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Abstract. At Eurocrypt 2015, Zahur, Rosulek, and Evans proposed the
model of Linear Garbling Schemes. This model proved a 2κ-bit lower
bound of ciphertexts for a broad class of garbling schemes. Since then,
several methods have been developed that bypass this lower bound, al-
beit with a notable limitation: Their reliance on specifically correlated
input wire labels restricts their applicability across most gates. At Crypto
2021, Rosulek and Roy presented the innovative "three-halves" garbling
scheme in which AND gates cost 1.5κ + 5 bits and XOR gates are free.
A noteworthy aspect of their scheme is the slicing-and-dicing technique,
which is applicable universally to all AND gates when garbling a boolean
circuit. Following this revelation, Rosulek and Roy presented several open
problems. Our research primarily addresses one of them: “Is 1.5κ bits
optimal for garbled AND gates in a more inclusive model than Linear
Garbling Schemes? ”

In this paper, we propose the Bitwise Garbling Schemes, a model
that seamlessly incorporates the slicing-and-dicing technique. Our key
revelation is that 1.5κ bits is indeed optimal for arbitrary garbled AND
gates in our model. Since Rosulek and Roy also suggested another prob-
lem which questions the necessity of free-XOR, we explore constructions
without free-XOR and prove a 2κ-bit lower bound. Therefore, sacrificing
compatibility with free-XOR does not lead to a more efficient scheme.

Keywords: Garbled circuit · 2PC · Linear garbling scheme

1 Introduction

Since Yao introduced Garbled Circuits (GC) in [29], they have gained significant
attention. It is believed that GC are the simplest construction when realizing
secure two-party computation (2PC). Up to now, garbled circuit is still the
primary technique in the 2PC setting due to their efficiency.

The main reason of their high efficiency is that both parties only use fast
symmetric-key operations. Since necessary computation can be finished apace,
the actual bottleneck of GC lies in the communication overhead. There are a
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continual line of works [17,19,20,22,25,26,30] aiming to reduce the length of data
required to encrypt individual gates, as this data will subsequently be transmit-
ted from the garbler to the evaluator. We distinguish between additional bits
which are used to control the evaluator’s behavior and ciphertexts which are di-
rectly used to compute the output wire label. In addition, we refer to these two
parts collectively as material [18]. For example, the material of an AND gate in
the “three-halves” garbling scheme [26] contains three 0.5κ-bit ciphertexts and 5
additional bits.

Zahur, Rosulek, and Evans proposed the half-gates scheme and the model
of Linear Garbling Schemes in [30]. As we mentioned above, they proved there
exists a 2κ-bit lower bound of ciphertexts in this model. Meanwhile, the half-
gates scheme ensures that the communication cost per AND gate is 2κ bits.
Hence, this scheme is optimal in this model. However, Rosulek and Roy [26]
then proposed the state-of-the-art “three-halves” garbling scheme, which totally
breaks this lower bound. The novel slicing technique, in which different halves
of the output wire label can be computed via different linear combinations, lies
outside this model, introducing more possibilities. Intuitively, since the “three-
halves” garbling scheme improves the size of material by slicing the output wire
label into halves, a further slicing could potentially yield even better outcomes.
For example, we may require only 4

3κ bits, 5
4κ bits, or potentially even fewer.

Therefore, Rosulek and Roy [26] proposed an open question:

Is 1.5κ bits optimal for garbled AND gates in a more inclusive model than
than Linear Garbling Schemes?

We discuss this model and technique later in Sect. 3.

1.1 Our Contributions

We propose a model called Bitwise Linear Garbling Schemes, which builds
upon the foundation of the traditional Linear Garbling Schemes model. This
means that all practical garbling schemes captured by the old model are naturally
included in our new model. The primary improvement of our model is our focus
on the slicing technique. We consider the most extreme case where the κ-bit
wire label can be sliced into κ bits. As a result, in our new model, each bit
of the output wire label can be computed via a different linear combination.
As we mentioned, this model is bitwise. One may argue that this idea is only
implied by the slicing technique, short of inclusiveness. However, it is necessary
for a garbling scheme to guarantee the security of each bit of the output wire
label. Hence, we believe that our bitwise processing is hard to circumvent, which
reflects the inclusive nature of our model.

In response to this open question, we consider the garbling of an arbitrary
AND gate, rather than just a single isolated AND gate. In this case, based on
our classification of oracle responses, we prove a 1.5κ-bit lower bound in our
model achieved with free-XOR. We believe that this classification is essential in
the two-party setting.
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Inspired by [9], we also deal with non-linear actions by proposing the model of
Bitwise Garbling Schemes. This model not only includes the dicing technique
completely, but also makes the 1.5κ-bit lower bound more convincing.

Meanwhile, we also discover the importance of free-XOR. It is quite inter-
esting that free-XOR plays a crucial role in both XOR gates and AND gates
in practice. When constructions similar to free-XOR (see Sect. 5.1) are forbid-
den, we can prove a 2κ-bit lower bound. We show that sacrificing compatibility
with free-XOR does not provide any advantage in our model, even under the
gate-hiding assumption [26].

There are also some methods [3,17,28] that manage to achieve k-bit cipher-
text on a single AND gate in isolation. We can analyze them in a similar way.
These methods that utilize constructions similar to free-XOR, but do not retain
the same correlation on the output wire, remain outside of our model. Their
deviation is primarily due to their inapplicability throughout the circuit. If they
are prescribed as general methods to match our model, they still follow the above
lower bound.

Techniques for proving lower bounds. Our starting point is Bitwise Linear
Garbling Schemes, inspired by Linear Garbling Schemes and the slicing technique
naturally. In short, each bit of the output wire label, which can be computed via a
different linear combination, must be private. It is easy to find that privacy comes
from the non-linearity of the queries to the random oracle in Linear Garbling
Schemes.

Therefore, we propose a pivotal observation: The queries to the random ora-
cle can be classified. To the best of our knowledge, all known practical garbling
schemes align with this observation. For simplicity, let’s consider a garbled AND
gate which takes wire labels Ai, Bj where i, j ∈ {0, 1} as inputs with a ran-
dom oracle H. We use Ei,j to represent the evaluator with wire labels (Ai, Bj).
Assuming each input wire label is independently sampled from {0, 1}κ, it is intu-
itive to exemplify with the following forms: H(Ai), H(Bj) and H(Ai, Bj). What
is different is we view H(A0) as oracle responses which can be computed by
{E0,0, E0,1}, while {E1,0, E1,1} can only guess them. Obviously, we can not list
all oracle responses, but we can consider all subsets of {E0,0, E0,1, E1,0, E1,1}. We
require that every oracle response be computed by at least one evaluator, and
we associate this response with a subset containing corresponding evaluators.
In light of the limited number of subsets, we finitely classify oracle responses.
For the sake of presentation, we choose a common form to represent all ora-
cle responses associated with a subset. For example, in the free-XOR setting,
A0 ⊕ B1 = A1 ⊕ B0, so we choose H(A0 ⊕ B1) to represent oracle responses
associated with {E0,1, E1,0} in our discussion and proofs of lower bounds. We
insist that the random oracle is not necessarily queried in this form.

Furthermore, oracle responses are in charge of ensuring security. Each bit of
the output wire label needs a linear combination of all possible oracle responses
(Q1, Q2, . . . , Qq) to keep private, which allows us to build a matrix. Roughly
speaking, in order to compute the k-th bit of the output wire label of the eval-
uator with (Ai, Bj), we allocate a vector to compute the inner product of this
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vector and (Q1, Q2, . . . , Qq). We study the rank of this matrix by considering
the security, and prove the lower bound. This technique was presented in Linear
Garbling Schemes [30].

In [9], Fan, Lu and Zhou viewed the mapping from bases (which are similar
to oracle responses) and ciphertexts to the output wire label as a function. The
model of Linear Garbling Schemes is included, if we consider a linear function
which performs linear combinations of oracle responses and ciphertexts. By con-
sidering non-linear functions, they dealed with non-linear mapping. Inspired by
their idea, we then propose the Bitwise Garbling Schemes, which also allows
non-linear mapping. Note that this model includes the dicing technique.

1.2 Related Works

GC are widely regarded as the most common approach to 2PC in many cases.
Moreover, the foundational concept behind GC is pivotal even when the number
of involved parties exceeds two [11,23,24]. GC are also employed with respect
to different network conditions and application scenarios [2,7,12,13,14], through
diverse ideas and techniques. Concurrently, a multitude of studies [8,16,27] have
emerged to adapt GC for malicious secure 2PC. A seminal advancement in the
GC domain is the introduction of a key framework named garbling schemes
by Bellare, Hoang, and Rogaway [5]. This framework not only standardized a
series of related works but also solidified the description and security properties
of GC, making it more convenient to elaborate formally. Additionally, there
are two prominent techniques in this area. Many garbling schemes utilize these
techniques, optimizing either computational or communicational efficiency.

The point-and-permute technique [4] requires the garbler to sample a random
permute bit per wire. Although each permute bit needs to be secret, the garbler
can utilize the XOR operation between this bit and the actual logic value to
produce two contrasting color bits. Each color bit corresponds to a specific wire
label, while only one of them is revealed to the evaluator. In the majority of
garbling schemes employing this technique, the evaluator can take advantage of
color bits of wire labels to choose the corresponding ciphertexts for all gates,
as the garbler has arranged ciphertexts based on color bits by convention. This
technique avoids the evaluator’s need for multiple attempts to decide on the
right ciphertexts, leading to a reduction in computational cost. However, some
methods [3,17,26,28] also show that it is possible to circumvent the 2κ bits lower
bound if the evaluator’s behavior is not totally decided by color bits. In line with
this, our model does not impose such a constraint. Note that this technique itself
costs 1 bit of each wire label, which technically reduces the security parameter
by 1. Nevertheless, this decrement is typically overlooked in general discourse.

The free-XOR technique introduced by Kolesnikov and Schneider [20] has
been playing an important role in GC acceleration. The garbler chooses a global
and secret XOR-difference ∆, and two wire labels of the same wire always keep
this difference. In the context of XOR gates, this technique simplifies the opera-
tions for both parties involved. They merely have to perform the XOR operation
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on two input wire labels to determine the output wire label, and the commu-
nication cost of XOR gates is reduced to zero. It’s also worth noting that this
technique mandates a distinct security requirement for hash functions [6,26]. Be-
cause output wire labels are also restricted to maintain the XOR-difference ∆,
Rosulek and Roy [26] also proposed another question: Does it help to sacrifice
compatibility with free-XOR? In this paper, we also answer this question.

