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Abstract. We use the HHL algorithm to retrieve a quantum state hold-
ing the algebraic normal formal of a Boolean function. Unlike the stan-
dard HHL applications, we do not describe the cipher as an exponen-
tially big system of equations. Rather, we perform a set of small matrix
inversions which corresponds to the Boolean Möbius transform. This
creates a superposition holding information about the ANF in the form:
|Af ⟩ = 1

C

∑2n−1
I=0 cI |I⟩, where cI is the coefficient of the ANF and C

is a scaling factor. The procedure has a time complexity of Õ(n) for a
Boolean function with n bit input. We also propose two approaches how
some information about the ANF can be extracted from such a state.

1 Introduction

The HHL algorithm, proposed in 2009, is a quantum procedure that computes
some given input’s preimage. Unlike the classical approaches, it does not linearly
depend on the size of the matrix. Rather its runtime depends on the sparseness
and condition number of the matrix, and only logarithmically on the matrix’s
size. Since most nowadays used ciphers can be described as some form of ex-
ponentially big equation system, the idea of using HHL to cryptanalyse ciphers
came forward [6] and was quickly followed by other publications. However, the
common factor was always the abuse of the logarithmic speed-up in the runtime
of the HHL algorithm.

In this paper we will also tackle an exponentially big input, however, instead
of inverting an exponential-size matrix, we will first decompose the matrix into
a tensor product and invert each of the sub-matrices. The matrix to be inverted
is the matrix Tn describing the Boolean Möbius transform. We decided to de-
compose the matrix since in its full form it has high sparsity. This means that
the HHL runtime for such a matrix would be comparable to the classical ap-
proach. Instead, each of the sub-matrices is small (2× 2 before Booleanization)
and therefore easily invertable.

By computing the preimage of the input under the Boolean Möbius trans-
form, we manage to encapsulate the algebraic normal form of the function under
attack in the quantum register. The result is:

|Af ⟩ =
1√

hw(Af )

2n−1∑
I=0

cI |I⟩
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where cI is the coefficient of the monomial xI . This can be used to both retrieve
the ANF of the function, as well as to estimate the Hamming weight of Af .

We use the HHL algorithm to overcome the fact that the matrices to be
inverted are not unitary, a classical requirement for quantum computation. The
HHL is a ready-to-use framework, which can be used for this operation. However,
we also notice that the algorithm could be improved. Since the Tn is self-inverse,
we don’t need to compute the preimage, we could instead apply the matrix Tn

to our input.

We introduce the notation used through this paper in Section 1.1. Chap-
ter 2 focuses on the HHL algorithm. We estimate the runtime, show how to
Booleanize a matrix and how the HHL algorithm is used in cryptanalysis. In
chapter 3 we discuss our new approach to apply HHL to a tensor product. Sec-
tion 4 discusses the cryptographic significance of the new HHL. We introduce
the Boolean Möbius transform and its tensor decomposition. In Section 4.2 we
combine the two ideas. We explain why it’s better to apply the algorithm to
decomposed matrices and how to generate the input quantum state. Finally, we
describe the result of our algorithm. In Section 5 we talk about how the resulting
state can be used to analyse the algebraic normal form of a Boolean function.

1.1 Notation

We will shortly introduce the common notation used through this paper. A
function f : Fn

2 −→ F2 is called a Boolean function. It is known that each
Boolean function f has a polynomial representation f(x) ∈ F2[x1, . . . , xn] [19].
Let cI ∈ F2 and xI :=

∏
i∈I xi. For a Boolean function f(x) =

∑
I∈[n] cIx

I , the

Algebraic Normal Form (ANF) of f is Af := (c0, . . . , c2n−1). The representation
of f in the ANF is unique and defines the function f . Moreover, we can compute
the coefficients cI ’s as:

cI =
∑

supp(x)⊆I

f(x), (1)

where supp(x) := {i : xi ̸= 0} [19]. In other words, we can compute the coefficient
cI by adding (over F2) the images of all inputs dominated by I.

The Hamming weight of a vector hw(x) is its number of non-zero entries.
The degree of a coefficient can be computed using the Hamming weight:

deg(cI) = hw(I)

The truth table of a Boolean function f is a binary vector Tf ∈ F2n

2 defined as
Tf =

(
f(0), f(1), . . . , f(2n − 1)

)
.

