the definition above can be seen as one ITI calling another ITI directly. We thus simplify the
notation in our description of Fig. 2 and specify it in one description composed of two parts, where the
message passing between the functionality and O can be implemented as demanded in Definition 10.
In [BDH+17] the authors prove that the existence of oracles that enjoy a special property called
polynomial simulatability (Definition 14), do not compromise the security of protocols proven in the
standard UC framework. This means that a protocol that was proven secure in the UC framework is
secure in the shielded Oracle model. In Appendix F we argue that the oracle that parameterized our
new NIZK functionality does enjoy the property of polynomial simulatability.

4 Our Protocol ΠTS-R that Realizes FO
NIZK

4.1 Section’s preliminaries

Non-Interactive Arguments We adopt this definition almost verbatim from [DG23]. A non-
interactive argument system (NARG) for relation R in the random oracle model, denoted by ΠR,
consists of a tuple of algorithms (PGen,P,V) having black-box access to a random oracle H : {0,
1}∗ → {0, 1}λ, with the following syntax:

– pp← PGen(1λ): Takes as input the security parameter 1λ and outputs public parameters pp. Once
PGen is invoked we assume that all of the following algorithms take pp as an implicit input.

– π ← PH(x, w): Takes as input a statement x and witness w, and outputs a proof π if (x, w) ∈ R.
– b← VH(x, π): Takes as input a statement x and proof π, and outputs a bit b, indicating “accept”

or “reject”.

Remark 1. In this work, we focus on (succinct) NIZK with a transparent setup, therefore pp can be
generated with a call to the random oracle.

For the notion of zero-knowledge, simulation extractability, and knowledge soundness we refer to
Appendix D.
Cryptographic Puzzles. We adopt the notion of puzzle system PuzSys defined in [BKZZ16], this
definition is taken almost verbatim from [CV22]. A puzzle system PuzSys is a tuple of algorithms
PuzSys = (Sample, Solve, Verify, SampleSol) that are defined in the following way. Sample on input the
security parameter 1λ and the hardness factor h outputs a puzzle puz; Solve on input the security
parameter 1λ, a hardness factor h and a puzzle instance puz outputs a potential solution sol; Verify on

12

Functionality 2: FO
NIZK

FO
NIZK is parametrized by polynomial-time-decidable relation R ∈ {0, 1}∗ × {0, 1}∗ and runs with parties

P1, . . . , PN and an ideal process adversary Sim. It stores proof table Q which is initially empty.

Functionality:
– Proof Upon receiving input (prove, sid, x, w) from an honest party Pi, do the following: if (x, w) /∈ R

return the activation to the environment. Otherwise, proceed as follows:
1. Send (query, (sid, x, puzzle)) to GRO to obtain instance puz. Send (prove, sid, x, puz) to O.
2. Upon receiving the reply π from O, store (x, π) in Q and give back the activation to O.
3. Upon receiving (out, sid, x, π) from O, output (proof, sid, x, π) to party Pi.

– Verification Upon receiving input (verify, sid, x, π) from a party Pi, if (x, π) is not stored in Q,
then send (verify, sid, x, π) to Sim. Upon receiving (witness, w) from Sim, if (x, w) ∈ R, store (x, π)
in Q. Finally, return (verification, sid, (x, π) ∈? Q) to Pi.

Adjoined Oracle O:
The adjoined oracle is parametrized by a protocol Π for the relation R′ defined in Section 4.2.

– Init Upon first invocation, call pp← PGen(1λ) and provide pp to Sim.
– Proof Simulation Upon input (prove, sid, x, puz) from the functionality, do the following:

1. Run Solve(1λ, h, puz) to obtain sol.
2. Define x′ = (x, puz) and run the prover P of Π on input pp, x′, and sol to obtain a proof π.

Whenever P makes a call to H with input in, send (query, (sid, in, proof)) to GRO to receive a
response out which is forwarded to P.

3. Send (proof, sid, pp, x, π) to Sim.
4. Upon receiving (ack, sid, pp, x, π) from Sim, provide (out, sid, x, π) to the functionality.

Fig. 2: Functionality for non-interactive zero-knowledge FO
NIZK with an adjoined oracle. Recall that

queries issued to the GRO by the adjoined oracle are routed formally through the functionality.

input the security parameter 1λ, a hardness factor h, a puzzle instance puz, and a potential solution
sol outputs 0 or 1. Finally SampleSol outputs a puzzle instance and solution pair (puz, sol). Moreover,
while the algorithms Sample and Verify are efficient, it is difficult to compute a solution for a sampled
puzzle. More precisely, a puzzle system is g-hard if no adversary can solve the puzzle in less than g(·)
steps with more than negligible probability.

The formal notion of a puzzle system can be found in Appendix E.

4.2 Description of ΠTS-R

In this section, we describe the protocol ΠTS-R which implements the FO
NIZK functionality parametrized

by the NP-relation R
The protocol ΠTS-R for NP-relation R makes use of the following tools:

– Let Π = (P,V) be a NIZK straight-line simulation-extractable for the NP-relation R′ = {((x, puz,
h), w) : (x, w) ∈ R ∨ Verify(1λ, h, puz, w) = 1}

– A dense samplable puzzle system PuzSys = (Sample, Solve, Verify, SampleSol) such that for every
hardness factor h ∈ HSλ there exists a negligible function ν such that the following holds:
1. Pr

[
puz←$ (1λ, h) : g(StepsSolve(1λ, h, puz)) ≤ λlog λ

]
≤ ν(λ);

2. the worst-case running time of Solve(1λ, h, ·) is λpoly(log λ).10

10 This type of puzzle was used before in Theorem 7 of [BKZZ16].

13

The protocol ΠTS-R is described below and is parameterized by the security parameter λ. Further,
the parties agreed upon the following suffixes genparams, proof, puzzle in the invocation to the GRO,
respectively needed, to generate the parameters and the proof of Π and the puzzle puz:

– Proof: Upon receiving input (prove, sid, x, w), ignore if (x, w) /∈ R. Otherwise, Pi does:
1. Send (query, (sid, x, genparams)) to GRO receiving back pp.
2. Send (query, (sid, x, puzzle)) to GRO receiving back v, set puz = v.
3. Define x′ = (x, puz) and run the prover P of Π on input pp, x′, and w to obtain a proof π.

Whenever P makes a call to H with input in, send (query, (sid, in, proof)) to GRO to receive
a response out which is forwarded to P.

4. Output (proof, sid, π).
– Verification: Upon receiving input (verify, sid, x, π) Pi does:

1. Send (query, (sid, x, genparams)) to GRO receiving back pp.
2. Send (query, (sid, x, puzzle)) to GRO receiving back v, and set x′ = (x, v)
3. Output (verfication, sid,1) if the following condition is satisfied, otherwise output (verfication,

sid, ,0):
(a) The verifier V of Π on input pp, x′, π outputs 1. Whenever V makes a call to H with input

in, send (query, (sid, in, proof)) to GRO to receive a response out which is forwarded to V.

Theorem 1. Assume that Π is a succinct non-interactive zero-knowledge straight-line simulation-
extractable for the relation R′ and PuzSys is a dense samplable puzzle system. Then ΠTS-R ≥FO

NIZK
FO

NIZK
in the GRO-hybrid model, where ΠTS-R is defined in Section 4.2.

We start by describing the simulator.
Description of the Simulator of ΠTS-R

We describe below the simulator Sim for ΠTS-R, we distinguish four cases:
If the prover is corrupted

– Upon receiving (verify, sid, x, π) from FO
NIZK, Sim acts as a honest verifier in the execution of

ΠTS-R with the adversary. If the proof π is accepting then Sim executes E of Π in order to
obtain w′. Whenever E makes a call to Oext, Sim queries (observe, sid) to GRO and forwards
the response to E .

– If (x, w′) /∈ R then Sim sets w = ⊥, otherwise, she sets w = w′ and sends (witness, w) to
FO

NIZK.
If the verifier is corrupted: Sim internally executes the dummy adversary (due to the way O is

defined).
If both parties are honest: Sim acts as the honest players in the execution of ΠTS-R.
If both parties are corrupted: Sim internally executes the dummy adversary.

The rest of the proof of Theorem 1 can be found in Appendix I. We stress that in this proof, we
consider only polynomial time adversary and we do not rely on any assumption that is sub-exponential
secure11.

5 Constructing the Building Blocks for ΠTS-R

In this section, we describe how to instantiate the straight-line simulation-extractable NIZK Π as per
Definition 6.
11 The intuitive reason is that to switch from the real-world execution to the simulated execution, we go through

a series of hybrids. The goal of the hybris, very roughly, is to switch from an execution where the prover
of Π uses the witness for the relation R to one where the solution sol for the puzzle puz is used; indeed in
the simulated world honest proof of Π will be computed by O (see FO

NIZK) using (puz, sol). Note that in
the intermediate hybrids, we internally emulate the random oracle. Therefore, in the intermediate hybrids
where we switch witness and we need a pair (puz, sol) as a witness for Π, it is possible to sample them using
SampleSol and program the random oracle accordingly, avoiding in this way to compute in the hybrids and
(consequently in the security reductions) a solution for puz in quasi-polynomial time.

14

We observe that [GKO+23] construct a non-interactive zero-knowledge protocol ΠGKOPTT which
realises the UC-functionality FNIZK in the GRO-hybrid model, but also has a programmable setup (as
explained in our Introduction).

Roughly speaking, the authors of [GKO+23] describe a compiler that has as inputs a polynomial
commitment (with some additional properties) ΠPCS and a simulation-extractable NIZK ΠNIZK and
construct ΠGKOPTT (we refer the reader to Appendix K for the full description of the scheme). The
compiler could instantiate the building blocks in the CRS model or in the random oracle model. In the
work of [GKO+23] the building blocks are instantiated in the CRS model, while in our work both tools
crucially should rely on a transparent setup (i.e. they should be secure in the random oracle model).
Therefore, in Appendix G, we provide the definitions of the building blocks as stated in [GKO+23],
but we make explicit that their security should be held in the random oracle model. Finally, in the
subsequent sections, we provide an instantiation of ΠPCS and ΠNIZK in the random oracle model.

From the description of the simulator-extractor of ΠGKOPTT at page 18 (Figure 5) of the full-version
of [GKO+23], it is possible to conclude that the extraction relies on the observability of the random
oracle. The simulator, instead, relies on the simulator of the underlying ΠNIZK. Therefore, our simulator
Sim and the extractor E for Π works exactly as the simulator-extractor of ΠGKOPTT (minor same small
differences since our definition is stand-alone and not in the UC-setting). At this point it is possible to
claim that Π implemented using ΠGKOPTT satisfies Definition 6. Indeed, suppose by contradiction that
ΠGKOPTT does not satisfy Definition 6. Then, there exists an adversary for which E fails the extraction
of the witness, this can be reduced to an ideal-world adversarial prover against the UC-security of
ΠGKOPTT.

From the arguments above, we can conclude that we have the following theorem. Below we say that
a polynomial encoding scheme is “n→λ d” if, on input a security parameter λ and a string of size n,
it outputs a polynomial of degree d.

Theorem 2 ([GKO+23]). Let:
– ΠNIZK be a simulation-extractable NIZK (Definition 20), for the relation R with proof size Oλ(f(n))

for a witness of size n.
– ΠPCS be a polynomial commitment scheme with Oλ(g(d)) size commitments and evaluation proofs

for a polynomial of degree d, valuation binding, unique proofs (Definition 15).
– PES = (Enc, Dec) be an n →λ d encoding scheme (Definition 17) such that ΠPCS is ϕ-evaluation

hiding (Definition 18), and supports ϕ-non-extrapolation (Definition 19) with respect to PES for
some function ϕ(·, ·, ·).

Then there exists a straight-line simulation-extractable NIZK in the random oracle model satisfying
Definition 6 with proof size Oλ

(
f(n + ϕn,λ) + g(d)

)
where12 ϕn,λ := ϕ(λ, n, λ).

Remark 2 (Theorem 2 preserves transparency). We stress that if ΠNIZK and ΠPCS both have trans-
parent setups, then the final NIZK also has a transparent setup.

We can instantiate ΠNIZK and ΠPCS in the random oracle model under the DLOG assumption;
we are able to instantiate PES under the DDH assumption (see next sections for more details). As
explained in Appendix E also PuzSys can be instantiated under the DLOG assumption. We can then
conclude the following:

Corollary 1. Under the DLOG and DDH assumption ΠTS-R ≥FO
NIZK
FO

NIZK in the GRO-hybrid model,
where ΠTS-R is defined in Section 4.2

5.1 Putting it All Together

The building blocks we adopt to instantiate Theorem 2 are described in the remainder of this section
(Section 5.3 and Section 5.4). While they are both Bulletproofs-y in flavor, they are different in re-
quirements, design complexity and in terms of how much we could directly borrow previous results
from earlier work (see discussion in the Technical Overview and Remark 7).
12 The function ϕ (see e.g. Definition 18 in Appendix) takes as input three parameters: a security parameter,

the size n of the original string w and r, the “number of iterations of the polynomial opening”. In the next
paragraphs we explain we make the choice of parameter r = λ and this motivates our definition of ϕn,λ

above.

15

In order to argue we can properly instantiate Theorem 2, we need to make a few observations
relating to: transparency (and use of the RO); efficiency of the building blocks; parameter choice.
Transparent setup and use of the RO. The setups of both our instantiations are transparent: they
both require sampling a Pedersen basis in a group where DLOG is hard which can be done by invoking
the random oracle (e.g., gi = H(i), etc.). Notice that, crucially, the commitment algorithm in Fig. 4
does not use the random oracle. This is important to instantiate our scheme since in the construction
from [GKO+23] invokes a NIZK to prove that the commitment has been computed correctly. The only
other property, besides the ROM, required for the security of the building blocks is DLOG and DDH.
Efficiency of our building blocks. The construction BP-PC inherits the efficiency properties of
Bulletproofs [BBB+18]. The key property we are interested in this paper is degree-succinctness, in
particular the size of the opening is Oλ(log d) where d is the degree of the committed polynomial. We
point out that the verification complexity for the polynomial opening proof is, however, linear in the
degree of the polynomial. The commitment has constant size, i.e. Oλ(1). The prover has running time
Oλ(d). Our NIZK instantiation has similar properties: its proofs are of size Oλ(log n) for a witness
of size n, while the verifier runs in linear time in n. Using the language of Theorem 2 we can then
conclude that our building blocks are such that f(n) = log n and g(d) = log d.
Parameter Choice and Final Succinctness We recall, staying at a very high-level, that the compiler
in [GKO+23] works by applying an “extractable proof of work” [Fis05] through multiple evaluations
of a committed polynomial. The latter polynomial is an encoding of the witness (whose size is n) of
final degree d > n. Some of the key parameters in the compiler are:

– r: the number of iterations in which the prover shows an evaluation of the committed polynomial.
– T : the maximum number of “grinding” attempts for the prover per iteration.
– b: the hardness factor of the proof-of-work.

