
Fully-Succinct Arguments over the Integers
from First Principles

Matteo Campanelli and Mathias Hall-Andersen

Abstract. Succinct arguments of knowledge allow an untrusted prover to establish that they
know a witness for an NP relation. Many recent efficient constructions of such schemes work over
arithmetic computations expressed in finite fields. Several common settings, however, have an ex-
tremely simple representation when expressed over the integers (e.g., RSA signatures/accumulators,
range checks for committed values, computations over rational numbers). Efficient arguments of
knowledge working natively over Z could be applied to such computations without the overhead
from emulating integer arithmetic over a finite field.
We propose the first native construction of SNARKs over the integers that is fully succinct,
thus resolving an open problem from Towa and Vergnaud (Asiacrypt 2020). By fully succinct, we
mean that both the proof size and the verifier’s running time should be sublinear in both |w⃗|—the
size of the witness as a vector of integers—and log2∥w⃗∥∞—the size in bits of the largest integer
in the witness vector (in absolute value).
As a stepping stone for our results we provide a general theoretical framework for building
succinct arguments over the integers. Its most attractive feature is that it allows to reuse already
existing constructions of SNARKs in a modular way and can be used as a starting point for
constructions following up our work.
We build these systematic foundations by leveraging a common technique in theoretical computer
science—fingerprinting—and applying it to a new setting. Our framework consists of two main
ingredients: idealized protocols and polynomial commitments such that an object “committed
over the integers” can however be “queried modulo q”, for a randomly sampled prime q.
We obtain our final construction, Zaratan, by lifting the Spartan construction (Setty, CRYPTO
2020) to the integers and applying a form of polynomial commitment based on the techniques
from DARK (Bünz et al., Eurocrypt 2020). Zaratan has a transparent setup, is proven secure
in the generic group model for groups of unknown order and can be heuristically made non-
interactive in the ROM via the Fiat-Shamir transform.

Table of Contents

Fully-Succinct Arguments over the Integers from First Principles . 1
Matteo Campanelli and Mathias Hall-Andersen

1 Introduction . 3
1.1 Technical Overview . 4
1.2 Related Work . 8

2 Preliminaries . 8
3 Relations over Z and their Fingerprint . 9

3.1 Fingerprinting Relations . 10
3.2 R1CS over Z and its Fingerprint . 10
3.3 Multilinear Polynomial Evaluation and its Fingerprint . 11

4 Idealized Protocols for Arguments over Z . 11
4.1 Algebraic Holographic Proofs with Modular Remainder Queries . 11
4.2 Weak Knowledge Sound mod-AHPs . 12

5 Integer Polynomial Commitments with Evaluation Opening over Zq . 13
5.1 Model . 13
5.2 A mod-PC from the DARK Side . 14

6 A Compiler from Algebraic Holographic Proofs with Modular Remainder Queries to
SNARKs over Z . 15

7 Zaratan: Efficient Spartan over the Integers . 16
7.1 Background on Spartan . 16
7.2 Spartan as a mod-AHP . 17
7.3 Putting it All Together: Zaratan . 18

8 Building mod-PCs for Sparse Polynomials . 19
8.1 Delayed-Input (Deterministic) Soundness . 19
8.2 A construction from SPARK [31] . 20

A Further Preliminaries . 24
A.1 The Sumcheck Protocol . 24

B Weso lowski’s Proof-of-Exponentiation . 24
C Protocols of Block et al. 25

C.1 Evaluation Protocol . 25
D Fingerprinting of Polynomial Evaluation . 27
E The Generic Group of Unknown Order Model . 27
F Proof-of-Knowledge for Last Round Messages . 28
G Opening Proof: Composing ΣEval and ΣFinal . 31
H Reducing the Requirements for Indexing Commitments in our Compiler 32
I Missing Proofs . 32

I.1 Proof of Lemma 2 . 32
I.2 Proof of Theorem 1 . 32
I.3 Proof of Theorem 2 . 33
I.4 Proof of Theorem 3 . 36
I.5 Proof of Theorem 4 . 37
I.6 Proof of Theorem 5 . 37

J Additional Definitions for mod-PCs . 38
J.1 Weak Evaluation binding . 38
J.2 (Strong) Knowledge Soundness over Adversarial Primes . 38

K Oracle Polynomials over F in mod-AHP. 38
K.1 Augmented model . 38
K.2 Prime-Agnostic Polynomial Commitments . 39
K.3 Extending the compiler . 40

1 Introduction

A succinct argument of knowledge—and its non-interactive counterpart, dubbed SNARK [29]—is a
cryptographic protocol that allows an untrusted prover P to convince a verifier V that they possess
a witness w satisfying a certain predicate. The most straightforward form of proof of this type would
have P sending directly w to V, who could then independently verify the required predicate. A succinct
argument accomplishes the same goal but with greater efficiency. In particular, “succinct” means that
the proof is shorter than the witness w itself, and verifying the proof should be significantly faster than
checking it directly.

Arguments Over the Integers. Most of the current efficient constructions for succinct arguments are
designed for computations over finite fields (e.g., arithmetic circuits), usually of prime order. Intuitive
this is because finite fields offer various basic tools for a cryptographic design. Some of these tools
are cryptographic primitives we can leverage (e.g., homomorphic commitments based on elliptic curves
where DLOG holds and with efficient arithmetic), but others are even more foundational for blueprints
behind SNARK protocols, most notably the Schwartz-Zippel lemma. For these reasons, it has been
relatively challenging to propose arguments that can natively prove computations over more general
algebraic structures, such as the ring of integers, Z where these tools are not available. This is the
focus of our work.

Several computations1 can naturally be expressed over Z. These include computations for appli-
cations such as batching RSA signatures, RSA accumulators [4], cryptography based on rings, range
checks(see also discussion in [34]). In finite fields, such applications usually incur at least the price of
splitting a long integer in limbs of ≈ λ size and performing extra checks. For a native proof system for
Z, divisibility of integers, for example, may consists in contrast of a single gate. Besides the efficiency
gain, this also simplifies the design of the circuit, reducing the probability of bugs.

Succinctness for computations over Z. Our goal in this work is to propose succinct arguments for
integer computations. A standard definition of succinctness is that the proof size should be sublinear
in the dimension of the witness N = |w⃗| (for example, the number of wires in a satisfying assignment).
This notion is at times strengthened by requiring that the verification time is also sublinear in this
parameter. Adapting these notions for the case of integer computations, requires care. In the previous
setting all the elements of the witness are scalars in a finite field, each of a bit size that is usually
linear in the security parameter λ. On the other hand the integers in the witness may have a bit
representation significantly larger than λ. Arguably, for an argument to be actually succinct, it should
be succinct in both N and m where m = log2∥w⃗∥∞ is the bit size of the norm of the witness vector2.
We refer to this notion as full succinctness.

As the only other work addressing succinctness of SNARKs over Z, we mention the previous work
by Towa and Vergnaud [34] who proposed a zero-knowledge argument for integer computations whose
design is loosely inspired by Bulletproofs [8]. Their construction has a proof size that is logarithmic in
N but linear in m and a verifier running linearly N and therefore not fully succinct. Their work left
the open question of whether it is possible to build a fully-succinct SNARK for Z, which we answer in
the positive in this paper.

This Work. In this paper we initiate the study of SNARKs whose underlying computational model
is defined over the ring of integers and that are fully-succinct. We identify a general paradigm through
which to construct efficient SNARKs over Z, introduce key abstractions and show how they can be
used to obtain a concrete efficient SNARKs over the integers. More in detail, our contributions are:

– The first fully-succinct construction for arguments natively over the integers, Zaratan3. Our con-
struction supports R1CS over the integers (Definition 5) and can be instantiated through class
groups in order to have a transparent setup. A summary of its efficiency properties are in Table 1.

1 For now the reader can think of a computation over the integers as an arithmetic circuit with multiplication
and addition gates (over Z) and where wires are integers of (known) bounded size growing polynomially in
some parameter. By “proving a computation” we mean proving knowledge of a wire assignment satisfying
the circuit.

2 Notice that an alternative definition, one requiring sublinearity in the total size of the witness, N ·m, may not
be the right one since m may be large but N may not even in a useful computation (consider, for example,
a circuit with relatively few gates performing arithmetic over huge integers).

3 Zaratan is a mythological sea turtle, allegedly of incredible size, featured in the work of Jorge Luis Borges [7].

3

Scheme Proof Size Prover Verifier

Our mod-PC Oλ(ν + log2 N) Oλ(m ·N) Oλ

(
max{ν · logN, log2 N}

)
Zaratan Oλ(ν + log2 N) Oλ(m ·N) Oλ

(
max{ν · logN, log2 N}

)
Table 1: Efficiency summary for our constructions. For mod-PC, the quantities refer to the case of multilinear
polynomials. The witness w⃗ is assumed to be a vector of integers of N elements (for mod-PC is the number
of coefficients of a multilinear polynomial); m := log2∥w⃗∥∞ is the size in bits of the norm of the witness
vector (resp. coefficients vector, for mod-PC); ν := logm. Notice that m · N is essentially the size of the
witness/polynomial, and the prover’s running time is linear in it. For simplicity, above, we use λ as both a
computational and statistical parameter. Oλ(f) is a shortcut for O(p(λ) · f) where p(·) is a fixed (and small)
polynomial. In addition to the above the verifier’s time requires the time to read the public input.

– A general methodology for building arguments for integers. Our framework partly mirrors the
common approach based on i) idealized protocols (AHP/PIOP/PHP4) and ii) polynomial commit-
ments [26] to build SNARKs. We introduce respective analogues for these primitives on which we
elaborate in the technical overview. For now, the reader can think of them as protocols allowing
some form of commitment to a polynomial over Z but that provide soundness guarantees even
when the evaluation queries to the polynomials do not return the actual integer output but some
“fingerprint” (see technical overview). We provide a compiler that constructs a knowledge-sound
argument over the integers from our new building blocks. (see also Fig. 1).

– General results to instantiate the idealized protocols from existing proof systems (even if they are
not designed to be over the integers). In particular we identify a very “weak” form of extractability
property that our AHP-like protocols (item (ii) above) need to satisfy in order to be plugged into
our compiler (see top-left side of Fig. 1); most importantly this property does not require to be able
to extract a witness. This property will make extremely easy to prove and identify Spartan [31] as
a building block for our final construction.

– A new lens over DARK techniques. We show how techniques from DARK ([10] and [5]) can be
used to construct a polynomial commitment of the flavor we introduce. Thanks to our compiler,
this construction can be used a stepping stone in other arguments over the integers other than
Zaratan.

1.1 Technical Overview

Our Approach in a Nutshell. Our whole approach can be summarized as follows: we identify the
technique of fingerprinting through a random prime (see, e.g., [2, §7.2.3]) as a tool to map a relation
over the integers to one over a finite field; we then observe that some existing SNARK constructions
have features that make them easy to pair with fingerprinting. The bulk of our technical challenges
consisted in identifying formal properties and efficient building blocks in order to carry out this plan.

Let us briefly recall what fingerprinting5 consists in through a standard example. Consider a mul-
tivariate polynomial g over Z expressed as a polynomial-sized circuit and imagine to want to test
whether it is identically zero. A first line of attack exploits Schwartz-Zippel for a simple probabilistic
check: sample random inputs for g and see if the result of the evaluation y is zero. If the sampling
domain is large enough relative to the total degree of g, we can be fairly confident of the polynomial
being zero or not from the result of the test. But there is a catch: since g is expressed as a circuit its
concrete degree may be exponential, making y and the intermediate results of the evaluation simply
too large. Fingerprinting comes to the rescue though: sample a (large enough) integer n and carry out
the evaluation of g over Zn instead of over the integers.

Let us now move back to our focus in this work: succinct arguments for non-deterministic relations
over the integers. How can we leverage the technique above to our advantage? A first intuitive attempt

4 Algebraic Holographic Proofs [16], Polynomial Interactive Oracle Proofs [10] and Polynomial Holographic
IOPs [11].

5 In this work we consider a specific type of fingerprinting: sampling a random number n (specifically a prime)
to then reduce a “problem over large objects” to a problem on “objects modulo n”. There are other types of
fingerprinting techniques in literature, but we will always implicitly assume those with this specific flavor.

4

for a blueprint for succinct arguments over Z would be the following. On input a computation6 C over
Z:

1. Let the prover commit to the witness w over the integers.
2. Appy fingerprinting: sample a large number q and consider the “reduced computation mod q”

(which we denote by JCKq);
3. Use a succinct argument for computations over Zq to verify JCKq.7.

We are far from done since the sketch above leaves several questions unanswered. (i) What are
arguments we can apply in step (3.) and what properties should we require from them? (ii) What
does it precisely mean to reduce a computation “mod q”? (iii) If the witness is committed over Z,
how can we efficiently switch to something modulo q afterwards (which would probably be required by
the argument for JCKq)? The bulk of our technical contributions consists in providing formally rigorous
answers to these questions and making design choices that would make our formal treatment as general
as possible.

We now provide some intuitions about how we address questions (i) and (ii); we will provide
additional details throughout this technical overview.

First we turn to recent efficient constructions of succinct arguments and we notice that several of
them work over a finite field of prime order Fq,. This suggest that sampling a prime q might be the right
approach above (rather than sampling an arbitrary integer). But we need even more properties from
the argument at step (3.): in particular the latter should be able to “work effectively” even if the order q
of the field is not known at the beginning of the protocol. For the sake of this technical overview, we call
such constructions “fingerprinting-friendly” 8. Examples in this sense are constructions mainly based
on multivariate techniques such as Spartan [31] and HyperPLONK [15]. Here, one can, in principle,
compute and commit encodings of the relations and the witness (through their multilinear extensions
(MLE); see Section 2) over the integers and only later run the protocol over Fq. This is the case because
MLEs preserve their key properties over Z.

Let us now address question (ii): how to go from a relation over the integers to one over Zq and
when would that preserve soundness? The first part is easy to answer. Consider a computation over
the integers expressed as a Rank-1 Constraint Satisfiability (R1CS). After the prover has committed to

a witness w, instead of checking each constraint through the equation ⟨⃗a, z⃗⟩ ◦ ⟨⃗b, z⃗⟩−⟨c⃗, z⃗⟩ = 0 over the

integers, we check instead ⟨⃗a, z⃗⟩ ◦ ⟨⃗b, z⃗⟩ − ⟨c⃗, z⃗⟩ ≡ 0 mod q. What we are checking now is satisfiability
of a standard R1CS over Fq for which we can use a fingerprinting-friendly argument!

The previous observation gives us correctness, but we also need to argue why we are not losing
soundness when in approach above. One intuition for the case of R1CS over the integers is this: each of
the constraint equations is testing whether a polynomial evaluated in z⃗ is zero. What is crucial is that
this polynomial is of relatively low degree (an R1CS encodes a quadratic polynomial) and hence we can
apply arguments similar to the ones we use to show the soundness of the standard fingerprinting-based
approaches for zero-testing of polynomials. We stress that our core framework will not be limited to
R1CS and we will provide general sufficient conditions for computations to be “fingerprinting-friendly”
(through the notion of “good test” defined in Definition 4; the reader can see a formal version of the
proof we just sketched in the proof of Lemma 2 in the appendix).

In the remainder of this technical overview we describe our general framework, how we instantiate
its building blocks and how we apply them to obtain our final construction, Zaratan.

6 In this part, we vaguely refer to a “computation” over Z. For concreteness, the reader can think of the
computation being expressed as a Rank-1 Constraint Satisfiability (R1CS) with integer coefficients. An
R1CS is described by matrices A,B,C; here we aim at showing knowledge of z⃗ ∈ ZN (each element of

bounded size, albeit potentially large), s.t. ⟨⃗a, z⃗⟩ ◦ ⟨⃗b, z⃗⟩ − ⟨c⃗, z⃗⟩ = 0 for each row a⃗, b⃗, c⃗ in the respective
matrices.

7 We warn the reader that this blueprint is for didactic purposes only. Later, when presenting our framework,
we will slightly deviate from some of the intuitions we used in this part of the overview. For example, while we
mentioned committing to an integer witness as a first step of the blueprint, we will never do that (explicitly)
in our framework. In any event, our formalism still morally captures the same principles and intuitions we
are providing on fingerprinting-friendliness in this part of the text.

8 Examples of constructions that are not fingerprinting-friendly include those such as the original PLONK [21].
These may require the field to have additional properties, e.g., being DLOG- and FFT-friendly, or having
one or more additive/multiplicative subgroups of predetermined sizes. We refer the reader to the excellent
discussion in a context other than fingerprinting in [24].

5

Our General Framework: mod-AHP + mod-PC ⇒ SNARKs for Z. We now describe the
general ideas behind our framework. Our starting point is the modular recipe used in the construction
of recent SNARKs where the core construction is described as an idealized protocol with algebraic
properties, or Algebraic Holographic Proof (AHP) [16]. This type of constructions assume a finite field
F and their flow looks roughly as follows: a prover (P), on input a statement and a witness, sends
some oracle polynomials in each round to the verifier (V), who responds with a random challenge;
afterwards, during a query stage, V can query an oracle polynomial g with an evaluation point z to
obtain v = g(z). V can iterate this process for several different polynomials and evaluation points (all
arithmetic being performed in F). Finally, V outputs a decision bit indicating “accept” or “reject”,
based on the result of the evaluation queries. An AHP can be turned into an argument system by
replacing the oracles and the query phase with a polynomial commitment scheme (PC) [26]: the prover
can commit to the oracle polynomials and later, upon receiving an evaluation point z, can send an
evaluation proof to convince the verifier that evaluation v = g(z) is done correctly (again, both the
polynomial and evaluation are over F). For them to be combined effectively, both the AHP and the
PC need to satisfy some extractability-flavored properties.