2 Preliminaries

2.1 Notations

x
$←− X means that x is uniformly sampled from the uniform distribution X. The

notation [n] denotes the set {1, . . . , n}. We use bold symbols to denote vectors,
e.g., e,X,Y . Calligraphic fonts are used to denote sets, e.g., E ,Z. In the context
of garbling schemes, we may also refer to the garbler or evaluator using pronouns
he or she. κ denotes the computational security parameter.

We mainly focus on how to garble an arbitrary AND gate g. Two input wires a
and b of g are encoded as wire label pairs (A0, A1) and (B0, B1). Each wire label is
uniformly sampled from {0, 1}κ. During GC evaluation, the actual logic value on
wire a is denoted as xa. We use Ai

0 to denote the i-th bit of A0. One wire label in a
pair (A0, A1) represents the logic value 1 on this wire, while the other represents
0. The evaluator obtains one of them, based on xa. The output wire c is encoded
as wire label pair (C0, C1). We denote the concatenation of two wire labels
Ai, Bj by Ai ∥ Bj . To make the evaluator with two wire labels (Ai, Bj) from
two label pairs obtain her corresponding output wire label correctly, the garbler
also arranges ciphertexts G1, . . . , Gm where m is the number of ciphertexts.

Note that the evaluator only has one element of the set {(Ai, Bj)|i, j ∈
{0, 1}}, while the garbler has to consider all of them. For simplicity, we re-
gard Ei,j as the evaluator with (Ai, Bj). This suggests that four distinct types
of evaluators coexist simultaneously. When considering the security property,
we hope to protect Ei,j from each of {Eī,j , Ei,j̄ , Eī,j̄} because an adversary may
possess one of them and threat privacy. (We sometimes use ī instead of 1− i.)

2.2 Garbling Schemes

We use the definition of garbling schemes from [26].

Definition 1. A garbling scheme consists of four algorithms as below.
(M, e,D) ← Garble (1κ, f): Output the material M of GC, encoding infor-

mation e and decoding strings D on parameter 1κ and the description of the
boolean circuit f .

X :=Encode(e,x): Transform the cleartext input x to the garbled input X
with encoding information e.

Y :=Eval(M,X): On the input (M,X), evaluate the garbled output Y .
y :=Decode(D,Y ): Transform the garbled output Y to the cleartext output

y with decoding strings D.
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A garbling scheme satisfies the following security properties.
Correctness: After getting (M, e,D) ←Garble (1κ, f) for the boolean cir-

cuit f and cleartext input x, Decode(D,Eval(M,Encode(e,x)))= f(x) fails with
negligible probability.

Privacy: The output of a simulator with input (1κ, f,y) is indistinguishable
from (M,X,D) generated in the usual way. This means that (M,X,D) should
not reveal any information about x except y = f(x).

Obliviousness: The output of a simulator with input (1κ, f) is indistinguish-
able from (M,X) generated in the usual way. This means that (M,X) should
not reveal any information about x since decoding information is unknown.

Authenticity: Given the collection (M,X,D), the probability of producing
Y ′ ̸=Eval(M,X) such that Decode(d,Y ′) ̸=⊥ is negligible. In other words, no
PPT adversary A can somehow produce a garbled output which can be decoded
as a cleartext output different from y with non-negligible probability.

3 Technical Overview: Garbling Schemes

In this section, we review the Linear Garbling Schemes model and the slicing-
and-dicing technique in the “three-halves” garbling scheme. We offer a more
detailed review of the old model, as our novel model builds upon it. While
the model of Linear Garbling Schemes includes all known practical garbling
schemes at that time, several works [3,17,26,28] pointed out its shortcomings.
Such insights paved the way for the development of a new model.

3.1 Linear Garbling Schemes

In the Linear Garbling Schemes model, parties are viewed as computationally
unbounded entities which can make polynomially many queries to a random
oracle. This standard setting about Minicrypt is also a fitting description of
practical garbling schemes. We follow the concept of ideal security in this
model, which requires that no adversary has advantage better than poly(κ)/2κ.
3 Readers are referred to this model in [30]. When garbling an AND gate, this
model is as follows:

Garble: This algorithm is parameterized by integers m, r, q and vectors A0, A1,
B0, B1, {Ca,b,0|a, b ∈ {0, 1}}, {Ca,b,1|a, b ∈ {0, 1}}, and {G(i)

a,b|a, b ∈ {0, 1}}.
Each vector has length of r + q, and consists of entries in GF (2κ).

1. For i ∈ [r], choose Ri
$←− GF (2κ).

2. Make q distinct queries to the random oracle (which can be chosen as
a deterministic function of the Ri values) and get responses Q1, . . . , Qq.
We place these values on which the algorithm can act linearly in S =
(R1, . . . , Rr, Q1, . . . , Qq).

3 Clearly, a garbling scheme on security parameter κ − 1 also provides security
poly(κ)/2κ. However, we consider the concrete parameter κ. In other words, we
do not allow to degrade the security parameter.
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3. Choose two permute bits a, b
$←− {0, 1} for two input wires.

4. For i ∈ {0, 1}, compute Ai = ⟨Ai,S⟩, Bi = ⟨Bi,S⟩ and Ci = ⟨Ca,b,i,S⟩.
Then two input wire labels are (A0 ∥ 0, A1 ∥ 1). As we state above, these
subscripts denote the public color bits. Aa and Bb correspond to FALSE. Let
C0 correspond to FALSE.

5. For i ∈ [m], compute Gi = ⟨G(i)
a,b,S⟩. These values comprise the garbled

circuit.

Encode: On input xa, xb ∈ {0, 1}, set color bits α := xa⊕ a and β := xb⊕ b. The
evaluator gets Aα ∥ α and Bβ ∥ β.
Eval: Parameterized by q′ and vectors {V α,β |α, β ∈ {0, 1}} of length q′ +m+2.

1. The evaluator has wire labels Aα ∥ α, Bβ ∥ β, and ciphertexts G1, . . . , Gm.
2. Make q distinct queries to the random oracle and get responses Q′

1, . . . , Q
′
q′ .

We also place these values on which the algorithm can act linearly in T =
(Aα, Bβ , Q

′
1, . . . , Q

′
q′ , G1, . . . , Gm).

3. Output the inner product ⟨V α,β ,T ⟩.

To ensure the correctness, the equation C(a⊕α)∧(b⊕β) = ⟨V α,β ,T ⟩ must hold.
T is divided into a public part and a private part. T pub consists of wire labels
and responses. Note that {Q′

1, . . . , Q
′
q′} must be a subset of {Q1, . . . , Qq}, since

the garbler has to be able to anticipate it. Hence, T pub is a linear function of S
which only depends on α, β. We denote it by T pub = Mα,β×S⊤. Similarly, T prv

which consists of ciphertexts is also a linear function of S which only depends
on a, b. Assume a matrix Ga,b whose rows are G

(1)
a,b, . . . ,G

(m)
a,b , we denote it by

T prv = Ga,b × S⊤.
Then we divide V α,β similarly, and get the following condition:〈

Ca,b,(a⊕α)∧(b⊕β),S
〉
=

〈
V pub

α,β ,T
pub

〉
+

〈
V prv

α,β ,T
prv

〉
=

〈
V pub

α,β ,Mα,β × S⊤
〉
+
〈
V prv

α,β ,Ga,b × S⊤
〉

= ⟨Zα,β ,S⟩+
〈
V prv

α,β ×Ga,b,S
〉
,

where Zα,β = V pub
α,β ×Mα,β is a vector depending on α, β.

The vector S is uniformly distributed. Hence, the following equation must
hold:

Ca,b,(a⊕α)∧(b⊕β) = Zα,β + V prv
α,β ×Ga,b. (1)

Zahur, Rosulek, and Evans proved three pivotal claims:

– Claim 1: Matrices {Ga,b|a, b ∈ {0, 1}} are all distinct.
– Claim 2: Vectors {Zα,β |α, β ∈ {0, 1}} are pairwise linearly independent.
– Claim 3: Vectors {V prv

α,β |α, β ∈ {0, 1}} are pairwise linearly independent.

In our opinion, Claim 2 is crucial. So we give their proof of Claim 2. Suppose
that it is violated by Z0,1 = σZ0,0, where σ is a scalar. Then E0,0 can also
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compute ⟨V 0,1,T ⟩ = σ⟨V pub
0,0 ,T

pub⟩+ ⟨V prv
0,1 ,T

prv⟩. Therefore, E0,0 has output
wire labels for two different cases. This is not allowed when garbling an AND
gate.

To prove the lower bound, we get four equations by considering (α, β) ∈
{(0, 0), (0, 1)} and (a, b) ∈ {(0, 0), (0, 1)} for Equation (1). By combining these
equations appropriately, we get:

(V prv
0,1 − V prv

0,0 )× (G0,1 −G0,0) = 0.

Based on Claim 1 and Claim 3, we can find that V prv
0,1 − V prv

0,0 is a nonzero
vector and G0,1 − G0,0 is a nonzero matrix. So G0,1 − G0,0 must have at least
2 rows. This implies that Ga,b has at least 2 rows, resulting in ciphertexts that
are at least 2κ bits in length.

3.2 Slicing-and-Dicing

The “three-halves” garbling scheme [26] uses the slicing-and-dicing technique to
beat the old lower bound. In the Linear Garbling Schemes model, {V α,β |α, β ∈
{0, 1}} are fixed. However, the dicing technique enables the garbler to send
additional bits apart from 1.5κ-bit ciphertexts. These bits are generated by en-
crypting control bits. In this scheme, control bits are used to determine how to
combine different parts of input wire labels to compute the output wire label,
i.e., V α,β . Moreover, these control bits are sampled by a randomized algorithm,
ensuring that the evaluator learns nothing from them. This idea, which first
appeared in [17], is outside of the old model. While our first model does not
provide complete coverage of this idea, we choose a trivial approach where the
evaluator is assumed to know how to compute her output wire label, allowing
us to overlook these bits. Our second model, in which actions of the evaluator
can be decided by values in S and ciphertexts, includes the dicing technique.