The authors of [GKO+23] show that a possible choice of parameters is:

r = λ ∈ Oλ(1), T = Oλ(d), b = Oλ(log d)

Of the above parameters, only the first is relevant for us for proof succinctness (while the choices b
and T above simply provide bounds for the proving running time). This parameter choice is the one
giving us the statement in Theorem 2.

We now first argue how to appropriately choose ϕ for our polynomial encoding scheme so that
we can argue security and then discuss its implications for the final proof size. In order to obtain ϕ-
evaluation hiding, we need to have ϕ satisfying the requirements of Theorem 6. We observe that, for an
appropriately chosen constant c > 0, the function ϕn,λ = c · λ2 log2 (λn) satisfies this requirement1314.

From Remark 4, we know that our choice of PES transforms a string of size n into one with size
d = ϕn,λ + O(nλ). We can then plug all our observations so far into the statement of Theorem 2 and
conclude that our total proof size is then Oλ(log (poly(λ) · d)) which can be shown to stay Oλ(log(n)).

5.2 Instantiation of the Polynomial Encoding Scheme

Here we describe our new polynomial encoding scheme. We require two main ingredients: an additive
secret-sharing scheme and a public-key encryption scheme. Let w be the vector we are aiming to encode
and let ℓ ∈ N be a parameter (intuitively the number of evaluations of the polynomial allowed to the
adversary in the ϕ-evaluation hiding game). At the high-level, our construction works as follows (a full
formal description is in Appendix H):

– sample a key pair (pk, sk) for the encryption scheme;
– encrypt the vector w using pk obtaining a tuple of field elements15 ctw;
– secret share the decryption key sk (through additive secret sharing) obtaining ℓ + 1 shares, each a

field element;
13 Some hints to see why: the required bound in Theorem 6, for r ∈ Oλ(1), is in O(λ + log(ϕ + λn)) ⊆

O(λ log ϕ log n); we can then use the fact that log ϕ, for ϕ defined as above, is Θ(λ + log log(λn)).
14 Simpler, but more wasteful, choices of ϕ are also possible, such as ϕn,λ = poly(λ) · n.
15 We assume that both the ciphertext and the public key can be parsed in such a manner, i.e. as a vector of

field elements. We later discuss candidate schemes where this assumption holds.

16

– let v be the vector of scalars obtained by concatenating the ciphertext ctw, the public key pk and
the secret shares. The output of the encoding is the polynomial f whose coefficients are defined by
the vector v.
The decoding process is straightforward: in input the coefficients of f , parse them appropriately,

reconstruct the secret key sk, decrypt ctw and return the resulting plaintext.
Below we further expand on some requirements and parameters for the encryption scheme.
Remark 3 (Possible instantiations of the public-key scheme). We require a PKE whose secret key can
be represented as a field element, while its public key and ciphertexts can be described as vectors of
field elements in the same field. We observe that El Gamal encryption can be instantiated with some
care to satisfy this syntax. In particular it is possible to use an elliptic curve where DDH is hard,
whose elliptic curve points can be described as pairs of the type F2 and whose discrete logarithms
can be described as elements in the same field F (the last two requirements can be summarized as:
the scalar field and the base field of the elliptic curve should be (roughly) the same). An example of
such an instantiation would be through the 2-tower of curves provided by the Jabberwock curve on
top of Ristretto25519 described in [CHA22]. For efficient decryption we can use bit-by-bit El Gamal
encryption.
Applying the remark above we have the following theorem:
Theorem 3. Under the DDH assumption, there exists a secure PKE scheme over a field Fλ parametrized
by λ ∈ N with |F| = O(2λ) and the following efficiency parameters (in field elements):

– the secret key |sk| consists of a single field element
– κ = 2 (public-key size)
– n′ = 4λn (ciphertext size, for a plaintext of size n)

Remark 4 (Size of the encoding). Let ϕ and ϕn,λ as in Theorem 2. When choosing ℓ = ϕn,λ, the
encoding a string of size n through the construction in this section has size d = ϕn,λ + O(λn) when we
instantiate the encryption scheme with the one from Theorem 3.
Remark 5 (Efficiency of proving encryption in zero-knowledge). The choice of fields as described in
Remark 3 is also particularly useful because it allows to prove encryption (and the whole encoding
of the polynomial) through efficient techniques using Bulletproofs (our choice of instantiation for the
simulation-extractable NIZK) as described in [CHA22] and [CHAK23].
Remark 6 (On secret-key encryption as an alternative approach). We stress that, from a security stand-
point, our techniques in this section do not strictly require public-key encryption. Secret-key encryption
with (multi-)message indistinguishability could actually be enough with straightforward adaptations
of our construction. The reasons we decided to express our solution through public-key encryption lie
essentially in Remark 3 and Remark 5: it is easy to come up with instantiations of public-key schemes
where the secret key, the plaintexts and ciphertexts can be embedded in a field keeping the overall
scheme efficient. Secret-key solutions are usually bit-string based and would require some form of em-
bedding. This would simply be slightly more awkward to capture in a fully formal way. Moreover, we
would not be able to exploit algebraic properties of efficient SNARKs for efficiency in the secret-key
setting.

5.3 Instantiation of the Succinct Polynomial Commitment Scheme
We consider a variant of the Bulletproofs polynomial commitment scheme [BBB+18]. Since we require
special properties to satisfy the hypothesis of Theorem 2, we build it starting from the inner-product
argument described by Dao and Grubbs in [DG23]. We then observe that we can use several properties
proven by Dao and Grubbs as a bridge to obtain all the special polynomial commitment features
required by [GKO+23].

5.3.1 Building Block: Inner-Product Argument We describe the inner-product argument
based on Bulletproofs in Fig. 3. We will use the following result to prove properties of our polynomial
commitment:
Theorem 4 ([BBB+18,DG23]). The construction BP-IPAFS (i.e., the protocol in Fig. 3 compiled
with Fiat-Shamir) is complete, knowledge-sound, 0-unique response under the DLOG assumption in
the random-oracle model (see Appendix for definitions).

17

Inner Product Relation. Given n = 2k and g, h ∈ Gn, u ∈ G,

RBP-IPA =
{

((n, g, h, u), P, (a, b)) | P = gahbu⟨a,b⟩} .

Interaction Phase. Set n0 ← n, g(0) ← g, h(0) ← h, P (0) ← P, a(0) ← a, b(0) ← b. For i = 1, . . . , k :

1. P computes ni = ni−1/2, cL =
〈

a(i−1)
[:ni] , b(i−1)

[ni:]

〉
, cR =

〈
a(i−1)

[ni:] , b(i−1)
[:ni]

〉
, and

Li =
(

g(i−1)
[ni:]

)a(i−1)
[:ni] ·

(
h(i−1)

[:ni]

)b(i−1)
[ni:] · ucL , Ri =

(
g(i−1)

[:ni]

)a(i−1)
[ni:] ·

(
h(i−1)

[ni:]

)b(i−1)
[:ni] · ucR

P sends Li, Ri to V.

2. V sends challenge xi
$← F∗.

3. P,V both compute P (i) = L
x2

i
i · P

(i−1) ·Rx−2
i

i , and

g(i) =
(

g(i−1)
[:ni]

)x−1
i ◦

(
g(i−1)

[ni:]

)xi

, h(i) =
(

h(i−1)
[:ni]

)xi

◦
(

h(i−1)
[ni:]

)x−1
i

.

4. P computes a(i) = a(i−1)
[:ni] · x

−1
i + a(i−1)

[ni:] · xi, b(i) = b(i−1)
[:ni] · xi + b(i−1)

[ni:] · x
−1
i .

After k rounds, P sends a(k), b(k) to V.
Verification. V checks whether P (k) ?=

(
g(k))a(k)

·
(
h(k))b(k)

· ua(k)·b(k)
.

Fig. 3: Bulletproofs’ Inner Product Argument BP-IPA

5.3.2 The Polynomial Commitment Scheme We describe our polynomial commitment BP-PC
in Fig. 4.

– PCGen(1λ, d)→ ck: Sample random generators g ∈ Gd, h ∈ Gd, u ∈ G. Output ck := (g, h, u).

– Com(ck, f ∈ F<d[X])→ cm: Output cm := ga where f(X) :=
∑d−1

i=0 aiX
i

– Eval(ck, f ∈ F<d[X], x ∈ F) → π: Let y = f(x), b =
(
x0, . . . , xd−1)

recompute cm ← Commit(ck,

f). Let P = gahbuy. Run BP-IPAFS, the (Fiat-Shamir version of the) protocol in Fig. 3 between
P(ck, P, (a, b)) and V(ck, P). Return π, the resulting transcript.

– Check(ck, cm, x ∈ F, y ∈ F, π): Compute b =
(
x0, . . . , xd−1)

. Let P = cm · hbuy. Check that proof π
for BP-IPAFS verifies on public input P ; reject otherwise.

Fig. 4: Bulletproofs-based Polynomial Commitment BP-PC. All algorithms have implicitly access to
the random oracle. For simplicity, we describe PCGen as explicitly sampling the Pedersen basis, but it
can be sampled using the RO.

The following theorems summarize the security properties we use to instantiate Theorem 2. We
refer the reader to Appendix H and Appendix J for details on the proofs. The PES from Section 5.2
is described in full formal details in Definition 25 in Appendix H.4.

Theorem 5. The construction BP-PC in Fig. 4 is a polynomial commitment scheme satisfying cor-
rectness, evaluation binding and unique-response (see Appendix G.1) under the DLOG assumption in
the random-oracle model (Assumption 1 in the Appendix).

Theorem 6. The construction BP-PC is ϕ-evaluation hiding with respect to the PES from Section 5.2
under the DDH assumption, where ϕ satisfies the bound ϕ(λ, n, r) > 1+2r (1 + 2⌈log(ϕ(λ, n, r) + 7λn)⌉).

Theorem 7. The construction BP-PC satisfies ϕ-non-extrapolation with respect to the PES from Sec-
tion 5.2 under the DDH assumption, where ϕ satisfies the bound ϕ(λ, n, r) > 1+2r (1 + 2⌈log(ϕ(λ, n, r) + 7λn)⌉).

18

5.4 Instantiation of the Succinct Simulation-Extractable NIZK

In order to instantiate our framework we consider the full-blown version for arithmetic circuits of
Bulletproofs [BBB+18].

Theorem 8 ([DG23]). Non-Interactive Bulletproofs compiled with Fiat-Shamir is a simulation-
extractable NIZK under the DLOG assumption in the random oracle model. The resulting scheme has
proofs of size Oλ(log n) where n is the multiplicative complexity of the arithmetic circuit describing the
relation.

Remark 7 (Differences between the “NIZK” Bulletproofs and our “Bulletproofs-based polynomial com-
mitment”). We clarify some differences between the construction in this sub-section and the one in
Section 5.3. First, for polynomial commitments we require only a very basic component of Bulletproofs,
namely its inner-product argument. On the other hand, for the NIZK we need the whole machinery of
the argument system: it needs to be able to handle arbitrary arithmetic circuits. Second, in order to
satisfy the requirements of Theorem 2 the two—the NIZK and the polynomial commitment—need to
satisfy very different requirements: the NIZK needs to be simulation-extractable (and zero-knowledge);
for the polynomial commitment scheme full-blown zero-knowledge and extractability are not required—
we require instead weaker properties such as evaluation-binding, hiding with respect to some polyno-
mial encoding schemes, et cetera. We remark for example that BP-IPA is completely deterministic and
does not enjoy zero-knowledge as it is. Further implications of these fine-grained requirements had
to do with the technical work required to prove the respective requirements: for NIZK Bulletproofs,
these came out-of-the-box from [DG23], whereas for the polynomial commitment scheme they required
additional observations (see also discussion in the Technical Overview).

Acknowledgements

The authors would like to thank Mahak Pancholi, Chaya Ganesh, Yashvanth Kondi and Akira Taka-
hashi for fruitful discussions around this topic. Thanks to Dario Fiore for conversations about poly-
nomial encoding schemes. Matteo Campanelli would like to thank Alessio Sammartano for being an
extremely helpful linear algebraic oracle and for having spotted a flaw in an early version of the analysis
of linear leakage resistance. Thanks to Mahak Pancholi for giving feedback on early drafts of our work.

References

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

BCGV16. Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasi-linear size zero knowl-
edge from linear-algebraic PCPs. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II,
volume 9563 of LNCS, pages 33–64. Springer, Heidelberg, January 2016.

BCH+20. Christian Badertscher, Ran Canetti, Julia Hesse, Björn Tackmann, and Vassilis Zikas. Universal
composition with global subroutines: Capturing global setup within plain UC. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages 1–30. Springer,
Heidelberg, November 2020.

BDH+17. Brandon Broadnax, Nico Döttling, Gunnar Hartung, Jörn Müller-Quade, and Matthias Nagel. Con-
currently composable security with shielded super-polynomial simulators. In Jean-Sébastien Coron
and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 351–
381. Springer, Heidelberg, April / May 2017.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

BHZ21. Christian Badertscher, Julia Hesse, and Vassilis Zikas. On the (ir)replaceability of global setups, or
how (not) to use a global ledger. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II,
volume 13043 of LNCS, pages 626–657. Springer, Heidelberg, November 2021.

BKZZ16. Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. Indistinguishable
proofs of work or knowledge. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 902–933. Springer, Heidelberg, December 2016.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

19

CDG+18. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven. The
wonderful world of global random oracles. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part I, volume 10820 of LNCS, pages 280–312. Springer, Heidelberg, April / May
2018.

CF24. Alessandro Chiesa and Giacomo Fenzi. zksnarks in the rom with unconditional uc-security. Cryp-
tology ePrint Archive, Paper 2024/724, 2024. https://eprint.iacr.org/2024/724.

CHA22. Matteo Campanelli and Mathias Hall-Andersen. Veksel: Simple, efficient, anonymous payments
with large anonymity sets from well-studied assumptions. In Yuji Suga, Kouichi Sakurai, Xuhua
Ding, and Kazue Sako, editors, ASIACCS 22, pages 652–666. ACM Press, May / June 2022.

CHAK23. Matteo Campanelli, Mathias Hall-Andersen, and Simon Holmgaard Kamp. Curve trees: Practical
and transparent {Zero-Knowledge} accumulators. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 4391–4408, 2023.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P. Ward.
Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yu-
val Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer,
Heidelberg, May 2020.

CJS14. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global random
oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 597–608.
ACM Press, November 2014.

CLP10. Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security in the plain
model from standard assumptions. In 51st FOCS, pages 541–550. IEEE Computer Society Press,
October 2010.

