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Abstract

The traditional definition of fully homomorphic encryption (FHE) is not composable, i.e.,
it does not guarantee that evaluating two (or more) homomorphic computations in a sequence
produces correct results. We formally define and investigate a stronger notion of homomorphic
encryption which we call “fully composable homomorphic encryption”, or “composable FHE”.
The definition is both simple and powerful: it does not directly involve the evaluation of multiple
functions, and yet it supports the arbitrary composition of homomorphic evaluations. On the
technical side, we compare the new definition with other definitions proposed in the past, proving
both implications and separations, and show how the “bootstrapping” technique of (Gentry,
STOC 2009) can be formalized as a method to transform a (non-composable, circular secure)
homomorphic encryption scheme into a fully composable one. We use this formalization of
bootstrapping to formulate a number of conjectures and open problems.
Keywords: Fully homomorphic encryption, composability, circular security, functional boot-
strapping.

1 Introduction

A fully homomorphic encryption scheme is a cryptosystem that allows to perform arbitrary com-
putations on encrypted data. More specifically, an encryption scheme with message space M is
F-homomorphic (for some set of functions1 F) if for any f ∈ F and input valuem, given an encryp-
tion c = Enc(m) of that value, one can compute (publicly, without knowledge of the decryption key)
a ciphertext c′ = Eval(f, c) that decrypts to f(m). (See Figure 1 for an illustration.) An encryption
scheme is called fully homomorphic if it supports the computation of arbitrary programs, i.e., if F
is the set of all (efficiently computable) functions. This is the standard notion of fully homomorphic
encryption (FHE), as used by Gentry’s first FHE candidate construction [Gen09b, Gen09a], as well
as much subsequent work. (E.g., see surveys [Hal17, Bra19].) While this definition closely models
the intended use of homomorphic encryption schemes in typical applications, it has a shortcoming:
homomorphic computations cannot be composed together, i.e., the result of computing c = Enc(m),
c′ = Eval(f, c) and then c′′ = Eval(g, c′) (for some m ∈M and f, g :M→M) is not guaranteed to
produce a ciphertext c′′ that decrypts to g(f(m)).

The importance of composability, and the fact that it is not guaranteed by the standard def-
inition of homomorphic correctness, was first pointed out by Gentry, Halevi and Vaikuntanathan

∗University of California, San Diego. email: daniele@cs.ucsd.edu. Work supported in part by Intel Crypto
Frontiers program.

1For simplicity, in this introduction we focus on functions f :M → M of a single input. This is generalized to
multi-input functions f :Mw →M in the rest of the paper.
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Figure 1: The standard correctness definition for homomorphic encryption. Encrypting a message
m to obtain a ciphertext c = Enc(m), performing a homomorphic computation c′ = Eval(f, c),
and then decrypting the final result Dec(c′) = f(m) produces the same output as evaluating the
function f on the unencrypted message m.
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Figure 2: A 3-hop homomorphic encryption scheme supports the consecutive homomorphic evalua-
tion of 3 functions, f, g, h. More generally, a i-hop encryption scheme allows to chain i homomorphic
computations.

[GHV10], who observed that the ciphertexts accepted as input and produced as output by the
evaluation function Evalf can, in general, be very different. So, the output of Evalf may not even
be a syntactically valid input to Evalg. In order to address the composability problem, [GHV10]
proposed a stronger notion of correctness, called i-hop homomorphic encryption. In a i-hop en-
cryption scheme [GHV10], one can sequentially evaluate up to i functions2 homomorphically on a
ciphertext c = Enc(m), and the final result c′ = Evalfi(Evalfi−1

(· · ·Evalf1(c))) will be a ciphertext
that decrypts to fi(fi−1(· · · f1(m))). (See Figure 2.) The standard correctness definition corre-
sponds to the special case when i = 1, and it is also called single-hop homomorphic encryption. If
a scheme is i-hop homomorphic for any integer i, then it is called multi-hop.

Contributions The multi-hop property, while desirable, is somehow hard to check, as it requires
considering (the homomorphic evaluation of) arbitrary sequences3 of functions f1, f2, . . .. In this
paper we investigate a different approach to achieve composability, which we call fully composable
homomorphic encryption (Definition 6). Technically, we say that a scheme is “fully composable” if
the homomorphic evaluation function Evalf commutes with the decryption function Dec: evaluating
a function f homomorphically on a ciphertext c and then decrypting Evalf (c) should produce

2As in [GHV10], for simplicity, here we only consider unary functions F ⊆ M → M. This is generalized to
functions with any number of arguments later in the paper.

3This is for unary functions f : M → M. More generally, functions f : Mw → M are combined into directed
acyclic graphs.
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Figure 3: Fully composable homomorphic encryption. For any ciphertext c, applying the decryption
function Dec(c) and then evaluating a function f on the result produces the same output as first
evaluating f homomorphically on c, and then decrypting Eval(f, c).
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Figure 4: Relations between homomorphic encryption variants. “Single hop” or “1-hop” is the basic
standard notion of homomorphic encryption. For any integers n < m, any m-hop homomorphic
encryption scheme is also n-hop, but there are n-hop schemes that are not m-hop (Theorem 3).
Fully composable schemes are multi-hop, i.e. n-hop for any n (Theorem 2), but there are multi-
hop schemes that are not fully composable (Theorem 4). When restricted to surjective schemes
(Definition 9), the multi-hop and fully composable properties are equivalent (Theorem 5).

the same result as first decrypting m = Dec(c), and then computing f(m) in the clear. (See
Figure 3.) Crucially, this is required for all ciphertexts c, not only those produced by the encryption
function Enc(m). Notice that, syntactically, this definition is as simple as the standard notion of
homomorphic encryption, involving the evaluation of a single function f . (See Figures 1 and 3 for
a pictorial comparison of the two definitions.) Still, it achieves very strong composition properties.

In this paper we formally investigate this notion of full composability and its relation to previous
definitions of (fully) homomorphic encryption. In particular, we show that:

1. Fully composable encryption satisfies the standard notion of homomorphic correctness (The-
orem 1), and it is also composable, in the sense that it supports arbitrary computations
described by circuits with gates in the basic set of functions F (Theorem 2)

2. Single-hop, 2-hops, 3-hops, . . . , multi-hop and full composability form a sequence of strictly
stronger requirements, in the sense that each one is implied by the next, but (under minimal
assumptions) there are schemes satisfying one notion but not the next one. (See Theorem 3,
Theorem 4, and Figure 4 for a pictorial summary of this and the next bullet.)

3. For a general class of homomorphic encryption schemes (satisfying a natural surjectivity prop-
erty, see Definition 9) multi-hop correctness is equivalent to full composability. (Theorem 5.)
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4. Finally, Gentry’s celebrated bootstrapping technique [Gen09b] can be formulated as a method
to transform a (single-hop, circularly secure) homomorphic encryption scheme into a fully
composable one. (Theorem 6.)

In addition to the above, in Section 5 we consider a number of extensions and optimizations.
In particular,

• we propose a definition of “bootstrappable” encryption scheme (Definition 12) which more
closely corresponds to the way Gentry’s bootstrapping technique is used in practice, and show
that it is equivalent to full composability (Theorems 9 and 10), and

• we extend this notion to “functional bootstrapping”, a more powerful operation which is at
the core of FHEW-like homomorphic encryption schemes [DM15, CGGI20, MP21, LMK+23].

