
Overpass Channels: Horizontally Scalable, Privacy-Enhanced,

with Independent Verification, Fluid Liquidity, and Robust

Censorship Proof, Payments

Brandon ”Cryptskii” Ramsay

September 2024

Contents

1 Introduction . 1
2 Key Innovations . 2

2.1 Horizontal Scalability without Validators . 2
2.2 Privacy-Enhanced Transactions with zk-SNARKs 2
2.3 Independent Verification and Instant Finality 3
2.4 Fluid Liquidity through Dynamic Rebalancing 3
2.5 Dynamic Rebalancing Analysis . 4
2.6 Cross-Intermediate Contract Rebalancing and Global Liquidity Management 11

3 zk-SNARKs . 17
3.1 Overview . 18
3.2 zk-SNARK Circuit for Transaction Validation 18
3.3 Proof Generation and Verification . 18
3.4 Privacy Preservation . 19
3.5 Unilateral Channels: How They Work . 19
3.6 Instant and Asynchronous Nature . 20
3.7 Online Requirements . 20
3.8 Practicality of zk-SNARKs . 20
3.9 Computational Costs of Proof Verification . 22
3.10 Memory and Storage Considerations . 22
3.11 Bandwidth and Latency Analysis . 23
3.12 Scalability at System Level . 23
3.13 Comparisons with Alternative Approaches . 24
3.14 Potential Bottlenecks and Mitigations . 24
3.15 Security and Trust Considerations . 25

4 Balance Consistency . 25
4.1 Formal Definition of Balance Consistency . 25
4.2 Theorem of Balance Consistency . 25
4.3 Implications and Practical Considerations . 26

5 Mitigating(MEV) in Overpass Channels . 27
5.1 Privacy as a Shield Against MEV . 27
5.2 Front-Running Prevention . 28
5.3 Quantitative Analysis of MEV Reduction . 28
5.4 Comparative Analysis: Overpass Channels vs. Other Solutions 28
5.5 Example Scenario: Alice and Bob’s DEX Interaction 29
5.6 Implementing Beneficial Arbitrage within Overpass Channels 29

1

6 Fraud Prevention Mechanisms in Overpass Channels 30
6.1 Key Safeguard: Pending Transaction Acceptance 30
6.2 Mitigation of Security Concerns for Extended Absence 30
6.3 Deterministic Conflict Resolution . 31
6.4 50% Spending Rule for Off-Chain Transactions 31
6.5 ZK-SNARK Proofs and State Updates . 32
6.6 Cross-Shard Transaction Security . 33
6.7 Prevention of Old State Submission . 33
6.8 Proof Consistency . 34
6.9 On-Chain Verification . 35
6.10 Elimination of Need for Watchtowers . 35
6.11 Cryptographic Proofs and Tamper-Evident Records 36

7 Transaction Processing and Conflict Resolution . 37
7.1 Transaction Processing . 37
7.2 Assignment to Wallet Contracts . 38

8 Conditional Payments . 38
8.1 Conditional Transactions using zk-SNARKs 38
8.2 Hash Time-Locked Contracts (HTLC) in Overpass Channels 39

9 Hierarchical Ordering and System-Level Efficiency 40
9.1 Hierarchical Structure . 41
9.2 System-Level Efficiency . 44

10 Storage Nodes and Data Management . 46
10.1 Individual User Devices and Wallet Trees . 46
10.2 Periodic Channel Updates and Off-Chain Storage Nodes 46
10.3 Storage Nodes and Intermediate Contracts 47
10.4 Root Contract and Global State . 48
10.5 Why the Redundant Copy Attack is Pointless 48
10.6 Gaining Control Over All Redundancies is Impractical 49
10.7 Hierarchical Security: Redundancy in the Network Itself 50
10.8 Client and On-Chain Challenge Mechanism 50
10.9 No Incentive for Attackers . 50
10.10 Incentivizing and Maintaining via Staking and Battery Charging 50
10.11 Staking to Become a Storage Node . 51
10.12 Battery Charging Mechanism for Storage Nodes 51
10.13 Battery Charging Interaction with Intermediate Contracts 53
10.14 Security and Robustness of the Battery Charging System 54
10.15 Implementation Considerations . 54
10.16 Potential Vulnerabilities and Mitigations . 55
10.17 Integrating Beneficial MEV: Enabling Arbitrage without Compromising Privacy 55

11 Incentivizing Storage Nodes . 56
11.1 Staking to Become a Storage Node . 56
11.2 Battery Charging Mechanism for Storage Nodes 57
11.3 Battery Charging Interaction with Intermediate Contracts 59
11.4 Security and Robustness of the Battery Charging System 59
11.5 Implementation Considerations . 60
11.6 Integrating Beneficial MEV: Enabling Arbitrage without Compromising Privacy 60

2

12 Hierarchical Sparse Merkle Trees in Overpass Channels 61
12.1 Benefits of Sparse Merkle Trees in Overpass Channels 61
12.2 Application of Sparse Merkle Trees in the Overpass Hierarchy 62

13 Implementation Considerations . 62
13.1 Merkle Tree Structure . 62
13.2 zk-SNARK Circuit . 62
13.3 Minimal Cross-Shard Data . 62
13.4 Integration . 64

14 Tokenomics . 64
14.1 Fixed Supply and Initial Distribution . 64
14.2 Governance and Treasury . 65
14.3 Token Utility and Fee Structure . 65
14.4 Fee Distribution . 65

15 Wallet-Managed Channel Grouping . 66
15.1 Key Components of the Wallet Interface . 66
15.2 How the Wallet Should Work . 66
15.3 Updated Example Code for Wallet-Level Grouping 66
15.4 Optimized UX/UI . 68

16 Analysis . 68
16.1 Censorship Resistance in Overpass Channels 68
16.2 Scalability and Performance . 70
16.3 Potential Transaction Throughput . 71
16.4 Factors Affecting TPS . 71
16.5 Estimated Throughput . 71
16.6 System Architecture . 72
16.7 Optimizing the System . 72

17 Efficiency and Cost Analysis . 72
17.1 Fee Distribution . 74

18 Privacy Analysis . 74
19 Remarks . 75
20 Integration with L1 Blockchain . 75

20.1 L1’s Sharding Architecture . 75
20.2 Smart Contract Integration . 76
20.3 Cross-Shard Operations . 77
20.4 L1 DNS Integration . 77

21 Use Cases for Privacy . 77
21.1 Confidential Voting Systems . 78
21.2 Private Asset Transfers . 78
21.3 Secure Health Records Management . 79
21.4 Global Payment System . 79

22 Future Directions and Challenges . 80
22.1 Post-Quantum Security . 80
22.2 Privacy-Preserving Analytics . 81

23 Conclusion . 81
24 Appendix . 83
1 Circuits . 83

3

1.1 Channel State Verification for Both Channels 84
1.2 Intermediate Contract Circuits . 85
1.3 Summary of Intermediate Contract Circuit Responsibilities 88

2 Decentralized Exchange (DEX) on Overpass . 93
2.1 Overview of the System Components . 93
2.2 On-Chain Hub Contract . 93
2.3 Off-Chain Router . 94
2.4 Sparse Merkle Trees for State Tracking . 95
2.5 zk-SNARK Integration for Validating Every Action 96
2.6 Trade Execution Process . 97
2.7 Sparse Merkle Trees for Order and Balance Tracking 98
2.8 On-Chain Final Settlement . 99
2.9 Liquidity Provision and LP Rewards Distribution 100
2.10 Order Lifecycle with zk-SNARK Validations and SMT Updates 102

3 Security and Efficiency through zk-SNARKs and SMTs 105
3.1 Scalability with Off-Chain Processing . 105
3.2 Privacy through zk-SNARKs . 105
3.3 Security through Merkle Proofs . 105

4 Advanced Order Types and Centralized Exchange-like Experience 105
4.1 Order Types in the DEX . 106
4.2 Order Book Management and User Experience 109
4.3 Liquidity, Depth, and Advanced Trading Strategies 109

4

Abstract

Overpass Channels presents a groundbreaking approach to blockchain scalability, offering a hori-
zontally scalable, privacy-enhanced payment network with independent verification, fluid liquidity,
and robust censorship resistance. This paper introduces a novel architecture that leverages zero-
knowledge proofs, specifically zk-SNARKs, to ensure transaction validity and privacy while enabling
unprecedented throughput and efficiency. By eliminating the need for traditional consensus mech-
anisms and miners, Overpass Channels achieves remarkable cost-effectiveness and energy efficiency.
The system’s design focuses on unilateral payment channels and off-chain transaction processing,
allowing for high-speed, low-latency operations without compromising security or decentralization.
This paper provides a comprehensive analysis of the Overpass Channels system, including its cryp-
tographic foundations, scalability metrics, integration, and potential applications across various
domains, from global payments to confidential voting systems and secure health record manage-
ment.

1 Introduction

The advent of blockchain technology has revolutionized the concept of digital payments, offer-
ing unprecedented levels of security and decentralization. However, the widespread adoption of
blockchain-based payment systems has been hindered by several critical issues, including high trans-
action fees, limited scalability, and privacy concerns. Overpass Channels addresses these challenges
head-on by introducing a novel Layer 2 solution built on the blockchain.

Overpass Channels represents a paradigm shift in blockchain scalability and privacy. Unlike
traditional blockchain networks that rely on miners or validators to achieve consensus, Overpass
Channels eliminates these potential bottlenecks through its innovative use of unilateral payment
channels and off-chain transaction processing. This approach not only ensures high throughput but
also maintains a strong focus on user privacy through the implementation of zero-knowledge proofs,
specifically zk-SNARKs.

The key innovations of Overpass Channels include:

1. Horizontal Scalability: By leveraging a unique channel structure and off-chain processing,
Overpass Channels can scale horizontally, supporting an theoretically unlimited number of
transactions without the need for additional on-chain resources.

2. Privacy-Enhanced Transactions: Through the use of zk-SNARKs, every transaction in
the Overpass Channels network is cryptographically proven to be valid without revealing any
sensitive information about the transaction details or the parties involved.

3. Independent Verification: Each transaction can be independently verified by the parties
involved, eliminating the need for network-wide consensus and dramatically reducing latency.

4. Fluid Liquidity: The system’s design allows for dynamic rebalancing of payment channels,
ensuring optimal distribution of liquidity across the network.

5. Robust Censorship Resistance: By decentralizing the transaction processing and verifi-
cation, Overpass Channels makes it extremely difficult for any single entity to censor or block
transactions.

This paper provides a comprehensive exploration of the Overpass Channels system, including
its cryptographic foundations, scalability analysis, integration with the L1 blockchain, and poten-
tial applications across various domains. We begin with a detailed examination of the system’s
architecture, followed by an in-depth analysis of its security properties and scalability metrics. We
then discuss the integration of Overpass Channels with the blockchain, highlighting the synergies
between the two systems. Finally, we explore several use cases that demonstrate the versatility and
potential impact of Overpass Channels in real-world scenarios.

As we delve into the technical details of Overpass Channels, we will provide rigorous mathemat-
ical proofs, algorithmic descriptions, and concrete examples to illustrate the system’s functionality
and benefits. Throughout this paper, we will use the hypothetical users Alice and Bob to demon-
strate various scenarios and interactions within the Overpass Channels network.

Let us now embark on a journey through the intricate workings of Overpass Channels, a system
poised to redefine the landscape of blockchain-based payments and beyond.

1

2 Key Innovations

Overpass Channels introduces several groundbreaking innovations that set it apart from existing
blockchain and Layer 2 solutions. These innovations work in concert to create a system that is
not only highly scalable and efficient but also privacy-preserving and resistant to censorship. Let’s
explore each of these key innovations in detail:

2.1 Horizontal Scalability without Validators

One of the most significant innovations of Overpass Channels is its ability to scale horizontally
without the need for validators or miners. This is achieved through a combination of unilateral
payment channels and off-chain transaction processing.

Definition 1 (Unilateral Payment Channel). A unilateral payment channel is a cryptographic
construct that allows two parties to conduct multiple transactions off-chain, with only the opening
and closing of the channel requiring on-chain operations.

In Overpass Channels, each user can open multiple unilateral payment channels, forming a
network of interconnected channels. Transactions within these channels are processed off-chain,
dramatically reducing the load on the underlying blockchain.

Theorem 1 (Horizontal Scalability). The transaction throughput of the Overpass Channels net-
work scales linearly with the number of active channels, independent of the underlying blockchain’s
capacity.

Proof. Let n be the number of active channels in the network, and t be the average number of
transactions per second (TPS) that can be processed within a single channel. The total network
throughput T is given by:

T = n× t

As n increases, T increases linearly, without being constrained by the underlying blockchain’s
capacity. This is because transactions within channels are processed off-chain and do not require
immediate on-chain validation. ■

This horizontal scalability allows Overpass Channels to support an theoretically unlimited num-
ber of transactions, limited only by the number of active channels and the computational capacity
of the network nodes.

2.2 Privacy-Enhanced Transactions with zk-SNARKs

Privacy is a cornerstone of Overpass Channels, achieved through the innovative use of zero-knowledge
Succinct Non-interactive Arguments of Knowledge (zk-SNARKs).

Definition 2 (zk-SNARK). A zk-SNARK is a cryptographic proof construction where one can
prove possession of certain information, e.g., a secret key, without revealing that information, and
without any interaction between the prover and verifier.

2

Algorithm 1 zk-SNARK Transaction Proof Generation

1: procedure GenerateTransactionProof(tx, sk, pk)
2: inputs← ExtractPublicInputs(tx)
3: witness← ConstructWitness(tx, sk)
4: proof ← ProveZKSNARK(inputs, witness, pk)
5: return proof
6: end procedure

In Overpass Channels, every transaction is accompanied by a zk-SNARK proof that demon-
strates the validity of the transaction without revealing any sensitive details.

This approach ensures that while the network can verify the validity of transactions, it cannot
access sensitive information such as transaction amounts, sender and receiver identities, or channel
balances.

2.3 Independent Verification and Instant Finality

Overpass Channels achieves instant finality through a mechanism of independent verification, elim-
inating the need for network-wide consensus.

Theorem 2 (Instant Finality). In Overpass Channels, a transaction is considered final and ir-
reversible as soon as it is verified by the recipient, without requiring confirmation from any other
network participants.

Proof. Let T be a transaction from Alice to Bob within a channel C. The proof proceeds as follows:
1) Alice generates a zk-SNARK proof P for T . 2) Alice sends T and P to Bob. 3) Bob verifies

P using the public verification key vk. 4) If P is valid, Bob accepts T as final.
Since the verification of P depends only on vk, which is publicly known, and the inputs pro-

vided in T , Bob can independently verify the transaction without consulting any other network
participants. Once Bob has verified P , he can be certain that T is valid and will be accepted by
the network in any future on-chain settlement. ■

This independent verification mechanism allows for near-instantaneous transaction finality, a
significant improvement over traditional blockchain systems that require multiple confirmations.

2.4 Fluid Liquidity through Dynamic Rebalancing

Overpass Channels incorporates a dynamic rebalancing mechanism that ensures optimal distribu-
tion of liquidity across the network.

Definition 3 (Channel Liquidity). The liquidity of a channel is defined as the maximum amount
that can be sent through the channel in a single direction without requiring an on-chain transaction.

The dynamic rebalancing algorithm continuously monitors channel liquidity and initiates rebal-
ancing operations when necessary.

This fluid liquidity ensures that users can always find efficient paths for their transactions, even
as usage patterns in the network change over time.

3

Algorithm 2 Dynamic Channel Rebalancing

1: procedure RebalanceChannel(channel, threshold)
2: balance← GetChannelBalance(channel)
3: capacity ← GetChannelCapacity(channel)
4: if balance < threshold× capacity then
5: amount← (capacity − balance)/2
6: proof ← GenerateRebalanceProof(channel, amount)
7: ExecuteRebalance(channel, amount, proof)
8: end if
9: end procedure

2.5 Dynamic Rebalancing Analysis

In this section, we present a comprehensive analysis of the dynamic rebalancing mechanism within
the Overpass Channels network. This mechanism is crucial for maintaining optimal liquidity dis-
tribution across the network, ensuring efficient transaction processing while preserving user privacy
and system decentralization.

Formal Definition of the Dynamic Rebalancing Algorithm

The Overpass Channels network consists of a hierarchical structure of smart contracts and off-chain
components, defined as follows:

Definition 4 (Overpass Channels Network Components). The Overpass Channels network com-
prises:

• Channel Contracts (CC): Off-chain unilateral payment channels between users.

• Wallet Extension Contracts (WEC): Smart contracts that manage multiple channels for
a user, represented using an off-chain sparse Merkle tree.

• Intermediate Contracts (IC): Off-chain contracts that aggregate state updates from mul-
tiple wallet extensions.

• Root Contract (RC): On-chain contract that maintains the global state of the network on
the L1 blockchain.

• Off-chain Storage Nodes (OSN): Decentralized nodes that store redundant copies of off-
chain states and proofs.

The dynamic rebalancing mechanism operates primarily at two levels: within individual Wallet
Extension Contracts (intra-WEC rebalancing) and between different Wallet Extension Contracts
managed by the same Intermediate Contract (inter-WEC rebalancing).

Definition 5 (Dynamic Rebalancing Mechanism). The dynamic rebalancing mechanism is a process
that redistributes liquidity:

• Within a Wallet Extension Contract, among its managed Channel Contracts.

• Between different Wallet Extension Contracts managed by the same Intermediate Contract.

4

This process aims to optimize liquidity distribution, ensuring efficient transaction processing across
the network while maintaining privacy and minimizing on-chain operations.

Let us now formally define the components and variables involved in the rebalancing process:

Definition 6 (Rebalancing Components and Variables). For a given Wallet Extension Contract
W :

• CW = {C1, C2, . . . , Cn} is the set of Channel Contracts managed by W .

• BCi
is the balance of Channel Contract Ci.

• ∆BCi
is the adjustment to the balance of Ci through rebalancing.

• θi is the target liquidity ratio for Ci, representing the desired proportion of the total liquidity.

• LW =
∑n

i=1BCi
is the total liquidity managed by W .

For an Intermediate Contract IC managing multiple Wallet Extension Contracts:

• W = {W1,W2, . . . ,Wm} is the set of Wallet Extension Contracts managed by IC.

• BWj
is the total balance of Wallet Extension Contract Wj.

• ∆BWj
is the adjustment to the balance of Wj through inter-WEC rebalancing.

• ϕj is the target liquidity ratio for Wj within IC.

• LIC =
∑m

j=1BWj is the total liquidity managed by IC.

Intra-WEC Rebalancing Algorithm

The intra-WEC rebalancing process occurs within a single Wallet Extension Contract, redistributing
liquidity among its managed Channel Contracts. This process is executed off-chain, with periodic
updates to the off-chain storage nodes.

Algorithm 3 Intra-WEC Rebalancing

1: procedure IntraWECRebalance(W)
2: CW ← GetChannelContracts(W)
3: LW ←

∑
Ci∈CW

BCi

4: {∆BCi} ← SolveOptimizationProblem(CW , LW , {θi})
5: for Ci ∈ CW do
6: BCi

← BCi
+∆BCi

7: end for
8: newRoot← UpdateMerkleTree(W, {BCi})
9: proof ← GenerateZKProof(W,newRoot, {∆BCi})

10: UpdateOffChainStorage(W,newRoot, proof)
11: end procedure

The optimization problem solved in step 4 of Algorithm 3 is formulated as follows:

5

min
{∆BCi

}

n∑
i=1

wi(BCi
+∆BCi

− θiLW)2

subject to

n∑
i=1

∆BCi
= 0

−BCi ≤ ∆BCi ≤ LCi −BCi , ∀i ∈ {1, . . . , n}

(1)

where wi > 0 is a weighting factor for Channel Contract Ci, and LCi is the maximum allowed
balance for Ci.

Inter-WEC Rebalancing Algorithm

The inter-WEC rebalancing process occurs between different Wallet Extension Contracts managed
by the same Intermediate Contract. This process is more complex as it involves multiple parties
and requires careful coordination to maintain privacy and security.

Algorithm 4 Inter-WEC Rebalancing

1: procedure InterWECRebalance(IC)
2: W ← GetWalletExtensionContracts(IC)
3: LIC ←

∑
Wj∈W BWj

4: {∆BWj} ← SolveOptimizationProblem(W, LIC , {ϕj})
5: for Wj ∈ W do
6: proofj ← GenerateZKProof(Wj ,∆BWj

)
7: SendRebalanceRequest(Wj ,∆BWj

, proofj)
8: end for
9: WaitForConfirmations(W)

10: newRootIC ← UpdateIntermediateMerkleTree(IC, {BWj
})

11: proofIC ← GenerateZKProof(IC, newRootIC , {∆BWj
})

12: UpdateOffChainStorage(IC, newRootIC , proofIC)
13: end procedure

The optimization problem solved in step 4 of Algorithm 4 is formulated as:

min
{∆BWj

}

m∑
j=1

vj(BWj +∆BWj − ϕjLIC)
2

subject to

m∑
j=1

∆BWj
= 0

−BWj
≤ ∆BWj

≤ LWj
−BWj

, ∀j ∈ {1, . . . ,m}

(2)

where vj > 0 is a weighting factor for Wallet Extension Contract Wj , and LWj
is the maximum

allowed balance for Wj .

6

Analysis of Convergence and Stability

The convergence and stability of the dynamic rebalancing mechanism are crucial for the overall
performance and reliability of the Overpass Channels network. We present a formal analysis of
these properties for both intra-WEC and inter-WEC rebalancing processes.

Theorem 3 (Convergence of Intra-WEC Rebalancing). The intra-WEC rebalancing process, as
defined by the optimization problem in Equation 1, converges to a unique global optimum.

Proof. The objective function in Equation 1 is a sum of convex quadratic functions, and thus is
itself convex. The constraints form a convex feasible region. Therefore, the optimization problem
is convex.

For a convex optimization problem with linear constraints, the Karush-Kuhn-Tucker (KKT)
conditions are necessary and sufficient for optimality. Let λ be the Lagrange multiplier for the
equality constraint and µ+

i , µ
−
i be the multipliers for the inequality constraints. The Lagrangian is:

L =

n∑
i=1

wi(BCi +∆BCi − θiLW)2 − λ
n∑

i=1

∆BCi

+

n∑
i=1

µ+
i (∆BCi − (LCi −BCi)) +

n∑
i=1

µ−
i (−∆BCi −BCi)

(3)

The KKT conditions are:

∂L
∂∆BCi

= 2wi(BCi
+∆BCi

− θiLW)− λ+ µ+
i − µ

−
i = 0, ∀i (4)

n∑
i=1

∆BCi
= 0 (5)

−BCi
≤ ∆BCi

≤ LCi
−BCi

, ∀i (6)

µ+
i , µ

−
i ≥ 0, ∀i (7)

µ+
i (∆BCi − (LCi −BCi)) = 0, ∀i (8)

µ−
i (−∆BCi

−BCi
) = 0, ∀i (9)

These conditions uniquely determine the optimal solution, proving the convergence to a global
optimum. ■

A similar proof can be constructed for the inter-WEC rebalancing process:

Theorem 4 (Convergence of Inter-WEC Rebalancing). The inter-WEC rebalancing process, as
defined by the optimization problem in Equation 2, converges to a unique global optimum.

The proof follows the same structure as Theorem 3, with appropriate substitutions for the
variables and constraints.

7

Privacy and Security Analysis

The privacy and security of the rebalancing process are paramount in the Overpass Channels
network. We analyze these aspects for both intra-WEC and inter-WEC rebalancing.

Theorem 5 (Privacy Preservation in Intra-WEC Rebalancing). The intra-WEC rebalancing pro-
cess preserves the privacy of individual channel balances from external observers.

Proof. Let A be an adversary observing the intra-WEC rebalancing process. The information
available to A consists of:

1. The Merkle root of the Wallet Extension Contract before rebalancing: rootpre 2. The Merkle
root of the Wallet Extension Contract after rebalancing: rootpost 3. The zk-SNARK proof π of the
rebalancing operation

By the properties of cryptographic hash functions used in the Merkle tree, A cannot derive the
individual channel balances from rootpre or rootpost. The zk-SNARK proof π only verifies that
the rebalancing operation was performed correctly, without revealing any information about the
channel balances or the rebalancing amounts.

Therefore, A gains no information about individual channel balances from observing the rebal-
ancing process. ■

A similar theorem can be stated for inter-WEC rebalancing:

Theorem 6 (Privacy Preservation in Inter-WEC Rebalancing). The inter-WEC rebalancing process
preserves the privacy of individual wallet extension balances from external observers and other
participating wallet extensions.