CV22. Michele Ciampi and Ivan Visconti. Efficient NIZK arguments with straight-line simulation and
extraction. In Alastair R. Beresford, Arpita Patra, and Emanuele Bellini, editors, CANS 22, volume
13641 of LNCS, pages 3–22. Springer, Heidelberg, November 2022.

DG23. Quang Dao and Paul Grubbs. Spartan and bulletproofs are simulation-extractable (for free!). In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part II, volume 14005 of LNCS,
pages 531–562. Springer, Heidelberg, April 2023.

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer, Heidelberg,
August 2005.

FKMV12. Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-
malleability of the Fiat-Shamir transform. In Steven D. Galbraith and Mridul Nandi, editors,
INDOCRYPT 2012, volume 7668 of LNCS, pages 60–79. Springer, Heidelberg, December 2012.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194.
Springer, Heidelberg, August 1987.

GKO+23. Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel
Tschudi. Witness-succinct universally-composable SNARKs. In Carmit Hazay and Martijn Stam,
editors, EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages 315–346. Springer, Heidelberg,
April 2023.

GLP+15. Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit Sahai. Round-efficient concurrently
composable secure computation via a robust extraction lemma. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS, pages 260–289. Springer, Heidelberg,
March 2015.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

GO94. Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Journal
of Cryptology, 7(1):1–32, December 1994.

GOP+22. Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel Tschudi. Fiat-
shamir bulletproofs are non-malleable (in the algebraic group model). In Orr Dunkelman and
Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 397–426.
Springer, Heidelberg, May / June 2022.

HV16. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Composable adaptive secure pro-
tocols without setup under polytime assumptions. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 400–432. Springer, Heidelberg, October / Novem-
ber 2016.

KMO14. Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto. Constant-round black-box con-
struction of composable multi-party computation protocol. In Yehuda Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 343–367. Springer, Heidelberg, February 2014.

20

https://eprint.iacr.org/2024/724

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials
and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
177–194. Springer, Heidelberg, December 2010.

Lee21. Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial
commitments. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume 13043 of
LNCS, pages 1–34. Springer, Heidelberg, November 2021.

LP12. Huijia Lin and Rafael Pass. Black-box constructions of composable protocols without set-up. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
461–478. Springer, Heidelberg, August 2012.

MMY06. Tal Malkin, Ryan Moriarty, and Nikolai Yakovenko. Generalized environmental security from num-
ber theoretic assumptions. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS,
pages 343–359. Springer, Heidelberg, March 2006.

Pas03. Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition. In
Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003, International Conference on the
Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings,
volume 2656 of Lecture Notes in Computer Science, pages 160–176. Springer, 2003.

Pas04. Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In
László Babai, editor, 36th ACM STOC, pages 232–241. ACM Press, June 2004.

PS04. Manoj Prabhakaran and Amit Sahai. New notions of security: Achieving universal composability
without trusted setup. In László Babai, editor, 36th ACM STOC, pages 242–251. ACM Press, June
2004.

Set20. Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages
704–737. Springer, Heidelberg, August 2020.

Swi19. Josh Swihart. Zcash counterfeiting vulnerability successfully remediated. 2019.
WTs+18. Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-efficient

zkSNARKs without trusted setup. In 2018 IEEE Symposium on Security and Privacy, pages 926–
943. IEEE Computer Society Press, May 2018.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS,
pages 162–167. IEEE Computer Society Press, October 1986.

21

Supplementary Material

A Standard NIZK Functionality

For completeness, we depict the standard functionality in Fig. 5.

Functionality 3: FNIZK

FNIZK is parametrized by polynomial-time-decidable relation R ∈ {0, 1}∗ × {0, 1}∗ and runs with parties
P1, . . . , PN and an ideal process adversary Sim. It stores proof table Q which is initially empty.

– Proof Upon receiving input (prove, sid, x, w) from an honest party Pi, do the following: if (x, w) /∈ R
return the activation to the environment. Otherwise, send (prove, sid, x) to Sim. Upon receiving
(proof, sid, x, π) from Sim, store (x, π) in Q and output (proof, sid, x, π) to Pi.

– Verification Upon receiving input (verify, sid, x, π) from a party Pi, if (x, π) is not stored in Q,
then send (verify, sid, x, π) to Sim. Upon receiving (witness, w) from Sim, if (x, w) ∈ R, store (x, π)
in Q. Finally, return (verification, sid, (x, π) ∈? Q) to Pi.

Fig. 5: Standard functionality for non-interactive zero-knowledge.

B Discrete Logarithm Assumption

In our constructions we make use of a variant of the discrete logarithm (DLOG) assumption for multiple
generators. Below G denotes a group generator.

Assumption 1 (Generalized DLOG [BBB+18]) For all PPT A, λ ∈ N and m ≥ 2

Pr

 G← G(1λ)
(g1, . . . , gm)←$ G

(a1, . . . , am)← A(G, g1, . . . , gm)
:
∃j∗ ∈ [m] aj∗ ̸= 0 ∧∏

j∈[m]

g
aj

j = 1G

 ≤ negl(λ)

C Decisional Diffie-Hellman Assumption

Below G denotes a group generator.

Assumption 2 (DDH) For all PPT A, λ ∈ N

Pr

G← G(1λ)
g ←$ G

a, b, c←$ {1, . . . , |G|}
β ←$ {0, 1}

z := βab + (1− β)c
β′ ← A(G, g, ga, gb, gz)

: β′ = β

≤ 1

2 + negl(λ)

D Preliminaries on Non-Interactive Arguments

Definition 2 (Completeness). ΠR satisfies completeness if for every (x, w) ∈ R, it holds that

Pr
[
b = 1 : pp← PGen(1λ); π ← PH(x, w); b← VH(x, π)

]
= 1.

We define zero-knowledge by following the syntax of [FKMV12,GOP+22]. A zero-knowledge simulator
S is defined as a stateful algorithm with initial state st = pp that operates in two modes. The first
mode, (out, st′)← S(1, st, in) takes care of handling calls to the oracle H on input in; specifically S1(in)
can reprogram the random oracle H, and observe the query made to H by the adversary. The second
mode, (π, st′)← S(2, st, x) simulates a proof for the input statement x. For convenience we define three
“wrapper” oracles. These oracles are stateful and share the internal state st, which initially contains
an empty string.

– S1(in) to denote the oracle that returns the first output of S(1, st, in);
– S2(x, w) that returns the first output of S(2, st, x) if (x, w) ∈ R and ⊥ otherwise;
– S ′

2(x) that returns the first output of S(2, st, x).

Definition 3 (Zero-Knowledge). Let ΠR = (PGen,P,V) be a non-interactive proof system for
relation R in the random oracle model H. ΠR is unbounded non-interactive zero-knowledge (NIZK),
if there exists a PPT simulator S with wrapper oracles S1 and S2 such that for all PPT adversaries A
it holds that ∣∣∣∣∣Pr

[
b = 1 :

pp← PGen(1λ);
b← AH,P(pp)

]
− Pr

[
b = 1 :

pp← PGen(1λ);
b← AS1,S2(pp)

]∣∣∣∣∣ < ν(λ).

Definition 4 (Knowledge-soundness). Π is (adaptively) knowledge sound (KS) if there exists an
extractor E running in expected polynomial time such that for every PPT adversary P∗, the following
probability is negligible in λ :

AdvKS
ΠFS,R (E ,P∗) :=

∣∣∣Pr
[
KSP∗

0,ΠFS
(λ)

]
− Pr

[
KSE,P∗

1,ΠFS,R(λ)
]∣∣∣ .

The knowledge soundness games are defined in Fig. 6.

Game KSP∗
0,ΠFS (λ) Game KSE,P∗

1,ΠFS,R(λ)
pp← PGen

(
1λ

)
pp← PGen

(
1λ

)
(x, π)← (P∗)H (pp) (x, π)← (P∗)H (pp)
b← VH

FS(pp, x, π) b← VH
FS(pp, x, π)

return b w ← EP∗
(pp, x, π)

return b ∧ (pp, x, w) ∈ R

Fig. 6: Knowledge soundness security games. Here the extractor E is given black-box access to P∗. In
particular, E implements H for P∗ and can rewind P∗ to any point.

Definition 5 (Straight-line Knowledge Soundness). Consider a non-interactive proof system
ΠR = (PGen,P,V) for relation R in the random oracle model H : {0, 1}∗ → {0, 1}λ with an NIZK ΠR
is knowledge-extractable if for any PPT adversary A, there exists a PPT extractor EOext such that

Pr
[

b = 1 ∧ (x, w) /∈ R :
pp← PGen(1λ); (x, π)← AH(pp);

b← VH(x, π); w ← E
Oext (x, π)

]
< ν(λ)

where Oext is a stateful oracle which stores the list L all the input-output (in, out) queries made to
H by A, and upon being queried it provides L.

Definition 6 (Straight-line Simulation Extractability). Consider a non-interactive proof system
ΠR = (PGen,P,V) for relation R in the random oracle model H : {0, 1}∗ → {0, 1}λ with an NIZK
simulator S.

Let (S1,S ′
2) be wrapper oracles for S as defined above. Let Oext be a stateful oracle which stores the

list L all the input-output (in, out) queries made to S1, and upon being queried it provides L.
ΠR is simulation-extractable (SIM-EXT) with respect to S, if for any PPT adversary A, there exists

a PPT extractor EOext such that

Pr
[

(x, π) /∈ Q ∧ (x, w) /∈ R
∧ b = 1

:
pp← PGen(1λ); (x, π)← AS1,S′

2(pp);

b← VS1(x, π); w ← E
Oext (x, π, st)

]
< ν(λ)

where st is the final state of the simulator S, and Q is a set of statement-proof pairs (x, π) with x being
a statement queried by A to the proof simulation wrapper oracle S ′

2, and π being the corresponding
simulated proof, respectively.

Note that the notion of straight-line simulation extractability implies the notion of straight-line
knowledge soundness.

Definition 7 (k-Unique Response). Let Π = (PGen,P,V) be a (2r + 1)-message public-coin
interactive argument, with ΠFS its associated FS-transformed NARG and k ∈ [0, r]. We say ΠFS
satisfies k-unique response (k-UR) if for all PPT adversaries A, the following probability (defined with
respect to the game in Fig. 7) is negligible in λ:

Advk-UR
ΠFS

(A) := Pr
[
k-URA

ΠFS
(λ)

]
.

When k = 0, we say that ΠFS has (computationally) unique proofs.

Game k-URA
ΠFS (λ)

pp← PGen
(
1λ, ppG

)
(x, π, π′, c)← AH(pp)
b← VH[(pp,x, π|k)7→c]

FS (pp, x, π) = 1

b′ ← V
H

[(
pp,x, π′|

k

)
7→c

]
FS (pp, x, π′) = 1

return b ∧ b′ ∧ π ̸= π′ ∧ π|k = π′|k

Fig. 7: Security game for k-unique response. Here H [(pp, x, π|k) 7→ c] denotes the random oracle where
the input (pp, x, π|k) is reprogrammed to output c.

E Dense Samplable Puzzle (DSP) system

This section is taken almost verbatim from [CV22]. We denote the puzzle space as PSλ, the solution
space as SSλ, and the hardness space as HSλ.

Definition 8. A Dense Samplable Puzzle (DSP) system PuzSys = (Sample, Solve, Verify) enjoys the
following properties, denoting with ν a negligible function.
Completeness. A puzzle system PuzSys is complete, if for every h in the hardness space HSλ:

Pr
[
puz← Sample(1λ, h), sol← Solve(1λ, h, puz) : Verify(1λ, h, puz, sol) = 0

]
≤ ν(λ).

The number of steps that Solve takes to run is monotonically increasing in the hardness factor h
and may exponentially depend on λ, while Verify and Sample run in time polynomial in λ.
g-Hardness. Let StepsB(·) be the number of steps (i.e., machine/operation cycles) executed by algo-
rithm B. We say that a puzzle system PuzSys is g-hard for some function g, if for every adversary A
there exists a negligible function ν such that for every auxiliary tape z ∈ {0, 1}∗ and for every h ∈ HSλ

the following holds:

Prob[puz← Sample(1λ, h), sol← A(1λ, z, puz) : Verify(1λ, h, puz, sol) = 1 ∧
StepsA(1λ, z, h, puz) ≤ g(StepsSolve(1λ, h, puz))] ≤ ν(λ).

Dense Puzzles. Given λ, h ∈ Z+ and a polynomial function ℓ, there exists a negligible function
ν such that ∆[Sample(1ν , h), Uℓ(λ,h))] ≤ ν(λ) where Uℓ(λ,h) stands for the uniform distribution over
{0, 1}ℓ(λ,h).

As observed in [CV22] the properties of density and g-hardness imply that for every adversary A, there
exists a negligible function ν such that for every auxiliary tape z ∈ {0, 1}⋆ and for every h ∈ HSλ the
following holds:

Prob[sol← A(1λ, z, η) : η ← {0, 1}ℓ(λ,h) ∧ Verify(1λ, h, η, sol) = 1 ∧
StepsA(1λ, z, h, η) ≤ g(StepsSolve(1λ, h, η))] ≤ ν(λ).

Following [BKZZ16] we also require the existence of the following algorithm and respective prop-
erties:

– SampleSol(1λ, h) is a probabilistic solved puzzle instance sampling algorithm. On input the security
parameter 1λ and a hardness factor HSλ, it outputs a puzzle instance and solution pair (puz,
sol) ∈ PSλ × SSλ.
Correctness of Sampling: We say that a puzzle system PuzSys is correct with respect to sampling,

if for every h ∈ HSλ, we have that:

Pr
[
(puz, sol)← SampleSol(1λ, h), : Verify(1λ, h, puz, sol) = 0

]
= ν(λ).

Efficiency of Sampling: We say SampleSol is efficient with respect to the puzzle g-hardness, if for
every λ ∈ Z+, h ∈ HSλ and puz ∈ PSλ, we have that:

StepsSampleSol(1λ, h) < g(StepsSolve(1λ, h, puz))

Statistical Indistinguishability: We define the following two probability distributions

Ds,λ,h =
{

(puz, sol)← SampleSol(1λ, h)
}

and

Dp,λ,h =
{

puz← Sample(1λ, h), sol← Solve(1λ, h, puz) : (puz, sol)
}

We say a PuzSys is statistically indistinguishable, if for every λ ∈ Z+ and h ∈ HSλ:

∆[Ds,λ,h,Dp,λ,h)] = ν(λ)

In [BKZZ16] the authors show how to construct puzzles assuming the hardness of the discrete
logarithm (DLOG) problem. In particular, at the end of page 37 (full version) the authors argue that
it is possible to obtain a puzzle by randomly sampling an instance of the DLOG problem. The solution
to this puzzle is simply the DLOG of the instance.

