
BEAT-MEV: Epochless Approach to
Batched Threshold Encryption for MEV Prevention

Jan Bormet
TU Darmstadt

jan.bormet@tu-darmstadt.de

Sebastian Faust
TU Darmstadt

sebastian.faust@tu-darmstadt.de

Hussien Othman
TU Darmstadt

hussien.othman@gmail.com

Ziyan Qu
TU Darmstadt

ziyan.qu@tu-darmstadt.de

Abstract
In decentralized finance (DeFi), the public availability of
pending transactions presents significant privacy concerns, en-
abling market manipulation through miner extractable value
(MEV). MEV occurs when block proposers exploit the ability
to reorder, omit, or include transactions, causing financial loss
to users from frontrunning. Recent research has focused on
encrypting pending transactions, hiding transaction data until
block finalization. To this end, Choudhuri et al. (USENIX ’24)
introduce an elegant new primitive called Batched Thresh-
old Encryption (BTE) where a batch of encrypted transac-
tions is selected by a committee and only decrypted after
block finalization. Crucially, BTE achieves low communica-
tion complexity during decryption and guarantees that all
encrypted transactions outside the batch remain private. An
important shortcoming of their construction is, however, that
it progresses in epochs and requires a costly setup in MPC
for each batch decryption. In this work, we introduce a novel
BTE scheme addressing the limitations by eliminating the
need for an expensive epoch setup while achieving practical
encryption and decryption times. Additionally, we explore the
problem of how users can coordinate their transactions, which
is crucial for the functionality of the system. Along the way,
we present several optimizations and trade-offs between com-
munication and computational complexity that allow us to
achieve practical performance on standard hardware (< 2 ms
for encryption and < 440 ms for decrypting 512 transactions).
Finally, we prove our constructions secure in a model that
captures practical attacks on MEV-prevention mechanisms.

1 Introduction

A fundamental challenge of public blockchains is that all
transaction data is publicly available. This does not only have
serious implications for user privacy, but hinders many real-
world applications such as voting or auctions. A particular
domain where transaction privacy is becoming crucial is de-
centralized finance (DeFi). DeFi offers a plethora of financial

applications (e.g., exchanges, lending platforms and more),
which are realized via a smart contract running on a decen-
tralized blockchain. They promise a fair and reliable trading
platform that is available to everyone, which has attracted
huge investments from private and institutional investors. At
the time of writing, more than $80 billion has been locked
into various DeFi applications1.

Similar to traditional financial markets, the DeFi ecosys-
tem is prone to market manipulation. Daian et al. [15] were
the first to identify that knowledge of transaction data is a
security concern for public blockchains and introduced the
concept of miner/maximal extractable value (MEV). Maxi-
mal extractable value refers to the amount of money that a
block proposer can extract by re-ordering, omitting, or in-
cluding transactions. While most blockchains view some
form of transaction selection as benign, e.g., transactions that
pay higher fees shall be processed at faster speed, a plethora
of works on MEV attacks show that this power can be ex-
ploited [20, 27, 51]. For example, a malicious block proposer
may front-run a profitable transaction, where it places a buy
order of a certain asset just before a huge buy order of the
same asset is executed. Flashbots, an organization doing re-
search and development on MEV, estimates that until 2022
almost $700 million of value has been extracted, benefiting
mainly miners or professional trading bots.2

On a high-level MEV exploits that transactions are publicly
available in the network prior to being integrated into a block.
More precisely, users that wish to execute a transaction broad-
cast it to the blockchain P2P network. The nodes that receive
these transactions store them in an internal storage called the
mempool, where they are queuing for processing. Block pro-
posers select transactions from their local mempool, build a
block and broadcast the block to the network. Blocks are then
validated by other nodes in the network, and appended to their
local view on the blockchain. Once a transaction is part of a
block, it is eliminated from the nodes’ local mempool. Cru-
cially, the block proposers can freely decide on the order of

1https://defillama.com
2https://explore.flashbots.net

1

https://defillama.com
https://explore.flashbots.net

transaction execution, which is precisely what enables MEV.
While many different solutions to prevent malicious MEV

have been proposed (cf. Section 1.3), one of the most promis-
ing approaches is to keep transactions in the mempool pri-
vate [3, 13, 33]. This prevents MEV since block proposers
now have to select their transactions without knowledge of
the transaction content. An appealing solution to build private
mempools is to use threshold encryption [3, 13, 53]. A thresh-
old encryption scheme distributes the decryption key among a
set of n servers, where any subset of t ≤ n servers can jointly
decrypt ciphertexts, while < t servers learn nothing about the
encrypted plaintext. In a nutshell, threshold encryption can
be used as follows to realize private mempools. A decryption
key is distributed among a set of servers – often called the
committee – and the corresponding public key is published,
e.g., on the blockchain. To send a shielded transaction to
the private mempool, a user encrypts its transaction with the
public key of the committee and broadcasts the ciphertext to
the blockchain network. Block proposers then build blocks
from the encrypted transactions, which only get decrypted
by the committee once the block (and hence the order of
transactions) is finalized.

The naive way of realizing private mempools via threshold
cryptography suffers from an important shortcoming. The
communication to decrypt a batch of encrypted transactions B
among a committee of n servers is O(n|B|) instead of O(|B|)
without privacy. As outlined in [13], this is particularly prob-
lematic in large scale P2P networks with many decryption
nodes or in a blockchain setting, where the communication
must be stored on-chain for verifiability. Moreover, in time-
critical application such as MEV protection additional latency
due to a multi-round decryption protocol is inherently pro-
hibitive. Indeed, an existing system for MEV protection called
Shutter [1] encountered this communication bottleneck and
address it via releasing so-called epoch keys. Here, the com-
mittee members locally derive epoch key shares. When O(n)
such shares get published all shielded transactions that were
sent by users during this epoch can be decrypted.

Recently, Choudhuri et al. [13] observe an important short-
coming of the Shutter system which they term pending trans-
action privacy. In Shutter, all transactions of an epoch loose
privacy, even if they are stuck in the mempool and were not
confirmed as part of a block. For trading applications, this
is an important downside as the content of a transaction can
reveal a profitable trading strategy that can be front-run dur-
ing the next epoch. Choudhuri et al. [13] address this issue
via a new notion that they call batched threshold decryption.
The idea is that the committee members only decrypt the
subset of transactions that made it from the mempool to the
blockchain. Technically, this is done by letting the committee
members jointly select a batch of encrypted transactions B for
which they reveal the corresponding decryption shares. This
guarantees that all transactions from B get decrypted with
total communication of O(n), while transactions pending in

the mempool remain private. The construction of Choudhuri
et al. [13] offers an elegant solution for pending transaction
privacy. It suffers, however, from the following important
shortcomings, which we will address in this work:

1. Expensive epoch setup: During each epoch the commit-
tee executes an expensive epoch setup, which already
for modest committee size takes significantly more time
than block creation of popular blockchain systems.

2. Transaction coordination: Batched threshold encryp-
tion requires users to coordinate, which is not addressed
in [13]. In addition, shielded transactions that do not end
in a batch must be resent, causing bad user experience.

Along the way of addressing these challenges, we present fur-
ther optimizations and trade-offs that move batched threshold
decryption closer to realizing private mempools. We provide
background and more details in our contribution below.

1.1 Batched Threshold Encryption

In Batched Threshold Encryption (BTE) a committee of n
servers share a secret key sk and is given a batch of B ci-
phertexts. The ciphertexts are encrypted independently under
the public key pk. The task of the committee is to decrypt
the batch B. As in standard threshold encryption, any set of t
(where t is the fixed threshold) of n servers should be able to
decrypt all the ciphertexts in B, and any set of size < t should
learn nothing about the encrypted plaintexts. In addition, a
BTE scheme should satisfy the following two requirements:
First, the communication complexity for each server should
be sublinear in the size of B (optimally, a constant). Second,
every ciphertext that is not in B should remain private, which
is necessary to achieve pending transaction privacy.

Choudhuri et al. [13] present the first BTE scheme that
fulfills the aforementioned additional requirements. Their
construction relies on a polynomial commitment scheme, con-
cretely on the popular KZG scheme [32]. In a polynomial
commitment scheme, the sender can commit to a polynomial
p(X) via a short commitment com. Later, he can reveal a
tuple (x,y) and a short proof π showing that p(x) = y. At a
high level, in [13] the public key is a commitment com to a
yet unspecified polynomial. To encrypt a message mi, a user
chooses (xi,yi) and encrypts mi such that decryption can be
done with the proof πi showing that (xi,yi) lies on the poly-
nomial with respect to com. In order to decrypt a batch of B
transactions, the committee uses a shared trapdoor (which is
part of the secret key shares) to specify a degree B polynomial
p (with respect to the commitment com) to go through all
(xi,yi) that are part of the batch B. Since a B-degree polyno-
mial can be reconstructed with B+1 points, the committee
members broadcast (0, p(0)). Given (xi,yi) and (0, p(0)), one
can compute the proofs πi of opening (xi,yi), which allows
to decrypt the ciphertexts.

The scheme enjoys constant communication during batch

2

decryption as the servers need to compute (and reveal) only
the single point (0, p(0)). Furthermore, the decryption pro-
cess is efficient as it requires a single pairing operation per ci-
phertext (O(|B|) in total). On the other hand, the construction
requires running for each batch to be decrypted an expensive
interactive epoch setup. In a nutshell using techniques from
MPC, the servers need to generate a commitment com to a
fresh (unspecified) polynomial and share the corresponding
trapdoor used for batch decryption. While the authors of [13]
point out that the epoch setup can be done during idle time
and is independent of the ciphertexts in the batch, it puts a
high computational burden on the servers; e.g., for a modest
number of 50 servers its execution requires 18 seconds on a
LAN (hence, ignoring network latency in global networks). In
addition, the servers need to maintain large secret key shares
of size O(|B|). Finally, the construction ignores the problem
of how users that wish to encrypt messages coordinate on
choosing distinct indices xi from the setup. If two ciphertexts
pick the same xi from the setup, which has non-negligible
probability for polynomial B, the batch can only contain one
of the two ciphertexts.

1.2 Our Contributions

In this work we explore a new practical construction of
batched threshold encryption as a cryptographic building
block for MEV-prevention. In particular, we make the fol-
lowing contributions:

• We construct the first CCA-securte BTE protocol without
per-epoch setup. While our construction also requires a
one-time setup similar to [13], we achieve several addi-
tional improvements. Our one-time setup is not tied to
the committee’s secret key shares and therefore is univer-
sal, i.e., it does not need to be executed by the committee
and can be re-used. Further, we achieve constant-sized
secret key shares, which is a significant improvement
over [13] where the size of the secret key shares is linear
in the batch size.

• We present formal proofs of security of our construction
that cover relevant practical attacks in the context of
MEV-prevention.

• We explore several optimizations and trade-offs between
communication and computation complexity. In addition,
we introduce an additional feature called verifiability that
protects against practical attacks in the context of MEV.

• We propose a sub-batching technique for removing co-
ordination between encryptors. To our knowledge, this
is the first solution to the coordination problem that
does not increase the ciphertext size. This is appealing
since ciphertexts are stored on-chain in our use case of
MEV-prevention. Our techniques also improve on the
coordination problem in other settings, e.g., for batch
solving of time-lock puzzles [19].

• We provide a comprehensive practical evaluation of our
construction via a publicly available implementation of
our construction.3 In particular, we explore several op-
timizations and compare our results to the benchmarks
given by Choudhuri et al. [13]. We establish that encryp-
tion can be done in under 2 ms on commodity hardware
and show that encryption and partial decryption outper-
forms the constrution of [13] by avoiding pairings in
both operations.

We remark that in contrast to [13], our scheme offers a less
efficient reconstruction process to decrypt a batch after releas-
ing the decryption shares. The construction of [13] requires a
single pairing operation per ciphertext (O(B) pairings to de-
crypt a batch of B ciphertexts). In our construction, we need
to perform B pairing operations per ciphertext (and O

(
B2

)
pairings for the entire batch). To mitigate this shortcoming,
we evaluate possible trade-offs between the communication
and computation complexity. E.g., by increasing the com-
munication (decryption share size) from O(1) to O

(√
B
)

we
reduce the computation to O

(√
B
)

pairings per ciphertext
and O

(
B
√

B
)

pairings for decrypting the whole batch. We
evaluate an implementation of this optimization and show
reconstruction times on standard hardware that are below 1
second for large batches of 512 ciphertexts. For reference, the
Ethereum block time is approximately 12 seconds. We note
that in practice our property of verifiability can help to further
mitigate this shortcoming. Instead of letting all members of
the committee do the decryption process, we may outsource
it to a few powerful servers, and verify the correctness of
decryption, which can be done at low cost.

1.3 Related Work
We focus here on the most important related work that was not
already discussed before. A more comprehensive overview
is given in Appendix A. One of the mainstream solutions to
mitigate MEV is to make the mempool private by shielding
transasctions. Three different approaches have been consid-
ered to achieve this goal: threshold encryption, time-lock
encryption, and TEE-based schemes.

Several works [3,33,39,43,53] exploit threshold encryption
to address the MEV problem. All of them require heavy com-
munication, because the committee members need to release a
decryption share for each transaction in the block. Shutter [1]
and Fairblock [41] use threshold identity-based encryption
to encrypt transactions to an epoch. As already discussed,
these works greatly improve communication complexity but
do not achieve pending transaction privacy. Similarly, a recent
work of Döttling et al. [18] introduces a scheme for encryp-
tion to the future with constant communication complexity. It
relies on a signature-based witness encryption scheme, where
batches of ciphertexts can be decrypted when a signature for

3https://anonymous.4open.science/r/btd-impl

3

https://anonymous.4open.science/r/btd-impl

a particular epoch becomes available. Since the witness al-
lows to decrypt all ciphertext of an epoch, pending transaction
privacy is not guaranteed.

Time-lock encryption [5] guarantees that a message stays
hidden until a pre-defined time, which has been discussed as
a solution to provide mempool privacy [49]. In contrast to
threshold cryptography, time-lock encryption has the advan-
tage of not requiring a quorum of honest users. On the down-
side, however, it requires parties to carry out wasteful com-
putation, which further delays execution. In addition, prior
work [14] requires investing computation for each encrypted
message resulting into huge computationally overheads. Re-
cently, Dujmovic et al. [19] proposed time-lock puzzles with
efficient batch solving. Their scheme uses a linearly homo-
morphic time-lock puzzle and a puncturable pseudorandom
function. We use their idea of puncturable pseudorandom
function as a building block in our scheme and adjust it to
work in a threshold setting.