The proof follows a similar structure to Theorem 5, with the additional consideration that the
zk-SNARK proofs exchanged between wallet extensions reveal no information about their individual
balances.

Efficiency Analysis

The efficiency of the rebalancing process is crucial for the scalability of the Overpass Channels
network. We analyze the computational and communication complexity of both intra-WEC and
inter-WEC rebalancing.

Theorem 7 (Computational Complexity of Intra-WEC Rebalancing). The computational complex-
ity of the intra-WEC rebalancing process is O(n log n), where n is the number of channel contracts
managed by the wallet extension.

Proof. The intra-WEC rebalancing process consists of the following steps:
1. Solving the optimization problem: O(n log n) using interior-point methods. 2. Updating the

Merkle tree: O(n log n) for n updates. 3. Generating the zk-SNARK proof: O(n log n) for a circuit
of size O(n).

Therefore, the overall complexity is O(n log n). ■

Theorem 8 (Communication Complexity of Inter-WEC Rebalancing). The communication com-
plexity of the inter-WEC rebalancing process is O(m), where m is the number of wallet extension
contracts managed by the intermediate contract.

8

Proof. The inter-WEC rebalancing process involves the following communication steps:
1. Each wallet extension contract sends its current balance to the intermediate contract: O(m)

messages. 2. The intermediate contract sends rebalancing instructions to each wallet extension:
O(m) messages. 3. Each wallet extension sends a confirmation back to the intermediate contract:
O(m) messages. 4. The intermediate contract sends the final update to the off-chain storage: O(1)
message.

Therefore, the total communication complexity is O(m). ■

Illustrative Example: Alice and Bob’s Rebalancing Scenario

To provide a concrete understanding of the rebalancing process, let’s consider a detailed example
involving two users, Alice and Bob, whose wallet extensions are managed by the same intermediate
contract.

Initial State

• Intermediate Contract IC1 manages Wallet Extensions WAlice and WBob.

• WAlice has three channels: CA1, CA2, CA3.

• WBob has two channels: CB1, CB2.

• Initial balances:

– BWAlice
= 100 units (BCA1

= 20, BCA2
= 30, BCA3

= 50)

– BWBob
= 200 units (BCB1

= 80, BCB2
= 120)

– Total liquidity in IC1: LIC1
= 300 units

• Target ratios:

– For IC1: ϕAlice = 0.4, ϕBob = 0.6

– For WAlice: θA1 = 0.3, θA2 = 0.3, θA3 = 0.4

– For WBob: θB1 = 0.4, θB2 = 0.6

Rebalancing Process 1. Inter-WEC Rebalancing:

∆BWAlice
= 0.4× 300− 100 = +20 units (10)

∆BWBob
= 0.6× 300− 200 = −20 units (11)

2. Intra-WEC Rebalancing for Alice:

∆BCA1
= 0.3× 120− 20 = +16 units (12)

∆BCA2
= 0.3× 120− 30 = +6 units (13)

∆BCA3
= 0.4× 120− 50 = −2 units (14)

3. Intra-WEC Rebalancing for Bob:

∆BCB1
= 0.4× 180− 80 = −8 units (15)

∆BCB2
= 0.6× 180− 120 = −12 units (16)

9

Final State After rebalancing, the new balances are:

• WAlice: 120 units (CA1: 36, CA2: 36, CA3: 48)

• WBob: 180 units (CB1: 72, CB2: 108)

Privacy-Preserving Proof Generation To ensure privacy, Alice and Bob generate zk-SNARK
proofs for their respective rebalancing operations:

Algorithm 5 Generate Rebalancing Proof

1: procedure GenerateRebalancingProof(W, {BCi}, {∆BCi}, rootpre, rootpost)
2: circuit← LoadRebalancingCircuit()
3: witness← {BCi

,∆BCi
, rootpre, rootpost}

4: proof ← GenerateZKProof(circuit, witness)
5: return proof
6: end procedure

These proofs allow the intermediate contract to verify that the rebalancing was performed
correctly without learning the actual balances or rebalancing amounts.

Remarks

The dynamic rebalancing mechanism in Overpass Channels provides an efficient, privacy-preserving,
and decentralized solution for maintaining optimal liquidity distribution. Our analysis and simula-
tions demonstrate its effectiveness in improving transaction success rates and network efficiency.

Future work could explore adaptive rebalancing strategies that dynamically adjust target ra-
tios based on historical transaction patterns and network conditions. Additionally, investigating
the impact of different network topologies on rebalancing performance could provide insights for
optimizing the overall network structure.

Theorem 9 (Optimality of Dynamic Rebalancing). The dynamic rebalancing mechanism in Over-
pass Channels achieves an ϵ-optimal liquidity distribution in O(log(1/ϵ)) rebalancing rounds, where
ϵ > 0 is the desired precision.

Proof. Let xt be the vector of normalized channel balances after the t-th rebalancing round, and
x∗ be the optimal balance distribution. Define the Lyapunov function:

V (xt) = ∥xt − x∗∥22 (17)

We can show that each rebalancing round decreases V (xt) by a factor of at least (1 − α) for
some α > 0:

V (xt+1) ≤ (1− α)V (xt) (18)

After T rounds:

V (xT) ≤ (1− α)TV (x0) (19)

To achieve ϵ-optimality, we need:

10

(1− α)TV (x0) ≤ ϵ (20)

Solving for T :

T ≥ log(ϵ/V (x0))

log(1− α)
= O(log(1/ϵ)) (21)

Thus, ϵ-optimal liquidity distribution is achieved in O(log(1/ϵ)) rounds. ■

This theoretical result underscores the efficiency of the dynamic rebalancing mechanism in
rapidly converging to an optimal liquidity distribution, further validating its practical utility in
the Overpass Channels network.

2.6 Cross-Intermediate Contract Rebalancing and Global Liquidity Man-
agement

In this section, we present a comprehensive analysis of the cross-intermediate contract rebalancing
mechanism and global liquidity management in the Overpass Channels network. This system
enables efficient liquidity redistribution across different intermediate contracts, potentially spanning
multiple shards in the underlying L1 blockchain, while maintaining high transaction finality and
minimizing on-chain operations.

System Architecture

The Overpass Channels network consists of a hierarchical structure of components:

Definition 7 (Overpass Channels Network Components). The network comprises:

• Channel Contracts (CC): Off-chain unilateral payment channels between users.

• Wallet Extension Contracts (WEC): Smart contracts managing multiple channels for a
user, represented using an off-chain sparse Merkle tree.

• Intermediate Contracts (IC): Off-chain contracts aggregating state updates from multiple
wallet extensions.

• Root Contract (RC): On-chain contract maintaining the global state of the network on the
L1 blockchain.

• Off-chain Storage Nodes (OSN): Decentralized nodes storing redundant copies of off-
chain states and proofs.

This hierarchical structure facilitates efficient off-chain operations while maintaining the security
guarantees of the underlying blockchain.

11

Algorithm 6 Cross-Intermediate Rebalancing

1: procedure CrossICRebalance(IC, RC)
2: Lglobal ←

∑
ICi∈IC BICi

3: {∆BICi
} ← SolveGlobalOptimizationProblem(IC, Lglobal, {ψi})

4: for ICi ∈ IC do
5: proofi ← GenerateZKProof(ICi,∆BICi

)
6: SendRebalanceRequest(ICi,∆BICi , proofi)
7: end for
8: WaitForConfirmations(IC)
9: newRootglobal ← UpdateGlobalMerkleTree(RC, {BICi

})
10: proofglobal ← GenerateZKProof(RC,newRootglobal, {∆BICi

})
11: ScheduleForNextEpochSubmission(RC,newRootglobal, proofglobal)
12: end procedure

Cross-Intermediate Rebalancing Algorithm

The cross-intermediate rebalancing process operates at the global level, coordinated by the Root
Contract. This process is crucial for maintaining optimal liquidity distribution across the entire
network, including different shards.

The optimization problem solved in this algorithm is formulated as:

min
{∆BICi

}

k∑
i=1

vi(BICi
+∆BICi

− ψiLglobal)
2

subject to

k∑
i=1

∆BICi
= 0

−BICi
≤ ∆BICi

≤ LICi
−BICi

, ∀i ∈ {1, . . . , k}

(22)

where vi > 0 is a weighting factor for Intermediate Contract ICi, and LICi is the maximum
allowed balance for ICi.

This optimization problem ensures that the rebalancing process minimizes liquidity imbalances
across all Intermediate Contracts while respecting balance constraints. The use of zk-SNARK proofs
throughout the process maintains privacy and security, even during cross-shard operations.

Transaction Finality and Liquidity Accessibility

A key feature of Overpass Channels is the maintenance of strong transaction finality and continuous
liquidity accessibility, even during global rebalancing operations. This is crucial for ensuring a
seamless user experience and enabling efficient integration with payment systems.

Theorem 10 (Transaction Finality Preservation). Individual transactions in Overpass Channels
achieve finality independently of cross-intermediate rebalancing operations and cross-shard settle-
ments.

Proof. Consider a transaction T between two users, Alice and Bob, whose wallets are managed by
different Intermediate Contracts ICA and ICB , potentially in different shards. The proof proceeds
as follows:

12

1. Transaction Execution: - Alice initiates transaction T to Bob. - A zk-SNARK proof πT is
generated for T .

2. Local Verification: - Bob verifies πT locally. - If πT is valid, Bob considers T final from his
perspective.

3. Wallet Extension Update: - Alice’s and Bob’s Wallet Extensions (WA and WB) update their
local states. - New zk-SNARK proofs πWA

and πWB
are generated for the updated wallet states.

4. Intermediate Contract Update: - ICA and ICB verify πWA
and πWB

respectively. - The
intermediate contracts update their states and generate proofs πICA

and πICB
.

5. Cross-Intermediate Rebalancing: - If a cross-intermediate rebalancing occurs, it generates a
separate proof πrebal. - This rebalancing does not invalidate or depend on the proofs of individual
transactions.

6. Global State Update: - The Root Contract verifies all proofs: πICA
, πICB

, and πrebal (if
applicable). - The global state is updated in the next epoch submission.

At each step, the proofs are independently verifiable. The validity of T (proven by πT) is
established at step 2 and is not affected by subsequent rebalancing operations. Therefore, T achieves
finality from the users’ perspective as soon as πT is verified, regardless of later cross-intermediate
or cross-shard operations. ■

This theorem ensures that users can rely on the finality of their transactions without waiting
for global rebalancing or cross-shard settlement processes to complete.

Theorem 11 (Liquidity Accessibility). In the Overpass Channels system, a user’s funds remain ac-
cessible for transactions and transfers regardless of the state of individual channel closures, provided
the global network maintains sufficient liquidity.

Proof. Consider a user Alice with funds in a channel CA managed by Wallet Extension WA under
Intermediate Contract ICA. Even if CA is in the process of closing:

1. Alice can initiate a transaction to Bob, whose funds are in channel CB under a different
Intermediate Contract ICB . 2. The transaction can be routed through: a) Intra-WEC rebalancing
within WA b) Inter-WEC rebalancing within ICA c) Cross-Intermediate rebalancing between ICA

and ICB d) Inter-WEC rebalancing within ICB to reachWB e) Intra-WEC rebalancing withinWB

to reach CB

3. Each step generates a zk-SNARK proof, ensuring the validity of the transfer without revealing
the channel closure state.

Therefore, Alice’s funds remain accessible and transferable throughout the network, independent
of the state of CA. ■

These theorems collectively demonstrate the robustness of the Overpass Channels system in
maintaining both transaction finality and liquidity accessibility, which are crucial for seamless op-
eration and user experience.

Efficient Channel Closure

Given the fluid nature of liquidity in the Overpass Channels system, channel closures can be handled
efficiently without requiring immediate on-chain settlements. This approach minimizes on-chain
operations while ensuring continuous fund accessibility for users.

13

Definition 8 (Lazy Channel Closure). A Lazy Channel Closure is a process where: 1. The channel
is marked for closure in the off-chain state. 2. No new inbound transactions are accepted to the
channel. 3. Existing funds in the channel remain accessible through network rebalancing. 4. The
actual on-chain settlement is deferred until it’s most efficient to do so.

This lazy closure mechanism aligns with the overall off-chain focus of Overpass Channels, re-
ducing the urgency of on-chain settlements and allowing for more efficient batching of closure
operations.

Algorithm 7 Lazy Channel Closure

1: procedure LazyChannelClosure(Ci,Wj , ICk)
2: SetChannelState(Ci, ”closing”)
3: closure balance← GetCurrentBalance(Ci)
4: closure proof ← GenerateClosureProof(Ci, closure balance)
5: AddToClosureQueue(Ci, closure balance, closure proof)
6: NotifyUserFundsAccessible(Ci)
7: end procedure
8: procedure BatchProcessClosures(RC)
9: closures← GetQueuedClosures()

10: batch proof ← GenerateBatchClosureProof(closures)
11: SubmitBatchClosure(RC, closures, batch proof)
12: end procedure

This approach offers several advantages: 1. Continuous Fund Accessibility: Users can still utilize
their funds through network rebalancing, even if their original channel is marked for closure. 2.
Reduced On-chain Overhead: Channel closures can be batched and processed when it’s most gas-
efficient to do so. 3. Simplified User Experience: Users don’t need to wait for or monitor on-chain
settlements; they can continue using the network seamlessly. 4. Optimized Cross-shard Operations:
Closures involving cross-shard balances can be aggregated and settled efficiently without rushing
individual transactions.

Cross-Shard Atomic Swaps

The cross-intermediate rebalancing process effectively enables cross-shard atomic swaps, leverag-
ing L1’s efficient cross-shard communication capabilities. This feature is crucial for maintaining
liquidity across different shards and enabling seamless cross-shard transactions for users.

Theorem 12 (Cross-Shard Atomic Swap Correctness). The cross-intermediate rebalancing process
guarantees atomicity and correctness of cross-shard swaps.

Proof. Let ICa ∈ Sx and ICb ∈ Sy be two intermediate contracts in different shards participating
in a cross-shard swap. The proof proceeds as follows:

1. Both ICa and ICb generate zk-SNARK proofs πa and πb of their respective balance adjust-
ments ∆BICa

and ∆BICb
.

2. The Root Contract RC receives and verifies both proofs:

Verify(πa) ∧Verify(πb) = true (23)

14

3. RC ensures that the swap is balanced:

∆BICa
+∆BICb

= 0 (24)

4. RC updates the global Merkle root to reflect the new balances of ICa and ICb.
5. The new global Merkle root is included in the next epoch submission to the L1 blockchain.
If any step fails, the entire operation is reverted. Therefore, either both balance adjustments

occur atomically, or neither does, ensuring the correctness of the cross-shard swap. ■

This theorem ensures that cross-shard operations in Overpass Channels maintain the same level
of security and atomicity as single-shard operations, enabling seamless liquidity management across
the entire network.

Integration with Payment Systems

The full potential of Overpass Channels is realized when payment systems are designed to integrate
directly with the network. This integration allows for efficient, off-chain transactions that leverage
the rebalancing capabilities of the system.

Definition 9 (Overpass-Integrated Payment System). An Overpass-Integrated Payment System
is one that: 1. Recognizes Overpass Channel balances as valid payment sources. 2. Can initiate
and receive payments through Overpass Channel rebalancing operations. 3. Defers to on-chain
settlements only for large fund movements or when interacting with non-integrated systems.

This integration is key to achieving high transaction throughput and minimizing on-chain op-
erations in day-to-day transactions.

Theorem 13 (Off-chain Transaction Efficiency). In an ecosystem with Overpass-Integrated Pay-
ment Systems, the average transaction cost and time approach the efficiency of off-chain operations,
regardless of the underlying on-chain settlement status of individual channels.

Proof. Let T be a transaction in an Overpass-Integrated Payment System:
1. T is routed through Overpass Channels using rebalancing operations. 2. Each rebalancing

step (intra-WEC, inter-WEC, cross-IC) occurs off-chain. 3. zk-SNARK proofs ensure the validity
of each step without on-chain operations. 4. The transaction is considered complete once the
recipient’s balance is updated off-chain. 5. On-chain settlements occur in batches, amortizing the
cost across many transactions.

Therefore, from the user’s perspective, transaction cost and time are dominated by off-chain
operations, approaching their efficiency limits as the number of transactions increases. ■

This theorem underscores the power of the Overpass Channels system when properly integrated
with payment infrastructure. It demonstrates that users can enjoy the speed and cost-effectiveness
of off-chain transactions while maintaining the security guarantees of the underlying blockchain.

Security and Privacy Analysis

The security and privacy of cross-intermediate rebalancing are ensured through the use of zk-
SNARK proofs and the hierarchical structure of the system.

15

Theorem 14 (Privacy of Cross-Intermediate Rebalancing). The cross-intermediate rebalancing
process preserves the privacy of individual intermediate contract balances from external observers
and other intermediate contracts.

Proof. Let A be an adversary observing the cross-intermediate rebalancing process. The informa-
tion available to A consists of:

1. The global Merkle root before rebalancing: rootpre 2. The global Merkle root after rebalanc-
ing: rootpost 3. The zk-SNARK proof πglobal of the rebalancing operation

By the properties of cryptographic hash functions used in the Merkle tree, A cannot derive the
individual IC balances from rootpre or rootpost. The zk-SNARK proof πglobal only verifies that
the rebalancing operation was performed correctly, without revealing any information about the IC
balances or the rebalancing amounts.

Therefore, A gains no information about individual IC balances from observing the rebalancing
process. ■

This theorem ensures that the privacy of individual users and intermediate contracts is main-
tained even during global rebalancing operations.

Efficiency Analysis

The efficiency of the system is crucial for its scalability across multiple shards. We analyze the
computational and communication complexity of cross-intermediate rebalancing operations.

Theorem 15 (Complexity of Cross-Intermediate Rebalancing). The computational complexity of
cross-intermediate rebalancing is O(k log k), and the communication complexity is O(k+m), where
k is the number of intermediate contracts and m is the number of shards.

Proof. The proof follows from the analysis of Algorithm 6:
1. Solving the global optimization problem: O(k log k) using interior-point methods. 2. Gen-

erating and verifying zk-SNARK proofs for each IC: O(k). 3. Updating the global Merkle tree:
O(k log k). 4. Communication between Root Contract and ICs: O(k). 5. Cross-shard communica-
tion for coordinating swaps: O(m) in the worst case.

Therefore, the overall computational complexity is O(k log k), and the communication complex-
ity is O(k +m). ■

This theorem demonstrates that the cross-intermediate rebalancing process scales efficiently with
the number of intermediate contracts and shards, making it suitable for large-scale deployments.

Integration with L1 Blockchain

The Overpass Channels system leverages L1’s sharding architecture and efficient cross-shard com-
munication capabilities. The hypercube routing system of L1 is particularly beneficial for cross-
shard atomic swaps and global state updates.

Theorem 16 (Efficiency of Cross-Shard Operations). Cross-shard operations in Overpass Chan-
nels, when integrated with L1, have a communication complexity of O(logm), where m is the number
of shards.

16

Proof. L1’s hypercube routing ensures that messages between any two shards can be delivered in
O(logm) hops. In the worst case, our cross-shard operations might need to collect information from
all shards. However, due to the hypercube topology:

1. Each shard can be reached in O(logm) hops. 2. Parallel message passing can be utilized for
multiple shards. 3. The Root Contract can coordinate the process, reducing redundant communi-
cations.

Therefore, the overall communication complexity for cross-shard operations remains O(logm),
regardless of the number of shards involved in the operation. ■

This integration ensures that Overpass Channels can maintain high efficiency even as the network
scales across multiple shards.

Illustrative Example: Cross-Shard Rebalancing

To illustrate the cross-intermediate rebalancing process, consider the following example involving
three intermediate contracts across two shards:

• IC1 in Shard S1 with balance BIC1 = 1000 units

• IC2 in Shard S1 with balance BIC2
= 1500 units

• IC3 in Shard S2 with balance BIC3
= 2500 units

• Total network liquidity Lglobal = 5000 units

• Target ratios: ψ1 = 0.3, ψ2 = 0.3, ψ3 = 0.4

The rebalancing process would proceed as follows:
1. Solve the optimization problem:

∆BIC1 = 0.3× 5000− 1000 = +500 units (25)

∆BIC2 = 0.3× 5000− 1500 = 0 units (26)

∆BIC3 = 0.4× 5000− 2500 = −500 units (27)

2. Generate zk-SNARK proofs for each adjustment.
3. Execute the cross-shard atomic swap between IC1 and IC3.
4. Update the global Merkle root to reflect the new balances.
5. Include the new global Merkle root in the next epoch submission to the L1 blockchain.
This example demonstrates how the cross-intermediate rebalancing process can efficiently redis-

tribute liquidity across shards while maintaining privacy and minimizing on-chain operations.

3 zk-SNARKs

The cornerstone of Overpass Channels’ security and privacy features lies in its innovative use of zero-
knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARKs). This section provides
a detailed examination of how zk-SNARKs are integrated into the transaction validation process,
ensuring both the validity of transactions and the privacy of users.

17

3.1 Overview

Before delving into the specifics of how Overpass Channels utilizes zk-SNARKs, it’s important to
understand the fundamental concepts behind this cryptographic technique.

Definition 10 (zk-SNARK). A zero-knowledge Succinct Non-interactive Argument of Knowledge
(zk-SNARK) is a cryptographic protocol that allows one party (the prover) to prove to another party
(the verifier) that a statement is true, without revealing any information beyond the validity of the
statement itself.

In the context of Overpass Channels, zk-SNARKs are used to prove the validity of transactions
and state transitions without revealing the underlying transaction details.

3.2 zk-SNARK Circuit for Transaction Validation

The heart of the zk-SNARK integration in Overpass Channels is the circuit that defines the com-
putation being proved. For transaction validation, this circuit encapsulates the logic of checking
transaction validity, including balance updates and signature verification.

Algorithm 8 zk-SNARK Circuit for Transaction Validation

1: procedure TransactionValidationCircuit(oldState, newState, tx, signature)
2: AssertValidSignature(tx, signature)
3: AssertSufficientBalance(oldState, tx.amount)
4: AssertCorrectBalanceUpdate(oldState, newState, tx)
5: AssertValidStateTransition(oldState, newState)
6: AssertNonceIncrement(oldState.nonce, newState.nonce)
7: end procedure

This circuit ensures that: 1. The transaction is properly signed by the sender. 2. The sender
has sufficient balance to make the transaction. 3. The balances are correctly updated after the
transaction. 4. The overall state transition is valid. 5. The nonce is correctly incremented.

3.3 Proof Generation and Verification

In Overpass Channels, transactions are signed based on the updated state at the conclusion of the
previous transaction. This ensures the integrity and sequential consistency of the channel state.
After each transaction, participants sign the new state, preventing any disputes about the validity
or order of transactions.

When a user initiates a transaction, they generate a zk-SNARK proof attesting that the transac-
tion is valid according to the circuit defined. However, before generating this proof, the transaction
is signed according to the current state of the channel, which is the updated state following the
previous transaction. This ensures that the state transition sequence is preserved and agreed upon
by all parties.

The transaction signature generated in step 2, based on the private key and the updated state,
ensures that the transaction reflects the most recent state of the channel. This mechanism helps
enforce trust and prevents attempts to execute outdated or conflicting transactions.

18

Algorithm 9 Transaction Proof Generation and Verification

1: procedure GenerateTransactionProof(oldState, newState, tx, sk)
2: signature ← Sign(tx, sk) ▷ Transaction is signed based on the updated state
3: witness ← (oldState, newState, tx, signature)
4: proof ← ProveZKSNARK(TransactionValidationCircuit, witness)
5: return proof
6: end procedure
7: procedure VerifyTransactionProof(proof, publicInputs)
8: result ← VerifyZKSNARK(TransactionValidationCircuit, proof, publicInputs)
9: return result

10: end procedure

3.4 Privacy Preservation

One of the key strengths of zk-SNARKs in Overpass Channels is the privacy it guarantees. The use
of zk-SNARKs ensures that even though the transaction details are required to generate a proof,
the actual transaction information (such as amounts, sender, and receiver) remains confidential,
thanks to the zero-knowledge property. Only the updated state, which participants sign at the
conclusion of each transaction, is reflected in the publicly shared information.

The proof guarantees that no one can infer additional details about the transaction beyond
what is revealed by the public inputs, preserving confidentiality while maintaining verifiable state
transitions.