F The Shielded Oracle Framework [BDH+17]

We give here a brief overview of the main definitions of the framework of [BDH+17]. The main ingre-
dients compared to standard UC are threefold:
1. The definition of a shielded oracle O and the definition of adjoined functionalities FO.
2. The definition of a new environment class Z[FO].
3. A composable UC-realization notion π ≥FO ϕ.

We give first give the definitions from [BDH+17] for completeness here:

Definition 9 (Shielded oracles). A shielded oracle is a stateful oracle O that can be implemented in
quasi-polynomial time. By convention, the outputs of a shielded oracle O are of the form (output-to-fnct,
y) or (output-to-adv, y).

Definition 10 (O-adjoined functionalities). Given a functionality F and a shielded oracle O,
define the interaction of the O-adjoined functionality FO an ideal protocol execution with a session
identifier sid as follows

– FO internally runs an instance of F with session identifier sid
– When receiving the first message x from the adversary, FO internally invokes O with input (sid, x).

All subsequent messages from the adversary are passed to O.

– Messages between the honest parties and F are forwarded.
– Corruption messages are forwarded to F and O.
– When F sends a message y to the adversary, FO passes y to O.
– The external write operations of O are treated as follows:
• If O sends (output-to-fnct, y), FO sends y to F.
• If O sends (output-to-adv, y), FO sends y to the adversary.

UC-realization notion. Let IDEAL(FO) be the ideal protocol with functionality FO as defined
in [Can01].

Definition 11 (The FO execution experiment). An execution of a protocol σ with adversary A
and an FO-augmented environment Z on input a ∈ {0, 1}∗ and with security parameter λ ∈ N is a
run of a system of interactive Turing machines (ITMs) with the following restrictions:

– First, Z is activated on input a ∈ {0, 1}∗.
– The first ITM to be invoked by Z is the adversary A.
– Z may invoke a single instance of a challenge protocol, which is set to be σ by the experiment. The

session identifier of σ is determined by Z upon invocation.
– Z may pass inputs to the adversary or the protocol parties of σ.
– Z may invoke, send inputs to and receive outputs from instances of IDEAL(FO) as long as the

session identifiers of these instances as well as the session identifier of the instance of σ are not
extensions of one another.

– The adversary A may send messages to protocol parties of σ as well as to the environment.
– The protocol parties of σ may send messages to A, pass inputs to and receive outputs from subpar-

ties, and give outputs to Z.

Denote by Exec(σ,A,Z[FO])(λ, a) the output of the FO-augmented environment Z on input a ∈
{0, 1}∗ and with security parameter λ ∈ N when interacting with σ and A according to the above
definition. Define Exec(σ,A,Z[FO]) = {Exec(σ,A,Z[FO])(λ, a)}a∈{0,1}∗,λ∈N

Definition 12. Let π and ϕ be protocols. π is said to emulate ϕ in the presence of FO-augmented
environments, denote by π ≥FO ϕ, if for any PPT adversary A there exists a PPT adversary (called
simulator) Sim such that for every FO-augmented PPT environment Z it holds that:

Exec(π,A,Z[FO]) ≈ {Exec(ϕ, Sim,Z[FO]).

The definition is shown to be composable in the sense of [Can01] when considering the richer class
of environments.

Definition 13 (The FO emulation with respect to the dummy adversary [BDH+17]). The
dummy adversary D is an adversary that when receiving a message (sid, pid, m) from the environment,
sends m to the party with party identifier pid and session identifier sid, and that, when receiving m
from the party with party identifier pid and session identifier sid, sends (sid, pid, m) to the environment.
Let π and ϕ be protocols. π is said to emulate ϕ in the presence of FO-augmented environments with
respect to the dummy adversary

∃SimD∀Z : Exec(π, D,Z[FO]) ≈ {Exec(ϕ, SimD,Z[FO])

Claim ([BDH+17]). Let π and ϕ be protocols. π is said to emulate ϕ in the presence of FO-augmented
environments if and only if ϕ emulates π in the presence of FO-augmented environments with respect
to the dummy adversary.

Finally, we report the definition of polynomial simultability introduced in [BDH+17].

Definition 14. Let O be a shielded oracle, F a functionality. Say that O adjoined to F is polynomially
simulatable if there exists a (PPT) functionality M such that for all F O-augmented environments Z
it holds that FO ≥FO M.

This notion is useful in [BDH+17] to prove the compatibility of the UC framework. We refer the reader
to [BDH+17] for more detail on how the proof proceeds.

We note that the FO
NIZK defined in Fig. 2 enjoys this property this follows from Theorem 1. This

is because the only output of the adjoined oracle visible via the attacker’s interface is proof strings
for problem instances x for which the functionality has seen the witness w, even if it does not use
w to generate them (as per zero-knowledge requirements). Therefore, the execution of the adjoined
oracle could be replaced by a PPT machine M that generates the proof following the honest prover
procedure on input (x, w). Using Theorem 1 it is possible to argue that a polynomial attacker can not
distinguish how the proof is generated assuming the GRO-hybrid model. Further, the above argument
can be carried out even for parallel executions of FO

NIZK since a proof issued in a session is rejected in
any session that is not the one in which the proof is generated.

G Definitions of the Building Blocks of [GKO+23]

G.1 Succinct Polynomial Commitment Scheme

The following definition is adapted from [GKO+23], which in turns adapts it from the full version
of [CHM+20].

Definition 15 (Polynomial Commitment Scheme). A polynomial commitment scheme in the
random oracle model H : {0, 1}∗ → {0, 1}λ over field F, denoted by PCS, is a tuple of algorithms
(PCGen, Com, Eval, Check):
1. ck← PCGen(1λ, d): Takes as input the security parameter λ and the maximum degree bound d and

generates the public parameters ck as output.
2. c← Com(ck, f): Takes as input ck, the polynomial f ∈ F<d[X] and outputs a commitment c.
3. π ← EvalH(ck, c, z, y, f): Has oracle access to H and takes as input ck, the commitment c, eval-

uation point z ∈ F, claimed polynomial evaluation y ∈ F, the polynomial f , and outputs a non-
interactive proof of evaluation π.

4. b← CheckH(ck, c, z, y, π): Has oracle access to H and takes as input statement (ck, c, z, y) and the
proof of evaluation π and outputs a bit b.
satisfying the following properties:

Completeness. For any integer d, for all polynomials f ∈ F<d[X], for all evaluation points z ∈ F

Pr

b = 1 :
ck← PCGen(1λ, d); c← Com(ck, f);
y := f(z); π ← EvalH(ck, c, z, y, f);
b← CheckH(ck, c, z, y, π)

 = 1.

Evaluation Binding. For any integer d, for all PPT adversaries A,

Pr

 y ̸= y′

∧ b = 1
∧ b′ = 1

:
ck← PCGen(1λ, d); (c, z, y, y′, π, π′)← AH(ck);

b← CheckH(ck, c, z, y, π);
b′ ← CheckH(ck, c, z, y′, π′)

 ≤ negl(λ).

Following [GKO+23] we require that a PCS satisfies also the following additional properties.

Definition 16 (Unique Proof). For all PPT adversaries A,

Pr

π ̸= π′

∧ b = 1
∧ b′ = 1

:

ck← PCGen(1λ, d);
(c, z, y, π, π′)← AH(ck);

b← CheckH(ck, c, z, y, π);
b′ ← CheckH(ck, c, z, y, π′)

 ≤ negl(λ).

We adopt a minor variant of the definition of polynomial encoding scheme given in [GKO+23]. In
some respect we specialize it, in others we generalize it (see Remark 8). At its essence, a polynomial
encoding scheme takes a vector of field elements and outputs an appropriate randomized polynomial.

Definition 17 (Polynomial Encoding Scheme). A polynomial encoding scheme, denoted by PES,
is a tuple of algorithms (Enc, Dec)

– f ← Enc(1λ, w, n, ℓ; ρ): Takes as inputs a security parameter, w ∈ Fn, dimension of the vector
n > 0, evaluation bound ℓ > 0, and randomness ρ ∈ Fℓ, and outputs a polynomial f ∈ F<d[X]
where d is a function of n and ℓ.

– w′ ← Dec(1λ, f, n, ℓ): Takes as inputs a security parameter, f ∈ F<n+ℓ[X], n > 0, and ℓ > 0, and
deterministically outputs w′ ∈ Fn.

We say PES is correct if w = Dec(1λ, Enc(1λ, w, n, ℓ; ρ), n, ℓ) for any n > 0, ℓ > 0, w ∈ Fn, and
ρ ∈ Fℓ. We define the stretch factor stretch(λ, n, ℓ) of the PES as the difference between the size of the
encoding and the original size of the vector w, i.e., stretch(λ, n, ℓ) will always be equal to deg(f)+1−n.

We only consider polynomial encoding schemes where the size of the field domain is exponential in the
security parameter, i.e. |F| ∈ O(2λ).

Definition 18 (ϕ-Evaluation Hiding). Let PCS = (PCGen, Com, Eval, Check) be a polynomial
commitment scheme in the random oracle model H and PES = (Enc, Dec) be a polynomial encoding
scheme. We say PCS is ϕ-evaluation hiding with respect to PES if for all PPT adversaries A = (A1,
A2), for all λ, n, r ∈ N

Pr

b = b′ :

ℓ := ϕ(λ, n, r); d := n + stretch(λ, n, ℓ);
ck← PCGen(1λ, d);

Fn ∋ w← AH
1 (ck); z←$ Fr

ρw ←$ Fℓ; b←$ {0, 1};
f ← Enc(1λ, b ·w, n, ℓ; ρw);

c← Com(ck, f);
y := f(z);

π ← EvalH(ck, c, z, y, f);
b′ ← AH

2 (c, y, π)

≤ 1
2 + negl(λ)

where A1,A2 share the internal states, y := f(z) denotes setting yi := f(zi) for all i ∈ [|z|], and
π ← EvalH(ck, c, z, y, f) denotes setting πi ← EvalH(ck, c, zi, yi, f) for all i ∈ [|z|].

Definition 19 (ϕ-Non-Extrapolation). Let PCS = (PCGen, Com, Eval, Check) be a polynomial
commitment scheme in the random oracle model H and PES = (Enc, Dec) be a polynomial encoding
scheme. We say PCS supports ϕ-non-extrapolation with respect to PES if for all PPT adversaries A,
for all λ, n, r ∈ N

Pr

v = 1 ∧ z∗ /∈ z :

ℓ := ϕ(λ, n, r); d := n + stretch(λ, n, ℓ);
ck← PCGen(1λ, d);
z←$ Fr; ρw ←$ Fℓ;

f ← Enc(1λ, 0n, n, ℓ; ρw);
c← Com(ck, f);

y := f(z);
π ← EvalH(ck, c, z, y, f); z∗ ←$ F
(y∗, π∗)← AH(ck, c, z, y, π, z∗);

v ← CheckH(ck, c, z∗, y∗, π∗)

≤ negl(λ)

Remark 8 (Minor changes from the formalism in [GKO+23]). We applied the following changes com-
pared to the original framework in [GKO+23]16:

– we removed the explicit randomness in the polynomial commitment (our focus is on deterministic
commitments);

16 We stress that all these changes have no noteworthy implications for the original security proofs in [GKO+23].
We made sure of this by inspecting the original proofs and by private communication with the authors.

– we explicitly add the RO to the algorithms and adversaries of the polynomial commitments;
– more generally, the polynomial encoding scheme takes as input a parameter λ (we use this in our

construction);
– for evaluation hiding and non-extrapolation, we let ϕ be a function of both n and the size of z

rather than only the latter. We also let it be a function of λ. This is more general and it is actually
necessary in our constructions.

– we generalize the “stretch” introduced by the encoding through the function stretch. The quantity
stretch(λ, n, ℓ) reflects how much larger than w is the encoding of w ∈ Fn when using ℓ additional
randomness and with security parameter λ. This was assumed to be always ℓ in [GKO+23]. We
stress that this change does not affect the proofs and does not impact the efficiency analysis in any
substantial way: our stretch stays Oλ(n) as in [GKO+23];

– we let some parameters such as n and r be quantified universally rather than being provided by
the adversary;

– we simplify the definition by removing the explicit evaluation domain and just sampling points
randomly from the field (in both our construction and the one in [GKO+23] this is sufficient for
security because of the asymptotic size of the field);

– we removed bounded independence as an essential property of polynomial encoding schemes. This
is used in [GKO+23] to prove ϕ-evaluation hiding, but we do not need it.

Remark 9. In this work, we focus on PCS with a transparent setup, therefore ck can be generated with
a call to the random oracle.

G.2 Simulation Extractability

We define the notion of simulation extractability similar to [DG23], note that in this definition the
extractor is not straight-line.

Definition 20 (Simulation Extractability). Consider a non-interactive proof system ΠR = (PGen,
P,V) in the random oracle model H for relation R with an NIZK simulator S. Let (S1,S ′

2) be wrapper
oracles for S as defined in Definition 3. ΠR is simulation-extractable (SIM-EXT) with respect to S, if
for any PPT adversary A, there exists a PPT extractor EA such that

Pr
[

(x, π) /∈ Q ∧ (x, w) /∈ R
∧ b = 1

:
pp← PGen(1λ); (x, π)← AS1,S′

2(pp);
b← VS1(x, π); w ← EA(x, π, st)

]
< negl(λ)

where st is the final state of the simulator S, and Q is a set of statement-proof pairs (x, π) with x being
a statement queried by A to the proof simulation wrapper oracle S ′

2, and π being the corresponding
simulated proof, respectively.

Remark 10. The definition of simulation-extractability reported above is slightly different from the one
described in [GKO+23], this is because this definition is in the random oracle model and the extractor
does not require as input the code of the adversary but it has black-box access to it. Inspecting the
original proof of [GKO+23] one can conclude that their claims also hold w.r.t. this definition. This is
because their results hold in the GRO and the only point in the proof where they rely on simulation
extractability property is in a reduction (where the random oracle could be programmed)17.

H Our Polynomial Encoding Scheme

H.1 Additional Preliminaries

H.1.1 Public-Key Encryption Let F be a field. We consider public-key encryption schemes whose
input is a vector of field elements and output a vector of field elements (of a different size).
17 This was confirmed by private communication with the authors. Note also that at page 20 of the full version

of [GKO+23] it is indeed discussed that their result can be instantiated using [BBB+18], which satisfies the
above definition as proven in [DG23].