A vectorial Boolean function is defined as F : {0, 1}n → {0, 1}m for n,m ∈ N.
Further, for all 0 ≤ i ≤ m − 1, Fi : {0, 1}n → {0, 1} is a Boolean function and
the projection of F to the ith component. A projection of a string s to its ith
component will be written as s|i.
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2 HHL Algorithm

The HHL algorithm, named after the authors Harrow, Hassidim and Lloyd, is
one of the new tools in the quantum toolbox used for cryptanalysis. It was first
proposed in [12] as an efficient algorithm to solve exponentially big systems of
linear equations, outperforming any classical algorithm. Its cryptographic sig-
nificance got quickly discovered and [6] proposed the first attack scenario. Since
then, a series of cryptographic publications have considered the HHL setting.

The algorithm takes as input a Hermitian matrix A ∈ CN×N and a vector−→
b ∈ CN and computes the value −→x such that:

A · −→x =
−→
b

To do this, we need to represent
−→
b as a quantum register |b⟩ =

∑N−1
i=0 bi |i⟩. Then,

A is transformed into a unitary operator eiAt. Next, eiAt is applied to |b⟩ using
the Hamiltonian simulation technique [3]. This is equivalent to decomposing
|b⟩ to an eigenbasis of A and determining the corresponding eigenvalues. The
register after this transformation is in the state:

N−1∑
j=0

βj |uj⟩ |λj⟩

where |b⟩ =
∑N−1

j=0 βj |uj⟩. The eigenvalues |λj⟩ are then used to invert the
matrix-application of A, and the register ends in the state:

N−1∑
j=0

βjλ
−1
j |uj⟩ = A−1 |b⟩ = |x⟩

2.1 HHL Runtime

In [12], authors show how to run the HHL algorithm for a matrix A ∈ CN×N

in time Õ
(
κ2 · s2 · poly(logN)

)
, where s is the sparseness of the matrix A,

κ is its condition number and N is the size. The Õ(·) notation suppresses all
slowly-growing parameters (logarithmic with respect to s, κ or logN). They re-
quire that A is efficiently row-computable, or access to an oracle that returns
the indices of non-zero matrix entries given a row-index. A significant portion of
the runtime is covered by the phase estimation algorithm, which for an s-sparse
matrix takes Õ(ts2). [1] improved the HHL algorithm by lowering the condi-
tion number dependence from quadratic to almost linear. [8] proposed a further
improvement to achieve the runtime:

Õ(κ · s · poly(logN))

This will be the complexity that we will use in this paper. However, since the
values s, κ of the matrices we propose are constant, the choice of the implemen-
tation should not have much influence on the feasibility of the algorithm we
develop.
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2.2 HHL over Finite Fields

In this part, we want to present a set of rules which describe how to transform
an equation system M over a finite field F2, to an equation system over C as
needed for the HHL algorithm. Most of the reductions were proposed in [7]. The
result will be an equation system over C which shares the solution with the
original system. We will call the resulting matrix the Booleanization of M , or a
Booleanized matrix. For a Boolean equation f : Fn

2 → F2, #f is the number of
non-zero coefficients in its ANF. We could also see it as the Hamming weight of
the vector Af . The total sparseness of a matrix is the sum of entries in all rows
of said matrix.

Reduction from Boolean equations to equations over C
For a given set of equations F = {f1, ..., fm} ⊆ F2[X], we want to find a system

FC = {f ′
1, ...f

′
m′} ⊆ C[X,Z], such that when (X̂, Ẑ) is a solution to FC, then X̂ is

a solution of F . To do this, we will define a new set of variables Z = {z1, ..., zm}
and m+ n new quadratic equations as follows:

fi(x1, ..., xn)− zi = 0 ∀i = 1, ...,m (2)

zi/2 ∈ Z ∀i = 1, ...,m (3)

xj − x2
j = 0 ∀j = 1, ..., n (4)

The first two sets of equations guarantee that the value of fi(X̂) = 0 mod 2.
This represents the Boolean addition logic in the original system F . The last
equation guarantees that the only possible values of x1, ..., xn are from F2. An
important observation here is also that ∀i = 1, ...,m 0 ≤ zi ≤ #fi.

Next, we need to present zi’s in a form usable by the quantum computer.
Each zi will be represented in its binary form with log(#fi) bits:

zi =

log#fi∑
b=0

2bzib

However, since equation (3) holds, we know ∀1 ≤ i ≤ m : zi0 = 0. This means
we actually only consider the following representation:

zi =

log#fi∑
b=1

2bzib

We need to incorporate this into the equation system mentioned above in the
following way:

fi(x1, ..., xn)−
log#fi∑
b=1

2bzib = 0 ∀i = 1, ...,m
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zib − z2ib = 0 ∀i = 1, ...,m, ∀b = 1, ..., log#fi

xj − x2
j = 0 ∀j = 1, ..., n

Similarly as in (4), the equation zib − z2ib = 0 forces the values of zib ∈ F2.
The adjustments mentioned in this section increased the number of needed

variables from n to n + m · log#fi and the number of equations from m to
m · (1 + log#fi) + n.