An alternative to MEV prevention mainly followed by in-
dustry are trusted execution environments (TEEs) [40]. TEEs
provide secure and private hardware isolation, where data and
code is executed in a protected environment. TEE has been
used as a solution to MEV [4, 50], but relies on a strong trust
assumption (see, e.g., attacks in [44, 52]).

2 Technical Overview

We next present a high level overview of our BTE construction.
Initially, we restrict ourselves to the setting of security against
chosen plaintext attacks (that is, the adversary learns only the
ciphertexts but does not get any decryption oracle). Then, we
explain possible attacks against the construction and describe
how we mitigate them. Our construction is inspired by recent
work on batched time-lock puzzles [9, 11, 19, 38, 48], which
allow amoritzed solving of Time-Lock Puzzles (TLP) [45]. In
particular, our work will follow the framework of Dujmovic,
Garg, and Malavolta [19].

Following [19,48], we base our construction on a primitive
called Puncturable Pseudorandom Function (PRF) [8, 36].
A punctured PRF is a regular PRF [28] that is punctured at
some point i∗. That is, for a PRF key k, we publish a punctured
key k∗ such that the value PRF(k, i) for every i ̸= i∗ can be
computed using the punctued key k∗, while the evaluation at
the punctured point, i.e., PRF(k, i∗), can be computed only
using the key k (and should look random even given k∗).
In our work, we consider a Key-Homomorphic PRF [10]. In
Key-Homomorphic PRFs, for any two keys k1,k2, it holds that
PRF(k1+k2, i)=PRF(k1, i)+PRF(k2, i). In our construction,
we use the Pairing-based Key-Hommorphic PRF from [19],
with two modifications to adjust it to our setting. First, we
modify it such that it can be evaluated using gk instead of
k (where gk remains private). More precisely, for any key
k ∈ Z∗p, we give an algorithm ExpEval such that for any input

i: PRF(k, i) = ExpEval(gk, i). Second, we work in asymmetric
pairing groups (see Section 4 for more details) to combine
it with a suitable threshold encryption scheme, namely some
form of Threshold ElGamal Encryption in the Exponent [24]
(see Section 4 for details).

To encrypt a message m, the encryptor needs to choose a
random k, a punctured index i, and puncture the PRF on i
under k, producing the punctured key k∗. Then, we compute
γ← m+PRF(k, i). Observe that by the security of the PRF,
the value PRF(k, i) looks random to anyone who does not
know k (or gk due to our modification for exponent evalua-
tion), thus no information can be learnt about m from γ. In
order to enable the decryption committee to learn m, the en-
cryptor attaches to γ a threshold ElGamal encryption ct of gk

under the public key of the decryption committee. Thus, the
ciphertext is the tuple (k∗,γ,ct).

The most interesting part of this construction is the de-
cryption process. To decrypt a batch of ciphertexts {ci}[B],
there is no need to decrypt the underlying key gki used in
each ciphertext, rather the servers can multiply all the ElGa-
mal ciphertexts together and release a decryption share for
the resulting ElGamal ciphertext, which is an encryption of
K = g∑ki due to the multiplicative homomorphism. Given
at least t such decryption shares, one can aggregate them to
learn g∑ki and use it to decrypt every ciphertext in the batch
as follows. Let the i-th ciphertext be ci = (i,k∗i ,γi,cti). Given
the other ciphertexts in the batch (in particular their punc-
tured keys k∗j) as well as K = g∑

[B] ki , we can reconstruct mi
as follows:

mi = γi +∑
j ̸=i

PRF(k∗j , i)−ExpEval(K, i)

To see why this is correct, observe that by the punctur-
ing property of the PRF scheme, the value PRF(k∗j , i) can
be computed for any i ̸= j and it is equal to PRF(k j, i) (i.e.,
the evaluation with the secret key k j).4 Also, from the key-
homomorphism and evaluation in the exponent of the under-
lying PRF scheme, it holds that:

ExpEval(K, i) = PRF(k1 + · · ·+ kB, i) = ∑
[B]
j PRF(k j, i)

and therefore,

∑
[B]
j ̸=i PRF(k∗j , i)−∑

[B]
j PRF(k j, i) =−PRF(ki, i)

Adding this to γi cancels out the PRF padding and reveals
mi. Observe that there was no interaction between the servers.
They simply release their threshold ElGamal decryption share
of ct = ∏

[B]
j ct j, which is a single group element (O(1) com-

munication complexity). Hence, our construction fulfills the
efficiency requirement in BTE. Furthermore, observe that the
decryption key does not depend on the ciphertexts that are
not included in the batch, which preserves their privacy.

4We abuse notation here and use the same algorithm for the evaluation of
the PRF and the punctured evaluation.

4

Removing Index-Coordination. In the above description,
we assumed that each ciphertext in the batch has a distinct
punctured index i, i.e., we assume a coordination mechanism
to avoid collisions. This assumption was critcial for the de-
cryption. If two ciphertexts have the same puncutred index,
then the decryption process fails. Unfortunately, this assump-
tion is not easily satisfied in our construction, since, in the
underlying PRF construction, the index domain is polynomi-
ally bounded and all information about indices are included
in the setup. Since we allow an unbounded set of encryptors
(any user of a blockchain can send transactions), we need to
refrain from assuming coordination for practical concerns.
Otherwise, we would need to either (i) increase the domain
of indices significantly, (ii) let the parties communicate to
reach an agreement on the indices, or (iii) introduce a central
authority that assigns the indices. All of these solutions are
impractical as they either impair the efficiency of the construc-
tion or introduce a single point of failure.

In order to overcome this challenge, in [19, 25], they use
a technique related to finding a perfect matching in bipartite
graphs [30]. On a high level, for a given statistical correctness
parameter λs, each user samples d = O(logλs) indices ran-
domly from the domain of indices, and sends d ciphertexts
of the message, each ciphertext corresponding to one index.
For decryption, using the Hall’s theorem [30], they show that
with overwhelming probability there will be a matching in
which each ciphertext has a unique index assuming appropri-
ate parameters d and domain size. We note that this approach
can also be used in our construction. This solution however
increase the number of cicphertexts to d · |c|, which is costly
in a blockchain setting where ciphertexts are stored on-chain.
We propose a new technique to avoid index collisions in Sec-
tion 5.3. In our approach, we consider a trade-off between
the communication required for decryption and the ciphertext
size. That is, we can increase the communication complexity,
e.g., to O

(√
B
)

instead of O(1), while keeping the ciphertext
size constant. The intuition is that if we split a batch into
sub-batches, we need to prevent only large collisions, i.e., we
only need to guarantee that for every index no more than

√
B

ciphertexts use it. We formally prove that we can acheive this
with overwhelming probability under reasonable parameters,
and provide practical analysis of statistical correctness. In-
terestingly, we observe that our approach has the additional
benefit to significanlty improve efficiency of decryption from
O
(
B2

)
to O

(
B
√

B
)
. Thus, we benefit from small ciphertext

size and more efficient computation at the cost of reasonable
increase in communication.

Non-malleability and Rouge Ciphertext Attacks. The
above description was restricted to the setting of Chosen
Plaintext Attacks (CPA). For our application of mempool pri-
vacy, we need to consider a stronger setting that is illustrated
by the following two attacks violating the privacy of cipher-
texts outside the batch. Consider a ciphertext c = (i,k∗,γ,ct)

that is not included in the batch. The adversary can decrypt
it by attempting to send a malformed ciphertext and hope
that it gets included in the batch. There are two ways for the
adversary to achieve this, which were also discussed in [13]:

• Mauled ciphertexts: The adversary can maul γ by, e.g.,
flipping bits. Then, after the malformed ciphertext gets
decrypted, he can restore the original γ.

• Copy attack: The adversary can copy (i,k∗,ct) from the
targeted ciphertext c and choose an arbitrary γ. For de-
cryption it is enough to compute the sum of the PRF
keys in the batch. Hence, since the malformed ciphertext
uses the same PRF key as in the targeted ciphertext c,
the adversary will be able to decrypt c as well.

To address these attacks, we require that our construction
fulfills the stronger notion of Chosen Ciphertext Security
(CCA). In addition to the above, an adversary may launch
an attack to inject faulty ciphertexts into a batch (e.g., use a
k∗ inconsistent with k encrypted in ct). This may result into
an incorrect decryption process, possibly leaking information
about transactions pending in the private mempool. Following
[19], we define Rouge Ciphertext Security (see Definition 3.3)
and prove that our construction satisfies it.

Adding Non-Interactive Zero-Knowledge Proof. To se-
cure our encryption scheme against above attacks, we require
that the encryptor attaches a non-interactive zero-knowledge
proof (NIZK). We construct an tailored NIZK proof system
that is based on the well known Schnorr proof of knowledge
construction [46]. In particular, the encryptor needs to prove
that it knows a random key k as well as ElGamal randomness
u such that k∗ is a valid punctured key for k at index i and ct is
a valid ElGamal encryption of gk. The proof is tagged to the
ciphertext through the random oracle, which allows us to pre-
vent both attacks, as the adversary cannot change any element
in the ciphertext without corrupting the proof. We remark that
in our CCA security proof, we need to use an extractor that
extracts the witnesses (k,u) from the proof. As we need to run
the extractor for a polynomial number of queries of the batch
decryption oracle, we need to avoid using the rewinding tech-
nique, as otherwise runtime blows up exponentially (see [47]
for more details). In order to overcome this, similar to [13],
we can use techniques from [23] to prove non-mallebaility
in Schnorr-Signed ElGamal Encryption using a straight-line
extractor in the algebraic group model (AGM).

3 Preliminaries

Notation. We denote the security parameter as λ ∈ N and
1λ as its unary representation. To assign expression y to vari-
able x we write x← y and x $← S for the uniform random
sampling of a value x from a set S. For an algorithm A, we
denote by y← A(x;r) the execution of A on input x with ran-
domness r that outputs y. We usually omit the randomness

5

and write y $← A(x) to indicate execution of A with uniform
randomness. By [n] for a positive integer n, we denote the
set of integers {1, · · · ,n}. Furthermore, we write {xi}i∈S as
a shorthand for the set {xi | i ∈ S}. We use Li to denote the
Lagrange coefficient for some set S evaluated at 0 such that
Li = ∏ j∈S, j ̸=i

−x j
xi−x j

where the set S is clear from context. For
simplicity, we assume that shareholders in a (t,n)-threshold
cryptosystem have participant indices in [n].

Our construction relies on bilinear pairing groups. Given
groups G1, G2 with generators g1 and g2 as well as GT of
prime order p a bilinear pairing is a function e : G1×G2→
GT that satisfies bilinearity, non-degeneracy and is efficiently
computable. We always write G1 and G2 as multiplicative
groups. In some cases, we use additive notation for GT to
enhance readability.

Key-Homomorphic Puncturable PRFs. A puncturable
pseudorandom function PRFis a PRF with additional algo-
rithms that allow to puncture the PRF and evaluate it using
the punctured key. Puncturing with respect to a key k and an
index i yields a punctured key k∗, which can in turn be used
to evaluate the PRF on any index but the punctured one. We
require two additional properties from our PRF: (1) The PRF
should be additively key-homomorphic and (2) given that the
PRF key k is a field element from some prime field Zp, it
should be possible to evaluate the PRF "in the exponent" (i.e.,
using K = gk).

From a high level, such a PRF is a tuple of
algorithms PRF = (Setup,KeyGen,Puncture,Eval,PEval,
ExpEval). Setup(1λ,n) generates public parameters. Here n is
the domain size, which is the number of indices that the PRF
can be evaluated on. KeyGen generates a key k, Puncture(k, i)
generates a punctured key k∗ for index i and Eval(k, i) evalu-
ates the PRF under key k on index i. For punctured evaluation,
we have PEval(k∗, i∗, i), which evaluates the PRF under punc-
tured key k∗ on index i as long as i is not the punctured index
i ̸= i∗. For exponent evaluation we have ExpEval(gk, i) eval-
uating the PRF on i using the key in the exponent. A more
formal definition is contained within the appendix (Defini-
tion B.1).

We extend the definition of functionality preserving
from [19] to “perfect correctness”, requiring that exponent
evaluation on K = gk yields the same result as normal eval-
uation on k in addition to correct evaluation with punctured
keys.

The pseudorandomness and key-homomorphism properties
are defined as in [19]. In short, we require that Eval(pp,k, i)
looks pseudorandom as long as k is not revealed, even given
a punctured key k∗ on index i. We refer to a formal definition
of pseudorandomness to the appendix (Definition B.2).

For key-homomorphism we require that, for any k1,k2 ∈
K , it holds that Eval(pp,k1 + k2, i) = Eval(pp,k1, i) +
Eval(pp,k2, i).

Threshold Homomorphic Encryption. A threshold ho-
momorphic encryption protocol THE is a tuple of PPT algo-
rithms THE = (Setup,KeyGen,Enc,Dec,Combine). KeyGen
generates a public key pk and n secret key shares {skℓ}[n]
distributed to decryption servers. Given a ciphertext c $←
Enc(pk,m), any server can derive a decryption share dℓ $←
Dec(skℓ,c). If a set S of at least t servers provide their
decryption shares, the message m can be recovered using
m← Combine(pk,{dℓ}S,S,c). We require our THE scheme
to be correct, multiplicatively message-homomorphic and
IND-CPA secure. For formal definitions we refer to the Ap-
pendix (Definitions B.3, B.4,B.5 and B.6).

3.1 Batched Threshold Encryption
We introduce the definition of a Batched Threshold Encryp-
tion (BTE) scheme following the work of Choudhiro et al. [13]
and Dujmovic et al. [19] with some minor modification.

Definition 3.1 (Batched Threshold Encryption). A Batched
Threshold Encryption scheme (BTE) consists of a tu-
ple of PPT algorithms BTE = (Setup,KeyGen,Enc,Verify,
BatchDec,Combine) with the following syntax.

• pp $← Setup(1λ,Bmax): This algorithm initializes the
scheme, receiving the security parameter λ ∈ N, and the
maximum batch size Bmax. It produces the public pa-
rameters pp which are implicit inputs to all subsequent
algorithms.

• (pk,{skℓ}ℓ∈[n])
$← KeyGen(1λ,n, t): The key generation

algorithm takes the security parameter λ, the total num-
ber of parties n, and the threshold t. It returns a public
key pk along with a set of secret key shares {ski}i∈[n].