Definition 21. A PKE scheme consists of a tuple of algorithms PKE = (KG, Enc, Dec) with the fol-
lowing syntax:

– KG(1λ)→ (pk ∈ Fκ, sk ∈ F): generates a key pair (the algorithm is randomized).
– Enc(pk ∈ Fκ, m ∈ Fn) → ct ∈ Fn′ : produces a ciphertext corresponding to a message m through

the public key (the algorithm is randomized).
– Dec(sk ∈ F, ct ∈ Fn′) → m ∈ Fn: decrypts a ciphertext through the secret key (the algorithm is

deterministic).
We require the following properties:

Correctness. For any λ, n ∈ N, any plaintext m ∈ Fn,

Pr [Dec(sk, ct) = m] = 1

where (pk, sk)← KG(1λ) and ct← Enc(pk, m).

Semantic security.18 For all λ ∈ N, for any PPT adversary A = (A1,A2),∣∣∣∣∣Pr
[

(pk, sk)← KG(1λ), (st, m0, m1)← A1(pk)
b←$ {0, 1}, ct← Enc(pk, mb), b′ ← A2(st, ct)

: b = b′

]
− 1/2

∣∣∣∣∣ = negl(λ)

H.1.2 Secret Sharing

Definition 22 (Additive m-out-of-m Secret Sharing). Let F be a field. An additive secret sharing
scheme consists of a pair of algorithms SS = (Share, Reconstr) such that:

– Share(m ∈ N, s′ ∈ F) : Sample s1, . . . , sm s.t. sm := s′ +
∑m−1

i=1 si. Return (s1, . . . , sm).
– Reconstr(m ∈ N, s ∈ Fm) : Return sm −

∑m−1
i=1 si.

Two basic facts (which we will use in our proofs) regarding the construction above:
– the reconstruction algorithm is always able to reconstruct the secret from its shares.
– to any (potentially unbounded) adversary, a set of up to m− 1 shares of any secret will look as if

randomly distributed.

H.2 Further leakage-resilience properties of additive secret sharing

In this section we describe and prove some properties that will be useful to prove security of our
polynomial encoding scheme (both alone and when combined with our polynomial commitment). The
set of properties we will rely on can be described as a form of leakage-resilience of the secret sharing
scheme when the adversary is allowed to query (appropriately distributed) linear combinations of the
shares.

We start by defining the following game.

Definition 23 (Linear leakage resilience). Let adm : {0, 1}∗ → {0, 1} be a predicate (which we will
call it “admissibility” predicate from now on). Let SS be the secret sharing scheme in Definition 22. Let
(Fλ)λ∈N be a family of finite fields such that |F| ∈ O(2λ). We say that SS is resistant against adm-linear
leakage if for any (possibly unbounded) A = (A1,A2) for any λ ∈ N, ℓ ≥ 1

Pr[GSS-lin(A, λ, ℓ) = 1] ≤ 1
2 + negl(λ)

where GSS-lin is described in Fig. 8 and we use Fλ as a field for SS.

18 In this game we assume for simplicity that the two adversarial plaintexts have the same length.

GSS-lin(A, λ, ℓ) :

(s ∈ F, st)← A1(1λ, 1ℓ)
Sample b←$ {0, 1}
if b = 0 then

σ ← SS.Share(ℓ + 1, s)
else

σ ←$ Fℓ+1

b′ ← AO
2 (st)

Return 1 if b = b′ ∧ adm(Θ); else return 0

The oracle O(θ) is such that:
– it returns ⟨θ, σ⟩ if the adversary asked fewer than ℓ queries so far;
– if the adversary already requested ℓ queries, then return ⊥

Above, Θ is the concatenation of the queries (θ(1)|| . . . ||θ(ℓ)) requested by the adversary.

Fig. 8: Game GSS-lin.

We now provide a definition that will make more sense in light the proof of Lemma 1.
Definition 24. Let Θ = (θ(1)|| . . . ||θ(ℓ)) be the queries made by an adversary during an execution of
GSS-lin (Fig. 8) where for each i ∈ [ℓ] θ(i) ∈ Fℓ+1 Consider the following ℓ-by-ℓ matrix MΘ:

MΘ =

θ
(1)
1 + θ

(1)
ℓ+1 θ

(2)
1 + θ

(2)
ℓ+1 · · · θ

(ℓ−1)
1 + θ

(ℓ−1)
ℓ+1 θ

(ℓ)
1 + θ

(ℓ)
ℓ+1

θ
(1)
2 + θ

(1)
ℓ+1 θ

(2)
2 + θ

(2)
ℓ+1 · · · θ

(ℓ−1)
2 + θ

(ℓ−1)
ℓ+1 θ

(ℓ)
2 + θ

(ℓ)
ℓ+1

...
.

...

θ
(1)
ℓ−1 + θ

(1)
ℓ+1 θ

(2)
ℓ−1 + θ

(2)
ℓ+1 · · · θ

(ℓ−1)
ℓ−1 + θ

(ℓ−1)
ℓ+1 θ

(ℓ)
ℓ−1 + θ

(ℓ)
ℓ+1

θ
(1)
ℓ + θ

(1)
ℓ+1 θ

(2)
ℓ + θ

(2)
ℓ+1 · · · θ

(ℓ−1)
ℓ + θ

(ℓ−1)
ℓ+1 θ

(ℓ)
ℓ + θ

(ℓ)
ℓ+1

(⋆)

We define the admissibility predicate admdet as the one that is true iff det(MΘ) ̸= 0.

Lemma 1. Let (Fλ)λ∈N be a family of finite fields such that |F| = O(2λ) and let SS be defined as in
Definition 22 and admdet as in Definition 24. Then SS is resistant against admdet-linear leakage.

Proof. Consider the adversary’s oracle queries θ(1), . . . , θ(ℓ) in the game in Fig. 8. For each i ∈ [ℓ], let
θ(i) =

(
θ

(i)
1 , . . . , θ

(i)
ℓ+1

)
. By definition of the sharing algorithm in SS, after the i-th query, the adversary

receives
y(i) =

(
θ

(i)
1 + θ

(i)
ℓ+1

)
· s1 + . . .

(
θ

(i)
ℓ + θ

(i)
ℓ+1

)
· sℓ + θ

(i)
ℓ+1s′

In order to prove our statement, we proceed as it is common in secret sharing: we claim that for any
guess on s′ a certain system of equations defined by the linear combination queries will always have
exactly one solution. This allows us to claim that the information received by the adversaries does not
allow them to discern among different possible values of s′. Thus, for each i, let ŷ(i) := y(i) − θ

(i)
ℓ+1s′

and consider the following system of equations:
θ

(1)
1 + θ

(1)
ℓ+1 · · · θ

(1)
ℓ + θ

(1)
ℓ+1

...
θ

(ℓ)
1 + θ

(ℓ)
ℓ+1 · · · θ

(ℓ)
ℓ + θ

(ℓ)
ℓ+1

s1

...
sℓ

 =

ŷ(1)

...
ŷ(ℓ)

 (1)

Notice that the ℓ-by-ℓ matrix M on the left in Eq. (1) is the transpose of the one defined in Definition 24.
This allows us to conclude that the system of equations above admits exactly one solution (regardless
of the value of s′) if and only if det(M) ̸= 0. Observing that the latter property matches the definition
of admdet in Definition 24 concludes the proof. ⊓⊔

H.3 Further Analysis of admdet-Linear Leakage
In this section we make further observations on the structure of admdet (Definition 24). In particular
we will observe when the matrix MΘ in Eq. (⋆) has a non-zero determinant.

Recall that if we add or subtract a multiple of a row/column from a matrix, its determinant will
not change. We then first subtract the first row from all others obtaining:

θ
(1)
1 + θ

(1)
ℓ+1 θ

(2)
1 + θ

(2)
ℓ+1 · · · θ

(ℓ−1)
1 + θ

(ℓ−1)
ℓ+1 θ

(ℓ)
1 + θ

(ℓ)
ℓ+1

θ
(1)
2 − θ

(1)
1 θ

(2)
2 − θ

(2)
1 · · · θ

(ℓ−1)
2 − θ

(ℓ−1)
1 θ

(ℓ)
2 − θ

(ℓ)
1

...

θ
(1)
ℓ−1 − θ

(1)
1 θ

(2)
ℓ−1 − θ

(2)
1 · · · θ

(ℓ−1)
ℓ−1 − θ

(ℓ−1)
1 θ

(ℓ)
ℓ−1 − θ

(ℓ)
1

θ
(1)
ℓ − θ

(1)
1 θ

(2)
ℓ − θ

(2)
1 · · · θ

(ℓ−1)
ℓ − θ

(ℓ−1)
1 θ

(ℓ)
ℓ − θ

(ℓ)
1

(2)

We can then apply Laplace expansion to the first row and observe that:

det(MΘ) =
∑
k∈[ℓ]

(−1)k+1 ·
(

θ
(k)
1 + θ

(k)
ℓ+1

)
· det(MΘ,(1,k))

where MΘ,(1,k) is defined as the matrix obtained removing the first row and the k-th column in MΘ.
By continuing expanding each minor one row at the time we can convince ourselves that det(MΘ) has
the following form: ∑

π

±
(

θ
(π(1))
1 + θ

(π(1))
ℓ+1

) (
θ

(π(2))
2 − θ

(π(2))
1

)
. . .

(
θ

(π(ℓ))
ℓ − θ

(π(ℓ))
1

)
(†)

where above π is enumerated over all possible permutations of [ℓ] and ± denotes a plus or minus sign
that is a function of π (we leave it unspecified since it will not be necessary for our observations later
on).

H.4 Secret-Sharing Based Polynomial Encoding Scheme
We are now ready to describe our polynomial encoding scheme. We apply a different encoding scheme
(see Definition 17) than the one in the work in [GKO+23]. The reason is that we will need additional
properties, namely that the adversary cannot learn any useful information by a bounded number of
(appropriately distributed) linear combinations of the coefficients of the output of the encoding. Our
polynomial encoding scheme can be seen as defining a polynomial whose coefficients are partly the
output of a secret sharing of a secret key, partly ciphertexts of the original string to be encoded (plus
the public key).
Definition 25 (Secret-Sharing Based Encoding). Let PKE and SS be as in Appendix H.1, then
we define PESss = (Enc, Dec) as follows:
♦ Enc(1λ, w, n, ℓ) :

(pk, sk)← PKE.KG(1λ)
ctw ← PKE.Enc(pk, w)
s← SS.Share(ℓ + 1, sk)
Let d := ℓ + 1 + |pk|+ |ctw|
Let f(X) :=

∑
0≤i<d fi+1Xi where f := (s||pk||ctw)

return f

♦ Dec(1λ, f, n, ℓ) :
// the sizes of the subvectors below is known
Parse the coefficients of f as f = (s||pk||ctw)
sk← SS.Reconstr(ℓ, s)
w← PKE.Dec(sk, ctw)
return w

The stretch is stretch(λ, n, ℓ) = (ℓ + 1) + κ + n′(n)−n, where κ and n′ are as in Definition 21 (i.e.,
they are respectively the size of the public key and of the ciphertext in field elements).

I Proof of Theorem 1

We will now show a series of hybrid experiments for a PPT environment Z that can invoke externally
many sessions of FO

NIZK and replace internally these executions with the real protocol ΠTS-R. Without
loss of generality, we consider the case in which there is one prover and one verifier in each session.
Step 1: Let Exec(FO

NIZK, Sim,Z) be the random variable that denotes the output of the experiment
where the PPT environment Z invokes many sessions of FO

NIZK and interacts with the simulator Sim.
Let Exec(ΠTS-R,A,Z) be the random variable that denotes the output of the experiment where the
executions of FO

NIZK are replaced with invocations of ΠTS-R in which the dummy adversary A is playing.
We will proceed to show that:

Exec(FO
NIZK, Sim,Z) ≈ Exec(ΠTS-R,A,Z)

If both parties are corrupted then the O-adjoinded functionalities can be treated as part of the
environment. Therefore, we only consider the case where Z participates in sessions with a corrupted
prover (prover sessions) or with a corrupted verifier (verifier session).

Let us denote with bad the event that in any prover session, the simulator Sim given a proof π
w.r.t. statement x fails to extract w s.t. (x, w) ∈ R.

We distinguish two cases:
1. The event bad occurs with non-negligible probability.
2. The event bad occurs with negligible probability;

Case 1: Let the j∗-th prover session be the first prover session of the real-world execution (i.e. where
protocol ΠTS-R is executed) where bad happens with non-negligible probability. Since the environment
Z opens a polynomial number q′ of prover sessions, the index j∗ can be guessed with non-negligible
probability. Therefore it is sufficient to focus on an environment Z ′ which internally runs Z and opens
all verifier sessions that Z wants to participate in, while opening only one prover session (the j∗-the
prover session) and emulates internally the other prover sessions that Z ′ wants to open. Let us assume
that Z opens q verifier sessions (this number can be guessed with non-negligible probability since Z is
polynomially bounded). Since j∗ can be guessed with non-negligible probability, then Z ′ participates
in a prover session where bad occurs with non-negligible probability. More specifically, in the prover
session Sim receives an accepting proof π̄ w.r.t. theorem x̄′ = (x̄, puz) from A and in the ideal world
it fails with non-negligible probability to extract a witness w s.t (x, w) ∈ R.

We are going to argue now that the probability that the event bad happens is non-negligible even
when the calls to the ideal functionality FO

NIZK are replaced with execution of ΠTS-R. To do so let us
consider the following hybrid experiments, where the simulator defined in the hybrid H acts with Z ′ in
the j-th verifier session, for j ∈ [1, q], using as a session identifier the value sidH∥j, and in the unique
prover session using as session identifier the value sidH∥0. Moreover, let pbad(H) be the probability that
the event bad happens in the hybrid H.

– Let H1 be equivalent to the ideal experiment but H1 additionally emulates the calls to GRO in the
eyes of Z ′. In particular, on input a query (query, (sid, in)), the hybrid H1 answers in the following
way:
• Check if there is a pair (in, out) for some out ∈ {0, 1}ℓ(λ) in the (initially empty) list Q of past

queries. Else choose uniformly out ∈ {0, 1}ℓ(λ) and store the pair (in, out) in Q.
• Parse in as (s, in′, prefix). If sid ̸= s then add (s, in′, out) to the (initially empty) list of illegiti-

mate queries for SID s, that is denoted by Q|s.
• Return out

Moreover, if a request (observe, sid) is received, the hybrid (emulating GRO) sends the list Q|sid.
This hybrid is indistinguishable from the ideal execution since H1 perfectly emulates GRO in the
eyes of Z ′. Thus we have that:

pbad(H1) = pbad(Exec(FO
NIZK, Sim,Z))

– Let H1
0 be equivalent to H1. For all i ∈ [1, q], let H1

i be equivalent to H1
i−1 but the following

modification is made:
• H1

i additionally runs (puzi, soli)← SampleSol(1λ, h)

• when emulating the calls to GRO, on input a new query (query, (sid, in)), the hybrid H1
i ad-

ditionally does the following: If there is not a pair (in, out) for some out ∈ {0, 1}ℓ(λ) in the
(initially empty) list Q of past queries, parse in as (s, in′, prefix) and if (prefix = puzzle and
sid = sidH1

i
∥i) send puzi, otherwise choose uniformly out ∈ {0, 1}ℓ(λ) and store the pair (in, out)

in Q.
First, we observe that two consecutive hybrids H1

i and H1
i−1 behave the same way except on how

they program GRO to output the puzzle for the i-th verifier session. The probability of distinguishing
two consecutive hybrids is then negligible due to the statistical indistinguishability of PuzSys.
Moreover, we notice that for the prover session, the adversary has a session identifier that is
different from sidH1

i
∥j, for all i, j ∈ [q], therefore in the prover session the puzzle puz is generated

honestly by sampling a string uniformly at random (for which the hybrid does not know the
solution). Therefore we have that:

pbad(H1
q) ≥ pbad(H1)− q · νPuzSys

where νPuzSys ∈ negl is the statistical distance between the uniform distribution and the puzzle
distribution output by SampleSol.