Recall that our key idea is to leverage fingerprinting, i.e., in some stage of the protocol, to sample
a prime q and then continue the evaluation of the protocol “over Fq”. The counterpart for AHP we
introduce is called a AHP over Z with modular remainder queries (or mod-AHP, Definition 10) and it
is thus called because it works this way: P and V interact with P sending oracle polynomials over Z;
at the end of this stage a prime q is sampled; the verifier can now request an evaluation point z for a
polynomial g but will be constrained to obtain only g(z) mod q. That is, the stage where oracles are
sent is “more expressive”, while the query stage is still constrained to work over a finite field. We say
that a mod-AHP is (full) knowledge-sound9 if, intuitively, we are able to extract a witness over the
integers from a prover who is able to successfully convince the verifier.

At this point the reader can probably already imagine a polynomial commitment notion that would
be a good match for mod-AHPs: it should be able to commit to polynomials over the integers, yet
it will not need to support full-fledged integer evaluations. This type of PC, which we dub mod-PC
(Definition 14), in fact just needs to support evaluation queries modulo q, for a prime q unknown at
commitment time. The type of extractability property for mod-PC that we need, however, requires
us to be able to extract a polynomial over Z (not just over Fq) from an adversary providing valid
proofs. With these two notions under our belt we are able to provide an abstract compiler from a
knowledge-sound mod-AHP and a secure mod-PC to arguments for non-deterministic relations over
Z (see Fig. 1). We stress that, while we used univariate polynomials for our examples above, all our
primitives are defined over multivariate polynomials.

Intermezzo: let us talk about succinctness. Recall that our goal is to obtain a proof and verifier succinct
in both N = |w⃗| and m = log∥w⃗∥∞ where w⃗ is a witness. Our succinctness in N is, in a sense, directly
inherited from the AHP+PC approach where a few polynomial evaluations (with adequately succinct
proofs) “guarantee knowledge” of a witness of size N . While the case of succinctness in m is a little
different, we are able to anticipate why we would be able to achieve it: all our evaluations in this
approach are modulo q, a prime of λ bits (where λ is a security parameter). We can conclude that
as long as we are able to keep the commitment and the size/verification of the evaluation proofs in
the modPC succinct in m, the final proof and verifier will be as well. Now that we defined what the
requirements for our building blocks are, let us discuss how to instantiate them.

From DARK to mod-PC constructions. We use techniques from the DARK compiler [10] to
construct mod-PCs. The original construction of Bünz et al. [10] is not directly applicable to our
setting, because the binding notion is too weak. Instead we rely on a protocol by Block et. al [5] which
allows extraction of an integer polynomial. To reduce the verifier computation of this protocol we
compose it with an Argument-of-Knowledge for the language of accepting last round messages. The
result is a mod-PC with linear commitment/opening time for the prover in the size of the polynomial
and polylogarithmic verification time. The commitment is a single group element from a group of
unknown order.

9 One intuition on why “full”: it allows us to extract the “full” integer witness. Later, we will be able to
weaken this property and show that a mod-AHP not “fully” extractable can still yield an argument over Z
(with a few extra requirements).

6

“Weak” Fingerprinting-Friendly Constructions Suffice. In order to populate our framework
through existing constructions, we look for the weakest possible requirement on them. This is not just
for theoretical interest; it will in fact make it significantly easier for us to prove these properties hold
for prior constructions. While our compiler requires what we earlier called “full” knowledge soundness
(Full KSND)—where we should be able to extract an integer witness—we can actually do with a
weaker property: a form of KSND where we require to extract only the “fingerprint” (modulo q) of a
potential witness. With a very idealized example: consider w⋆ = 42150, the integer witness satisfying
the equation w100−4215000 = 0; after sampling a prime, say10 13, we need to be able to only extract the
witness fingerprint w⋆

q ∈ {0, . . . , 12} s.t. the “fingerprinting variant” of the original relation is satisfied,
i.e. w⋆

q ≡ 42150 (mod 13).
We precisely formalize these properties and show that, for the case of R1CS over the integers, this

type of weaker form of extractability can be lifted to its full counterpart. In fact, our results are not
limited to R1CS: we provide a general set of definition and properties expressing when this type of
lifting is possible.

Spartan as a mod-AHP We are able to show that the argument for R1CS Spartan [31], at its
core, is a mod-AHP with the aforementioned weak extraction property. The original Spartan works
over a finite field and, at a high level, works by: having the prover send an oracle polynomial to a
multilinear extension of the witness vector w̃ (a polynomial encoding of the vector) and then run two
sumcheck protocols [23] for appropriately crafted equations; after the last round, the verifier queries w̃
on a random point and performs some consistency checks. We are able to observe that the first oracle
message w̃ does not require a finite field to be defined. We modify Spartan to sample the (prime) order
of the field throughout the interaction. We can then argue that the core proof of knowledge soundness
of [31] can be leveraged for the case of w̃ as a polynomial over the integers.

mod-PC for sparse polynomials In the presentation above we deliberately omitted that the verifier,
at the end, needs to also query polynomials Ã, B̃, C̃ encoding the R1CS matrices. What we sketched
so far does give us a version of Spartan over Z, but gives us an efficient verifier only for the case where
the computation is “highly regular” and thus Ã, B̃, C̃ can be evaluated very efficiently (this is the
case for example of data-parallel circuits [13]). Our goal for our final protocol, Zaratan, is to support
an efficient verifier for arbitrary computations. In order to do this we need to solve an additional
challenge: obtaining an efficient mod-PC for sparse polynomials11. Our approach works by showing
that the SPARK compiler in [31] (which lifts a polynomial commitment for dense polynomials into one
for sparse ones) can be recast as a mod-AHP for deterministic computations with specific properties. In
this part of our work we are able to reuse some of the abstractions we used to define “weak” knowledge
soundess. Although we do not cast them explicitly under this light, our techniques have at their heart a
recipe to construct general succinct functional commitments with “fingerprinting properties” (a natural
generalization of our mod-PC notion) and hence we believe them to be of independent interest.

Full KSND mod-AHP
(Definition 11)

Weak “prime-only” KSND
mod-AHP (Definition 13)

mod-PC
(Definition 14)

Fully-succinct
arguments for Z

(Theorem 2)

Fig. 1: Relationships among some of our core abstractions.

10 This is just an example—we sample primes of λ bits in our constructions.
11 The reason we need this is that it will be used to commit to (and prove evaluations of) to Ã, B̃, C̃. These

are of quadratic size but they have a sparse representation in that only have a linear number of non-zero
elements.

7

1.2 Related Work

Poly. Comm from Groups of Unknown Order. Several works, starting with Bünz et. al [10] [9] and
Block [5] have constructed polynomial commitments over prime fields from groups of unknown order,
by lifting the evaluation to the integers or rational functions of bounded norm.

Arguments for Rings. Prior works (e.g. [22]) has constructed SNARKs for computations over finite
rings. Towa and Vergnaud [34] constructed a Bulletproof [8] inspired argument for Diophantine equa-
tions over the integers. In [32] Soria-Vazquez constructs interactive proofs for deterministic computa-
tions expressed over infinite and non-commutative rings. Our works differs in several respects. Our
focus are non-deterministic computations over the ring of integers. While the rings considered in [32]
are more general, the constructions proposed in it do not apply to the non-deterministic case.

2 Preliminaries

Notation We write f ∈ Z≤D[X1, . . . , Xµ] to denote that f is a polynomial over the integers in µ
variables X1, . . . , Xµ such that the individual degree of each variable Xi is at most D. For a positive
integer n we write [n] to denote the set {1, . . . , n}. We define the following notations related to vectors.
We denote by ◦ the Hadamard (i.e., entry-wise) product between vectors. We write 0⃗ to denote vector
with entries equal to the the additive identity in a ring that will be made obvious from the context.
Given a vector of integers u⃗ ∈ Zn and a prime q, we denote by Jv⃗Kq the vector v⃗ ∈ Fq such that
for all i ∈ [n] vi = ui mod q. For a matrix M and vector v⃗ we denote by M · v⃗ the matrix-vector
multiplication operation. We denote by Mi the i-th row of a matrix M . We denote by ∥v⃗∥∞, where v⃗
a vector of integers, its infinity norm, i.e. the quantity maxi |vi|. We sometimes abuse notation and,
given a polynomial f we denote by ∥f∥∞ the infinity norm of its vector of coefficients.

Prime Sampling We denote by Pλ the set of primes of λ bits, i.e. in the interval [2λ−1, 2λ). We use
random prime sampling as done in previous works, e.g. [36,10,4]. By the prime number theorem it is

easy to show that |Pλ| = Θ
(

2λ

λ

)
.

Indexed Relations An indexed relation R is a set of triples (i, x,w) where i is the index, x is the
instance, and w is the witness. Intuitively the index describes the computation we are checking through
the relation. For instance, for the case of circuits, the index will describe the circuits itself. We say
that a relation is deterministic is it a set of pairs index–instance rather than triples (or equivalently if
w is always ⊥). For any indexed relation we will define a function | · | which associates to each index
its size (a natural number). Given a size bound n ∈ N, we denote by Rn, the restriction of R to triples
(i, x,w) with |i| ≤ n.

Multilinear Extensions We observe that the usual definition of multilinear extension (MLE) extends
directly to the case of rings. Below we define MLE for integer-valued function on the boolean hypercube.
We refer the reader to [33] for a broader discussion of multilinear extensions.

Definition 1. Let f : {0, 1}t → Z be a function. The multilinear extension of f (which we denote
by MLE(f) or f̃) is the unique polynomial f̃ : Zt → Z of individual degree one and such that for all
x⃗ ∈ {0, 1}t f̃(x⃗) = f(x⃗). This polynomial can be constructed as

f̃(X⃗) =
∑

b⃗∈{0,1}t

χb⃗

(
X⃗
)
· f (⃗b)

where χb⃗(s⃗) =
∏t

i=1

(
sibi + (1 − si)(1 − bi)

)
is the multilinear polynomial that equals 1 if and only if

b⃗ = s⃗, and 0 otherwise.

We often consider a vector v⃗ of size n as the function f(i) := vi with domain {0, 1}logn and we
abuse notation writing MLE(v⃗) to denote MLE(f).

We will use this result whose proof is immediate from the construction of MLE(f). It essentially
states that, for a function f , the MLE of f evaluated modulo q “matches” the evaluation modulo q of
MLE(f).

8

Lemma 1. Let f : {0, 1}t → Z be a function and let q ∈ Z. Define fq : {0, 1}t → Z as fq(x⃗) := f(x⃗)
mod q. Then for each x⃗ ∈ Zt we have that

MLE(fq)(x⃗) ≡ MLE(f)(x⃗) mod q

Dense and Sparse MLEs We recall some of the observations on sparse/dense representations of
MLEs from [31]. A multilinear polynomial g : Zµ → Z can be represented uniquely by the list of
evaluations of g over the boolean hypercube {0, 1}µ. We denote this representation as the dense repre-
sentation of g, or DenseRepr(g). It is easy to show that if g(x) is zero on any point x of the hypercube,
this does not need to be included in DenseRepr(g).

We say that a multilinear polynomial is sparse if the size of its dense representation is o(2µ). Else we
say it is dense. An example of sparse MLEs that is relevant for us is from R1CS matrices (Definition 5):
the MLE of each matrix A,B,C has 22µ coefficients where N := 2µ is the size of the R1CS; however,
its dense representation is of size O(2µ).

Succinct Arguments with Universal SRS

Definition 2 (Preprocessing Argument with Universal SRS [16]). A Preprocessing Argument
with Universal SRS is a tuple ARG = (S, I,P,V) of four algorithms. S is a probabilistic polynomial-
time setup algorithm that given a bound n ∈ N samples a (potentially structured) reference string srs
supporting indices of size up to n. The indexer algorithm I is deterministic and, given as input the srs
produces a proving index key and a verifier index key, used respectively by P and V. The latter two are
PPT interactive algorithms.

Completeness For all size bounds λ, n ∈ N, (i, x,w) ∈ Rn

Pr

[
⟨P (ipk, x,w) ,V (ivk, x)⟩ = 1 :

srs← S(1λ, 1n)
(ipk, ivk)← I(srs, i)

]
= 1

Knowledge Soundness For every λ, n ∈ N and efficient adversary P̃ =
(
P̃1, P̃2

)
there exists a (possibly

non-uniform) efficient extractor Ext such that

Pr

 (i, x,w) ̸∈ Rn ∧〈
P̃2 (st) ,V (ivk, x)

〉
= 1

:

srs← S(1λ, 1n)

(i, x, st)← P̃1(srs)
w← Ext(srs)

(ipk, ivk)← I(srs, i)

 ≤ negl(λ)

Above the extractor takes in input the same random tape as the malicious prover.

Plain Interactive Protocols In some of our definitions (e.g., Definition 10) we will require a public-
coin interactive sub-protocol. With the exception of constraining one of the parties to sending only
random challenges, we will only need the syntactic properties of this interaction and the resulting
view. We call a plain interactive protocol an interaction between two parties Pip,Vip such that they
both take in input a security parameter λ ∈ N; the party Pip also takes as input an an arbitrary
string aux. The security parameter is passed implicitly to both parties as a unary string. We denote
by tr← transcriptλ

(
⟨Pip(aux),Vip⟩

)
the result of the interaction between the two parties. We can parse

tr as a pair (m⃗, ρ⃗) such that (m1, ρ1, . . . ,mr, ρr) is the transcript of the interaction throughout the r
rounds of the protocol. Each mi (resp. ρi) is a message (resp. random challenge) sent by Pip (resp.
Vip). Each message is assumed to be of size poly(λ).

3 Relations over Z and their Fingerprint

In this section we provide a set of definitions that will later allow us to capture when a standard
interactive argument for prime finite fields can be lifted to an argument over the integers. For that, we
need to build a vocabulary for what it means to map a relation to its “associated fingerprinting” over
a prime q.

9

3.1 Fingerprinting Relations

Definition 3 (Associated fingerprinting relation). Let R be a an indexed relation over the
integers. An associated fingerprinting relation for R is a mapping J·K parametrized by a prime, such
that for all primes q and positive integers n associates to Rn an efficiently computable relation JRnKq.
This associated relation takes as input triples of the form (i, x⃗q, w⃗q) where i is in the same domain
as the indices for Rn and x⃗q, w⃗q ∈ Fq. We require that a fingerprinting relation is “admissible” if it
preserves valid statement–witness pairs, that is: for all indices i, integer vectors x⃗ and w⃗

(i, x⃗, w⃗) ∈ Rn =⇒ (i, Jx⃗Kq, Jw⃗Kq) ∈ JRnKq

At times we will require that relations satisfy an additional property that will be key for some of our
“lifting” results. This property intuitively states that a fingerprinting relation provides a reasonable
probabilistic test for checking whether something is in the relation. This will be true for example for
the case of R1CS structures and a natural associated fingerprinting relation for them.

Definition 4 (Good test). An associated fingerprinting relation for R is said to provide a good
test (for R) if for all n, λ ∈ N, for all input triples (i, x⃗, w⃗) ̸∈ Rn the following holds:

Pr
q←$Pλ

[
(i, Jx⃗Kq, Jw⃗Kq) ∈ JRnKq

]
≤ negl(λ)

3.2 R1CS over Z and its Fingerprint

We provide a general definition of Rank-1 Constraint Satisfiability (R1CS) over arbitrary commutative
rings.

Definition 5 (Rank-1 Constraint Satisfiability). Let A be a commutative ring. An R1CS triple
over A (or A-R1CS) of size N consists of three matrices A,B,C ∈ AN×N each having at most O(N)
non-zero entries. A pair statement–witness for an R1CS triple consists of vectors (x⃗, w⃗) with elements
in A such that |x⃗|+ |w⃗| = N . We say that (x⃗, w⃗) satisfies the R1CS if

(A · z⃗) ◦ (B · z⃗)− C · z⃗ = 0⃗ (†)

where z⃗ = (x⃗, w⃗) ∈ AN .

In this paper, when we consider an F-R1CS over some field F we always implicitly assume that F
is of prime order.

Definition 6 (R1CS Relation over the Integers). We denote by RR1 the relation that on input
an index i (describing an R1CS triple A,B,C over Z of size N), a statement x and a witness w returns
1 if and only if: (i) Eq. (†) is satisfied; and (ii) x and w are such that ∥x||w∥∞ ≤ 2b(N) for a fixed bound
function b implicitly parametrizing the relation12. The size of the index is given by N ·log2(∥A||B||C∥∞).

From now on we refer to an R1CS structure as “R1CS” for short. We write F-R1CS to refer to an
R1CS over some prime-order field F. We write Z-R1CS to refer to an R1CS in the sense of Definition 5.

Definition 7 (Fingerprinting for R1CS). We define the associated fingerprinting relation for
R1CS as the one that checks the R1CS constraint equations over Fq for a prime q, i.e. if i encodes
R1CS matrices A,B,C then

(i, Jx⃗Kq, Jw⃗Kq) ∈ JRR1CS
n Kq ⇐⇒ for all i ⟨Ai, z⃗⟩ ◦ ⟨Bi, z⃗⟩ − ⟨Ci, z⃗⟩ ≡ 0 mod q

where z⃗ := (x⃗||w⃗).