3.5 Unilateral Channels: How They Work

In unilateral channels, transactions are initiated by one party, and the other party might not need
to be involved actively in every transaction. However, both parties must still have agreed upon the
updated state when a transaction occurs, ensuring that each party recognizes the new balances and
the transition to the new state. Here’s the process:

1. Transaction Initiation: One party (let’s say Alice) initiates a transaction. For example,
Alice wants to send Bob 10 tokens. When this transaction is initiated, Alice calculates the
new state that will result from this payment (her balance reduced, Bob’s balance increased).

2. Signing on the New State: Alice signs based on this updated state, which reflects the
balances after the transaction is processed. Bob does not need to be online or sign off on this
specific transaction at this moment because it’s a unilateral channel—Alice can initiate and
sign the transaction based on her agreement to the updated state.

3. State Agreement Pre-Established: While Bob doesn’t sign at the moment of every trans-
action, both Alice and Bob would have agreed on how transactions work in this channel (in-
cluding how balances are updated) when they set up the channel. This pre-establishment
allows Alice to unilaterally process payments without Bob’s real-time approval, as long as the
rules of the channel (e.g., balance limits) are respected.

4. Transaction Finality: Once Alice signs the transaction reflecting the updated state, the
transaction is executed. Bob can verify the transaction and updated state later, but he doesn’t

19

need to be online for it to happen. The channel operates unilaterally, meaning Alice can push
the updated state without needing Bob’s immediate confirmation.

3.6 Instant and Asynchronous Nature

Instant Transactions: Transactions are effectively instant because Alice doesn’t need to wait for
Bob to be online or approve the transaction in real time. As soon as Alice signs and initiates the
transaction, the new state is established, and the channel updates accordingly.

Asynchronous Execution: In this unilateral setup, transactions can happen even when one
party (Bob) is offline. Alice can continue executing transactions as long as they follow the agreed
rules for the channel, making the system highly asynchronous.

3.7 Online Requirements

For Alice: Alice needs to be online to initiate transactions and sign the updated state.
For Bob: Bob does not need to be online at the moment of every transaction. He only needs

to periodically check or confirm the updated state when he comes online.

3.8 Practicality of zk-SNARKs

In this section, we present a comprehensive analysis of the computational costs associated with
zk-SNARK proof generation and verification within the Overpass Channels system, focusing on
practical implementation considerations. We examine the scalability of zk-SNARKs at scale, in-
cluding potential optimizations to enhance efficiency. Specifically, we explore the utilization of
PLONKY2, Poseidon hash functions, and the Goldilocks field, which are critical components in
achieving practical performance for zero-knowledge proofs in our system.

Overview of PLONKY2, Poseidon, and Goldilocks Field

To understand the practicality of zk-SNARKs in Overpass Channels, it is essential to familiarize
ourselves with the underlying cryptographic tools:

• PLONKY2: An efficient zk-SNARK proof system that builds upon the PLONK protocol.
PLONKY2 is designed for high performance in both proof generation and verification, lever-
aging optimizations that reduce computational overhead.

• Poseidon Hash Function: A cryptographic hash function optimized for zero-knowledge
proof systems. Poseidon is efficient within arithmetic circuits over finite fields, making it
suitable for zk-SNARK implementations.

• Goldilocks Field: A prime field Fp where p = 264 − 232 + 1, chosen for its properties that
enable efficient arithmetic operations on modern hardware architectures, particularly 64-bit
processors.

Computational Costs of zk-SNARK Proof Generation

The computational cost of generating zk-SNARK proofs is a critical factor in the practicality of
Overpass Channels. We analyze this cost by examining the steps involved in proof generation and
their associated complexities.

20

Proof Generation Steps

For a prover (e.g., Alice) generating a zk-SNARK proof using PLONKY2, the following steps are
involved:

1. Circuit Definition: Define an arithmetic circuit C that represents the computation to be
proven (e.g., transaction validation logic).

2. Constraint System Construction: Translate C into a set of polynomial constraints over
the Goldilocks field Fp.

3. Witness Computation: Compute the witness w, which includes secret inputs and any
necessary intermediate values satisfying the constraints.

4. Proof Generation Algorithm: Execute the PLONKY2 proof generation algorithm to pro-
duce the proof π.

Complexity Analysis

The computational complexity of proof generation can be characterized as:

Tgen = O(n) (28)

where n is the number of constraints in the circuit. The linear dependency indicates that as
the circuit becomes more complex (i.e., as n increases), the time to generate the proof increases
linearly.

Example: Alice’s Transaction Proof Consider Alice initiating a transaction to send funds to
Bob within an Overpass Channel. The transaction validation circuit C includes:

• Verification of Alice’s digital signature.

• Ensuring Alice’s balance is sufficient for the transaction amount.

• Correct updating of channel balances.

• Nonce incrementation to prevent replay attacks.

Suppose C comprises n = 106 constraints. The proof generation time Tgen for Alice is thus
proportional to 106 constraint evaluations and associated cryptographic operations.

Optimizations in Proof Generation

To reduce Tgen, the following optimizations can be employed:

1. Circuit Minimization: Simplify C to reduce n by eliminating redundant computations and
optimizing arithmetic operations.

2. Efficient Cryptographic Primitives: Use Poseidon hash functions within the circuit, as
they are designed to be efficient in zk-SNARK contexts due to their low algebraic degree and
efficient field operations.

21

3. Parallel Processing: Leverage multi-core processors or GPUs to perform parallel compu-
tations during proof generation.

4. Recursive Proofs: Utilize PLONKY2’s support for recursion to aggregate multiple proofs
into a single proof, reducing overall proof sizes and verification times.

3.9 Computational Costs of Proof Verification

Verification of zk-SNARK proofs must be efficient to ensure practicality, especially when verifying
a large number of transactions.

Verification Steps

For a verifier (e.g., Bob) verifying a zk-SNARK proof π, the steps include:

1. Public Input Preparation: Gather the public inputs x required for verification (e.g., public
keys, transaction details).

2. Verification Algorithm Execution: Use the PLONKY2 verification algorithm to check
that π is a valid proof for the statement represented by C and x.

Complexity Analysis

The verification time is given by:

Tver = O(log n) (29)

This logarithmic dependency on the number of constraints n ensures that verification remains
efficient even for large circuits.

Example: Bob Verifying Alice’s Proof Bob receives the proof π from Alice and performs the
verification:

1. Retrieves the necessary public inputs (e.g., Alice’s public key, transaction amount).

2. Executes the PLONKY2 verification algorithm, which involves:

• Checking polynomial commitments.

• Verifying evaluation proofs.

• Ensuring consistency with the public inputs.

3. If π is valid, Bob accepts the transaction and updates his local channel state.

3.10 Memory and Storage Considerations

Proof Size

The size of a PLONKY2 proof is relatively small, typically in the order of a few kilobytes, regardless
of the size of the circuit. This succinctness is crucial for:

• Reducing network bandwidth usage during proof transmission.

• Minimizing storage requirements for archiving proofs.

22

Witness Size and Memory Usage

The prover must handle the witness w, which can be large depending on n:

Memoryprover = O(n) (30)

Optimizations to manage memory usage include:

• Streaming Computations: Process parts of the witness sequentially to avoid holding the
entire witness in memory.

• Memory-Efficient Data Structures: Use data structures optimized for low memory over-
head in representing field elements and constraints.

3.11 Bandwidth and Latency Analysis

Network Bandwidth

The transmission of proofs and associated data impacts network bandwidth:

• Proof Transmission: With proof sizes of a few kilobytes, the bandwidth required per trans-
action is minimal.

• Batching Proofs: Aggregating multiple proofs when transmitting to the same recipient can
further reduce bandwidth overhead.

Latency Considerations

Proof generation time contributes to overall transaction latency:

• User Experience: For end-users like Alice and Bob, proof generation and verification should
occur within timeframes that do not hinder usability (e.g., under a few seconds).

• Optimizations: Reducing Tgen and Tver through optimizations directly improves latency.

3.12 Scalability at System Level

Aggregate Computational Load

For a system with M transactions per second (TPS), the total computational load is:

Total Tgen =M × Tgen (31)

Total Tver =M × Tver (32)

Parallelization Across Users

Since proof generation and verification are performed independently by users, the system naturally
supports horizontal scaling:

• No Central Bottlenecks: There is no central entity performing all proof computations.

• Distributed Computation: Each user contributes their own computational resources.

23

3.13 Comparisons with Alternative Approaches

Alternative Zero-Knowledge Proof Systems

Other zk-SNARK protocols include:

• Groth16: Offers constant verification time and small proofs but requires a trusted setup.

• Bulletproofs: No trusted setup, but proof size and verification time are linear in n.

Rationale for Choosing PLONKY2

PLONKY2 is selected for Overpass Channels due to:

• Efficient Proof Generation: Suitable for devices with limited computational power.

• Recursive Proofs Support: Facilitates advanced features like proof aggregation.

• Transparent Setup: Avoids the need for a trusted setup, enhancing security.

• Optimized for Goldilocks Field: Takes advantage of efficient arithmetic operations.

3.14 Potential Bottlenecks and Mitigations

User Device Limitations

Challenge Users with older or less powerful devices may experience slower proof generation times.

Mitigation Strategies

• Lightweight Clients: Offer simplified clients that offload heavy computations to more ca-
pable devices or cloud services.

• Hardware Acceleration: Encourage the use of devices with hardware support for crypto-
graphic operations.

Network Constraints

Challenge In regions with limited network infrastructure, bandwidth and latency can affect trans-
action processing.

Mitigation Strategies

• Proof Compression: Further compress proofs without sacrificing security.

• Offline Transactions: Allow users to queue transactions and proofs for later transmission
when network conditions improve.

24

3.15 Security and Trust Considerations

Soundness and Zero-Knowledge

PLONKY2 ensures:

• Soundness: Invalid statements cannot produce valid proofs.

• Zero-Knowledge: No information about private inputs is revealed through the proof.

Cryptographic Assumptions

The security relies on:

• Hardness of Discrete Logarithm Problem: In the context of the elliptic curve used.

• Collision Resistance of Hash Functions: Poseidon must resist collision and pre-image
attacks.

4 Balance Consistency

Maintaining consistent and accurate balances across all channels is crucial for the integrity and
reliability of the Overpass Channels network. This section delves into the mathematical formalism
and proofs that guarantee balance consistency throughout the system.

4.1 Formal Definition of Balance Consistency

Before we proceed with the theorem and proof, let’s formally define what we mean by balance
consistency in the context of Overpass Channels.

Definition 11 (Balance Consistency). A payment channel network exhibits balance consistency if
and only if, for any valid sequence of transactions, the following conditions hold:

1. The sum of all balances across all channels remains constant (excluding external deposits and
withdrawals).

2. For each channel, the sum of the balances of all participants in that channel remains equal to
the channel’s capacity.

3. No participant’s balance in any channel ever becomes negative.

4.2 Theorem of Balance Consistency

Now, we can state and prove the fundamental theorem that guarantees balance consistency in
Overpass Channels.

Theorem 17 (Balance Consistency in Overpass Channels). In the Overpass Channels network, all
valid transactions and state transitions preserve balance consistency as defined above.

25

Proof. We will prove this theorem by induction on the number of transactions in the network.
Base case: At the network’s initialization, all channels are created with a fixed capacity, and

the initial balances sum to this capacity. Therefore, the balance consistency property holds initially.
Inductive step: Assume that the network is in a consistent state after n transactions. We

need to prove that any valid (n+ 1)-th transaction will maintain balance consistency.
Let T be the (n + 1)-th transaction, occurring in channel C between participants A and B.

Without loss of generality, assume A is sending x tokens to B.

1. By the definition of a valid transaction in Overpass Channels, T must be accompanied by a
valid zk-SNARK proof P .

2. The zk-SNARK circuit for transaction validation ensures:

(a) A’s balance in C is sufficient: balanceA ≥ x
(b) The new balances are correctly computed:

newBalanceA = balanceA − x

newBalanceB = balanceB + x

3. The zk-SNARK proof P is verified by B and, upon settlement, by the network.

4. After T is applied:

(a) The sum of balances in C remains unchanged:

(balanceA − x) + (balanceB + x) = balanceA + balanceB

(b) No other channel’s balances are affected.

(c) A’s new balance is non-negative (from 2a and 2b).

(d) B’s new balance is clearly non-negative as it only increases.

5. Therefore, all three conditions of balance consistency continue to hold after T :

(a) The sum of all balances across all channels remains constant.

(b) The sum of balances in C equals its capacity (from 4a).

(c) No participant’s balance becomes negative (from 4c and 4d).

By the principle of mathematical induction, balance consistency holds for any number of valid
transactions in the network. ■

4.3 Implications and Practical Considerations

The Balance Consistency Theorem has several important implications for the Overpass Channels
network:

1. Security Against Double Spending: The theorem guarantees that it’s impossible for a
participant to spend more tokens than they possess, effectively preventing double spending without
requiring global consensus.

26

2. Local Verification Sufficiency: Because balance consistency is maintained for each valid
transaction, participants only need to verify the zk-SNARK proof of the latest transaction to be
assured of the channel’s integrity.

3. Simplified Conflict Resolution: In case of disputes, the latest valid state (proven by zk-
SNARKs) can be used to resolve conflicts without needing to replay the entire transaction history.

4. Efficient State Updates: The theorem allows for efficient updates of channel states without
requiring updates to the global network state for every transaction.

5 Mitigating(MEV) in Overpass Channels

Miner Extractable Value (MEV) refers to the profit miners can extract from users by manipulating
the ordering of transactions within a block. This has become a significant issue in public blockchain
networks, particularly Ethereum, where it can lead to unfair advantages and financial losses for
regular users. Overpass Channels offers several key benefits in mitigating MEV:

5.1 Privacy as a Shield Against MEV

The primary defense against MEV in Overpass Channels stems from its privacy-preserving archi-
tecture. By keeping transaction details confidential, the system dramatically reduces the attack
surface for MEV exploitation.

Theorem 18 (MEV Resistance through Privacy). Let T = {t1, t2, ..., tn} be a set of transactions
in Overpass Channels, and let I(ti) be the information available to a potential MEV extractor about
transaction ti. Then:

∀ti ∈ T, I(ti) = {existence of ti}

That is, an MEV extractor can only know of the existence of a transaction, but not its contents,
sender, receiver, or value.

Proof. 1) All transactions in Overpass Channels are processed off-chain within individual payment
channels.

2) The network nodes only receive:

• Merkle tree roots representing batches of transactions (epochs)

• zk-SNARK proofs verifying the validity of state transitions

3) zk-SNARK proofs, by definition, reveal no information about the transactions beyond their
validity.

4) Therefore, no entity outside the direct participants of a transaction can access its details. ■

This theorem demonstrates that MEV extractors are effectively ”blind” to the specifics of any
transaction, severely limiting their ability to extract value.

27

Algorithm 10 Transaction Processing in Overpass Channels

1: procedure ProcessTransaction(sender, recipient, amount)
2: oldState← GetChannelState(sender, recipient)
3: newState← ComputeNewState(oldState, amount)
4: proof ← GenerateZKProof(oldState, newState, amount)
5: UpdateChannelState(sender, recipient, newState, proof)
6: end procedure

5.2 Front-Running Prevention

Front-running, a common form of MEV, becomes virtually impossible in Overpass Channels due to
its privacy features and transaction processing mechanism.

In this process, transactions are settled immediately within the channel, leaving no opportunity
for front-running. Even if an attacker could somehow detect a pending transaction, they would
be unable to insert their own transaction ahead of it due to the channel’s sequential and private
processing.

5.3 Quantitative Analysis of MEV Reduction

To quantify the MEV reduction in Overpass Channels compared to a public blockchain like Ethereum,
we can use a simplified model:

Let p be the probability of a transaction being exploited for MEV on a public blockchain, and
v be the average value extracted per exploited transaction. The expected MEV E(MEV) for n
transactions is:

E(MEV)public = n · p · v

In Overpass Channels, due to transaction privacy, p ≈ 0. Therefore:

E(MEV)Overpass ≈ 0

This demonstrates a near-complete elimination of MEV in Overpass Channels.

5.4 Comparative Analysis: Overpass Channels vs. Other Solutions

Feature Overpass Ethereum Other L2s
Transaction Privacy Full None Partial

Front-running Prevention Strong Weak Moderate
MEV Resistance High Low Medium

Table 1: Comparison of MEV Resistance Across Different Systems

While other Layer 2 solutions offer some protection against MEV, Overpass Channels provides
superior resistance due to its comprehensive privacy features and off-chain processing.

28

5.5 Example Scenario: Alice and Bob’s DEX Interaction

Consider a decentralized exchange (DEX) scenario where Alice wants to swap 100 ETH for USDC:

1. In a public blockchain:

• Alice submits a transaction to swap 100 ETH for USDC.

• Bob, a MEV bot operator, sees Alice’s pending transaction.

• Bob front-runs Alice, causing her to receive less USDC than expected.

2. In Overpass Channels:

• Alice initiates a swap in her payment channel with the DEX.

• The swap details are kept private, known only to Alice and the DEX.

• The transaction is processed immediately within the channel.

• Bob has no opportunity to front-run or extract value from Alice’s transaction.

This example illustrates how Overpass Channels protects users like Alice from MEV exploitation
that is common in public blockchain networks.

5.6 Implementing Beneficial Arbitrage within Overpass Channels

While Overpass Channels’ privacy features significantly reduce harmful MEV, the system can be
designed to support beneficial arbitrage activities that enhance market efficiency without exposing
sensitive transaction details.

• Confidential Order Matching: Implement zk-SNARK-based order matching protocols
within payment channels. This allows arbitrageurs to execute trades based on aggregated
market data without accessing individual order details. The zk-SNARK proofs can verify
that trades are executed fairly and according to predefined market rules.

• Aggregated Price Feeds: Utilize oracles to provide aggregated and anonymized price feeds
to payment channels. Arbitrageurs can use these feeds to identify and exploit price dis-
crepancies across different channels or exchanges without gaining access to the underlying
transaction data.

• Incentive Structures for Arbitrageurs: Design incentive mechanisms within Overpass
Channels that reward arbitrageurs for maintaining market efficiency. These incentives can be
encoded within the zk-SNARK proofs, ensuring that only legitimate arbitrage activities are
rewarded without revealing the specifics of each arbitrage transaction.

• Decoupled Execution and Settlement: Separate the execution of arbitrage transactions
from their settlement. Execution can occur within private channels using zk-SNARKs, while
settlement aggregates the results on-chain in a privacy-preserving manner. This approach
ensures that arbitrage activities contribute to market efficiency without introducing MEV
vulnerabilities.

By carefully designing these mechanisms, Overpass Channels can harness the benefits of MEV in
improving market efficiency while maintaining robust defenses against exploitative MEV practices.

29

6 Fraud Prevention Mechanisms in Overpass Channels

Ensuring the integrity of the system and preventing fraudulent activities are paramount in any
financial network. Overpass Channels incorporates several sophisticated mechanisms to prevent
fraud, leveraging its unique architecture and cryptographic foundations. This section provides a
detailed examination of these fraud prevention mechanisms.

6.1 Key Safeguard: Pending Transaction Acceptance

To mitigate the potential security concern where Alice could exploit Bob’s absence (as mentioned
earlier), Overpass Channels employ a key safeguard: pending transaction acceptance.

1. Pending Transaction Mechanism: Before Alice can send a new transaction to Bob, Bob
must first accept the pending one. This means that if Alice sends a token to Bob, the
transaction remains pending until Bob verifies it. Only after Bob accepts the transaction
does Alice’s balance update, and the system allows her to initiate the next transaction.

2. Mitigation of Fraud: This mechanism mitigates the concern of Alice manipulating the
channel when Bob is offline. Even if Bob remains offline for a while, no new transactions can
proceed until Bob confirms the previous one, preventing Alice from spamming the channel
with fraudulent or excessive transactions.

3. Transaction Finality: Once Bob accepts the pending transaction, the state is updated, and
the next transaction can be executed. This ensures that each transaction is properly verified
and final, preventing any ambiguity or risk of double-spending.

4. Transaction Ordering: In addition to pending transaction acceptance, Overpass Channels
uses a combination of per-channel nonces and SEQNO to ensure strict ordering of transactions.
This further prevents replay attacks and ensures state consistency.

6.2 Mitigation of Security Concerns for Extended Absence

To further mitigate the risk where Alice could try to manipulate the channel while Bob is offline
for an extended period (as raised earlier in the downsides), dynamic rebalancing and pending
transaction acceptance work in tandem to provide additional safeguards:

• Pending Transactions: Alice cannot proceed with new transactions unless Bob has accepted
the previous ones. This prevents Alice from submitting multiple fraudulent or excessive
transactions while Bob is offline.

• Dynamic Rebalancing by Smart Contracts: The wallet extension contract ensures that
all channels are balanced and no channel exceeds its authorized limits. The 50% rule also
caps the amount Alice can send in one transaction, limiting potential damage.

Together, these mechanisms ensure that Bob is protected from fraud or abuse while offline,
allowing him to review and accept transactions upon returning online, while at the same time not
leaving Alice in a position where her funds are unusable during the wait. The system’s dynamic
rebalancing enables Alice to continue transacting in other channels or reallocating resources as
needed, ensuring fluid channel operations across the board.

30

6.3 Deterministic Conflict Resolution

In the event of a conflict, such as when parties disagree on the current state of a channel, Overpass
Channels employs a deterministic conflict resolution mechanism.

Theorem 19 (Deterministic Conflict Resolution). Given any two conflicting channel states S1

and S2 submitted by different parties, the Overpass Channels protocol will deterministically select a
single valid state.

Proof. Let S1 and S2 be two conflicting states for channel C, submitted by parties A and B
respectively. The proof proceeds as follows:

1. Both S1 and S2 must be accompanied by valid zk-SNARK proofs P1 and P2.

2. The on-chain contract will verify both P1 and P2.

3. If either proof fails verification, the corresponding state is rejected.

4. If both proofs are valid, the contract compares the nonces n1 and n2 of S1 and S2.

5. The state with the higher nonce is selected as the valid state.

6. In the unlikely event that n1 = n2, the contract applies a deterministic tie-breaking rule (e.g.,
selecting the state with the lexicographically smaller hash).

Therefore, given any two conflicting states, the protocol will always select a single valid state in
a deterministic manner. ■

6.4 50% Spending Rule for Off-Chain Transactions

To prevent potential griefing attacks where a malicious party could repeatedly force channel closures,
Overpass Channels implements a 50% spending rule for off-chain transactions.

Definition 12 (50% Spending Rule). In any single off-chain transaction within a channel, a party
cannot spend more than 50% of their current channel balance.

Theorem 20 (Griefing Prevention). The 50% spending rule in Overpass Channels prevents a
malicious party from depleting their entire channel balance in a single transaction, ensuring that
honest parties always have recourse to close the channel profitably.

Proof. Let C be a channel between Alice and Bob, with Alice’s balance BA and Bob’s balance BB .
The proof proceeds as follows:

1. Suppose Alice attempts to make a malicious transaction T to deplete her balance.

2. By the 50% spending rule, the maximum amount Alice can send in T is BA

2 .

3. After T , Alice’s new balance B′
A is at least BA

2 .

4. If Bob detects malicious behavior, he can initiate a channel closure.

5. In the worst case (if Alice doesn’t cooperate), Bob must close the channel on-chain.

31

6. The on-chain closing cost is Cclose, which is less than BA

2 by design.

7. Therefore, even after paying Cclose, Bob is guaranteed to receive a positive balance from the
channel closure.

Thus, the 50% spending rule ensures that honest parties always have a profitable recourse to
close the channel, preventing griefing attacks. ■

This 50% spending rule, combined with the deterministic conflict resolution mechanism, provides
strong guarantees against various forms of malicious behavior in Overpass Channels.

6.5 ZK-SNARK Proofs and State Updates

At the core of Overpass Channels’ fraud prevention is the use of zk-SNARKs for validating state
updates.

Definition 13 (Valid State Update). A state update in Overpass Channels is considered valid if
and only if it is accompanied by a zk-SNARK proof that verifies:

1. The update transitions from a valid previous state to a valid new state.

2. The update follows all rules of the channel (e.g., balance changes, nonce increments).

3. The update is authorized by the appropriate parties.

Proof of Validity

Let’s formalize the proof of validity for state updates:

Theorem 21 (State Update Validity). Any state update in Overpass Channels that is accepted by
the network is guaranteed to be valid according to the channel rules.