We emphasizes that our contributions are mostly definitional, not algorithmic: we show how known
algorithmic techniques commonly used in practice to speed up homomorphic encryption can be
formulated in terms of correctness and composition properties, in the style of our full composability
definition. Still, we think that our definitions can be useful to frame and further study these and
other optimization techniques.

As a final remark, we note that Gentry’s bootstrapping technique [Gen09b] is usually described
(and understood) as a “noise reduction” mechanism in lattice-based cryptography. It is a somehow
peculiar property of encryption schemes based on lattice problems that ciphertexts are “noisy”,
with higher levels of noise corresponding to lower quality ciphertexts. The noise grows during
homomorphic computation, and if it surpasses a certain threshold then the ciphertext becomes
undecryptable. So, in order to keep computing homomorphically on encrypted data one needs to
periodically apply bootstrapping to bring the noise back to acceptable levels. As essentially all
known fully homomorphic encryption constructions are based on lattices, this has often lead to
the question of whether “noisy ciphertexts” are somehow necessary to perform arbitrary compu-
tations on encrypted data. Our full composability definition provides a different perspective on
bootstrapping, making no explicit mention of ciphertext noise. It describes the problem solved by
bootstrapping in abstract terms, as a general transformation between encryption schemes achieving
different notions of correctness, not specific to lattice-based cryptography. This allows to formu-
late interesting questions/conjectures about the role of bootstrapping in the construction of fully
homomorphic encryption. For example, one may asks if the existence of fully homomorphic en-
cryption schemes (supporting arbitrary computations on encrypted data) implies the existence of
schemes that are fully composable, or if there are methods to achieve full composability other than
bootstrapping.

Related Work As already mentioned in the introduction, the problem of composability of ho-
momorphic computations was first explicitly posed in [GHV10], and our transformation from non-
composable to composable FHE is essentially a formalization of the bootstrapping technique from
[Gen09b]. The circular security assumption underlying the bootstrapping technique (and our con-
struction in Section 4) has been extensively studied in a long sequence of previous works (e.g., see
[BHHO08, ACPS09, BG10, BGK11, KRW15, KW16, AP16, GKW17b, GKW17a, HK17, KM20,
MV24],) but is somehow orthogonal to the main concerns of this paper. A scheme offering full
composability (and a form of functional bootstrapping) as a core functionality was first presented
in [DM15], and served as a starting point for our definitional work. This paper is based on a
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number of talks given by the author in the last few years (e.g., see [Mic22a, Mic22b]), in which the
notion of composable FHE is explicitly formulated. The technical results presented in this paper
have very simple proofs, and may be regarded as folk knowledge. The main goal of this paper is to
systematize this knowledge, and provide a convenient reference for further investigations. Similar
ideas may have been considered in other works, possibly under different names.

Paper Outline The rest of the paper is organized as follows. In Section 2 we recall previous
(non-composable) definitions of homomorphic encryption schemes. In Section 3 we present the
definition of composable FHE, and study its relation to other definitions. In Section 4 we show how
to formulate Gentry’s bootstrapping technique in terms of full composability. Finally, in Section 5
we describe extensions of our definition to bootstrappable schemes, and functional bootstrapping.
Section 6 concludes with a discussion of open problems and directions for further research.

2 Definitions

In this section we recall the standard notion of (homomorphic) encryption scheme and (circular)
security against chosen plaintext attacks.

Definition 1 (Encryption scheme) A public key encryption scheme with message space M is
a triple of (probabilistic polynomial time) algorithms (Gen,Enc,Dec) where

• The Key Generation algorithm Gen, on input a security parameter κ, outputs a pair of (secret
and public) keys (sk, pk)← Gen(κ).

• The Encryption algorithm Enc on input key pk and message m ∈ M, outputs a ciphertext
c← Enc(pk,m).

• The Decryption algorithm Dec(sk, c), on input a secret key sk and ciphertext c, outputs either
a message m ∈M or a special “failure” symbol ⊥.

We say that the scheme is valid if it satisfies the correctness property

Dec(sk,Enc(pk,m)) = m (1)

for all messages m ∈M and keys (sk, pk)← Gen(κ).

For simplicity, we assume the scheme satisfies perfect correctness, i.e., we require property (1)
to hold with probability 1, over the choice of the keys sk, pk and encryption randomness. The
correctness condition could be relaxed to hold only probabilistically. But the probability of decryp-
tion failures should always be assumed to be negligible, as it is well known that decryption errors
can easily lead to a complete loss of security. Still, when dealing with homomorphic encryption,
assuming perfect correctness is much more convenient.4 We remark that the symbol ⊥ (output
by the decryption algorithm) is special, in the sense that it does not represent a regular message,

4Relaxing this to probabilistic correctness is quite easy for simple encryption schemes, where it is enough to consider
the distribution of freshly encrypted messages Enc(pk,m). However, in the case of homomorphic encryption schemes,
it becomes necessary to consider ciphertext distributions resulting from arbitrary homomorphic computations. This
can be done using a game-based definition of correctness with adversarially chosen computations, e.g. see [CHI+21,
ABMP24]
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but denotes some kind of failure condition, e.g., when trying to decrypt an invalid ciphertext. In
particular, since ⊥ /∈ M, if Dec outputs ⊥, then (1) is not satisfied, and in a valid encryption
scheme Dec should never output ⊥ when given a properly computed ciphertext.

We focus on encryption schemes with a finite, fixed-length message space,5 as these can be
extended to variable length messages M∗ =

⋃
ℓ≥0Mℓ by letting the encryption and decryption

functions operate on message sequences componentwise:

Enc∗(pk,m1, . . . ,mw) = (Enc(pk,m1), . . . ,Enc(pk,mw))

Dec∗(sk, c1, . . . , cw) = (Dec(sk, c1), . . . ,Dec(sk, cw)).

It is immediate to show that if (Gen,Enc,Dec) is a valid encryption scheme over fixed-length message
spaceM, then (Gen,Enc∗,Dec∗) is a valid encryption scheme over variable-length messagesM∗.

The standard notion of security against passive adversaries for encryption schemes is that of
indistinguishability under chosen plaintext attack (IND-CPA) or semantic security [GM84].

Definition 2 (IND-CPA security) An encryption scheme (Gen,Enc,Dec) with message space
M satisfies indistinguishability under chosen plaintext attack (IND-CPA security for short) if any
efficient (probabilistic polynomial time, stateful) adversary A has negligible advantage in the game
defined by the following steps:

1. b← {0, 1}, (sk, pk)← Gen(κ)

2. The adversary (m0,m1)← A(pk) selects a pair of messages m0,m1 ∈M of equal-length.6

3. The adversary is given a ciphertext c ← Enc(pk,mb) and outputs a value b′ ← A(c) in
{0, 1,⊥}.

The advantage of the adversary in the attack is defined as7 δ = (β−β̄)2/(β+β̄) where β = Pr{b′ = b}
and β̄ = Pr{b′ = 1− b}.

It easily follows by a standard hybrid argument that if (Gen,Enc,Dec) is IND-CPA secure for
fixed length messages M, then its extension (Gen,Enc∗,Dec∗) to variable length messages M∗ is
also IND-CPA secure.