Further possible improvements
In [9] authors suggest further improvements to the above construction. They use
the Valiant-Vazirani affine hashing method [22] to ensure that the polynomial
system has only one solution. To achieve this, for a system with S many solutions,
they introduce O(logS) random linear equations. They also rewrite the equation
system in such a way, that only one of the equations has a constant term equal
to −1. The two techniques increase the number of equations and the sparseness
only by a small factor but should result in a polynomial system that is easier to
handle [9].

2.3 State-of-the-art of HHL in Cryptanalysis

The cryptographic appeal of the HHL algorithm is clear. Most good ciphers are
characterized by complicated equation systems needed to describe them. The
first attempt was introduced in [6], and used the so-called Macaulay matrix - an
exponentially big and sparse matrix which can be solved for the Boolean solution
of a polynomial system. The next proposal targeted the NTRU system [13] and
used the HHL algorithm to solve a polynomial system with noise [7]. Finally, in
[16], the Grain-128 and Grain-128a ciphers were cryptanalysed using techniques
based on [6,7]. [9] suggested improvements upon the above papers, and proved
a lower-bound on the condition number of the Macaulay matrix approach. In
[10], two systems of equations for AES-128, one over GF (2) and another over
GF (28) based on the BES construction introduced in [17], were analysed under
the HHL algorithm.

3 HHL for tensors of matrices

Usually, when considering the use-case of HHL we want to leverage the expo-
nential speed-up in regard to the size of the matrix. This is the natural direc-
tion as that’s the obvious runtime difference between the HHL and the classical
approach. The hindrance is, however, that even though the matrix can be expo-
nentially big, it should not have too many entries. In fact, a matrix with a single
full column eliminates the potential use of the HHL (cf. Section 2.1).

In this chapter, we present an approach to overcome the above-mentioned
obstacles for a special set of matrices. We show, that if a matrix M can be
decomposed as M = M1 ⊗ M2 ⊗ ... ⊗ Mn, where each Mi has a small size,
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applying the HHL approach to each Mi has low runtime and delivers the same
result. This allows overcoming the exponential cost of computing the preimage
given a matrix M and some output |b⟩. A similar technique is a building block of
known quantum algorithms like Shor’s algorithm or Simon’s algorithm. There,
e.g., instead of applying a matrix Hn to an n-long register |x⟩, we apply H1 to
each of n qubits of |x⟩.

L R

M := L ·R

(a) Horizontal decomposition

T

B

M := T ⊗B

(b) Vertical decomposition

We start with a simple Lemma saying that applying a vertical (tensor) de-
composition of a matrix M to quantum sub-registers results in the same state
as applying the matrix M to the whole register:

Lemma 1. Let U1, . . . , Ut be unitary matrices with Ui ∈ Cni×ni . Further, let
|x1⟩ , . . . , |xt⟩ be the corresponding quantum states with |xi⟩ ∈ Cni . Then:(

t⊗
i=1

Ui

)
·

(
t⊗

i=1

|xi⟩

)
=

t⊗
i=1

(Ui · |xi⟩).

This result is unsurprising and is the reason for most quantum algorithms’ effi-
ciency. However, we will generalize the argument to show that this equality also
holds for non-unitary matrices.

Lemma 2. Let M1, . . . ,Mt be matrices and E1, . . . , Et be identity matrices with

Mi, Ei ∈ Cni×ni and M =
⊗t

i=1 Mi and |x⟩ ∈ C
∏t

i=0 ni . Then:

M · |x⟩ =
t∏

j=1

(
j−1⊗
i=1

Ei ⊗Mj ⊗
t⊗

i=j+1

Ei

)
· |x⟩

Proof.
Since both product and tensor of two matrices is a matrix, we will show the
property just for two matrices. The rest follows by associativity of matrix prod-
ucts. Let M1, E1 ∈ Cn1×n1 , M2, E2 ∈ Cn2×n2 . Further, let M = M1 ⊗M2 Then
by standard tensor properties, we know:

(M1 ⊗ E2) · (E1 ⊗M2) = (M1 · E1)⊗ (M2 · E2)
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= M1 ⊗M2

= M

Since (M1 ⊗ E2) · (E1 ⊗M2) is indifferent to M , it doesn’t make a difference
which one we apply to a vector |x⟩.