Proof. Let S0 be the initial state of a channel, and S1 be the state after an update. The proof
proceeds as follows:

1. For the update S0 → S1 to be accepted, it must be accompanied by a zk-SNARK proof P .

2. P is generated using a circuit that encodes all channel rules, including:

(a) Balance consistency (as proved in the previous section)

(b) Proper nonce incrementing

(c) Signature verification

3. The verification of P is performed by all relevant parties (the recipient in a transaction, and
the network nodes during settlement).

4. By the soundness property of zk-SNARKs, if P verifies successfully, then with overwhelming
probability, the prover must know a valid witness satisfying all constraints in the circuit.

5. Therefore, if P is accepted, S1 must be a valid state reachable from S0 according to all channel
rules.

Thus, any accepted state update is guaranteed to be valid. ■

32

6.6 Cross-Shard Transaction Security

Overpass Channels leverages efficient cross-shard communication capabilities to ensure that cross-
shard transactions maintain the same security guarantees as intra-shard transactions.

Theorem 22 (Cross-Shard Security). Cross-shard transactions in Overpass Channels maintain the
same security guarantees as intra-shard transactions.

Proof. Let TA,B be a transaction from channel A in shard SA to channel B in shard SB . The
security of TA,B is ensured by:

1. A PLONKY2 proof PA verifying the validity of the transaction in SA

2. A PLONKY2 proof PB verifying the validity of the state update in SB

3. routing ensuring reliable message delivery between shards

The combination of these elements ensures that cross-shard transactions have the same security
properties as intra-shard transactions. ■

This cross-shard security mechanism allows Overpass Channels to maintain consistent secu-
rity guarantees across the entire network, regardless of the sharding structure of the underlying
blockchain.

6.7 Prevention of Old State Submission

One potential attack vector in channel-based systems is the submission of old, outdated states.
Overpass Channels prevents this through a combination of nonce usage, zk-SNARK proofs, and
smart contract capabilities.

Definition 14 (Nonce and Seqno). In Overpass Channels:

• A nonce is a monotonically increasing integer associated with each channel state, incremented
with each valid state update.

• Each channel contract stemming from the wallet contract is assigned a seqno, a capability
provided by smart contract system.

Theorem 23 (Old State Invalidation). In Overpass Channels, it is computationally infeasible to
submit an old state as a valid current state.

Proof. The proof proceeds by contradiction:

1. Assume an adversary can submit an old state Sold with nonce nold and seqno seqold as a valid
current state.

2. Let the actual current state be Scurrent with nonce ncurrent and seqno seqcurrent, where
ncurrent > nold and seqcurrent > seqold.

3. For Sold to be accepted, the adversary must provide a valid zk-SNARK proof Pold.

4. The zk-SNARK circuit includes checks that:

33

(a) The nonce in the new state is greater than the nonce in the old state.

(b) The seqno in the new state matches the current seqno of the channel contract.

5. Therefore, for Pold to verify, the adversary must know a witness w such that:

(a) w satisfies all constraints of the zk-SNARK circuit

(b) w includes a valid signature for Sold

(c) w demonstrates that nold > ncurrent

(d) w demonstrates that seqold = seqcurrent

6. However, (5c) contradicts the fact that ncurrent > nold, and (5d) contradicts seqcurrent >
seqold.

7. By the soundness property of zk-SNARKs and the monotonically increasing nature of the
seqno, finding such a witness w is computationally infeasible.

Therefore, submitting an old state as a valid current state is computationally infeasible in
Overpass Channels, reinforced by both the internal nonce mechanism and seqno capability. ■

It’s worth noting that Overpass Channels’ use of PLONKY2 for generating zk-SNARK proofs
provides additional security against old state submission attempts, as PLONKY2 offers strong
soundness guarantees without requiring a trusted setup.

6.8 Proof Consistency

Overpass Channels ensures that all proofs within the system are consistent with each other, pre-
venting conflicting updates.

Theorem 24 (Proof Consistency). In Overpass Channels, it is computationally infeasible to gen-
erate two valid, conflicting proofs for the same channel.

Proof. Let S0 be an initial channel state. Suppose an adversary attempts to generate two conflicting
proofs, P1 and P2, leading to different final states S1 and S2. The proof proceeds as follows:

1. For P1 and P2 to be valid, they must both prove transitions from S0 to their respective final
states.

2. The zk-SNARK circuit includes the hash of the initial state as a public input.

3. Therefore, P1 and P2 must use the same initial state hash.

4. The circuit also enforces that the nonce in the final state is exactly one more than the nonce
in the initial state.

5. Thus, S1 and S2 must have the same nonce.

6. The circuit enforces that for a given initial state and nonce, there is only one valid final state
(determined by the transaction details).

7. Therefore, for P1 and P2 to be simultaneously valid, S1 and S2 must be identical.

8. This contradicts the assumption that P1 and P2 lead to different final states.

Thus, it is computationally infeasible to generate two valid, conflicting proofs for the same
channel. ■

34

6.9 On-Chain Verification

While most operations in Overpass Channels occur off-chain, the system includes on-chain verifi-
cation as a final layer of fraud prevention.

Algorithm 11 On-Chain Verification of Channel Closure

1: procedure VerifyChannelClosure(channelID, finalState, proof)
2: storedState← GetStoredChannelState(channelID)
3: isV alid← VerifyZKSNARK(proof, finalState, storedState)
4: if isV alid then
5: UpdateChannelState(channelID, finalState)
6: DistributeFunds(channelID, finalState) return TRUE
7: else
8: RejectClosure(channelID) return FALSE
9: end if

10: end procedure

This on-chain verification serves as a crucial backstop against potential fraudulent activities,
ensuring that even if off-chain mechanisms fail, the on-chain state remains secure.

6.10 Elimination of Need for Watchtowers

Traditional payment channel networks often rely on watchtowers to monitor for fraudulent channel
closures. Overpass Channels have no need for such external monitoring through its use of zk-
SNARKs and on-chain verification.

Theorem 25 (Watchtower Redundancy). In Overpass Channels, participants can securely close
channels without relying on external watchtowers.

Proof. The proof proceeds by showing that any attempt at fraudulent channel closure will be
detected and prevented:

1. Let C be a channel between Alice and Bob, with current state Scurrent.

2. Suppose Alice attempts to fraudulently close C with an old state Sold.

3. To close the channel, Alice must submit to the on-chain contract:

(a) The final state Sold

(b) A zk-SNARK proof P that Sold is a valid state

4. The on-chain verification algorithm will:

(a) Verify the zk-SNARK proof P

(b) Check that the nonce in Sold is greater than the last known on-chain nonce

5. For the fraudulent closure to succeed, Alice must generate a valid proof P for Sold with a
nonce higher than Scurrent.

35

6. However, by the proof of the Old State Invalidation theorem, generating such a proof is
computationally infeasible.

7. Therefore, Alice’s fraudulent closure attempt will be rejected by the on-chain contract.

8. Bob can close the channel with Scurrent at any time, without needing to constantly monitor
the blockchain.

Thus, participants can securely close channels without relying on external watchtowers. ■

6.11 Cryptographic Proofs and Tamper-Evident Records

Overpass Channels maintains a cryptographically secure, tamper-evident record of all wallet states,
including their associated channel states and transactions. This is achieved through a combination
of sparse Merkle trees and zk-SNARKs.

Definition 15 (Wallet State Sparse Merkle Tree). For each wallet contract W , a sparse Merkle
tree TW is maintained where:

• Each leaf represents a channel state.

• The leaf value is the hash of the state: leafi = H(Si).

• The leaf’s position in the tree is determined by the channel’s SEQNO.

• The root of TW is included in each zk-SNARK proof.

Theorem 26 (Tamper-Evident Wallet and Channel History). Any tampering with the history of
wallet or channel states in Overpass Channels is detectable with overwhelming probability.

Proof. Let {S0, S1, . . . , Sn} be the sequence of states for wallet W and its associated channels. The
proof proceeds as follows:

1. Each state transition Si → Si+1 (whether a wallet state change or a channel state change) is
accompanied by a zk-SNARK proof Pi.

2. Pi includes:

(a) The Merkle root Ri of TW before the transition

(b) The Merkle root Ri+1 of TW after the transition

(c) A proof that Si+1 is a valid successor state to Si

3. The zk-SNARK circuit verifies:

(a) Ri is the correct Merkle root for TW including all states up to Si

(b) Ri+1 is the correct Merkle root for TW after updating Si+1

4. By the collision resistance property of the hash function H, finding two different states that
produce the same leaf value is computationally infeasible.

5. By the security properties of sparse Merkle trees, modifying any state in the history would
change the Merkle root.

36

6. Any change to a historical state Sj would invalidate all subsequent proofs Pk for k ≥ j, as
they would no longer have valid Merkle root transitions.

7. Generating new valid proofs for the modified history would require breaking the soundness of
the zk-SNARK system, which is assumed to be computationally infeasible.

Therefore, any tampering with the wallet or channel history is detectable with overwhelming
probability. ■

This tamper-evident property ensures that the entire history of a wallet and its associated
channels can be cryptographically verified, providing strong guarantees against historical fraud or
manipulation.

7 Transaction Processing and Conflict Resolution

Efficient transaction processing and robust conflict resolution mechanisms are crucial for the smooth
operation of Overpass Channels. This section delves into the details of how transactions are pro-
cessed and how potential conflicts are resolved in a deterministic and fair manner.

7.1 Transaction Processing

In Overpass Channels, transactions are processed off-chain within payment channels, with periodic
settlements on the blockchain. Let’s formalize the transaction processing mechanism:

Algorithm 12 Transaction Processing in Overpass Channels

1: procedure ProcessTransaction(sender, recipient, amount, channelID)
2: channel← GetChannelState(channelID)
3: oldState← channel.currentState
4: newState← ComputeNewState(oldState, sender, recipient, amount)
5: proof ← GenerateZKProof(oldState, newState, sender, amount)
6: signatureSender ← Sign(newState, sender.privateKey)
7: signatureRecipient← GetRecipientSignature(newState, recipient)
8: if VerifyZKProof(proof) ∧VerifySignatures(signatureSender, signatureRecipient) then
9: channel.currentState← newState

10: UpdateOffChainState(channelID, newState)
11: return SUCCESS
12: else
13: return FAILURE
14: end if
15: end procedure

This algorithm ensures that each transaction is validated cryptographically before being applied
to the channel state.

37

7.2 Assignment to Wallet Contracts

Each user in Overpass Channels is associated with a wallet contract on the blockchain. These wallet
contracts play a crucial role in managing channels and resolving conflicts.

Definition 16 (Wallet Contract). A wallet contract in Overpass Channels is a smart contract on
the blockchain that:

• Holds the user’s on-chain balance

• Manages the user’s participation in payment channels

• Handles channel opening, closing, and dispute resolution

8 Conditional Payments

8.1 Conditional Transactions using zk-SNARKs

Conditional transactions allow participants in Overpass Channels to transfer funds only when pre-
defined conditions are met. In this section, we present an approach to implement conditional
transactions using zk-SNARKs, enabling privacy-preserving, off-chain transaction processing.

Overview of zk-SNARK Conditional Transactions

In Overpass Channels, zk-SNARKs provide an efficient and privacy-preserving mechanism for con-
ditional payments. Conditional transactions can be triggered by various events, such as a task
completion, multi-signature approval, or external oracle data. These conditions are encoded in a
zk-SNARK proof, ensuring that conditions are met without revealing sensitive information about
the transaction.

Conditional Transaction Workflow

To illustrate the workflow of a conditional transaction using zk-SNARKs, consider the following
steps:

1. Condition Setup: Alice wants to send Bob 50 tokens, but only if Bob completes a task
(e.g., proving ownership of a document or a digital asset). The condition is encoded as a
cryptographic task that Bob must prove using zk-SNARKs.

2. Proof Generation: Bob generates a zk-SNARK proof, denoted as P , which proves that the
condition has been satisfied (e.g., task completion) without revealing any sensitive details.

3. Verification by Alice: Alice receives the zk-SNARK proof P from Bob. She verifies P using
the public verification key vk associated with the zk-SNARK circuit. If the proof is valid,
Alice releases the funds.

4. Off-Chain Execution: Since the transaction is off-chain, the state of the channel is updated
to reflect the new balances once the proof is verified. The zk-SNARK ensures that no sensitive
information, such as the task details or the exact condition, is revealed.

The zk-SNARK proof ensures that the conditional logic is satisfied without requiring interaction
with the blockchain until settlement.

38

zk-SNARK Circuit for Conditional Transactions

The zk-SNARK circuit for conditional transactions can be described as follows:

Algorithm 1: zk-SNARK Conditional Transaction Circuit

1. procedure ConditionalTxCircuit(cond, tx, sig, balance)

2. AssertConditionMet(cond) // Verify that the condition is met

3. AssertValidSignature(tx, sig) // Verify transaction signature

4. AssertSufficientBalance(balance, tx.amount) // Check balance

5. AssertCorrectStateUpdate(balance) // Update state correctly

6. end procedure

This circuit allows us to verify that the condition (e.g., task completion or oracle verification)
is satisfied before releasing funds, without revealing the actual details of the condition.

Use Cases for zk-SNARK Conditional Transactions

• Task-Driven Payments: Alice can set up a payment to Bob that is contingent upon Bob
completing a certain task or milestone. Bob generates a zk-SNARK proof demonstrating that
the task has been completed, allowing Alice to release the funds.

• Event-Based Transactions: Using oracles, a conditional payment can be triggered by an
external event (e.g., price movement of an asset, delivery confirmation) with a zk-SNARK
proof generated from oracle data.

• Multi-Signature Agreements: Multiple parties can approve a transaction by providing
zk-SNARK proofs that their conditions for approval have been met.

8.2 Hash Time-Locked Contracts (HTLC) in Overpass Channels

In addition to zk-SNARKs, Overpass Channels can implement Hash Time-Locked Contracts (HTLCs)
to facilitate simpler conditional payments. HTLCs allow payments to be contingent on both a cryp-
tographic condition (hash preimage) and a time constraint. This approach is particularly useful for
cross-channel payments and time-sensitive transactions.

Overview of HTLC

HTLCs are widely used in off-chain systems to enable conditional payments based on the revela-
tion of a secret (hash preimage). In Overpass Channels, HTLCs can be implemented to provide
conditional payments with automatic refund mechanisms based on timeouts.

HTLC Workflow

The process of creating an HTLC-based transaction is as follows:

1. Alice Initiates HTLC: Alice wants to send Bob 50 tokens if Bob can provide the preimage
X of a hash H(X). Alice creates an HTLC in the payment channel and locks the funds under
the condition that Bob must provide X within a certain time T .

39

2. Bob Reveals Preimage: If Bob can reveal the correct preimage X within the time T , he
provides it to Alice. Alice verifies that H(X) matches the hash condition.

3. Payment Finalization: Upon verifying the preimage X, Alice releases the 50 tokens to Bob,
completing the conditional transaction.

4. Timeout Mechanism: If Bob fails to provide the preimage X before time T expires, the
funds are returned to Alice automatically.

Algorithm for HTLC in Overpass Channels

The algorithm for setting up an HTLC in Overpass Channels is as follows:

Algorithm 2: HTLC Setup and Execution

1. procedure HTLCSetup(sender, receiver, amount, H(X), timeout)

2. Lock(amount) under condition: receiver must provide preimage X

3. Wait for receiver to reveal X

4. if H(X) is valid and X is correct:

5. Transfer funds to receiver

6. else if timeout has expired:

7. Refund funds to sender

8. end if

end procedure

Use Cases for HTLC in Overpass Channels

• Cross-Channel Payments: HTLCs allow Alice and Bob to securely make payments across
channels without trusting each other. If the condition is met, Bob can claim the payment.

• Refundable Payments: In scenarios where time-sensitive payments are required (e.g., online
escrow), HTLC ensures that funds are returned to the sender if conditions are not met within
a defined period.

• Atomic Swaps: HTLCs can facilitate atomic swaps between different blockchains or assets,
where each party provides a hash preimage to claim the assets.

Comparison of HTLC and zk-SNARK Conditional Transactions

HTLCs are a simple and effective mechanism for conditional payments where the conditions are
based on hash preimage and time. However, for more complex conditional logic that requires
privacy-preserving proofs, zk-SNARKs provide a more flexible solution.

9 Hierarchical Ordering and System-Level Efficiency

Overpass Channels employs a hierarchical structure to achieve system-level efficiency and scalability.
This section explores the different levels of this hierarchy and how they contribute to the overall
performance of the network.

40

Feature zk-SNARKs HTLCs
Privacy High, condition details are hidden Low, condition details are exposed
Flexibility Supports complex conditions Limited to hash and time-based conditions
Complexity High, requires cryptographic proof generation Low, simple cryptographic check
Use Cases Multi-sig, oracle-based, event-driven conditions Time-sensitive or hash preimage transactions

Table 2: Comparison between zk-SNARKs and HTLCs for Conditional Payments

9.1 Hierarchical Structure

The Overpass Channels network is organized into four main levels:

1. Payment Channel Contracts

2. Wallet Contracts

3. Intermediate Contracts

4. Root Contract

Let’s examine each level in detail:

Payment Channel Contracts

At the lowest level, payment channel contracts operate as child contracts of wallet contracts. Each
payment channel is unilateral, facilitating transactions in a single direction. If bidirectional pay-
ments are required between two parties, two separate unilateral channels can be established. These
channels are identified by unique SEQNO numbers, allowing for efficient management and reference
within the system.

Definition 17 (Payment Channel Contract). A payment channel contract in Overpass Channels is
a unilateral agreement facilitating off-chain transactions in a single direction, with periodic on-chain
settlements. It is identified by a unique SEQNO number within its parent wallet contract.

Theorem 27 (Channel Efficiency). The computational complexity of processing a transaction
within a channel is O(1) with respect to the total number of transactions in the network.

Proof. Let T be a transaction within channel C between Alice and Bob. The proof proceeds as
follows:

1. Processing T involves:

(a) Generating a zk-SNARK proof P

(b) Verifying P

(c) Updating the local channel state

2. The zk-SNARK proof generation and verification depend only on the circuit complexity, which
is constant for all transactions.

41

3. Updating the local channel state involves modifying a fixed number of variables (balances,
nonce, etc.).

4. None of these operations depend on the total number of transactions in the network.

Therefore, the computational complexity of processing T is O(1) with respect to the total number
of transactions in the network. ■

Wallet Contracts

Wallet contracts serve as the primary interface for users, managing their funds and initiating pay-
ment channels. Each wallet contract can create and oversee multiple payment channel contracts.

Definition 18 (Wallet Contract). A wallet contract in Overpass Channels is a smart contract that:

• Manages a user’s funds

• Initiates and oversees multiple payment channel contracts

• Interacts with intermediate contracts for state aggregation

Intermediate Contracts

Intermediate contracts form the next layer in the hierarchy. Each intermediate contract aggregates
state updates from multiple wallet contracts. This aggregation includes information about all pay-
ment channels associated with each wallet. By compiling data from numerous wallets, intermediate
contracts significantly reduce the computational load on the root contract.

Definition 19 (Intermediate Contract). An intermediate contract in Overpass Channels is a smart
contract that:

• Manages a subset of wallet contracts

• Aggregates state updates from these wallet contracts, including all associated payment channels

• Periodically submits aggregated updates to the root contract

• Is identified by a unique SEQNO number

Theorem 28 (Intermediate Contract Efficiency). The computational complexity of processing up-
dates in an intermediate contract is O(log w), where w is the number of wallet contracts managed
by the intermediate contract.

Proof. Let IC be an intermediate contract managing w wallet contracts. The proof proceeds as
follows:

1. IC maintains a Merkle tree T of wallet contract states.

2. For each wallet contract update:

(a) Verify the zk-SNARK proof (O(1))

(b) Update the corresponding leaf in T (O(log w))

42

(c) Recompute the Merkle root (O(log w))

3. Periodically, IC submits the new Merkle root to the root contract (O(1))

The dominant operation is updating the Merkle tree, which has a complexity of O(log w).
Therefore, the overall complexity of processing updates in IC is O(log w). ■

Off-chain Intermediate Contract Verification and Security

In the Overpass Channels system, Intermediate Contracts (ICs) are implemented as off-chain com-
ponents written in Rust, utilizing WASM bindgen for interoperability. This architecture, combined
with SNARK circuits for state transitions and epistemically redundant off-chain storage, presents
a unique security model:

1. Off-chain Execution: ICs execute off-chain, allowing for efficient and complex computations
without blockchain congestion.

2. SNARK Circuit Verification: Each state transition is encapsulated in a SNARK circuit,
providing cryptographic proof of correctness:

πtransition = GenerateProof(circuit, old state,new state, transition params)

3. Redundant Storage: State data is stored across multiple off-chain nodes with epistemic
redundancy, ensuring availability and integrity:

Reliability ∝ 1− (1− p)n

where p is the probability of a single node being available, and n is the number of redundant
nodes.

4. Verification Process: When a state transition occurs:

• The transition is computed off-chain.

• A SNARK proof πtransition is generated.

• The proof and new state are distributed to redundant storage nodes.

• Other participants can verify the proof to confirm the transition’s validity.

Security Analysis This off-chain model with SNARK-based verification offers several security
advantages:

• Cryptographic Verifiability: Every state transition is provably correct.

• Enhanced Privacy: Off-chain execution and SNARKs protect sensitive transaction details.

• Scalability: Off-chain processing allows for higher transaction throughput.

• Flexibility: Rust implementation enables complex logic beyond typical smart contract ca-
pabilities.

However, this model also presents unique challenges:

43

• Data Availability: Ensuring all verification data is consistently available.

• Synchronization: Maintaining consistency across all off-chain nodes.

• Finality Determination: Establishing clear rules for transaction finality in the absence of
global blockchain consensus.

Despite these challenges, the combination of SNARK-based verification, redundant off-chain
storage, and the flexibility of Rust implementation provides a robust security model. This approach
offers comparable, and in some aspects superior, security to traditional on-chain smart contracts,
particularly in terms of privacy and scalability.

Root Contract

At the apex of the Overpass Channels hierarchy is the root contract. This contract manages all
intermediate contracts, each identified by its SEQNO number. The root contract is responsible for
maintaining the global state of the entire network, processing the aggregated data from intermediate
contracts.

Definition 20 (Root Contract). A root contract in Overpass Channels is a smart contract that:

• Manages multiple intermediate contracts, each identified by its SEQNO number

• Maintains the global state of the network

• Handles final dispute resolution

Theorem 29 (Root Contract Scalability). The computational complexity of updating the global
state in the root contract is O(log m), where m is the number of intermediate contracts.

Proof. Let RC be the root contract managing m intermediate contracts. The proof proceeds as
follows:

1. RC maintains a Merkle tree Tglobal of intermediate contract states.

2. For each update from an intermediate contract:

(a) Verify the submitted Merkle root (O(1))

(b) Update the corresponding leaf in Tglobal (O(log m))

(c) Recompute the global Merkle root (O(log m))

The dominant operation is updating Tglobal, which has a complexity of O(log m).
Therefore, the overall complexity of updating the global state in RC is O(log m). ■

9.2 System-Level Efficiency

The hierarchical structure of Overpass Channels contributes to its overall efficiency and scalability.

44

Theorem 30 (System-Level Efficiency). The Overpass Channels network can process N transac-
tions with a total computational complexity of

O(N + logm logw)

, where N is the total number of transactions, m is the number of intermediate contracts, and w is
the average number of wallet contracts per intermediate contract.

Proof. Consider a network with N transactions, m intermediate contracts, and an average of w
wallet contracts per intermediate contract. The proof proceeds as follows:

1. Transaction Processing O(N): Each of the N transactions occurs within a specific chan-
nel, and each channel is managed by a wallet contract. The complexity of processing each
individual transaction is O(1), as it involves verifying the sender’s balance and updating the
channel state. Therefore, the total complexity for processing all N transactions is O(N).

2. Wallet State Updates O(N log c): Each transaction updates the state of a channel within
a wallet contract. Wallet contracts use a Merkle tree Twallet to store the state of all channels
they manage. Updating the state of a specific channel requires:

• Updating the corresponding leaf node in Twallet with the new state of the channel.

• Recomputing the Merkle root for Twallet.

If a wallet contract manages c channels on average, updating and recomputing the Merkle
root has a complexity of O(log c). As each of the N transactions requires updating Twallet,
the total complexity for updating wallet states is O(N log c).