A slightly stronger definition (Pseudorandomness under Chosen Plaintext Attack, or RND-
CPA) has the adversary select a single message m ← A(pk), and receive either its encryption
c ← Enc(pk,m) (if b = 0) or a randomly chosen ciphertext c ← C (if b = 1).8 It is easy to

5For example,M = {0, 1} for single bit messages. The setM may still depend on the security parameter κ, e.g.,
M = {0, 1}κ for the set of bitstrings of fixed length κ.

6If M is a fixed-length message space, then this requirement is trivially satisfied. If m0,m1 ∈ M∗ are variable
length messages, then it must be m0,m1 ∈Mk for the same k.

7This is the definition of advantage given in [MW18] to capture the concrete bit-security level of a cryptographic
primitive, and makes essential use of adversaries that may output a special symbol ⊥ to express low confidence in
their decision. For adversaries that always output a bit b′ ∈ {0, 1}, we have β + β̄ = 1, and δ equals (the square of)
the distinguishing gap β − β̄, as used in the traditional (asymptotic) treatment of security. Since this is a theoretical
paper, the reader not familiar with the concrete bit-security notion of [MW18] can ignore the distinction between
these two definitions.

8More specifically, we assume that, for any fixed value of the security parameter κ, and for all (sk, pk)← Gen(κ),
we have Enc(pk,M) ⊆ C for some set C independent of the encryption key pk such that membership in C can be
efficiently tested and the uniform (or other standard) distribution on C can be efficiently sampled.
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show that any RND-CPA secure encryption scheme is also IND-CPA secure, but the converse is
not necessarily true: any IND-CPA secure encryption scheme can be easily modified to make it
RND-CPA insecure9, while preserving IND-CPA security. RND-CPA security not only hides the
encrypted message, but also provides some form of anonymity, as the set C does not depend on the
value of the keys (pk, sk). Lattice-based encryption schemes (and, with them, virtually all known
fully homomorphic encryption constructions) typically satisfy this slightly stronger definition of
security. For simplicity we restrict our attention to the standard IND-CPA security definition, but
all definitions and proofs can be easily adapted to RND-CPA security as well.

2.1 Circular security

An encryption scheme satisfies circular security if it remains secure even against adversaries that are
given an encryption of the secret key, or, more precisely, an encoding of the secret key ψ(sk) ∈Mw as
a sequence of elements in the message space. Following [MV24], circular security of (Gen,Enc,Dec)
can be formally defined in terms of the (standard) IND-CPA security of a scheme with modified
key generation and encryption algorithms as follows:

• Genψ(κ) = (sk, (pk, pk′)) where (sk, pk)← Gen(κ) and pk′ ← Enc∗(pk, ψ(sk))

• Encψ((pk, pk′),m) = Enc(pk,m)

Informally, the new key generation algorithm Genψ appends an encryption of ψ(sk) to the public
key. This extra information is ignored by the encryption function, but is available to an adversary
attacking the scheme.

Definition 3 For any (possibly randomized) key encoding function ψ : K → Mw, a public-key
encryption scheme (Gen,Enc,Dec) is ψ-circular IND-CPA secure if the scheme (Genψ,Encψ,Dec)
with modified key generation and encryption algorithms is IND-CPA secure.

The definition of circular security and the results in this paper are easily extended to encryption
cycles of length longer than one, or even arbitrary encryption graphs G = (V,E) with a pair of keys
(skv, pkv) associated to every node v ∈ V and a public ciphertext Enc∗(pkv, ψe(sku)) associated to
every edge e = (u, v) ∈ E. But for simplicity, we focus on simple loops involving a single secret
key.

2.2 Homomorphic Encryption

A homomorphic encryption scheme allows to perform computations on encrypted data using a
publicly computable evaluation algorithm Eval.

Definition 4 A homomorphic encryption scheme with message space M and functions F ⊆⋃
w≥0{f :Mw →M} is a encryption scheme (Gen,Enc,Dec) with message space M together with

an evaluation algorithm Eval that on input a public key pk, a function f :Mw →M in F , and a
sequence c ∈ Cw, outputs a ciphertext Eval(pk, f, c) ∈ C.

9E.g., simply let the encryption algorithm add a fixed prefix to the output ciphertext.
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The standard definition of correctness for homomorphic encryption schemes requires that for
any function f : Mw → M, encrypting some data c = Enc∗(pk,m), evaluating the function f
homomorphically c′ = Eval(pk, f, c), and decrypting the final result Dec(sk, c′), produces the same
value as computing f(m) in the clear. (See Figure 1.)

Definition 5 (Homomorphic correctness) An encryption scheme (Gen,Enc,Dec,Eval) is F-
homomorphic if for any keys (sk, pk) ← Gen(κ), function f : Mw → M in F , and messages
m ∈Mw, we have

Dec(sk,Eval(pk, f,Enc∗(pk,m))) = f(m). (2)

As usual, functions f are represented using some standard encoding. For example, ifM = {0, 1},
then functions may be described by boolean circuits with |f | gates with bounded fan-in.

All our definitions can be further extended to functions f :Mw →Mv with multiple outputs.
Efficiency aside, this is equivalent to functions with output inM, as any other f :Mw →Mv can
be expressed as v separate functions fi :Mw →M such that f(m) = (f1(m), . . . , fv(m)). So, for
notational simplicity, we focus on functions with a single output f(m) ∈M.

We remark that in order to run the evaluation algorithm Eval on f ∈ F , one needs to provide
Eval with a concrete description of f , so that one can talk about the size of (the description of) f ,
and how this size and the details of the encoding affect the running time of Eval. For simplicity,
we identify f with its description, and write f(m) for the result of evaluating f at m, and |f | for
the size of the description of f .

A weaker form of general purpose homomorphic computation is provided by leveled homomor-
phic encryption schemes, which can be formally defined as a sequence (Genℓ,Enc,Dec,Eval) (for ℓ =
1, 2, . . .) of homomorphic encryption schemes with function sets Fℓ such that Genℓ(κ) = Gen(κ, ℓ) is
a key generation algorithm that takes ℓ as an auxiliary parameter, and runs in time polynomial in
both κ and ℓ. In particular, this allows Enc, Dec and Eval to also run in time polynomial in ℓ. The
standard example, forM = {0, 1}, is to let Fℓ be the set of all functions computable by a boolean
circuit of depth at most ℓ. We say that (Genℓ,Enc,Dec,Eval) is Leveled Fully Homomorphic if the
union

⋃
ℓFℓ = {f :Mw →M | w ≥ 0} is the set of all functions.

The definition of IND-CPA security applies to homomorphic encryption schemes unmodified,
just considering the underlying scheme (Gen,Enc,Dec), without taking into account the evalua-
tion algorithm.10 This is the basic notion of security typically used for homomorphic encryption.
Stronger definitions of security are possible, e.g., hiding not only the messages, but also the com-
putation performed on them. In this paper we focus on the basic definition of security (without
function privacy), and strengthen the schemes in a different direction, making the homomorphic
correctness condition composable.

3 Full Composability

We propose a stronger, but compatible, definition of fully homomorphic encryption that focuses on
the fact that computations in F can be arbitrarily composed.