It is easy to check that the fingerprinting relation defined above is admissible. It also provides a
good test (the proof is in the appendix).

Lemma 2. The associated fingerprinting relation for integer R1CS in Definition 7 provides a good
test.

12 We require this bound function to be polynomial in λ.

10

3.3 Multilinear Polynomial Evaluation and its Fingerprint

We also define another indexed relation that will be useful for our results in Section 8—polynomial
evaluation—as well as its straightforward associated fingerprinting. For simplicity we define it only for
the multilinear case.

Definition 8. The deterministic relation Rpoly takes as input an index describing a multilinear poly-
nomial f in µ variable, a statement consisting of a pair (x⃗ ∈ Zµ, y ∈ Z). It returns 1 if and only if
f(x⃗) = y. The size of the index described by a multilinear polynomial f is its maximum number of
non-zero coefficients, i.e., 2µ.

Definition 9 (Fingerprinting for Polynomial Evaluation). We define the associated finger-
printing relation for polynomial evaluation as the (deterministic) relation that checks the polynomial
evaluation over Fq for a prime q, i.e.,

(i := f, J(x⃗||y)Kq,⊥) ∈ JRpolyKq ⇐⇒ f(x⃗) ≡ y mod q

4 Idealized Protocols for Arguments over Z

4.1 Algebraic Holographic Proofs with Modular Remainder Queries

An AHP over Z with modular remainder queries (or mod-AHP) is like a standard AHP-like proto-
col [16,11,10] with the following core differences: the oracles, both in the indexing and online stage, are
(multivariate) polynomials over the integers (rather than over a finite field); at a prespecified round
the verifier samples a random prime q and the interaction continues as a standard interactive proof;
after the interaction, the verifier can receive evaluations of the oracle (integer) polynomials modulo q.

Definition 10 (AHP over Z with modular remainder queries (mod-AHP)). An Algebraic
Holographic Proof (AHP) over Z with modular remainder queries (or mod-AHP) for an indexed relation
R is given by the following tuple:

modAHP = (k, k′, v, s, d, I,P,V)

where k, k′, v, s, d : {0, 1}∗ → N are polynomial-time computable functions; I,P,V are the indexer,
prover, and verifier algorithms; k is the number of oracle polynomial rounds; k′ is the number rounds
of “plain interaction” (see below); v denotes the number of variables in the multivariate oracle polyno-
mials13; s denotes the number of polynomials in each round; d specifies degree bounds (in each variable)
on these polynomials.
The protocol proceeds as follows:

– Indexing phase The indexer I receives as input a security parameter 1λ and the index i for R,
and outputs s(0) polynomials p0,1, . . . , p0,s(0) ∈ Z[X⃗] of degrees at most d(λ, |i|, 0, 1), . . . , d(λ, |i|, 0, s(0))
respectively; |X⃗| = v(λ, |i|, 0). This phase does not depend on the public input or witness and simply
consists of encoding the given index i. We require that each p0,j is such that ∥p0,j∥∞ is bounded w.r.t
to b as in Definition 6.

– Online phase The prover P receives (1λ, i, x,w), for an instance x and witness w such that (i, x,w) ∈ R.
The verifier V receives 1λ, x and oracle access to the polynomials output by I(1λ, i)14. The prover P
and the verifier V interact over a number of rounds as follows:
• Integer Oracle Polynomials Phase: In the i-th round, i ∈ {1, . . . , k(λ, |i|)}, the verifier V sends

messages ρ⃗i ∈ {0, 1}poly(λ) to the prover P; the prover P responds with s(i) oracle polynomials
pi,1, . . . , pi,s(i) ∈ Z[X⃗] where each is respectively of degree at most d(λ, |i|, i, 1), . . . , d(λ, |i|, i, s(i))
and |X⃗| = v(λ, |i|, i).

• Prime Sampling Phase: After k rounds, the verifier samples a prime q ←$ Pλ and sends it to
P.

13 We assume for simplicity that the number of variables is the same for all the polynomials provided at the
same round and that s depends only on the round index.

11

• Plain Interaction Phase: The prover and verifier engage in a plain interactive protocol (see
Section 2) for k′ rounds:

trrst := (m⃗rst, ρ⃗rst)← transcriptλ
(
⟨Prst(ρ⃗1, . . . , ρ⃗k, q),Vrst⟩

)
(Recall that by convention m⃗rst and ρ⃗rst denote the concatenation of respectively all the messages and
challenges sent during the interaction)

– Query phase Let p = (pi,j)i∈{0,1,...,k},j∈[s(i)] be a vector consisting of all the polynomials sent by the
indexer I and prover P. The verifier V executes a subroutine QV that receives (1λ, x; ρ⃗1, . . . , ρ⃗k, trrst, q)

and outputs a query set Q consisting of tuples ((i, j), z) that are interpreted as “query pi,j at z ∈ Fv(|i|)
q ”

where q is the prime sampled earlier. We denote the vector consisting of the answers to these queries
as p(Q).

– Decision phase The verifier outputs accept or reject based on the answers received to the queries and
its randomness. That is, V executes a subroutine DV which outputs a decision bit on input (1λ, x,p(Q);
ρ⃗1, . . . , ρ⃗k, trrst, q).

The function d determines what kind of provers are considered for the completeness and soundness
properties of the proof system. A (potentially malicious) prover P̃ is considered admissible for modAHP
if, in an interaction with the verifier V, it holds with overwhelming probability that for every round
i ∈ [k] and oracle index j ∈ [s(i)], variable index t ∈ [v(λ, |i|, i)] we have deg(pi,j , Xt) ≤ d(λ, |i|, i, j). We
also require that each pi,j is s.t. that ∥pi,j∥∞ is bounded w.r.t to b as in Definition 6. The honest prover
P is required to be admissible under this definition. A mod-AHP should always satisfy completeness as
defined below.

Completeness A mod-AHP is complete if for any λ ∈ N, (i, x,w) ∈ R, the output returned by

VI(1
λ,i)(1λ, x) interacting with the honest P(1λ, i, x,w) is 1.

The following notion states that we can extract an integer witness interacting with a successful
AHP prover. This is the type of knowledge soundness we would like to require from any “secure” AHP
over the integers. We dub it “full” to stress the difference with the weaker “fingerprint-only” definition
in Definition 13. We will later show (Theorem 11) that weaker knowledge soundness can at times be
immediately lifted to obtain full knowledge soundness.

Definition 11 (Full Knowledge Soundness). We say that a mod-AHP has (full) knowledge error
ϵ if there exists a probabilistic polynomial-time extractor Ext such that for any admissible prover P∗,
for every λ ∈ N, (i, x), and auxiliary input aux:

Pr

[
(i, x,w) ̸∈ Rn ∧

⟨P∗(1λ, i, x, aux),VI(1λ,i)(1λ, x)⟩=1
: w← ExtP

∗
(1λ, i, x, aux)

]
≤ ϵ

Here the notation ExtP
∗
means that the extractor Ext has black-box access to each of the next-message

functions that define the interactive algorithm P∗. (In particular, the extractor can “rewind” the
prover.)

4.2 Weak Knowledge Sound mod-AHPs

We now define a “weaker”—and easier to prove—notion of extractability for AHP over Z with modular
remainder queries and we later show that this notion implies the stronger one in Definition 10. This
result is interesting when combined with our results in Section 6. Together with the result of Theorem 2
this section shows that, in order to obtain a succinct interactive argument for Z all we need is to to
show an AHP with the weaker property in this section. This is advantageous because this is easier to
prove directly for a given protocol (and will allow the very simple proof in Section 7.

For notational convenience, in Definition 13 we restrict the mod-AHP interaction to be “simple”,
i.e., to send a single oracle polynomial.

Definition 12 (Simple mod-AHP). We say that a mod-AHP is simple (or, “it has a simple
prover”) if there is a single round in which the prover sends oracle polynomials, that is if k(λ,N) = 1
(see Definition 10).

12

Remark 1 (Notation for simple mod-AHPs). Let tr ← transcript
(
⟨P(1λ, i, x, aux),VI(1

λ,i)(1λ, x)⟩
)
, be

the interaction transcript. We can parse tr as
(
g(X⃗), q, trrst)

)
where g(X⃗) is the oracle sent during the

interaction and q is the sampled prime. A simple prover P can always be split into a pair of (stateful)
algorithms (Porcl,Prst)

This weaker notion informally states that we can extract in a straight-line manner a “witness
modulo a prime” (in the sense of Definition 7) when receiving as input the oracle polynomials from the
prover. Notice that this is a weaker notion because we are not requiring to extract an integer witness
for the original integer relation, rather for its restriction. Below we use the terminology “decoding”
for this since we are not extracting a proper witness for R. We require this weak extractor/decoder to
be “partly” straight-line in that we give it as input the oracle polynomial from the prover. Intuitively,
this is necessary to make sure that the extractor is always dealing with the same integer witness. Also
notice, and this is crucial, that the oracle polynomial committed by the prover is still over the integers,
not over the field Fq.

Definition 13 (Weak (“fingerprint-only”) Knowledge-Soundness). Consider a mod-AHP with
a simple prover (Definition 10 and Definition 12) for an indexed relation R. Let J·K be an associated
fingerprinting relation for R (Definition 3). We say the mod-AHP has weak knowledge error ϵ over R
and J·K if there exists an efficient deterministic decoding algorithm Dec such that for any admissible
prover P∗, for every λ, n ∈ N, index i, statement x, and auxiliary input aux:

Pr

[
(i, JxKq, JwKq) ̸∈ JRnKq ∧

⟨P∗(1λ, i, x, aux),VI(1λ,i)(1λ, x)⟩=1
: w← Dec(1λ, i, g∗(X⃗))

]
≤ ϵ

(
g∗(X⃗), q, . . .

)
← transcript

(
⟨P∗(1λ, i, x, aux),VI(1λ,i)(1λ, x)⟩

)
is as by Remark 1.

The following theorem states that weak knowledge soundness can be lifted to obtain full knowledge
soundness if its associated fingerprinting relation provides a good test (Definition 4). By applying
Lemma 2 we can interpret this as a lifting theorem for weak knowledge sound mod-AHPs for R1CS.

Theorem 1. Let modAHP be a mod-AHP with negligible weak knowledge soundess error over R and
J·K (Definition 13). If J·K provides a good test (Definition 4) then modAHP has negligible full knowledge
soundness error (Definition 11).

5 Integer Polynomial Commitments with Evaluation Opening over Zq

Here we first define and then construct a form of polynomial commitment that can be use to compile
a mod-AHP into an argument.

5.1 Model

Definition 14. A polynomial commitment with modular remainder opening (or mod-PC) consists of
a tuple (Setup,Com,ProveEvalMod,VfyEvalMod) such that:

Setup(1λ, D, µ) → pp: on input a security parameter λ ∈ N, an individual degree parameter D ∈ N
and a number of variables M ∈ N outputs public parameters of the scheme.

Com(pp, g ∈ Z≤d[X1, . . . , Xµ])→ (c, opn): on input public parameters, a polynomial over the integers
g, it outputs a commitment c and an additional opening string opn (used as auxiliary input for
opening).

ProveEvalMod(pp, q, c, opn, z)→ π(eval): on input public parameters pp, prime q, commitment c, open-
ing opn and z ∈ Z, it outputs a proof π(eval) certifying the value g(z) mod q.

VfyEvalMod(pp, q, c, z, y, π(eval)) → b ∈ {0, 1}: on input pubic parameters, prime q, commitment c,
claimed value y ∈ Zq and proof π(eval), it outputs a bit accepting or rejecting the proof.

13

Correctness. For any D,M, λ ∈ N, d ≤ D, µ ≤ M , g ∈ Z≤d[X1, . . . , Xµ], prime q and z ∈ Z, the
following probability is overwhelming:

Pr

VfyEvalMod
(
pp, q, c, yq, π

(eval)
)

= 1 :

pp← Setup(1λ, D,M)

(c, opn)← Com(pp, g,)

π(eval) ← ProveEvalMod(pp, q, c, opn, z)

yq := g(z) mod q


Weak evaluation binding. The following property is the analogue for mod-PCs of weak evaluation bind-
ing for functional commitments (see, e.g., [14,12]). It intuitively states that for an honestly generated
commitment (hence the relative “weakness” of the property), it should not be feasible to provide a
convincing false proof. We define it formally in the appendix.

Knowledge soundness (with knowledge error ϵ). This notion follows the same flavor as the one in [16].

Definition 15. For any λ,D,M ∈ N and PPT A = (Acom,Aprf) there exists a non-uniform poly-
nomial time extractor Ext such that for any efficient query algorithm (with random tape independent
from that of the adversary) Q auxiliary string aux ∈ {0, 1}poly(λ), the following probability is at most ϵ:

Pr



(
f ̸∈ Z≤d[X1, . . . , Xµ] ∨

∃j ∈ [m] f(zj) ̸≡ yj mod q
)
∧

d ≤ D ∧ µ ≤M ∧∧
j

VfyEvalMod (pp, q, c, zj , yj , πj) = 1

:

pp← Setup(1λ, D,M)

((c, d, µ) , st)← Acom(pp, aux)

q ←$ Pλ(
(zj)j∈[m] , auxQ

)
← Q(pp, aux, q)

(yj , πj)j ← Aprf(st, q, (zj)j , auxQ)

f ← Ext(pp, aux)



where above the extractor has access to the random tape of the adversary.

Remark 2 (Interactive opening). All our definitions in this sections involve a non-interactive opening
stage. We point out they can be adapted straightforwardly for the interactive setting. We do not
provide explicit formal variants of our definitions since we will use mod-PCs with weak evaluation
binding and interactive opening only in Theorem 4.

Definition 16 (mod-PC for sparse polynomials). We say that mod-PC is “for sparse (multilin-
ear) polynomials” (Section 2) if the running time of the ProveEvalMod stage is linear in ℓ · log2∥g∥∞
where ℓ is the number of non-zero coefficients of the dense representation of g.

5.2 A mod-PC from the DARK Side

Our construction of mod-PC derives from the techniques originally proposed by Bünz et. al [10] which

construct polynomial commitments for polynomials f ∈ Fp[X⃗] from groups of unknown order. The

scheme by Bünz et. al works by lifting polynomials f ∈ Fp[X⃗] over the field to polynomials f ∈ Z[X⃗]
over the integers (with bounded coefficients), then committing to the integer polynomials. Because
honest DARK commitments are therefore commitments to integer polynomials it is natural starting
point for application.

DARK Commitment. To commit to a multi-linear integer polynomial f(X⃗) ∈ Z[X⃗], it is evaluated a
point (q1, . . . , qk) ∈ Zk where the qi’s are sufficiently large compared to the norm of the coefficients

of f(X⃗) to ensure that the evaluation uniquely determines the polynomial: letting qi = q2
i

for a
sufficient large odd value q ∈ Z, has the effect of embedding the coefficients of the polynomial as
”q’nary” digits of small norm, in a single very large integer. The polynomial commitment is simply
an integer commitment [20] [18] to this evaluation: modPC.Com(pp, f(X⃗)) = [f(q1, . . . , qk)] ·G ∈ GN

in a group of unknown order GN . Furthermore, this commitment is (bounded) linearly homomorphic:

modPC.Com(pp, f0(X⃗)) + [v] · modPC.Com(pp, f1(X⃗) = modPC.Com(pp, f0(X⃗) + v · f1(X⃗)) assuming

the qi’s are large enough relative to the coefficients on the polynomial f0(X⃗) + v · f1(X⃗) ∈ Z[X⃗].

14

Soundness of DARK. The original DARK paper shows how to construct an interactive protocol for
proving openings of the commitments above, however the soundness proof of the protocol in the
Eurocrypt DARK paper [10] had a significant flaw which was subsequently uncovered by Block et. al
[5]. A new preprint of the DARK paper [9] was posted to remedy this soundness gap in the original
DARK construction, however the updated proof shows a weaker notion of binding, which suffices
for constructing polynomial commitments over the field, but turns out to be is insufficient for our
application. We explore this now. The DARK extractor recovers a rational function from the set:{

f(X)/N
∣∣∣ f(X) ∈ Z[X⃗] ∧N ∈ Z ∧ ∥f∥∞ ≤ βN ∧ ∥N∥∞ ≤ βD

}
Where the denominator N is an integer of small norm. In the construction of polynomial commitments
over fields, this suffices, since we may view a commitment to the rational polynomial as a commitment
to the following polynomial over the prime field: g(X⃗) := f(X⃗) ·N−1 mod q. However an issue arises
if we attempt to extend the same idea to recovering integer witnesses, because there exists relations
satisfied by such rational functions for every prime but which are not satisfied over the integers: consider
for instance the relation N · w − 1 = 0 with N ̸= 1. This relation has no satisfying assignment w ∈ Z
however letting w = 1/N yields a satisfying assignment over every prime field Fq since N · (1/N)−1 =
N · 1 ·N−1 − 1 = 0 mod q. Hence without a binding commitment for integer polynomials we cannot
hope to argue about the existence of integer witnesses from the satisfiability of relations over random
prime fields.

Why Rational Functions. The weaker binding notion in the DARK paper stems from the extractor
having to “divide” by a difference α1−α2 of challenges where α1, α2 ∈ Z. Since the division of an integer
polynomial by an integer is not (generally) possible, the product N of the challenge differences are
moved to the “other side” of the commitment verification equation, verifying: N ·C = Enc(f) ·G ∈ GN .
The result is a scheme which can only be proven to satisfy binding for rational functions of the form
outlined above, although a concrete attack has not been exhibited.