– Let H2
0 be equivalent to H1

q. For all i ∈ [1, q], let H2
i be equivalent to H2

i−1 except on how it computes
the solution to the puzzle for the i-th verifier session: in particular, the hybrid H2

i computes the
proof πi running the (honest) prover of Π w.r.t. statement x′

i = (xi, puzi) and the witness soli,
where the pair (soli, puzi) is generated as output of SampleSol, instead of executing Solve (as done
by O in FO

NIZK).
The view of Z ′ in two consecutive hybrids is identically distributed since Z ′ has only black-box
access (i.e. only to the input/output behaviors) to the functionality. Therefore we have that:

pbad(H2
q) = pbad(H1

q)

Note that due to the knowledge-soundness of Π and the fact that pbad is non-negligible, we can
conclude that from the prover session the hybrid H2

q extracts with non-negligible probability a
solution sol for puz, where puz is generated honestly in the experiment.

– Let H3
0 be equivalent to H2

q. For all i ∈ [q] let H3
i be equivalent to H3

i−1 except on how the proof
πi is generated: specifically, when the hybrid H3

i computes the proof πi running the simulator
SΠ = (S1,S2) of Π w.r.t. statement x′

i = (xi, puzi); whenever S1 wants to handle a query to GRO
with a specific (in, out) the hybrid sees it and casts this pair (in, out) in his emulation of the GRO.
The probability of distinguishing two consecutive hybrids is negligible due to the zero-knowledge
property of Π. Moreover, we can argue that ∀i ∈ [q]:

pbad(H3
i) ≥ pbad(H3

i−1)− negl

Let us assume by contradiction that this is not the case for some i∗ ∈ [q]. We show a reduction B
that breaks the zero-knowledge of Π, as follows.
Let CH be the challenger of the zero-knowledge game of Π, i.e., CH samples a bit b ∈ {0, 1} and
offers a proving oracle that on input a pair (x, w) ∈ R:
• If b = 0, run π ← P(pp, x, w)
• If b = 1, run π ← S2(x, w)

and output the proof π.
The reduction B internally runs Z ′ and when Z ′ opens the i-th verifier session w.r.t. theorem xi the
reduction runs (puzi, soli) ← SampleSol(1λ, h) emulating GRO, as explained above, programming
the output of the puzzle queries. Moreover, on input a proof query to GRO of the form (query, (sid,
in, proof)), where sid is associated with the i-th verifier session:
• If i = i∗, forward the query to S1 and output whatever it gives as result
• Else, internally emulate the call to GRO as done in H2

q

In the i-th verifier session, on input (prove, sid, x, w) the reduction sets x′ = (x, puzi), and obtains
the proof πi as follows:
• If i < i∗ then run the honest prover algorithm πi ← P(pp, x′, soli) using soli as witness, as

done in H2
q

• If i > i∗ then run the simulator of Π, i.e. πi ← S2(x′, soli)
• If i = i∗ send to CH the pair (x′, soli) and receive the proof πi

Upon receiving π̄ w.r.t. instance x̄′ = (x̄, puz) from the prover session the reduction runs the
extractor E of Π to obtain the witness w̄. The extractor E needs oracle access to the list of RO
queries, which the reduction can provide.
If the reduction fails to extract a valid witness, then aborts. If the reduction obtains as a witness
the solution of the puzzle puz then the reduction outputs 1 and 0 otherwise.
The idea is that the reduction B embeds in her emulation of GRO towards Z ′ the list of queries
made by CH to the random oracle to compute the possibly simulated proof πi∗ . We observe that if
b = 0 then πi∗ is computed using the simulator of Π and the experiment is distributed as H3

i∗ , and
as H3

i∗−1 otherwise. We also notice that the probability to abort is at most negligible since Π is
simulation-extractable. If the difference between pbad(H3

i∗) and pbad(H3
i∗−1) is non-negligible, then

B retains a non-negligible advantage in the zero-knowledge security game.
By union bound we derive that:

pbad(H3
q) ≥ pbad(H2

q)− q · negl

– Let H4
0 be equivalent to H3

q. For all i ∈ [1, q], let H4
i be equivalent to H4

i−1 except on how the the
i-th puzzle puzi is computed: in particular, the hybrid H4

i samples a string uniformly at random
rather than running SampleSol.
Similarly to the switch made in the hybrids H1

i , we observe that the probability of distinguishing
two consecutive hybrids is negligible due to the statistical indistinguishability of PuzSys. Therefore,
we have that:

pbad(H4
q) ≥ pbad(H3

q)− q · νPuzSys

– Let H5
0 be equivalent to H4

q. For all i ∈ [1, q] let H5
i be equivalent to the hybrid H5

i−1 except on how
the i-th verifier session is handled: specifically, in the hybrid H5

i the i-th verifier session is run like
the real world protocol ΠTS-R, but the GRO is still emulated by the hybrid.
The probability of distinguishing two consecutive hybrids is negligible due to the zero-knowledge
property of Π. Similarly to the switch made in H3

i , we can claim that:

pbad(H5
q) ≥ pbad(H4

q)− q · negl

– Let H6
0 be equivalent to H5

q. For all i ∈ [1, q], let H6
i be the same as H6

i−1 except on how the queries
to GRO are handlded: in particular, in the hybrid H6

i the environment Z ′ interatcs directly with
the functionality GRO (that is not emulated anymore by the hybrid)
With a similar argument shown for the proof of hybrid H1

i we can claim that:

pbad(H6
q) = pbad(H5

q)

Finally, we observe that the hybrid H6
q corresponds to the real-world experiment.

From the above arguments, it follows that in the real-world experiment, the probability that the
event bad happens is non-negligible. Specifically, in the prover session Sim receives a proof π̄ w.r.t.
theorem x̄′ = (x̄, puz) from A from which she fails to extract w such that (x, w) ∈ R. Due to the
soundness of Π, Sim (unless with negligible probability) extracts a witness w̄′ for the relation R′.
Since pbad(Exec(ΠTS-R,A,Z)) is non-negligible, w̄′ corresponds to the solution of puz. If this is the
case, we can show a polynomial time reduction that breaks the fact that a random instance of PuzSys
can not be solved in less of λlog λ steps.

The reduction runs the real-world experiment with Z ′, acting as an honest prover in the verifier
sessions and as a verifier in the prover session. Upon receiving π̄ w.r.t. instance x̄′ = (x̄, puz) from
the prover session, the reduction applies the extractor E of Π to obtain the witness w̄. Since by
contradiction in the real-world experiment Sim extracts a solution sol for the puzzle puz from π̄, then
the reduction forwards sol to CH. The reduction runs in polynomial time while PuzSys cannot be
solved in less than λlog λ steps, hence we reach a contradiction that concludes the proof.

Case 2: First we notice that in this case, the distribution of prover sessions in the ideal world and
the real world are statistically close. Therefore we can focus only on the verifier sessions. It follows
from the same chains of hybrids (and similar arguments) shown in Case 1 that the real-world execution

of the verifier sessions can be replaced with calls to the ideal functionality, therefore the distribution
of the output of Z is indistinguishable in the real and ideal world.
Step 2: We will now argue that:

Exec(FO
NIZK, Sim,Z[FO

NIZK]) ≈ Exec(ΠTS-R,A,Z[FO
NIZK])

If the prover is corrupted by Step 1 Case 2 the probability that the event bad happens is negligible,
therefore the distribution of the output of FO

NIZK- augmented is indistinguishable in the real and ideal
world.

If the verifier is corrupted by Step 1 the real-world execution of the prover and verifier sessions
can be replaced with calls to the ideal functionality FO

NIZK. Therefore the distribution of the output of
FO

NIZK- augmented is indistinguishable in the real and ideal world.
If both parties are corrupted then the distribution of the views of FO

NIZK- augmented environment
in the real and ideal experiments is identical.

If no party is corrupted it is possible to obtain a polynomial-time adversary following Step 1, then
one can argue that the distribution of the output of FO

NIZK- augmented is indistinguishable in the real
and ideal world due to the zero-knowledge property of Π. ⊓⊔

J Proofs for the Security of BP-PC

J.1 Proof of Theorem 5

Proof. Correctness. Correctness follows immediately from the completeness of the BP-IPA construc-
tion and by inspection: we are reducing polynomial evaluation to checking the inner product between
the coefficient of the polynomial (vector a) and the vector of powers of the evaluation point (vector
b).
Evaluation binding. To show evaluation binding, consider an adversaryA providing a tuple (cm, z, y, π, y′, π′).
In order for the adversary to win in the experiment the following conditions need to hold: y ̸= y′;
BP-IPAFS.Verify(ck, P, π) = 1; BP-IPAFS.Verify(ck, P ′, π′) = 1, where P = cm · hbuy, P ′ = cm · hbuy′ ,
b =

(
z0, . . . , zd−1)

.
Now consider the following adversary for the DLOG experiment (Assumption 1) for 2n + 1 generators
g1, . . . , gn, h1, . . . , hn, u:

ADLOG(G, g1, . . . , gn, h1, . . . , hn, u)

Let ck := (g, h, u)(
cm, z, y, π, y′, π′)← A(ck)

(â, b̂)← B(ck, cm, z, y, π)

(â′, b̂′)← B′(ck, cm, z, y′, π′)
Let a′′ := â − â′

Let y′′ := ŷ − ŷ′ − y + y′ where ŷ := ⟨â, b̂⟩, ŷ′ := ⟨â′, b̂′⟩

Let b′′ := b̂− b̂′

Return
(
a′′||b′′||y′′)

Above B (resp. B′) compute P ← cm · hbuy (resp. P ← cm · hbuy′) where b =
(
z0, . . . , zd−1)

and
return the output of the BP-IPA extractor EBP-IPAFS on (P, π) (resp. (P ′, π′)) .

Throughout the remainder of this proof we will make use of this fact: if Pr[A] is non-negligible then
it must be that Pr[A ∧B] is non-negligible or Pr[A ∧ ¬B] is non-negligible.

Let E∗ the event “A winning the evaluation binding game”. Now assume A breaks evaluation
binding, that is Pr[E∗] is non-negligible. We consider two cases:

– Case 1: Pr[â = â′ ∧E∗] is non-negligible: We now consider two sub-cases:
• Case 1a: Pr[â = â′ ∧ b̂ = b̂′ ∧ E∗] is non-negligible: We can show that this case leads to

a contradiction as follows. First, observe that whenever A wins the evaluation binding game

we have that P ̸= P ′ by their definition in the polynomial commitment verifier. Therefore
Pr[P ̸= P ′ |E∗] = 1. We proceed to show a contradiction by showing that Pr[P = P ′ |E∗] > 0.
Observation: that whenever the extractors work correctly we have that â = â′ ∧ b̂ = b̂′

implies P = P ′ since:
P = gâ · hb · u⟨â,b⟩ ∧ P ′ = gâ · hb · u⟨â,b⟩

Let us denote by Eext the event that extractor works correctly when invoked both in B and in B′.
By knowledge soundness we know that Pr[Eext] is overwhelming. Notice that Pr[P = P ′] > 0
implies that Pr[P = P ′ |E∗]. We observe that:

Pr[P = P ′] ≥ (3)
Pr[â = â′ ∧ b̂ = b̂′ ∧Eext] = (4)
Pr[â = â′ ∧ b̂ = b̂′ |Eext] · Pr[Eext] ≥ (5)
Pr[â = â′ ∧ b̂ = b̂′ |Eext]− negl (6)

where the first inequality follows from the first observation; the last inequality follows from
knowledge soundness. It remains now to show that Pr[â = â′ ∧ b̂ = b̂′ |Eext] is non-negligible.
Recall that by hypothesis Pr[â = â′ ∧ b̂ = b̂′ ∧ E∗] is non-negligible. Let us denote the latter
probability by µ. Then:

µ = Pr[â = â′ ∧ b̂ = b̂′ |Eext] · Pr[Eext] + Pr[â = â′ ∧ b̂ = b̂′ ∧E∗ ∧Eext]

By applying knowledge soundness and denoting through ϵ and ϵ′ two negligible functions, the
above implies:

Pr[â = â′ ∧ b̂ = b̂′ |Eext] = µ− ϵ

Pr[Eext]
= µ

Pr[Eext]
− ϵ′

≥ µ− ϵ′

≥ non-negligible

• Case 1b: Pr[â = â′ ∧ b̂ ̸= b̂′ ∧E∗] is non-negligible: Under the assumptions of case 1b, we
can show the following: if A wins the evaluation-binding game with non-negligible probability
p∗, then ADLOG wins the DLOG game with non-negligible probability. In order to see this, it
is sufficient to combine the following two claims:

∗ Claim (i): if p∗ is non-negligible then Pr[b̂ ̸= b̂′ ∧E∗] is non-negligible
∗ Claim (ii): the winning probability of ADLOG is negligibly close to Pr[b̂ ̸= b̂′ ∧E∗].

To prove Claim (i), it is sufficient to observe that:

Pr[b̂ ̸= b̂′ ∧E∗] =
Pr[b̂ ̸= b̂′|E∗] · Pr[E∗] ≥
Pr[â = â′ ∧ b̂ ̸= b̂′ |E∗] · Pr[E∗]
(1/q(λ)) · p∗ ≥ non-negligible

were q is some polynomial in λ. We now prove Claim (ii). We first observe that, by knowledge-
soundness of BP-IPA the following holds with overwhelming probability:

P = gâ · hb̂ · uŷ ∧ P ′ = gâ′
· hb̂′

· uŷ′
(7)

where all variables are as defined in the code of ADLOG. Applying Eq. (7) we can conclude
that

P

P ′ = ga′′
· hb′′

· uŷ−ŷ′
(8)

At the same time, by construction of the polynomial commitment verifier we know that:

P

P ′ = cm · hb · uy

cm · hb · uy′ = uy−y′
(9)

Combining Eq. (8) and Eq. (9) we can conclude that

ga′′
· hb′′

· uŷ−ŷ′−y+y′
= ga′′

· hb′′
· uy′′

= 1G (10)

Finally, we observe that whenever A wins the evaluation binding game and b̂ ̸= b̂′ at least one
entry in the vector (a′′||b′′||y′′) will be non-zero, which concludes the proof.