Our major concern is the slicing technique which enables the evaluator to ex-
ploit more linear combinations. As noted by Rosulek and Roy [26], it increases
the linear-algebraic dimension in which the scheme operates. An intuitive differ-
ence between this scheme and previous schemes is that this scheme can operate
on a 4× 2 sub-construction (see Table 1). To explain how this technique works,
we examine the half-gates scheme in a linear-algebraic perspective:

1 0 0
1 0 1
1 1 0
1 1 1


 C
G0

G1

 =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1


︸ ︷︷ ︸

MH


H(A0)
H(A1)
H(B0)
H(B1)

⊕

0 0
1 0
0 0
1 1

[
A0

∆

]
⊕


0
1
0
0


︸︷︷︸

t

∆.

The main reason for the 2κ-bit ciphertexts in the half-gates scheme is that
the rank of the matrix MH is 3. (These hash outputs collectively are regarded as
the oracle responses.) By setting the output wire label C as H(A0)⊕H(B0), we
only need two κ-bit ciphertexts to solve the mismatches between different rows.
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Note that the fourth row can be obtained by XORing the top three rows, so it
is free in terms of ciphertexts.

If we slice the output wire label C into κ bits, we can approximate this
garbling as iterating a 4× 1 sub-construction κ times: A 4× 1 sub-construction
is used to compute one bit of the output wire label, e.g., C1 = H(A0)

1⊕H(B0)
1.

To compute each bit of the output wire label, both parties need to combine wire
labels, 1-bit oracle responses and ciphertexts linearly. This is how we include
half-gates when the output wire label is sliced.

Table 1. The oracle responses used in different halves of the output wire label. These
oracle responses are of length κ/2 and free-XOR technique is used.

Input wire labels Oracle responses
Left half Right half

(A0, B0) H(A0)⊕H(A0 ⊕B0) H(B0)⊕H(A0 ⊕B0)
(A0, B1) H(A0)⊕H(A0 ⊕B1) H(B1)⊕H(A0 ⊕B1)
(A1, B0) H(A1)⊕H(A0 ⊕B1) H(B0)⊕H(A0 ⊕B1)
(A1, B1) H(A1)⊕H(A0 ⊕B0) H(B1)⊕H(A0 ⊕B0)

We now consider the “three-halves” garbling scheme with a focus on the ora-
cle responses as presented in Table 1. One can easily check that each half follows
the above half-gates construction. Therefore, both halves need two 0.5κ-bit ci-
phertexts. It still does not provide any improvement since 2κ bits are needed.

However, from a linear-algebraic perspective, we can formulate a matrix of
rank 5 to multiply the vector of these oracle responses. Specifically, let us consider
CL

i,j and CR
i,j as the oracle responses for the left and right half of Ci,j . The

formulation is as follows:

CL
0,0

CR
0,0

CL
0,1

CR
0,1

CL
1,0

CR
1,0

CL
1,1

CR
1,1


=



1 0 0 0 1 0
0 0 1 0 1 0
1 0 0 0 0 1
0 0 0 1 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 1 0 0 1 0
0 0 0 1 1 0


︸ ︷︷ ︸

M′
H


H(A0)
H(A1)
H(B0)
H(B1)

H(A0 ⊕B0)
H(A0 ⊕B1)

 .

The half-gates construction points out that each half needs two 0.5κ-bit cipher-
texts after combining the halves of input wire labels. However, we find that it
is possible to use three 0.5κ-bit ciphertexts by choosing these halves skillfully,
since the rank of M′

H is 5. That is to say, one of the ciphertexts on the left is
the same as the one on the right.

Simply using two different linear combinations for the evaluator does not
directly lead to a better outcome. However, the increasement in linear-algebraic



10 F. Xu, H. Hu and C. Xu

dimension (namely, H(Ai ⊕ Bj)) creates an opportunity to reduce repeated ci-
phertexts. This aspect is pivotal when constructing a new model.

3.3 Intuition

We argue that it is the slicing instead of dicing technique that plays a crucial role
in beating the old lower bound. Actually, this argument has been reflected in the
“three-halves” garbling scheme [26]. Initially, the slicing technique is essential for
creating the possibility to save a ciphertext. However, if the evaluator uses her
color bits to directly compute the output wire label (involving input wire label
halves, oracle responses and ciphertexts), the truth table supported by this fixed
linear combination is not sufficient. Hence, considering the security aspect, it is
necessary that the evaluator’s actions remain unfixed even when color bits are
provided. This is where the dicing technique comes into effect.

This leads us to an intuitive idea of our first model: we take into account of
all possibilities introduced by the slicing technique, and sideline the dicing tech-
nique. We can achieve this by assuming that the evaluator already knows the
linear operations she is expected to learn. The consideration of the dicing tech-
nique is left to the second model. Obviously, the most extreme case caused by the
slicing technique is that every bit of the output wire label can be computed by a
different linear combination. Moreover, maximizing the linear-algebraic dimen-
sion in which a scheme can operate, this idea is convenient for us to consider the
security of all bits. Note that we consider 1-bit oracle responses and ciphertexts
in our models.

3.4 Key Observation

To analyze the lower bound of our intuition, we need a key observation. Till now,
the 4κ linear combinations caused by our intuition are too complicated. Note that
the Linear Garbling Schemes model simply lists q responses Q1, . . . , Qq and the
evaluator is assumed to obtain a subset of it. This gives the evaluator capability
beyond those available in a garbling scheme. For instance, the evaluator with
(Ai, Bj) should not have access to H(A1−i).

To make our model and its lower bound more accurate, we present an obser-
vation: the oracle responses in our model can be classified (see Definition 2). As
far as we know, all previous garbling schemes follow this observation. When the
free-XOR technique is not allowed, we usually make sure each wire label is sam-
pled independently. (Those methods [3,17,28] mentioned earlier, which break the
2κ-bit lower bound, do not satisfy this situation.) We consider forms of oracle re-
sponses, such as H(Ai), H(Bj) and H(Ai ∥ Bj). On oracle responses of the form
H(Ai), we require that the evaluator knowing Ai compute them. Meanwhile, the
probability of correctly guessing H(Ai) follows ideal security with respect to κ.
Using only a portion of an input wire label degrades the security parameter.
When free-XOR is enabled, we immediately notice a new oracle response form:
H(Ai ⊕ Bj). The evaluator with (A1−i, B1−j) can also learn this response, be-
cause A0 ⊕A1 = B0 ⊕B1 = ∆. This type of oracle response plays a crucial role
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in the “three-halves” garbling scheme and our model, even if only AND gates are
involved.

One may argue that we can not guarantee all oracle responses are considered,
since we can not list all possible forms. In our opinion, oracle responses must be
computed by at least one evaluator, while other evaluators who guess about them
can not break the ideal security. Hence, our classification of oracle responses is
actually based on all possible sets of evaluators.

Observation: For an arbitrary garbled AND gate with input wire labels (A0, A1)
and (B0, B1), define the function l : {A0, A1}×{B0, B1} → {0, 1}∗. For (Ai, Bj)
where i, j ∈ {0, 1}, l(Ai, Bj) generates a bit string of length not less than κ, en-
suring at least κ bits of entropy. Then, we propose Definition 2 for representative
form of a type of oracle response.

Definition 2. For (Ai, Bj) where i, j ∈ {0, 1}, and oracle responses of the form
H(l(Ai, Bj)), if we can construct a set El(Ai,Bj) such that:

1. For any evaluator in the set El(Ai,Bj), she obtains H(l(Ai, Bj)) with proba-
bility 1;

2. Any adversary A that makes polynomially many queries to the random oracle
and even possesses Ei′,j′ outside of El(Ai,Bj) cannot learn H(l(Ai, Bj)) with
an advantage better than poly(κ)/2κ;

then we regard H(l(Ai, Bj)) as a representative form of oracle response for the
set El(Ai,Bj). In short, H(l(Ai, Bj)) is associated with El(Ai,Bj).

Since we choose H(l(Ai, Bj)) as a representative form, we represent all 1-bit
oracle responses associated with El(Ai,Bj) as H(l(Ai, Bj))1, H(l(Ai, Bj))2, . . .

Note that there are only four evaluators in {Ei,j |i, j ∈ {0, 1}}, so El(Ai,Bj)

containing these evaluators are also finite. Concretely, there are only 24 = 16
possible constructions of this set. For example, let El(Ai,Bj) = {E0,0}. Clearly,
E0,1 has A0 and E1,0 has B0. To ensure that E0,1 and E1,0 fail to get oracle
responses, E0,0 uses A0 and B0 to query the random oracle. There are numerous
available forms, such as H(A0, B0)1, H ′(A0 + B0)1 and H(A0, B0, ν)2 where
ν is a gate-specific nonce. Nevertheless, we only concern whether they can be
computed by evaluators in (or outside of) this set. Hence, we choose H(A0, B0)
to represent all oracle responses associated with {E0,0}. Note that we do not
require that the random oracle must be queried in this form. In short, we say
H(A0, B0) is associated with {E0,0}.

Similarly, we choose a form H(Ai, Bj) associated with {Ei,j}. A form H(Ai)
(resp. H(Bj)) is associated with {Ei,j , Ei,j̄} (resp. {Ei,j , Eī,j}). The free-XOR
technique finds a set EAi⊕Bj = {Ei,j , Eī,j̄} for the form H(Ai ⊕Bj). If we only
rule out the empty set ∅ and trivial E = {E0,0, E0,1, E1,0, E1,1}, those sets con-
taining three elements are still out of consideration. Without loss of generality,
suppose there is a set El(Ai,Bj) = {E0,0, E0,1, E1,0}. We need to ensure that both
E0,0 and E0,1 obtain H(l(Ai, Bj)), while B0 and B1 remain independent from
their perspective. This implies that l(Ai, Bj) = l′(A0), which E1,0 can only make
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a guess about. Thus, constructing such a set is impossible. Since all possible sets
have been taken into account, we realize that oracle responses are finitely clas-
sified.

When free-XOR is enabled, we choose these representative forms: H(Ai),
H(Bj), H(Ai ⊕ Bj) and H(Ai, Bj) respectively associated with {Ei,j , Ei,j̄},
{Ei,j , Eī,j}, {Ei,j , Eī,j̄} and {Ei,j}.

Using one input wire label to query the random oracle provides sets of two
elements, while we hope that Ei,j keeps her output wire label private. In terms of
security, only H(Ai) can not be accepted, since Ei,j̄ can also compute it. Thus,
set intersection is a viable and favored approach, which inspires a new claim in
Sect. 4.2. For example, we enforce E0,0 to use H(A0) ⊕ H(B0) because it can
only be computed by

{E0,0, E0,1} ∩ {E0,0, E1,0} = {E0,0}.