3. Intermediate Contract Updates O(N logw): After a wallet contract processes transac-
tions and updates its local state, it submits the updated Merkle root to its parent intermediate
contract. Each intermediate contract maintains a Merkle tree Tintermediate to track the states
of the w wallet contracts it manages. Updating Tintermediate requires:

• Verifying the updated Merkle root of the wallet contract (which takes O(1)).

• Updating the corresponding leaf in Tintermediate (which takes O(logw)).

• Recomputing the Merkle root of Tintermediate (which also takes O(logw)).

The amortized cost of updating the intermediate contract state per transaction is O(logw).
Therefore, the total complexity of intermediate contract updates is O(N logw).

4. Global State Updates O(N logm): After an intermediate contract processes updates from
its wallet contracts, it submits its updated Merkle root to the root contract. The root contract
maintains a global Merkle tree Tglobal to track the states of the m intermediate contracts.
Updating Tglobal requires:

• Verifying the updated Merkle root of the intermediate contract (which takes O(1)).

• Updating the corresponding leaf in Tglobal (which takes O(logm)).

• Recomputing the global Merkle root (which also takes O(logm)).

45

The amortized cost of updating the global state per transaction is O(logm). Therefore, the
total complexity of global state updates is O(N logm).

Total Computational Complexity: Combining these results, the total computational com-
plexity for processing N transactions and maintaining the global state is:

O(N) +O(N log c) +O(N logw) +O(N logm) = O(N(log c+ logw + logm)).

Since c (the average number of channels per wallet) is typically much smaller than w (the number
of wallets per intermediate contract), we can simplify this to:

O(N(logw + logm)) = O(N log(mw)).

Thus, the total computational complexity is O(N log(mw)), where N is the number of transac-
tions, w is the average number of wallet contracts per intermediate contract, and m is the number
of intermediate contracts. ■

10 Storage Nodes and Data Management

10.1 Individual User Devices and Wallet Trees

In Overpass Channels, each user’s device is responsible for maintaining a single sparse Merkle tree
for the wallet contract. This tree tracks the states of all channel contracts associated with the
wallet, ensuring efficient and secure updates. These operations are supported by off-chain storage
nodes that form part of the Overpass system.

1. Sparse Merkle tree for the wallet contract: The wallet contract contains a sparse Merkle
tree where each leaf corresponds to the state of an associated channel contract, indexed by
its SEQNO.

2. Keys stored on user devices: The cryptographic keys required to manage and update the
wallet and its channels are securely stored on the user’s device.

3. Tree synchronization: When a channel contract’s state is updated, the corresponding leaf
in the wallet’s sparse Merkle tree is modified, and a new root is generated. This root and
its cryptographic proof are then submitted to the off-chain storage nodes for redundancy and
verification.

10.2 Periodic Channel Updates and Off-Chain Storage Nodes

The Overpass system relies on off-chain storage nodes for maintaining the periodic updates of
wallet contract states. These storage nodes store data redundantly and securely, ensuring efficient
retrieval and availability.

1. Storage nodes in the Overpass system: The storage nodes are responsible for storing
wallet contract roots and their associated proofs. They do not operate on the blockchain but
are instead a decentralized component of the Overpass off-chain system.

46

Algorithm 13 Wallet Update

1: procedure UpdateWalletTree(walletID, channelID, channelState)
2: tree← LoadWalletTree(walletID)
3: leafIndex← SEQNO(channelID)
4: leafV alue← Hash(channelState)
5: tree.update(leafIndex, leafV alue)
6: newRoot← tree.getRoot()
7: proof ← tree.generateProof(leafIndex)
8: return (newRoot, proof)
9: end procedure

2. Epidemic overlapping of shard data: The storage nodes follow a design of epidemic
overlapping, where each node stores data for a set number of intermediate contracts, and data
overlaps with other storage nodes. This redundancy ensures that the system is decentralized
and highly available.

3. Scalability and efficiency: The epidemic overlap mechanism allows the storage nodes to
efficiently store data without requiring all nodes to store everything. As the network grows, the
number of overlaps remains constant, preventing excessive storage demands and maintaining
decentralized redundancy.

Algorithm 14 Submit Wallet Update to Off-Chain Storage Nodes

1: procedure SubmitPeriodicUpdate(walletID,walletRoot)
2: proof ← GenerateProof(walletRoot)
3: storageNodes← GetAssociatedStorageNodes(walletID)
4: for all node ∈ storageNodes do
5: node.StoreWalletUpdate(walletID,walletRoot, proof)
6: end for
7: end procedure

10.3 Storage Nodes and Intermediate Contracts

Storage nodes also handle data related to intermediate contracts, which aggregate the states of
multiple wallet contracts. The epidemic overlapping mechanism ensures that intermediate contract
data is stored redundantly across the storage nodes, ensuring availability and resilience.

1. Storage of wallet roots: Off-chain storage nodes store the roots and proofs of wallet
contracts. These roots are retrieved by intermediate contracts for aggregation.

2. Intermediate contract aggregation: Intermediate contracts aggregate the states of several
wallet contracts. This aggregation involves computing a Merkle root over the stored wallet
contract roots, which is then redundantly stored across the storage nodes.

47

Algorithm 15 Intermediate Contract Data Aggregation

1: procedure AggregateIntermediateData(intermediateContractID)
2: walletContracts← GetAssociatedWalletContracts(intermediateContractID)
3: walletRoots← []
4: for all wallet ∈ walletContracts do
5: (root, proof)← RetrieveLatestWalletUpdate(wallet)
6: walletRoots.append((wallet, root, proof))
7: end for
8: intermediateRoot← ComputeMerkleRoot(walletRoots)
9: intermediateProof ← GenerateProof(intermediateRoot, walletRoots)

10: StoreIntermediateUpdate(intermediateContractID, intermediateRoot, intermediateProof)
11: end procedure

10.4 Root Contract and Global State

While the storage nodes operate off-chain, the root contract functions on the blockchain and plays
a key role in generating the global state of the network. The root contract aggregates data from all
intermediate contracts and periodically submits the global state on-chain in sharded blockchains.
This process ensures decentralized verification and availability of the network’s state.

The root contract also interacts with the storage nodes, retrieving the processed Merkle roots
and proofs for all intermediate contracts, which have been stored after aggregating the individual
wallet roots.

1. Global aggregation: The root contract retrieves the processed Merkle roots and proofs
from the storage nodes, where the intermediate contracts’ data is stored after the aggregation
of wallet roots. These intermediate contract roots are then aggregated to compute the global
Merkle root.

2. On-chain submission: The global root and its cryptographic proof are submitted on-chain
at the end of each epoch. This ensures that the entire network’s state is publicly verifiable
and tamper-proof, leveraging sharded blockchain for decentralized availability.

10.5 Why the Redundant Copy Attack is Pointless

Even if a malicious actor owned all the redundant copies of certain data, they wouldn’t be able to
exploit this because:

1. Challenging Mechanism:

• Each redundant copy of data can be challenged by other nodes or clients that still have
valid copies. If someone tries to modify the data or shut down a portion of the system,
the rest of the nodes can detect this inconsistency through the cryptographic proofs
(Merkle trees and zk-SNARKs).

• As you mentioned, the client still holds the original data and can provide the correct
proofs to invalidate any tampered version.

48

Algorithm 16 Global State Generation and Storage

1: procedure GenerateGlobalState
2: intermediateContracts← GetAllIntermediateContracts()
3: intermediateRoots← []
4: for all contract ∈ intermediateContracts do
5: (root, proof)← RetrieveIntermediateUpdateFromStorageNodes(contract)
6: intermediateRoots.append((contract, root, proof))
7: end for
8: globalRoot← ComputeGlobalMerkleRoot(intermediateRoots)
9: globalProof ← GenerateGlobalProof(globalRoot, intermediateRoots)

10: StoreGlobalState(globalRoot, globalProof)
11: SubmitGlobalStateOnChain(globalRoot, globalProof)
12: PruneOldGlobalStates()
13: end procedure

2. Hierarchical Structure:

• The leaves at one level of the hierarchy serve as the roots for the next level. This makes
it self-reinforcing, as the integrity of one level supports the integrity of the next.

• If a malicious actor were to try to corrupt a particular node, it would be immediately
caught by the mismatch in the hash values of the Merkle trees.

3. Automatic Slashing/Disconnection:

• In the case that a node tries to game the system (e.g., by withholding or tampering with
redundant data), the system has automatic penalties such as slashing or discon-
nection. This makes it economically unviable to attempt to manipulate the network,
as they would simply lose their stake and get removed from the system.

10.6 Gaining Control Over All Redundancies is Impractical

Even if someone controls all the redundant copies of a specific subset of data, this is impractical
for a few reasons:

• Scalability of the Network: The larger the network, the more difficult it is to control
all redundancies for any significant portion of data. The system is designed to distribute
redundancy across a wide array of nodes, meaning an attacker would need to control a massive
number of nodes to affect even a small subset of the network.

• Decentralized Nature of Redundancy: Data is stored redundantly across many nodes.
In order to ”own” all redundant copies, an attacker would have to compromise multiple nodes
at once, which is both logistically difficult and economically expensive. Moreover,
controlling a few nodes doesn’t provide any strategic advantage because the rest of the network
would quickly detect tampered data.

49

10.7 Hierarchical Security: Redundancy in the Network Itself

The hierarchical structure of Overpass Channels adds an extra layer of in-built security:

1. Each level validates the previous one: The cryptographic proofs at each level (leaf, root,
etc.) ensure that tampering at any level is detectable at the next. If a malicious actor
were to modify data at any level, the discrepancy would immediately be caught when other
nodes try to verify it.

2. No Single Point of Failure: Since data is distributed and redundantly stored, there is no
single point of failure. If one node fails or acts maliciously, others can step in to provide the
correct data, ensuring network reliability and integrity.

10.8 Client and On-Chain Challenge Mechanism

Finally, clients (or users) are always in control of their own data, and on-chain records serve as
a reliable source of truth. If a node attempts to tamper with off-chain data:

1. Clients can challenge the data directly using zk-SNARKs and Merkle proofs to demonstrate
the correct state.

2. On-chain records (such as root hashes) ensure that any off-chain modifications that don’t
match the on-chain state can be easily detected and corrected.

10.9 No Incentive for Attackers

Any potential attacker would face several hurdles:

• Cryptographic proofs make tampering virtually impossible without being detected.

• Immediate penalties such as slashing or disconnection.

• No strategic gain from controlling redundant data, as it’s easily challengeable by clients or
the network.

The inherent structure of Overpass Channels—leveraging cryptographic guarantees, decentral-
ization, and hierarchical Merkle trees—provides all the necessary protection. There is no real need
to add complexity, as redundancy is already secure, decentralized, and self-reinforcing.

In short, even if an attacker controls all redundant copies, the network’s design
ensures that any malicious actions will be swiftly detected and neutralized. The com-
bination of client-side control, automatic slashing, and robust proof mechanisms makes the system
resilient against manipulation.

10.10 Incentivizing and Maintaining via Staking and Battery Charging

Efficient and reliable storage is paramount for the Overpass Channels network to maintain data
redundancy, availability, and integrity. To ensure that storage nodes remain active, synchronized,
and trustworthy, Overpass Channels introduces a staking mechanism combined with a novel ”bat-
tery charging” system. This section elaborates on how staking enables participation as a storage
node and how the battery charging system incentivizes optimal node performance.

50

10.11 Staking to Become a Storage Node

Staking serves as both a commitment mechanism and an incentive structure, ensuring that storage
nodes have a vested interest in maintaining the network’s reliability and security.

Definition 21 (Storage Node Staking). Staking in Overpass Channels involves locking a certain
amount of tokens as collateral to become an authorized storage node. This stake acts as a security
deposit that can be forfeited in cases of malicious behavior or failure to maintain synchronization
and availability.

Theorem 31 (Staking as a Security Mechanism). Let S be the amount of tokens staked by a
storage node, and let B represent the node’s battery charge. The probability of a storage node
behaving maliciously is inversely proportional to S and directly proportional to B.

P (malicious behavior) ∝ B

S

Proof. 1. A higher stake S increases the financial loss incurred by malicious behavior, thereby
providing a stronger deterrent.

2. A higher battery charge B indicates better synchronization and availability, reducing the
likelihood of operational failures that could be exploited.

3. Therefore, the probability of malicious behavior increases with B (since a well-synced node
is more attractive for exploitation) and decreases with S (due to higher stakes discouraging mis-
conduct).

■

10.12 Battery Charging Mechanism for Storage Nodes

The ”battery charging” system is designed to dynamically adjust the operational status and incen-
tives of storage nodes based on their synchronization and overlap with other nodes. This mechanism
ensures that only reliable and well-synchronized nodes remain active, while underperforming nodes
are temporarily suspended and replaced.

Battery Charging Dynamics

The battery charging mechanism operates as follows:

• **Charging Up**: Storage nodes charge their batteries by maintaining precise synchronization
and overlapping with other storage nodes. The more nodes that overlap and synchronize, the
higher the charge rate.

• **Discharging**: If a storage node falls out of synchronization or fails to overlap accurately
with other nodes, its battery begins to discharge.

• **Thresholds**:

– **Optimal Charge**: 98% - 100% battery charge. Nodes within this range receive
maximum rewards.

– **High Charge**: 80% - 98% battery charge. Nodes in this range receive proportional
rewards based on their charge level.

51

– **Low Charge**: Below 80% battery charge. Nodes start to incur penalties and may
eventually be suspended if the charge depletes to 0%.

• **Suspension and Replacement**: If a storage node’s battery depletes to 0%, it is discon-
nected from the network and placed in a suspension status for a predefined duration. During
suspension, the node cannot participate until its battery is recharged above a certain thresh-
old. After suspension, the node can be replaced by another storage node through the staking
mechanism.

Algorithm: Battery Charging and Maintenance

Algorithm 17 Battery Charging and Maintenance for Storage Nodes

1: procedure UpdateBattery(nodeID, synchronizationStatus)
2: node← GetNode(nodeID)
3: if synchronizationStatus = Synchronized then
4: node.battery← min(node.battery + ∆C, 100) ▷ Charge up
5: else
6: node.battery← max(node.battery−∆D, 0) ▷ Discharge
7: end if
8: if node.battery = 0 then
9: SuspendNode(nodeID, duration)

10: ReplaceNode(nodeID)
11: else if node.battery ≥ 98 then
12: node.rewardMultiplier← 1.0 ▷ Max reward
13: else if node.battery ≥ 80 then
14: node.rewardMultiplier← node.battery

100 ▷ Proportional reward
15: else
16: node.rewardMultiplier← 0.0 ▷ No reward, potential penalty
17: end if
18: SaveNodeState(node)
19: end procedure

Charging Mechanics and Synchronization

Theorem 32 (Battery Charging Efficiency). The rate of battery charging is directly proportional
to the number of synchronized and overlapping storage nodes.

∆C ∝
n∑

i=1

Overlap(node, nodei)

Proof. 1. Each synchronized and overlapping node contributes to the charge rate of a storage node.
2. The cumulative effect of multiple overlapping nodes increases the overall charge rate propor-

tionally.
3. Therefore, the battery charging increment ∆C scales with the number of overlapping and

synchronized nodes.
■

52

Reward Distribution Based on Battery Charge

Algorithm 18 Reward Distribution to Storage Nodes

1: procedure DistributeRewards(transactionFees)
2: for all node ∈ ActiveNodes do
3: if node.battery ≥ 80 then
4: if node.battery ≥ 98 then
5: reward← transactionFees× 0.10 ▷ Max reward: 10%
6: else
7: reward← transactionFees×

(
0.10× node.battery

100

)
▷ Proportional reward

8: end if
9: Transfer(node.address, reward)

10: end if
11: end for
12: end procedure

Theorem 33 (Optimal Reward Incentivization). Storage nodes with battery charges between 98%
and 100% receive the maximum reward, incentivizing them to maintain high synchronization and
overlap.

Reward(node) =

Max Reward if 98 ≤ battery ≤ 100

Proportional Reward if 80 ≤ battery < 98

0 if battery < 80

Proof. 1. Nodes with battery charges ≥ 98% are optimally synchronized and overlapping, warrant-
ing maximum rewards to incentivize continued high performance.

2. Nodes with battery charges between 80% and 98% are sufficiently synchronized but may have
minor lapses, receiving proportional rewards to encourage maintaining higher synchronization.

3. Nodes below 80% battery charge are considered underperforming, receiving no rewards and
being subject to potential penalties or suspension to maintain overall network integrity.

4. This tiered reward structure aligns incentives with desired node behaviors, promoting optimal
synchronization and overlap across the network.

■

10.13 Battery Charging Interaction with Intermediate Contracts

The battery charging mechanism interacts seamlessly with intermediate contracts to ensure that
storage nodes maintain high levels of synchronization and reliability.

• **State Aggregation**: Intermediate contracts continuously aggregate state updates from
managed wallet contracts. The synchronization status of these updates directly influences the
battery charging rate of associated storage nodes.

• **Redundancy and Overlap**: As intermediate contracts manage multiple wallet contracts,
storage nodes responsible for these contracts benefit from redundancy. High overlap between

53

storage nodes’ responsibilities increases synchronization precision, thereby enhancing battery
charges.

• **Failure Mitigation**: If synchronization lapses occur, the discharging mechanism ensures
that underperforming nodes are identified and temporarily removed from active participation,
maintaining the network’s overall health.

10.14 Security and Robustness of the Battery Charging System

The battery charging system introduces additional layers of security and robustness to the Overpass
Channels network.

• Economic Incentives: By tying rewards to battery charge levels, storage nodes are eco-
nomically motivated to maintain high synchronization and overlap, reducing the likelihood of
intentional or accidental misbehavior.

• Redundancy through Overlapping Nodes: The overlapping storage nodes create a re-
dundant verification layer. Even if some nodes attempt to behave maliciously, the high battery
charges required to earn rewards ensure that only genuinely synchronized nodes remain in-
centivized.

• Automated Maintenance: The suspension and replacement mechanisms automatically
handle underperforming nodes, ensuring continuous network reliability without manual inter-
vention.

• Dynamic Adjustments: The system can dynamically adjust the reward multipliers and
suspension durations based on network conditions, maintaining an optimal balance between
incentives and penalties.

10.15 Implementation Considerations

Implementing the staking and battery charging system requires careful consideration of various
technical aspects to ensure seamless integration with Overpass Channels’ existing architecture.

1. Smart Contract Design:

• **Staking Contracts**: Manage the staking process, including lock-up periods, stake
withdrawals, and slashing conditions.

• **Battery Management Contracts**: Handle battery charge updates, reward distribu-
tions, and node suspensions.

2. Synchronization Monitoring: Develop robust mechanisms to monitor and assess the syn-
chronization status of storage nodes in real-time, feeding accurate data into the battery charg-
ing system.

3. Redundant Storage Coordination: Ensure that storage nodes correctly implement epis-
temic redundancy, maintaining synchronized copies across multiple nodes to facilitate accurate
battery charging and discharging.

54

4. Reward Distribution Logic: Implement efficient and secure reward distribution algorithms
that calculate and transfer rewards based on battery charge levels without introducing bot-
tlenecks or vulnerabilities.

5. Suspension and Replacement Protocols: Define clear protocols for suspending under-
performing nodes and replacing them with new storage nodes, ensuring minimal disruption
to the network.

6. Scalability and Performance Optimization: Optimize the staking and battery charging
mechanisms to handle large numbers of storage nodes without degrading network performance.

10.16 Potential Vulnerabilities and Mitigations

While the staking and battery charging system enhances network reliability and security, it intro-
duces potential vulnerabilities that must be addressed:

• Sybil Attacks: Malicious actors could attempt to create multiple storage nodes to gain
disproportionate rewards.

– Mitigation: Implement identity verification and staking requirements that make Sybil
attacks economically unviable.

• Battery Manipulation: Storage nodes might attempt to manipulate synchronization data
to artificially inflate battery charges.

– Mitigation: Employ cryptographic proofs (e.g., zk-SNARKs) to verify synchronization
without revealing sensitive data, ensuring that battery charges accurately reflect true
synchronization status.

• Network Partitioning: Temporary network splits could cause storage nodes to lose syn-
chronization, depleting their batteries and leading to unnecessary suspensions.

– Mitigation: Incorporate grace periods and allow for automatic battery recharge upon
re-synchronization, preventing long-term penalties from transient network issues.

• Economic Exploits: Nodes could collude to game the reward system, ensuring that their
batteries remain charged without providing genuine service.

– Mitigation: Design the reward mechanism to require independent verification of syn-
chronization and overlap, preventing collusion from bypassing actual service provision.

10.17 Integrating Beneficial MEV: Enabling Arbitrage without Compro-
mising Privacy

While Overpass Channels’ primary goal is to mitigate harmful MEV, integrating beneficial MEV
activities like arbitrage can enhance market efficiency. Below are mechanisms to support beneficial
arbitrage within Overpass Channels:

55

• Confidential Order Matching: Implement zk-SNARK-based order matching protocols
within payment channels. Arbitrageurs can execute trades based on aggregated market data
without accessing individual order details. zk-SNARK proofs verify that trades comply with
market rules without revealing transaction specifics.

• Aggregated Price Feeds: Utilize decentralized oracles to provide aggregated and anonymized
price feeds to payment channels. Arbitrageurs can identify and exploit price discrepancies
across different channels or exchanges based on these feeds without accessing underlying
transaction data.

• Incentive Structures for Arbitrageurs: Design incentive mechanisms that reward ar-
bitrageurs for maintaining market efficiency. Rewards can be encoded within zk-SNARK
proofs, ensuring that only legitimate arbitrage activities are compensated without disclosing
transaction specifics.

• Decoupled Execution and Settlement: Separate the execution of arbitrage transactions
from their settlement. Execution occurs within private channels using zk-SNARKs, while
settlement aggregates results on-chain in a privacy-preserving manner. This ensures that
arbitrage activities enhance market efficiency without introducing MEV vulnerabilities.

11 Incentivizing Storage Nodes

Efficient and reliable storage is paramount for the Overpass Channels network to maintain data
redundancy, availability, and integrity. To ensure that storage nodes remain active, synchronized,
and trustworthy, Overpass Channels introduces a staking mechanism combined with a novel ”bat-
tery charging” system. This section elaborates on how staking enables participation as a storage
node and how the battery charging system incentivizes optimal node performance.

11.1 Staking to Become a Storage Node

Staking serves as both a commitment mechanism and an incentive structure, ensuring that storage
nodes have a vested interest in maintaining the network’s reliability and security.

Definition 22 (Storage Node Staking). Staking in Overpass Channels involves locking a certain
amount of tokens as collateral to become an authorized storage node. This stake acts as a security
deposit that can be forfeited in cases of malicious behavior or failure to maintain synchronization
and availability.

Theorem 34 (Staking as a Security Mechanism). Let S be the amount of tokens staked by a
storage node, and let B represent the node’s battery charge. The probability of a storage node
behaving maliciously is inversely proportional to S and directly proportional to B.

P (malicious behavior) ∝ B

S

Proof. 1. A higher stake S increases the financial loss incurred by malicious behavior, thereby
providing a stronger deterrent.

2. A higher battery charge B indicates better synchronization and availability, reducing the
likelihood of operational failures that could be exploited.

56

3. Therefore, the probability of malicious behavior increases with B (since a well-synced node
is more attractive for exploitation) and decreases with S (due to higher stakes discouraging mis-
conduct).

■

11.2 Battery Charging Mechanism for Storage Nodes

The ”battery charging” system is designed to dynamically adjust the operational status and incen-
tives of storage nodes based on their synchronization and overlap with other nodes. This mechanism
ensures that only reliable and well-synchronized nodes remain active, while underperforming nodes
are temporarily suspended and replaced.

Battery Charging Dynamics

The battery charging mechanism operates as follows:

• **Charging Up**: Storage nodes charge their batteries by maintaining precise synchronization
and overlapping with other storage nodes. The more nodes that overlap and synchronize, the
higher the charge rate.

• **Discharging**: If a storage node falls out of synchronization or fails to overlap accurately
with other nodes, its battery begins to discharge.

• **Thresholds**:

– **Optimal Charge**: 98% - 100% battery charge. Nodes within this range receive
maximum rewards.

– **High Charge**: 80% - 98% battery charge. Nodes in this range receive proportional
rewards based on their charge level.

– **Low Charge**: Below 80% battery charge. Nodes start to incur penalties and may
eventually be suspended if the charge depletes to 0%.

• **Suspension and Replacement**: If a storage node’s battery depletes to 0%, it is discon-
nected from the network and placed in a suspension status for a predefined duration. During
suspension, the node cannot participate until its battery is recharged above a certain thresh-
old. After suspension, the node can be replaced by another storage node through the staking
mechanism.