10This is justified by the fact that Eval(pk, f, c) can be publicly computed, and does not provide additional infor-
mation to an adversary that already knows c and f . However, for schemes that are correct only in an approximate
sense, the situation is more complex, and the security definition needs to use also the Eval and Dec functions [LM21].
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Definition 6 (Composable FHE) (Gen,Enc,Dec,Eval) is a fully composable F-homomorphic
encryption scheme (or “Composable FHE”) if (Gen,Enc,Dec) is a valid11 encryption scheme, and

Dec(sk,Eval(pk, f, c)) = f(Dec∗(sk, c)) (3)

for all keys (sk, pk) ← Gen(κ), function f : Mw → M in F , and ciphertexts c ∈ Cw such that
Dec∗(sk, c) ∈Mw.

Note that Definition 6 imposes no requirements on the evaluation and decryption functions when
the input ciphertexts are not valid. In particular, Dec(sk,Eval(pk, c)) is not required to output ⊥
when Dec(sk, ci) = ⊥ for some i. It is easy to see that any fully composable homomorphic encryption
scheme is also homomorphic in the sense of Definition 5.

Theorem 1 For any set of functions F , any fully composable F-homomorphic encryption scheme
(Definition 6) is also F-homomorphic (Definition 5).

Proof Let (Gen,Enc,Dec,Eval) be a fully composable homomorphic encryption scheme with function
set F . Let f :Mw →M be any function in F , m ∈ Mw, select (sk, pk) ← Gen(κ), and compute
c = Enc∗(pk,m). Since (Gen,Enc,Dec) is a valid encryption scheme, we have Dec∗(sk, c) = m. It
follows from the full composability property that Dec(sk,Eval(pk, f, c)) = f(Dec∗(sk, c)) = f(m).
This proves that the scheme satisfies Definition 5. □

In fact, full composability is a strictly stronger notion than the standard homomorphic cor-
rectness, i.e., there are F-homomorphic schemes that are not fully composable. We postpone the
formal proof of this statement as we will derive it as a corollary of a more general result. (See Corol-
lary 2.) Instead, we first analyze the composition properties of Definition 6. There is a fundamental
difference between the two homomorphic correctness definitions: full composability (Definition 6)
allows arbitrary composition of functions in F , while F-homomorphism (Definition 5) does not.
The composability properties of Definition 6 are easily formulated as a transformation on the set
of functions F supported by the homomorphic encryption scheme.

Definition 7 For any (typically finite) set of functions F ⊆
⋃
w(Mw → M), let F≤d be the set

of all computations F : Mw → M described by a circuit of depth ≤ d with gates in F , and let
F∗ =

⋃
dF≤d be the set of computations described by a circuit without any depth restriction.

The evaluation function Eval of an F-homomorphic encryption scheme is extended to F ∈
F∗ in the obvious way, mapping input ciphertexts c ∈ Cw to a final output Eval∗(pk, F, c), using
Eval(pk, f, · · · ) to evalute each f -labeled gate of F .

Sometimes it is useful to restrict the evaluation function Eval∗ to “layered” circuits, i.e., circuits
C(x1, . . . , xn) ∈ F∗ where gates are arranged into layers ℓ = 1, . . . , d. Gates in the first layer ℓ = 1
are applied to the circuit input values x1, . . . , xn, while gates in higher layers ℓ > 1 take inputs from
gates at layer ℓ − 1. The output of the circuit is given by the gate(s) in the last layer ℓ = d. We
write F ♯ for the set of layered circuits, and F ♯d = F ♯ ∩F≤d for the layer circuits of depth bounded
by d.

It easily follows by induction that, for any fully composable homomorphic encryption scheme,
the final output c = Eval∗(pk, F,Enc∗(pk,m)) of a homomorphic computation F ∈ F∗ decrypts

11We recall that a scheme is valid if it satisfies the standard correctness property Dec(sk,Enc(pk,m)) = m.
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to the correct message Dec(sk, c) = F (m). This is formalized in the following theorem, showing
that the set of functions supported by a fully composable homomorphic encryption scheme can
be extended from F to F∗, i.e., fully composable homomorphic encryption schemes support the
evaluation of arbitrary (polynomial size) circuits with gates in F .

Theorem 2 For any set of functions F , if (Gen,Enc,Dec,Eval) is a fully composable F-homomorphic
encryption scheme, then (Gen,Enc,Dec,Eval∗) is a F∗-homomorphic encryption scheme. Moreover,
(Gen,Enc,Dec,Eval∗) is fully composable.

Proof By induction on the depth of F . In the base case, F is a circuit of depth 1 (i.e., a single
gate F ∈ F), and the statement follows from the assumption that (Gen,Enc,Dec,Eval) is fully
composable F-homomorphic.

For the inductive case, let F :Mw →M be any circuit of depth d+ 1, and let f be the output
gate. Then, we can write F (m) = f(F1(m), . . . , Fw(m)) for w circuits F1, . . . , Fw of depth d. By
induction hypothesis, for any c ∈ Cw, we have

Dec(sk,Eval∗(pk, Fi, c)) = Fi(Dec
∗(sk, c))

for all i. It follows from the definition of Eval∗ and the assumption that Eval is f -homomorphic
that

Dec(sk,Eval∗(pk, F, c)) = Dec(sk,Eval(pk, f, {Eval∗(pk, Fi, c)}i))
= f({Dec(sk,Eval∗(pk, Fi, c))}i)
= f({Fi(Dec∗(sk, c))}i)
= F (Dec∗(sk, c)).

This completes the proof that Eval∗ is F -homomorphic and fully composable. □

Notice that the transformation from Eval to Eval∗ preserves the security of the scheme because
IND-CPA security only depends on Gen and Enc, which are not modified.

The property established in Theorem 2 is closely related to a (somehow weaker) notion of
composition proposed in [GHV10] under the name of multi-hop homomorphic encryption. Using
our notation, multi-hop homomorphic encryption can be equivalently12 defined as follows.

Definition 8 (Multi-hop Homomorphic Encryption [GHV10]) Let (Gen,Enc,Dec,Eval) be
a homomorphic encryption scheme with message spaceM and set of functions F . We say that the
scheme is a d-hop (resp. multi-hop) F-homomorphic if (Gen,Enc,Dec,Eval∗) is F≤d-homomorphic
(resp. F∗-homomorphic). We say that the scheme is layered d-hop (resp. layered multi-hop)
F-homomorphic if (Gen,Enc,Dec,Eval∗) is F ♯d-homomorphic (resp. F ♯-homomorphic.)

Notice that the definition of 1-hop homomorphic encryption scheme is the same as F-homomorphic
correctness (Definition 5). So, schemes satisfying Definition 5 are also called single-hop homomor-
phic. Moreover, since F≤d ⊆ F∗, multi-hop homomorphic schemes are d-hop homomorphic for any
d. Finally, it easily follows from Theorem 2 that any fully composable homomorphic encryption
scheme is also multi-hop homomorphic.

12Technically, [GHV10] defines multi-hop homomorphic encryption only for unary functions f :M→M, but the
definition is easily adapted to arbitrary f :Mw →M.
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Corollary 1 Any fully composable homomorphic encryption scheme is multi-hop homomorphic.

Proof Let (Gen,Enc,Dec,Eval) be a fully composable F-homomorphic encryption scheme. By
Theorem 2, (Gen,Enc,Dec,Eval∗) is F∗-homomorphic. So, by definition, (Gen,Enc,Dec,Eval) is
multi-hop F-homomorphic. □

In summary, both fully composable and multi-hop homomorphic encryption schemes support
the homomorphic evaluation of arbitrary circuits with gates in F . But notice the difference between
Corollary 1 and Definition 8: in the definition of multi-hop homomorphic encryption, the ability
to evaluate any function in F∗ is assumed, while for fully composable schemes it is derived from a
simpler correctness property (Definition 6) that does not directly involve the evaluation of arbitrary
circuits with gates in F∗.