4 Two New Models and Lower Bounds

In this section, we introduce new models of Bitwise Linear Garbling Schemes and
Bitwise Garbling Schemes. As our main focus, we consider garbled AND gates
with free-XOR in this part. From now on, we keep three positive integers q, t, u.
Each type of oracle response is a vector of q different responses, e.g., the form
H(A0) is a vector containing q oracle responses: (H(A0)1, H(A0)2, . . . ,H(A0)q).
The garbler has t types of oracle responses, while the evaluator has u types based
on her input wire labels. 0 denotes the zero vector of length q.

4.1 The First Model: Bitwise Linear Garbling Schemes

As described in Sect. 3.4, this model is based on the old model, the slicing
technique and our observation. We define this model still by presenting three
procedures.

Garble: This algorithm is parameterized by integers m, r, q, t and vectors A0, A1,
B0, B1. Each vector has length r, with entries in GF (2κ). Meanwhile, vectors
{Cj

a,b,0|a, b ∈ {0, 1}, j ∈ [κ]}, {Cj
a,b,1|a, b ∈ {0, 1}, j ∈ [κ]}, and {G(i)

a,b|a, b ∈
{0, 1}} are all of length r + tq, with entries in GF (2κ).

1. For i ∈ [r], choose Ri
$←− GF (2κ) to get R = {R1, . . . , Rr}.

2. For i ∈ {0, 1}, compute Ai = ⟨Ai,R⟩, Bi = ⟨Bi,R⟩.
3. Choose two permute bits a, b

$←− {0, 1} for two input wires.
4. For t types of oracle responses, make tq distinct queries to the random oracle

and get tq bits Qi
1, . . . , Q

i
q, i ∈ [t]. We place these values on which the

algorithm can act linearly in S = (R1, . . . , Rr, Q
1
1, . . . , Q

t
q).

5. We compute Cj
i = ⟨Cj

a,b,i,S⟩κ where i ∈ {0, 1}, j ∈ [κ]. Let C0 (comprising
C1

0 , . . . , C
κ
0 ) correspond to FALSE. 4

4 Note that we use 1-bit responses of the form Qj
i where i ∈ [q], j ∈ [t] and Ri ∈ GF (2κ)

to compute one bit of the output wire label. Hence, we use ⟨·, ·⟩κ instead of ⟨·, ·⟩.
The realization of ⟨·, ·⟩κ depending on actual schemes is omitted.
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6. For i ∈ [m], compute Gi = ⟨G(i)
a,b,S⟩κ. These values are ciphertexts of the

garbled circuit.

Encode: On input xa, xb ∈ {0, 1}, set color bits α := xa⊕ a and β := xb⊕ b. The
evaluator gets Aα ∥ α and Bβ ∥ β.
Eval: Parameterized by m, q, u and vectors {V i

α,β |α, β ∈ {0, 1}, i ∈ [κ]} of length
uq +m+ 2.

1. The evaluator has input wire labels Aα ∥ α, Bβ ∥ β, and ciphertexts
G1, . . . , Gm.

2. Define a function f : [u]→ [t]. For u types of oracle responses, make uq dis-
tinct queries to the random oracle and get responses Qf(j)

1 , . . . , Q
f(j)
q , where

j ∈ [u], f(j) ∈ [t]. As we mention above, these oracle responses construct a
subset of {Qi

1, . . . , Q
i
q|i ∈ [t]}. Therefore, {f(1), . . . , f(u)} ⊂ [t]. In fact, f(j)

depends on input wire labels, but we neglect them for simplicity. Therefore,
we get these values T = (Aα, Bβ , Q

f(1)
1 , . . . , Q

f(u)
q , G1, . . . , Gm) on which the

algorithm can act linearly.
3. Output the inner product ⟨V i

α,β ,T ⟩κ, i ∈ [κ].

Because all oracle responses computed by (A0, A1, B0, B1) construct sub-
sets of {Q1

1, . . . , Q
t
q}, we argue that {Qj

i |i ∈ [q], j ∈ [t]} are obtained by using
(A0, A1, B0, B1) to make queries. Therefore, compared to the old model in Sect.
3.1, we no longer use oracle responses in S to compute input wire labels Aα ∥ α
and Bβ ∥ β. Moreover, considering practical schemes, we enforce the same cor-
relation of wire labels, e.g., the same XOR-difference in free-XOR.

4.2 New Claim

Now we consider different parts of some vectors. We maintain the division of
V i

α,β and T into public parts and private parts, and get the following equations:

Ci
a,b,(a⊕α)∧(b⊕β) = Zi

α,β + V prv,i
α,β ×Ga,b, i ∈ [κ].

When the context is clear, we use Ci
α,β to represent Ci

a,b,(a⊕α)∧(b⊕β) for sim-
plicity. We can find that some entries in these vectors are used to multiply wire
labels in GF (2κ), while others are used to multiply oracle responses in {0, 1}.
We divide each of these vectors into a wire label part and an oracle response
part. Considering oracle responses, we need to ensure:

Cres,i
a,b,(a⊕α)∧(b⊕β) = Zres,i

α,β + V prv,i
α,β ×Gres,i

a,b , i ∈ [κ].

The superscript res denotes the part which corresponds to oracle responses. We
also get the oracle response part of S, i.e., Sres = (Q1

1, . . . , Q
t
q). Entries of these

vectors are in {0, 1}. By this means, we can make use of our observation.
Let us consider Zres,i

α,β more carefully. Actually, Zres,i
α,β represents how the

evaluator with (Aα, Bβ) acts on her oracle responses linearly when she computes
the i-th bit of the output wire label. All possible sets of uq oracle responses in
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Eval are subsets of the set of tq oracle responses in Garble. We can measure all
of them by vectors of length tq in which every q entries corresponds to a type
of oracle response. Hence, we can view these vectors as the concatenation of t
vectors of length q.

As an example, we represent a type of oracle response H(A0) as follows:

Q1 = (H(A0)1, . . . ,H(A0)q).

We define Zi
α,β,1 ∈ {0, 1}q to represent the actions on Q1. Concretely, Eα,β

computes ⟨Zi
α,β,1,Q

1⟩ when computing the i-th bit of the output label.
Note that H(A0) is associated with {E0,0, E0,1}. If the evaluator Eα,β is

outside of this set, she sets Zi
α,β,1 to 0 since she has no access to this type

of response. To simplify notation, we define Zres,i
α,β = (Zi

α,β,1, . . . ,Z
i
α,β,t) be a

vector of length tq, where for j ∈ [t], each component Zi
α,β,j is a vector of length

q corresponding to a type of oracle response.
Claim 2 from the old model restricts the set {Zα,β |α, β ∈ {0, 1}}. One may be

curious whether the set {Zres,i
α,β |α, β ∈ {0, 1}, i ∈ [κ]} is limited by any condition.

After defining two necessary functions, we propose a new claim.
As described in Sect. 3.4, all oracle responses satisfy one of these forms:

H(Ai), H(Bj), H(Ai ⊕Bj), and H(Ai, Bj). We rule out H(Ai, Bj) in this situ-
ation, and prove its appropriateness later in Sect. 4.3. Then, we get t = 6 and
arrange

Zres,i
α,β = (Zi

α,β,1, . . . ,Z
i
α,β,6),

in which components correspond to forms H(A0), H(A1), H(B0), H(B1), H(A0⊕
B0), H(A0 ⊕B1).

We define a sign function, denoted as v : Zq
2 → Z2, as follows:

v(V ) =

{
0, if V = 0;
1, otherwise.

Briefly speaking, this function is used to indicate whether a vector of length
q is a zero vector. Let Zres,i

α,β = (Zi
α,β,1, . . . ,Z

i
α,β,6), we define another function

sum : Z6q
2 → Z as follows:

sum(Zres,i
α,β ) =

6∑
j=1

v(Zi
α,β,j).

It is easy to find that sum is used to indicate how many types of oracle
responses are used. On the basis of this function, we propose Claim 4 as follows:

- Claim 4: Given a pair (α, β), any vector L constructed by a non-trivial linear
combination of vectors in {Zres,i

α,β |i ∈ [κ]} satisfies sum(L) ≥ 2.
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Proof. Without loss of generality, let’s assume that the evaluator with (A0, B0)
only uses an oracle response H(A0)i to compute the i-th bit of the output wire
label. Hence, sum(Zres,i

0,0 ) = 1, because ⟨Zres,i
0,0 ,Sres⟩κ = H(A0)i. Suppose there

exist κ coefficients y1, y2, . . . , yκ such that for all j ∈ [κ], yj ∈ {0, 1}. E0,0 uses⊕κ
j=1 yjB

j
0 to compute the i-th bit of her output wire label. Certainly, we require

that
∑κ−1

j=0 yj > 0. Otherwise, for all j ∈ [κ], yj = 0. Then, E0,1 can get this
output bit as well.

We can see that there is a 50% chance that the output wire label of E0,0 (C0,0)
is equal to that of E0,1 (C0,1). However, this does not mean that Ci

0,0 = Ci
0,1

holds with a 50% chance. Even if C0,0 and C0,1 encode different logic values, the
i-th bits of them are still independently distributed. Hence, Ci

0,0 = Ci
0,1 holds

with a 75% chance. E0,1 can get her own output bit Ci
0,1, and get correct Ci

0,0

with a 75% chance. Note that E0,0 linearly acts on H(A0)i, ciphertexts and
some bits of A0, B0 to get Ci

0,0. Since B0 is uniformly sampled from {0, 1}κ,⊕κ−1
j=0 yjB

j
0 should be uniformly distributed on {0, 1}. By using ciphertexts and

the knowledge about A0, E0,1 has a 75% chance to get
⊕κ−1

j=0 yjB
j
0. Therefore,

it is insecure because she should only have a 50% chance. ⊓⊔

Eα,β has three types of oracle responses: H(Aα), H(Bβ) and H(Aα ⊕ Bβ).
Vectors which correspond to H(A1−α), H(B1−β) and H(Aα⊕B1−β) are all zero.
Zres,i

α,β is used to compute the i-th bit of the output wire label Ca,b,(a⊕α)∧(b⊕β).
Therefore, non-trivial linear combinations of vectors in {Zres,i

α,β |i ∈ [κ]} can be
used to compute non-trivial linear combinations of κ bits of Ca,b,(a⊕α)∧(b⊕β).
Based on Claim 4, at least two types of oracle responses are required to compute
any non-trivial linear combination of κ bits of Ca,b,(a⊕α)∧(b⊕β).