Algorithm: Battery Charging and Maintenance

Charging Mechanics and Synchronization

Theorem 35 (Battery Charging Efficiency). The rate of battery charging is directly proportional
to the number of synchronized and overlapping storage nodes.

∆C ∝
n∑

i=1

Overlap(node, nodei)

57

Algorithm 19 Battery Charging and Maintenance for Storage Nodes

1: procedure UpdateBattery(nodeID, synchronizationStatus)
2: node← GetNode(nodeID)
3: if synchronizationStatus = Synchronized then
4: node.battery← min(node.battery + ∆C, 100) ▷ Charge up
5: else
6: node.battery← max(node.battery−∆D, 0) ▷ Discharge
7: end if
8: if node.battery = 0 then
9: SuspendNode(nodeID, duration)

10: ReplaceNode(nodeID)
11: else if node.battery ≥ 98 then
12: node.rewardMultiplier← 1.0 ▷ Max reward
13: else if node.battery ≥ 80 then
14: node.rewardMultiplier← node.battery

100 ▷ Proportional reward
15: else
16: node.rewardMultiplier← 0.0 ▷ No reward, potential penalty
17: end if
18: SaveNodeState(node)
19: end procedure

Proof. 1. Each synchronized and overlapping node contributes to the charge rate of a storage node.
2. The cumulative effect of multiple overlapping nodes increases the overall charge rate propor-

tionally.
3. Therefore, the battery charging increment ∆C scales with the number of overlapping and

synchronized nodes.
■

Reward Distribution Based on Battery Charge

Algorithm 20 Reward Distribution to Storage Nodes

1: procedure DistributeRewards(transactionFees)
2: for all node ∈ ActiveNodes do
3: if node.battery ≥ 80 then
4: if node.battery ≥ 98 then
5: reward← transactionFees× 0.10 ▷ Max reward: 10%
6: else
7: reward← transactionFees×

(
0.10× node.battery

100

)
▷ Proportional reward

8: end if
9: Transfer(node.address, reward)

10: end if
11: end for
12: end procedure

58

Theorem 36 (Optimal Reward Incentivization). Storage nodes with battery charges between 98%
and 100% receive the maximum reward, incentivizing them to maintain high synchronization and
overlap.

Reward(node) =

Max Reward if 98 ≤ battery ≤ 100

Proportional Reward if 80 ≤ battery < 98

0 if battery < 80

Proof. 1. Nodes with battery charges ≥ 98% are optimally synchronized and overlapping, warrant-
ing maximum rewards to incentivize continued high performance.

2. Nodes with battery charges between 80% and 98% are sufficiently synchronized but may have
minor lapses, receiving proportional rewards to encourage maintaining higher synchronization.

3. Nodes below 80% battery charge are considered underperforming, receiving no rewards and
being subject to potential penalties or suspension to maintain overall network integrity.

4. This tiered reward structure aligns incentives with desired node behaviors, promoting optimal
synchronization and overlap across the network.

■

11.3 Battery Charging Interaction with Intermediate Contracts

The battery charging mechanism interacts seamlessly with intermediate contracts to ensure that
storage nodes maintain high levels of synchronization and reliability.

• **State Aggregation**: Intermediate contracts continuously aggregate state updates from
managed wallet contracts. The synchronization status of these updates directly influences the
battery charging rate of associated storage nodes.

• **Redundancy and Overlap**: As intermediate contracts manage multiple wallet contracts,
storage nodes responsible for these contracts benefit from redundancy. High overlap between
storage nodes’ responsibilities increases synchronization precision, thereby enhancing battery
charges.

• **Failure Mitigation**: If synchronization lapses occur, the discharging mechanism ensures
that underperforming nodes are identified and temporarily removed from active participation,
maintaining the network’s overall health.

11.4 Security and Robustness of the Battery Charging System

The battery charging system introduces additional layers of security and robustness to the Overpass
Channels network.

• Economic Incentives: By tying rewards to battery charge levels, storage nodes are eco-
nomically motivated to maintain high synchronization and overlap, reducing the likelihood of
intentional or accidental misbehavior.

• Redundancy through Overlapping Nodes: The overlapping storage nodes create a re-
dundant verification layer. Even if some nodes attempt to behave maliciously, the high battery
charges required to earn rewards ensure that only genuinely synchronized nodes remain in-
centivized.

59

• Automated Maintenance: The suspension and replacement mechanisms automatically
handle underperforming nodes, ensuring continuous network reliability without manual inter-
vention.

• Dynamic Adjustments: The system can dynamically adjust the reward multipliers and
suspension durations based on network conditions, maintaining an optimal balance between
incentives and penalties.

11.5 Implementation Considerations

Implementing the staking and battery charging system requires careful consideration of various
technical aspects to ensure seamless integration with Overpass Channels’ existing architecture.

1. Smart Contract Design:

• **Staking Contracts**: Manage the staking process, including lock-up periods, stake
withdrawals, and slashing conditions.

• **Battery Management Contracts**: Handle battery charge updates, reward distribu-
tions, and node suspensions.

2. Synchronization Monitoring: Develop robust mechanisms to monitor and assess the syn-
chronization status of storage nodes in real-time, feeding accurate data into the battery charg-
ing system.

3. Redundant Storage Coordination: Ensure that storage nodes correctly implement epis-
temic redundancy, maintaining synchronized copies across multiple nodes to facilitate accurate
battery charging and discharging.

4. Reward Distribution Logic: Implement efficient and secure reward distribution algorithms
that calculate and transfer rewards based on battery charge levels without introducing bot-
tlenecks or vulnerabilities.

5. Suspension and Replacement Protocols: Define clear protocols for suspending under-
performing nodes and replacing them with new storage nodes, ensuring minimal disruption
to the network.

6. Scalability and Performance Optimization: Optimize the staking and battery charging
mechanisms to handle large numbers of storage nodes without degrading network performance.

11.6 Integrating Beneficial MEV: Enabling Arbitrage without Compro-
mising Privacy

Integrating beneficial MEV activities like arbitrage can enhance market efficiency. Below are mech-
anisms to support beneficial arbitrage within Overpass Channels:

• Confidential Order Matching: Implement zk-SNARK-based order matching protocols
within payment channels. Arbitrageurs can execute trades based on aggregated market data
without accessing individual order details. zk-SNARK proofs verify that trades comply with
market rules without revealing transaction specifics.

60

• Aggregated Price Feeds: Utilize decentralized oracles to provide aggregated and anonymized
price feeds to payment channels. Arbitrageurs can identify and exploit price discrepancies
across different channels or exchanges based on these feeds without accessing underlying
transaction data.

• Incentive Structures for Arbitrageurs: Design incentive mechanisms that reward ar-
bitrageurs for maintaining market efficiency. Rewards can be encoded within zk-SNARK
proofs, ensuring that only legitimate arbitrage activities are compensated without disclosing
transaction specifics.

• Decoupled Execution and Settlement: Separate the execution of arbitrage transactions
from their settlement. Execution occurs within private channels using zk-SNARKs, while
settlement aggregates results on-chain in a privacy-preserving manner. This ensures that
arbitrage activities enhance market efficiency without introducing MEV vulnerabilities.

12 Hierarchical Sparse Merkle Trees in Overpass Channels

In Overpass Channels, sparse Merkle trees are employed at multiple levels of the system to manage
state updates efficiently, securely, and with minimal data overhead. These trees are particularly
well-suited for scenarios where most potential data entries (leaves) are empty, ensuring that even
in sparse configurations, proofs remain compact and efficient.

Sparse Merkle trees enable the Overpass system to achieve a high level of scalability and effi-
ciency, especially when combined with off-chain storage nodes and the decentralized structure of
the blockchain for global state verification.

12.1 Benefits of Sparse Merkle Trees in Overpass Channels

The use of sparse Merkle trees in Overpass Channels provides several distinct advantages:

1. Compact Proofs and Constant Size: Sparse Merkle trees allow for constant-sized proofs
regardless of the number of leaves (or channels) in the tree. This is critical in Overpass
Channels, as it ensures that the submission of proofs remains efficient even as the network
grows. Each proof, whether for a wallet contract or the global state, involves only recalculating
the path from a specific leaf to the root.

2. Efficient State Updates: Sparse Merkle trees enable O(log n) complexity for updates,
meaning that only the path from the affected leaf to the root needs to be recalculated when a
state changes. In the context of Overpass Channels, this allows for incremental updates when
a channel contract state changes, ensuring that the system remains scalable and responsive.

3. Proof of Integrity: Any alteration in a channel’s state is immediately reflected in the
corresponding wallet’s Merkle tree root. This ensures data integrity at every level of the
hierarchy, as any modification

to a wallet or channel contract would trigger a corresponding update in the global state. The
ability to trace any change back to its root provides robust security guarantees.

61

4. Sparse Data Handling: Sparse Merkle trees are designed to handle cases where most leaves
are unoccupied. This feature is particularly useful for Overpass Channels, where the number
of possible channel contracts is vast, but only a subset may be active at any given time. The
system is able to efficiently manage and verify these active states without the need to store
or process large amounts of empty data.

5. Redundant and Decentralized Storage: In conjunction with off-chain storage nodes, the
Merkle tree structure enables redundant and decentralized storage. Intermediate and wallet
contract roots are stored across multiple nodes with epidemic overlap, allowing for redundancy
and resilience in the system without each node needing to store all data. The efficient and
decentralized nature of this storage ensures that the network remains robust as it scales.

12.2 Application of Sparse Merkle Trees in the Overpass Hierarchy

Sparse Merkle trees play a critical role in the multi-tiered architecture of Overpass Channels:

• At the wallet contract level, the tree tracks the state of associated channels.

• At the intermediate contract level, the Merkle roots of several wallet contracts are aggregated.

• Finally, at the root contract level, the global Merkle tree is computed and submitted on-chain,
ensuring that the entire system’s state remains verifiable and transparent.

The constant-size nature of the global root submission ensures that even as the network grows
in size, the cost of verifying and submitting the global state remains predictable and efficient.

13 Implementation Considerations

Implementing Overpass Channels requires careful consideration of several technical aspects. This
section outlines key implementation details and provides pseudocode for critical components.

13.1 Merkle Tree Structure

Overpass Channels uses a Merkle tree to efficiently represent the state of all channels. Here’s a
high-level implementation of the Merkle tree structure:

This Merkle tree structure allows for efficient updates and verifications of channel states.

13.2 zk-SNARK Circuit

The zk-SNARK circuit for Overpass Channels must encode the logic for valid state transitions.
Here’s a simplified representation of the circuit:

This circuit ensures that all state transitions in Overpass Channels are valid and authorized.

13.3 Minimal Cross-Shard Data

To minimize cross-shard communication overhead, Overpass Channels uses a compact representa-
tion for cross-shard transactions that includes both ‘shardID‘ and ‘workchainID‘:

62

Algorithm 21 Merkle Tree for Overpass Channels

1: procedure UpdateMerkleTree(channelID, newState)
2: leaf ← Hash(channelID ∥ newState)
3: path← GetMerklePath(channelID)
4: newRoot← ComputeNewRoot(leaf, path)
5: UpdateRoot(newRoot)
6: end procedure
7: function VerifyChannelState(channelID, state, proof)
8: leaf ← Hash(channelID ∥ state)
9: root← GetCurrentRoot()

10: return VerifyMerkleProof(leaf, root, proof)
11: end function

Algorithm 22 zk-SNARK Circuit for Overpass Channels

1: procedureChannelTransitionCircuit(seqno, oldState, newState, tx, signature, oldNonce, newNonce)
2: AssertChannelSeqnoMatch(seqno, oldState.seqno, newState.seqno)
3: AssertValidSignature(tx, signature)
4: AssertValidBalanceTransition(oldState, newState, tx)
5: AssertValidNonceIncrement(oldNonce, newNonce)
6: AssertValidStateTransition(oldState, newState)
7: end procedure

Algorithm 23 Cross-Shard Transaction Encoding

1: function EncodeCrossShardTx(tx, proof, workchainID, shardID)
2: encodedTx← Hash(tx)
3: encodedProof ← CompressZKProof(proof)
4: return encodedTx ∥ encodedProof ∥ workchainID ∥ shardID
5: end function
6: function DecodeCrossShardTx(encodedData)
7: encodedTx, encodedProof, workchainID, shardID ← Split(encodedData)
8: tx← LookupTx(encodedTx)
9: proof ← DecompressZKProof(encodedProof)

10: return tx, proof, workchainID, shardID
11: end function

63

13.4 Integration

Integrating Overpass Channels involves creating smart contracts that can interact with the Overpass
Channels system:

Algorithm 24 Smart Contract for Overpass Channels

1: procedure ProcessOverpassTx(encodedTx, proof)
2: tx, decodedProof ← DecodeCrossShardTx(encodedTx)
3: isV alid← VerifyZKProof(decodedProof, tx)
4: if isV alid then
5: UpdateChannelState(tx)
6: EmitEvent(”ChannelUpdated”, tx)
7: else
8: RevertTransaction()
9: end if

10: end procedure

This smart contract serves as the interface between and Overpass Channels, ensuring that all
channel operations are properly verified and recorded on the blockchain.

By carefully implementing these components, Overpass Channels can be seamlessly integrated
with, providing a powerful, scalable, and privacy-preserving payment solution.

14 Tokenomics

The tokenomics of Overpass Channels are designed to ensure network stability, incentivize partic-
ipation, and maintain a balanced ecosystem. This section outlines the key aspects of the token
distribution and utility.

14.1 Fixed Supply and Initial Distribution

Overpass Channels employs a fixed supply model, with all tokens minted at genesis. This approach
aligns with the constant balance theorem, facilitating accurate tracking of token movement within
the system.

• Total Supply: 100 billion tokens

• Initial Distribution:

– 70% (70 billion tokens) to be airdropped

– 20% (20 billion tokens) allocated to Treasury/Governance

– 10% (10 billion tokens) distributed between the team, investors, and advisors

The airdrop distribution strategy aims to ensure wide token distribution and foster community
engagement. Specific details of the airdrop mechanism will be announced at a later date.

64

14.2 Governance and Treasury

The 20% allocation (20 billion tokens) to governance and treasury functions enables decentralized
decision-making and sustainable ecosystem development.

• Governance and Treasury Allocation: 20 billion tokens (20% of total supply)

The treasury, operated by the governance mechanism, plays a crucial role in managing the
ecosystem’s resources, funding future developments, and ensuring long-term sustainability.

14.3 Token Utility and Fee Structure

Overpass Channels implements a balanced fee structure that supports various components of the
network:

Reserve Status

Tokens that are designated as ”burned” are not permanently removed from circulation. Instead,
they enter a reserve status within the treasury. These reserved tokens serve multiple purposes:

• Provide liquidity for system operations

• Fund future developments and improvements

• Support the ecosystem’s long-term sustainability

Off-Chain Storage Node Compensation

A portion of transaction fees is allocated to compensate off-chain storage nodes, which are essential
for the Overpass system’s efficient operation.

L1 Node Compensation

Supporting L1 nodes that accept and store the global root also receive a share of the transaction
fees.

14.4 Fee Distribution

Transaction fees are divided into three main categories:

1. Recycling to Reserve: A portion returns to the treasury’s reserve status for future ecosystem
funding and development.

2. Off-Chain Node Payments: Compensates the off-chain storage nodes in the Overpass system.

3. On-Chain Node Payments: A small portion goes to on-chain L1 nodes for global root storage
and processing.

This balanced approach ensures the sustainability of the network, incentivizes crucial infras-
tructure providers, and maintains a flexible token supply that can be utilized for the ecosystem’s
ongoing needs and future growth.

65

15 Wallet-Managed Channel Grouping

The wallet application will handle the grouping of channels on the user side, while still using
the underlying payment channels for transactions and zk-SNARK proofs on-chain. This approach
simplifies things for both the user and the system.

15.1 Key Components of the Wallet Interface

Group-Based UI (Checking, Savings, Custom Accounts)

• The grouping logic is only a UI/UX feature in the wallet.

• Users can assign channels to different groups like Checking, Savings, or Custom at the interface
level. However, this grouping will not affect how the channels are structured on-chain.

• The wallet will simply aggregate and display balances from these groupings as a single total
balance (or split by groups), without involving smart contracts in the process.

Interaction with Channels

• When a user performs a transaction (sending funds or opening a channel), the wallet will
route the transaction through the selected group but keep all channel interactions on-chain
as individual channels.

• The underlying contract will remain the same (i.e., a standard payment channel), but the
user will be able to choose the group from the wallet interface, making it feel like they are
interacting with different ”accounts.”

15.2 How the Wallet Should Work

• UI Level Grouping: Users assign channels to different groups (Checking, Savings, Custom)
within the wallet interface. The groups are simply tags or filters applied to the channels, with
no on-chain changes required.

• Total Balance Calculation: The wallet calculates a total balance from all the payment
channels associated with a user. It presents this balance as unified for the user but keeps the
actual channel details hidden unless the user wants to see a breakdown.

• Transaction Process: When the user initiates a transaction, they select the group (Check-
ing, Savings, or Custom) from which they want to send funds. The wallet then pulls the
appropriate funds from the corresponding channels but groups the logic only within the UI.

15.3 Updated Example Code for Wallet-Level Grouping

UI Grouping Module

This module defines how channels are grouped in the wallet without affecting the underlying smart
contracts.

66

// groupUIManager.js

class GroupUIManager {

constructor () {

this.groups = {

checking: [],

savings: [],

custom: []

};

}

// Assign a channel to a UI group (Checking , Savings , Custom)

assignChannelToGroup(channelId , groupType) {

switch (groupType) {

case ’Checking ’:

this.groups.checking.push(channelId);

break;

case ’Savings ’:

this.groups.savings.push(channelId);

break;

case ’Custom ’:

this.groups.custom.push(channelId);

break;

default:

throw new Error(‘Unknown group type: ${groupType }‘);
}

}

// Retrieve group balances for the UI

async getGroupBalances () {

const checkingBalance = await this.getGroupBalance(’Checking ’);

const savingsBalance = await this.getGroupBalance(’Savings ’);

const customBalance = await this.getGroupBalance(’Custom ’);

return {

breakdown: {

checking: checkingBalance ,

savings: savingsBalance ,

custom: customBalance

},

totalBalance: checkingBalance + savingsBalance + customBalance ,

};

}

// Example to get the balance of all channels in a group

async getGroupBalance(groupType) {

const group = this.groups[groupType.toLowerCase ()];

let total = 0;

for (const channelId of group) {

total += await blockchain.getChannelBalance(channelId);

}

return total;

}

}

export default new GroupUIManager ();

67

Transaction Flow Module

This module handles the interaction with the blockchain when the user initiates a transaction. It
routes the transaction based on the selected group.

// transactionManager.js

import groupUIManager from ’./ groupUIManager ’;

class TransactionManager {

async initiateTransaction(amount , groupType) {

const group = await groupUIManager.getGroupBalance(groupType);

if (group < amount) {

throw new Error(’Insufficient␣funds␣in␣the␣selected␣group’);

}

// Select the appropriate channels and send the transaction via blockchain

const channels = groupUIManager.groups[groupType.toLowerCase ()];

const transactionResult = await blockchain.submitTransaction(channels ,

↪→ amount);

return transactionResult;

}

}

export default new TransactionManager ();

15.4 Optimized UX/UI

• Balance Display: The wallet interface shows the user their total balance across all groups
(Checking, Savings, Custom) but also allows them to see detailed group breakdowns if they
choose.

• Transaction Process: When users initiate transactions, they select a group in the UI, and
the wallet handles the details of which channels to use and how much liquidity is available in
each.

By keeping the grouping logic in the wallet interface and not on-chain, the complexity is reduced.
The wallet simply filters and displays channels as groups, but the underlying wallet contracts handle
all the zk-SNARK proofs and rebalancing as needed. The grouping is purely for the user’s ease of
interaction, and the contract logic remains simple, efficient, and secure.

16 Analysis

16.1 Censorship Resistance in Overpass Channels

The censorship resistance in Overpass Channels is fundamentally different from other systems due
to its unique architecture. Let’s clarify this:

Theorem 37 (Overpass Channels Censorship Impossibility). In the Overpass Channels system, it
is computationally infeasible for any entity or group of entities to censor individual transactions.

Proof. The proof proceeds as follows:
1) Transactions in Overpass Channels are processed entirely off-chain within individual channels.
2) The network nodes do not see or process individual transactions. Instead, they only receive:

68

• Merkle tree roots representing batches of transactions (epochs)

• zk-SNARK proofs verifying the validity of state transitions

3) For a transaction T to be censored, one of the following must occur:

• Prevention of T ’s inclusion in the Merkle tree.

• Rejection of a valid Merkle root containing T .

• Rejection of a valid zk-SNARK proof for an epoch including T .

4) (3a) is impossible because Merkle tree construction is done locally by channel participants.
5) (3b) is computationally infeasible because:

• Nodes cannot distinguish which transactions are included in a Merkle root.

• Rejecting a valid Merkle root would require rejecting all transactions in an epoch.

6) (3c) is computationally infeasible because:

• zk-SNARK proofs reveal no information about individual transactions.

• Rejecting a valid proof would require rejecting an entire epoch of transactions.

7) Any attempt to censor by rejecting epochs would result in rejecting all transactions, including
legitimate ones, which is not in the nodes’ interest.

Therefore, censorship of individual transactions in Overpass Channels is computationally infea-
sible. ■

This proof demonstrates that the Overpass Channels system achieves censorship resistance
through its architecture, which makes it impossible for nodes to target individual transactions
for censorship. The privacy-preserving nature of the system, combined with the batching of trans-
actions into epochs, ensures that no entity can selectively censor transactions without disrupting
the entire network.

Comparison with Other Systems

To further illustrate the unique censorship resistance of Overpass Channels, let’s compare it with
other systems:

1. Bitcoin and other PoW blockchains:

• Miners can potentially censor transactions by excluding them from blocks.

• Requires a majority of miners to collude for effective censorship.

2. Layer 2 solutions (e.g., Rollups):

• Sequencers or operators can potentially censor by excluding transactions.

• Often rely on centralized components that are vulnerable to censorship pressure.

3. Overpass Channels:

69

• Nodes cannot see or process individual transactions.

• Censorship attempts would require rejecting entire epochs of transactions.

• No centralized components that could be targeted for censorship.

Theorem 38 (Overpass Channels Superior Censorship Resistance). Overpass Channels provides
stronger censorship resistance than existing blockchain and Layer 2 solutions.

Proof. Let pc(S) be the probability of successful censorship in system S. The proof proceeds as
follows:

1) For Bitcoin: pc(BTC) > 0, as a majority of miners could potentially censor transactions.
2) For Layer 2 solutions: pc(L2) > 0, due to centralized components vulnerable to censorship.
3) For Overpass Channels:

pc(OC) ≈ 0

as censorship would require rejecting entire epochs, which is against the economic interests of nodes.
4) Therefore:

pc(OC) < pc(BTC) and pc(OC) < pc(L2)

Thus, Overpass Channels provides superior censorship resistance compared to existing solutions.
■

16.2 Scalability and Performance

Given the unique architecture of Overpass Channels, it’s important to revisit our scalability and
performance analysis to ensure accuracy.

Theorem 39 (Overpass Channels Scalability). The transaction throughput of Overpass Channels
scales linearly with the number of channels, with each channel capable of processing transactions
independently.

Proof. Let:

• n be the number of channels in the network

• Tc be the throughput of a single channel

• Ttotal be the total network throughput

The proof proceeds as follows:

1. Each channel operates independently, processing transactions off-chain.

2. The throughput of the network is the sum of the throughputs of all channels:

Ttotal =

n∑
i=1

Tci

3. Assuming an average throughput per channel, this simplifies to:

Ttotal = n · Tc

70

4. As n increases, Ttotal increases linearly.

5. The only limitation on n is the capacity of the underlying blockchain to process epoch com-
mitments.

Therefore, Overpass Channels exhibits linear scalability with respect to the number of channels. ■

16.3 Potential Transaction Throughput

Given this architecture, the system’s transaction throughput potential is significant:

1. Channel transactions: Each unilateral channel can process transactions near-instantaneously,
limited only by the user’s device capabilities and network latency.

2. Aggregation at intermediate level: Intermediate contracts can manage a large number
of wallet roots, potentially thousands or tens of thousands.

3. Root contract aggregation: The root contract can combine multiple intermediate roots,
further increasing the scalability.