It turns out that all inclusions between d-hop, multi-hop and fully composable homomorphic
encryption schemes are strict.

Theorem 3 Under minimal assumptions13 there are (secure) d-hop homomorphic encryption schemes
that are not (d+ 1)-hop homomorphic.

Proof Let (Gen,Enc,Dec,Eval) be d-hop F-homomorphic. Define a new scheme where

Enc′(pk,m) = (d,Enc(pk,m))

Dec′(sk, (l, c)) =

{
Dec(sk, c) if l ≥ 0
⊥ otherwise

Eval′(pk, f, {(li, ci)}i) = (min
i
li − 1,Eval(pk, f, {ci}i)).

The transformation preserves IND-CPA security because the encryption function simply adds a
known value d to the ciphertexts. Moreover, it is easy to see that (Gen,Enc′,Dec′,Eval′) is still
d-hop homomorphic, but not (d+ 1)-hop homomorphic. □

Corollary 2 Under minimal assumptions, for any d, there are d-hop homomorphic encryption
schemes that are not fully composable.

Proof Let (Gen,Enc,Dec,Eval) be a scheme that is d-hop homomorphic, but not (d + 1)-hop (or
multi-hop) homomorphic, as given by Theorem 3. It follows by Corollary 1 that the scheme cannot
be fully composable. □

The separation of Corollary 2 can be strengthened showing that even multi-hop encryption
schemes may fail to be fully composable.

Theorem 4 Under minimal assumptions14 for any set of functions F , there are (secure) multi-hop
homomorphic encryption schemes that are not fully composable.

13Specifically, assuming that (secure) d-hop F-homomorphic encryption schemes exist at all.
14Specifically, assuming that (secure) multi-hop F-homomorphic encryption schemes exist at all, and F ̸= ∅.
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Proof Assume (Gen,Enc,Dec,Eval) is multi-hop homomorphic, and define a new scheme where

Enc′(pk,m) = (0,Enc(pk,m))

Dec′(sk, (l, c)) =

{
Dec(sk, c) if l ≤ 1
⊥ otherwise

Eval′(pk, f, {(li, ci)}i) = (2 ·max
i
li,Eval(pk, f, {ci}i)).

It is easy to see that (Gen,Enc′,Dec′,Eval′) is still multi-hop homomorphic because for all F ∈ F∗,

Dec′(sk, (Eval′)∗(pk, F, (Enc′)∗(pk,m))) = Dec′(sk, (0,Eval∗(pk, F,Enc∗(pk,m))))

= Dec(sk,Eval∗(pk, F,Enc∗(pk,m))) = F (m).

Now, let f ∈ F be a function and m ∈ M∗ be a sequence of input messages. The ciphertexts
ci = (1,Enc(pk,mi)) satisfy

f((Dec′)∗(sk, c)) = f(Dec∗(sk,Enc∗(pk,m))) = f(m)

Dec′(sk,Eval′(pk, f, c)) = Dec′(sk, (2,Eval(pk, f, c))) = ⊥.

So, the scheme is not fully composable. □

So, full composability is a strictly stronger notion than multi-hop homorphic correctness. How-
ever, the ciphertexts used in the proof of Theorem 4 are pathological, in the sense that they cannot
be produced by repeated application of the encryption and evaluation functions. In fact, this is the
only way in which a multi-hop homomorphic encryption scheme may fail to be fully composable.
In order to bridge the gap between the two definitions, let’s consider a subclass of homomorphic
encryption schemes that do not contain such useless ciphertexts.

Definition 9 A homomorphic encryption scheme (Gen,Enc,Dec,Eval) (with message spaceM and
functions F) is surjective if for any key (pk, sk) ← Gen, and ciphertext c ∈ C, there is a function
F ∈ F∗ and message vector m ∈Mw such that

Pr{Eval∗(pk, F,Enc∗(pk,m)) = c} > 0

i.e., the ciphertext c can be obtained as the result of a valid homomorphic computation with nonzero
probability.

Surjective encryption schemes have the property that the decryption function Dec never outputs
⊥, i.e., all possible ciphertexts c ∈ C are valid.

Lemma 1 For any surjective homomorphic encryption scheme (Gen,Enc,Dec,Eval), keys (pk, sk)←
Gen and ciphertext c ∈ C, we have Dec(sk, c) ̸= ⊥.

Proof Let c be an arbitrary ciphertext. By definition of surjective scheme, there are f ∈ F and
m ∈ Mw such that c = Eval(pk, f,Enc∗(pk,m)) with nonzero probability. We also know from the
homomorphic correctness property that

Dec(sk,Eval(f,Enc∗(pk,m))) = f(m) ̸= ⊥.

12



So, it must be Dec(sk, c) ̸= ⊥. □

Finally, we show that if we restrict our attention to surjective encryption schemes, then full
composability is equivalent to multi-hop homomorphism.

Theorem 5 Let (Gen,Enc,Dec,Eval) be a surjective multi-hop homomorphic encryption scheme.
Then (Gen,Enc,Dec,Eval) is fully composable.

Proof Let f : Mw → M be any function in F , and c ∈ Cw a vector of ciphertexts. We need to
prove that Dec(sk,Eval(pk, f, c)) = f(Dec∗(sk, c)). Since the scheme is surjective, for any ci there
are Fi ∈ F∗ and mi ∈ M∗ such that Eval(pk, Fi,Enc

∗(pk,mi)) = ci with nonzero probability. If
follows from the multi-hop homomorphic property that Dec(sk, ci) = Fi(mi). Now, consider the
function

F (m1, . . . ,mw) = f(F1(m1), . . . , Fw(mw)) ∈ F∗.

Since the encryption scheme is d-hop homomorphic, we have

Dec(sk,Eval∗(pk, F,Enc∗(pk,m1, . . . ,mw))) = F (m1, . . . ,mw)

= f(F1(m1), . . . , Fw(mw))

= f(Dec(sk, c1), . . . ,Dec(sk, cw)) = f(Dec∗(sk, c)).

with probability 1. But, by definition of Eval∗ and F , we also have

Dec(sk,Eval∗(pk, F,Enc∗(pk,m1, . . . ,mw))) = Dec(sk,Eval(pk, f, {Eval∗(pk, Fi,Enc∗(pk,mi))}))
= Dec(sk,Eval(pk, f, c))

with nonzero probability. Therefore it must be that Dec(sk,Eval(f, c)) = f(Dec∗(sk, c)). □

4 Bootstrapping

The following theorem is in essence a formalization of Gentry’s bootstrapping technique [Gen09b]
presented in terms of our full composability definition. Instead of directly showing that a boot-
strapped scheme supports the evaluation of arbitrary circuits, we show that it is fully composable.
The ability to evaluate arbitrary circuits homomorphically then follows by composition (Theo-
rem 2). We begin by describing the bootstrapping construction of [Gen09b].