4.3 Proof of a Lower Bound in the First Model

With the help of Claim 4, we can prove a lower bound of our model. Precisely
speaking, we consider a large class of practical garbling schemes, which work on
arbitrary AND gates and are compatible with free-XOR. Note that our proof is
independent of the dicing technique, as long as Claim 4 holds.

We concentrate on a set of 4κ vectors {Zres,i
α,β |α, β ∈ {0, 1}, i ∈ [κ]}. Claim

4 points out that elements in {Zres,i
α,β |α, β ∈ {0, 1}} are pairwise linearly inde-

pendent. Note that when free-XOR is supported, the output wire labels C0 and
C1 satisfy C1 = C0 ⊕ ∆. Hence, given permute bits a, b and i, elements in the
set {Cres,i

a,b,(a⊕α)∧(b⊕β)|α, β ∈ {0, 1}} are the same. Therefore, the garbler needs
to arrange 1-bit ciphertexts to ensure that evaluators with different input wire
labels can transform different Zres,i

α,β into the same Cres,i
a,b,(a⊕α)∧(b⊕β).

5

In the half-gates garbling scheme, we find that for a given i, elements in
{Zres,i

α,β |α, β ∈ {0, 1}} could be linear dependent. (We shake of trivial combina-

5 Actually, ciphertexts are used to transform ⟨Zres,i
α,β ,Sres⟩ into the same

⟨Cres,i
a,b,(a⊕α)∧(b⊕β),S

res⟩. Our statements have been simplified for brevity.
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tion.) As noted above, the “three-halves” garbling scheme also shows linear de-
pendence between elements of {Zres,i

α,β |α, β ∈ {0, 1}} and {Zres,j
α,β |α, β ∈ {0, 1}}

for i ̸= j. Crucially, both situations lead to the saving of ciphertexts.

Lemma 1. In the model of Bitwise Linear Garbling Schemes, suppose free-XOR
is supported. If the rank of the set {Zres,i

α,β |α, β ∈ {0, 1}, i ∈ [κ]} is rk, then
m ≥ rk − κ.

Proof. The evaluator Eα,β can only compute κ vectors in {Zres,i
α,β |i ∈ [κ]} with

her input wire labels. With less than rk − κ ciphertexts, she fails to learn all
the vectors in {Zres,i

α,β |α, β ∈ {0, 1}, i ∈ [κ]}. This means at least one Zres,i
α′,β′ can

not be computed, where (α′, β′) ̸= (α, β), and i ∈ [κ]. In other words, Zres,i
α,β

and Zres,i
α′,β′ can not be transformed into the same Cres,i

a,b,(a⊕α)∧(b⊕β). Therefore,
required ciphertexts are at least rk − κ bits. ⊓⊔

One can check this by placing the “three-halves” garbling scheme in our
model. The set {Zres,i

α,β |α, β ∈ {0, 1}, i ∈ [κ]} constructed in that way is of rank
5
2κ, while this scheme uses 3

2κ 1-bit ciphertexts. Hence, the key point of our
proof is the lower bound of rk.

To begin our proof of Theorem 1, we present Lemma 2 below.

Lemma 2. For a given set of linearly independent vectors Y i, i ∈ [l] with entries
in {0, 1}, where l is a positive integer, suppose a set of vectors Z such that
∀i ∈ [l], Y i ∈ Z. If there exists a vector L with entries in {0, 1} such that⊕l−1

i=0 Y i = L where ⊕ denotes addition modulo 2, then replacing any vector Yi,
i ∈ [l] with L or adding L into Z does not change the rank of Z.

Proof. Note that L can be linearly represented by vectors in Z. Adding L into
Z does not introduce new linearly independent vector. Therefore, the rank of Z
does not change in this situation.

Without loss of generality, we replace Y 1 with L and obtain Z ′ = (Z∪{L})\
{Y 1}. If Y 1 can be linearly represented by vectors in Z \{Y 1}, then L can also
be linearly represented, because

⊕l
i=1 Y i = L. Otherwise, neither Y 1 nor L can

be linearly represented. Hence, rank(Z ′) = rank(Z). ⊓⊔

Theorem 1. In the model of Bitwise Linear Garbling Schemes, suppose free-
XOR is supported. Let rk be the rank of {Zres,i

α,β |α, β ∈ {0, 1}, i ∈ [κ]}, the lower
bound of rk is 5

2κ, and therefore m ≥ 3
2κ.

Proof. We compute the lower bound of rk by counting, and this is where Claim 4
comes into play. We use a set Z to include vectors in {Zres,i

α,β |α, β ∈ {0, 1}, i ∈ [κ]}
gradually. Note that Zres,i

α,β has a length of 6q, with entries in {0, 1}. Recall that
components of Zres,i

α,β = (Zi
α,β,1, . . . ,Z

i
α,β,6) correspond to oracle responses of

the forms H(A0), H(A1), H(B0), H(B1), H(A0 ⊕B0), H(A0 ⊕B1).

1) We add κ vectors in {Zres,i
0,0 |i ∈ [κ]} into the set Z to obtain rank κ. Based

on Claim 4, these vectors are linearly independent.
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2) Now κ vectors in {Zres,i
0,1 |i ∈ [κ]} are also added into Z. Note that

Zres,i
0,0 = (Zi

0,0,1,0,Z
i
0,0,3,0,Z

i
0,0,5,0),

while
Zres,i

0,1 = (Zi
0,1,1,0,0,Z

i
0,1,4,0,Z

i
0,1,6).

If Zres,i
0,0 can be linearly represented by vectors in {Zres,i

0,1 |i ∈ [κ]}, then there
exist coefficients y1, y2, . . . , yκ ∈ {0, 1} such that

⊕κ
k=1 ykZ

res,k
0,1 = Zres,i

0,0 .
Moreover,

κ⊕
k=1

ykZ
res,k
0,1 = (

κ⊕
k=1

ykZ
k
0,1,1,0,0,

κ⊕
k=1

ykZ
k
0,1,4,0,

⊕
k = 1κykZ

k
0,1,6).

Hence, we can find that only q entries of Zi
0,0,1 in Zres,i

0,0 can be nonzero.
Therefore, sum(Zres,i

0,0 ) ≤ 1 and this violates Claim 4. So Zres,i
0,0 can not be

linearly represented by vectors in {Zres,i
0,1 |i ∈ [κ]}. Similarly, we can check

that any non-trivial linear combination of vectors in {Zres,i
0,0 |i ∈ [κ]} can not

be linearly represented. Therefore, the rank of this set is 2κ.
3) We have to consider {Zres,i

1,0 |i ∈ [κ]} now. However, adding κ to the rank
of this set again can not be accepted, because the “three-halves” garbling
scheme already achieves rank 5

2κ. We have to add some vectors without the
increase of the rank, so we need Zres,i

1,0 which can be linearly represented by
vectors in Z. Given that

Zres,i
1,0 = (0,Zi

1,0,2,Z
i
1,0,3,0,0,Z

i
1,0,6),

Zi
1,0,2, Z

i
1,0,3 and Zi

1,0,6 respectively correspond to oracle responses of the
forms H(A1), H(B0) and H(A0 ⊕ B1). We consider Zres,i

1,0 where Zi
1,0,2 =

0, because Z does not contain nonzero vectors corresponding to H(A1).
Hence, suppose that γ vectors satisfy Zi

1,0,2 = 0, while the remaining (κ−γ)

vectors still have nonzero Zi
1,0,2. Note that if these nonzero Zi

1,0,2 are linearly
dependent, then we can construct another Zres,i

1,0 such that Zi
1,0,2 is zero by

Lemma 2. Hence, these nonzero Zi
1,0,2 are linearly independent. Certainly,

those (κ − γ) vectors are going to increase the rank by (κ − γ). Now, we
consider these γ vectors with zero Zi

1,0,2. Because of Claim 4,

Zres,i
1,0 = (0,0,Zi

1,0,3,0,0,Z
i
1,0,6)

must have nonzero Zi
1,0,3 and Zi

1,0,6. We require that vectors in Z can lin-
early represent them. The only way is to use (Zi

0,0,1,0,Z
i
1,0,3,0,0,0) and

(Zi
0,0,1,0,0,0,0,Z

i
1,0,6). By Lemma 2, we might as well assume that there

are γ vectors of each form in {Zres,i
0,0 |i ∈ [κ]} and {Zres,i

0,1 |i ∈ [κ]}. Conse-
quently, rank(Z) = 3κ− γ after we put these vectors into Z.
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4) Finally, we need to add {Zres,i
1,1 |i ∈ [κ]}. Given

Zres,i
1,1 = (0,Zi

1,1,2,0,Z
i
1,1,5,Z

i
1,1,5,0),

we can also classify κ vectors in {Zres,i
1,1 |i ∈ [κ]} based on whether Zi

1,1,2

is nonzero or not. We suppose that δ vectors satisfy Zi
1,1,2 = 0, while the

remaining (κ− δ) vectors have nonzero Zi
1,1,2.

We get δ vectors of the form:

Zres,i
1,1 = (0,0,0,Zi

1,1,5,Z
i
1,1,5,0).

The two nonzero vectors Zi
1,1,4 and Zi

1,1,5 correspond to H(B1) and H(A0⊕
B0). To ensure that these Zres,i

1,1 do not increase the rank, we hope that there
are already δ vectors of the form (Zi

0,0,1,0,0,0,Z
i
1,1,5,0) in {Zres,i

0,0 |i ∈ [κ]},
and (Zi

0,0,1,0,0,Z
i
1,1,4,0,0)) in {Zres,i

0,1 |i ∈ [κ]}. However, in step 3), there
are γ vectors of the form (Zi

0,0,1,0,Z
i
1,0,3,0,0,0) in {Zres,i

0,0 |i ∈ [κ]} and
(Zi

0,0,1,0,0,0,0,Z
i
1,0,6) in {Zres,i

0,1 |i ∈ [κ]}.
Let us think about these (κ − δ) vectors which have nonzero Zi

1,1,2 corre-
sponding to H(A1). We glance at the set Z and find that it is only possible
to use (κ− γ) vectors

Zres,j
1,0 = (0,Zj

1,0,2,Z
j
1,0,3,0,0,Z

j
1,0,6)

where Zj
1,0,2 ̸= 0. Hence, to avoid the raise of rank(Z), we require that

Zi
1,1,2 can be linearly represented by these nonzero Zj

1,0,2. Meanwhile, even
if Zi

1,1,2 = Zj
1,0,2, we still have to consider

Zres,i
1,1 ⊕Zres,j

1,0 = (0,0,Zj
1,0,3,Z

i
1,1,4,Z

i
1,1,5,Z

j
1,0,6).