Construction for Integer Polynomials. Luckily for our application, the paper of Block et. al [5] pro-
posed an alternative construction which allows the extractor to recover an integer polynomial with
coefficients of bounded norm. Their scheme circumvents the issue by using matrixes with {0, 1} en-
tries as challenges (rather than integers) which are invertible over the integer ring with overwhelming
probability. The drawback is that the communication complexity of the resulting scheme is greater by
a factor proportional to the statistical security parameters. The only difference between the scheme
of Block et. al [5] compared to the original by Bünz et. al is the evaluation proof – the commitment
procedure remains the same. We outline their protocol (with our notation) in Appendix C.

Dealing With Large Norm Witnesses. The final round of the protcol by Block et. al (see Appendix C)
has the prover sending a vector Z ∈ Zλ of openings with ∥Z∥∞ ≤ 2m · (2λ)k where m = ⌈log2∥f∥∞⌉
of the original multilinear integer polynomial f ∈ Z[X1, . . . , Xk]. As a result the verification depends
linearly on m and is not poly-logarithmic in the size of the witness which might have a large norm. To
reduce the computation of ΣMultiEval we observe that having the prover send Z ∈ Zλ to the verifier is
a trivial Proof-of-Knowledge for the relation of accepting last round messages:

Rfinal :=

{((
C = (C(Z1), . . . , C(Zλ))
y⃗ = (y1, . . . , yλ)

)
, Z

)
:
∀i.yi ≡ Zi mod q
∀i.C(Zi) = [Zi] ·G
∀i.∥Zi∥∞ ≤ bound

}
(1)

We replace this simple Proof-of-Knowledge with a more efficient Argument-of-Knowledge ΣFinal (see
Fig. 11). The inuition is to apply the extractor for ΣFinal to recover a transcript for ΣMultiEval, then
apply the existing extractor for ΣMultiEval to recover the witness. We prove that the scheme mod-PC
satisfies the Weak Evaluation Binding (Definition 22) and Weak Knowledge Soundness (Definition 13)
in Appendix G.

6 A Compiler from Algebraic Holographic Proofs with Modular
Remainder Queries to SNARKs over Z

At the high level the compiler follows the blueprint of the standard compilers in this space [16,11,1]: we
use a polynomial commitment to commit to each of the oracle polynomials; at the end of the interaction

15

Com(pp, f)

// Compute the coefficient size and the evaluation points:

1 : m =
⌈
log2(∥f∥∞)

⌉
2 : q = 2

m·k·poly(λ)
+ 1 ∈ Z

3 : for i ∈ [1, . . . , k] : qi = q2
i−1

// Evaluate f at q1, . . . , qk over Z
4 : C = [f(q1, . . . , qk)] ·G ∈ GN

5 : return (m,C)

ProveEvalMod(pp, q ∈ P, c = (m ∈ N, C ∈ GN), opn = f, x⃗ ∈ Fk
q ,)

1 : y = f(x⃗)

2 : Run ΣOpen(pp, C, x⃗, y,m, q; f)

VfyEvalMod(pp, q, c = (m,C), x⃗, y, π(eval))

1 : Run ΣOpen(pp, C, x⃗, y,m, q; f)

Fig. 2: Our construction of modPC. The setup is simply pp = (GN , G) where GN ← G(1λ) and G ←$

GN . The polynomial poly(λ) is derived from the knowledge soundness parameter of the opening proof
(see Appendix C for details).

the oracle queries are provided by the prover and proven through the polynomial commitment opening.
The key difference beween the works cited above and this paper is that we have integer-flavored
primitives and that all the queries happen after (and on the basis of) a prime that is sampled at an
intermediate point of the interaction.

Theorem 2. Let modAHP be a AHP over Z with modular remainder queries (Definition 10) for R,
let PCprj be a mod-PC (Definition 14) satisfying weak-evaluation binding and with negligible knowledge
error, then the construction in Fig. 3 is an interactive argument with preprocessing (Definition 2) for
R.

It is possible to reduce the requirements for the commitments for the indexing polynomials as we
discuss in Appendix H.

7 Zaratan: Efficient Spartan over the Integers

7.1 Background on Spartan

In this section we review Spartan [31], a transparent SNARK for R1CS. The first step in Spartan is to
encode the R1CS matrices A, B, C, and the vector z⃗ = x⃗||w⃗ via their multilinear polynomial extensions.
Let µ = logN . Consider the matrix A, which corresponds to the unique multilinear polynomial in 2µ
variables, Ã such that Ã(i1, . . . , iµ, j1, . . . , jµ) = A(i, j), where (i1, . . . , iµ) is the binary expansion of i,

and (j1, . . . , jµ) is the binary expansion of j. The polynomials B̃ and C̃ are defined similarly, as is the

polynomial Z̃ where Z(i1, . . . , iµ) = z(i). The satisfiability condition then translates to the following
polynomial F (t1, . . . , tµ) being zero at all points of the boolean hypercube:

F (⃗t) =

 ∑
u⃗∈{0,1}µ

Ã(⃗t, u⃗)Z̃(u⃗)

 ·
 ∑

u⃗∈{0,1}µ
B̃(⃗t, u⃗)Z̃(u⃗)

− ∑
u⃗∈{0,1}µ

C̃ (⃗t, u⃗)Z̃(u⃗)

Now consider the MLE of F (·), i.e., Q(s⃗) =
∑

t⃗∈{0,1}µ F (⃗t)·χt⃗(s⃗) where χ is as in Definition 1. Since

F (⃗t) vanishes on the boolean hypercube, by the Schwartz-Zippel lemma, Q(s⃗) is identically the zero
polynomial15. This condition can be verified by evaluating Q(s⃗) at a random point. Spartan provides
an efficient way to check this evaluation. Specifically, to verify the original R1CS, Spartan performs the
following over a field F:

15 NB: we can make this observation in our setting only if we have already sampled a prime at that point, but
this will be the case.

16

Setup(1λ, N): Let D := max{d(λ,N, i, j) | i ∈ [k(N)], j ∈ [s(i)]}. Let M := max{v(λ,N, i) | i ∈ {0, 1, . . . , k(N)}}.

ppPC ← PCprj.Setup(1
λ, D,M) Return srs =

(
1λ, ppPC

)
Indexer(srs, i): Run the AHP indexer on input the index i and the security parameter 1λ to obtain s(0) polynomials

(g0,j)
s(0)
j=1 each in Z[X⃗]. Compute, for j = 1, . . . , s(0):

(
c0,j , opn0,j

)
← PCprj.Com (ppPC, g0,j). Output (ipk, ivk) where

ipk =
(
i,
(
opn0,j , c0,j

)s(0)
j=1

)
, ivk = (c0,j)

s(0)
j=1

Interaction: This consists of several rounds of interaction between the prover and the verifier of the underlying AHP, i.e.,
P (i, x,w) and V (i, x):

– Integer Polynomial Oracle phase: For each “oracle” round i ∈ [k]:
1. V receives random challenges ρ⃗i from V and forwards them to P.
2. P forwards ρ⃗i to P which replies with polynomials (gi,j)

s(i)
j=1.

3. P compute commitments (
ci,j , opni,j

)
= PCprj.Com (ppPC, gi,j) , j = 1, . . . , s(i)

and sends (ci,j)j=1,...,s(i) to V.
– Prime sampling: After k rounds, V obtains a prime q and sends it to P.
– Plain-Interaction phase: here P,V follow exactly the mod-AHP protocol:

trrst := (m⃗rst, ρ⃗rst)← transcriptλ
(
⟨Prst(ρ⃗1, . . . , ρ⃗k, q),Vrst⟩

)
– Query Phase:

1. P uses the query algorithm of V to compute the query set Q := QV

(
1λ, x; ρ⃗1, . . . , ρ⃗k, trrst, q

)
. Recall from

Definition 10 that each entry in Q is of the form ((i, j), z).
2. P computes and sends v := g(Q) and πππ where

g(Q) :=
(
gi,j(z) mod q : ((i, j), z) ∈ Q

)
πππ :=

(
PCprj.ProveEvalMod

(
ppPC, q, ci,j , opni,j , z

)
: ((i, j), z) ∈ Q

)
– Decision Phase: V accepts if and only if all the following conditions hold:

• the decision algorithm of V accepts the answers, that is DV

(
1λ, x,v, ρ⃗1, . . . , , ρ⃗k, trrst, q

)
= 1.

• the evaluation proofs verify, i.e. PCprj.VfyEvalMod (ppPC, q, ci,j , v, π) = 1 for each ((i, j), z) in Q and corre-
sponding value v in v and proof π in πππ.

Fig. 3: Compiler from mod-AHPs to succinct arguments over Z. Calligraphic letters, P and V, denote
the prover and verifier of the final interactive argument.

1. Prove that Q(r⃗) = 0 for a random point r⃗ ∈ Fµ. Thanks to the definition of Q(·), this can be done
using a sumcheck protocol (Appendix A.1).

2. This sumcheck reduces to proving that σ = F (ρ⃗) for a random ρ⃗ ∈ Fµ. Due to the structure of F ,
this is reduced to proving the value of three summations:∑

u⃗∈{0,1}µ
Ã(ρ⃗, u⃗)Z̃(u⃗),

∑
u⃗∈{0,1}µ

B̃(ρ⃗, u⃗)Z̃(u⃗),
∑

u⃗∈{0,1}µ
C̃(ρ⃗, u⃗)Z̃(u⃗)

These can also be proven using a sumcheck protocol each; in Spartan, these three sumchecks are
aggregated into one.

3. Finally, the sumchecks reduce to proving the values of the multilinear extensions at random points,
i.e., Ã(r⃗x, r⃗y), B̃(r⃗x, r⃗y), C̃(r⃗x, r⃗y), and Z̃(r⃗y).

The final step is achieved through the use of polynomial commitments. The prover commits to the
polynomials Ã, B̃, and C̃ and Z̃. In the next subsection we will explicitly formalize these as oracle
polynomials in a mod-AHP.

7.2 Spartan as a mod-AHP

The protocol we just described requires a field only for the sumchecks, but not for the oracle polynomial
encoding the witness (or for the indexing polynomials). As a result, we can sample a prime after sending
this polynomial. We are able to prove that our variant satisfies weak knowledge soundness by relying
on the security of Spartan and by simple properties of MLEs (namely Lemma 1).

We describe the resulting AHP over Z with modular remainder queries from Spartan in Fig. 4.
Compared to the presentation above we made a few changes, some to remain close to the original
treatment in [31] (e.g., w̃ is morally what we described as Z̃ before). Gio,τ is a polynomial related to F

as described above, Â, B̂, Ĉ are related to Ã, B̃, C̃ we described above, Mrx is a polynomial intuitively

17

used for batching the sumchecks on the partial evaluations on the indexing polynomials. The syntax
e ← ⟨PSC (. . .) ,VSC (. . .)⟩ (. . .) refers to the invocation of a sumcheck returning e as final challenge.
We refer the details to [31] for details. To maintain visual similarity with [31] we do not use the notation
v⃗ for vectors in most of the figure.

P(x,w) V
Ã, B̃, C̃

(x)

w̃(X⃗)← MLE(w)

w̃

T1 := 0, µ1 := logN, ℓ1 := 3

q ←$ Pλ// prime sampling

q

τ ←$ Flog N
q rx ←$ Fµ1

q

τ, rx

// Run first sumcheck

ex ← ⟨PSC (Gio,τ) ,VSC (rx)⟩ (µ1, ℓ1, T1)

vA = Ā (rx)

vB = B̄ (rx)

vC = C̄ (rx)

vA, vB , vC

T2 := rA · vA + rB · vB + rC · vC
µ2 := logN, ℓ2 := 2

rA, rB , rC ←$ Fq

ry ←$ Fµ2
q

rA, rB , rC , ry

// Run second sumcheck

ey ← ⟨PSC (Mrx) ,VSC (ry)⟩ (µ2, ℓ2, T2)

v ← w̃ (ry [1..]) v1 ← Ã (rx, ry)

v2 ← B̃ (rx, ry) v3 ← C̃ (rx, ry)

vZ := (1− ry,1) · v+
ry,1 · x̃ (ry,i>1)

ex
?
= (vA · vB − vC) · χrx (τ)

ez
?
= (rA · v1 + rB · v2 + rC · v3) · vZ

Fig. 4: Spartan as as an AHP over Z with modular remainder queries. The parameter N
denotes the (known) size of the witness. In cyan we denote the integer oracle polynomi-

als and queries to them. Notice that w̃, Ã, B̃, C̃ are all oracle polynomials over the integers.
All the final evaluation queries to the oracles are implicitly modulo q (and so are the final checks).
Above ry,1 is the first element of the vector ry and ry,i>1 := (ry,2, . . . , ry,µ2). The figure above simply

consists of the online stage; indexing simply returns Ã, B̃, C̃.

Theorem 3. The protocol in Fig. 4 is a mod-AHP with negligible weak knowledge soundness over
RR1CS and J·K as from Definition 7. For an R1CS of size N it has O(logN) rounds and a prover
linear in the total witness size .

7.3 Putting it All Together: Zaratan

Our final construction Zaratan is the result of compiling Fig. 4 with Fig. 3. We instantiate the polyno-
mial commitment for w̃ through our construction in Section 5.2. In order to have efficient polynomial

18

commitments for the indexing polynomials we use a construction for sparse polynomials we give in
Section 8.2. Zaratan is secure in the generic group model for unknown-order groups (GGUO) and
heuristically through Fiat-Shamir in the ROM. The cost of the final verifier is dominated by our poly-
nomial commitment. The final efficiency is in Table 1. We stress that the prover has a linear dependency
(not quasi-linear) w.r.t. m.

8 Building mod-PCs for Sparse Polynomials

In this section we show how to build efficient mod-PCs for sparse integer polynomials. The result of
this section can be used to instantiate the polynomial commitments for the indexing R1CS polynomials
in Zaratan.

8.1 Delayed-Input (Deterministic) Soundness

A mod-AHP with delayed-input soundness can be thought of as the deterministic analogue of a
“fingerprint-only” knowledge sound mod-AHP (Definition 13). The latter notion states informally
states that, from a prover with good success probability during a mod-AHP interaction, we are able
to “extract” a valid witness for the associated fingerprinting relation (Definition 3. The definition we
provide in this section is very similar but it will focus on deterministic relations (there is no witness,
just an index and a statement). What we require is that if a prover is successful during a mod-AHP
interaction related to index i and statement x, then the input’s fingerprint should be a valid state-
ment for the associated fingerprint relation, i.e. JRKq(i, JxKq) = 1. The reason this form of soundness is
“delayed-input” is because we want its security to holds even if statement were to be provided after the
prime is sampled. This is crucial in order to obtain secure polynomial commitments over the integers
(as we define them in Section 5).

The following definition is, from a syntactical standpoint the same as that for mod-AHP. For this
reason we do not define it completely from scratch.

Definition 17. We say a mod-AHP is “for deterministic relations only” if the prover sends no oracle
polynomials before the prime is sampled. We denote the behavior of the interactive verifier after the
prime is sampled as Vpost

Notice that our next definition is well-formed since the verifier in any mod-AHP is public coin and
therefore it does not need to know the public input before sampling the prime or producing any other
challenge.

Definition 18. Consider a mod-AHP for deterministic relations only (Definition 17) for an indexed
(deterministic) relation R. Let J·K be an associated fingerprinting relation for R (Definition 3). We
say the mod-AHP has delayed-input soundness error ϵ if for all λ, n ∈ N, index i and auxiliary input
aux, for all PPT adversaries A = (Ainp,Apost):

Pr

[
(i, JxKq,⊥) ̸∈ JRnKq ∧

⟨Apost(st),V
I(1λ,i)
post (1λ, x, q)⟩=1

:
q ←$ Pλ

(x, st)← Ainp(1λ, i, aux, q)

]
≤ ϵ

The following theorem shows that delayed-input soundness can be lifted to obtain weak evaluation
binding for functional commitments. Notice that in the following result we do not require the associated
fingerprinting relation to be a good test as in Theorem 11.

Remark 3. While we state the following theorem for polynomial commitments for integer polynomials
with modular remainder opening it is immediately possible to show this result (and define equivalent
notions) for functional commitments over integer vectors with opening to any “modular remainder”
restriction of a function f . An easy example in such sense is commitments to vectors in Zn where each
element can be opened in Zq for a sampled q.

The next definition formalizes what we mean for AHP over Z with modular remainder queries to
be an efficient protocol for sparse polynomial evaluation. It intuitively states that the prover can run
linearly the number of non-zero entries of a sparse polynomial.

19

Definition 19. We say that a mod-AHP modAHP over Rpoly is efficient for sparse polynomial eval-
uation if all of the following conditions hold. Let g be the sparse polynomial (see Section 2) describing
some index for the relation and let cµ be the number of variables over which g is defined (for a pa-
rameter µ ∈ N and a constant c > 1), then: 1) The output of the indexing step consists of a constant
number of oracle multilinear polynomials each in µ variables. 2. The total running time of the prover
is Oλ(2µ · log2∥g∥∞).

Theorem 4 (Delayed-Input Soundness ⇒ Sparse mod-PC). Assume: (a) a mod-PC modPC
with weak evaluation binding16; (b) a mod-AHP modAHP for Rpoly that: (i) is efficient for sparse poly-
nomial evaluation (Definition 19); (ii) has negligible delayed-input soundness. Then there exists a weak
evaluation binding mod-PC modPC∗ for sparse polynomials with interactive opening (see Definition 16
and Remark 2).