We want to highlight that the result vector of applying the matrix from Lemma 2
does not have to be a valid quantum state. Since the matrix M is not unitary,
it means the result does not have to be normed. Instead, we will move to the
HHL setting where the state to be reverted is encoded into the amplitudes of
the quantum register:

Problem 1. Given a Hermitian matrix M ∈ C2n×2n and an input state
−→
b ∈ C2n

with
−→
b = (b0, . . . , b2n−1) find the state −→x such that:

M · −→x =
−→
b

We can also frame this in a quantum setting:

Problem 2. Given a Hermitian matrix M ∈ C2n×2n and an input state

|b⟩ =
2n−1∑
i=0

bi |i⟩

with
−→
b = (b0, . . . , b2n−1) ∈ C2n find the state |x⟩ =

∑2n−1
i=0 xi |i⟩ such that:

M · −→x =
−→
b

with −→x = (x0, . . . , x2n−1) ∈ C2n .

We will now use the result of Lemma 2 to solve Problem 2 for a matrix
M ∈ C2n×2n such that M =

⊗t
i=1 Mi. Instead of applying HHL to the whole

matrix M , we will consider its vertical decomposition and apply HHL to the sub-
matrices. The idea is depicted in Figure 2. The resulting state will be identical
to that of HHL applied to the matrix M .

Theorem 1. Let M =
⊗t

i=1 Mi be a vertical decomposition of M . Further, let
HHLM and HHLMi

be the unitary HHL algorithm circuit for a matrix M and
Mi, respectively. Then for all quantum states |b⟩:

HHLM |b⟩ =
t∏

j=1

(
j−1⊗
i=1

Ei ⊗HHLMj ⊗
t⊗

i=j+1

Ei

)
|b⟩

and the result is a valid quantum state |x⟩ from Problem 2.
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HHLM

|b1⟩ |x1⟩

|b2⟩ |x2⟩

|bt⟩ |xt⟩

|b⟩

HHLM1

|x⟩
HHLM2

HHLMt

Fig. 2: Vertical HHL

Proof.
LetHHLM andHHLMi

be the unitary circuit which implements the application
of the HHL algorithm with input matrix M and Mi. Then, by the Lemma 2, the
following constructions are equal:

HHLM =

t∏
j=1

(
j−1⊗
i=1

Ei ⊗HHLMj ⊗
t⊗

i=j+1

Ei

)

Further, since
∏t

j=1

(⊗j−1
i=1 Ei⊗HHLMj

⊗
⊗t

i=j+1 Ei

)
is a valid quantum cir-

cuit, the output of the algorithm is a proper quantum state. Finally, as described
in Section 2, the output of the algorithm is a vector |x⟩ such that:

A · −→x =
−→
b

This is exactly the solution to Problem 2.

As the vertical construction is well-parallelizable, the runtime of the vertical
HHL will be upper bound by the complexity of the most time-intensive inversion.

Theorem 2. Let M =
⊗t

i=1 Mi be a horizontal decomposition of M . Further,

∀i let κi be the condition of the matrix Mi ∈ CNi×Ni and si its sparseness. The
time complexity of the vertical HHL for M is

Õ
(
t · (max

i
κi · si · poly(logNi))

)
Proof.
The time complexity of applying each HHLMi on a subregister is upper-bound
by applying the most cost-intensive one. As we saw in Section 2.1, this corre-
sponds to a time complexity of:

Õ
(
max

i
κi · si · poly(logNi)

)
(5)
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Further, applying Ei to any subregister is equivalent to not evolving the register
in any way. Therefore in each step, we apply HHLMi

to one of the subregisters
and leave the other registers constant. Since we need to invert t sub-matrices,
we have t steps, each upper-bound by Equation (5). This results in the runtime
of:

Õ
(
t · (max

i
κi · si · poly(logNi))

)

4 Cryptographic Use-cases

4.1 Möbius Transform of Boolean Functions

In this chapter, we introduce the Boolean Möbius transform µ : F2n

2 → F2n

2 . It
acts as the bijective mapping between the ANF of a Boolean function f , and its
truth table Tf . It acts in the following way:

∀x ∈ Fn
2 : f(x) =

⊕
I∈Fn

2

µ(f)(I)xI ,

where µ(f) is the Boolean function defined through the coefficients [2] (cf. Equa-
tion (1)). For a Boolean function f , we can compute its Möbius transform in
terms of matrices.

Claim 1. Let Tn be a Boolean matrix recursively defined as:

1. T1 =

(
1 0
1 1

)
2. Tn =

(
Tn−1 On−1

Tn−1 Tn−1

)
where On−1 is a 2n−1 × 2n−1 0-matrix.

For a Boolean function f , Tn can serve as the Möbius transform acting on the
truth table Tf and the corresponding ANF as follows:

– µ(Af ) = Tf
– µ(Tf ) = Af .

A direct consequence is that Tn is self-inverse.

The above claim is thoroughly discussed in [5,20].