• (c,π) $← Enc(pk,m, i): Given a public key pk a message
m and an index i, the encryption algorithm outputs the
ciphertext c for batch position i, along with a proof π.

• {1,0} ← Verify(pk,c,π). Verify is a deterministic algo-
rithm that takes as input a public key pk, a ciphertext
c and a proof π. It outputs 1 if the proof is valid and 0
otherwise.

• dℓ/⊥← BatchDec(skℓ,{ci}i∈B): Utilizing a secret key
share skℓ and a batch of ciphertexts {ci}i∈B where |B| ≤
Bmax, the decryption algorithm generates a decryption
share dℓ or returns an error symbol ⊥.

• {mi/⊥}i∈[B] ← Combine(pk,{dℓ}ℓ∈S,S,{ci}i∈[B]): The
combining algorithm takes the public key pk, a set of
decryption shares {dℓ}ℓ∈S with S⊆ [n] and |S| ≥ t, and
a batch of ciphertexts {ci}i∈[B]. It outputs the decrypted
messages {mi}i∈[B] or an error symbol ⊥.

We require that Bmax, n and t are polynomial in λ.

For sake of simplicity, we work in the coordinated setting,
where we assume that all ciphertexts in a batch have unique in-
dices i. We elaborate on techniques to remove this assumption
in Section 5.3.

6

Correctness. We require that a BTE scheme satisfies per-
fect correctness. This means that the proof generated during
honest encryption always verifies and that every honest de-
cryption and combination of an honestly generated batch of
ciphertexts yields the correct messages. A formal definition
is given in Appendix (Definition B.7).

Efficiency. We require that the per-party communication
complexity of a BTE scheme is o(B) (i.e. sublinear in the
batch size B). This excludes trivial constructions, where each
server just sends a partial decryption of every ciphertext in
the batch as in standard threshold encryption.

CCA-Security. We model security of a BTE scheme against
Chosen-Ciphertext Attacks (CCA) using the security game
Game-B-IND-CCA defined in Figure 1. This game is a stan-
dard game-based definition of threshold IND-CCA security,
adapted to the batched setting (B-IND-CCA). First, the adver-
sary statically corrupts up to t−1 parties C and receives their
secret key shares {skℓ}ℓ∈C. After proposing two messages
m0 and m1, he receives a challenge ciphertext c⋆ which is an
encryption of one of the messages. The adversary wins the
game by guessing correctly, whether the challenge encryptes
m0 or m1. The adversary gets access to a batch decryption
oracle Ob-dec, which allows him to query for batch-decryption
shares on behalf of honest parties for ciphertext-batches of its
choice. The only restriction is that the adversary cannot query
for too many decryption shares of any batch containing the
challenge ciphertext.5 This definition covers the requirement
of pending transaction privacy, as it ensures that the adversary
cannot learn anything about the challenge ciphertext, even if
it is allowed to decrypt batches of ciphertexts through Ob-dec.

Definition 3.2 (B-IND-CCA-security of BTE). A BTE scheme
is B-IND-CCA secure if for all PPT adversaries A :=
(A1,A2,A3) there exists a negligible function negl(λ)
such that Pr[Game-B-IND-CCABTE

A (1λ) = 1]≤ 1/2+negl(λ)
where Game-B-IND-CCAA is defined in Figure 1.

Rogue Ciphertext Security. Dujmovic et al. [19] introduce
the notion of Rogue Puzzle Attacks, which is a class of at-
tacks on batched TLP protocols. In rogue puzzle attacks, the
adversary injects maliciously crafted puzzles into the batch
to disrupt the batch-solving of honest puzzles. We extend
this notion to “Rogue Ciphertext Attacks” in the context of
Batched Threshold Encryption. In this attack, the adversary
tries to inject some ciphertexts into a batch such that batch-
decryption of the honest ciphertexts fails or yields incorrect
messages. We model security against rogue ciphertext attacks
with the security game Game-Rogue defined in Figure 1.

5If the adversary learns t−|C| decryption shares, it can win the game
trivially by combining with the |C| shares of the corrupted parties

Definition 3.3 (Rogue Ciphertext Secuirty of BTE). A BTE
scheme is secure against rogue ciphertext attacks if for all PPT
adversaries A := (A1,A2) there exists a negligible function
negl(λ) such that Pr[Game-RogueBTE

A (1λ) = 1] ≤ negl(λ)
where Game-RogueA is defined in Figure 1.

4 Building Blocks

In this section, we present constructions for our two building
blocks PRF and THE.

Key-homomorphic Puncturable PRFs. For our building
block of key-homomorphic puncturable PRF with exponent
evaluation, we adapt the construction in [19] to our needs. The
full construction is given in Appendix B.1, and we provide
here only a high-level overview. In particular, we modify the
construction such that the PRF can be evaluated not only
with the key k but also with the key in the exponent, i.e.,
gk. To acheive this, we change the construction from [19]
by publishing more elements in the setup. Furthermore, the
PRF construction of [19] is based on a symmetric pairing
group setup, which we need to avoid, since we want to use
the punctured PRF along with ElGamal which is not secure in
a symmetric pairing group.6 For our construction, we rely on
the pairing-based construction with quadratic setup, which is
secure under a variant of the decisional bilinear diffie-hellman
(DBDH) assumption. We note that [19] present a second
pairing based construction with linear setup. In our analysis,
we focus on the first construction, as their second construction
is based on the decisional n-power Diffie-Hellman assumption
[7], which is less standard.7 We expect that our constructions
can be easiliy adapted to the second construction as well.

It is important to highlight that both constructions from [19]
have a polynomially bounded domain size, which is restricted
by the size of the setup. Looking ahead, we will require that
during encryption, clients choose an index from this domain
to encrypt a message. The choice of index is important, as
all ciphertexts in a batch must not have colliding indices. For
now we will assume that there is some form of coordination
between encryption clients, similar to the batched encryption
scheme from [13]. However, we present several solutions to
remove this coordination assumption in Section 5.3.

Threshold ElGamal Construction. As a building block for
our batched threshold encryption protocol, we require a thresh-
old homomorphic encryption scheme, which we instantiate
with an IND-CPA-secure thresholdized version of ElGamal
encryption [24]. Our version of threshold ElGamal encryp-
tion works by Shamir-sharing the ElGamal secret key sk into

6Since DDH is not a hard problem with symmetric pairings e : G×G→
GT ., we will use asymmetric pairings instead and require that DDH is hard
in one of the source groups (here written as G2).

7The assumption has been proven to hold in the bilinear generic group
model by [6].

7

Game-B-IND-CCAA(1λ)

c⋆←⊥;ctr← 0;b $←{0,1}

pp $← Setup(1λ,Bmax)

(pk,{skℓ}[n])
$← KeyGen(1λ,n, t)

(C,st1)
$← A1(1λ,pp,pk,n, t)

if C ̸⊆ [n]∨|C| ≥ t then return 0

(m0,m1, i,st2)
$← AOb-dec

2 (st1,{skℓ}C)
(c⋆,π)← Enc(pk,mb, i)

b′ $← AOb-dec

3 (st2,c
⋆,π)

return b ?
= b′

Oracle Ob-dec(ℓ,{(ci,πi)}i∈[B])

if c⋆ ∈ {ci}[B] then

ctr← ctr+1

if ctr ≥ t−|C| return ⊥
for i ∈ [B] do

if Verify((pp,pk,ci),πi) = 0

then return ⊥
return BatchDec(skℓ,{ci}[B])

Game-RogueA(λ)

pp $← Setup(1λ,Bmax);(pk,{skℓ}[n])
$← KeyGen(1λ,n, t)

(m, i,st) $← A1(1λ,pp,Bmax,pk,{skℓ}[n])

(ci,πi)
$← Enc(pk,m, i)

(B,S,{(c j,π j)} j∈[B]\{i})
$← A2(st,ci)

if B > Bmax∨ i ̸∈ [B]∨S ̸⊆ [n]∨|S|< t then return 0

if ∃ j ∈ [B] s.t. Verify(pk,c j,π j) = 0 then return 0

{dℓ}ℓ∈S←{BatchDec(skℓ,{c j} j∈[B])}ℓ∈S

{m j} j∈[B]
$← Combine(pk,{dℓ}ℓ∈S,S,{c j} j∈[B])

if mi ̸= m return 1 else return 0

Figure 1: Security games of BTE.

{skℓ}[n]. We write pkℓ = gskℓ for the parties’ individual public
keys and set the overall public key to be pk= (gsk,{pkℓ}[n]).
Given a ciphertext c = (A,B) = (gu,pku ·m) we perform a
partial decryption by computing dℓ← (Askℓ). One can then
combine a set of at least t partial decryptions to recover the
message m using Lagrange interpolation.

m← B/∏
ℓ∈S

dLℓ
ℓ

[
= m ·pku/gu∑ℓ∈S skℓLℓ = m ·gsk·u/gsk·u = m

]
Theorem 4.1 The above threshold ElGamal encryption
scheme is correct, homomorphic and IND-CPA secure.

A proof sketch of Theorem 4.1 is given in Appendix D.

5 Our Batched Threshold Encryption Scheme

We first describe our construction in the coordinated setting
in Section 5.1. Then, we show how one can use a trade-off
between communication and computation complexity to op-
timize our construction to any specific setting in Section 5.2
before presenting in detail how we are able to remove coordi-
nation between encryptors (Section 5.3).

5.1 Construction
The construction is depicted in Figure 2 and described in
detail below.

Setup and Key Generation. First, we setup the PRF and
generate the pairing ensamble (e,G1,G2,GT , p). Here we
also set the domain size of the PRF to Bmax, as every cipher-
text in a batch will need to sample a unique index from the
PRF domain. Note that PRF keys will be sampled from Zp
and exponent evaluation is possible using the secret key in
the exponent of G2 (i.e., gk

2). Further, we will use ElGamal
encryption in G2 to encrypt PRF keys in the exponent. In

the end, the key-space of the BTE construction is Zp and the
message space is GT .8

For key generation, we perform (t,n)-threshold ElGamal
key generation, which is essentially a Shamir secret sharing of
a master secret key belonging to a public key pk. The secret
key shares {skℓ}ℓ∈[n] are distributed among the n decryption
servers. To remove a trusted dealer, one can substitute this
step with a DKG protocol, to jointly generate a sharing of a
random master secret key.

Encryption. To encrypt a message m, a client first picks an
index i ∈ [Bmax] and samples a PRF key k. Then the client
punctures k at index i to get k∗. With the punctured key k∗,
the PRF can be evaluated under k at any index j ̸= i. The
message m is encrypted by masking it with the evaluation
of the PRF under index i as γ← m+PRF.Eval(k, i).9 Next,
the client encrypts gk

2 under pk using ElGamal encryption,
yielding ElGamal ciphertext ct. Finally, the client constructs
a NIZK proof π tagged to the ciphertext and the setup that
proves knowledge of the key k as well as the randomness
u used in the ElGamal encryption such that the punctured
key is valid for k at index i and the ElGamal ciphertext is a
valid ElGamal encryption of gk

2 using randomness u. The final
ciphertext is the tuple c = (i,k∗,γ,ct) with proof π.

Partial Decryption. Given a batch of B ciphertexts, a server
can now compute a partial decryption share using BatchDec.
To do so, the server first verifies that the proof πi is valid for
each ciphertext ci in the batch. Then, the server aggregates
all the ElGamal ciphertexts into C = ∏

[B]
i ci.ct. As ElGamal

encryption is additively homomorphic in the exponent, C is
now an ElGamal encryption of K = gk

2 = g∑i ki
2 , which is the

sum of all the PRF keys in the exponent. Each server can now

8One can extend the message space to arbirary bitstrings using standard
encapsulation techniques.

9Note that k∗ is not sufficient to evaluate the PRF at index i.

8

Setup(1λ,Bmax)

// Setup the pairing ensamble

return pp $← PRF.Setup(1λ,Bmax)

KeyGen(1λ,n, t)

(pk,{ski}i∈[n])
$← THE.KeyGen(1λ,n, t)

return (pk,{ski}i∈[n])

BatchDec(ski,{ci}i∈[B])

C←∏
[B]
i cti

di← THE.Dec(ski,C)

return di

Enc(pk,m, i)

k← PRF.KeyGen(pp)

k∗← PRF.Puncture(k, i)

γ← m+PRF.Eval(k, i)

u $← Zp

ct← THE.Enc(pk,gk
2;u)

c← (i,k∗,γ,ct)

χ← (pp,pk,c)

ω← (k,u)

π
$←Π.Prove(χ,ω)

return (c,π)

Combine(pk,{dℓ}ℓ∈S,S,{ci}i∈[B])

Parse ci as (i,k∗i ,γi,cti)

C←∏
[B]
i cti

K← THE.Combine(pk,{dℓ}ℓ∈S,S,C)

for i ∈ [B] do

mi← γi +∑
[B]
j ̸=i PRF.PEval(k∗j , i)−PRF.ExpEval(d, i)

return {mi}i∈[B]

Verify(pk,c,π)

return Π.Verify((pp,pk,c),π)

Figure 2: Construction of the Batched Threshold Encryption scheme BTE.

perform a partial decryption by releasing the threshold El-
Gamal decryption share dℓ for C under its secret key share skℓ.