8.2 A construction from SPARK [31]

In this section we reinterpret another building block from [31] as a mod-AHP. In particular the SPARK
construction to lift a dense polynomial commitment to a sparse one. SPARK as a mod-AHP will require
not only indexing oracle polynomials over the integers but also others (see next remark).

Remark 4 (Augmenting mod-AHPs). The results in this section will apply a natural generalization of
the mod-AHPs we described in Definition 10 where we allow for oracle polynomials defined over Fq for
a sampled prime q. These can be compiled through a “prime-agnostic” polynomial commitment (that
can take in input the field at commitment time), which we show that we can build from our modPC.
A formal treatment of the result in this section is in the appendix.

Indexing stage: Given in input a sparse multilinear polynomial M̃ in 2µ variables, output multilinear
polynomials in O(µ) variables

r̃ow, c̃ol, ṽal,
(

˜read-tsX , ˜write-tsX , ˜audit-tsX
)
X∈{row,col}

as defined in [31, Section 7.2].

Opening stage: To claim that M̃(x⃗) ≡ y mod q:

– Compute multilinear polynomials in O(µ) variables ẽrow, ẽcol as defined in [31, Section 7.2.1] (notice
that these polynomials are defined over Zq).

– Send oracles ẽrow, ẽcol .

– Continue the protocol as described for PCSPARK in [31] with two nuances:
• Whenever the prover provides an opening proof for one of the indexing polynomials, simply let

the mod-AHP verifier query that polynomial through its oracle access (as we did in our variant
of Spartan in Fig. 4).

• Ditto for each of the polynomial commitment openings for ẽrow, ẽcol during the execution of
Hyrax17.

Fig. 5: A variant of the SPARK construction from [31] as an augmented mod-AHP for Rpoly. For oracle
polynomials we use the color conventions: indexing polynomials in Z[X⃗] in cyan ; prime-dependent polynomials

in Zq[X⃗] in magenta . For additional details on SPARK, see [31, Section 7.2]

Theorem 5. The construction in Fig. 5 is an (augmented) mod-AHP for Rpoly with negligible delayed-
input soundness; it is efficient for sparse polynomials.

16 We stress that this mod-PC is for dense polynomials only.
17 Like in [31], we do not need Hyrax’s zero-knowledge compiler [35]. For us this is crucial because otherwise

this would require hardness of DLOG for a group of order q for a freshly sampled prime q (which we would
not be able to instantiate, at least efficiently; see, e.g. Footnote 1 in [24]).

20

The following is implied by our construction of mod-PC for dense polynomials, Theorem 4, Theo-
rem 5 and by the security of our modPC.

Corollary 1. There exists a mod-PC for sparse polynomials with weak evaluation binding secure in the
GGMUO In particular, for a sparse multilinear polynomial g in 2µ variables and dense representation
of size O(2µ), the prover runs in time Oλ(2µ · log2∥g∥∞).

Acknowledgements

We thank Mahak Pancholi for useful feedback on early drafts of our work and for useful discussions
on compilers for idealized protocols.

21

References

1. Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli, Chaya Ganesh, Claudio Orlandi, and
Akira Takahashi. ECLIPSE: Enhanced compiling method for pedersen-committed zkSNARK engines. In
Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS,
pages 584–614. Springer, Cham, March 2022.

2. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press,
2006.

3. Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical application to plug &
play secure algorithmics. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 513–543. Springer, Cham, August 2020.

4. Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolonelos. Zero-knowledge
proofs for set membership: Efficient, succinct, modular. In Nikita Borisov and Claudia Dı́az, editors, FC
2021, Part I, volume 12674 of LNCS, pages 393–414. Springer, Berlin, Heidelberg, March 2021.

5. Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik Soni. Time- and space-
efficient arguments from groups of unknown order. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part IV, volume 12828 of LNCS, pages 123–152, Virtual Event, August 2021. Springer, Cham.

6. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with applications to
IOPs and stateless blockchains. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part I, volume 11692 of LNCS, pages 561–586. Springer, Cham, August 2019.

7. Jorge Luis Borges, Margarita Guerrero, Francisco Toledo, and Francisco Toledo. Manual de zooloǵıa
fantástica, volume 125. Fondo de cultura económica México, 1957.

8. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bul-
letproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and
Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

9. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers. Cryptology
ePrint Archive, Report 2019/1229, 2019.

10. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706.
Springer, Cham, May 2020.

11. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and Hadrián Rodŕıguez. Lunar: A toolbox
for more efficient universal and updatable zkSNARKs and commit-and-prove extensions. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 3–33. Springer,
Cham, December 2021.

12. Matteo Campanelli, Dario Fiore, and Hamidreza Khoshakhlagh. Witness encryption for succinct functional
commitments and applications. In Qiang Tang and Vanessa Teague, editors, PKC 2024, Part II, volume
14602 of LNCS, pages 132–167. Springer, Cham, April 2024.

13. Matteo Campanelli, Nicolas Gailly, Rosario Gennaro, Philipp Jovanovic, Mara Mihali, and Justin Thaler.
Testudo: Linear time prover SNARKs with constant size proofs and square root size universal setup. In
Abdelrahaman Aly and Mehdi Tibouchi, editors, LATINCRYPT 2023, volume 14168 of LNCS, pages
331–351. Springer, Cham, October 2023.

14. Dario Catalano, Dario Fiore, and Ida Tucker. Additive-homomorphic functional commitments and ap-
plications to homomorphic signatures. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022,
Part IV, volume 13794 of LNCS, pages 159–188. Springer, Cham, December 2022.

15. Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with linear-time prover
and high-degree custom gates. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part II,
volume 14005 of LNCS, pages 499–530. Springer, Cham, April 2023.

16. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P. Ward. Marlin:
Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer, Cham, May 2020.

17. Geoffroy Couteau, Thomas Peters, and David Pointcheval. Removing the strong RSA assumption from ar-
guments over the integers. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 321–350. Springer, Cham, April / May 2017.

18. Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based on groups
with hidden order. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 125–142.
Springer, Berlin, Heidelberg, December 2002.

19. Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root extraction and signature schemes in
general groups. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 256–271.
Springer, Berlin, Heidelberg, April / May 2002.

20. Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular polynomial
relations. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 16–30. Springer,
Berlin, Heidelberg, August 1997.

22

21. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over Lagrange-bases
for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019.

22. Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. Rinocchio: SNARKs for ring arithmetic.
Journal of Cryptology, 36(4):41, October 2023.

23. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: interactive proofs
for muggles. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 113–122. ACM
Press, May 2008.

24. Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Brakedown:
Linear-time and field-agnostic SNARKs for R1CS. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part II, volume 14082 of LNCS, pages 193–226. Springer, Cham, August 2023.

25. Jens Groth. Non-interactive zero-knowledge arguments for voting. In John Ioannidis, Angelos Keromytis,
and Moti Yung, editors, ACNS 05International Conference on Applied Cryptography and Network Security,
volume 3531 of LNCS, pages 467–482. Springer, Berlin, Heidelberg, June 2005.

26. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and
their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194.
Springer, Berlin, Heidelberg, December 2010.

27. Helger Lipmaa. On diophantine complexity and statistical zero-knowledge arguments. In Chi-Sung Laih,
editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 398–415. Springer, Berlin, Heidelberg, Novem-
ber / December 2003.

28. Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive
proof systems. In 31st FOCS, pages 2–10. IEEE Computer Society Press, October 1990.

29. Silvio Micali. A secure and efficient digital signature algorithm. Technical Memo MIT/LCS/TM-501b,
Massachusetts Institute of Technology, Laboratory for Computer Science, April 1994.

30. Barkley Rosser. Explicit bounds for some functions of prime numbers. American Journal of Mathematics,
63(1):211–232, 1941.

31. Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 704–737.
Springer, Cham, August 2020.

32. Eduardo Soria-Vazquez. Doubly efficient interactive proofs over infinite and non-commutative rings. In
Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 497–525.
Springer, Cham, November 2022.

33. Justin Thaler. Proofs, Arguments, and Zero-Knowledge, 2023.
34. Patrick Towa and Damien Vergnaud. Succinct diophantine-satisfiability arguments. In Shiho Moriai and

Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 774–804. Springer,
Cham, December 2020.

35. Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-efficient zk-
SNARKs without trusted setup. In 2018 IEEE Symposium on Security and Privacy, pages 926–943. IEEE
Computer Society Press, May 2018.

36. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407. Springer, Cham, May 2019.

37. Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof with linear prover time. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages
299–328. Springer, Cham, August 2022.

23

https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK

A Further Preliminaries

A.1 The Sumcheck Protocol

Let p(x1 . . . , xn) be a multivariate polynomial in n variables defined over a field F. Consider the value
a =

∑
i∈{0,1}n p(i), i.e., the sum of the value of p on all the vertices of the Boolean hypercube. This

computation takes N = 2n time and the sumcheck protocol [28] described in Figure 6, is a way for a
Prover to convince a Verifier that a is correct in O(n) time, plus a single query to the polynomial p on
a random point in Fn.

P sends the polynomial p1(x) =
∑

i∈{0,1}n−1 p(x, i).

V checks that p1(0) + p1(1) = a and sends back r1 ∈R F.
P sends the polynomial p2(x) =

∑
i∈{0,1}n−2 p(r1, x, i).

V checks that p2(0) + p2(1) = p1(r1) and sends back r2 ∈R F.
...
At round j P sends the polynomial pj(x) =

∑
i∈{0,1}n−j p(r1, . . . , rj−1, x, i).

V checks that pj(0) + pj(1) = pj−1(rj−1) and sends back rj ∈R F.
...
At the last round P sends the polynomial pn−1(x) = p(r1, . . . , rn−1, x).
V checks that pn−1(0)+pn−1(1) = pn−2(rn−2), selects rn ∈R F and checks that pn−1(rn) = p(r1, . . . , rn)

via a single query to p.

Fig. 6: The Sumcheck Protocol

B Weso lowski’s Proof-of-Exponentiation

The subprotocol ΣPoE is used in the ΣMultiEval to reduce the computation of the verifier: in a naive
protocol the verifier would have to compute B = [q2

t

] · A ∈ Gλ
N where q2

t

is linear in the number
of coefficients of the orional polynomial f . This would prevent the verifier from being succinct, the
solution is to outsource the computation to the prover and use ΣPoE (see Fig. 7) to verify the correctness
of the computation. Note that the only dependency between the verifiers running time in ΣPoE and the
exponent ∆ is the time required to compute ∆ mod p which for ∆ = q2

t

can be done in polylogarithmic
time. The protocol relies on the adaptive root assumption (Definition 20) in the group GN .

Definition 20 (Adaptive Root Assumption [36]). Let (A0,A1) be arbitrary PPT algorithms. The
adaptive root assumption states:

negl(λ) ≥ Pr

[p] ·R = H ̸= 0 ∈ GN

∣∣∣∣∣∣∣∣∣
GN ← G(1λ)

(H, st)← A0(GN)

p←$ Pλ

R← A1(p,H, st)


For some negligible function negl(λ).

Lemma 3 (Soundness of ΣPoE [36]). Assuming the Adaptive Root Assumption holds in GN , ΣPoE

(Fig. 7) is an argument system for relation RΣPoE
:

RΣPoE
=
{

((A,B, ∆),⊥) : B = [∆] ·A ∈ Gλ
N

}
With negligible soundness error.

Observe that the relation is in P membership can be verified in log(∆) time using a double-and-add
algorithm.

24

ΣPoE(A ∈ Gd
N ,B ∈ Gd

N , ∆)

1 : V samples p←$ Pλ and sends p to P

2 : P computes:

3 : Φ(∆) ← ⌊∆/p⌋ ;Q← [Φ(∆)] ·A ∈ Gd
N

4 : P sends (Ψ(∆),Q) to V

5 : V checks: [p] ·Q+ [∆ mod p] ·A ?
= B

Fig. 7: The Proof-of-Exponentiation Protocol [36] by Wesolowski.

C Protocols of Block et al.

In this section we include a brief overview of the protocols ΣEval/ΣMultiEval (Fig. 9) by Block et. al [5].
We include the protocols for completeness and to unify the notation with the rest of the paper, besides
replacing the ΣPoE used in Block et al. with the Weosolowski ΣPoE (see Appendix B), the section
contains no original contributions. We refer the reader to the original paper for further details. The
use of the Weosolowski ΣPoE does not affect extraction as the PoE relation RΣPoE

has no witness.

Notation. Define the multi-linear evaluation:

ML(f, x⃗) =
∑

t⃗∈{0,1}k
ft⃗ ·

(
k∏

i=1

xti
i

)
mod q

Note that these protocols uses λ-dimensional integer commitments C = (C1, . . . , Cλ) ∈ Gλ
N , we denote

these in bold. Addition on these commitments is done component-wise and scalar multiplication is
done component-wise as well:

A + [s] ·B = (A1 + [s] ·B1, . . . , Aλ + [s] ·Bλ) ∈ Gλ
N

Generalizing, denote by M ⋆C the commitment resulting from applying the matrix M ∈ Zλ×λ to the
commitment C ∈ Gλ

N in the natural way.

C.1 Evaluation Protocol

The binding notion (unlike that of the original DARK paper) is defined for an integer polynomial with
coefficients in the range [−B,B] ⊆ Z, this is captured by a procedure isValid which defines a valid
opening (see Fig. 8).

isValid(pp = (GN , G), C ∈ GN , x⃗ ∈ Zk, q ∈ P, y ∈ Z, f ∈ Z2k)

1 : if ∥f∥∞ > B then return 0

2 : if C ̸= [Encq(f)] ·G then return 0

3 : y ̸= ML(f, x⃗) mod q then return 0

4 : return 1

Fig. 8: Binding notion for the multi-linear commitment scheme.

Theorem 6 (Knowledge Soundness of ΣEval). The protocol ΣEval is an argument-of-knowledge
protocol for the relation:

RΣMultiEval
= {((C, x⃗, y), f) : isValid(pp, C, x⃗, f) ∧ y = ML(f, x⃗) mod q}

Proof. See the original paper [5].

25

ΣMultiEval(pp,C, r, x⃗, y⃗,m, q;Z ∈ Zλ×2k−r+1

)

1 : output:accept or reject

2 : if r = k :

3 : P sends Z ∈ Zλ to V

4 : V Checks:

5 : ∥Z∥∞ ≤ 2m · (2λ)k

6 : y⃗
?≡ Z mod q

7 : C
?
= ([Z] ·G, . . . , [Z] ·G)

8 : else

// Prover computes the evaluation over each subcube over the field:

// One for xr = 0 and one for xr = 1

9 : P Computes:

10 : y⃗L ←
∑

t⃗∈{0,1}k−r−1

Z(∗,0∥t) ·
k−r−1∏
j=1

χ(tj , xj+r+1) mod q

11 : y⃗R ←
∑

t⃗∈{0,1}k−r−1

Z(∗,1∥t) ·
k−r−1∏
j=1

χ(tj , xj+r+1) mod q

// Prover commits to the ”split polynomials”

12 : P Computes:

13 : CL ← [l] ·G where l←
∑

t⃗∈{0,1}k−r−1

qt⃗ · Z(∗,0∥t⃗)

14 : CR ← [r] ·G where r ←
∑

t⃗∈{0,1}k−r−1

qt⃗ · Z(∗,1∥t⃗)

15 : P sends (y⃗L, y⃗R) and (CL,CR) to V

// Verifier checks the decomposition using the ΣPoE protocol.

16 : V : Check y⃗
?
= y⃗L · (1− xr+1) + y⃗R · xr+1

17 : ΣPoE(CR,C−CL, q
k−r−1)

// Verifier samples random binary matrixes UL, UR and sends them to the prover.

18 : V : U = [UL∥UR]←$ {0, 1}λ×2λ where UL, UR ∈ {0, 1}λ×λ

19 : V sends U to P

20 : P and V :

21 : y⃗′ ← UL · y⃗L + UR · y⃗R
22 : C′ ← (UL ⋆CL) + (UR ⋆CR)

23 : P : For ZL, ZR ∈ Zλ×2k−r−1

such that Z = [ZL∥ZR]

24 : Z′ ← UL · ZL + UR · ZR

25 : return ΣMultiEval(C
′, r + 1, x, y⃗′,m, q, ;Z′)

Fig. 9: MultiEval protocol by Block, Holmgren, Rosen, Rothblum and Soni [5], included here for com-
pleteness and unify the notation.

ΣEval(pp, C ∈ GN , x⃗ ∈ Fk
q , y ∈ Fq,m, q;Y,Z ∈ Z2k)

1 : y⃗ = (y, . . . , y) ∈ Fλ
q

2 : C = (C, . . . , C) ∈ Gλ

3 : Z = (Z, . . . ,Z) ∈ Zλ×2k

4 : ΣMultiEval(C, r = 1, x⃗, y⃗,m, q;Z)

Fig. 10: Evaluation proof by Block, Holmgren, Rosen, Rothblum and Soni [5], invoking the ΣMultiEval

protocol on λ parallel instances.