However, dealing with vectors of this form in the following analysis is com-
plex, so we assume that they either do not affect rank(Z) or they increase
rank(Z), and directly check that they can be linearly represented when
rank(Z) reaches its minimum. In this way, omitting these vectors does not
influence correctness.

Combining the above, we can find that rank(Z) consists of three parts: 3κ−γ,
those (κ− δ) vectors with nonzero Zi

1,1,2 and the remaining δ vectors with zero
Zi

1,1,2.
Firstly, let us consider all (κ−δ) vectors with nonzero Zi

1,1,2. Note that there
are (κ−γ) vectors with nonzero Zj

1,0,2 in Z. This means that if κ− δ ≤ κ−γ, it
is possible that these (κ− δ) vectors do not change rank(Z). Otherwise, γ > δ,
and these vectors increase the rank by at least (κ− δ) − (κ − γ) = γ − δ. Note
that these uncertainties come from neglected (0,0,Zj

1,0,3,Z
i
1,1,4,Z

i
1,1,5,Z

j
1,0,6).

Secondly, we need 2κ vectors in {Zres,i
0,0 |i ∈ [κ]} and {Zres,i

0,1 |i ∈ [κ]} to
linearly represent both δ vectors with zero Zi

1,1,2 and γ vectors with zero Zi
1,0,2.
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This means that if δ + γ ≤ κ, these vectors do not change rank(Z). Otherwise,
δ + γ > κ, and these vectors increase the rank by δ + γ − κ.

1. If κ − δ ≤ κ − γ and δ + γ ≤ κ, then rank(Z) ≥ 3κ − γ. Since γ ≤ δ and
δ + γ ≤ κ, we get γ ≤ 1

2κ. Hence, when γ = δ = 1
2κ, rank(Z) reaches its

minimum 5
2κ in this case. We can easily check that when rank(Z) = 5

2κ,
those (κ− δ) vectors with nonzero Zi

1,1,1 can be linearly represented.
2. If κ−δ ≤ κ−γ and δ+γ > κ, then rank(Z) ≥ (3κ−γ)+(δ+γ−κ) ≥ 2κ+δ.

Since γ ≤ δ and δ + γ > κ, we get δ > 1
2κ. Hence, rank(Z) > 5

2κ in this
case.

3. If κ− δ > κ− γ and δ+ γ ≤ κ, then rank(Z) ≥ (3κ− γ) + (γ − δ) ≥ 3κ− δ.
Since γ > δ and δ + γ ≤ κ, we get δ < 1

2κ. rank(Z) > 5
2κ in this case.

4. If κ−δ > κ−γ and δ+γ > κ, then rank(Z) ≥ (3κ−γ)+(γ−δ)+(δ+γ−κ) ≥
2κ + γ. Since γ > δ and δ + γ > κ, we get γ > 1

2κ. rank(Z) > 5
2κ in this

case.

All in all, we prove a 5
2κ lower bound of rank(Z), and a 3

2κ-bit lower bound
of ciphertexts by Lemma 1. ⊓⊔

Removed Forms. We consider the forms {H(Ai, Bj)|i, j ∈ {0, 1}} which have
been ruled out before we propose Claim 4. We insist that we let {H(Ai, Bj)|i, j ∈
{0, 1}} associate with {Ei,j}, rather than requiring that the random oracle must
be queried in this form.

To consider them in the proof of Theorem 1, we should choose t = 10 and
consider 10 types of oracle responses. In order not to affect Claim 4, we slightly
modify the sign function v. Obviously, computing H(Ai, Bj) requires two wire
labels Ai and Bj . Hence, H(Ai, Bj) is different from oracle responses H(Ai) and
H(Bj). Suppose there is only a nonzero vector V in Zres,k

i,j corresponding to
H(Ai, Bj) where i, j ∈ {0, 1} and k ∈ [κ]. Because both H(Ai, Bj) and H(Ai)⊕
H(Bj) can only be computed by {Ei,j}, it is reasonable that sum(Zres,k

i,j ) = 2.
Therefore, sum(Zres,k

i,j ) = v(V ) = 2.
Intuitively, considering {H(Ai, Bj)|i, j ∈ {0, 1}} allows us to use H(Ai, Bj)k

to replace H(Ai)k⊕H(Bj)k. Z
res,k
i,j satisfying ⟨Zres,k

i,j ,Sres⟩ = H(Ai)k⊕H(Bj)k
can be linearly represented by other vectors. For example, H(Ai) ⊕ H(Bj) =
[H(Ai)⊕H(Ai⊕Bi−j)]⊕[H(Bj)⊕H(A1−i⊕Bj)] in which Ai⊕Bi−j = A1−i⊕Bj .
However, it is easy to find that (Zres,k

i,j )′ satisfying ⟨(Zres,k
i,j )′,Sres⟩ = H(Ai, Bj)k

can not be linearly represented.
According to the proof of Theroem 1, when rk reaches its minimum, every

vector in {Zres,i
α,β |α, β ∈ {0, 1}, i ∈ [κ]} can be linearly represented by other

vectors. Since (Zres,k
i,j )′ can not be linearly represented, considering the forms

{H(Ai, Bj)|i, j ∈ {0, 1}} does not beat the 3
2κ-bit lower bound.

4.4 The Second Model: Bitwise Garbling Schemes

In this subsection, we define the model of Bitwise Garbling Schemes.
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Garble: This algorithm is parameterized by integers m, r, q, t, vectors A0, A1,
B0, B1 and the mapping function Map. Map breaks down into 4κ functions
{Mapki,j |i, j ∈ {0, 1}, k ∈ [κ]}. Each vector has length r, with entries in GF (2κ).
Meanwhile, vectors {Zres,k

i,j |i, j ∈ {0, 1}, k ∈ [κ]} are of length tq, with entries in
GF (2).

1. For i ∈ [r], choose Ri
$←− GF (2κ) to get R = {R1, . . . , Rr}.

2. For i ∈ {0, 1}, compute Ai = ⟨Ai,R⟩, Bi = ⟨Bi,R⟩.
3. Choose two permute bits a, b

$←− {0, 1} for two input wires.
4. For t types of oracle responses, make tq distinct queries to the random

oracle and get tq bits Qi
1, . . . , Q

i
q, i ∈ [t]. We place these responses in

S = (R1, . . . , Rr, Q
1
1, . . . , Q

t
q). Note that Sres = (Q1

1, . . . , Q
t
q).

5. For i, j ∈ {0, 1}, k ∈ [κ], we compute Zk
i,j = ⟨Zres,k

i,j ,Sres⟩. For the sake of
discussion, let Z = {Zk

i,j |i, j ∈ {0, 1}, k ∈ [κ]}.
6. Find m 1-bit ciphertexts in G = (G1, G2, . . . , Gm) such that

Map(Z,S,G) =


C0,0

C0,1

C1,0

C1,1

 ,

in which Map(Z,S,G) is defined as

Map(Z,S,G) ≜


Map10,0(Z

1
0,0,S,G) ∥ · · · ∥Mapκ0,0(Z

κ
0,0,S,G)

Map10,1(Z
1
0,1,S,G) ∥ · · · ∥Mapκ0,1(Z

κ
0,1,S,G)

Map11,0(Z
1
1,0,S,G) ∥ · · · ∥Mapκ1,0(Z

κ
1,0,S,G)

Map11,1(Z
1
1,1,S,G) ∥ · · · ∥Mapκ1,1(Z

κ
1,1,S,G)


and {Ci,j |i, j ∈ {0, 1}} are valid output wire labels. For the sake of brevity,
we let C = {Ck

i,j |i, j ∈ {0, 1}, k ∈ [κ]} and write as C = Map(Z,S,G).

Encode: On input xa, xb ∈ {0, 1}, set color bits α := xa⊕ a and β := xb⊕ b. The
evaluator gets Aα ∥ α and Bβ ∥ β.
Eval: Parameterized by mapping function Map, m, q, u and vectors {V i

α,β |α, β ∈
{0, 1}, i ∈ [κ]} of length uq.

1. The evaluator has input wire labels Aα ∥ α, Bβ ∥ β, and ciphertexts
G1, . . . , Gm.

2. Define a function f : [u]→ [t]. For u types of oracle responses, make uq dis-
tinct queries to the random oracle and get responses Qf(j)

1 , . . . , Q
f(j)
q , where

j ∈ [u], f(j) ∈ [t]. We place these values in T = (Aα, Bβ , Q
f(1)
1 , . . . , Q

f(u)
q ).

Note that T res = (Q
f(1)
1 , . . . , Q

f(u)
q ).

3. For i ∈ [κ], compute V i
α,β = ⟨V i

α,β ,T
res⟩.

4. Compute Ck
α,β = Mapkα,β(V

k
α,β ,T ,G) for k ∈ [κ]. Take Cα,β = C1

α,β ∥ · · · ∥
Cκ

α,β as the output wire label.
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Compared to the model of Bitwise Linear Garbling Schemes, this model uti-
lizes mapping functions to compute the output wire label. Clearly, our first model
is already included in this model when we restrict that mapping functions are
linear, e.g., bitwise XOR operations. After removing the limitation of linearity,
our model deals with non-linear mapping.

Considering two algorithms Garble and Eval, {Mapkα,β(V
k
α,β ,T ,G)|α, β ∈

{0, 1}, k ∈ {0, 1}} are consistent with {Mapki,j(Z
k
i,j ,S,G)|i, j ∈ {0, 1}, k ∈ [κ]}.

Therefore, Ei,j , who computes Mapki,j(Z
k
i,j ,S,G), does not use values which are

in S but not in T .

4.5 Proof of a Lower Bound in the Second Model

In Sect. 4.3, we prove that {Zres,k
i,j |i, j ∈ {0, 1}, k ∈ [κ]} has a rank of at least

5
2κ. Since Sres is uniformly distributed, Z has at least 2.5κ degrees of freedom.

Lemma 3. In the model of Bitwise Garbling Schemes, for a given G, C =
Map(Z,S,G) has at least 2.5κ degrees of freedom.

Proof. Based on the proof of Sect. 4.3, Z has at least 2.5κ degrees of freedom.
Otherwise, Claim 4 is violated and privacy is broken.