Decryption. When at least t servers have released their
partial decryption shares {dℓ}ℓ∈S, anyone can combine these
shares using Lagrange interpolation and decrypt C into K.
Given this information, one can decrypt any message mi in
the batch by computing

mi← γi +∑
[B]
j ̸=i PRF.PEval(k∗j , i)−PRF.ExpEval(K, i) (1)

First, note that γi = mi + PRF.Eval(ki, i). Because of the
punctureability of the PRF, we get that PRF.PEval(k∗j , i) =
PRF.Eval(k j, i) for j ̸= i. As we want all the PRF evaluations
to cancel out, we need to subtract the evaluation of the sum
of all the keys K at index i. Here is where we need the key-
homomorphic property of the PRF as well as the ability to
evaluate it in the exponent. Given that ElGamal is multiplica-
tively homomorphic, in G2, it is also additively homomorphic
in the exponent, so we know that K = g∑i ki

2 . We substract an
exponent evaluation of the PRF under K to cancel out the sum
of all the PRF evaluations on the left side of equation 1 as
well as the evaluation under ki.10 In summary, because of the
exponent evaluation, we have for the last part of Equation 1
that PRF.ExpEval(K, i)=PRF.Eval(∑

[B]
j k j, i), which is equal

to ∑
[B]
j PRF.Eval(k j, i) due to the additive key-homomorphic

property of the PRF. Hence, the PRF evaluations cancel out

10We rely on the observation that we can evaluate the PRF in the ex-
ponent, because ElGamal is multiplicatively homomorphic (i.e. additively
homomorphic in the exponent), meaning we only learn g∑ki

2 from the partial
decryptions and not ∑ki directly. We avoid using additively homomorphic
protocols such as Paillier [42] since they are less efficient to thresholdize.

and we are left with mi:

mi +Eval(ki, i)+∑
[B]
j ̸=i Eval(k j, i)−∑

[B]
j Eval(k j, i)

=mi +∑
[B]
j Eval(k j, i)−∑

[B]
j Eval(k j, i) = mi

Non-Interactive Zero-Knowledge Proof. As we discussed
our BTE construction uses a non-interactive proof system
Π = (Prove,Verify), which we require to achieve IND-CCA
security and Rogue Ciphertext Security. The idea is similar
to Schnorr non-interactive zero-knowledge proof [31]. That
is, the prover proves knowledge of the PRF key k and the
randomness u used in ElGamal encryption, such that:

• The punctured key in the ciphertext is consistent with k
and the index i

• The ElGamal ciphertext ct is a valid ElGamal encryption
in the exponent of gk

2 using randomness u.
This yields the witness ω = (k,u), with statement χ =
(pp,pk,c), where c = (i,k∗,γ,ct) and ct = (A,B) =
(gu,pkugk

2). The proof is tagged to the setup, the public key,
and the ciphertext. Intuitively, this means that modifying any-
thing in the ciphertext invalidates the proof of knowledge of
(k,u), which is crucial for CCA-security. We instantiate Π

with a custom Schnorr-proof construction. We refer the reader
to Appendix C for a detailed construction and analysis of the
proof system Π.

Security. We prove the B-IND-CCA and Rogure Ciphertext
Security of our BTE constrction. The full proofs of the fol-
lowing two theorems can be found in Appendix D.1 and D.2,
respectively.

Theorem 5.1 (CCA-security of BTE). The batched thresh-
old encryption scheme BTE is B-IND-CCA-secure given the
CPA-security of our thresholdized ElGamal in G2, the pseudo-
randomness of the PRF and the simulability and simulation-
extractability of the proof system Π.

9

We use multiple game hops to prove B-IND-CCA security of
our BTE construction. The main challenge here is that secrecy
of a ciphertext ci relies on the encryption of the PRF keys ki.
For batching, we need this encryption of ki to be homomor-
phic (which is why we instantiate with ElGamal), but CCA
security and homomorphic encryption seem contradictory at
first glance as we need to prove B-IND-CCA security wile
reducing to IND-CPA security of threshold ElGamal where
we do not have access to a decryption oracle.

The key idea is to use simulation-extractability of the proof
system Π. Given a batch of ciphertexts {(ci,πi)}i∈[B] in Ob-dec

we extract the ElGamal randomness ui from each proof πi.
Using this information, we can simulate the decryption share
dℓ for the batch as dℓ← pk∑ui

ℓ [= (g∑ui
2)ski].

As explored by previous work [13], this requires a straight-
line extractor to prevent exponential blow-up of the reduction
due to rewinding. It has been shown that Schnorr proofs such
as ours have straight-line extractors in the AGM and random
oracle model [21,22]. We refer the reader to the Appendix D.1
for a detailed proof of B-IND-CCA security.

Theorem 5.2 (Rogue Ciphertext Security of BTE). The
batched threshold encryption scheme BTE is secure against
rogue ciphertext attacks given the soundness of the proof
system Π, and the correctness of the PRF and threshold El-
Gamal.

Intuitively, Rogue Ciphertext Security follows from the
soundness of Π, because soundness guarantees that for any
batch of ciphertexts with valid proofs, the ElGamal part cti of
each ciphertext is a valid ElGamal encryption of gki

2 , while the
punctured key k∗i is a valid punctured key under the same key
ki for index i. Given a batch of ciphertext for which the above
statement holds, one can verify that the honest ciphertext in
the batch decrypts to the correct message, given correctness
of the PRF and correctness of Threshold ElGamal. The formal
proof is presented in the Appendix D.2.

5.2 Optimizations

The BTE construction as presented in Section 5 is very effi-
cient with respect to communication. In fact, a shareholder
only needs to publish a single group element as partial de-
cryption, independent of the batch size B. On the other hand,
the BTE.Combine operation is computationally expensive, as
it involves computing O

(
B2

)
pairings. This is the case be-

cause during Combine we need to compute B pairings per
ciphertext. For every ciphertext, we need one pairing for the
evaluation of the PRF with the combined key in the exponent
PRF.ExpEval(K, i) as well as B−1 pairings for the punctured
evaluations of the PRF with the punctured keys k′j for j ̸= i
(PRF.PEval(k′j, i)).

We introduce an optimization that trades increased size of
the decryption shares released by the committee members

for a significant reduction in the number of pairings required
during Combine.

Splitting a Large Batch into Smaller Sub-Batches. Con-
sider decryption of a batch of B ciphertexts. Instead of releas-
ing a single partial decryption share for the entire batch, we
split the batch into α sub-batches of size B/α. Setting e.g.
α =
√

B, each shareholder now releases
√

B group elements
(which is still sublinear). During aggregation, we now only
have to perform

√
B pairings for each ciphertext, decreasing

the overall number of pairings to O
(
B
√

B
)
. This optimization

is particularly useful, because it also proves benefitial to solv-
ing the coordination problem as we discuss in Section 5.3.
We note that there is nothing magical about setting α =

√
B.

The parameter α can be chosen specifically for the concrete
application, weighing the trade-off between communication
and computation. When using α-subbatching, each partial
decryption contains α group elements and the aggregation
requires B/α pairings per ciphertext.

In our evaluation (Section 7), we show that the computa-
tional overhead on behalf of the shareholders for this opti-
mization is very small, while showing a significant improve-
ment in the efficiency of Combine.

5.3 Removing Coordination
In the above construction, we assume coordination among
parties to ensure that every party owns a unique index. How-
ever, as discussed in Section 2, having coordination among
parties would be cumbersome in practice.

Dujmovic et al. [19] introduced a method to convert any
batched TLP scheme that requires unique indices to a non-
coordinated scheme, which can also be applied to our batched
threshold encryption scheme. However, their method is not
desired in our scenario as it increases the size of ciphertext,
motivating us to propose a different approach. Our main ob-
servations are, when every party samples one index, the prob-
ability of having index collision in a batch can be modeled as
a generalized birthday problem [2]. Besides, when sampling
from the same range [N], the probability of index collision
decreases when we put less ciphertexts into one batch.

Based on the above observations, we propose a new tech-
nique to remove coordination in our BTE scheme. We divide
the whole batch [B] into α sub-batches of the size B/α, and
guarantee that there will be no index collision within every
sub-batch. Let each party sample a random index from [N] dur-
ing encryption, we sort the B ciphertexts by the occurrences
of the indices, i.e. the ciphertexts with the most-repeated in-
dex will rank the first, and the ciphertexts with unique indices
will rank the last. The ciphertexts are then distributed into the
sub-batches according to their sorted order, so that ciphertexts
with the same index are distributed into different sub-batches.
The sub-batches each sized B/α are then batch decrypted and
combined in the same way as the original construction.

10

With the above technique, it is guaranteed that there will be
no index collision within any sub-batch if the most repeated
index has no more than α occurrences, and consequently, the
whole batch has no index collision. Now the probability of
having index collision is reduced to the probability of having
no less than α+1 parties sample the same index.

It is vital that the correctness follows straightforwardly
from the original construction, and the security is also pre-
served. We provide the proof in Appendix D.3.

For practical settings, we guarantee 40 bits of statistical
correctness by convention [19], meaning that the probability
of index collision is smaller than 2−40. Our scheme already
provides 41 bits of statistical correctness when B = 256,α =
16,k = 1. Here we present the probability of having index
collision for different settings in Table 1. We calculate all
the probability using the exact formula P(α+1)

B = 1− (1−
1/Nα)(

B
α+1). The detailed definition of P(α+1)

B is provided
in Appendix D.3, and we tranform it to − log2 P for better
readability. To give an intuition, we count the probability that
no set of α+1 parties all sample the same index, and model
P(α+1)

B from this perspective.

B ααα N − log2 P
256 16 256 41
128 11 384 40
64 16 64 46
64 8 320 32
16 8 64 35

Table 1: Probability of index collision for different settings.

This table indicates that we can easily gain practical statis-
tical correctness when B is relatively large, without further
increasing N or α. Since the index collision probability is
dependent on B, we achieve better correctness as B increases.
For smaller B, it is always possible to achieve the desired
correctness level by increasing α or N. We could also con-
sider using the technique from [19] for small B, depending
on specific requirement of the applications. As a reference,
the time complexity of the matching techinique in [19] is
O(B · d

√
B), where d is the number of indices sampled by

each party. In our construction, an efficient sorting algorithm
has a time complexity of O(B logB). Our construction has
constant ciphertext size, while theirs is linear in d.

6 Attacks and Mitigations

Considering that we aim to present a practical protocol that
can be instantiated on blockchains to prevent MEV attacks,
we need to deal with other practical properties aside from just
security. In particular, we want to ensure that malicious actors
cannot prevent the protocol from functioning correctly. To
this end, we address two practical attacks that are relevant in
the context of MEV prevention.

Selective Decryption Attacks. Consider an adversary who
is part of the decryption committee and wants to submit
a transaction tx performing a trade on a decentralized ex-
change (DEX). In the MEV-prevention setting, the adversary
encrypts tx using BTE.Enc and submits the ciphertext ctx to
the blockchain, thereby commiting to the transaction. A fixed
amount of time later, the committee will release decryption
shares for the block that contains ctx and subsequently tx gets
executed. An adversary who is part of the decryption commit-
tee can perform the following attack:

1. Submit ctx to the blockchain and wait until just before the
decryption shares are released. In this time, the adversary
monitors prices on the DEX and observes whether the
value of the trade has increased or decreased.

2. If the adversary now determines that the trade is prof-
itable, it releases their decryption share. In this case the
transaction is executed and the adversary profits.

3. If the adversary determines that the trade is not profitable
given the new price, it releases a malformed decryp-
tion share.11 This causes decryption to fail or produce
garbage, which means the trade is not executed.

We propose to solve this problem by adding public share-
verifiability to the decryption shares released by committee
members, adding a proof πshare to the decryption shares that
can be verified by anyone. This prevents the above attack, as
any adversary who releases a malformed decryption share will
be identified and can be penalized. On top of that, as long as
at least t servers release valid shares, one can simply discard
the invalid shares and proceed with decryption without any
need for honest servers to rerun the partial decryption. We
can construct an efficient proof system Πshare by essentially
proving knowledge of the secret key share skℓ such that dℓ
is a valid ElGamal decryption for the batch under skℓ using
Schnorr proofs. As an additional benefit, the public share-
verifiability also protects against generic denial of service
attacks that involve releasing malformed decryption shares.

Amplified Decryption Attacks. In our construction
Combine is the most expensive operation, as it involves com-
puting pairings. Recall that Combine can be performed by
anyone in order to decrypt a batch of ciphertexts, after the
committee members have released their decryption shares.
Ideally we would like to outsource this computationally ex-
pensive opertation to a dedicated service with adequate com-
putational resources and parallelism, who is tasked with per-
forming Combine and publishing the decrypted transactions
on the Blockchain afterwards.

The issue here is that we do not want to trust this service,
as it could potentially produce an arbitrary batch of transac-
tions and claim they are the result of decryption. The conse-
quence of this is that the system reverts to a degregated mode,

11In our construction, the adversary could release a random group element
in G2

11

where everyone has to perform the expensive computation
in Combine, or even worse, it would have to be carried out
inside a smart contract. This is not a problem specific to our
construction but also applies, to a lesser extent, to existing
solutions like [13] who similarly perform expensive pairings
for aggregation.12

We propose to establish an additional property of verifi-
able aggregation, which adds a proof πagg to the output of
Combine that can be efficiently verified to confirm correct
overall decryption of ciphertexts. We would like to achieve
this property while burdening minimal additional computa-
tional overhead on the server performing Combine, excluding
obvious solutions such as SNARKs.

We present an idea to solving this problem already during
encryption, without additional overhead to the decryption pro-
cess. Suppose during encryption a user additionally commits
to the message m using a cryptographic commitment scheme
(com,op) $← Commit(m) where com is the commitment and
op is the opening value. The client encrypts the message and
the opening m||op instead of just the message and also adds
com to the ciphertext. Finally, the client adds a NIZK-proof
to prove of valid construction (i.e. that the ciphertext encrypts
the opening and the message hidden in com). This solves our
problem by allowing the aggregator who performs Combine
to decrypt the batch and publish m||op for all transactions in
the batch, essentially involving no computational overhead.
Anyone (including a smart contract) can then very efficiently
verify the commitment Verify(com,m,op) for all transactions
in the batch. This approach outsources the burden of proof
to the encrypting clients, which is reasonable because en-
cryption is already very efficient. We note that one could use
SNARKs for the encryption proofs, but finding even more
efficient solutions is an interesting open problem.

7 Experimental Evaluation

To establish concrete efficiency of our BTE scheme as an MEV
prevention measure, we implemented our construction in Go
and analyze its performance. Our implementation makes use
of the dedis/kyber [17] library the cryptographic primitives
and pairing operations. The source code is public.13

Testbed. Our experiments were conducted on a desktop
machine equipped with an AMD Ryzen 7 5800x 8-core CPU
and 32GB of DDR4 RAM. All experiments run without paral-
lelism enabled if not stated otherwise. We use the BLS12-381
curve for pairing operations because its widespread adoption.
We switch the groups in the construction, as group operations
in G1 are generally more efficient on BLS12-381.

12The construction in [13] still requires O(B) pairings for aggregation,
which is too expensive for on-chain computation.

13https://anonymous.4open.science/r/btd-impl

One-time Setup. Similar to [13], our construction requires
a one-time setup. While their setup is a KZG-setup, our setup
is special to the PRF used in the construction and directly
related to the domain size. Our setup though does not need
to be performed by the committee itself and can be done by
anyone or any set of parties using MPC while the one-time
setup in [13] is tied to the secrets held by the committee
members and thus needs to be executed by the committe. In
our evaluation, we consider a trusted setup.