Lemma 3. We can describe Tn using the tensor product as:

Tn = T1 ⊗ Tn−1
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Proof.
Using the definition of tensor products for matrices we have:

T1 ⊗ Tn−1 =

(
1 · Tn−1 0 · Tn−1

1 · Tn−1 1 · Tn−1

)
=

(
Tn−1 On−1

Tn−1 Tn−1

)
= Tn

Lemma 4. Let Tf ∈ F2n

2 be the truth table of a Boolean function f . Then we
can compute the algebraic normal form of f as:

AF = TnTf =

t∏
j=1

(
j−1⊗
i=1

E1 ⊗ T1 ⊗
t⊗

i=j+1

E1

)
Tf

Proof.
By Claim 1 and Lemma 3, we know Tn can be described as:

Tn =

n⊗
i=1

T1

Further, by Lemma 2, we know that the constructions are equivalent:

t∏
j=1

(
j−1⊗
i=1

E1 ⊗ T1 ⊗
t⊗

i=j+1

E1

)
Tf =

( n⊗
i=1

T1

)
Tf = TnTf

Finally, by using Claim 1, we know that TnTf = Af proving the statement.
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Example:

Let f(X1, X2) = X1⊕X1X2. Then, the truth table of f is Tf =


0
1
0
0

. We

will compute the ANF of f using the procedure mentioned in Lemma 4:

T2Tf = (T1 ⊗ E1) · (E1 ⊗ T1)Tf

=


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 ·

1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1



0
1
0
0



=


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1



0
1
0
0



=


0
1
0
1


= Af

It should be clear that the formula for the ANF of f from Lemma 4 resembles
the formula mentioned in Theorem 1. We will next show that using the HHL
algorithm we can mimic the application of Tn and the result will be a quantum
state which represents the Af .

4.2 Möbius Transform using HHL

In this chapter, we show how to tackle a specific initialization of Problem 2.
We will try to compute the preimage of the matrix Tn describing the Möbius
transform.

Problem 3. Given a matrix Tn ∈ F2n×2n

2 defined in Claim 1, and an input state

|b⟩ =
2n−1∑
i=0

bi |i⟩

with
−→
b = (b0, . . . , b2n−1) ∈ C2n find the state |x⟩ =

∑2n−1
i=0 xi |i⟩ such that:

Tn · −→x =
−→
b

As we have seen in Section 2, inverting the matrix Tn would solve Problem 3.
However, we cannot simply apply the HHL algorithm for matrix Tn to an arbi-
trary register |b⟩. First, observe that Tn is defined as an F2-matrix, while HHL
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operates over C. Instead, we need to use the reduction mentioned in Section 2.2
to create a different matrix Γn, which delivers the same result as Tn over F2. To
do this, we need additional variables and equations to force the solution to be
an F2-vector and ensure that the addition modulo 2 is correct. The key point
here is, however, that this will expand the size of the matrix only polynomially.

Second, the HHL algorithm requires the matrix to be inverted to be Hermi-
tian. The resulting matrix Γn is not. Luckily, we can use the procedure proposed
by the original authors of the HHL algorithm to cover this case [12]. The main
idea is, if a matrix A is not Hermitian, we can construct a new matrix C:

C :=

(
0 A
A† 0

)
,

and the matrix C will be Hermitian. Here the A† is the conjugate transpose of
A. Since all the entries of A are real, A† = AT . For matrices of exponentially big
sparsity, this is an additional requirement. Instead of just requiring an oracle for
the entries in a row, we now also need the column-oracle of the matrix A (cf.
Section 2.1).

Further, the input vector must be adjusted. While for A, the input was a

vector of the form
−→
b , for the new matrix C we need the vector b̃ :=

(−→
b
0

)
. Also

the output will have a different form, x̃ :=

(
0
−→x

)
. To see this, consider:

C · x̃ =

(
0 A
A† 0

)
·
(
0
−→x

)
(6)

=

(
A · −→x
0

)
=

(−→
b
0

)
= b̃

There is one problem when we try to apply this approach to the matrix Tn. The
sparsity plays a crucial role in the runtime of the HHL. However, since there is
always one full column, the sparseness of Tn is exponential:

s(Tn) = 2n.

To circumvent that, instead of using Tn as input to HHL, we will first vertically
decompose it.

Booleanized Tn vs Booleanized T1

To overcome the exponentially big runtime of HHLTn
, we will instead call

the HHLT1
procedure for each qubit. Again, we want to highlight that the
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HHL algorithm requires a Hermitian matrix, which neither T1 nor Tn are. In
the construction above, we Booleanized the matrix Tn to guarantee that the
addition is performed modulo 2 and the solution is an F2-vector. However, it is
not guaranteed that the matrix Γn can be decomposed into a tensor of small
matrices.