26

D Fingerprinting of Polynomial Evaluation

Theorem 7 (Number of Primes [30]). Let π(x) denote the prime-counting function, i.e. the num-
ber of primes less than or equal to x. Then:

x

ln(x) + 2
< π(x) <

x

ln(x)− 4
, for x ≥ 55

Lemma 4 (Probabilistic Vanishing of Integer Polynomials). Let f(X⃗) ∈ Z[X⃗] be a polynomial
of total degree d with less than 2ℓ non-zero coefficients. Fix x⃗ ∈ Zk and denote by m the smallest m
st. ∥x⃗∥∞ ≤ 2m. Then f(x⃗) ̸= 0 implies:

Pr
q←$Pλ

[f(x⃗) ≡ 0 mod q] ≤ λ · (ℓ + m · d)

2λ−1

Which is negligible for any ℓ,m, d polynomial in λ.

Proof (Proof of Lemma 4). The evaluation y = f(x⃗) has a norm ∥y∥∞ ≤ 2ℓ+m·d: it is a summation
of at most 2ℓ non-zero terms, each of norm at most 2m·d. Now consider the set P(y) of distinct prime
factors of y and observe that y ≡ 0 mod q ⇐⇒ q ∈ P(y). Therefore the probability that y ≡ 0
mod q for a uniformly sampled prime q ∈ Pλ is:

Pr
q←$Pλ

[f(x⃗) ≡ 0 mod q] =
|P(y)|
|Pλ|

≤ log2(y)

|Pλ|
≤ ℓ + m · d

|Pλ|
=

ℓ + m · d
π(2λ)− π(2λ−1)

≤ ℓ + m · d
2λ

ln(2λ)+2
− 2λ−1

ln(2λ−1)−4
≤ ℓ + m · d

2λ−2λ−1

λ

=
λ · (ℓ + m · d)

2λ−1

For any λ with 2λ > 55.

E The Generic Group of Unknown Order Model

In this section, we prove the knowledge soundness of ΣFinal. The proof is in the Generic Group of
Unknown Order (GGUO) model: the adversary is a generic algorithm with black-box access to the
group GN :

Definition 21 (Generic Group of Unknown Order (GGUO) Model [19]). The parties have
access to two oracles, one which produces random group elements and the other which computes the
group operation. Initially n = 0.

O1() :
– n← n + 1
– Sample xn ←$ ZN

– Output σ(xn)
O2(i, j, b) : takes two indexes and a sign bit:

– n← n + 1
– Define xn ← xi + (−1)b · xj

– Output σ(xn)

We use a simple lemma which states that computing non-trivial discrete-log relations in a generic
group is hard:

Lemma 5 (Discrete Logarithm (Bünz et. al [6])). Let GN be a generic group where |GN | is a
uniformly chosen integer in [A,B], where 1/A and 1/|B − A| are negligible in λ. Let A be a generic

algorithm and let G⃗ = {G1, . . . , Gm} be the outputs of O1. Then if A runs in polynomial time, it

succeeds with at most negligible probability in outputting α⃗, β⃗ ∈ Zm such that ⟨α⃗, G⃗⟩ = ⟨β⃗, G⃗⟩ and
α⃗ ̸= β⃗. We call this event DLOG.

Proof (Proof of Lemma 5). See Bünz et. al [6].

27

F Proof-of-Knowledge for Last Round Messages

We outlined in the main body that to make communication and computation of ΣMultiEval poly-
logarithmic in the size (m) of the coefficients of the polynomial f(X⃗) our idea is to replace the final
round of ΣMultiEval by a proof-of-knowledge ΣFinal of an accepting last round message. Recall the relation
of accepting last round messages in the protocol ΣMultiEval from section 9:

Rfinal :=

{((
C = (C(Z1), . . . , C(Zλ))
y⃗ = (y1, . . . , yλ)

)
, Z

)
:
∀i.yi ≡ Zi mod q
∀i.C(Zi) = [Zi] ·G
∀i.∥Zi∥∞ ≤ bound

}
(2)

If we decompose this relation coordinate-wise:

((C, y⃗) , Z) ∈ Rfinal ⇐⇒ ∀i ∈ [λ].((C(Zi), yi), Zi) ∈ Rsingle (3)

Where Rsingle :=

{
((C(Z), y), Z) :

y ≡ Z mod q
C(Z) = [Z] ·G
∥Z∥∞ ≤ bound

}
(4)

Next we construct a more efficient Proof-of-Knowledge for Rsingle and apply this protocol λ times in
parallel to prove Rfinal. We obtain our Proof-of-Knowledge for Rsingle by extending techniques of Boneh,
Bünz and Fisch [6] building upon Wesolowski [36]. Our techniques allows proving that the openings of
integer commitments vanish over any set of constant degree integer polynomials: a general commit-and-
prove for constant depth circuits. We combine this with techniques of Couteau et. al [17] and Limpaa
[27] to enable a very efficient (exact) range check. In summary, we construct a proof-of-knowledge for
the following relation:

RΣFinal
:=

{(
C(Z), (Z, σ1, σ2, σ3, ϕ)

)
:

Z − y = ϕ · q
1 + 4 · (bound + Z)
· (bound− Z) = σ2

1 + σ2
2 + σ2

3

C(Z) = [Z] ·G

}
(5)

The first condition is equivalent to y ≡ Z mod q, while Couteau et. al, building upon an optimization
by Groth [25], showed that the second condition is equivalent to Z ∈ [−bound, bound] or ∥Z∥∞ ≤
bound. We refer to their paper [17] for details, including how to efficiently compute the decomposition
σ1, σ2, σ3. Although our techniques can be generalized for low-degree arithmetic constraints, we provide
the exact protocol ΣFinal for RΣFinal

in Fig. 11. The communication complexity of the protocol is 3 group
elements from GN and 5 integers of size λ.

Because it derives from the techniques of Boneh, Bünz and Fisch the extractor for the protocol is in
the Generic Group of Unknown Order model (GGUO) introduced by Damg̊ard and Koprowski [19].

Theorem 8 (Knowledge Soundness of ΣFinal). ΣFinal is a proof-of-knowledge for the relation of
Eq. (5) in the Generic Group of Unknown Order (GGUO) model (see Appendix E).

Proof (Proof of Theorem 8). Consider two accepting transcripts of ΣFinal sharing the same first-round
message C(⋆): (

C(⋆), p,(Q(⋆), Q(Z), Ψ(ϕ), Ψ(σ1), Ψ(σ2), Ψ(σ3), Ψ(Z))
)

(
C(⋆), p

′,(Q′(⋆), Q
′
(Z), Ψ

′
(ϕ), Ψ

′
(σ1)

, Ψ ′(σ2)
, Ψ ′(σ3)

, Ψ ′(Z))
)

Produced by a polynomial time generic adversary AO1,O2(1λ).
From the generic group oracle we recover the representations:

C(Z) = ⟨[⃗a], G⃗⟩ Q(Z) = ⟨[α⃗], G⃗⟩ Q(⋆) = ⟨[β⃗], G⃗⟩

C(⋆) = ⟨[⃗b], G⃗⟩ Q′(Z) = ⟨[α⃗′], G⃗⟩ Q′(⋆) = ⟨[β⃗′], G⃗⟩

28

ΣFinal(C(Z), y, bound;Z)

// Prover computes circuit witness:

1 : Compute: σ1, σ2, σ3 s.t. 1 + 4 · Z · (bound − Z) = σ
2
1 + σ

2
2 + σ

2
3

2 : Compute: ϕ ← ⌊Z/q⌋

// Prover commit to each variable (note Z already committed)

3 : Send to V : C(⋆) ← [ϕ] · G1 + [σ1] · G2 + [σ2] · G3 + [σ3] · G4 ∈ GN

// Verifier samples a random prime

4 : p ←$ Pλ

// Prover computes remainders and quotients of all variables

5 : ∀v ∈ {ϕ, σ1, σ2, σ3, Z} :

6 : Φ(v) ← ⌊v/p⌋

7 : Ψ(v) ← v mod p

// Compute commitments to the (potentially large) quotients.

8 : Q(Z) ← [Φ(Z)] · G1 ∈ GN

9 : Q(⋆) ← [Φ(ϕ)] · G1 + [Φ(σ1)] · G2 + [Φ(σ2)] · G3 + [Φ(σ3)] · G4 ∈ GN

// Send the two quotient commitments and individual remainders to the verifier

10 : Send Q(Z), Q(⋆), {Ψ(v)}v∈{ϕ,σ1,σ2,σ3,Z} to V

// Verifier checks quotient & remainder decomposition

11 : C(Z)
?
= [p] · Q(Z) + [Ψ(Z)] · G

12 : C(⋆)
?
= [p] · Q(⋆) + [Ψ(ϕ)] · G1 + [Ψ(σ1)] · G2 + [Ψ(σ2)] · G3 + [Ψ(σ3)] · G4

// Verifier checks the arithmetic relation over the prime field Fp

13 : Ψ(Z) − y
?
≡ Ψ(ϕ) · q mod p

14 : 1 + 4 ·
(
bound + Ψ(Z)

)
·
(
bound − Ψ(Z)

) ?
≡ Ψ(σ1)

2
+ Ψ(σ2)

2
+ Ψ(σ3)

2
mod p

Fig. 11: A succinct protocol enabling the prover to convince the verifier that the opening of a com-
mitment C(Z) is a positive integer less than bound and congruent to y modulo q. The verifier running
time is bounded by the time required to compute bound mod p, which for structured bound, such as
bound = 22

m · (2λ)k, can be done in O(log(log(bound))) time.

29

Where G⃗ ∈ Gm
N is the list of responses from O1 including G1, . . . , G4 contained in the CRS of ΣFinal.

Because the verifier accepts both transcripts we recover representations of C(Z) and C(⋆):

C(Z) = ⟨[⃗a], G⃗⟩

= ⟨[p · α⃗], G⃗⟩+ [Ψ(Z)] ·G1

= ⟨[p′ · α⃗′], G⃗⟩+ [Ψ ′(Z)] ·G1

C(⋆) = ⟨[⃗b], G⃗⟩

= ⟨[p · β⃗], G⃗⟩+ [Ψ(q)] ·G1 + [Ψ(σ1)] ·G2 + [Ψ(σ2)] ·G3 + [Ψ(σ3)] ·G4

= ⟨[p′ · β⃗′], G⃗⟩+ [Ψ ′(q)] ·G1 + [Ψ ′(σ1)
] ·G2 + [Ψ ′(σ2)

] ·G3 + [Ψ ′(σ3)
] ·G4

Because DLOG occurs with negligible probability (see Lemma 5), we conclude that, except with
negligible probability, the following equalities hold:

a1 = p · α1 + Ψ(Z) = p′ · α′1 + Ψ ′(Z)

b1 = p · β1 + Ψ(q) = p′ · β′1 + Ψ ′(q)

b2 = p · β2 + Ψ(σ1) = p′ · β′2 + Ψ ′(σ1)

b3 = p · β3 + Ψ(σ2) = p′ · β′3 + Ψ ′(σ2)

b4 = p · β4 + Ψ(σ3) = p′ · β′4 + Ψ ′(σ3)

∀i > 1.ai = p · αi = p′ · α′i
∀i > 4.bi = p · βi = p′ · β′i

We can conclude that, except with neglible probability, over (p, p′)←$ Pλ × Pλ:

∀i > 1. ai = 0 and ∀i > 4.bi = 0

In other words, the representations are actually of the form:

C(Z) = [a1] ·G
C(⋆) = [b1] ·G1 + [b2] ·G2 + [b3] ·G3 + [b4] ·G4

Furthermore, for an adversary making q queries to the (O1,O2) generic group oracles, we can conclude
that the extracted quantities are bounded by 2q:

∥a1∥∞ ≤ 2q, ∥b1∥∞ ≤ 2q, ∥b2∥∞ ≤ 2q, ∥b3∥∞ ≤ 2q, ∥b4∥∞ ≤ 2q

Let us rename a1 = Z, b1 = q, b2 = σ1, b3 = σ2, b4 = σ3 to relate the extracted values to the witness
of an honest prover. Observe that we already established:

Ψ(Z) ≡ Z mod p, Ψ(ϕ) ≡ ϕ mod p

Ψ(σ1) ≡ σ1 mod p, Ψ(σ2) ≡ σ2 mod p, Ψ(σ3) ≡ σ3 mod p

If we apply Lemma 4 to the integer polynomials:

f1(X1, X2, X3, X4, X5) := (X1 − y)− (X2 · q)

f2(X1, X2, X3, X4, X5) := 1 + 4 ·X1 · (bound−X1)− (X2
2 + X2

3 + X2
4)

And evaluations f1(Z, ϕ, σ1, σ2, σ3) ∈ Z or f2(Z, ϕ, σ1, σ2, σ3) ∈ Z, we can conclude that the probability
over the choice of p←$ Pλ that:

Ψ(Z) − y ≡ Ψ(ϕ) · q mod p

1 + 4 ·
(
bound + Ψ(Z)

)
·
(
bound− Ψ(Z)

)
≡ Ψ(σ1)

2 + Ψ(σ2)
2 + Ψ(σ3)

2 mod p

Yet:

Z − y ̸= ϕ · q
1 + 4 · (bound + Z) · (bound− Z) ̸= σ2

1 + σ2
2 + σ2

3

Is negligible in λ since q is polynomial in λ. We conclude that ΣFinal is a proof-of-knowledge for the
relation RΣFinal

(see Eq. (5)).

30

Theorem 9 (The Running Time of ΣFinal). The verifier V runs in time polynomial in Õ(λ ·
log log bound), assuming (bound mod p) can be computed in time O(log log bound).

Proof. By inspection of the protocol.

Corollary 2. For the case where bound = 2m · (2λ)2 as in ΣMultiEval, then (bound mod p) can be
computed in time O(log(p)2 · (log(m) + log(λ))) using a simple square-and-multiply algorithm. As a
result, the verifiers running time in ΣFinal is polynomial in log(m) as desired.

G Opening Proof: Composing ΣEval and ΣFinal

Our opening proof is obtained by composing the ΣEval and ΣFinal protocols: inspired by Compressed
Σ-Protocols [3] we replace the final round of ΣEval with the Argument-of-Knowledge ΣFinal. To show
that the composition is an Argument-of-Knowledge the strategy is to extract the final round from
ΣFinal (see Appendix F) and then employ the extractor from ΣEval (from Block et. al [5]).

ΣOpen(pp = (GN , G1, G2, G3, G4), C ∈ GN , x⃗ ∈ Fk
q , y ∈ Fq,m, q; f)

1 : (C, y⃗; Z⃗)← LastRound(ΣEval(pp = (GN , G1), C, x⃗, y,m, q; f))

2 : Decompose (C(Z1), . . . , C(Zλ)) = C

3 : Decompose (Z1, . . . , Zλ) = Z⃗

4 : Decompose (y1, . . . , yλ) = y⃗

5 : In parallel: for i ∈ [0, λ] : ΣFinal(C(Zi), yi, bound = 2m · (2λ)k;Zi)

Fig. 12: Composition of ΣEval and ΣFinal to obtain ΣOpen. We denote by LastRound the function that
extracts the last round statement of ΣEval.

Lemma 6 (Knowledge Soundness of ΣOpen). The protocol ΣOpen is an Argument-of-Knowledge
for the relation:

RΣOpen
= {((C, x⃗, y, q), f) : isValid(pp, C, x⃗, q, y, f)}

In the GGUO (see Appendix E) model, with negligible knowledge error. Furthermore, for a fixed C,
finding f∗ ̸= f such that ((pp, C, x⃗∗, y∗, q∗), f∗) ∈ RΣOpen

and ((pp, C, x⃗, y, q), f) ∈ RΣOpen
breaks the

order assumption on GN : subtracting the two polynomials from each other, then encoding, yields a
non-zero multiple of the group order N .

Theorem 10 (Weak-evaluation binding of modPC). The scheme modPC satisifies Weak Evalua-
tion Binding (Definition 22)

Proof (Proof of Theorem 10). We show that mod-PC satisfy Definition 22. Recall that weak evaluation
binding states that it is hard to prove an incosistent polynomial evaluation for an honestly computed
commitment. If we apply the extractor Ext to A2 producing accepting transcripts for ΣOpen, we recover
f∗ st:

((C, x⃗∗, y∗, q∗), f∗) ∈ RΣOpen

Where C = Com(pp, f). If f∗ = f then the adversary does not break binding, since in particular
f(x⃗∗) = y∗. On the other hand, if f∗ ̸= f then the adversary breaks the order assumption on GN as
stated in Lemma 6.

We prove a slightly stronger notion (see Definition 23) of knowledge soundness for mod-PC, in which
soundness holds when the adversary is allowed to choose the prime q. This stronger notion implies the
weaker one (Definition 13), see Appendix J.2 for details.

Lemma 7 (Strong Knowledge Soundness of mod-PC). The scheme mod-PC is a strong knowledge-
sound (Definition 23) with negligible knowledge error ϵ.

31

Proof (Proof of Lemma 7). Lemma 6 We show that mod-PC satisfies strong knowledge soundness.
Recall that strong knowledge soundness states that the evaluations of the extracted polynomial f will
coincide with the proven evaluations by Aprf. This follows directly from Lemma 6 by observing that
every evalaution proof allows us to extract:

((C, x⃗∗, y∗, q∗), f∗) ∈ RΣOpen

If f∗ ̸= f we break binding. Otherwise, if f∗ = f then the evaluations of f and f∗ coincide and
∀j ∈ [m] f(zj) ≡ yj mod q meaning that Aprf does not win the Strong Knowledge Soundness game.

H Reducing the Requirements for Indexing Commitments in our
Compiler

We observe that in the proof of Theorem 2 we do not really need to invoke the extractability of the
commitments to the indexing polynomials. All that is required for them is that weak evaluation binding
holds. This suggests the following modified compiler:

– Let modPCidx and modPCw be two mod-PCs satisfying respectively weak evaluation binding and
knowledge soundness.