Key Generation. One benefit of our construction is that the
threshold ElGamal we use only requires a standard Shamir-
shared dlog-keypair. We expect that one can use existing DKG
protocols [12, 16, 26] to remove the trusted dealer. This also
opens the door for efficient protocols to support dynamically
changing committees. Choudhuri et al. [13] explore the pos-
sibility of using dynamic proactive secret sharing protocols
such as [29] to combat committee churn. We expect this to be
applicable to our construction as well.

Criteria. We choose the three most significant criteria for
MEV-prevention, namely encryption time (Enc), partial de-
cryption time (BatchDec), and aggregation time (Combine).
We also evaluate the impact of the optimization we present
in Section 5.2. In particular, we evaluate the scheme with-
out any further optimization (henceforth called normal), with
subbatching for α =

√
B (Opt-1) and with α = 2 ·

√
B sub-

batches (Opt-2). On top of that, we highlight the ciphertext
size and partial decryption size per party for the different op-
timizations. We compare results for varying batch sizes up to
B = 512, which exceeds typical transactions per block rates.

Comparison to [13]. We elect to compare our results to
the construction from Choudhuri et al. [13], as it is the most
closely related work targeted at MEV-prevention, and they
provide measurements for the same curve BLS12-381. It is
important to note that their measurements are based on an
implementation in Rust and performed on a slightly less pow-
erful machine. We choose to compare the results anyway, as
they suffice to highlight practical advantages and disadvan-
tages of both constructions.

Encryption. Encryption performance is independent of the
batch size and does not require any pairing operations. The
most expensive operation during encryption is the generation
of the NIZK proof for CCA security, for which we provide
an efficient instantiation. In total, we measure an average
encryption time of 1.58ms, while [13] achieves around 6ms.
The ciphertext consists of the index i, which can be repre-
sented using 2 bytes, 3 group elements in G1 (the punctured
key and the ElGamal ciphertext) and one group element form
GT (which is γ). This amounts to a total of 722 bytes per

12

https://anonymous.4open.science/r/btd-impl

ciphertext while [13] achieves 370 bytes. The proof for CCA-
security consists of 3 elements from G1 and 2 field elements,
which totals to 208 bytes.14

Partial Decryption. For partial decryption, a committee
member needs to verify all CCA-proofs in the batch, aggre-
gate the ElGamal ciphertexts and compute a partial decryption
share. The most expensive operation is the verification of the
CCA-proofs. Unlike [13], we do not require any pairing oper-
ations for the verification of the proofs nor for the generation
of the decryption share.

Batch Size [13] normal Opt-1 Opt-2

8 41.5 8.2 8.7 9.0
32 173.4 31.7 32.2 32.7
128 678.11 78.7 79.6 80.1
512 2818.6 293.5 295.4 297.0

Figure 3: Partial decryption Time in ms. The comparison
to [13] is based on different implementation and hardware.

We compare our measurements for partial decryption with
different degrees of optimization to the results from [13]
in Figure 3. The overall takeaway here is that in our MEV-
prevention scheme the partial decryption is very efficient, as it
does not need any pairings. An interesting observation is the
very small increase in partial decryption time for the optimiza-
tions Opt-1 and Opt-2. This is because the most expensive
operation is the verification of the CCA-proofs, which is not
affected by the optimizations. The aggregation of ElGamal
ciphertexts and computation of the partial decryption shares
is comparatively cheap.

For normal partial decryption, every committee member
releases a single element from G1, which amounts to 48 bytes
per party. The construction from [13] requires 80 bytes per
party, as they publish an additional field element. As our opti-
mizations are essentially trade-offs between computational ef-
ficiency of Combine and the size of partial decryption shares,
we get larger sizes for Opt-1 and Opt-2. For Opt-1 we need
to release

√
B group elements. For B = 512 this rounds to 22

group elements or 1056 bytes per party. In Opt-2 we need to
release 2 ·

√
B group elements, which rounds to 45 group ele-

ments or 2160 bytes per party. We believe that this trade-off
is reasonable, given the significant improvement of Combine
efficiency for the Opt-2 optimization, especially for larger B.

Aggregation. We expect the aggregation of partial decryp-
tion shares and subsequent decryption of the batch to be the
most expensive operation in our scheme, which is why we fo-
cused on optimizing this operation. The results are presented
in Figure 4.

14The proof size is not as relevant, as it does not need to be persisted
on-chain.

Batch Size [13] normal Opt-1 Opt-2

8 41.9 ms 55.0 ms 28.8 ms 15.4 ms
32 165.0 ms 769.0 ms 160.3 ms 74.2 ms

128 781.4 ms 10.9 s 1.0 s 500.8 ms
512 3.5 s 169.4 s 7.7 s 3.8 s

Figure 4: Aggregation time given a batch of ciphertexts of
size B and the according decryption shares. The comparison
to [13] is based on different implementation and hardware.

To interpret the results we recall that the Ethereum produces
one block approximately every 12 seconds. Supposing that
every result below 12 seconds can be considered acceptable,
we can see that our unoptimized construction can handle
batches up to B = 128 well enough. For larger batches up to
B = 512 we still get good aggregation times of around 3.8
seconds for Opt-2. We argue though that these results are still
acceptable, as the measurements are without any parallelism.
We measure a parallelized implementation of Opt-2 to take
around 439 ms per Combine for B = 512 on the same CPU,
while parallelized Opt-1 achieves 894 ms. On top of that, we
can expect that the aggregation only needs to be performed
by a very small amount of powerful servers, when employing
the verifiability measures described in Section 6.

Practical advantages of requiring no Epoch Setup. In
contrast to [13] our construction does not require any per-
epoch setup. Apart from less communication and computation
for the decryption committee, this fact comes with a number
of advantages for the MEV-application.

First, clients that want to submit a protected transaction can
encrypt independent of the current epoch setup. This means
that (1) they do not need to wait for the committee to release
the new epoch setup and (2) their ciphertexts stay valid, even
if they do not make it inside a block in the current epoch, and
can be included in following epochs. Both of these properties
are not fulfilled by the construction in [13], as encryption is
tied to one epoch setup. Second, because of the lack of epoch
setup, we can practically support dynamic batch sizes. Con-
sider a scenario where there is an unusually large amount of
transactions inside one epoch. If, at the end of the epoch, the
amount of ciphertexts exceeds Bmax, we can simply split the ci-
phertexts into two or more sub-batches similar to the optimiza-
tions discussed above. The honest parties in the decryption
committee can observe the ciphertexts on the blockchain and
release decryption shares for all resulting batches. This way
we can still decrypt all ciphertexts atomically, which allows
our scheme to be instantiated with significantly lower Bmax
in practice than the construction from [13]. Coincidentally,
this helps both the efficiency of Combine and the collision
problem (Section 5.3), as there are more possibilities to sort
transactions into collision-free sub-batches.

13

References

[1] Shutter network. 2021.

[2] Richard Arratia, Larry Goldstein, and Louis Gordon.
Two moments suffice for poisson approximations: the
chen-stein method. The Annals of Probability, pages
9–25, 1989.

[3] Joseph Bebel and Dev Ojha. Ferveo: Threshold decryp-
tion for mempool privacy in bft networks. Cryptology
ePrint Archive, 2022.

[4] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach,
Philip Daian, and Ari Juels. Tesseract: Real-time cryp-
tocurrency exchange using trusted hardware. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 1521–1538, 2019.

[5] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben
Fisch. Verifiable delay functions. In Annual interna-
tional cryptology conference, pages 757–788. Springer,
2018.

[6] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical
identity based encryption with constant size ciphertext.
In Annual international conference on the theory and
applications of cryptographic techniques, pages 440–
456. Springer, 2005.

[7] Dan Boneh, Craig Gentry, and Brent Waters. Collusion
resistant broadcast encryption with short ciphertexts and
private keys. In Annual international cryptology confer-
ence, pages 258–275. Springer, 2005.

[8] Dan Boneh and Brent Waters. Constrained pseudoran-
dom functions and their applications. In Advances in
Cryptology - ASIACRYPT 2013 - 19th International Con-
ference on the Theory and Application of Cryptology
and Information Security, Bengaluru, India, December
1-5, 2013, Proceedings, Part II, Lecture Notes in Com-
puter Science, pages 280–300, 2013.

[9] Zvika Brakerski, Nico Döttling, Sanjam Garg, and
Giulio Malavolta. Leveraging linear decryption: Rate-1
fully-homomorphic encryption and time-lock puzzles.
In Theory of Cryptography - 17th International Confer-
ence, TCC 2019, Nuremberg, Germany, December 1-5,
2019, Proceedings, Part II, Lecture Notes in Computer
Science, pages 407–437, 2019.

[10] Zvika Brakerski and Vinod Vaikuntanathan. Con-
strained key-homomorphic prfs from standard lattice
assumptions - or: How to secretly embed a circuit in
your PRF. In Theory of Cryptography - 12th The-
ory of Cryptography Conference, TCC 2015, Warsaw,

Poland, March 23-25, 2015, Proceedings, Part II, vol-
ume 9015 of Lecture Notes in Computer Science, pages
1–30, 2015.

[11] Jeffrey Burdges and Luca De Feo. Delay encryption.
In Advances in Cryptology - EUROCRYPT 2021 - 40th
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Zagreb, Croa-
tia, October 17-21, 2021, Proceedings, Part I, Lecture
Notes in Computer Science, pages 302–326, 2021.

[12] Ran Canetti, Rosario Gennaro, Stanisław Jarecki, Hugo
Krawczyk, and Tal Rabin. Adaptive security for
threshold cryptosystems. In Advances in Cryptol-
ogy—CRYPTO’99: 19th Annual International Cryptol-
ogy Conference Santa Barbara, California, USA, August
15–19, 1999 Proceedings 19, pages 98–116. Springer,
1999.

[13] Arka Rai Choudhuri, Sanjam Garg, Julien Piet, and
Guru-Vamsi Policharla. Mempool privacy via batched
threshold encryption: Attacks and defenses. In 33rd
USENIX Security Symposium, USENIX Security 2024,
Philadelphia, PA, USA, August 14-16, 2024. USENIX
Association, 2024.

[14] Dan Cline, Thaddeus Dryja, and Neha Narula. Clock-
work: an exchange protocol for proofs of non front-
running. The Stanford Blockchain Conference, 2020.

[15] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus insta-
bility. In 2020 IEEE symposium on security and privacy
(SP), pages 910–927. IEEE, 2020.

[16] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias,
and Ling Ren. Practical asynchronous high-threshold
distributed key generation and distributed polynomial
sampling. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 5359–5376, 2023.

[17] DEDIS. kyber: Advanced Crypto Library for Go.
https://github.com/dedis/kyber, 2023.

[18] Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and
Stella Wohnig. Mcfly: Verifiable encryption to the future
made practical. In Financial Cryptography and Data
Security - 27th International Conference, FC 2023, Bol,
Brač, Croatia, May 1-5, 2023, Revised Selected Papers,
Part I, volume 13950 of Lecture Notes in Computer
Science, pages 252–269, 2023.

[19] Jesko Dujmovic, Rachit Garg, and Giulio Malavolta.
Time-lock puzzles with efficient batch solving. In An-
nual International Conference on the Theory and Appli-

14

https://github.com/dedis/kyber

cations of Cryptographic Techniques, pages 311–341,
2024.

[20] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy
Clark. Sok: Transparent dishonesty: front-running at-
tacks on blockchain. In Financial Cryptography and
Data Security: FC 2019 International Workshops, VOT-
ING and WTSC, St. Kitts, St. Kitts and Nevis, February
18–22, 2019, Revised Selected Papers 23, pages 170–
189. Springer, 2020.

[21] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The
algebraic group model and its applications. Cryptology
ePrint Archive, Paper 2017/620, 2017.

[22] Georg Fuchsbauer, Antoine Plouviez, and Yannick
Seurin. Blind schnorr signatures and signed ElGamal
encryption in the algebraic group model. Cryptology
ePrint Archive, Paper 2019/877, 2019.

[23] Georg Fuchsbauer, Antoine Plouviez, and Yannick
Seurin. Blind schnorr signatures and signed elgamal
encryption in the algebraic group model. In Advances
in Cryptology - EUROCRYPT 2020 - 39th Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14,
2020, Proceedings, Part II, Lecture Notes in Computer
Science, pages 63–95, 2020.

[24] Taher El Gamal. On computing logarithms over finite
fields. In Advances in Cryptology - CRYPTO ’85, Santa
Barbara, California, USA, August 18-22, 1985, Proceed-
ings, volume 218 of Lecture Notes in Computer Science,
pages 396–402, 1985.

[25] Rachit Garg, George Lu, Brent Waters, and David J. Wu.
Realizing flexible broadcast encryption: How to broad-
cast to a public-key directory. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023, pages 1093–1107, 2023.

[26] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk,
and Tal Rabin. Secure distributed key generation for
discrete-log based cryptosystems. In Advances in Cryp-
tology—EUROCRYPT’99: International Conference on
the Theory and Application of Cryptographic Tech-
niques Prague, Czech Republic, May 2–6, 1999 Pro-
ceedings 18, pages 295–310. Springer, 1999.

[27] Arthur Gervais, Ghassan O Karame, Karl Wüst,
Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Cap-
kun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security,
pages 3–16, 2016.

[28] Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
On the cryptographic applications of random functions.
In Advances in Cryptology, Proceedings of CRYPTO ’84,
Santa Barbara, California, USA, August 19-22, 1984,
Proceedings, Lecture Notes in Computer Science, pages
276–288, 1984.

[29] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova,
Bryan Parno, and Yifan Song. Storing and retrieving
secrets on a blockchain. In IACR International Con-
ference on Public-Key Cryptography, pages 252–282.
Springer, 2022.

[30] Philip Hall. On representatives of subsets. Classic
Papers in Combinatorics, pages 58–62, 1987.

[31] Feng Hao. Schnorr non-interactive zero-knowledge
proof. Technical report, 2017.

[32] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Theory
and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings, volume
6477 of Lecture Notes in Computer Science, pages 177–
194. Springer, 2010.

[33] Alireza Kavousi, Duc V Le, Philipp Jovanovic, and
George Danezis. Blindperm: Efficient mev mitigation
with an encrypted mempool and permutation. Cryptol-
ogy ePrint Archive, 2023.

[34] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels,
and Sreeram Kannan. Themis: Fast, strong order-
fairness in byzantine consensus. In Proceedings of the
2023 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 475–489, 2023.

[35] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and
Ari Juels. Order-fairness for byzantine consensus. In
Advances in Cryptology–CRYPTO 2020: 40th Annual
International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17–21, 2020, Proceed-
ings, Part III 40, pages 451–480. Springer, 2020.