Instead, for the vertical HHL, we will first decompose the matrix to be in-
verted, and then perform the reduction on each sub-matrix. [7] and [16] men-
tioned a set of additional/alternative equations, which when incorporated into
the equation system, allow for F2-computation. In the example below, we present
one candidate for such a matrix.

Example:
Using the techniques mentioned in Section 2.2, we contruct a matrix Γ ∈ C4×5.

For a, b ∈ F2, the preimage under Γ of the vector
−→
b =


b0
b1
0
0

 has the form:

−→x =



T−1
1

(
b0
b1

)
|0

T−1
1

(
b0
b1

)
|1

∗
∗
∗


=

T−1
1

(
b0
b1

)
∗
∗



We define Γ as:

Γ =


1 0 0 0 0
−2 −2 2 1 1
1 0 0 1 0
0 1 0 0 1

 (7)

such, that:

Γ


0
0
0
0
0

 =


0
0
0
0

 , Γ


1
0
1
1
0

 =


1
1
0
0

 ,Γ


0
1
1
0
1

 =


0
1
0
0

 , Γ


1
1
1
1
1

 =


1
0
0
0


With further improvements mentioned in Section 2.2, like the hashing tech-
nique, we can guarantee that the preimages are always the ones shown here.

The construction uses a handful of extra qubits for each HHL application,
however, the number of needed qubits will stay polynomial in terms of the size
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of the register holding the state |b⟩. The matrix also needs to be Hermitianized
before being plugged into the HHL (see Equation (6)). The result will be a matrix
Γ . We want to also highlight that the sparsity in the Example above does not
depend on the number of qubits:

s(Γ ) = 5

and the condition number κΓ is constant.
With the machinery in place, we can solve Problem 3 using the algorithm

from Theorem 1. Further, we can estimate the runtime of the algorithm:

Theorem 3. Let Tn =
⊗n

i=1 T1 be a horizontal decomposition of Tn. Further,

let Γ ∈ CO(1)×O(1) be the Booleanized version of T1. Then, using the vertical
HHL algorithm with input Γ , for an arbitrary quantum state |b⟩, we can solve
Problem 3 in Õ(n) time.

Proof.
As seen in Theorem 2, for a matrix decomposition M =

⊗t
i=1 Mi, the runtime

is:

Õ
(
t · (max

i
κi · si · poly(logNi))

)
In this case, all Mi’s correspond to the Booleanized T1 matrix. We can use
the techniques mentioned in Section 2.2 to create a Booleanization of T1. All
the reduction steps keep the sparsity, the condition number and the size of the
resulting matrix polynomial in terms of the size of T1 [7]. Let sΓ , κΓ , NΓ be the
sparsity, condition number and size of the matrix Γ respectively. Combining the
above with the upper-bound, we get the collected run-time for the algorithm:

Õ
(
t · (max

i
κi · si · poly(logNi))

)
= Õ

(
n · (κΓ · sΓ · log(NΓ ))

)
= Õ

(
n
)

Keeping in mind, that Problem 3 is an initialization of Problem 2, as well as
Theorem 3 is an initialization of Theorem 1, the claim follows.

How to generate input

We propose two approaches to generate the input |b⟩ as described in Problem
3. They will consider two different settings and target different encryption scheme
types. We first introduce the Q1 model, the more realistic yet less powerful one.
In Q1 model, the attacker has access to a quantum computer and some classical
oracle. This is the standard model used for Shor’s or Grover’s algorithm. In the
Q2 model, we assume a quantum oracle to which the attacker has access. A
quantum oracle allows superposition queries. While this attack scenario is based
on a very strong assumption, it might still lead to interesting insights into ciphers
structure [15,14].
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Our Q1 attack will target plaintext-independent constructions, like classical
stream ciphers or block ciphers in counter-mode with fixed IVs. Since for a fixed
cipher f and a fixed IV value we can build a deterministic classical circuit, we are
also able to build its unitary version Uf [18]. Using Uf and an equally distributed
superposition of all states we can prepare the following state in polynomial time:

|x⟩ |y⟩ = 1√
2n

2n−1∑
i=0

|i⟩ |f(i)⟩ .

Now, when we measure a |1⟩ in the second register, only values i for which
f(i) = 1 will remain with a non-zero amplitude in the superposition:

|x⟩ |y⟩ = 1√
hw(Tf )

2n−1∑
i=0

f(i)=1

|i⟩ |1⟩ .

The register |x⟩ has now exactly the desired form of |b⟩ from Problem 3 and each
bi corresponds to the bit output for a given key i. We show the exact algorithm
in Algorithm 1.