Because G is already given, Ei,j who is able to compute Zk
i,j can also compute

Mapki,j(Z
k
i,j ,S,G). It is absurd that {Zres,k

i,j |i, j ∈ {0, 1}, k ∈ [κ]} should have a
rank of at least 5

2κ to keep secure, while output wire labels C = Map(Z,S,G)
have less than 2.5κ degrees of freedom. ⊓⊔

Remark 1. Note that mapping functions {Mapki,j |i, j ∈ {0, 1}, k ∈ [κ]} taking S
as input allow non-linear actions between wire labels and oracle responses. Some
practical garbling schemes [25] based on polynomial interpolation perform stan-
dard addition and subtraction on wire labels, in which carries may be generated.
Hence, mapping functions provide coverage of them.

Theorem 2. In the model of Bitwise Garbling Schemes, suppose free-XOR is
supported. The lower bound of m is 3

2κ.

Proof. According to Lemma 3, when G is given, C = Map(Z,S,G) has at
least 2.5κ degrees of freedom. When free-XOR is supported, output wire labels
encoding logic values 0 and 1 keep a global XOR-difference ∆ which is previously
sampled. Therefore, C has κ degrees of freedom. Obviously, G should have a
length of at least 1.5κ, so m ≥ 3

2κ. ⊓⊔

Remark 2. We do not restrict that {Mapki,j |i, j ∈ {0, 1}, k ∈ [κ]} must be linear.
Therefore, we immediately realize that we can include multiplication which is
rather common in garbling scheme design. We can perform multiplication be-
tween wire labels, oracle responses and ciphertexts. Of course, not necessarily
limited by multiplication, the second model is actually more inclusive.
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While we assume that the evaluator knows how to compute her output wire
label, the “three-halves” garbling scheme [26] is literally outside of our first model.
Precisely speaking, this scheme follows Claim 4, so the 3

2κ-bit lower bound holds.
However, it deviates from the description of this model, because this scheme per-
forms unfixed actions on wire labels, while Zlab,i

α,β in this model (which represent
actions on wire labels and consist of entries in Zi

α,β but not in Zres,i
α,β ) are fixed.

To be specific, the evaluator needs additional bits apart from ciphertexts to
decide her actions, in consideration of the dicing technique.

Our second model includes the “three-halves” garbling scheme, since this
model only requires that oracle responses associated with the evaluator must
be produced. Furthermore, this model includes the dicing technique. The dic-
ing technique allows the garbler to transmit additional bits, which can now be
regarded as ciphertexts, to control the actions of the evaluator. In the setting
about practical garbling schemes, this can only achieved by the random oracle.
In other words, different from the first model, the evaluator uses wire labels and
oracle responses in S and ciphertexts (G1, . . . , Gm) to decide her actions V i

α,β .
Obviously, the mapping function Map includes this idea.

5 Compatibility with Free-XOR

We already prove the 3
2 -bit lower bound of our models when considering free-

XOR, and find that the XOR-difference ∆ plays a crucial role in reducing the
rank of Z. However, the output labels C0 and C1 are also restricted by free-XOR,
i.e., given i, all the elements in {Cres,i

α,β |α, β ∈ {0, 1}} are the same. If we do not
use the free-XOR technique, the output wire labels are not required to keep
the same XOR-difference. Hence, these elements are not necessarily the same.
Contrast with Lemma 1, we may only need rk−2κ ciphertexts. Consequently, we
explore whether giving up compatibility with free-XOR is a necessary sacrifice.

5.1 Similarity to Free-XOR

First of all, we must explain how to sacrifice compatibility with free-XOR. When
free-XOR is used, A0 ⊕B1 = A1 ⊕B0. Note that H(Ai ⊕Bj) is associated with
{Ei,j , E1−i,1−j} for i, j ∈ {0, 1}. One may think that if A0⊕A1 ̸= B0⊕B1, free-
XOR is forbidden. However, a garbling scheme may ensure that A1 = A0 + d

and B0 = B1−d, where d
$←− {0, 1}κ and “+” or “-” denotes standard addition or

subtraction. In this case, A0 +B1 = A1 +B0 and A0−B0 = A1−B1. Similarly,
we can construct forms H(A0 −B0) and H(A0 +B1) which are associated with
{E0,0, E1,1} and {E0,1, E1,0} respectively. It is easy to find that the lower bound
of this garbling scheme is also 3

2κ bits. Even though XOR gates are not free, we
still argue that this construction is similar to free-XOR.

To get rid of free-XOR, a garbling scheme should ensure that H(l(Ai, Bj))
associated with El(Ai,Bj) = {E0,0, E1,1} (and {E0,1, E1,0}) does not exist. There-
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fore, we propose Definition 3 for garbling schemes supporting quasi-free-XOR or
not. 6

Definition 3. In a garbling scheme, for an arbitrary AND gate with input wire
labels (A0, A1) and (B0, B1), if and only if there are oracle responses associated
with {E0,0, E1,1} and {E0,1, E1,0}, this scheme supports quasi-free-XOR.

5.2 Lower Bound without Quasi-Free-XOR

We manage to give the lower bound of our first model without quasi-free-XOR.
It seems that when C0 and C1 are independent, the number of ciphertexts is
not necessarily rk−κ, because we can use different linear combinations of oracle
responses to compute Ci

0 and Ci
1.

Lemma 4. In the model of Bitwise Linear Garbling Schemes, suppose quasi-
free-XOR is forbidden. For given permute bits a, b ∈ {0, 1}, if the rank of the set
{Zres,i

α,β |(α, β) ∈ {0, 1}2 \ {(1− a, 1− b)}, i ∈ [κ]} is rk, then m ≥ rk − κ.

Proof. Given permute bits a, b, evaluators in {Ei,j |(i, j) ∈ {0, 1}2\{(1−a, 1−b)}}
get the output wire label encoding logic value 0. Similar to Lemma 1, for a given
i, {Zres,i

α,β |(α, β) ∈ {0, 1}2 \ {(1− a, 1− b)}} must be transformed into the same
vector. Hence, at least rk − κ ciphertexts are needed. ⊓⊔

Without loss of generality, suppose a = 0 and b = 0. The output wire la-
bel of (A1, B1) is C1. E0,0 , E0,1 and E1,0 get the same output. Consequently,
given i ∈ [κ], Cres,i

0,0 = Cres,i
0,1 = Cres,i

1,0 . We still rule out oracle responses of
the form H(Ai, Bj). Without quasi-free-XOR, oracle responses assoicated with
{E0,0, E1,1} and {E0,1, E1,0} do not exist. Therefore, t = 4 and we arrange

Zres,i
α,β = (Zi

α,β,1, . . . ,Z
i
α,β,4)

which corresponds to forms H(A0), H(A1), H(B0), H(B1). It is obvious that
Claim 4 still holds. We can prove the 2κ-bit lower bound of ciphertexts, still by
counting.

Theorem 3. In the model of Bitwise Linear Garbling Schemes, suppose quasi-
free-XOR is forbidden. Then, m ≥ 2κ.

Proof. We use the set Z to include vectors.

1) Add κ vectors in {Zres,i
0,0 |i ∈ [κ]} into the set Z, to obtain rank κ.

2) {Zres,i
0,1 |i ∈ [κ]} are also added into Z. For the same reason as the proof of

Theorem 1, the rank of this set is now 2κ.

6 We can modify Theorem 1 and 2 by supposing quasi-free-XOR (instead of free-XOR)
is supported.



24 F. Xu, H. Hu and C. Xu

3) We have to consider {Zres,i
1,0 |i ∈ [κ]} now. Note that

Zres,i
1,0 = (0,Zi

1,0,1,0,Z
i
1,0,3).

Based on Claim 4, Zi
1,0,1 and Zi

1,0,3 are nonzero. We realize that rank(Z)
is 3κ. Reducing this rank is impossible, because these κ linearly indepen-
dent vectors Zi

1,0,1, which correspond to H(A1), are absent in the first two
steps. Compared to Sect. 4.3, we lack a form H(l(Ai, Bj)) associated with
El(Ai,Bj) = {E0,1, E1,0}.

4) Finally, it makes no difference whether vectors in {Zres,i
1,1 |i ∈ [κ]} can be

linearly represented by vectors in Z or not, because the garbler can arrange
that Ci

1,1 = Zi
1,1. The evaluator E1,1 needs no ciphertext to compute her

output wire label. (Certainly, it is also easy to check that {Zres,i
1,1 |i ∈ [κ]}

can be linearly represented by vectors in Z.) Consequently, we only consider
rank(Z) = 3κ at the end of step 3).

Based on Lemma 4, we need rank(Z)−κ ciphertexts, so m ≥ 2κ. This result
is true for any possible (a, b). Hence, the lower bound of m is 2κ. ⊓⊔

This proof can be regarded as the answer to another question in [26]: it is
helpless to sacrifice compatibility with free-XOR.

Bitwise Garbling Schemes. Again, we extend this result into our second
model.

Theorem 4. In the model of Bitwise Linear Garbling Schemes, suppose quasi-
free-XOR is forbidden. The lower bound of m is 2κ.

Proof. Still, without loss of generality, assume a = 0 and b = 0. On this occasion,
{Zk

i,j |(i, j) ∈ {0, 1}2\{(1, 1)}, k ∈ [κ]} has at least 3κ degrees of freedom. Similar
to Lemma 3, given G, {Mapi,j(Z

k
i,j ,S,G)|(i, j) ∈ {0, 1}2 \ {(1, 1)}, k ∈ [κ]}

has at least 3κ degrees of freedom. Meanwhile, E0,0, E0,1, E1,0 have the same
output wire label. Hence, {Ck

i,j |(i, j) ∈ {0, 1}2 \ {(1, 1)}, k ∈ [κ]} has κ degrees
of freedom. Consequently, m ≥ 2κ when quasi-free-XOR is forbidden. ⊓⊔

5.3 Gate-Hiding Garbling Schemes

Gate-hiding garbling schemes, which hide the type of gates from the evaluator,
play a role in private function evaluation [15,21]. The evaluator is only allowed to
know the circuit topology, while all gate functions remain unknown. Of course,
these garbling schemes need to support both AND and XOR gates, where the
evaluator’s actions do not differ. Some garbling schemes support more types of
gates, e.g., constant gates. In our model, the process of garbling an arbitrary kind
of gate has been well-defined, with or without quasi-free-XOR. Consequently, we
aim to propose a lower bound for gate-hiding garbling schemes.
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Schemes with Quasi-Free-XOR. First of all, we consider gate-hiding garbling
schemes that support quasi-free-XOR constructions. Since garbling an AND gate
requires at least 1.5κ ciphertexts, the lower bound of these garbling schemes must
be at least 1.5κ. Then we check whether our proof for AND gates in Sect. 4.3
still holds when garbling an XOR gate. Note that Claim 4 does not hold on
exposed XOR gates, because the evaluator Ei,j is allowed to know the output
wire label of Eī,j̄ . However, in the gate-hiding setting, Claim 4 still holds.