[36] Aggelos Kiayias, Stavros Papadopoulos, Nikos Trian-
dopoulos, and Thomas Zacharias. Delegatable pseu-
dorandom functions and applications. In 2013 ACM
SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013,
pages 669–684, 2013.

[37] Klaus Kursawe. Wendy, the good little fairness wid-
get: Achieving order fairness for blockchains. In Pro-
ceedings of the 2nd ACM Conference on Advances in
Financial Technologies, pages 25–36, 2020.

15

[38] Giulio Malavolta and Sri Aravinda Krishnan Thyagara-
jan. Homomorphic time-lock puzzles and applications.
In Advances in Cryptology - CRYPTO 2019 - 39th An-
nual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2019, Proceedings, Part
I, volume 11692 of Lecture Notes in Computer Science,
pages 620–649, 2019.

[39] Dahlia Malkhi and Pawel Szalachowski. Maximal ex-
tractable value (mev) protection on a dag. arXiv preprint
arXiv:2208.00940, 2022.

[40] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror
Caspi, Simon Johnson, Rebekah Leslie-Hurd, and Car-
los Rozas. Intel® software guard extensions (intel®
sgx) support for dynamic memory management inside
an enclave. In Proceedings of the Hardware and Archi-
tectural Support for Security and Privacy 2016, pages
1–9. 2016.

[41] Peyman Momeni, Sergey Gorbunov, and Bohan Zhang.
Fairblock: Preventing blockchain front-running with
minimal overheads. In International Conference on
Security and Privacy in Communication Systems, pages
250–271. Springer, 2022.

[42] Pascal Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. In Advances in Cryp-
tology - EUROCRYPT ’99, International Conference
on the Theory and Application of Cryptographic Tech-
niques, Prague, Czech Republic, May 2-6, 1999, Pro-
ceeding, volume 1592 of Lecture Notes in Computer
Science, pages 223–238, 1999.

[43] Julien Piet, Vivek Nair, and Sanjay Subramanian.
Mevade: An mev-resistant blockchain design. In 2023
IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC), pages 1–9. IEEE, 2023.

[44] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. Crosstalk: Speculative
data leaks across cores are real. In 2021 IEEE Sympo-
sium on Security and Privacy (SP), pages 1852–1867.
IEEE, 2021.

[45] Ronald L. Rivest, Adi Shamir, and David Wagner. Time-
lock puzzles and timed-release crypto. 1996.

[46] Claus-Peter Schnorr. Efficient identification and sig-
natures for smart cards. In Advances in Cryptology -
CRYPTO ’89, 9th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, Lecture Notes in Computer Science,
pages 239–252, 1989.

[47] Victor Shoup and Rosario Gennaro. Securing thresh-
old cryptosystems against chosen ciphertext attack. J.
Cryptol., 2002.

[48] Shravan Srinivasan, Julian Loss, Giulio Malavolta, Kar-
tik Nayak, Charalampos Papamanthou, and Sri Ar-
avinda Krishnan Thyagarajan. Transparent batchable
time-lock puzzles and applications to byzantine consen-
sus. In Public-Key Cryptography - PKC 2023 - 26th
IACR International Conference on Practice and Theory
of Public-Key Cryptography, Atlanta, GA, USA, May
7-10, 2023, Proceedings, Part I, Lecture Notes in Com-
puter Science, pages 554–584, 2023.

[49] Shravan Srinivasan, Julian Loss, Giulio Malavolta, Kar-
tik Nayak, Charalampos Papamanthou, and Sri Aravin-
daKrishnan Thyagarajan. Transparent batchable time-
lock puzzles and applications to byzantine consensus.
In IACR International Conference on Public-Key Cryp-
tography, pages 554–584. Springer, 2023.

[50] Chrysoula Stathakopoulou, Signe Rüsch, Marcus Bran-
denburger, and Marko Vukolić. Adding fairness to order:
Preventing front-running attacks in bft protocols using
tees. In 2021 40th International Symposium on Reliable
Distributed Systems (SRDS), pages 34–45. IEEE, 2021.

[51] Christof Ferreira Torres, Ramiro Camino, et al. Frontrun-
ner jones and the raiders of the dark forest: An empirical
study of frontrunning on the ethereum blockchain. In
30th USENIX Security Symposium (USENIX Security
21), pages 1343–1359, 2021.

[52] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel {SGX}
kingdom with transient {Out-of-Order} execution. In
27th USENIX Security Symposium (USENIX Security
18), pages 991–1008, 2018.

[53] Haoqian Zhang, Louis-Henri Merino, Ziyan Qu, Mahsa
Bastankhah, Vero Estrada-Galiñanes, and Bryan Ford.
F3b: A low-overhead blockchain architecture with per-
transaction front-running protection. In 5th Confer-
ence on Advances in Financial Technologies (AFT
2023). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2023.

A Additional Related Works

Here we provide additional related works that were not al-
ready discussed in Section 1.3, to give a more comprehensive
overview of the background.

Miner/Maximal Extractable Value (MEV) MEV has long
been a problem in DeFi systems, and the term was first intro-
duced by Daian et al. [15]. Researches have been conducted to
discuss and understand MEV, many of which has shown that

16

MEV is a significant problem in blockchain [20, 27, 51]. Not
only does MEV cause economic loss to users, but it also poses
a threat to the security of the blockchain, as it could incen-
tive unnecessary forks [15]. Different approaches have been
proposed to mitigate the problem of MEV. Flashbots [15],
for example, proposed to mitigate the negative effects of
MEV by providing an auction mechanism for transactions to
be included. The malicious front-running would then be re-
duced since users actively interact with the miners via private
channels. Other popular approaches to mitigate MEV include
threshold encryption, time-lock encryption, and TEE-based
schemes, which we discussed in Section 1.3.

Order Fairness Another MEV countermeasure is fair or-
dering. By achieving immediate and consistent ordering of
transactions globally, MEV could be mitigated since a miner
can no longer easily manipulate the order of transactions. Or-
der fairness is proven impossible [37], and several previous
works [34, 35] discussed variants of weaker order fairness,
i.e., block order fairness. Wendy [37] further discussed this
problem and proposed several protocols for different level of
fairness. While their work provides a certain degree of fair-
ness, the solutions do not solve MEV completely, and is hard
to be deployed since it requires new consensus protocols.

B Definitions, Games and Construction Details

B.1 Key-Homomorphic Puncturable PRF
Definition B.1 (Puncturable Pseudorandom Functions). A
puncturable pseudorandom function family on key space K =
{Kλ}λ∈N, keyspace G = {Gλ}λ∈N, domain X = {Xλ,n}λ,n∈N
and range Y = {Yλ}λ∈N consists of a tuple of PPT algorithms
PRF=(Setup,KeyGen,Puncture,Eval,ExpEval,PEval) such
that:

• pp $← Setup(1λ,n). Setup takes the security parameter
λ as well as the domain parameter n as input an outputs
some public parameters pp.

• k $← KeyGen(pp). KeyGen takes the public parameters
as input and returns a key k ∈Kλ

• k∗← Puncture(pp,k, i∗). Puncture is a deterministic al-
gorithm that, given public parameters pp, a key k ∈Kλ

and an index i∗ ∈ Xλ,n, returns a punctured key k∗.

• y← Eval(pp,k, i). Eval is a deterministic algorithm that
takes as input the public parameters pp, a key k ∈Kλ and
an index i ∈ Xλ,n from the domain and outputs y ∈ Yλ.

• y← ExpEval(pp,K, i). ExpEval is a deterministic algo-
rithm that takes as input the public parameters pp, a key
K ∈ Gλ as well as an index i ∈ Xλ,n from the domain. It
outputs the result y ∈ Yλ.

• y← PEval(pp,k∗, i∗, i). PEval is a deterministic algo-
rithm that takes as input the public parameters pp, a
punctured key k∗, an index i∗ ∈Xλ,n and an index i∈Xλ,n
with i ̸= i∗. It outputs y ∈ Yλ.

Definition B.2 (Pseudorandomness of PRF). A puncturable
PRF is pseudorandom if for all PPT adversaries A =
(A1,A2,A3) there exists a negligible function negl(λ) such
that

Pr[Game-PRPRF
A (1λ) = 1]≤ 1

2
+negl(λ)

where Game-PRA is defined in Figure 5.

Game-PRA(1λ)

(n,st1)
$← A1(λ)

pp $← Setup(1λ,n)

(i∗,st2)
$← A2(st1,pp)

k $← KeyGen(pp)

k∗← Puncture(pp,k, i∗)

b $←{0,1}
if b = 0 then y $← Y
else y← Eval(pp,k, i∗)

b′ $← A3(st2,y)

return b ?
= b′

Figure 5: Pseudorandomness game of PRF.

Key-Homomorphic Punctured PRF Construction.

• Setup(1λ,1n):

– Generate a pairing group G =
(p,G1,G2,GT ,g1,g2,gT ,e) $← GroupGen(1λ).

– Sample xi
$← Z∗p for i ∈ [n].

– Sample zi
$← Z∗p for i ∈ [n].

– Output pp=(G ,{g1
zi/x j}i, j∈[n] s.t. i ̸= j,{g1

zi}i∈[n],{g2
xi}i∈[n]).

Note that this setup is adapted from the key-
homomorphic punctured PRF of [19], where we ad-
ditionally publish {g1

zi}i∈[n].

• KeyGen(pp): Sample k $← Z∗p and return k.

• Puncture(pp,k, i∗): Return k∗← (gxi∗
2)k = gxi∗ k

2 .

• Eval(pp,k, i):

– Choose an index j ∈ [n] with j ̸= i.

– Return y← e(g
zi/x j
1 ,g

x j
2)k.

17

Note: This yields y = e(g1,g2)
zik = gzik

T , which means
one can evaluate the PRF without computing a pairing,
if one precomputes and saves gzi

T = e(gzi
1 ,g2) using the

public setup.

• ExpEval(pp,K, i): Return y← e(gzi
1 ,K). For K = gk

2, this
yields y = gzik

T .

• PEval(pp,k∗, i∗, i):

– If i = i∗, return ⊥.

– Otherwise, compute y ← e(gzi/xi∗
1 ,k∗) =

e(gzi/xi∗
1 ,gxi∗ k

2) = gzik
T .

Output y.

Correctness and Pseudorandomness. The correctness is
straightforward from the description above. The proof of pseu-
dorandomness from [19] carries over with our modification.
The only modification we make is including gzi

1 for every i
in the setup. This modification does not change the security
proof in [19] since one can easily modify their reduction to
also publish gzi

1 .

Key-Homomorphism with Exponent Evaluation. Ob-
serve that given two keys in the exponent K1 = gk1 ,K2 = gk2 ,
it holds that

ExpEval(pp,K1 ·K2, i) = e(gzi
1 ,K1 ·K2) = e(gzi

1 ,K1)+ e(gzi
1 ,K2)

=ExpEval(pp,K1, i)+ExpEval(pp,K2, i)

B.2 Missing Security Games and Definitions.
Definition B.3 (Threshold Homomorphic Encryp-
tion protocol). A threshold homomorpic encryp-
tion protocol THE is a tuple of PPT algorithms
THE = (Setup,KeyGen,Enc,Dec,Combine) with the
following syntax.

• pp $← Setup(1λ). Setup is a probabilistic algorithm that
takes the security parameter λ ∈ N as input and outputs
some public parameters pp.

• (pk,{ski}i∈[n])
$← KeyGen(pp,n, t). KeyGen is a proba-

bilistic algorithm that takes the public parameters pp, the
number of servers n ∈ N, and the threshold t ∈ N where
0 < t ≤ n. It returns a public key pk as well as n secret
key shares {ski}i∈[n].

• c $← Enc(pk,m). Enc is a probabilistic algorithm that
receives a public key pk and a message m as input, re-
turning a ciphertext c.

• di/⊥ ← Dec(ski,c). Dec is a deterministic algorithm
that takes a secret key share ski and a ciphertext c as
input. It outputs the corresponding decryption share di.

• m/⊥← Combine(pk,{di}i∈S,S,c). Combine is a deter-
ministic algorithm that takes as input the public key pk,
a set of decryption shares {di}i∈S for |S| ≥ t as well as
the ciphertext c. It combines the decryption shares to
decrypt c and outputs the message m or ⊥ upon failure.

Definition B.4 (Correctness of THE). A homomor-
phic threshold encryption protocol THE is correct
if for all λ and pp $← Setup(1λ), all 0 < t ≤ n, all
(pk,{ski}i∈[n])

$← KeyGen(pp,n, t), all m ∈ Mλ, all
c $← Enc(pk,m) and all S ⊆ [n] with |S| ≥ t it holds
that m = Combine(pk,{Dec(ski,c)}i∈S,S,c).

Definition B.5 (Multiplicative Message-Homomorphism of
THE). A THE protocol with message-space M = {Mλ}λ∈N
and ciphertext-space C = {Cλ}λ∈N is called multiplicatively
message-homomorphic if for all λ and pp $← Setup(1λ)
(Mλ, ·) is a group and (Cλ,∗) is a group and for all 0 < t ≤ n,
all m1,m2 ∈Mλ, all (pk,{ski}i∈[n])

$← KeyGen(pp,n, t), all
c1

$← Enc(pk,m1), c2
$← Enc(pk,m2) and c $← Enc(pk,m1 ·

m2) as well as all sets S,S′ ⊆ [n] with |S| ≥ t and
|S′| ≥ t it holds that Combine(pk,{Dec(ski,c)}i∈S,S,c) =
Combine(pk,{Dec(ski,c1 ∗ c2)}i∈S′ ,S

′,c1 ∗ c2)

Game-IND-CPAA(1λ)

pp $← Setup(1λ)

(pk,{ski}i∈[n])
$← KeyGen(pp,n, t)

(C,st1)
$← A1(pp,pk)

if C ̸⊆ [n]∨|C| ≥ t then return 0

(m0,m1,st2)
$← A2(st1,{ski}C)

b $←{0,1}
c← Enc1(pk,mb)

b′ $← A3(st2,c)

return b ?
= b′

Figure 6: IND-CPA game of THE.

Definition B.6 (IND-CPA of THE). A threshold homomor-
phic encryption protocol THE is IND-CPA secure if for all
PPT adversaries A := (A1,A2,A3) there exists a negligible
function negl(λ) such that

Pr[Game-IND-CPATHE
A (λ) = 1]≤ 1

2
+negl(λ)

where Game-IND-CPAA is defined in Figure 6.