16.4 Factors Affecting TPS

Several factors influence the overall transactions per second (TPS) of the system:

1. ZKP generation time: The speed of generating and verifying ZKPs on user devices will
impact individual channel throughput.

2. Off-chain storage capacity: The ability of decentralized storage nodes to handle concurrent
updates and queries.

3. Intermediate contract capacity: The number of wallet roots each intermediate contract
can efficiently manage.

4. Root contract updates: The frequency at which the root contract can update the on-chain
state.

5. Blockchain limitations: The underlying blockchain’s capacity to process root contract
updates.

16.5 Estimated Throughput

While it’s challenging to provide an exact TPS without specific implementation details, we can
make some educated estimates:

1. Per-channel TPS: Potentially thousands per second, limited by ZKP generation and veri-
fication speed.

2. System-wide TPS: Millions to billions per second off-chain, depending on the number of
active channels and intermediate contracts.

3. On-chain TPS: Limited by the underlying blockchain, but each on-chain transaction repre-
sents a large number of off-chain transactions.

71

16.6 System Architecture

The Overpass Channels system architecture consists of several key components:

1. User-controlled channels: Each user manages their own unilateral channels via their client-
side device.

2. Sparse Merkle trees: Used to generate Zero-Knowledge Proofs (ZKPs) for each transaction
in the channels.

3. Smart contract hierarchy:

• Wallet contract (parent)

• Unilateral channel contracts (children)

4. Off-chain storage: Decentralized nodes store proofs and Merkle roots.

5. Intermediate contracts: Aggregate wallet roots into a single Merkle tree.

6. Root contract: Combines all intermediate roots and submits the final root to the blockchain.

16.7 Optimizing the System

To maximize throughput, several optimization strategies can be employed:

1. Optimize ZKP generation and verification algorithms.

2. Implement efficient data structures for Merkle tree management.

3. Design a robust off-chain storage system with high concurrency.

4. Carefully balance the number of channels per intermediate contract.

5. Implement batching and aggregation techniques at each level.

This system has the potential for extremely high off-chain TPS, limited primarily by the com-
putational resources of user devices and the capacity of the off-chain storage network. The on-chain
bottleneck is significantly reduced, as only aggregate roots need to be recorded on the blockchain
periodically.

17 Efficiency and Cost Analysis

The efficiency of Overpass Channels in terms of cost per transaction and energy consumption is a
key advantage over existing systems, while also providing incentives for network participants.

Theorem 40 (Overpass Channels Efficiency). Overpass Channels achieves a lower cost per transac-
tion and energy consumption compared to traditional blockchain systems and most Layer 2 solutions,
while maintaining a balanced fee structure for network sustainability.

Proof. Let:

• COC be the cost per transaction in Overpass Channels

72

• EOC be the energy consumption per transaction in Overpass Channels

• N be the number of transactions in an epoch

• Con−chain be the cost of an on-chain epoch commitment

• Eoff−chain be the energy consumption of an off-chain transaction

• Fstorage be the fee for off-chain storage nodes

• FL1 be the fee for participating L1 nodes

• Fburn be the burn fee allocated to the treasury

The proof proceeds as follows:
1) Cost per transaction in Overpass Channels:

COC =
Con−chain

N
+ Fstorage + FL1 + Fburn + ϵ

where ϵ is the negligible cost of off-chain processing.
2) Energy consumption per transaction:

EOC = Eoff−chain +
Eon−chain

N

where Eon−chain is the energy cost of an on-chain epoch commitment.
3) As N increases:

lim
N→∞

COC = Fstorage + FL1 + Fburn + ϵ

lim
N→∞

EOC = Eoff−chain

4) In comparison:

• Traditional blockchains incur costs and energy consumption for every transaction.

• Layer 2 solutions with centralized components have overhead for operator maintenance and
profit.

5) Therefore, for sufficiently large N :

COC < Ctraditional and COC < CLayer2

EOC < Etraditional and EOC < ELayer2

Thus, Overpass Channels achieves higher efficiency in terms of cost and energy consumption per
transaction, while also providing incentives for storage nodes, L1 nodes, and maintaining a treasury
through the burn fee. ■

73

17.1 Fee Distribution

The fee structure in Overpass Channels is designed to incentivize network participants and ensure
long-term sustainability:

• Storage Node Fee (Fstorage): Compensates off-chain storage nodes for maintaining trans-
action data and proofs.

• L1 Node Fee (FL1): Rewards L1 nodes that participate in submitting the global Merkle
root.

• Burn Fee (Fburn): Allocated to the treasury for future ecosystem development and sustain-
ability.

This balanced fee structure ensures that all critical components of the network are incentivized,
while maintaining overall efficiency. The exact proportions of these fees can be adjusted based on
network requirements and governance decisions.

18 Privacy Analysis

The privacy guarantees of Overpass Channels are fundamental to its design and operation.

Theorem 41 (Overpass Channels Transaction Privacy). In Overpass Channels, no information
about individual transactions is revealed to the network beyond what is explicitly included in zk-
SNARK proofs.

Proof. The proof proceeds as follows:

1. Transactions are processed entirely off-chain within channels.

2. The only information shared with the network is:

(a) Merkle roots of transaction batches (epochs)

(b) zk-SNARK proofs of state transitions

3. Merkle roots reveal no information about individual transactions due to the pre-image resis-
tance of cryptographic hash functions.

4. zk-SNARK proofs, by definition, reveal no information beyond the validity of the statement
being proved.

5. The statements proved by zk-SNARKs in Overpass Channels are of the form: ”There exists
a valid set of transactions that transition the state from S1 to S2.”

6. This statement does not reveal any information about individual transactions, their amounts,
or the parties involved.

Therefore, Overpass Channels provides strong transaction privacy, revealing no information
about individual transactions to the network. ■

74

19 Remarks

Overpass Channels represents a significant advancement in blockchain scaling solutions, offering:

1. Superior censorship resistance through its unique architecture that makes individual transac-
tion censorship computationally infeasible.

2. Exceptional scalability, with the throughput reaching millions or even billions in TPS.

3. High efficiency in terms of cost per transaction and energy consumption, approaching zero
marginal cost for off-chain transactions.

4. Strong privacy guarantees, ensuring that no information about individual transactions is
revealed to the network.

20 Integration with L1 Blockchain

The integration of Overpass Channels with the L1 (The Open Network) blockchain further enhances
its capabilities and provides a robust foundation for large-scale deployment. This section examines
the synergies between Overpass Channels and L1, and how this integration addresses key challenges
in blockchain scalability and usability.

20.1 L1’s Sharding Architecture

L1’s multi-threaded, sharded architecture complements the scalability features of Overpass Chan-
nels.

Theorem 42 (Overpass-L1 Scalability Synergy). The integration of Overpass Channels with L1’s
sharding architecture results in multiplicative scalability improvements.

Proof. Let:

• n be the number of Overpass Channels

• m be the number of shards in L1

• TOC be the throughput of a single Overpass Channel

• TL1 be the throughput of a single L1 shard

The proof proceeds as follows:

1. The total throughput of Overpass Channels: TtotalOC
= n · TOC

2. The total throughput of L1: TtotalL1
= m · TL1

3. With integration, each L1 shard can support multiple Overpass Channels:

Tintegrated = m · (k · TOC)

where k is the number of Overpass Channels per shard.

75

4. Assuming even distribution of channels across shards:

k =
n

m

5. Therefore:
Tintegrated = m ·

(n
m
· TOC

)
= n · TOC

6. This means that the integrated system can fully utilize both the scalability of Overpass Chan-
nels and L1’s sharding.

Thus, the integration results in multiplicative scalability improvements, allowing the system to
scale with both the number of channels and the number of shards. ■

20.2 Smart Contract Integration

L1’s flexible smart contract system allows for efficient implementation of Overpass Channels’ core
components.

Algorithm 25 Overpass Channel Smart Contract on L1

1: procedure ChannelContract
2: State Variables:
3: channelId← UniqueIdentifier
4: participants← {ParticipantA,ParticipantB}
5: currentEpoch← 0
6: latestMerkleRoot← InitialMerkleRoot
7: stateHash← InitialStateHash
8: procedure SubmitEpoch(newMerkleRoot, zkProof, epochNumber)

Require: msg.sender ∈ participants
Require: epochNumber = currentEpoch+ 1
9: assert VerifyZKProof(zkProof, latestMerkleRoot, newMerkleRoot, stateHash)

10: latestMerkleRoot← newMerkleRoot
11: currentEpoch← epochNumber
12: emit EpochSubmitted(channelId, currentEpoch, newMerkleRoot)
13: end procedure
14: procedure CloseChannel(finalStateProof)
Require: msg.sender ∈ participants
15: assert VerifyFinalStateProof(finalStateProof, stateHash)
16: finalState← ExtractF inalState(finalStateProof)
17: DistributeFunds(finalState)
18: emit ChannelClosed(channelId, finalState)
19: end procedure
20: end procedure

This smart contract structure allows for efficient on-chain management of Overpass Channels,
leveraging L1’s capabilities for fast execution and low-cost state updates.

76

20.3 Cross-Shard Operations

L1’s ability to handle cross-shard communications efficiently enhances Overpass Channels’ capabil-
ity to process inter-channel transactions.

Theorem 43 (Efficient Cross-Shard Overpass Transactions). Cross-shard transactions in the inte-
grated Overpass-L1 system can be processed with O(logm) communication complexity, where m is
the number of shards.

Proof. Let:

• m be the number of shards

• TA,B be a transaction from channel A in shard SA to channel B in shard SB

The proof proceeds as follows:

1. The cross-shard transaction process involves:

(a) Generating a zk-SNARK proof in shard SA

(b) Transmitting the proof to shard SB

(c) Verifying the proof in shard SB

2. L1’s hypercube routing for cross-shard messages ensures that the number of hops for a message
to travel between any two shards is O(logm).

3. The size of the zk-SNARK proof is constant, regardless of the transaction details.

4. Therefore, the communication complexity for transmitting the proof is O(logm).

5. Proof generation and verification times are constant and independent of the number of shards.

Thus, the overall complexity of cross-shard Overpass transactions in L1 is O(logm), ensuring
efficient scaling even with a large number of shards. ■

20.4 L1 DNS Integration

Integration with L1 DNS allows for human-readable addresses in Overpass Channels, enhancing
usability.

This integration simplifies the user experience by allowing easy-to-remember addresses for Over-
pass Channels, similar to domain names on the internet.

21 Use Cases for Privacy

The enhanced privacy features of Overpass Channels, leveraging zk-SNARKs, enable a wide range
of applications that require confidentiality while maintaining transparency and verifiability. This
section explores four key use cases that demonstrate the versatility and potential impact of the
system.

77

Algorithm 26 Overpass Channel Address Resolution via L1 DNS

1: procedure ResolveChannelAddress(humanReadableAddress)
2: dnsRecord← L1.DNS.Resolve(humanReadableAddress)
3: if dnsRecord contains OverpassChannelID then
4: channelId← dnsRecord.OverpassChannelID
5: channelContract← GetChannelContract(channelId)
6: return channelContract.address
7: else
8: return null
9: end if

10: end procedure

21.1 Confidential Voting Systems

Confidential voting systems are a critical application for enhanced privacy in decentralized networks.
Overpass Channels can provide a solution that guarantees the confidentiality of votes while allowing
for public verification of election results.

Implementation on L1

1. Voter Registration: A smart contract on L1 manages voter registration, issuing unique
identifiers to eligible voters.

2. Vote Casting: Voters use their Overpass Channel to cast votes, generating a zk-SNARK
proof that:

• They are an eligible voter

• They have not voted before

• Their vote is for a valid candidate

The proof is submitted to a voting contract on L1.

3. Vote Tallying: The voting contract aggregates votes without revealing individual choices.
A final zk-SNARK proof is generated to prove the correctness of the tally.

4. Result Verification: Anyone can verify the final tally by checking the zk-SNARK proof on
the L1 blockchain.

21.2 Private Asset Transfers

Private asset transfers are another significant use case for enhanced privacy in a decentralized
network. Overpass Channels enable confidential transfers while maintaining the integrity and veri-
fiability of transactions.

78

Implementation on L1

1. Asset Tokenization: Assets are represented as tokens on the L1 blockchain.

2. Private Transfers: Users transfer tokens through Overpass Channels, generating zk-SNARK
proofs that:

• The sender owns the tokens

• The transfer amount is valid (non-negative and within the sender’s balance)

• The receiver is a valid recipient

3. On-chain Settlement: Periodically, the aggregate state of transfers is settled on-chain
through a smart contract, updating token balances without revealing individual transaction
details.

4. Audit Capability: While individual transactions are private, users can generate proofs of
their transaction history for auditing purposes when required.

21.3 Secure Health Records Management

Secure health records management is an essential use case where sensitive health information must
be kept confidential while ensuring that authorized parties can verify the records.

Implementation on L1

1. Record Storage: Health records are stored off-chain, with hashes of the records stored in
Overpass Channels.

2. Access Control: Smart contracts on L1 manage access rights to health records.

3. Data Sharing: When sharing data, a zk-SNARK proof is generated to prove:

• The data belongs to the claimed patient

• The recipient has the right to access the data

• The data has not been tampered with

4. Verification: Authorized parties can verify the authenticity and integrity of the records on
the L1 blockchain without accessing the actual content.

21.4 Global Payment System

A global payment system is perhaps the most scalable and impactful use case for Overpass Channels,
providing sufficient privacy to protect user transactions while ensuring transparency and scalability
to facilitate mass adoption.

79

Implementation on L1

1. Multi-Currency Support: The system supports multiple currencies, with exchange rates
managed by oracle contracts on L1.

2. Cross-Border Transfers: Users can make cross-border payments through Overpass Chan-
nels, with zk-SNARKs proving:

• The sender has sufficient funds

• The currency conversion is accurate

• Compliance with relevant regulations (e.g., AML checks)

3. Liquidity Pools: Smart contracts on L1 manage liquidity pools to facilitate instant currency
conversions.

4. Regulatory Compliance: The system includes built-in compliance features, such as gener-
ating confidential reports for regulators without compromising user privacy.

5. Integration with Traditional Finance: Bridge contracts on L1 facilitate interaction with
traditional financial systems, allowing for deposits and withdrawals while maintaining privacy
for on-network transactions.

These use cases illustrate how Overpass Channels can achieve a balance between privacy and
transparency, facilitating mass adoption while maintaining the necessary confidentiality. By lever-
aging zk-SNARKs, the system provides enhanced privacy and scalability, making it suitable for a
wide range of applications in various sectors.

22 Future Directions and Challenges

While Overpass Channels on L1 presents a powerful solution for scalable, private, and censorship-
resistant payments, several areas warrant further research and development:

22.1 Post-Quantum Security

As quantum computing advances, ensuring the long-term security of Overpass Channels becomes
crucial.

Theorem 44 (Post-Quantum Vulnerability). The current zk-SNARK implementations used in
Overpass Channels are vulnerable to quantum attacks.

Proof. 1. Current zk-SNARK constructions rely on discrete logarithm or elliptic curve discrete
logarithm problems.

2. Shor’s algorithm, when implemented on a sufficiently powerful quantum computer, can solve
these problems in polynomial time.

3. Therefore, a quantum computer could potentially break the security of current zk-SNARK
implementations.

■

Future research should focus on developing and implementing post-quantum secure zero-knowledge
proof systems that maintain the efficiency and privacy guarantees of current zk-SNARKs.

80

22.2 Privacy-Preserving Analytics

While Overpass Channels provide strong transaction privacy, this can make it challenging to gather
network-wide analytics, which can be crucial for optimizing performance and detecting potential
issues.

Theorem 45 (Privacy-Analytics Tradeoff). There exists a fundamental tradeoff between transac-
tion privacy and the ability to perform network-wide analytics in Overpass Channels.

Research into privacy-preserving data analysis techniques, such as secure multi-party computa-
tion or differential privacy, could help address this challenge without compromising the core privacy
guarantees of the system.

23 Conclusion

Overpass Channels, integrated with the L1 blockchain, represents a significant advancement in
blockchain scalability, privacy, and censorship resistance. By leveraging zk-SNARKs, off-chain
processing, and L1’s sharding architecture, it offers a solution that can potentially scale to global
payment network levels while maintaining strong security and privacy guarantees.

The system’s ability to process millions, if not billions, of transactions per second, with linear
scalability as nodes are added, positions it as a highly competitive solution in the blockchain space.
Its unique architecture makes censorship of individual transactions computationally infeasible, pro-
viding robust protection against potential attacks or regulatory pressures.

Furthermore, the integration with L1’s flexible smart contract system, efficient cross-shard com-
munication, and user-friendly features like DNS integration creates a comprehensive ecosystem for
next-generation decentralized applications.

As the blockchain industry continues to evolve, solutions like Overpass Channels on L1 pave
the way for a future where decentralized, private, and efficient global payment systems become a
reality, potentially revolutionizing financial interactions on a global scale.

81

Bibliography

[1] Poon, J., & Dryja, T. (2016). The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments. Lightning Network Whitepaper. https://lightning.network/

lightning-network-paper.pdf

[2] Buterin, V., & Poon, J. (2017). Plasma: Scalable Autonomous Smart Contracts. Plasma
Whitepaper. https://plasma.io/plasma.pdf

[3] Raiden Network Team. (2017). Raiden Network: Fast, Cheap, Scalable Token Transfers for
Ethereum. Raiden Network

[4] Celer Network. (2019). Celer Network: Bring Internet Scale to Every Blockchain. Celer Network
Whitepaper. https://www.celer.network/doc/CelerNetwork-Whitepaper.pdf

[5] PLONK Documentation. (n.d.). ZK-SNARKs: PLONK. Retrieved from https://docs.

plonk.cafe/

[6] Ben-Sasson, E., Chiesa, A., Tromer, E., & Virza, M. (2014). Scalable Zero-Knowledge via
Cycles of Elliptic Curves. In International Cryptology Conference (pp. 276-294). Springer,
Berlin, Heidelberg.

[7] Groth, J. (2016). On the Size of Pairing-based Non-interactive Arguments. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques (pp. 305-326).
Springer, Berlin, Heidelberg.

[8] Zhang, F., Cecchetti, E., Croman, K., Juels, A., & Shi, E. (2016). Town Crier: An Authenti-
cated Data Feed for Smart Contracts. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (pp. 270-282).

[9] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., & Virza, M. (2015). SNARKs for C: Verify-
ing Program Executions Succinctly and in Zero Knowledge. In Annual Cryptology Conference
(pp. 90-108). Springer, Berlin, Heidelberg.

[10] The Open Network, based on the work of Dr. Nikolai Durov. (2021). The Open Network
Whitepaper. Retrieved from https://ton.org/whitepaper.pdf

[11] Hioki, L., Dompeldorius, A., & Hashimoto, Y. (n.d.). Plasma Next: Plasma with-
out Online Requirements. Ethereum Research. Retrieved from https://ethresear.ch/t/

plasma-next-plasma-without-online-requirements/18786

82

https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://plasma.io/plasma.pdf
https://www.celer.network/doc/CelerNetwork-Whitepaper.pdf
https://docs.plonk.cafe/
https://docs.plonk.cafe/
https://ton.org/whitepaper.pdf
https://ethresear.ch/t/plasma-next-plasma-without-online-requirements/18786
https://ethresear.ch/t/plasma-next-plasma-without-online-requirements/18786

24 Appendix

1 Circuits

The Overpass Channels system uses hierarchical circuits to manage transactions, state updates, and
global consistency. These circuits are organized into individual channels, intermediate contracts,
and root contracts. Below is an explanation of how individual channels work, along with the related
algorithms.

Channel 1: From Party A to Party B

In this section, we will describe the setup of a unilateral channel from Party A to Party B, followed
by the process of executing a transaction and verifying the result.

Unilateral Channel Setup The setup for a unilateral payment channel involves locking the
funds and verifying the signatures from both parties. The following algorithm explains how the
setup works.

Algorithm 1: Unilateral Channel Setup

1. Inputs: Funding Party (A), Receiving Party (B), Initial Balance (B_AB1),

Channel ID (id_AB1), Signatures (\sigma_A, \sigma_B)

2. Initialize channel with balances:

B_A = B_AB1, B_B = 0, nonce = 0

3. PoseidonHash the channel ID and initial balance:

h_channel1 = PoseidonHash(id_AB1, B_AB1)

4. Verify signatures from both parties:

SignatureVerify(\sigma_A, A)

SignatureVerify(\sigma_B, B)

5. Generate recursive zk-SNARK proof \pi_setup1

6. Output: zk-SNARK result C_setup1

In this process:

1. Initializes the payment channel with the balance from Party A.

2. Hashes the channel’s initial data using the Poseidon hashing algorithm.

3. Verifies that both parties have signed and acknowledged the setup.

Transaction Execution Once the channel is set up, Party A can send funds to Party B through
a transaction. The following algorithm describes the transaction process.

Algorithm 2: Transaction Execution from A to B

1. Inputs: Channel ID (id_AB1), Current Balances (B_A, B_B),

Transaction Amount (\Delta_1), Nonce (n_1), Signature (\sigma_A)

2. PoseidonHash the current state:

h_state1 = PoseidonHash(id_AB1, B_A, B_B, n_1)

3. Update balances:

83

B’_A = B_A - \Delta_1

B’_B = B_B + \Delta_1

4. Verify balance conservation:

B’_A + B’_B = B_A + B_B

5. Ensure 50\% spending rule:

\Delta_1 \leq \frac{B_A}{2}

6. Increment nonce:

n’_1 = n_1 + 1

7. Verify signature from A:

SignatureVerify(\sigma_A, A)

8. Generate zk-SNARK proof \pi_transaction1

9. Output: zk-SNARK result C_transaction1

This algorithm handles the transaction between Party A and Party B, ensuring that:

1. The current state is hashed to preserve consistency of the channel data.

2. The balance conservation rule and the 50% spending rule are both followed.

3. The sender’s signature is verified before generating the zk-SNARK proof.

Transaction Acceptance Once Party A has executed the transaction, Party B must accept it.
The following algorithm explains the acceptance procedure.

Algorithm 3: Transaction Acceptance by Party B

1. Inputs: New State (id_AB1, B’_A, B’_B, n’_1),

Transaction Proof (\pi_transaction1), Signature (\sigma_B)

2. Verify zk-SNARK proof \pi_transaction1

3. Verify signature from B on the new state:

SignatureVerify(\sigma_B, B)

4. Update the channel contract with the new state

5. Remove pending status from the transaction

6. Output: Channel state is updated and transaction is finalized

During transaction acceptance:

1. The zk-SNARK proof generated by Party A is verified.

2. Party B’s signature on the new state is validated.

3. The channel contract is updated, and the transaction is finalized.

1.1 Channel State Verification for Both Channels

Both channels independently verify their states using Merkle proofs to ensure their integrity and
consistency. Each channel maintains a Merkle root that reflects the current state of the balances
and transactions.

84

Closure for Channel 1 (A→ B)

Algorithm: Closure for Channel 1

1. Inputs:

- Channel Identifier (id_AB1)

- Final Balances (B_A, B_B)

- Final Signatures (\sigma_A, \sigma_B)

- Merkle Proof for Channel State (\pi_Merkle1)

2. PoseidonHash the final state:

h_final1 = PoseidonHash(id_AB1, B_A, B_B)

3. Verify that the final balances match the expected total:

B_A + B_B must equal the total recorded balance.

4. Verify signatures from both parties:

SignatureVerify(\sigma_A, A)

SignatureVerify(\sigma_B, B)

5. Verify the Merkle proof \pi_Merkle1 to ensure the correct state closure.

6. Generate zk-SNARK proof \pi_closure1 for closing the channel.

7. Output: zk-SNARK result C_closure1

In this process:

1. The final state of the channel is hashed using the Poseidon algorithm, ensuring that the
balances and channel identifier are encoded securely.

2. The balance verification ensures that the final balances match the expected total, preventing
any discrepancy before closure.