– Apply the compiler in Fig. 14, with the only difference that we use modPCidx for the indexing
polynomials and modPCw for the oracle polynomials.

The following theorem follows from the proof of Theorem 2.

Theorem 11. Let modAHP be a knowledge-sound mod-AHP. Let modPCidx and modPCw be two mod-
PCs satisfying respectively weak evaluation binding and knowledge soundness. Then applying the variant
of the compiler in Fig. 14 described above yields a complete, full knowledge-sound interactive argument.

I Missing Proofs

I.1 Proof of Lemma 2

Consider (i, x⃗, w⃗) ̸∈ Rn. If the statements are such that the bound b in Definition 6 then we are done.
Otherwise let us proceed as follows and let us bound the probability that:

for all j, ⟨Aj , z⃗⟩ ◦ ⟨Bj , z⃗⟩ − ⟨Cj , z⃗⟩ ≡ 0 mod q (6)

for a randomly sampled prime q of λ bits and z⃗ := (1, x⃗, w⃗). Since (i, x⃗, w⃗) ̸∈ Rn there must exist index
j∗ such that

⟨⃗a, z⃗⟩ ◦ ⟨⃗b, z⃗⟩ − ⟨c⃗, z⃗⟩ ≠ 0

where the operations in the last equality are over the integers and a⃗ := Aj∗ , b⃗ := Bj∗ , c⃗ := Cj∗ . Let

y := ⟨⃗a, z⃗⟩ ◦ ⟨⃗b, z⃗⟩− ⟨c⃗, z⃗⟩. The probability that Eq. (6) holds is bounded from above by the probability
that q divides y. We can bound this probability by a quantity negligible in λ through a straightforward
invocation of Lemma 4 seeing y as the evaluation of low degree polynomial in z⃗ (notice that for that
we use the norm bound requirements from Definition 6). ⊓⊔

I.2 Proof of Theorem 1

We propose only a sketch of the proof since it is easy and formal versions of some of these observations
are in the proof of Theorem 2.

Let P∗ = (P∗orcl,P
∗
rst) and consider the following extractor:

ExtP
∗ (

1λ, i, x, aux
)

Obtain polynomial g∗(X⃗) from P∗
orcl

Run Decoder on g∗(X⃗) to obtain w

Return w

32

Now assume by contradiction that the following event has a non-negligible probability: the output
of the extractor above is not a witness for the original (full) integer relation R and yet the verifier
accepts when interacting with P∗. Now consider the prime q sampled during the interaction. Either w
is a witness for JRnKq or it is not. The probability that the extracted string w is a “fingerprint” witness
modulo q (while being not a witness for the integer relation) is negligible because of the assumptions
on the good testing property. If it is not a fingerprint witness, however, we can invoke weak knowledge
soundness (Definition 13) and conclude we reached a contradiction. ⊓⊔

I.3 Proof of Theorem 2

To argue completeness we need to argue that for an honestly generated proof, the decision algorithm
will accept. The latter consists of two checks: those from underlying mod-AHP and the mod-PC
verification. Invoking completeness of the two primitives suffices to claim completeness of the overall
argument.

We now show knowledge soundness for our compiler. Our proof strategy is standard and resembles
the one used in previous papers with AHP-like compilers, such as [1,11,10,16]. Consider an adversary
P̃ producing an accepting transcript with probability p̃. We show an extractor for P̃ in Fig. 13. Our
approach at the high level:

– The extractor works by invoking the mod-AHP extractor which interacts with a mod-AHP prover
P∗.

– P∗ is related to P̃ and, intuitively, is the prover that, at each round i∗ before the prime is sampled
returns the polynomials “behind” the commitments returned by P̃ at the same round. For the
later rounds it simply follows the prover of the plain interactive protocol part of the mod-AHP.

– To define such a P∗ we need to invoke the extractor of the mod-PC. Formally, in order to do this
we need to define an adversary for each of the polynomial/commitment that will be exchanged
during the interaction. Such a family of adversaries is defined in Fig. 14.

Consider the knowledge soundness game for interactive arguments. Below we bound the probability
that the extractor ExtARG fails to output a witness (event ExtARG ✗) while P̃ successfully produces
an accepting transcript in the knowledge soundness game (event P̃ ✓). In order to do this, we make

observations related to events for ExtP
∗

AHP and P∗ in the context of the AHP knowledge soundness

game; denote by ExtP
∗

AHP ✗ the event where ExtP
∗

AHP fails to produce a valid witness and by P∗ ✓
the event where P∗ succeeds in producing outputting oracle polynomials that make the AHP verifier
accept. Below when expressing conjunctions, we consider the correlated events where there is only one
sampling of the random coins of P̃ and the random coins of the AHP and argument verifiers (for P∗

and P̃ respectively) uses the same random tape.
We can then observe:

Pr[ExtARG ✗ ∧ P̃ ✓]

= Pr[ExtP
∗

AHP ✗ ∧ P̃ ✓] (7)

= Pr[ExtP
∗

AHP ✗ ∧ P̃ ✓ ∧ P∗ ✓] + Pr[ExtP
∗

AHP ✗ ∧ P̃ ✓ ∧ P∗ ✗] (8)

≤Pr[ExtP
∗

AHP ✗ ∧ P∗ ✓] + Pr[P∗ ✗ ∧ P̃ ✓] (9)

≤ negl(λ) + negl(λ) (10)

– Eq. (7) follows by construction of ExtARG.
– In Eq. (8) we apply a simple marginalization.
– In Eq. (9) we apply the elementary fact X → Y =⇒ Pr[X] ≤ Pr[Y].
– We bound the left-hand summand in Eq. (10) by simply invoking knowledge soundness of the

underlying mod-AHP. For the right-hand summand we invoke Lemma 8.

This concludes the proof. ⊓⊔

33

ExtARG (srs; rndP̃)

(i, x, s̃t)← P̃1(srs; rndP̃)

aux :=
(
s̃t, rndP̃ , srs

)
Output w← ExtP

∗
AHP(1

λ
, i, x, aux)

P∗ (st, tri∗ , aux)

Retrieve i from the state

If i
∗ ≤ k then invoke P∗orcl (st, tri∗ , aux) // defined below

Else invoke P∗rst (st, tri∗ , aux) // from plain interactive protocol in underlying mod-AHP

P∗
orcl

(
st, ρ⃗1, . . . , ρ⃗i∗ , aux =

(
s̃t, rndP̃ , srs = (1λ, ppPC)

))
Retrieve i from the state

If i
∗
= 0 then return (g0,j)j∈[s(0)] ← I(1

λ
, i)

For j = 1, . . . , s(i∗) :

Invoke ExtPC,i∗,j
(ppPC, aux = (s̃t, rndP, ρ⃗1, . . . , ρ⃗i∗)) to obtain gj

Abort if gj ̸∈ Z≤d[X1, . . . , Xµ] where d := d(λ, |i|, i∗, j), µ := v(λ, |i|, i∗)
return (gj)j=1,...,s(i∗)

Fig. 13: Extractor for proof of Theorem 2.For each i, j the extractor ExtPC,i,j is defined as the poly-
nomial commitment extractor for adversary APC,i,j according to the knowledge soundness property in
Definition 14. We assume that the prover P∗ obtains as initial state the index i.

APC,i,j
com (ppPC, aux = (s̃t, rndP̃ , ρ⃗1, . . . , ρ⃗i))

Let srs = (1
λ
, ppPC)

Run EmulateArgTranscript(srs, s̃t, rndP̃ , ρ⃗1, . . . , ρ⃗i,⊥,⊥) to obtain transcript T
Retrieve the commitment ci,j from T ; Save ppPC, aux as state st

Return
((

ci,j , d(λ, |i|, i, j), v(λ, |i|, i)
)
, st

)
Qi,j(ppPC, q, aux = (s̃t, rndP̃ , ρ⃗1, . . . , ρ⃗i))

Let srs = (1
λ
, ppPC)

Sample ρ⃗i+1, . . . , ρ⃗k, ρ⃗rst where k = k(λ, |i|)

Run EmulateArgTranscript(srs, s̃t, rndP̃ , ρ⃗1, . . . , ρ⃗k, ρ⃗rst, q) to obtain transcript T w/ queries Q

Let z⃗i,j :=
(
z : (i

′
, j
′
, z) ∈ Q, i = i

′
, j = j

′)
Return

(
z⃗i,j , auxQ :=

(
ρ⃗i+1, . . . , ρ⃗k, ρ⃗rst

))
APC,i,j

prf (st, z⃗i,j , q, auxQ := (ρ⃗i+1, . . . , ρ⃗k, ρ⃗rst))

// st contains aux = (s̃t, rndP̃ , ρ⃗1, . . . , ρ⃗i)

Run EmulateArgTranscript(srs, s̃t, rndP̃ , ρ⃗1, . . . , ρ⃗k, ρ⃗rst, q) to obtain transcript T

// NB: queries z⃗i,j in transcript are the same as the ones in input to APC,i,j
prf

For each z ∈ z⃗i,j retrieve corresponding proof π
(eval)
z and evaluation yz from T

Return
(
yz, π

(eval)
z

)
z∈z⃗i,j

EmulateArgTranscript(srs, s̃t, rndP̃ , ρ⃗1, . . . , ρ⃗i∗ , ρ⃗rst, q)

// Notice that by convention we have ρ⃗rst = q = ⊥ if i
∗ ≤ k(λ, |i|)

If ρ⃗rst = q = ⊥ run an interaction with P̃ till round i
∗
(included)

Else run a full interaction

(in both cases run P̃ (resp. V) w/ state/randomness (s̃t, rndP̃) (resp. (ρ⃗1, . . . , ρ⃗i∗ , q, ρ⃗rst)))

Return the transcript from the interaction T

Fig. 14: Auxiliary algorithm definitions for Fig. 13. We assume each APC,i,j =
(
APC,i,j

com ,APC,i,j
prf

)
has

embedded the parameter |i|.

34

Lemma 8. In the proof of Theorem 2 the quantity Pr[P∗ ✗ ∧ P̃ ✓] in Eq. (9) is negligible.

Proof. By inspection of P∗ we can observe that there are two ways the event P∗ ✗ may occur: some of
the polynomials gi∗,j may:

(i) have the wrong degree or number of variables after extraction (for some i∗ ≥ 1); or
(ii) disagree with the output of P̃ in the following way (recall that we consider the same verifier’s

challenges for both the AHP and argument interaction):
– Let z be some challenge point for gi∗,j in the transcript.

– Let y be the evaluation output y claimed by P̃ for the polynomial opening ci∗,j when evaluated
on z taking the value mod q (the prime from the transcript).

– We say that the event Bad(gi∗,j) occurs if gi∗,j(z) ̸≡ y mod q for some challenge z and corre-

sponding output y claimed by P̃.
The event above intuitively means that the oracle polynomial output gi∗,j by P∗ “does not agree”

with the claims by P̃. Notice that, if condition (i) does not occur but P∗ ✗ and P̃ do, then it must
be the case that condition (ii) occurred (otherwise the decision algorithm would have accepted for
P∗ as well).

We can easily observe that the probability that (ii) occurs is negligible because of the negligible
knowledge soundness error of the polynomial commitment (we will show a more formal reduction below
for a similar case). Therefore, by applying the observations above and a simple union bound we can
conclude that Pr[P∗ ✗ ∧ P̃ ✓] is at most:∑

j

Pr[P̃ ✓ ∧ Bad(g0,j) : (g0,j)j ← I(1λ, i)] +

∑
i∗ ̸=0,j

Pr[P̃ ✓ ∧ Bad(gi∗,j) : gi∗,j ← Exti
∗,j,PC] + negl(λ)

If we assume, for sake of contradiction, that Pr[P∗ ✗ ∧ P̃ ✓] is non-negligible then at least some
term in the two sums above must be non-negligible. We now show that we can recast the event encoded
by the Bad predicate as a knowledge soundness game of the polynomial commitment or as a weak-
evaluation binding game (for the case of the polynomials from the indexer).

By knowledge soundness of the mod-PC we know the following probability is at most negligible:

Pr



(
gi∗,j ̸∈ Z≤d[X1, . . . , Xµ] ∨

∃k ∈ [m] gi∗,j(zk) ̸≡ yk mod q
)
∧

d ≤ D ∧ µ ≤M ∧∧
k

VfyEvalMod
(
pp, q, ci∗,j , zk, yk, π

(eval)
k

)
= 1

:

pp← Setup(1λ, D,M)

((ci∗,j , d, µ) , st)← APC,i∗,j
com (pp, aux)

q ←$ Pλ(
(zk)k∈[m] , auxQ

)
← Q(pp, aux, q)(

yk, π
(eval)
k

)
k∈[m]

← Aprf(st, q, (zk)k , auxQ)

gi∗,j ← ExtPC,i∗,j(pp, aux)


Now, for a more succinct notation, let us define the following event:

Eadv,KSND :=



pp← Setup(1λ, D,M)

((ci∗,j , d, µ) , st)← APC,i∗,j
com (pp, aux)

q ←$ Pλ(
(zk)k∈[m] , auxQ

)
← Q(pp, aux, q)(

yk, π
(eval)
k

)
k∈[m]

← Aprf(st, q, (zk)k , auxQ)

gi∗,j ← ExtPC,i∗,j(pp, aux)


and let us observe that, by how we defined Bad, we have:

Bad(gi∗,j) ⇐⇒
(
gi∗,j ̸∈ Z≤d[X1, . . . , Xµ] ∨ ∃k ∈ [m] gi∗,j(zk) ̸≡ yk mod q

)
35

By observing that the coin tosses in Eadv,KSND are distributed exactly as in an interaction with an
honest argument verifier, we can then conclude that:

negl(λ) ≥ Pr

[
Bad(gi∗,j) ∧

∧
k

VfyEvalMod
(
pp, q, ci∗,j , zk, yk, π

(eval)
k

)
= 1

∣∣∣∣∣Eadv,KSND

]
≥ Pr

[
Bad(gi∗,j) ∧ P̃ ✓

]

Now for the indexer polynomials, assume that Pr[P̃ ✓ ∧ Bad(g0,j) : (g0,j)j ← I(1λ, i)] is non-

negligible for some j. Consider some evaluation proof π(eval) from P̃ with respect to commitment c0,j
and some evaluation point z with claimed output y (modulo q). By is definition, if the event Bad(g0,j)
occurs then g0,j(z) ̸≡ y mod q. Let p the probability π(eval) passes the verification and Bad(g0,j) occurs.
This probability should be negligible by definition of weak-evaluation binding because c0,j is generated

honestly from g0,j ; however, this probability is at least Pr[P̃ ✓ ∧ Bad(g0,j) : (g0,j)j ← I(1λ, i)], which
we assumed to be non-negligible. Absurd. ⊓⊔

I.4 Proof of Theorem 3

It is immediate to see that Fig. 4 satisfies the syntactic properties of the mod-AHPs (oracles, prime
sampling, subsequent interactive argument) and that it has a simple prover (Definition 12). Notice that
the multilinear encoding of the witness, w̃ ∈ Z[X1, . . . , XlogN], can be computed over the integers.

We need to show weak knowledge soundness, that is, informally, that for any efficient adversary
there is a decoder such that for any prime q ∈ Pλ with overwhelming probability we are able to extract
a witness for the associated fingerprinting relation. (see Definition 7) or the prover fails to pass the
verification checks. Here we can easily invoke the results from [31]. We observe that after the prime
is sampled the protocol in Fig. 4 is exactly the one in the original description of Spartan. The only
difference is in the language used to describe since we use the language of AHP over Z with modular
remainder queries.18

We now show how we can invoke results from the proof of Theorem 5.1 from [31], which shows
the knowledge soundness of Spartan. The proof (which is phrased in the language of witness-extended
emulation) essentially proves that Spartan is an extractable AHP (in the standard sense). All we need
to bridge this fact into our proof is:

1. to show that the proof in Spartan is not impacted by the polynomial w̃(X⃗) being over the integers
instead of in the finite field at the start of the protocol;

2. to show that what is extracted is actually a witness for JRR1Kq;

Let q be some prime and let Extq be the Spartan extractor for the field Fq. Such an extractor exists
as by Theorem 5.1 in [31]. This extractor works by looking at the polynomial w̃, evaluating it on the
boolean hypercube and returning the resulting vector. The security result we cite above shows that
this produces a valid witness in Fq with overwhelming probability.

We define our decode exactly as the extractor above. We want to claim that this algorithm will
produce a vector w such that (i, JxKq, JwKq) ∈ JRnKq unless the adversary does not pass verifier with
substantial probability.

To argue the above we proceed as follows. Let (A,B,C) be a Z-R1CS and let q be a prime. For
any adversary A′ for the relation yielded by (A,B,C) against the experiment in Definition 13, we can
observe that there exists an adversary A for the original Spartan for the “fingerprinted” R1CS (which
is a valid F-R1CS and therefore a valid constraint system for the original Spartan) that engages in
the knowledge soundess game with the original extractor Ext with the same success probability. We
first observe that in our protocol the indexing polynomials are MLE(A),MLE(B),MLE(C) but all the
evaluations of those multilinear extensions at the end of protocol are modulo q. Therefore, by Lemma 1
these evaluations are the same as the evaluations of the multilinear extensions corresponding to the
R1CS fingerprinted relation (see Definition 7). This guarantees correspondence between the R1CS as
described above.