Definition B.7 (Correctness of BTE). A Batched Threshold
Encryption scheme BTE is correct if for all λ,n, t,Bmax ∈ N
with n ≥ t, all pp $← Setup(λ,Bmax), all (pk,{skℓ}ℓ∈[n])

$←
KeyGen(λ,n, t), all B∈ [Bmax], all (m1, . . . ,mB)∈M B

λ
, all S∈

[n] with |S| ≥ t we get that

∀i ∈ [B] : Verify(pk,ci,πi) = 1

18

and

Combine(pk,{dℓ}ℓ∈S,S,{ci}i∈[B])

= {mi}i∈[B]

where (ci,πi)
$← Enc(pk,mi, i) for all i ∈ [B] and dℓ ←

BatchDec(skℓ,{ci}i∈[B]) for all ℓ ∈ S.

C NIZK Proof System for CCA-security

The construction of our proof system Π for the language
L = {χ : (χ,ω) ∈ R } is shown in Figure 7. Prove takes as
input the statement χ = (pp,pk,c) and the witness ω = (k,u),
and outputs a proof π. Verify takes as input the statement χ and
the proof π, and outputs 1 if the proof is valid, and 0 otherwise.
Recall that c = (i,k∗,γ,ct), and ct = (A,B) = (gu,pkugk

2). For
simplicity, we write y = k∗ = gxi∗ k

2 in our proof system.

Prove(χ,ω)

u′ $← Zp

k′ $← Zp

A′← gu′

B′← pku′gk′
2

y′← (gxi∗
2)k′

f ← H(χ,A′,B′,y′)

û← u′+ f u

k̂← k′+ f k

output π = (A′,B′,y′, û, k̂)

Verify(χ,π)

f ← H(χ,A′,B′,y′)

Check:

gû ?
= A′ ·A f

pkûgk̂
2

?
= B′ ·B f

(gxi∗
2)k̂ ?

= y′ · y f

output 1 if all checks pass,

else output 0.

Figure 7: Proof system for Batched Threshold Encryption
scheme BTE with knowledge of witness k, u

We move on to establish that our protocol achieves the
standard NIZK-proof properties of completeness, soundness,
zero-knowledge. For our B-IND-CCA proof of BTE, we also
require the property of simulation-extractability.

Definition C.1 (Completeness). The proof system Π is com-
plete if ∀χ ∈ L ,ω ∈ R (χ), i.e. there exists a valid witness ω

for χ, Pr[π← Prove(χ,ω) : Verify(χ,π) = 1] = 1.

Completeness means that an honest prover can always
convince the honest verifier with true statements. To prove
completeness, suppose the prover uses the correct witness
and follows the Prove algorithm. The proof system is
complete because: A′ · A f = gu′ · g f u = gu′+ f u = gû, B′ ·
B f = pku′gk′

2 ·pk
f ug f k

2 = pku′+ f ugk′+ f k
2 = pkûgk̂

2, and y′ ·y f =

(gxi∗
2)k′ · (gxi∗

2) f k = gxi∗ (k
′+ f k)

2 = (gxi∗
2)k̂.

Definition C.2 (Soundness). The proof system Π is sound
if for any PPT adversary A , if χ /∈ L , Pr[π ← A(χ) :
Verify(χ,π) = 1] = negl(λ).

Soundness guarantees that no adversary can convince the
verifier with false statements with non-negligible probability.
We prove statistical soundness of Π. Assuming Verify(χ,π)
accepts the proof, we show that the statement χ must be in
the language L .

Without loss of generality, we assume χ = (pp,pk,c),c =
(i,k∗0,γ,ct),ct = (A,B) = (gu0 ,pku1gk1

2), and y = k∗0 = gxi∗ k0
2 .

Similarly, we can assume A′ = gu′0 ,B′ = pku′1g
k′1
2 ,y′ = g

xi∗ k′0
2 .

We have k0,k1,u0,u1,k′0,k
′
1,u
′
0,u
′
1 ∈Zp. The malicious prover

can generate all the values differently.
Since the Verify algorithm accepts the proof, we have:

• gû = A′ ·A f = gu′0 ·g f u0 = gu′0+ f u0 , thus û = u′0 + f u0.

• gxi∗ k̂
2 = y′ · y f = g

xi∗ k′0
2 · gxi∗ f k0

2 = g
xi∗ (k

′
0+ f k0)

2 , thus k̂ =
k′0 + f k0.

• pkûgk̂
2 = B′ ·B f = pku′1g

k′1
2 ·pk

f u1g f k1
2 = pku′1+ f u1g

k′1+ f k1
2 .

Since we know û = u′0 + f u0 and k̂ = k′0 + f k0, we can

rewrite the equation as pku′0+ f u0g
k′0+ f k0
2 = pku′1+ f u1g

k′1+ f k1
2 .

So we have pk(u
′
0−u′1)+ f (u0−u1)g

(k′0−k′1)+ f (k0−k1)
2 = 1. This

equation holds if (u′0−u′1)+ f (u0−u1) = 0 and (k′0− k′1)+
f (k0− k1) = 0. Since f is derived from a random oracle, the
probability of finding f such that the above equations hold
is negligible. Thus, we have u′0 = u′1, u0 = u1, k′0 = k′1, and
k0 = k1.

Therefore, combining the above equations, we proved that
there must exist a witness ω(k,u) where k = k0 = k1 and u =
u0 = u1, indicating statistical soundness of the proof system
Π.

Definition C.3 (Zero-Knowledge). ∀χ ∈ L , there exists a
PPT simulator Sim, such that the two results are computation-
ally indistinguishable: {Sim(χ)} ≈ {Prove(χ,ω)}.

Zero-knowledge means that the verifier Verify learns noth-
ing from the proof π except the validity of the statement χ.
We prove that the proof system Π is honest-verifier zero-
knowledge in the Random Oracle Model (ROM) by construct-
ing a simulator Sim that can simulate a valid proof π without
knowing the witness ω. The simulator can program the ran-
dom oracle, and an adversary who can query the oracle will
get responses chosen by the simulator.

The simulator Sim gets the statement χ = (pp,pk,c) as
input, with c = (i,k∗,γ,ct) and ct = (A,B) = (gu,pkugk

2), and
generates a simulated proof π = (A′,B′,y′, û, k̂) as follows:

• Choose û $← Zp, k̂ $← Zp.

• Choose f $← Zp.

19

• Compute A′ = gûA− f , B′ = pkûgk̂
2B− f , and y′ =

(gxi∗
2)k̂y− f .

• Program H so that H(χ,A′,B′,y′) = f .

• Output π = (A′,B′,y′, û, k̂).

Since û, k̂, f are chosen uniformly at random from Zp, the sim-
ulated proof π is distributed identically and indistinguishable
as the real proof. Because A′,B′,y′ are computed according
to the check equations, the verifier Verify will accept the sim-
ulated proof π as a real proof. Thus, the simulator Sim can
form a valid proof without knowing the witness. The proof
system satisfied honest-verifier zero-knowledge.

Definition C.4 (Simulation-Extractability). The proof system
Π is simulation-extractable if for a PPT simulator Sim, there
exists a PPT extractor Extract, such that for any PPT adversary
A , we have: Pr[(χ,π)← ASimProve ∧ ω← Extract(χ,π,Q) :
Verify(χ,π) = 1∧ (χ,ω) /∈ R ∧ (χ,ω) /∈ Q] = negl(λ).

Here, SimProve returns the simulated proof π = Sim(χ) for
the given statement χ. Q is the set of queries made by A to
SimProve.

Here, we also require the extractor to be online (or straight-
line).

Remark C.5 We notice that the same techniques used in [23]
to prove non-malleability in Schnorr-Signed El-Gamal En-
cryption in the ROM and AGM using straight-line extractor
can be used in our construction. In this technique, instead
of rewinding, we use the AGM assumption that any group
element in the output of the adversary should be a linear
combination of the group elements that were given to the
adversary. Hence, we can construct an extractor by exploiting
the linear dependency between the group elements that are
given to the adversary as response to the oracle queries and
its reponses. Observe that our proof system Π uses the same
technique used to construct the proofs in [23].

D Security Proofs

Proof of Theorem 4.1. Correctness and message-
homomorphism follow directly from the correctness
and message-homomorphism of standard ElGamal encryp-
tion. IND-CPA security follows straight from the IND-CPA
security of standard ElGamal encryption and the security of
Shamir’s secret sharing, as one can trivially simulate up to
t−1 Shamir shares for corrupted parties in Game-IND-CPA
(Figure 6) by sampling random field elements.

D.1 Proof of of Theorem 5.1
Proof of Theorem 5.1. We prove B-IND-CCA security of
BTE (Definition 3.2) through a series of game-hops where
we eliminate all dependencies on the internal bit b of

Game-B-IND-CCA. Let Game-B-IND-CCABTE
0,A be the original

game defined in Figure 1.

Game-B-IND-CCABTE
1,A : In this game, we change how the

proof π is computed by the game during encryption of the chal-
lenge mb. Instead of computing π as Π.Prove(χ,ω), where
χ = (pp,pk,c) and ω = (k,u), we simulate the proof using
the simulator Sim. Hence, we set π← Sim(pp,pk,c).

Claim D.1 If the proof system Π is simula-
ble (Definition C.3) then Game-B-IND-CCABTE

1,A
is computationally indistinguishable from
Game-B-IND-CCABTE

0,A .
∣∣Pr[Game-B-IND-CCABTE

1,A (1λ) =

1]−Pr[Game-B-IND-CCABTE
0,A (1λ) = 1]

∣∣≤ negl(λ)

Proof of Claim D.1. The claim followes straight from the
zero-knowledge property of the proof system Π.

In a following game-hop, we want to make a reduction to
the IND-CPA-security of the underlying threshold ElGamal
encryption scheme. In order to do that, we need to simulate
the batch-decryption oracle Ob-dec though, which has a
dependency on the threshold ElGamal secret key shares
skℓ. Because we only require the threshold homomorphic
encryption to be IND-CPA-secure, we do not have access
to a decryption oracle, which we could use to simulate the
partial threshold ElGamal decryption. Hence, we remove
the dependency on skℓ of Ob-dec within the following two
game-hops using the simulation-extractability of the proof
system Π to simulate decryption shares.

Game-B-IND-CCABTE
2,A : In this game, we make changes to

the batch-decryption oracle Ob-dec. After verifying each proof
πi, we extract the witnesses (k̃i, ũi). We then recompute the
punctured key k̃′i and the ElGamal encryption of gk̃i

2 and check
that they match the respective components in ci. If any of
the checks fail, we abort. The following Figure 8 shows the
changes to the Ob-dec oracle described above.

Claim D.2 If the underlying proof system Π is simulation-
extractable (Definition C.4) then Game-B-IND-CCABTE

2,A
is computationally indistinguishable from
Game-B-IND-CCABTE

1,A .
∣∣Pr[Game-B-IND-CCABTE

2,A (1λ) =

1]−Pr[Game-B-IND-CCABTE
1,A (1λ) = 1]

∣∣≤ negl(λ)

Proof of Claim D.2. Clearly the only way for a PPT adver-
sary A to distinguish between the games is by triggering the
additional abort conditions in Ob-dec

2 . To do so, A must submit
a pair (ci,πi) with a verifying proof πi such that the extrac-
tor Extract fails to extract the correct witness (k̃i, ũi). The
simulation-extractability of Π implies that A’s probability of
success is negligible. Given an adversary A that submits a
total of q ciphertexts for decryption to Ob-dec, we get∣∣Pr[Game-B-IND-CCABTE

2,A (1λ) = 1]−

Pr[Game-B-IND-CCABTE
1,A (1λ) = 1]

∣∣≤ q ·negl(λ)

20

Oracle Ob-dec
1 (ℓ,{(ci,πi)}i∈[B])

1 : if c⋆ ∈ {ci}[B] then

2 : ctr← ctr+1

3 : if ctr ≥ t−|C| then return ⊥
4 : for i ∈ [B] do
5 : if Π.Verify(pp,pk,ci,πi) = 0 then return ⊥
6 : return BatchDec(skℓ,{ci}[B])

Oracle Ob-dec
2 (ℓ,{(ci,πi)}i∈[B])

1 : if c⋆ ∈ {ci}[B] then

2 : ctr← ctr+1

3 : if ctr ≥ t−|C| then return ⊥
4 : for i ∈ [B] do
5 : if Π.Verify(pp,pk,ci,πi) = 0 then return ⊥
6 : (k̃i, ũi)

$← Extract((pp,pk,ci),πi,Q)

7 : k̃′i← gxi k̃i
2

8 : if k̃′i ̸= ci.k′ then return ⊥

9 : c̃t i← (gũi
2 ,pk

ũi gk̃i
2)

10 : if c̃t i ̸= ci.ct then return ⊥
11 : return BatchDec(skℓ,{ci}[B])

Figure 8: Game hop from Game-B-IND-CCA1 to Game-IND-CCA2. The changes to the Ob-dec oracle are highlighted in grey.

which is negligible because q is bounded by a polynomial in
λ.

Game-B-IND-CCABTE
3,A : In this game we make another

change to Ob-dec, which finally removes its dependency on
skℓ. During the BatchDec, we assemble all the ElGamal ci-
phertexts into CT←∏

B
i=1 cti = (X ,Y) = (gu,pku ·gk) where

u = ∑
B
i=1 ui and k = ∑

B
i=1 ki. In Ob-dec

2 , we of computing a
decryption share of CT under skℓ as dℓ ← X skℓ

[
= gu·skℓ

]
,

as mandated by the threshold ElGamal decryption algo-
rithm. In Ob-dec

3 we directly compute the decryption share
as d̃ℓ = pkũ

ℓ

[
= gũ·skℓ

]
where ũ = ∑

B
i=1 ũi. Note that d̃ℓ = dℓ,

given u = ũ. We detail the change in Figure 9.

Claim D.3 The games are identical.

Proof of Claim D.3. Given an ElGamal Ciphertext ci.ct =
cti = (gui

2 ,pk
uigki

2), observe that the extracted witnesses k̃i
and ũi must be equal to the values used in cti and we have
ki = k̃i and ui = ũi. This is because there is only one unique
(k̃i, ũi) such that cti = (gũi

2 ,pk
ũigk̃i

2) and both games abort if
this condition is not met. Hence ũ = ∑

B
i=1 ũi = ∑

B
i=1 ui = u,

which implies that the returned decryption shares are equal in
both games:

d̃ℓ = pkũ
ℓ = gũ·skℓ

2 = gu·skℓ
2 = dℓ

Now that we have removed the dependency on the thresh-
old ElGamal secret key shares skℓ from the batch-decryption
oracle, we can proceed with a game hop that replaces the
ElGamal encryption of gk

2 in the challenge ciphertext with an
encryption of an arbitrary constant (say g2). We can reduce
the indistinguishability of this game hop to the IND-CPA
security of threshold ElGamal, because we no longer need

the skℓ in the batch-decryption oracle.