– Case 2: Pr[â ̸= â′ ∧ E∗] is non-negligible: here we reason similarly to case 1b and argue that
the winning probability of ADLOG is negligibly close to Pr[â ̸= â′ ∧E∗].
Unique-Response. Unique-response (Definition 16) follows directly from the 0-unique-response
property of BP-IPAFS (Theorem 4).

⊓⊔

J.2 Proof of Theorem 6

Proof. Consider an adversary Aϕ = (Aϕ,1,Aϕ,2) against the ϕ-evaluation game. We define a series of
hybrids. The first hybrid H0 (Fig. 9) corresponds to the ϕ-hiding game where we encode the vector
w provided by the adversary. We fully expand the encoding step of the polynomial encoding scheme
since this is where the changes will occur between hybrids. The last hybrid H3 (Fig. 9) corresponds to
the same game as H0 but where we encode the vector of all zeros instead of what is provided by the
adversary.

– H0 ≈ H1 : the difference between these two games has to do with the coefficients of f from secret
sharing: in one case (H0) they are actually shares of the secret encryption key; in another (H1) they
are random values. In order to show that an adversary will have only a negligible change in output
distribution, we can rely on this intuition: the leakage provided by the polynomial commitment
proofs and the evaluation outputs can be reduced to a linear leakage on the secret shares. As
a consequence, if H0 ̸≈ H1 then we can build an adversary against the linear leakage game for
additive secret sharing. This adversary would emulate all the parts of the execution that are not
derived from the alleged secret shares (the ciphertexts, the polynomial commitment proofs, etc.)
and then use the output of Aϕ to identify whether it is interactive with random field elements or
with actual shares. We formalize this intuition in Lemma 2.

– H1 ≈ H2 : the only difference between these two hybrids is what is actually encrypted in the
output of PESss.Enc (w or 0). We can rely on semantic security to claim that the difference in the
advantage of the adversary is negligible. We construct an adversary Asem against semantic security
(Definition 21) in Fig. 10. By inspection, it follows immediately that a noticeable difference in
output between the two hybrids corresponds to a noticeable advantage against the semantic security
experiment (implied by the assumption on DDH and Theorem 3), leading to a contradiction.

– H2 ≈ H3 : here we can argue exactly as we did to show H0 ≈ H1.
Since we have shown that H0 ≈ H3, we can immediately conclude that the advantage of any PPT
adversary against ϕ-hiding would be negligible. ⊓⊔

H0 :

ck← BP-PC.PCGen(1λ, d)

Fn ∋ w← AH
ϕ,1(ck); z←$ Fr

(pk, sk)← PKE.KG(1λ)
ctw ← PKE.Enc(pk, w)
s← SS.Share(ℓ + 1, sk)

Let f(X) :=
∑

0≤i<d

fi+1Xi

where f := (s||pk||ctw)
c← BP-PC.Com(ck, f)
y := f(z)

π ← EvalH(ck, c, z, y, f)

b′ ← AH
ϕ,2(c, z, y, π)

return b′ = 1

H1 :

ck← BP-PC.PCGen(1λ, d)

Fn ∋ w← AH
ϕ,1(ck)); z←$ Fr

(pk, sk)← PKE.KG(1λ)
ctw ← PKE.Enc(pk, w)

s← Fℓ+1

Let f(X) :=
∑

0≤i<d

fi+1Xi

where f := (s||pk||ctw)
c← BP-PC.Com(ck, f)
y := f(z)

π ← EvalH(ck, c, z, y, f)

b′ ← AH
ϕ,2(c, z, y, π)

return b′ = 1

H2 :

ck← BP-PC.PCGen(1λ, d)

Fn ∋ w← AH
ϕ,1(ck)); z←$ Fr

(pk, sk)← PKE.KG(1λ)
ct0 ← PKE.Enc(pk, 0)

s← Fℓ+1

Let f(X) :=
∑

0≤i<d

fi+1Xi

where f := (s||pk||ct0)
c← BP-PC.Com(ck, f)
y := f(z)

π ← EvalH(ck, c, z, y, f)

b′ ← AH
ϕ,2(c, z, y, π)

return b′ = 1

H3 :

ck← BP-PC.PCGen(1λ, d)

Fn ∋ w← AH
ϕ,1(ck)); z←$ Fr

(pk, sk)← PKE.KG(1λ)
ct0 ← PKE.Enc(pk, 0)
s← SS.Share(ℓ + 1, sk)

Let f(X) :=
∑

0≤i<d

fi+1Xi

where f := (s||pk||ct0)
c← BP-PC.Com(ck, f)
y := f(z)

π ← EvalH(ck, c, z, y, f)

b′ ← AH
ϕ,2(c, z, y, π)

return b′ = 1

Fig. 9: Hybrids in the proof of evaluation hiding (changes compared to the previous hybrid are hinted
in blue). Hybrids are parametrized by λ, n, r. Above d := n + stretch(λ, n, ℓ) where ℓ := ϕ(λ, n, r) and
stretch as in Definition 25.

A1
sem(pk) :

ck← BP-PC.PCGen(1λ, d)

w← AH
ϕ,1(ck); z←$ Fr

ck← BP-PC.PCGen(1λ, d)
Save ck, pk, z as state st
return (st, m0 := 0, m1 := w)

A2
sem(st, ct) :

s← Fℓ+1

Let f(X) :=
∑

0≤i<d

fi+1Xi where f := (s||pk||ct)

c← BP-PC.Com(ck, f)
y := f(z)

π ← EvalH(ck, c, z, y, f)

b′ ← AH
ϕ,2(c, z, y, π)

return b′

Fig. 10: Reduction to semantic security for showing H1 ≈ H2. We assume that the Asem appropri-
ately simulates each RO invocation with a random function. Notice that we can compute ℓ and d
appropriately from λ, n, r, which we assume are known to the adversary.

The following lemma shows that H0 ̸≈ H1 in the proof of Theorem 6 implies violating Lemma 1.

Lemma 2. If H0 ̸≈ H1 in the proof of Theorem 6 then there exists an adversary with non-negligible ad-
vantage against the admdet-linear leakage of SS whenever ℓ := ϕ(λ, n, r) > 1+2r (1 + 2⌈log(ϕ(λ, n, r) + 7λn)⌉).

Proof. In Fig. 11 we describe an adversary Alin against the game in Definition 23 whose advantage is
the same as the distinguishing advantage of Aϕ between H0 and H1.

At the high-level Alin works by emulating the view of Aϕ. The basic approach of Alin is to sample
Pedersen basis g, h, u so that it knows their discrete logarithm and can properly apply this knowledge
when using the linear combination queries of GSS-lin. Naturally the information obtained by Aϕ in the
hybrids H0 and H1 is derived not only by the alleged secret shares but also by the coefficients due to
the public key and ciphertexts. The algorithm Alin can perfectly emulate the latter and then combine
it with the response from the linear share queries. This logic is abstracted away in the definition of the
pseudo-oracle O′ in Fig. 11.

One of the key challenges in constructing Alin is that it should be able to express all the “update”
operations during the polynomial opening proofs without knowledge of a, the prefix of polynomial
coefficients related to the secret shares. Additionally, Alin has to be able to express the whole view of
Aϕ in terms of linear combinations of a based on terms of which it has knowledge. The details of the
code of Alin do exactly that. Instead of updating the vector a as in the code of BP-IPA, it appropriately
updates a “query” vector qa. It also uses two additional auxiliary vectors which roughly correspond to
g and b in the same code. In order to do this we use some type of “index book-keeping” in order to
appropriately combine the information in qa and the auxiliary vectors.

By inspection, it is easy to observe that for any g, h, u, vector of evaluations z, encoded polynomial
f(X) :=

∑
i aiX

i, the output of the Aϕ in H0 (resp. H1) will be the same as that of Alin when b = 0
(resp. b = 1) in GSS-lin conditioned to the queries of Alin being admissible. In the remainder of this
proof we will claim this occurs with overwhelming probability.

We now observe some basic facts on the queries to O by Alin. We can bound the number of queries
q to the oracle O as q ≤ 1 + 2r(1 + 2⌈log d⌉) by inspection of Fig. 11. We have:

– Commitment to the polynomial: 1 query (of the form r(g));
– Polynomial evaluations: r queries (of the form

(
z0, z1, z2, . . . , zℓ

)
for each evaluation point z);

– For each of the r polynomial opening proofs:
• For each of the log d rounds:

∗ Two queries—for Li,g, Ri,g—such that only half of the elements are non-zero. A non-zero
element in position j has the form r

(g)
j ·P

x,x−1

j where P x,x−1

j is defined as in Item 4 (in the
list at the end of this proof) using the challenges in the protocol up to that round.

∗ Two queries—for Li,u, Ri,u—such that only half of the elements are non-zero. A non-zero
element in position j has the form r(u) · bj ·P x,x−1

j where P x,x−1

j is defined as in Item 4 (in
the list at the end of this proof) using the challenges in the protocol up to that round.

• A final query for a(k) where each element is of the form P x,x−1

j where P x,x−1

j is defined as in
Item 4 (in the list at the end of this proof) using all the challenges in the protocol.

Without loss of generality we will assume in the rest of this proof that the number of queries q
is identical to ℓ. The case q > ℓ will not occur given our bound in the statement of the lemma. If
instead ℓ > q we can always modify Alin to “pad” its oracle queries at the end of its execution with
some dummy ones of which it will discard the output. The only constraint on these additional queries
is that they do not substantially increase the probability of the whole query set being not admissible.
This is not a problem since with overwhelming probability random evaluation queries will not make
the set inadmissible (this will be an implication of some of the observations we make below).

Recall that admissibility can essentially be reduced to the fact that the determinant of a matrix
associated with the queries is non-zero (Lemma 1 and Definition 24). Let us now consider Eq. (†) from
Appendix H.3. Recall this states that the polynomial describing the determinant has this form:∑

π

±
(

θ
(π(1))
1 + θ

(π(1))
ℓ+1

) (
θ

(π(2))
2 − θ

(π(2))
1

)
. . .

(
θ

(π(ℓ))
ℓ − θ

(π(ℓ))
1

)
where the sum is over all possible permutations π.

Our goal is now to claim that the determinant above is non-zero with overwhelming probability.
We proceed as follows:

– We observe that it is sufficient to show that the above can be reduced to the evaluation of a non-
zero multivariate polynomial where each variable is sampled randomly from the field. The degree
of the polynomial is of polynomial size while the size of the field is exponential. We can then apply
Schwartz-Zippel to conclude that with overwhelming probability the determinant is non-zero.

– We show that, under certain assumptions on the parameters of the encoding scheme (required by
statement of the lemma) we can show that there exists at least one monomial among the summands
in Eq. (†) that is non-zero.

– It is then sufficient to show that this monomial is not “cancelled out” by contributions of other
summands in Eq. (†).
We observe that the sum above yields (among others) the following monomial:

θ
(π∗(1))
ℓ+1 θ

(π∗(2))
2 . . . θ

(π∗(ℓ))
ℓ

for some permutation π∗. The coefficient in front of this monomial will be either 1 or −1, but this is
irrelevant for our argument.

Let us first observe that there must exist a permutation π∗ such that all those terms are non-zero
with overwhelming probability given the sampling in the definition of Alin. The only queries with some
zero elements are the “internal” ones during the polynomial opening proof (Li,g, Li,u, Ri,g, Ri,u). How
many of these queries are there? Approximately 4r log d. Each of these queries, moreover, has exactly
ℓ/2 non-zero elements19. We can guarantee the existence of π∗ as long as ℓ is large enough to guarantee
that each of the O(r log d) “internal” queries can be mapped to some index j ∈ [ℓ] so that the query is
non-zero in j (plus leaving enough space for the other types of queries of which there are O(r)). This
is the case for the ϕ (and therefore the ℓ) we are requiring in the statement of Theorem 6.

Without loss of generality we assume that π∗(1) refers to the query for rcm. This implies that
θ

(π∗(1))
ℓ+1 = r

(g)
ℓ+1. This fact will be handy later.

Let us now make some observations on the structure of the monomial of the form above given by
π∗. We will be able to factor it according to the type of queries that contribute to each factor. In
particular we can write it as follows:

r
(g)
ℓ+1︸︷︷︸
rcm

·
∏

j

zj
kj︸ ︷︷ ︸

evaluations

·
∏
j′

r(u)P x,x−1

j′ zj′

kj′︸ ︷︷ ︸
Li,u,Ri,u

·
∏
j′′

r
(g)
j′′ P x,x−1

j′′︸ ︷︷ ︸
Li,g,Ri,g,a(k)

(11)

Some explanations on the notation above:
1. we write in underbraces the type of queries each factor refers to.
2. The indices j, j′, j′′ are enumerated so that together they cover the set {2, . . . , ℓ}.
3. the k-s are indices from 1 to r and refer to the evaluation points for the polynomial.

4. The notation P x,x−1

j refers to some product (the exact product depends on j) of the challenges x
sampled through the random oracle at every round of the polynomial opening proof. We use the
notation x, x−1 to refer to the fact that these products are a mixture of products of challenges and
of inverses of challenges.
We now want to argue that a monomial with the structure above cannot be obtained “in any other

way” than by π∗. We first make two easy observations to exclude the possibility that the same permu-
tation may yield the same monomial (through the θ1-s in Eq. (†)) and that two different permutations
may yield the same set of individual factors of π∗.

Observation 1: for all queries θ(j) we have that θ
(j)
i ̸= θ

(j)
1 with overwhelming probability (for i ̸= 1

and conditioned to θ
(j)
i ̸= 0).

Observation 2 let j ̸= j′, for i ̸= i′ with i, i′ ̸= 1, then θ
(j)
i ̸= θ

(j′)
i′ with overwhelming probability

(conditioned to θ
(j)
i , θ

(j′)
i′ ̸= 0).

19 This is not really accurate since in principle we are truncating the queries in oracle O′ and not working with
polynomials of degree ≈ ℓ, but this inaccuracy is innocuous and does not invalidate the core point.

The important implication of the observations above is that the only hope of obtaining the same
monomial is by a different permutation π̃ that, despite having different factors θ

(π̃(1))
ℓ+1 , θ

(π̃(2))
2 , . . . , θ

(π̃(ℓ))
ℓ ,

obtains the same monomial through their product.
Observe that in Eq. (11):

1. No evaluation point zk can appear twice (even with different exponents).

2. All of the r
(g)
j′′ are distinct.

We can now start observing constraints on the hypothetical permutation π̃ yielding the same monomial.
Observe that:

– π̃ must contribute exactly the same elements r
(g)
j′′ in the product indexed by j′′ although they can

appear from different polynomial evaluation proofs. The reason is that this is item (2) above (on
the distinct r

(g)
j′′ -s) and that the only product in which they are contributed is the rightmost one.