Algorithm 1: Q1 model input preparation for Problem 3

Input: Quantum implementation Uf of a keyed cipher
f : {0, 1}n → {0, 1}

1 |x⟩ |y⟩ ←− |0⟩⊗n |0⟩
2 |x⟩ |y⟩ ←− Hn |x⟩ |y⟩ = 1√

2n

∑2n−1
i=0 |i⟩ |0⟩

3 |x⟩ |y⟩ ←− Uf |x⟩ |y⟩ = 1√
2n

∑2n−1
i=0 |i⟩ |f(i)⟩

4 Measure register |y⟩
5 If |y⟩ == |0⟩ go to step 1
6 return |x⟩
Output: |b⟩ =

∑2n−1
i=0 bi |i⟩, where bi is the value of f(i) scaled by the

factor 1√
hw(Tf )

to produce a valid quantum state.

In the Q2 model, we can perform a similar trick to retrieve the superposi-
tion of all outputs of a function with a fixed key. The superposition, however,
encapsulates the possible inputs to an encryption function with a secret key.
Especially in the case where there are weak keys, this might allow retrieving
some additional information about the key and some encrypted plaintext. The
Q2 attack resembles the previous one and is presented in Algorithm 2.
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Algorithm 2: Q2 model input preparation for Problem 3

Input: Quantum oracle Ofk for a cipher fk : {0, 1}n → {0, 1}
1 |x⟩ |y⟩ ←− |0⟩⊗n |0⟩
2 |x⟩ |y⟩ ←− Hn |x⟩ |y⟩ = 1√

2n

∑2n−1
i=0 |i⟩ |0⟩

3 |x⟩ |y⟩ ←− Ufk |x⟩ |y⟩ = 1√
2n

∑2n−1
i=0 |i⟩ |fk(i)⟩

4 Measure register |y⟩
5 If |y⟩ == |0⟩ go to step 1
6 return |x⟩
Output: |b⟩ =

∑2n−1
i=0 bi |i⟩, where bi is the value of fk(i) scaled by the

factor 1√
hw(Tfk

)
to produce a valid quantum state.

4.3 Retrieving the Algebraic Normal Form

In Section 4.2 we showed how to generate the input corresponding to the Tf for
a Boolean function f . The procedure runs in polynomial time and the result is
a vector of the form:

|Tf ⟩ =
1√

hw(Tf )

2n−1∑
i=0

f(i)=1

|i⟩ = 1√
hw(Tf )

· Tf

We also showed how to construct the matrix input Γ for the HHL algorithm,
which corresponds to the Boolean Möbius transform. The matrix is sparse, of
low condition number and constant size. This means the HHL algorithm would
take constant time to run for a single instance of Γ , and Õ(n) time to apply the
Möbius transform to the whole register (cf. Theorem 3).

As seen in Section 4.1, applying Tn to the vector Tf results in a vector which
describes the algebraic normal form of the function f . A similar result is obtained
when the vertical HHL algorithm with Γ input is applied to the register |Tf ⟩.

Theorem 4. Let HHLΓn be the vertical application of HHLΓ to n qubits:

HHLΓn
|b⟩ |ancilla⟩ :=

n∏
j=1

(
j−1⊗
i=1

E1 ⊗HHLΓ ⊗
n⊗

i=j+1

E1

)
|b⟩ |ancilla⟩

The ancilla register is needed to cover for the special Booleanized construction of
Γ . Then, applying the HHLΓn

to the state |Tf ⟩ results in the following register:

HHLΓn
|Tf ⟩ |ancilla⟩ = |Af ⟩ |ancilla⟩ =

( 1√
hw(Af )

· Af

)
|ancilla⟩

With an additional measurement of some helper register we can obtain the pure
state |Af ⟩.
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Proof.
As seen in Theorem 3, applying the vertical HHL approach with Γ input allows
computing the preimage of the input vector |b⟩. This is equivalent to computing

the preimage of
−→
b under the Boolean Möbius transformation Tn. As seen in

Claim 1, the result is a vector Af holding the algebraic normal form of f scaled
by a factor dependent on the superposition. Finally, we can discard the ancilla
register (or perform some additional conditional measurement) and only consider
the register |Af ⟩.

The resulting register corresponds to the vector description of the ANF of f ,
scaled by a factor. This is important, as only the coefficients which are one have
a non-zero amplitude.

5 ANF Analysis

In the last chapter, we saw how to efficiently encapsulate information about the
algebraic normal form of a Boolean function into a register. However, as usually
with quantum algorithms, extracting the information from the quantum register
is not a trivial task. In this chapter, we want to go through possible approaches
and scenarios in which they might work.