Definition 10 (Bootstrapping) Fix a set F of functions f :Mw →M, and an (injective) en-
coding ψ : K →Mk. Let (Gen,Enc,Dec,Eval) be a F⟲

ψ -homomorphic encryption scheme with mes-

sage space M, ciphertext space C, and secret key space K, where F⟲
ψ is the set of all functions

f⟲c :Mk →M indexed by f ∈ F and c ∈ Cw defined as

f⟲c (x) =

{
f(Dec∗(sk, c)) if x = ψ(sk) for some sk ∈ K
⊥ otherwise.

(4)

The bootstrapped encryption scheme FHE⟲ def
= (Genψ,Encψ,Dec,Eval⟲) consists of the following

algorithms:
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• Genψ(κ) = (sk, (pk,Enc∗(pk, ψ(sk)))) and Encψ((pk, pk′),m) = Enc(pk,m) are the key genera-
tion and encryption algorithms from Definition 3,

• the decryption algorithm Dec is the same as that of FHE, and

• the evaluation function is Eval⟲((pk, pk′), f, c) = Eval(pk, f⟲c , pk
′).

In words, FHE⟲ evaluates a function f homomorphically on a ciphertext c by using c to select
a function f⟲c from F⟲

ψ , and then evaluating this function (using FHE) on a fixed ciphertext pk′

which is part of the public key. The following theorem shows that this “bootstrapping” construction
produces a fully composable homomorphic encryption scheme.

Theorem 6 For any set F of functions f : Mw → M and encoding ψ : K → Mk, let FHE =
(Gen,Enc,Dec,Eval) be a valid F⟲

ψ -homomorphic encryption scheme with secret key space K, mes-

sage space M and ciphertext space C. Then, the bootstrapped scheme FHE⟲ from Definition 10 is
valid, F-homomorphic, and fully composable. Moreover, if FHE is ψ-circular IND-CPA secure,
then FHE⟲ is also (ψ-circular) IND-CPA secure.

Proof The IND-CPA security of FHE⟲ immediately follows from the assumption that FHE is ψ-
circular IND-CPA secure (Definition 3). Moreover, appending15 Encψ∗((pk, pk′), sk) = Enc∗(pk, sk) =
pk′ to the public key (pk, pk′) does not add any new information. So, FHE⟲ is ψ-circular IND-CPA
secure. We also have

Dec(sk,Encψ((pk, pk′),m)) = Dec(sk,Enc(pk,m)) = m

for all m ∈M. So, FHE⟲ is a valid encryption scheme.
In order to prove that FHE⟲ is fully composable, let f :Mw →M be any function in F , and

c ∈ Cw a sequence of valid ciphertexts. Then, since FHE is F⟲
ψ -homomorphic, we have

Dec(sk,Eval⟲((pk, pk′), f, c)) = Dec(sk,Eval(pk, f⟲c , pk
′))

= Dec(sk,Eval(pk, f⟲c ,Enc
∗(pk, ψ(sk))))

= f⟲c (ψ(sk)) = f(Dec∗(sk, c)).

This proves the full composability property. □

Notice that Definition 10 and Theorem 6 transform a (non-composable) scheme FHE that sup-
ports only the evaluation of functions f⟲c (x) with a fixed number of inputs x ∈ Mk (determined
by the encoding function ψ), into a scheme FHE⟲ that supports the (composable) evaluation of
functions f with an arbitrary number of inputs w. The larger is the set of functions F we want
FHE⟲ to support, the larger is the set F⟲

ψ for which FHE is required to be F⟲
ψ -homomorphic to

start with. However, this is typically not necessary, and F is usually a small (finite) set of func-
tions, with a fixed number of inputs. For example, for boolean messages M = {0, 1}, one may
use a set F = {fnand} consisting of a single function fnand :M2 → M implementing the NAND
gate fnand(x0, x1) = 1 − x0 · x1, which is universal for boolean computations. Then, using the

15Technically, since Enc(pk, sk) is randomized, this may produce ciphertext different from pk′. So, one should
assume that the original scheme is circular secure even when given multiple encryptions of sk. In practice, this
additional ciphertext serves no purpose, and can be omitted from the public key.
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fact that FHE⟲ is fully composable, and Theorem 2, conclude that FHE⟲∗ (i.e., the same scheme
with evaluation function Eval⟲∗ extended to circuits with gates in F) is F∗-homomorphic, i.e., it
supports the homomorphic evaluation of arbitrary boolean functions F :Mw → M, expressed as
boolean circuits.

Corollary 3 Let FHE = (Gen,Enc,Dec,Eval) be a valid, F⟲
ψ -homomorphic, ψ-circular IND-CPA

secure encryption scheme. Then FHE⟲∗ is a valid, ψ-circular secure, fully composable F∗-homomorphic
encryption scheme.

Proof Follows from Theorem 6 and Theorem 2. □

The bootstrapping theorem, as stated above, requires the starting scheme FHE to be circular
secure. If FHE is only IND-CPA secure, we can still achieve a limited form of composition using
leveled bootstrapping. In the following construction, ciphertexts are tagged with an integer ℓ
corresponding to their level in the homomorphic computation, starting from ℓ = 0 for the input
layer, all the way to the final output of a computation of depth ℓ = d. Gates are evaluated similarly
to Theorem 6, but using a different pair of keys for each layer of the computation.

Definition 11 (Leveled Bootstrapping) Let FHE = (Gen,Enc,Dec,Eval), ψ : K →Mk, F and

F⟲
ψ be as in Theorem 6. The Leveled homomorphic encryption scheme FHE♯ = (Gen♯d,Enc

♯,Dec♯,Eval♯)
is defined by the following algorithms

• Gen♯d(κ) runs (ski, pki) ← Gen(κ) for i = 0, . . . , d, computes pk′i ← Enc∗(pki, ψ(ski−1))) for
i = 1, . . . , d, and outputs ({ski}i≥0, ({pki}i≥0, {pk′i}i≥1)).

• Enc♯(({pki}i, . . .),m) = (0,Enc(pk0,m))

• Dec♯({ski}i≥0, (ℓ, c)) = Dec(skℓ, c)

• Eval♯(({pki}i, {pk′i}i), f, ĉ) checks that ĉi = (ℓ, ci) for all i and some (common) value ℓ, and
outputs (ℓ+ 1,Eval(pkℓ+1, f

⟲
c , pk

′
ℓ+1)). Otherwise, Eval♯ outputs ⊥.

Theorem 7 If FHE = (Gen,Enc,Dec,Eval) is F⟲
ψ -homomorphic, then FHE♯ is leveled F ♯d-homomorphic.

Moreover, if FHE is IND-CPA secure, then FHE♯ is also IND-CPA secure.

Proof The proof of homomorphic correctness is similar to the proof of full composability of Theo-
rem 6 and Corollary 1. Security is proved by a standard hybrid argument. □

5 Optimizations

In this section we discuss some optimizations that are commonly used to improve the efficiency
of (fully composable) encryption schemes. There is one important aspect in which Theorem 6
differs from the way Gentry’s bootstrapping technique is used in practice. In Theorem 6 (as well
as [Gen09b, Theorem 3]) full composability is achieved by preprocessing each input to a gate
f : Mw → M with a copy of the decryption function Dec(sk, ci) for i = 1, . . . , w. When several
gates are combined in a circuit to perform a larger homomorphic computation, if a ciphertext ci
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is used as input to multiple gates (i.e., if the gate producing ci has fan-out higher than 1), then
ci will be decrypted (homomorphically) multiple times, once for each gate that takes ci as input.
So, the total number of homomorphic decryptions performed to evaluate a circuit with n gates
with fan-in k is k · n. In practice, homorphic decryption is performed only once for each gate, on
the output wire, and then the same “bootstrapped” ciphertext is used as input to multiple gates
without further preprocessing. This reduces the number of homomorphic decryptions from k · n to
just n. This optimization is captured by the following definition.