18 It has already been observed in other works that Spartan is essentially an algebraic holographic proof (in the
standard sense of “finite-field” AHPs) over multivariate polynomials [15].

36

Then we can construct A as the adversary that internally runs A′ but provides oracle access to
the polynomial w̃q that behaves exactly the same as w̃ in Zq. Because of the observations on the MLE
of the matrices, we can finally observe that the output of a verifier having access to only evaluations
modulo q of an integer polynomial w̃(X) (as it is the case in Fig. 4) would be the same of that of a
verifier having access to w̃q. This proves the claim above and concludes the proof. ⊓⊔

I.5 Proof of Theorem 4

Consider the compiler in Fig. 3 and apply modPC to the indexer oracle polynomials (recall that we have
no other oracle polynomials). We construct modPC∗ from the argument obtained from the compiler as
follows:

– The setup consists of the setup of mod-PC for dense polynomial.

– The commitment stage consists of the indexing stage: it receives as input the index description (a
polynomial) and the output commitment is the vector of commitments from the indexing stage.

– The opening stage (recall we consider interactive opening) takes as input a randomly sampled
prime q as well as the commitment and the pair point–evaluation and it consists of the online stage
of the argument after the sampling of the prime.

Now we need to argue this construction satisfies weak evaluation binding. Assume that, by sake of
contradiction, it is not. That is, there exists an efficient adversary A that:

– outputs a multilinear polynomial g;

– after seeing a random prime q, outputs x⃗ and y such that g(x⃗) ̸= y;

– with non-negligible probability gets to convince the verifier g(x⃗) = y w.r.t the honestly generated
commitment cg.

Consider the opening transcript of A. Intuitively it is either containing false claims for the output of
the indexing polynomials (which would entail breaking the delayed-input soundness of the underlying
mod-AHP) or it is producing convincing mod-PC proofs for false outputs of the indexing polynomials
(breaking weak-evaluation binding of modPC). We thus reach a contradiction19. ⊓⊔

I.6 Proof of Theorem 5

The core efficiency properties of the construction are argued in [31]; the resulting efficiency of our
construction follow straightforwardly from those observations. For what concerns security, we can
also easily rely on the security arguments in [31]: The proof of Lemma 7.6 in [31] essentially argues
that the construction in Fig. 5 is an interactive argument with negligible soundness if PCagn is an
extractable polynomial commitment. The original proof also assumes that the indexing polynomials
are not provided through oracle access but are instead committed and then evaluated through the
opening of a polynomial commitment (with weak evaluation binding properties). The only significant
change with the proof is then the fact that we are assuming oracle access instead of polynomial
commitments opening but this can clearly only strengthen the claims in the original proof.

The proof of Lemma 7.6 in [31] argues for soundness of the protocol as an argument for Rpoly; this
translates directly to delayed-input soundness for mod-AHPs. ⊓⊔

19 A formal version of these last steps is analogous to the ones in the proof of Theorem 2, to which we refer
the reader.

37

J Additional Definitions for mod-PCs

J.1 Weak Evaluation binding

Definition 22 (Weak Evaluation Binding). For any PPT adversary A, D,M, λ ∈ N, d ≤ D,
µ ≤M :

negl(λ) ≥ Pr


VfyEvalMod

(
pp, q, c, y, π(eval)

)
= 1 :

pp← Setup(1λ, D,M)

(f, st)← A1(pp)

(c, opn)← Com(pp, f)

q ←$ Pλ

(x, y, π(eval))← A2(st, q)

y ̸≡ f(x) mod q

f ∈ Z≤d[X1, . . . , Xµ]


For a negligible function negl(λ).

J.2 (Strong) Knowledge Soundness over Adversarial Primes

Below we define a stronger version of the knowledge soundness we provide in Definition 14. It is easy
to see that the latter is implied by the one in Definition 23.

Definition 23 ((Strong) Knowledge soundness for mod-PC over adversarial primes). We
say a mod-PC has strong knowledge soundness error ϵ over adversarial primes if for any λ,D,M ∈ N
and PPT A = (Acom,Aprf) there exists a non-uniform polynomial time extractor Ext such that for any
efficient query algorithm (with random tape independent from that of the adversary) Q auxiliary string
aux ∈ {0, 1}poly(λ), the following probability is at most ϵ:

Pr



(
f ̸∈ Z≤d[X1, . . . , Xµ] ∨

∃j ∈ [m] f(zj) ̸≡ yj mod q
)
∧

d ≤ D ∧ µ ≤M ∧ q ∈ Pλ ∧∧
j

VfyEvalMod
(
pp, q, c, zj , yj , π

(eval)
j

)
= 1

:

pp← Setup(1λ, D,M)

((c, d, µ, q) , st)← Acom(pp, aux)(
(zj)j∈[m] , auxQ

)
← Q(pp, aux, q)(

yj , π
(eval)
j

)
j∈[m]

← Aprf(st, (zj)j , auxQ)

f ← Ext(pp, aux)


where above the extractor has access to the random tape of the adversary.

K Oracle Polynomials over F in mod-AHP

K.1 Augmented model

In Fig. 15 augment the model of mod-AHP presented in Definition 10 with an additional round20 after
prime sampling where the prover can send oracle polynomials which do depend on the sampled prime
and are defined over Fq. Below we mark in blue the extra steps in the protocol. We also mention that
the protocol is now parametrized by three additional functions s⋆, d⋆, v⋆ for the number of polynomials,
degree and number of variables respectively.

20 For simplicity we provide a presentation for one round only, but this is an arbitrary choice—one round is
sufficient for us to model the setting in Section 8.

38

– Indexing phase The indexer I receives as input a security parameter 1λ and the index i for R, and
outputs s(0) polynomials p0,1, . . . , p0,s(0) ∈ Z[X⃗] of degrees at most d(λ, |i|, 0, 1), . . . , d(λ, |i|, 0, s(0))
respectively; |X⃗| = v(λ, |i|, 0).

– Online phase The prover P receives (1λ, i, x,w), for an instance x and witness w such that (i, x,w) ∈ R.
The verifier V receives 1λ, x and oracle access to the polynomials output by I(1λ, i)21. The prover P
and the verifier V interact over a number of rounds as follows:
• Integer Oracle Polynomials Phase: In the i-th round, i ∈ {1, . . . , k(λ, |i|)}, the verifier V sends

messages ρ⃗i ∈ {0, 1}poly(λ) to the prover P; the prover P responds with s(i) oracle polynomials
pi,1, . . . , pi,s(i) ∈ Z[X⃗] where each is respectively of degree at most d(λ, |i|, i, 1), . . . , d(λ, |i|, i, s(i))
and |X⃗| = v(λ, |i|, i).

• Prime Sampling Phase: After k rounds, the verifier samples a prime q ←$ Pλ and sends it to
P.

• Prime-Dependent Oracle Round: The verifier sends random challenge ρ⃗⋆; the prover responds
with s⋆ := s⋆(λ, |i|) oracle polynomials p⋆1, . . . , p

⋆
s⋆ ∈ Fq[X⃗] all of degree d⋆(λ, |i|) and number of

variables v⋆(λ, |i|)
• Plain Interaction Phase: The prover and verifier engage in a plain interactive protocol (see

Section 2) for k′ rounds:

trrst := (m⃗rst, ρ⃗rst)← transcriptλ
(
⟨Prst(ρ⃗1, . . . , ρ⃗k, q),Vrst⟩

)
– Query phase Using the whole transcript, the verifier outputs a set of queries for the oracle polyno-

mials. The verifier outputs a query set Q for the integer oracle polynomials as well as a set Q⋆ for the
oracle (p⋆j)j∈[s⋆] which consists of pairs (j, z ∈ Fq), the response to which is p⋆j (z).

– Decision phase The verifier outputs accept or reject based on the answers received to the queries Q
and Q⋆, its randomness and the whole transcript.

Fig. 15: Augmented mod-AHP

K.2 Prime-Agnostic Polynomial Commitments

A prime-agnostic polynomial commitment is like an ordinary polynomial commitment but it is not
restricted to work within a specific finite field fixed at setup time. We will use this type of polynomial
commitments to compile the augmented mod-AHP described in Appendix K.1.

Below, whenever we write F we mean the finite field Fq for a prime q that will be obvious from the
context. All the arithmetic in this subsection is over F.

Definition 24. A prime-agnostic polynomial commitment consists of a tuple PCagn = (Setup,Com,ProveEval,VfyEval)
such that:

Setup(1λ, D, µ) → pp: on input a security parameter λ ∈ N, an individual degree parameter D ∈ N
and a number of variables M ∈ N outputs public parameters of the scheme.

Com(pp, q, g ∈ F≤d[X1, . . . , Xµ])→ (c, opn): on input public parameters, a prime q a polynomial g, it
outputs a commitment c and an additional opening string opn (used as auxiliary input for opening).

ProveEval(pp, q, c, opn, z) → π(eval): on input public parameters pp, prime q, commitment c, opening
opn and z ∈ F, it outputs a proof π(eval) certifying the value g(z).

VfyEval(pp, q, c, z, y, π(eval))→ b ∈ {0, 1}: on input pubic parameters, prime q, commitment c, claimed
value y ∈ Fq and proof π(eval), it outputs a bit accepting or rejecting the proof.

Correctness. For any D,M, λ ∈ N, d ≤ D, µ ≤M , prime q ∈ Pλ, g ∈ F≤d[X1, . . . , Xµ] and z ∈ F, the
following probability is overwhelming:

Pr

VfyEval
(
pp, q, c, y, π(eval)

)
= 1 :

pp← Setup(1λ, D,M)

(c, opn)← Com(pp, q, g)

π(eval) ← ProveEval(pp, q, c, opn, z)

y := g(z)


39

Knowledge soundness (with knowledge error ϵ). For any λ,D,M ∈ Z and PPT A = (Acom,Aprf) there
exists a non-uniform polynomial time extractor such that for any efficient query algorithm (with random
tape independent from that of the adversary) Q auxiliary string aux ∈ {0, 1}poly(λ), the following
probability is at most ϵ:

Pr



(
g ̸∈ F≤d[X1, . . . , Xµ] ∨

∃j ∈ [m] g(zj) ̸= yj

)
∧

d ≤ D ∧ µ ≤M ∧ q ∈ Pλ ∧∧
j

VfyEval (pp, q, c, zj , yj , πj) = 1

:

pp← Setup(1λ, D,M)

((q, c, d, µ) , st)← Acom(pp, aux)(
(zj)j∈[m] , auxQ

)
← Q(pp, aux, q)

(yj , πj)j ← Aprf(st, q, (zj)j , auxQ)

g ← Ext(pp, aux)


where above the extractor has access to the random tape of the adversary22.

Remark 5 (Existing constructions). We remark that field-agnostic constructions such as Brakedown [24]
and Orion [37] satisfy our definition.

Constructions from mod-PCs with Strong Extractability It is rather straightforward to pro-
duce a prime-agnostic polynomial commitment from a mod-PC: at commitment stage we ignore the
prime q in input (since the mod-PC’s commitment algorithm is for polynomials over the integers); the
other algorithms follow the same syntax and can be trivially in a straightforward manner. In order
to argue security, however, we need the mod-PC to satisfy the stronger form of knowledge soundness
where the prime can be provided by the adversary (Definition 23). Showing security of the resulting
construction is trivial.

Theorem 12. If there exists a mod-PC with negligible strong knowledge error (Definition 23) then
there exists a prime-agnostic polynomial commitment with the same efficiency with negligible knowledge
error.

From the fact that our construction satisfies Definition 23 (see Remark 5) we have the following
corollary.

Corollary 3. There exists a prime-agnostic polynomial commitment with negligible knowledge error
secure in the GGUO.

K.3 Extending the compiler

In Fig. 16 we present an extended version of the compiler in Fig. 3 to apply to the augmented mod-AHPs
defined in Fig. 15. The approach we use is straightforward and consists of applying a prime-agnostic
polynomial commitment to the extra round of oracle polynomials in Fq. In a sense, this stage of the
protocol is compiled almost exactly as done in standard AHP compilers in finite fields [11,16,1]. As
a consequence the proof of security of Theorem 13 also follows directly from a minor variant of the
proofs of security from these works and the one we present for Theorem 2.

Theorem 13. Let modAHP be an agumented AHP over Z with modular remainder queries (Defini-
tion 10 and Fig. 15) for R, let PCprj be a mod-PC (Definition 14) satisfying weak-evaluation binding
and with negligible knowledge soundess error, let PCagn be a prime-agnostic PCagn with negligible knowl-
edge soundness error then the construction in Fig. 16 is an interactive argument with preprocessing
(Definition 2) for R.

22 And therefore does not need to get q as input.

40

Setup(1λ, N): . . . ppagn ← PCagn.Setup(1
λ, D,M) Return srs =

(
1λ, ppPC, ppagn

)
Indexer(srs, i): . . .

Interaction:
– Integer Polynomial Oracle phase: . . .

– Prime sampling: After k rounds, V obtains a prime q and sends it to P.
– Prime-dependent Oracle round:

1. V receives random challenges ρ⃗⋆ from V and forwards them to P.
2. P forwards ρ⃗⋆ to P which replies with polynomials (g⋆)s

⋆

j=1.

3. P compute commitments(
c⋆j , opn

⋆
j

)
= PCagn.Com

(
ppagn, q, g

⋆
j

)
, j = 1, . . . , s⋆

and sends
(
c⋆j
)
j=1,...,s⋆

to V.
– Plain-Interaction phase: . . .

– Query Phase:

1. . . . compute query set Q⋆. Recall from Fig. 15 that each entry in Q⋆ is of the form (j, z).

2. . . .

3. P computes and sends v⋆ := g⋆(Q⋆) and πππ⋆ where

g⋆(Q⋆) :=
(
g⋆j (z) : (j, z) ∈ Q⋆

)
πππ⋆ :=

(
PCagn.ProveEval

(
ppagn, q, c

⋆
j , opn

⋆
j , z

)
: (j, z) ∈ Q⋆

)
– Decision Phase: V accepts if and only if all the following conditions hold:

• . . .

• . . . the evaluation proofs verify including the ones from πππ⋆ (using PCagn.VfyEval)

Fig. 16: Compiler for augmented mod-AHPs. In blue are additions to Fig. 3.

We observe that, in general, the other results we have on mod-AHPs, including those in Section 8.1,
extend immediately to the setting mod-AHPs augmented as we do in Fig. 15. The result we need the
most among these is the following (which we use Section 8).

Theorem 14 (Delayed-Input Soundness ⇒ Sparse mod-PC). Assume: (a) a mod-PC modPC
with weak evaluation binding; (b) a prime-agnostic polynomial commitment PCagn with negligible knowl-
edge soundness (for dense polynomials); (c) a (possibly augmented) mod-AHP modAHP for Rpoly that:
(i) is efficient for sparse polynomial evaluation (Definition 19); (ii) has negligible delayed-input sound-
ness. Then there exists a weak evaluation binding mod-PC modPC∗ for sparse polynomials with inter-
active opening (see Definition 16 and Remark 2).

Proof. The proof is almost completely the proof for Theorem 4. The fact that we have additional oracle
polynomials does not change the essence of the proof above. Instead of applying the compiler from
Fig. 3, we apply its extended variant in Fig. 16. The remaining observations follow mutatis mutandis.

⊓⊔

41

	Fully-Succinct Arguments over the Integersfrom First Principles
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries
	3 Relations over Z and their Fingerprint
	3.1 Fingerprinting Relations
	3.2 R1CS over Z and its Fingerprint
	3.3 Multilinear Polynomial Evaluation and its Fingerprint

	4 Idealized Protocols for Arguments over Z
	4.1 Algebraic Holographic Proofs with Modular Remainder Queries
	4.2 Weak Knowledge Sound mod-AHPs

	5 Integer Polynomial Commitments with Evaluation Opening over Zq
	5.1 Model
	5.2 A mod-PC from the DARK Side

	6 A Compiler from Algebraic Holographic Proofs with Modular Remainder Queries to SNARKs over Z
	7 Zaratan: Efficient Spartan over the Integers
	7.1 Background on Spartan
	7.2 Spartan as a mod-AHP
	7.3 Putting it All Together: Zaratan

	8 Building mod-PCs for Sparse Polynomials
	8.1 Delayed-Input (Deterministic) Soundness
	8.2 A construction from SPARK C:Setty20

	A Further Preliminaries
	A.1 The Sumcheck Protocol

	B Wesołowski's Proof-of-Exponentiation
	C Protocols of Block et al.
	C.1 Evaluation Protocol

	D Fingerprinting of Polynomial Evaluation
	E The Generic Group of Unknown Order Model
	F Proof-of-Knowledge for Last Round Messages
	G Opening Proof: Composing Eval and Final
	H Reducing the Requirements for Indexing Commitments in our Compiler
	I Missing Proofs
	I.1 Proof of lemma:fp-r1cs-good-test
	I.2 Proof of thm:w2s-ksnd
	I.3 Proof of thm:comp-prj-ahp
	I.4 Proof of thm:spartan-weak
	I.5 Proof of thm:delayed-to-weak evaluation binding
	I.6 Proof of thm:spark

	J Additional Definitions for mod-PCs
	J.1 Weak Evaluation binding
	J.2 (Strong) Knowledge Soundness over Adversarial Primes

	K Oracle Polynomials over F in mod-AHP
	K.1 Augmented model
	K.2 Prime-Agnostic Polynomial Commitments
	K.3 Extending the compiler