Game-B-IND-CCABTE
4,A : In this game we change how the

challenge is computed in Game-B-IND-CCA and replace the
encryption of gk

2 with an encryption of g2. Instead of com-
puting ct← THE.Enc(pk,gk

2), we set ct← THE.Enc(pk,g2).
Note that we could use an arbitrary group element instead
of g2. We just choose g2 to avoid introducing an additional
constant.

Claim D.4 If the underlying homomorphic en-
cryption scheme THE (which is ElGamal) is
IND-CPA-secure in G2 then Game-B-IND-CCABTE

4,A
is computationally indistinguishable from
Game-B-IND-CCABTE

3,A .
∣∣Pr[Game-B-IND-CCABTE

4,A (1λ) =

1]−Pr[Game-B-IND-CCABTE
3,A (1λ) = 1]

∣∣≤ negl(λ)

Proof of Claim D.4. We proof this claim by reduction to the
IND-CPA security of the underlying threshold homomorphic
encryption scheme THE (Definition B.6). Let A be a
PPT adversary such that

∣∣Pr[Game-B-IND-CCABTE
4,A (1λ) =

1]− Pr[Game-B-IND-CCABTE
3,A (1λ) = 1]

∣∣ > ε(λ) for a non-
negligible ε. We construct a PPT reduction B that runs in
Game-IND-CPATHE

B of THE and uses A internally to break
the IND-CPA-security of THE.

B receives pk from Game-IND-CPATHE
B and runs A with

(pp,pk) as input. It forwards the set of corrupted par-
ties C to Game-IND-CPATHE

B , passing the resulting secret
key shares {skℓ}ℓ∈C back to A . It follows the steps from
Game-B-IND-CCA4 and Game-B-IND-CCA3 up to the point
where it is supposed to encrypt gk

2 or g2 respectively. Instead,
B sends (m0 = gk

2,m1 = g2) to Game-IND-CPATHE
B and re-

ceives ct as a response. B then continues following the steps
from Game-B-IND-CCA4 and Game-B-IND-CCA3.

21

Oracle Ob-dec
2 (ℓ,{(ci,πi)}i∈[B])

1 : if c⋆ ∈ {ci}[B] then return ⊥

2 : for i ∈ [B] do
3 : if Verify(pp,pk,ci,πi) = 0 then return ⊥
4 : (k̃i, ũi)

$← Extract(pp,pk,ci,πi)

5 : k̃′i← gxi k̃i
2

6 : if k̃′i ̸= ci.k′ then return ⊥

7 : c̃t i← (gũi
2 ,pk

ũi gk̃i
2)

8 : if c̃t i ̸= ci.ct then return ⊥

9 : CT←∏
B
i=1 cti

10 : dℓ← THE.Dec(skℓ,CT)

11 : return dℓ

Oracle Ob-dec
3 (ℓ,{(ci,πi)}i∈[B])

1 : if c⋆ ∈ {ci}[B] then return ⊥

2 : for i ∈ [B] do
3 : if Verify(pp,pk,ci,πi) = 0 then return ⊥
4 : (k̃i, ũi)

$← Extract((pp,pk,ci),πi,Q)

5 : k̃′i← gxi k̃i
2

6 : if k̃′i ̸= ci.k′ then return ⊥

7 : c̃t i← (gũi
2 ,pk

ũi gk̃i
2)

8 : if c̃t i ̸= ci.ct then return ⊥

9 : ũ← ∑
B
i=1 ũi

10 : d̃ℓ← pkũ
ℓ

11 : return d̃ℓ

Figure 9: Game hop from Game-B-IND-CCA2 to Game-IND-CCA3. The changes to the Ob-dec oracle are highlighted in grey.

Note that B can simulate the batch decryption oracle
Ob-dec

3 = Ob-dec
4 to A , as it no longer depends on the ElGamal

secret key share skℓ. This dependency was removed in the
previous game hop.

Analysis. Let b′ be the internal bit of Game-IND-CPATHE
B .

If b′ = 0, then Game-IND-CPATHE
B returns an encryption of

gk
2 and B simulates Game-B-IND-CCABTE

3,A to A . If b′ = 1,
then Game-IND-CPATHE

B returns an encryption of g2 and
B simulates Game-B-IND-CCABTE

4,A to A . Hence, B wins
Game-IND-CPATHE

B if A wins Game-B-IND-CCABTE
A , which

is assumed to be non-negligible. Denote B’s output in
Game-IND-CPATHE

B with d.∣∣∣Pr
[
Game-IND-CPATHE

B (1λ) = 1
]∣∣∣

=

∣∣∣∣1
2

Pr
[
d = 0 | b′ = 0

]
+

1
2

Pr
[
d = 1 | b′ = 1

]∣∣∣∣
=

∣∣∣∣1
2
(1−Pr

[
d = 1 | b′ = 0

]
+Pr

[
d = 1 | b′ = 1

]
)

∣∣∣∣
=

1
2
+

1
2

∣∣−Pr[Game-B-IND-CCABTE
3,A (1λ) = 1]

+Pr[Game-B-IND-CCABTE
4,A (1λ) = 1]

∣∣
>

1
2
+

ε(λ)

2

This contradicts the IND-CPA security of THE.

Game-B-IND-CCABTE
5,A : In this game, we replace the result

of the PRF-evaluation during encryption with a random group
element from GT . Instead of computing γ← mb +PRF(k, i)
we set γ← mb + r for a random r $←GT .

Claim D.5 If PRF is pseudorandom (Def-
inition B.2) then Game-B-IND-CCABTE

5,A
is computationally indistinguishable from
Game-B-IND-CCABTE

4,A .
∣∣Pr[Game-B-IND-CCABTE

5,A (1λ) =

1]−Pr[Game-B-IND-CCABTE
4,A (1λ) = 1]

∣∣≤ negl(λ)

Proof Sketch of Claim D.5. We proof this claim by reduction
to the pseudorandomness Game-PR of PRF. The PPT reduc-
tion B playing in Game-PRB sends index i to the pseudoran-
domness game and receives k′ and value r as a response. B
then computes γ as γ← mb + r. If the r is sampled uniformly
random by the pseudorandomness game (b = 0), B simu-
lates Game-B-IND-CCABTE

5,A to A . If r is the result of the PRF
evaluation (b = 1), B simulates Game-B-IND-CCABTE

4,A to A .
Hence, if A can distinguish between Game-B-IND-CCABTE

5,A
and Game-B-IND-CCABTE

4,A , then B can distinguish between
b = 0 and b = 1.

Game-B-IND-CCABTE
6,A : In this game we directly sample

γ from GT instead of computing it as mb + r for a random
r $←GT .

Claim D.6 Both games are identidically distributed and
thus it holds that Pr

[
Game-B-IND-CCABTE

6,A (1λ) = 1
]
=

Pr
[
Game-B-IND-CCABTE

5,A (1λ) = 1
]

Proof of Claim D.6. The only difference between the games
is the way γ is computed. In Game-B-IND-CCABTE

5,A , γ

is computed as mb + r for a random r $← GT . In
Game-B-IND-CCABTE

6,A , γ is directly sampled from GT . Clearly,
γ is identically distributed in both games.

We conclude the proof by arguing that the adversaries
view in Game-B-IND-CCABTE

6,A no longer depends on the

22

internal bit b. Hence Pr
[
Game-B-IND-CCABTE

6,A (1λ) = 1
]
=

1
2 . Further, we have derived Game-B-IND-CCABTE

6,A from
Game-B-IND-CCABTE

0,A through a series of game-hops
where each game is computationally indistinguishable
from the previous one. We conclude that for all
PPT adversaries A there exists a negligible function
negl(λ) such that Pr[Game-B-IND-CCABTE

0,A (1λ) = 1] ≤
Pr[Game-B-IND-CCABTE

6,A (1λ) = 1] + negl(λ) = 1
2 + negl(λ)

which satisfies Definition 3.2.

D.2 Proof of Theorem 5.2
Proof of Theorem 5.2. We prove rogue ciphertext security
(Definition 3.3) by reduction to the soundness of the proof-
system Π (Definition C.2). Let A be a PPT adversary against
rogue ciphertext security of BTE. We construct an adversary B
against the soundness of Π, which runs A internally, simulat-
ing Game-RogueA to A . B simulates Game-RogueA exactly
as described in Figure 1. If A wins Game-RogueA in B’s sim-
ulation, then B learns {(c j,π j)} j∈[B] along the way. B picks a
random r $← [B] and outputs statement χ = (pp,pk,cR) along
with proof πr.

In order to break soundness (χ,πr) must satisfy the follow-
ing properties:

1. Verify(χ,πr) = 1.

2. ∀(k,u) it holds that cr.k∗ ̸= gxrk
2 or cr.ct ̸= (gu

2,pk
u ·gk

2).

We claim that whenever A wins Game-RogueA , there always
exists at least one r ∈ [B] such that both properties above
are satisfied. Property 1 is necessarily satisfied for all ℓ ∈ [B]
whenever A wins Game-RogueA . We argue further that Prop-
erty 2 must be satisfied for at least one r ∈ [B] whenever A
wins Game-RogueA because of the correctness of BTE. As-
sume that A sets cr.k∗ and cr.ct∗ for all ℓ ∈ [B] such that
Property 2 is not satisfied. This in turn means that the punc-
tured keys and ElGamal ciphertext for all ciphertexts in the
batch are correct (i.e. ∃(kℓ,uℓ) such that cℓ.k∗ = gxℓkℓ

2 and
cℓ.ct = (guℓ

2 ,pkuℓ · gkℓ
2)). Observe now that BatchDec only

used the ElGamal ciphertext, so the resulting partial decryp-
tions are correct for the batch and the resulting combined
key is also correct K = g∑kℓ

2 . Further, when we look at the
Combine step, we can see that the challenge message mi is
computed from the decryption shares as follows:

mi = γi +
[B]

∑
ℓ̸=i

PRF.PEval(ctℓ.k∗, ℓ)−PRF.ExpEval(K, i)

Clearly, this only relies on the punctured keys ctℓ.k∗ and the
combined key K, which in turn relies on the ElGamal cipher-
texts. Hence, the resulting message mi is correct because of
the perfect correctness of BTE. By contradiction, we have
shown that there must exist at least one index r ∈ [B], which

also satisfies Property 2. The reduction B will pick this index
with probability of at least 1/Bmax, and we get

Pr[B breaks soundness]≥ 1
Bmax

· Pr[Game-RogueA(1
λ)= 1]

D.3 Probability Analysis of Removing Coordi-
nation

Recall from Section 5.3 that removing coordination in the
BTE scheme does not compromise correctness or security.
This is because, when we have α =

√
B,N = kB, under the

condition λs <
√

B(logk
√

B−2), where λs is the statistical
correctness parameter, we have negligible probability of index

collision P(
√

B+1)
B < 2−λs . What’s more, even when index col-

lision really happens, we can always downgrade to have more
sub-batches to accommodate the situation. This means that
in practice, we could always set α dynamically and achieve
perfect correctness at the cost of a bit more communication
overhead. We define P(α+1)

B as follows, and provide the com-
plete proof here.

Given B parties, there are
(B

α+1

)
ways to choose a set

of α+ 1 parties. The probability that a fixed set of α+ 1
parties sample the same index from a domain of size N is
N ·1/Nα+1 = 1/Nα. Since the indices are sampled randomly
and independently, the probability that they do not sample the
same index is 1−1/Nα. Thus, the probability that no set of
α+ 1 parties all sample the same index is (1− 1/Nα)(

B
α+1).

The probability that there exist a set of α+1 parties with the
same index is then P(α+1)

B = 1− (1−1/Nα)(
B

α+1). This prob-
ability P(α+1)

B is then the probability of having index collision
in a batch of B parties using our technique. Given a statistical
correctness parameter λs, we want P(α+1)

B < 2−λs .
Given the relation below, we can simplify the above expres-

sion: (
B

α+1

)
≤ Bα+1/(α+1)! (2)

1−1/Nα ≈ e−1/Nα

for small 1/Nα (3)

With reasonable B and N, i.e. B≥ 16,N ≥ B, the term on
the exponent is dominating, and we could bound the probabil-
ity by:

P(α+1)
B ≤ 1− e−Bα+1/(α+1)!Nα ≤ Bα+1

(α+1)!Nα
(4)

According to Stirling’s approximation, (α + 1)! ≥√
2π
√

α+1(α+1
e)α+1. Taking efficiency optimization from

5.2 into consideration, it is natural that we set α =
√

B (as-
suming

√
B is an integer). If we also model the relationship

23

between n and N as N = kB, where k is some constant, we
can further simplify the expression:

P(
√

B+1)
B ≤ B

(
√

B+1)!k
√

B
(5)

P(
√

B+1)
B ≤ B

√
2π

√√
B+1(

√
B+1
e)

√
B+1k

√
B

(6)

≤ e
√

B+1B
√

2π(
√

B+1)
√

B+1k
√

B
(7)

Given the statistical correctness parameter λs, we would

want to have P(
√

B+1)
B < 2−λs . It holds that,

P(
√

B+1)
B ≤ e

√
B+1B

√
2π(
√

B+1)
√

B+1k
√

B
(8)

≤ e2
√

2π · k

(
e

k
√

B

)√B−1

(9)

(10)

Therefore, loosely, we get the required probability when
λs <

√
B(logk

√
B− 2). For practical choices of B, we can

have larger values of λs when we do tighter calculations.

24

	Introduction
	Batched Threshold Encryption
	Our Contributions
	Related Work

	Technical Overview
	Preliminaries
	Batched Threshold Encryption

	Building Blocks
	Our Batched Threshold Encryption Scheme
	Construction
	Optimizations
	Removing Coordination

	Attacks and Mitigations
	Experimental Evaluation
	Additional Related Works
	Definitions, Games and Construction Details
	Key-Homomorphic Puncturable PRF
	Missing Security Games and Definitions.

	NIZK Proof System for CCA-security
	Security Proofs
	Proof of of Theorem 5.1
	Proof of Theorem 5.2
	Probability Analysis of Removing Coordination