Definition 12 A F-homomorphic encryption scheme (Gen,Enc,Dec,Eval) is bootstrappable if
there is an efficient algorithm Boot(pk, c) that on input a public key pk and ciphertext c outputs
another ciphertext such that for all f ∈ F , keys (sk, pk)← Gen(κ), and valid ciphertexts c ∈ Cw

Dec(sk,Eval(pk, f,Boot(pk, c1), . . . ,Boot(pk, cw))) = f(Dec(sk, c1), . . . ,Dec(sk, cw)).

Using this definition, a bootstrappable scheme can be used to homomorphically evaluate any
circuit with gates in F in the obvious way, applying Boot to the output of each gate. This is
formalized in the following theorem.

Theorem 8 Let (Gen,Enc,Dec) be an encryption scheme which is F-homomorphic and bootstrap-
pable, with evaluation procedure Eval and bootstrapping algorithm Boot. Define a modified evalu-
ation function Eval′ that on input a circuit C(x1, . . . , xn) ∈ F∗ and n input ciphertext c1, . . . , cn,
computes, for each circuit gate xi = f(xI), the ciphertexts

c′i = Eval(pk, cI), ci = Boot(pk, c′i).

For each output gate xi = f(xI), Eval
′ outputs c′i. Then, (Gen,Enc,Dec,Eval

′) is F ♯-homomorphic.16

Proof Let xi be the outputs of each gate of C when the circuit is evaluated in the clear. It easily
follows by induction that for all gates i, Deci(sk, c

′
i) = xi:

• For the first layer of gates, this follows from the F-homomorphic property

Dec(sk, c′i) = Dec(sk,Eval(pk, cI)) = Dec(sk,Eval(pk, f,Enc(pk, xI))) = f(xI)

• For all other gates, we have

Dec(sk, c′i) = Dec(sk,Eval(pk, cI)) = Dec(sk,Eval(pk, f,Boot(pk, c′I))) = f(Dec(sk, c′I)) = f(xI).

So, the final output of the homomorphic evaluation c′ = Eval♯(pk, C, c1, . . . , cn) satisfies Dec(sk, c
′) =

C(x1, . . . , xn). □

We remark that Definition 12 is somehow different from [Gen09b, Definition 5], where a “boot-
srappable” scheme is defined as a scheme supporting the construction in Definition 10. However,
since this optimization has the potential of speeding up homomorphic computations by a factor k
(equal to the gates’ fan-in), this is how bootstrapping is implemented in practice.

Bootstrappability (as defined in Definition 12) is easily related (at least in theory) to full
composability, as shown in the next simple theorems.

16For simplicity, we assumed the input circuit is layered. This is easily generalized to arbitrary circuits by combining
Definition 4 and Definition 12 into a single property Dec(sk,Eval(pk, f, c1, . . . , cw)) = f(x1, . . . , xw) where each input
ci is either a fresh ciphertext Enc(pk, xi), or Boot(pk, ci) for some ci such that Dec(sk, ci) = xi.
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Theorem 9 Any fully composable encryption scheme (Gen,Enc,Dec,Eval) is boostrappable.

Proof Just let Boot(pk, c) = c be the identity function. Then, Definition 12 becomes equivalent to
Definition 6 □

Theorem 10 Any boostrappable encryption scheme (Gen,Enc,Dec,Eval) can be turned into a fully
composable one (Gen,Enc,Dec,Eval′) supporting the same set of functions F .

Proof Let Boot be the bootstrapping algorithm from Definition 12, and define

Eval′(pk, f, c1, . . . , cw) = Eval(pk, f,Boot(pk, c1), . . . ,Boot(pk, cw)).

Then, by definition of boostrappability, Eval′ satisfies Definition 6. □

Naturally, turning a bootstrappable encryption scheme into a fully composable one (using The-
orem 10) and then evaluating a circuit homomorphically (using Theorem 2) is unnecessarily inef-
ficient, computing Boot multiple times for each output wire. In order to save a factor k one needs
to make direct use of Boot as described above.

Algorithm Boot can be thought of as evaluating the identity function homomorphically. In fact,
assuming without loss of generality that Eval(pk, id, c) = c, Definition 12 with f = id reduces to

Dec(sk,Boot(pk, c)) = Dec(sk, c).

(Note however that Boot is generally not the identity function on ciphertexts.) There is no need to
restrict Boot to the evaluation of the identity function, and one can define a more general notion
of functional boostrapping.

Definition 13 (Functional Bootstrapping) A F-homomorphic encryption scheme (Gen,Enc,Dec,Eval)
supports functional bootstrapping with function set G ⊆ M → M if there is an efficient algo-
rithm Bootg(pk, c) such that for all f ∈ F , g1, . . . , gw ∈ G, valid ciphertexts c ∈ Cw and random
(sk, pk)← Gen(κ),

Dec(sk,Eval(pk, f,Bootg1(pk, c1), . . . ,Boot
gw(pk, cw)) = f(g1(Dec(sk, c1)), . . . , gw(Dec(sk, cw))).

Definition 12 is a special case of Definition 13 with the trivial set G = {id}. Functional boostrap-
ping can be used to homomorphically evaluate circuits with gates in G ◦F = {g ◦ f : f ∈ F , g ∈ G},
where (g ◦ f)(x) = g(f(x)) is the standard function composition operation. Circuits with gates in
G ◦ F are evaluated as follows:

• input wires are labeled with the corresponding ciphertext

• for each gate g ◦ f with input c1, . . . , cw, compute c′ = Bootg(pk,Eval(pk, f, c1, . . . , cw)) and
label the gate output wire with c′

The use of functional bootstrapping may seem redundant at first, as one can assume Eval al-
ready supports the evaluation of functions in G ◦F .17 The motivation for functional bootstrapping

17One may also ask why start from a homomorphic encryption at all, when functional bootstrapping can already
support the evaluation of arbitrary functions. The reason is that, by definition, G only contains unary functions. In
order to combine multiple ciphertexts together, one needs F to contain at least one binary function f :M2 →M.
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is again practical: functional bootstrapping can lead to substantial efficiency gains. The idea
was first introduced by the FHEW cryptosystem in [DM15], where it is observed that the nand
boolean gate (as well as any other symmetric18 boolean function) can be expressed as addition
modulo a small p > 2 followed by a nonlinear operation mapping {0, 1, 2} ⊆ Zp to {0, 1} ⊂ Zp.
This allows to perform arbitrary homomorphic computations starting from an encryption scheme
(Gen,Enc,Dec,Eval) that is only linearly homomorphic, i.e., with F = {+}. Lattice-based encryp-
tion schemes (which are the basis of essentially all known FHE constructions) are naturally linearly
homomorphic, and schemes supporting just the addition operation are much simpler than those also
supporting the homomorphic evaluation of multiplication (or other non-linear operations). This re-
sults in much smaller parameters and computationally simpler decryption function Dec. Since Boot
is typically implemented as a homomorphic evaluation of Dec on the encryption of the secret key
(e.g., see Definition 10), this translates to a much simpler and faster bootstrapping procedure Boot.
Moreover, the bootstrapping algorithm underlying [DM15] supports functional bootstrapping for
free, at essentially no additional cost. The end result is a very fast bootstrapping procedure, fast
enough that it becomes feasible to perform (functional) bootstrapping after each (boolean) gate.
As an added benefit, the resulting scheme is fully composable, supporting a much simpler model
of computation (where programs are arbitrary boolean circuits) than previous practical schemes
which reduced the amortized cost of bootstrapping by batching many (often tens of thousands)
computations together. The efficiency of the boostrapping algorithm of [DM15] has been further
improved in several other so-called “FHEW-like” cryptosystems [CGGI20, MP21, LMK+23] which,
following [DM15], combine a linearly homomorphic base encryption scheme with a (non-linear)
functional bootstrapping procedure.