(the leftmost factor r
(g)
ℓ+1 cannot appear here since otherwise some other element with index ℓ + 1

would have to be θ
(π̃(1))
ℓ+1 but no such element appears in Eq. (11)).

– An implication of the previous item is that the set of r
(g)
j′′ appearing must be exactly the same and

it must be that they are “swapped” among different polynomial proofs. However, this implies that
they have different products P x,x−1

j′′ since each polynomial opening has disjoint sets of challenges
with overwhelming probability. By inspection, we can convince ourselves, that there is no way to
compensate these differences in challenges products in some other way.

– Assume that there is some difference in π̃ in the set of contributing factors indexed by j′. This,
however, can occur only if the number of factors is exactly the same (otherwise the exponent for
r(u) would be different) and each of the zkj′ is swapped with some other zkj in the second product
and with the same exponent (otherwise there would not be the same set of evaluations being
contributed). This would require π̃ to “compensate” the difference in P x,x−1

j′ -s from the swaps.
Nonetheless, by inspecting the ways challenges are indexed, we can convince ourselves that this is
not possible.

The above shows that there exists a monomial with non-zero coefficients in the determinant polynomial
and it concludes the proof. ⊓⊔

A1
lin(1λ, 1ℓ) :

(pk, sk)← PKE.KG(1λ)
Save sk, pk as state st
return (s := sk, st)

A2,O
lin (st) :

Sample a RO H
Let g0 be a generator of G
d := stretch(λ, n, ℓ) + n

Sample r(g) ←$ Fd, r(h) ←$ Fd, r(u) ←$ F

Let gi := g
r

(g)
i

0 , hi := g
r

(h)
i

0 for i = 1, . . . , d

Let u := gr(u)
0

ck := (g, h, u)

w← AH
ϕ,1(ck); z←$ Fr

ctw ← PKE.Enc(pk, w)

Let rcm ← O′
(

r
(g)
1 , . . . , r

(g)
d

)
cm← grcm

0

for j = 1, . . . , |z| :

yj := O′ (
z0

j , . . . , zd−1
j

)
πj ← MakeProof(zj)

b′ ← AH
ϕ,2

(
cm, z, y, π1, . . . , π|z|

)
return b′

O′(q) : // Auxiliary interface to linear query oracle

Parse q as (qss||qrst) with |qss| = ℓ + 1
Let ansss := O(qss)
Let ansrst := ⟨qrst, (pk||ctw)⟩
return ansss + ansrst

Fig. 11: Adversary Alin. Recall that the adversary has access to a linear combination oracle O as defined
in Fig. 8. Auxiliary functions are defined in Fig. 12 and Fig. 13.

MakeProof(z)

b :=
(
z0, . . . , zd−1)

Let k such that d = 2k

n0 ← d, g(0) ← g, h(0) ← h, b(0) ← b
// Define the following query vector:

q(0)
a := (1, . . . , 1) ∈ Fd

// and the following auxiliary vectors:

aux(0)
b := (b1, . . . , bd), aux(0)

g := (r(g)
1 , . . . , r

(g)
d)

for i = 1, . . . , k :(
q(i−1)

a,L , q(i−1)
a,R

)
:= splitQ(q(i−1)

a , i),
(

q(i−1)
b,L , q(i−1)

b,R

)
:= auxToQuery(aux(i−1)

b , i),
(

q(i−1)
g,L , q(i−1)

g,R

)
:= auxToQuery(aux(i−1)

g , i)

ni = ni−1/2

Li,g = g
O′

(
q(i−1)

g,R
◦q(i−1)

a,L

)
0 , Li,u = g

O′
(

r(u)·q(i−1)
a,L

◦q(i−1)
b,R

)
0 , Ri,g = g

O′
(

q(i−1)
g,L

◦q(i−1)
a,R

)
0 , Ri,u = g

O′
(

r(u)·q(i−1)
a,R

◦q(i−1)
b,L

)
0

// Assemble proof pieces

Li = Li,g ·
(

h(i−1)
[:ni]

)b(i−1)
[ni:] · Li,u, Ri = Ri,g ·

(
h(i−1)

[ni:]

)b(i−1)
[:ni] ·Ri,u.

xi := H (transcript till now)

Update g(i), h(i), b(i) as in Fig. 3
// Emulate as queries the update of a, b, g respectively

q(i)
a = updateQ(q(i−1)

a , xi, i), aux(i)
b = aux(i−1)

b[:ni] · xi + aux(i−1)
b[ni:] · x

−1
i , aux(i)

g = aux(i−1)
g[:ni] · x

−1
i + aux(i−1)

g[ni:] · xi

// After k rounds:

a(k) = O′(q(k)
a)

Let π :=
(
L1, R1, . . . , Lk, Rk, a(k), b(k))

return π

Fig. 12: Auxiliary function MakeProof for adversary Alin.

updateQ(qa, x, i) :

(J0, J1)← splitIndices(i)// partition of [d]

Define “update vector” u ∈ Fdso that:

uj :=
{

x−1, if j ∈ J0

x, if j ∈ J1

q′
a := u ◦ qa

return q′
a

splitQ(qa, i) :

(J0, J1)← splitIndices(i)// partition of [d]

Define vectors qa,L, qa,R ∈ Fdso that:

qa,L,j :=
{

qa,j , if j ∈ J0

0, if j ∈ J1

qa,R,j :=
{

0, if j ∈ J0

qa,j , if j ∈ J1

return (qa,L, qa,R)

auxToQuery(aux, i) :

Let auxL := aux[:ni], auxR := aux[ni:]

(J0, J1)← splitIndices(i)// partition of [d]

We define two query vectors qL, qR ∈ Fd as follows
(NB: we apply an inversion on purpose here, i.e., we assign the “L” side of aux to J0 indices and viceversa.)
for j ∈ J0 :

Assign qL,j ← 0

Parse j − 1 as a bit string of the form ᾱ0β̄, ᾱ ∈ {0, 1}i−1, β̄ ∈ {0, 1}k−i

Assign qR,j ← auxR,β+1 // the (β + 1)-th item in auxR parsing β as an integer
for j ∈ J1 :

Assign qR,j ← 0

Parse j − 1 as a bit string of the form ᾱ1β̄, ᾱ ∈ {0, 1}i−1, β̄ ∈ {0, 1}k−i

Assign qL,j ← auxL,β+1 // the (β + 1)-th item in auxR parsing β as an integer
return (qL, qR)

splitIndices(i) :

Denote by bin(j)i the i-th bit (from the left) in the binary representation of j

J0 := {j ∈ [n] : bin(j)i = 0}
J1 := {j ∈ [n] : bin(j)i = 1}
return (J0, J1)

Fig. 13: Further auxiliary functions for adversary Alin.

J.3 Proof of Theorem 7

Proof. We closely follow the corresponding proof of non-extrapolation of KZG in [GKO+23]20. Consider
the following hybrids:

– Hyb0: this is the same as the game in Definition 19 where an all-zero vector of length n is encoded
as a polynomial and we provide the adversary A = (A1,A2) with up to r evaluation points and
corresponding evaluation proofs.

– Hyb1: we now change part of the challenger’s code. Instead of encoding an all-zero vector, we
proceed by sampling a set of random evaluations and then using (in part) the evaluation points
required by the adversary to interpolate the polynomial. More in detail:
• we first sample d random evaluations yi ←$ F.
• Let z be the sampled evaluation points and let z′ a vector of unique points in z. Let r′ := |z′|

and let n′ := d− r′.
• Sample n′ points z′′ from Fn′ .
• Interpolate f so that f(z′

i) = yi for i ∈ [r′] and f(z′′
j) = yj+r′ for j ∈ [n′]

• Compute commitments and evaluation proofs as before.
By applying ϕ-evaluation hiding we can conclude that the two hybrids are indistinguishable and
therefore the polynomial f looks random to A after requesting r evaluations. Let us now consider
(y∗, π∗), the output of A2 for z∗ ←$ F. By the previous observation, the probability that Pr[y∗ =
f(z∗)] is negligible. If y∗ ̸= f(z∗) and A wins it is then possible to break evaluation binding since we
can produce two valid evaluation proofs for two distinct points for the same committed polynomial.
This concludes the proof.

⊓⊔

K The compiler ΠGKOPTT of [GKO+23]

In this section, we describe the compiler ΠGKOPTT of [GKO+23] for NP-relation R. This section is
taken almost verbatim from [GKO+23] with minor adjustments related to our instantiations based on
the random oracle with transparent setups and to other cosmetic changes (as discussed in Section 5;
see also Remark 8). Specifically, the compiler makes use of the following tools:

– Let ΠNIZK be a simulation-extractable NIZK (Definition 20), for the relation RNIZK = {((x, ck, n,
ℓ), (w, ρw)) : (x, w) ∈ R ∧ c = Com (ck, Enc (w, n, ℓ; ρw))} where w denotes the witness w parsed
as a vector of field elements in Fn.

– Let ΠPCS be a polynomial commitment scheme with evaluation binding, unique proofs (Definition
15), ϕ-evaluation hiding (Definition 18), and supports ϕ-non-extrapolation (Definition 19) with
respect to the encoding scheme PES = (Enc, Dec) (Definition 17).

The protocol ΠGKOPTT is parameterized by:
1. Security parameter λ

2. Finite field F
3. Evaluation hiding factor ϕ : Z+ × Z+ × Z+ → Z+ and stretch stretch : Z+ × Z+ × Z+ → Z+

4. Number of parallel repetitions r = r(λ) > 0
5. Proof-of-work parameter b(λ) > 0
6. Bound T (λ) > 0
7. Maximum degree bound D > 0 for ΠPCS

The protocol

– Proof: Upon receiving input (prove, sid, x, w), ignore if (x, w) /∈ R. Otherwise, Pi does:
1. Send (query, (sid, x, genparamsproof)) to GRO receiving back pp.

20 The proof in [GKO+23] turns out to be immediately generalizable to polynomial commitments other than
KZG.

2. Send (query, (sid, x, genparamspc)) to GRO receiving back ck.
3. Parse w = w ∈ Fn. Let ℓ := ϕ(λ, n, r) and d := stretch(λ, n, ℓ) + n. If d > D, abort by

outputting (proof, sid, ⊥).
4. Generate a polynomial encoding of the witness vector: f ← Enc

(
1λ, w, n, ℓ; ρw

)
, where ρw ←

Fℓ.
5. Generate a commitment to the polynomial encoding: c← Com (ck, f), where the randomness

ρc is sampled uniformly from the domain specified in ΠPCS.
6. Run the prover P of ΠNIZK on input x′ = (pp, (x, ck, n, ℓ)) and w′ = (w, ρw) to obtain a proof

π′. Whenever P makes a call to H with input in, send (query, (sid, in, proof)) to GRO to receive
a response out which is forwarded to P.

7. Initialize empty sets z, y, and πPCS.
8. For each iteration i ∈ [r] do:

(a) Initialize counter ctr := 0 and an empty set of used evaluation points Di.
(b) If ctr = T , abort by outputting (proof, sid, runout_eval).
(c) Sample an evaluation point: zi ←$ F\Di. Update ctr := ctr + 1. Update Di := Di ∪ {zi}.
(d) Compute yi = f (zi) and evaluation proof πi ← Eval (ck, c, zi, yi, f), whenever Eval makes

a call to H with input in, send (query, (sid, in, proofpcs)) to GRO to receive a response out
which is forwarded to Eval.

(e) Send (query, (sid, (C′, c, zi, yi, πi, i))) to GRO. Upon receiving v from GRO, if the first b bits
of v are not 0b, go to step 8b. Otherwise, store zi, yi, and πi in z, y, and πPCS, respectively.

9. Output (proof, sid, ϖ), where ϖ := (π′, c, z, y, πPCS).
– Verification: Upon receiving input (VERIFY, sid, C, ϖ), Pi does:

1. Send (query, (sid, x, genparamsproof)) to GRO receiving back pp.
2. Send (query, (sid, x, genparamspc)) to GRO receiving back ck.
3. Parse ϖ = (π′, c, z, y, πPCS). Derive the witness size n from the description of C. Compute ℓ

and d as Proof would and if d > D abort by outputting (verification, sid, 0).
4. Define the circuit x′ as Proof would.
5. Parse z = (zi)i∈[r] , y = (yi)i∈[r], and πPCS = (πi)i∈[r].
6. Output (verification, sid,1) if all of the following checks pass, otherwise output (verification,

sid, 0):
(a) ΠR · V on input pp, x′, and π′ outputs 1. Calls to H by V are handled similar to the above.
(b) For all i ∈ [r] : 1 = Check(ck, c, d, zi, yi, πi), whenever Check makes a call to H with input

in, send (query, (sid, in, checkpcs)) to GRO to receive a response out which is forwarded to
Check

(c) For all i ∈ [r]: send (query, (sid, (C′, c, zi, yi, πi, i))) to GRO, and the first b bits of the
return value vi are 0b.

	Universally Composable SNARKs with Transparent Setup without Programmable Random Oracle
	Introduction
	Technical Overview
	Future Work and Alternative Instantiations

	Basic Preliminaries and Notation
	The NIZK Functionality with an Adjoined Oracle
	Global Random Oracles
	Constructions with Setup
	Weakening the Ideal Functionality
	Definition of the Oracle-Adjoined NIZK Functionality

	Our Protocol Pi_TS-R that realizes F_nizk
	Section's preliminaries
	Description of Pi_TS-R

	Constructing the Building Blocks for Pi_TS-R
	Putting it All Together
	Instantiation of the Polynomial Encoding Scheme
	Instantiation of the Succinct Polynomial Commitment Scheme
	Instantiation of the Succinct Simulation-Extractable NIZK

	Standard NIZK Functionality
	Discrete Logarithm Assumption
	Decisional Diffie-Hellman Assumption
	Preliminaries on Non-Interactive Arguments
	Dense Samplable Puzzle (DSP) system
	The Shielded Oracle Framework [BDH+17]
	Definitions of the Building Blocks of [GKO+23]
	Succinct Polynomial Commitment Scheme
	Simulation Extractability

	Our Polynomial Encoding Scheme
	Additional Preliminaries
	Further leakage-resilience properties of additive secret sharing
	Further Analysis of adm_det-Linear Leakage
	Secret-Sharing Based Polynomial Encoding Scheme

	Proof of Theorem 1
	Proofs for the Security of BP-PC
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	The compiler of [GKO+23]