5.1 Sparse ANF Representation

Classically, reconstruction of an unknown Boolean function is a difficult prob-
lem. One of the approaches can be obtained from the learning theory and is
based on the Fourier spectrum [19]. One can also use the formula (1) mentioned
in Section 1.1 to reveal the ANF. While getting the coefficients of low degree
coefficients is not problematic, the complexity grows exponentially with the de-
gree of the coefficient. On the other hand, if the degree of the coefficient is too
high, it affects a small number of possible outputs and has a low influence on
the truth table of the function.

When considering the result of the algorithm described in Theorem 4, we
want to highlight that state |Af ⟩ is an equally distributed superposition of all
the base states which contribute to the ANF. This means that upon measure-
ment we obtain any of the ANF’s active (non-zero) coefficients with the same
probability. The difference, opposing the classical scenario, is that the amount
of steps we need is independent of the degree of the coefficient. This might be
especially useful when a Boolean function f with a sparse representation (polyno-
mial number of coefficients with respect to n), and many high-order coefficients
is being learned. Simple measurements can be combined with techniques like
amplitude amplification to guarantee that the whole ANF is properly recovered
in polynomial time [4].

In the Q1 model, retrieving the Af can give us information about the secret
key that is being used to generate some bit-stream. By combining information
from multiple Boolean functions (e.g. multiple one-bit projections generated by



18 C. Pilaszewicz and M. Margraf

the stream cipher) we could build a polynomial-size equation system which can
be solved for the secret key. The ANF obtained in the Q2 model does not give us
direct information about the key, but could be used to decrypt future ciphertexts.

5.2 Estimating the Number of Terms

In some cases, especially when hw(Af ) is super-polynomial, we might consider
other properties of f rather than its ANF. The state |Af ⟩ allows us to estimate
the number of non-zero coefficients in the algebraic normal form of the Boolean
function. We can do this using a technique calledQuantum Amplitude Estimation
[4].

Quantum amplitude estimation deals with a problem connected to the Grover’s
algorithm setting. However, instead of searching for an {x ∈ X : f(x) = 1, we
are interested in the size of said set. Similarly, as in Grover’s algorithm, the al-
gorithm divides the space into two subspaces following some indicator function
f :

|Ψ⟩ = |Ψ1⟩+ |Ψ0⟩

We call |Ψ1⟩ the good components and |Ψ0⟩ the bad components. We want to
estimate the probability of measuring a good component. To achieve it, the
algorithm uses the famous Grover’s operator combined with phase estimation.
After [4] was published, other potential candidates to solve the same problem
were constructed[21,23,11].

We begin with a simple observation that the state |Af ⟩ is an equal super-
position of all states which correspond to the non-zero coefficients of Af . This
means that the amplitudes of |Af ⟩ are only zeros and ones scaled by a fac-
tor of 1√

hw(Af )
. If we were able to estimate the amplitude of one of the active

entries, we could determine the Hamming weight hw(Af ). This is exactly the
sparsity of the function f . Further, since all non-zero amplitudes are equal, we
just need to find a single element from the ANF (e.g., by measuring |Af ⟩). Some-
times, we might not be interested in finding the exact number but rather prove
that it’s above a certain threshold. Since most of the amplitude estimation al-
gorithms have their runtime dependent on an error threshold, we could verify
if the amplitude is only smaller than some value which guarantees the desired
ANF-sparseness.

We could further iterate the above ideas to prove additional properties. By
carefully choosing the function used for amplitude estimation, we could check
how many higher-order terms are in the ANF. The good states (as defined in
[4]) could be the terms with a degree greater than some threshold. This is a task
that would take exponential time in the classical scenario but could be efficiently
done on a quantum computer.

6 Conclusion

In this paper, we have shown a polynomial-time procedure to create a quantum
state which describes the algebraic normal form of a Boolean function f . The
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register has the form |Af ⟩ =
∑2n−1

i=0
1√

hw(Af )
· Af , where Af represents the

coefficient vector of f . We further show how |Af ⟩ could be used to extract some
information about the ANF.

In the simplest scenario, a distinguisher attack could be performed to differ-
entiate a cryptographic function from a random function. The Hamming weight
of the ANF of a random function will be roughly N/2. Meanwhile, a crypto-
graphic function is likely to deviate from this value. The attack could also be
used as a testing method for new ciphers. It would allow a quicker verification
of the sparsity of ANF representations.

We also point to the fact that the Boolean Möbius transform Tn is self-
inverse. This means that it is not necessary to compute the preimage under the
Möbius transformation. We could also compute the value Tn · |b⟩ and get the
same result. This would mean we do not need to invert the eigenvalue λk, but
use it as a factor. It remains an open question how much that would reduce the
runtime of the resulting algorithm. We believe for some use-cases it might pose
an interesting question.
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