6 Conclusions and Open Problems

We have presented a definition of homomorphic encryption that allows the arbitrary composition of
homomorphic computations, and investigated its relation to the traditional (non-composable) FHE
definition [Gen09b] as well as other forms of composition considered in the past [GHV10]. Then we
showed that this definition allows to formalize the bootstrapping technique of [Gen09b] (at the core
of essentially all known FHE constructions) as a method to turn a non-composable FHE scheme
into a composable one. We also gave similar definitions that more closely correspond to the way
bootstrapping is used in practice. Beside providing a possible avenue to the construction of FHE
schemes (e.g., as already done by FHEW-like cryptosystems [DM15, CGGI20, MP21, LMK+23],)
we believe the new definition may prove useful to investigate questions that are central to the theory
of homomorphic computations as we now explain.

All known constructions of fully homomorphic encryption schemes (aside from proposals relying
on indistinguishability obfuscation [CLTV15]) make use of lattice cryptography, which is inherently
noisy. This requires the use of bootstrapping as a noise reduction technique for lattice-based cipher-
texts, and circular security assumptions to implement bootstrapping. For this reason, a recurring
question in the study of fully homomorphic encryption has been whether noise (with bootstrap-
ping and circular security along with it) is necessary to achieve fully homomorphic encryption,
or it is possible to build an FHE scheme which is “noiseless”. However, it should be remarked
that being “noisy” or “noiseless” is not an abstract property (which may or may not be satisfied

18Non symmetric gates are also easily handled by mapping input bits x0, x1 ∈ {0, 1} to x0+2 ·x1 ∈ {0, 1, 2, 3} ⊆ Zp

for p ≥ 4.
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by any encryption scheme,) but a peculiar characteristic of specific constructions (such as lattice
based cryptography) where the encryption randomness can be naturally be interpreted as a noise
term. So, the question of whether noise (and bootstrapping and circular security along with it) is
necessary to build fully homomorphic encryption schemes is not really well posed. One possible
way to formalize the question could be to consider homomorphic encryption schemes such that
Encpk(m; r ∈ R0) is secure even when the encryption randomness is restricted to a set R0, and such
that Evalpk(f,Enc(m;Ri)) ⊆ Encpk(f(m);Ri+1) for larger and larger sets R0 ⊂ R1 ⊂ . . ..

Our description of bootstrapping as a method to transform a (non-composable) homomorphic
encryption scheme into a fully composable one (Theorem 6) offers a different framework to prop-
erly formalize and investigate this type of questions, completely bypassing the notion of “noisy”
encryption scheme. For example one may ask:

Question: Is circular security necessary necessary to achieve full composability?

Note that the question does not make any reference to encryption noise, and all concepts (circular
security, homomorphic encryption and full composability) have well formalized abstract crypto-
graphic definitions. A possible way to address this question could be to show the following.

Conjecture 1: Any fully composable homomorphic encryption scheme can be modified
into a circular secure one.

In fact, one could ask if any fully composable homomorphic encryption scheme is already circular
secure, but this is most likely false as one can adapt the simple counterexamples demonstrating the
existence of circular insecure encryption schemes to the fully composable setting. So, the circular
secure scheme of Conjecture 1 can be different from (but still depend on) the original composable
FHE scheme. Given that circular security implies full composability (Theorem 6), proving the
conjecture would show that circular security and full composability are essentially equivalent (as-
suming the existence of a non-composable encryption scheme with limited homomorphic properties,
as those that can be built from lattices.)

We also remark that there are forms of circular security that seem sufficient to achieve full
composability (extending Theorem 6), but are not covered by known separation results [KRW15,
KW16, AP16, GKW17b, GKW17a, HK17]. Specifically, Theorem 6 makes a scheme Enc fully
composable using an encryption cycle Encpk(sk) of length 1, but is easily generalized to longer
encryption cycles Encpk1(sk2),Encpk2(sk3), . . . ,Encpkn(sk1), where (pki, ski) are independently gen-
erated pairs of public/secret keys. Previous results have shown how to build encryption schemes Enc
such that publishing such a cycle is insecure. So, one cannot achieve full composability generically
by publishing such an encryption cycle for any scheme Enc.

However, for the purpose of applying (a generalization of) Theorem 6 it is not necessary to
use the same encryption scheme at every step of the cycle. So, for example, in order to make a
scheme Enc fully composable it would be enough to show that there exists some other (possibly
different) encryption scheme Enc′ such that one can securely publish a cycle Encpk(sk

′),Enc′pk′(sk)

that combines the two schemes. Note that the new (existentially quantified) scheme Enc′ is not
required to be homomorphic. In fact, given ciphertexts c = Encpk(sk

′), c′ = Enc′pk′(sk) (as key

material), and an input ciphertext c′′ = Encpk(m) (to be bootstrapped), one can bootstrap c′′ by
first computing sk′ 7→ DecDecsk′ (c

′)(c
′′) = m homomorphically on c. Naturally, for this to be useful

(in Theorem 6) the original (non-composable) scheme should support the homomorphic evaluation
of this more complex function. Effectively, this is turning the 2-cycle (c, c′) into a simple cycle
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that encrypts Decsk′(c
′) = sk under Encpk, and then use that to bootstrap c′′. However, this is

different from computing a simple cycle Encpk(sk) directly, because the evaluated ciphertext follows
a different distribution. So, it is not ruled out by previous separation results, and we conjecture
the following.

Conjecture 2: For any (public key) encryption scheme Enc there is a (possibly dif-
ferent) encryption scheme Enc′ such that Enc(pk, ·) is secure in the presence of side
information Enc′pk′(sk),Encpk(sk

′) for a randomly chosen key pair (pk′, sk′).

Several variants of this conjecture are possible. For example, one may consider cycles of length
greater than 2, or set Enc′ to a private key encryption scheme where the side information is
Enc′sk′(sk),Encpk(sk

′), or consider the special case of encryption schemes that encrypt their mes-
sages bit by bit. Note that this Conjecture does not by itself imply the existence of composable
FHE schemes. The reason is that for any homomorphic encryption scheme Enc (capable of evalu-
ating functions in a given set F), one may select a scheme Enc′ such that the required computation
sk′ 7→ DecDecsk′ (c

′)(c
′′) is not in F . Still, proving that the conjecture is true would provide interesting

information about the feasibility of achieving circular security in a generic way. In particular, if
the starting scheme Enc is (non-composable) fully homomorphic (i.e., F is the set of all possible
functions), this would be enough to achieve full composability.
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