With quasi-free-XOR, we require that all the elements in {Cres,i
α,β |α, β ∈

{0, 1}} be the same for a given i. Since we only focus on the oracle response
part in Sect. 4.3, the construction achieving 1.5κ ciphertexts also works on XOR
gates. Hence, the lower bound in this case is 3

2κ bits, even if all types of gates
are considered.

Schemes without Quasi-Free-XOR. We now assume that quasi-free-XOR
is forbidden. For a given i, elements in {Cres,i

α,β |α, β ∈ {0, 1}} may be different.
Without loss of generality, we assume a = 0 and b = 0. When garbling an AND
gate, the garbler needs to ensure that for all i ∈ [κ], Cres,i

0,0 = Cres,i
0,1 = Cres,i

1,0 .
However, the garbler has to guarantee that the output labels of E0,0 and E1,1 are
the same while the output labels of E0,1 and E1,0 are the same, when garbling an
XOR gate. That is to say, Cres,i

0,0 = Cres,i
1,1 and Cres,i

0,1 = Cres,i
1,0 . When garbling

an AND (resp. XOR) gate, let ZAND0 (resp. ZXOR0) and ZAND1 (resp. ZXOR1)
include vectors of C0 and C1.

Theorem 5. In the model of Bitwise Linear Garbling Schemes, suppose quasi-
free-XOR is forbidden. Under the gate-hiding assumption, the lower bound of m
is 2κ.

Proof. Note that a = 0 and b = 0.

1) AND: We add κ vectors {Zres,i
0,0 |i ∈ [κ]} into the set ZAND0, to obtain rank

κ.
XOR: {Zres,i

0,0 |i ∈ [κ]} are put into ZXOR0, rank(ZXOR0) = κ.
2) AND: For the same reason as the proof in Sect. 5.2, {Zres,i

0,1 |i ∈ [κ]} are also
added into ZAND0 and the rank of this set is now 2κ.
XOR: However, to store {Zres,i

0,1 |i ∈ [κ]} when garbling an XOR gate, we
need ZXOR1 instead of ZXOR0. rank(ZXOR1) = κ.

3) AND: After adding {Zres,i
1,0 |i ∈ [κ]} into ZAND0, rank(ZAND0) = 3κ. At least

2κ ciphertexts are necessary.
XOR: The set ZXOR1 does not change anymore after containing {Zres,i

1,0 |i ∈
[κ]}, so it requires κ ciphertexts.

4) AND: Finally, add {Zres,i
1,1 |i ∈ [κ]} into the new ZAND1. ZAND1 can be viewed

as free in terms of ciphertexts.
XOR: ZXOR0 containing {Zres,i

1,1 |i ∈ [κ]} is of rank 2κ. Hence, both ZXOR0

and ZXOR1 require κ ciphertexts.

We need 2κ ciphertexts to garble an AND gate. Even if ZXOR0 and ZXOR1

use the same κ ciphertexts, we still need 2κ ciphertexts to keep the gate function
private.
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However, one shall notice that garbling an AND gate may require ciphertexts
in a different step from garbling an XOR gate. We need to ensure that the
evaluator always has a view independent of gate functions. Roughly speaking,
we ensure that in the evaluator’s view, κ ciphertexts are always used in step 1)
or 4), and the other κ ciphertexts are always used in step 2) or 3). After that,
the 2κ-bit lower bound can be reached. ⊓⊔

We omit our second model here, due to its similarity with the first model
under the circumstances. It is easy to prove the 2κ-bit lower bound of ciphertexts.

6 Methods within the Specific Setting

There are still some methods [3,17,28] outside of the old model to be discussed.
Note that we require the specific setting to analyze these methods. Before that,
we propose another relevant claim of our first model, regardless of quasi-free-
XOR:

- Claim 5: In the model of Bitwise Linear Garbling Schemes, suppose an AND
gate is garbled. Given i ∈ [κ], all the vectors in {V prv,i

α,β |α, β ∈ {0, 1}} are distinct.

Proof. Suppose it is violated by V prv,i
α,β = V prv,i

α′,β′ where (α′, β′) ̸= (α, β). Consid-
ering different permute bits a and b, both Cα,β = Cα′,β′ and Cα,β ̸= Cα′,β′ can
happen. If Cα,β = Cα′,β′ , then Cres,i

α,β = Cres,i
α′,β′ and Zres,i

α,β = Zres,i
α′,β′ . Without

loss of generality, we suppose α = α′. We find that Bβ and Bβ′ can not be used
to compute the output wire label, because Eα,β (resp. Eα′,β′) does not have Bβ′

(resp. Bβ). If Bβ or Bβ′ are used, then Eα′,β′ or Eα,β can not get the output. If
Cα,β ̸= Cα′,β′ , we still disallow Eα,β and Eα′,β′ to use Bβ and Bβ′ . Otherwise,
Eα,β and Eα′,β′ can realize that Cα,β ̸= Cα′,β′ , and learn information about per-
mute bits. Hence, Ci

α,β⊕Ci
α′,β′ is equal to a value computed by Aα. Apparently,

this is insecure. ⊓⊔

The Specific Setting. The above proof is potentially based on the setting of
the “three-halves” garbling scheme: AND gates absorb upstream NOT gates [26].
We call this the general setting. There is another specific setting in which the
AND gate here always realizes g(xa, xb) = xa ∧ xb.7

We focus on the proof of Theorem 3, where one might get an idea: Can we
try to reduce the rank of Z before step 3) ends?

Given i ∈ [κ], to make this idea take effect, we have to make sure Zres,i
0,1 =

Zres,i
1,0 . Through Claim 5, we have to consider the specific setting to continue our

discussion. 8

7 Precisely speaking, this setting only considers symmetric gates whose gate function
satisfies g(0, 1) = g(1, 0). For simplicity, we only consider AND gates. One can easily
check that this consideration is general.

8 We refer readers to [3,17,28] to understand how and why these methods work in this
specific setting.
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Suppose A1 = A0 + d and B1 = B0 + d, d $←− {0, 1}κ. Then, l1(A0, B1) =
A0+B1 and l2(A1, B0) = A1+B0. To ensure Zres,i

0,1 = Zres,i
1,0 , E0,1 and E1,0 both

use H(A0+B1) to get the same output. Moreover, E0,0 and E1,1 use H(A0+B0)
and H(A1+B1) to keep the same actions as E0,1 and E1,0. Note that H(A0+B0)
and H(A1 +B1) are associated with {E0,0} and {E1,1} respectively. Hence, it is
easy that this idea does not break privacy.

The rank of Z is reduced to 2κ before step 3) ends. According to Lemma 4,
this allows us to use κ ciphertexts. Meanwhile, the remaining κ vectors in step 4)
do not seem to affect the number of ciphertexts, because Cres,i

1,1 can be different
from Cres,i

0,0 . Therefore, only κ ciphertexts are required on this single AND gate.
Those known methods [3,17,28] are all based on this idea. The method of [3]
seems not distinct, because it realizes this idea by exploiting two gates. The
oracle response H(Ai +Bj) is computed in the first addition-mod-3 gate, while
ciphertexts are used in the second unary “projection” gate.

Clearly, this idea still supports quasi-free-XOR. However, output wire la-
bels fail to keep this correlation, since Cres,i

1,1 are different. If output wire labels
(C0, C1) still keep this correlation, elements in {Cres,i

α,β |α, β ∈ {0, 1}} are forced to
be the same. This gate still requires 2κ ciphertexts. Hence, it becomes irrelevant
when we restrict that the correlation of input wire labels must be maintained.

7 Discussion

There are several points we discuss here.

Privacy-Free Garbling. In [26], Rosulek and Roy challenged the possibility of
achieving a communication cost of less than κ bits in privacy-free garbling [10],
because the idea of the half-gates garbling schemes [30] points out κ bits are
needed when only authenticity is guaranteed. However, less than κ bits is quite
counterintuitive. In our models, this looks like there exist some output bits are
garbled without ciphertexts. Given a = 0 and b = 0, suppose the outputs of
{E0,0, E0,1, E1,0} are 0. As we emphasize in Claim 4, we can not make them ob-
tain the same oracle responses without ciphertexts. Hence, privacy-free garbling
still needs κ bits in our models.

Mapping with Rejcetion. We exploit an idea of [9] to deal with non-linear map-
ping. It is worth noting that another model dealing with mapping with rejection
[1] is also considered in [9], but it seems that we do not mention such an idea
before. This is because this idea can be included quite naturally and do not
affect our lower bounds. According to the proof of Theorem 2, if we reduce the
number of ciphertexts below the lower bound, some bits of the output wire label
have a probability to be invalid, that is, mapping with rejection. To produce an
entire valid output wire label, we increase the length of original output label to
ensure enough valid bits. It is easy to check the number of ciphertexts matches
lower bounds, when we increase the length of the output label.
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Extensibility. Suppose the existence of malicious adversaries in 2PC, the idea of
“three-halves” garbling scheme seems blocked. In the semi-honest setting, those
control bits are sampled by using garbled truth tables (influenced by permute
bits and absorbed NOT gates). The garbler can predict and arrange all the
possibilities, so he can independently sample these bits. In the malicious setting
however, both parties get involved in the garbling. It remains uncertain whether
this idea can be extended to the malicious setting, and if so, at what cost. Till
now, known authenticated garbling 2PC protocols against malicious adversaries
are only compatible with the half-gates construction [7,8,16,27], rather than the
“three-halves” construction. Hence, we are curious to see if our model can be
extended into the malicious setting by appropriate limitation.

Meanwhile, we also question the feasibility of increasing the number of wire
labels slightly, because we can manage to apply a further slicing. For example, we
can use 6 κ

3 -bit ciphertexts to garble a 3-input gate whose truth table is of even
parity. Specifically, for the evaluator with three input wire labels (Ai, Bj , Ck)
where i, j, k ∈ {0, 1}, she uses H(Ai ⊕ Bj) ⊕ H(Bj) ⊕ H(Ck), H(Ai ⊕ Ck) ⊕
H(Ai)⊕H(Bj) and H(Bj⊕Ck)⊕H(Ai)⊕H(Bj) as the oracle responses of the
left, middle and right parts of the output wire label. Unfortunately, this thought
alone is impractical, because we only care odd parity.
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