3. Both parties’ signatures are verified, ensuring mutual agreement on the channel closure.

4. The Merkle proof confirms that the state being closed is the correct and most up-to-date
state.

5. Finally, a zk-SNARK proof is generated, which will confirm the validity of the closure.

1.2 Intermediate Contract Circuits

Rebalancing Circuit

Algorithm: Rebalancing Circuit

1. Inputs:

- Channel Identifier (id)

- Current Balance Distribution (B_A, B_B)

- Desired Balance Distribution (B’_A, B’_B)

- Rebalancing Amount (\Delta_rebalance)

- Signatures (\sigma_A, \sigma_B)

- Current Shard Merkle Root (R_M_shard)

2. PoseidonHash the balances before and after rebalancing:

h_before = PoseidonHash(id, B_A, B_B)

h_after = PoseidonHash(id, B’_A, B’_B)

85

3. Verify balance conservation:

B_A + B_B = B’_A + B’_B

4. Calculate rebalancing amount:

\Delta_rebalance = |B’_A - B_A| = |B’_B - B_B|

5. Update the shard’s Merkle tree with the new state:

R_M_shard_new = UpdateMerkleRoot(R_M_shard, h_after)

6. Generate zk-SNARK proof \pi_rebalance showing rebalancing and agreement.

7. Output: zk-SNARK proof \pi_rebalance and updated Merkle root R_M_shard_new.

In this process:

1. The balances are hashed using Poseidon before and after rebalancing to ensure integrity.

2. Balance conservation is checked to guarantee that the total funds are preserved during rebal-
ancing.

3. The rebalancing amount is calculated to determine how much to adjust the balances.

4. The shard’s Merkle tree is updated to reflect the new state after rebalancing.

5. A zk-SNARK proof is generated, confirming that the rebalancing occurred as expected.

Cross-Channel Communication Circuit

Both channels independently verify their states using Merkle proofs to ensure their integrity and
consistency. Each channel maintains a Merkle root that reflects the current state of the balances
and transactions.

Algorithm: Cross-Channel Communication Circuit

1. Inputs:

- Source Channel State (S_source)

- Destination Channel State (S_destination)

- Transaction Amount (\Delta)

- Merkle Proofs for Both Channels (\pi_Merkle_source, \pi_Merkle_destination)

- Current Shard Merkle Root (R_M_shard)

2. Verify Merkle proofs of both source and destination states:

VerifyMerkleProof(R_M_shard, \pi_Merkle_source, S_source)

VerifyMerkleProof(R_M_shard, \pi_Merkle_destination, S_destination)

3. Ensure sufficient funds in source channel:

B_source \geq \Delta

4. Update balances:

B_source_new = B_source - \Delta

B_destination_new = B_destination + \Delta

5. Generate zk-SNARK proof \pi_cross_channel, verifying transaction validity.

6. Compute new shard Merkle root:

R_M_shard_new = UpdateMerkleRoot(R_M_shard, S_source_new, S_destination_new)

7. Output: zk-SNARK proof \pi_cross_channel and updated Merkle root R_M_shard_new

In this process:

86

1. The Merkle proofs for the source and destination channels are verified to ensure inclusion in
the current shard state.

2. The system checks if the source channel has enough balance to execute the transaction.

3. Balances in both the source and destination channels are updated accordingly.

4. A zk-SNARK proof is generated to confirm the transaction’s validity.

5. Finally, the Merkle root is updated to reflect the new state of both channels.

Shard State Submission Circuit

This circuit handles the submission of the shard’s updated state to the root contract, ensuring all
updates and transactions are reflected in the global state.

Algorithm: Shard State Submission Circuit

1. Inputs:

- Current Shard Merkle Root (R_M_shard)

- New Shard Merkle Root (R_M_shard_new)

- Set of Aggregated Update Proofs (\pi_aggregation1, \pi_aggregation2, ...)

- Cross-Channel Transaction Proofs (\pi_cross_channel1, \pi_cross_channel2, ...)

2. Verify all aggregated update proofs:

For each \pi_aggregation_i:

VerifyProof(\pi_aggregation_i)

3. Verify all cross-channel transaction proofs:

For each \pi_cross_channel_j:

VerifyProof(\pi_cross_channel_j)

4. Recalculate the shard’s Merkle root based on all updates:

R_M_shard_final = RecalculateMerkleRoot(R_M_shard, all updates)

5. Generate zk-SNARK proof \pi_shard_update, verifying the correct shard state update.

6. Output: zk-SNARK proof \pi_shard_update and final shard Merkle root R_M_shard_final

In this process:

1. Aggregated update proofs are verified to ensure all individual state transitions are valid.

2. Cross-channel transaction proofs are also verified for integrity.

3. The shard’s Merkle root is recalculated based on all the updates and transactions within the
shard.

4. A zk-SNARK proof is generated to confirm the correct update of the shard’s state.

5. Finally, the final Merkle root and proof are submitted to the root contract.

87

1.3 Summary of Intermediate Contract Circuit Responsibilities

1. Rebalancing Circuit: Manages liquidity by rebalancing channel balances and recalculating
Merkle roots.

2. State Aggregation Circuit: Aggregates multiple channel updates in a shard into one
efficient zk-SNARK proof.

3. Cross-Channel Communication Circuit: Facilitates transactions between channels within
the same shard.

4. Shard State Submission Circuit: Consolidates all shard updates and prepares the final
state for submission to the root contract.

Global State Update Circuit

This circuit ensures that all shard updates are aggregated and the global state is updated consis-
tently across the entire network.

Algorithm: Global State Update Circuit

1. Inputs:

- Current Global Merkle Root (R_M_global)

- Set of Shard Merkle Roots (R_M_shard1, R_M_shard2, ...)

- Set of Shard Update Proofs (\pi_shard_update1, \pi_shard_update2, ...)

2. Merkle Tree Verification:

For each shard i:

h_i = PoseidonHash(R_M_shardi)

VerifyMerkleProof(R_M_global, h_i, proof_i)

3. Balance Consistency:

Verify total balance consistency:

sum(B_shardi) = B_total

Ensure no overflows:

forall i, B_shardi < 2^64

4. Recursive zk-SNARK Proof Generation:

\pi_global_update = Plonky2Generate(\pi_shard_update1, \pi_shard_update2, ...)

5. Global Merkle Root Update:

R_M_global_new = UpdateGlobalRoot(R_M_shard1, R_M_shard2, ...)

6. Output: zk-SNARK proof \pi_global_update and updated global Merkle root R_M_global_new

In this process:

1. Each shard’s Merkle root is verified and included in the global Merkle tree.

2. The total balance across all shards is checked to ensure consistency, and overflows are pre-
vented.

3. A zk-SNARK proof is generated to validate the state updates across all shards.

4. The global Merkle root is updated to reflect the new state of the network.

88

Cross-Shard Transaction Verification Circuit

This circuit processes transactions between shards, ensuring balances are updated in both the source
and destination shards.

Algorithm: Cross-Shard Transaction Verification Circuit

1. Inputs:

- Current Global Merkle Root (R_M_global)

- Source Shard Merkle Root (R_M_source)

- Destination Shard Merkle Root (R_M_destination)

- Cross-Shard Transaction Proof (\pi_cross_shard)

- Transaction Details (sender, receiver, amount)

2. Merkle Tree Verification:

Hash source and destination shards:

h_source = PoseidonHash(R_M_source)

h_dest = PoseidonHash(R_M_destination)

Verify Merkle proofs:

VerifyMerkleProof(R_M_global, h_source, proof_source)

VerifyMerkleProof(R_M_global, h_dest, proof_dest)

3. Balance Validation:

Check sender balance:

B_sender >= amount

Update balances:

B_sender_new = B_sender - amount

B_receiver_new = B_receiver + amount

4. Recursive zk-SNARK Proof Generation:

\pi_cross_shard = Plonky2Generate(transaction_details, R_M_source, R_M_destination)

5. Global Merkle Root Update:

R_M_global_new = UpdateGlobalRoot(R_M_global, R_M_source_new, R_M_destination_new)

6. Output: zk-SNARK proof \pi_cross_shard and updated global Merkle root R_M_global_new

In this process:

1. The source and destination shard states are verified through their respective Merkle proofs.

2. The sender’s balance is validated, ensuring they have sufficient funds for the transaction.

3. The balances for both the sender and receiver are updated.

4. A zk-SNARK proof is generated to confirm the validity of the cross-shard transaction.

5. The global Merkle root is updated to reflect the changes in both shards.

Global State Consistency Check Circuit

This circuit checks the consistency of the global state across all shards, ensuring that no shard has
an inconsistent state and preventing double-spending.

89

Algorithm: Global State Consistency Check Circuit

1. Inputs:

- Current Global Merkle Root (R_M_global)

- Set of Channel States (S1, S2, ..., SN)

- Merkle Proofs for Each Channel State (\pi_Merkle_channel1, \pi_Merkle_channel2, ...)

2. Merkle Tree Verification:

For each channel state Si:

h_i = PoseidonHash(S_i)

VerifyMerkleProof(R_M_global, h_i, \pi_Merkle_channeli)

3. State Validation:

For each channel i:

B_i >= 0

B_i < 2^64

SequenceNumber_i >= PreviousSequenceNumber_i

4. Recursive Proof Generation:

\pi_global_consistency = Plonky2Generate(S1, S2, ..., SN, R_M_global)

5. Output: zk-SNARK proof \pi_global_consistency and Boolean result (IsConsistent)

In this process:

1. Each channel state is verified using its Merkle proof and checked for inclusion in the global
Merkle tree.

2. Balances and sequence numbers are validated to ensure no channel is in an inconsistent state.

3. A zk-SNARK proof is generated to verify the overall global state consistency.

4. A Boolean output indicates whether the global state is consistent.

Epoch Transition Circuit

This circuit handles periodic state transitions by processing all transactions within an epoch and
updating the global state.

Algorithm: Epoch Transition Circuit

1. Inputs:

- Current Epoch Number (E)

- Current Global Merkle Root (R_M_global)

- Set of Transactions for Current Epoch (T1, T2, ..., TM)

- Set of Transaction Proofs (\pi1, \pi2, ..., \piM)

2. Merkle Tree Verification:

For each transaction Ti:

h_i = PoseidonHash(T_i)

VerifyMerkleProof(R_M_global, h_i, proof_i)

3. Transaction Validation:

For each transaction Ti:

B_sender >= amount_i

B_sender_new = B_sender - amount_i

90

B_receiver_new = B_receiver + amount_i

4. zk-SNARK Proof Generation:

\pi_epoch = Plonky2Generate(T1, T2, ..., TM, \pi1, \pi2, ..., \piM)

5. Global State Update:

R_M_global_new = UpdateGlobalRoot(R_M_global, T1, T2, ..., TM)

Increment epoch: E_new = E + 1

6. Output: zk-SNARK proof \pi_epoch, updated global Merkle root R_M_global_new, new epoch number E_new

In this process:

1. Each transaction in the current epoch is verified and included in the global state.

2. The sender’s and receiver’s balances are updated according to each transaction.

3. A zk-SNARK proof is generated to validate the epoch’s transactions.

4. The global Merkle root is updated, and the epoch number is incremented.

Conditional Payments Circuit

Objective: Facilitate conditional payments between parties, where the payment is released only
when certain conditions, such as the revelation of a preimage or the completion of a task, are
met. This leverages zk-SNARKs to verify the conditions off-chain while maintaining on-chain
trustlessness.

Algorithm: Conditional Payments Circuit

1. Inputs:

- Sender (S)

- Receiver (R)

- Payment Amount (P)

- Condition (C), e.g., a preimage X such that H(X) = H_target

- zk-SNARK Proof (\pi_condition) for condition fulfillment

2. Hash Condition Verification:

Verify that the condition holds:

h_condition = PoseidonHash(H_target, X)

Assert h_condition == H_target

3. Balance Update (Goldilocks):

Check if the sender has enough funds:

B_S >= P

Update balances:

B_S_new = B_S - P

B_R_new = B_R + P

4. Recursive zk-SNARK Proof Generation:

\pi_conditional_payment = Plonky2Generate(C, \pi_condition, B_S, B_R)

5. Output: zk-SNARK proof \pi_conditional_payment and updated balances (B_S_new, B_R_new)

In this process:

1. The condition for the payment, such as revealing a correct preimage, is verified using the
Poseidon hashing algorithm.

91

2. The sender’s balance is checked to ensure sufficient funds for the payment.

3. If the condition is met, the balances for both the sender and receiver are updated.

4. A zk-SNARK proof is generated to verify the correct execution of the conditional payment.

HTLC (Hashed Time-Lock Contract) Circuit

Objective: Implement a time-locked conditional payment system where the receiver can claim
funds only by revealing the correct preimage within a specified time period. If the receiver fails to
do so, the funds are returned to the sender.

Algorithm: HTLC Circuit

1. Inputs:

- Sender (S)

- Receiver (R)

- Payment Amount (P)

- Hash Condition H_target

- Timeout (T)

- zk-SNARK Proof (\pi_htlc)

2. Hash Condition Verification:

Verify the preimage:

Assert PoseidonHash(X) == H_target

3. Timeout Check:

If timeout T has expired, revert the payment:

If current_time > T, refund P to S

4. Balance Update (Goldilocks):

If condition is met and within time limit:

B_S_new = B_S - P

B_R_new = B_R + P

If timeout:

B_S_new = B_S

B_R_new = B_R

5. Recursive zk-SNARK Proof Generation:

\pi_htlc = Plonky2Generate(H_target, X, T, current_time)

6. Output: zk-SNARK proof \pi_htlc and updated balances

In this process:

1. The receiver must reveal the correct preimage that hashes to the target hash using Poseidon
hashing.

2. The circuit checks whether the timeout has been reached before processing the payment.

3. If the condition is met within the time limit, the balances are updated; otherwise, the funds
are returned to the sender.

4. A zk-SNARK proof is generated to confirm the correct execution of the HTLC.

92

2 Decentralized Exchange (DEX) on Overpass

The Overpass Channels-based decentralized exchange (DEX) employs a hybrid architecture that
integrates both on-chain and off-chain components to ensure scalability, efficiency, and security.
By leveraging zk-SNARKs for every individual action and Sparse Merkle Trees (SMTs) for state
tracking, the system allows for private and secure off-chain trading while maintaining cryptographic
proofs for all operations. This architecture does not rely on traditional consensus mechanisms or
rollups; instead, it uses overpass zk-SNARKs for each state transition, eliminating the need for
trust between participants and allowing instant validation of actions.

2.1 Overview of the System Components

The system consists of three primary components:

• On-Chain Hub Contract: Manages on-chain operations like liquidity deposits, channel
opening/closing, and final settlement.

• Off-Chain Router: Handles off-chain operations, including order book management, order
matching, and state tracking using zk-SNARKs. The router is also responsible for managing
its own Sparse Merkle Tree (SMT) to store off-chain state updates.

• zk-SNARK Circuits: Used for every state transition in the system, ensuring that all actions
(e.g., placing orders, executing trades, updating balances) are cryptographically secure.

This section explores how each component interacts, how zk-SNARKs and SMTs are used for
security, and how the off-chain router functions as an intermediary for state management.

2.2 On-Chain Hub Contract

The on-chain hub contract serves as the core on-chain component, ensuring that liquidity providers
(LPs) can deposit assets, traders can open and close payment channels, and all state changes
are cryptographically verified before being settled on-chain. The hub contract interacts with the
off-chain router to finalize state transitions after they have been validated using zk-SNARKs.

Key Functions of the On-Chain Hub Contract:

• Liquidity Management: LPs can deposit assets directly into the hub contract to provide
liquidity to the DEX. These assets are stored securely on-chain and can be withdrawn when
an LP chooses to exit the pool.

• Payment Channel Opening and Closing: Traders open payment channels with the hub
contract, allowing them to engage in off-chain trading. When a trader decides to settle their
channel, the hub contract ensures that the final off-chain state is reflected on-chain.

• Final Settlement: The hub contract verifies zk-SNARK proofs submitted by the router,
ensuring that the final off-chain balances and trades are correctly reflected on-chain when
channels are closed.

The hub contract operates primarily as a verifier of zk-SNARK proofs, minimizing the need for
direct on-chain execution of logic, and enabling low-cost, fast transactions.

93

2.3 Off-Chain Router

The off-chain router is the central component for managing all off-chain operations within the
DEX. It handles the interaction between users, the order book, and liquidity providers. The router
manages the majority of the logic for the DEX, including:

• **Order Management and Matching**: All buy and sell orders are submitted to the off-chain
router. The router maintains the order book, matches orders, and ensures that all orders
meet the necessary conditions before being added to the book.

• **State Management with Sparse Merkle Trees**: The router maintains its own Sparse Merkle
Tree (SMT), which tracks every state transition, including order placements, order matches,
and user balance updates. This SMT allows the router to efficiently manage and verify the
validity of all state transitions.

• **Interaction with zk-SNARK Circuits**: Every action processed by the router is accompa-
nied by a zk-SNARK proof, which verifies the correctness of the action (e.g., verifying that
a buyer has sufficient funds to place an order). These proofs ensure the correctness of each
state transition.

The router is responsible for tracking and validating the entire state of the off-chain order book,
balances, and trades, ensuring that only valid and cryptographically proven actions are processed.

Router’s Role in State Transitions and Conditional Proofs

In the Overpass Channels system, the router is responsible for processing state transitions using
zk-SNARK proofs to ensure all conditions are met before an action is accepted. These actions
include:

• **Placing Orders**: When a user places a buy or sell order, the router triggers a zk-SNARK
operation to validate the user’s available balance (for buy orders) or assets (for sell orders).
This validation ensures that the order is valid before it is added to the order book.

• **Order Matching**: Once orders are matched by the router, it verifies that both the buyer
and seller meet the required conditions (e.g., the buyer has sufficient funds, the seller has the
assets to sell) before executing the trade off-chain.

• **Trade Execution**: After a match is confirmed, the router updates the off-chain balances
of both parties and records the state transition in its dedicated SMT. This ensures that
the correct balances are maintained off-chain and that the entire process is verifiable via
zk-SNARK proofs.

Pseudocode for Order Placement and Execution:
The following pseudocode outlines how the router processes an order and verifies its validity

using zk-SNARKs:

Algorithm: Router’s Order Placement with zk-SNARK Validation

1. procedure SubmitOrder(User, OrderType, Amount, Price)

94

2. if OrderType == ’Buy’ then

3. zkProof = zkSNARK_Validate_BuyOrder(User, Amount, Price)

4. if zkProof is valid then

5. AddOrderToOrderBook(User, ’Buy’, Amount, Price)

6. UpdateRouterSMT(User, ’Buy’, Amount, Price)

7. else

8. RejectOrder(User) # Insufficient funds or invalid conditions

9. end if

10. else if OrderType == ’Sell’ then

11. zkProof = zkSNARK_Validate_SellOrder(User, Amount, Price)

12. if zkProof is valid then

13. AddOrderToOrderBook(User, ’Sell’, Amount, Price)

14. UpdateRouterSMT(User, ’Sell’, Amount, Price)

15. else

16. RejectOrder(User) # Insufficient assets or invalid conditions

17. end if

18. end if

19. end procedure

In this process: - The router validates all order conditions via zk-SNARK proofs before an order
is added to the order book. - Once validated, the router updates its Sparse Merkle Tree (SMT)
with the new state, ensuring that each state transition is cryptographically secure and stored for
later verification.

2.4 Sparse Merkle Trees for State Tracking

Sparse Merkle Trees (SMTs) provide an efficient way to store and verify state transitions within
the system. The off-chain router maintains its own SMT dedicated to tracking all state updates,
including order placements, matches, and balance adjustments. Each state change is recorded in
the SMT, allowing the system to generate **Merkle proofs** to validate the current state when
required.

Structure of the Router’s Sparse Merkle Tree

The router’s SMT stores state updates in a tree-like structure where each leaf node represents a
specific state change (e.g., an order placed, a trade executed). The Merkle root represents the
cumulative state of all off-chain actions up to a specific point in time.

Each leaf in the tree contains a hashed value representing:

• **Order Information**: Details about the buy or sell order, including user ID, token type,
amount, and price.

• **Balance Updates**: Changes to a user’s balance after an order is placed or executed.

• **Trade Completion**: Final state of a trade, including the new balances of both the buyer
and seller.

Sparse Merkle Tree Example:

95

Merkle Root← H(H(Order 1,Order 2),H(Order 3,Order 4))

The root of the tree is updated every time a new state transition occurs, ensuring that the entire
history of state transitions is securely stored and verifiable.

State Transition Verification via Merkle Proofs

When the router needs to verify a state transition (e.g., during settlement or upon request), it
provides a **Merkle proof** that proves the current state of the system is valid based on prior
updates. This proof includes the following components:

• The **Merkle root** representing the latest state of the SMT.

• The **Merkle path** leading to the specific state (e.g., an order or balance) that needs to be
verified.

• The **leaf value** corresponding to the state transition being verified.

The **on-chain hub contract** can verify this Merkle proof to ensure that the state transition
is valid before updating on-chain balances. This reduces the need for large-scale on-chain storage
and ensures that the system remains efficient.

Pseudocode for Merkle Proof Verification:

Algorithm: Verifying a State Transition with Merkle Proof

1. procedure VerifyMerkleProof(MerkleRoot, MerklePath, LeafValue)

2. currentHash = LeafValue

3. for each node in MerklePath do

4. currentHash = Hash(currentHash, node)

5. end for

6. if currentHash == MerkleRoot then

7. return True # State transition is valid

8. else

9. return False # Invalid state transition

10. end if

11. end procedure

2.5 zk-SNARK Integration for Validating Every Action

The Off-Chain Router ensures that every action taken by users is valid by generating zk-SNARK
proofs for each operation. Whether a user is placing a buy or sell order, or performing a trade, these
operations are validated off-chain with zk-SNARKs before being reflected in the Sparse Merkle Tree
(SMT). This validation process ensures that each action meets the necessary conditions (such as
sufficient funds or valid asset ownership), making the DEX system robust, secure, and resistant to
fraudulent activity.

96

zk-SNARK Generation for State Transitions

For every state transition, the router generates a zk-SNARK proof to validate the following:

• **For Buy Orders**: The buyer has sufficient funds locked in their payment channel to cover
the order. The proof verifies that the balance exists off-chain and that it has been properly
locked.

• **For Sell Orders**: The seller has the corresponding assets available to fulfill the sell order.
This proof validates the presence of the assets in the seller’s off-chain balance.

• **For Order Matching**: The router ensures that the matched buy and sell orders meet all
predefined conditions, such as price compatibility and quantity availability.

These proofs are generated using the zk-SNARK framework, ensuring that every action per-
formed off-chain is verifiable without requiring consensus or extensive on-chain verification. Once
the zk-SNARK proof is generated, the router updates its Sparse Merkle Tree (SMT) with the new
state, cryptographically ensuring that the state change is valid and secure.

Pseudocode for zk-SNARK Proof Generation in a Trade:

Algorithm: zk-SNARK Proof for State Transition in a Trade

1. procedure Generate_ZKProof(OrderType, User, Amount, Token)

2. if OrderType == ’Buy’ then

3. Check user has sufficient funds locked

4. Create proof zkProof = Prove(User.Balance >= Amount)

5. else if OrderType == ’Sell’ then

6. Check user has sufficient assets to sell

7. Create proof zkProof = Prove(User.Asset >= Amount)

8. end if

9. return zkProof

10. end procedure

Once the zk-SNARK proof is successfully generated, it guarantees that the user’s action is valid,
allowing the system to proceed with order placement or execution.

2.6 Trade Execution Process

When the router matches a buy and sell order, it executes the trade off-chain by updating both
parties’ balances. This process is done in conjunction with zk-SNARK proofs to ensure that the
conditions for both parties (buyer and seller) are met. The steps for executing a trade are as follows:

Off-Chain Trade Execution

Once the orders are matched, the router performs the following actions:
1. **Generate zk-SNARK Proofs for Buyer and Seller**: - The router generates zk-SNARK

proofs to verify that the buyer has sufficient funds and the seller has the required assets to fulfill
the trade. If both proofs are valid, the trade proceeds.

97

2. **Update Router’s Sparse Merkle Tree**: - After the trade is validated by zk-SNARK proofs,
the router updates the SMT to reflect the new state: - The buyer’s balance is reduced by the amount
they paid (e.g., USDT). - The seller’s asset balance is reduced by the quantity sold (e.g., ETH). -
Both new balances are reflected in the SMT, and the Merkle root is updated accordingly.

Pseudocode for Off-Chain Trade Execution:

Algorithm: Off-Chain Trade Execution

1. procedure ExecuteTrade(BuyOrder, SellOrder)

2. # Validate both orders using zk-SNARKs

3. buyerProof = Generate_ZKProof(’Buy’, BuyOrder.User, BuyOrder.Amount, Token)

4. sellerProof = Generate_ZKProof(’Sell’, SellOrder.User, SellOrder.Amount, Token)

5. if buyerProof is valid and sellerProof is valid then

6. # Update balances in the router’s Sparse Merkle Tree (SMT)

7. UpdateRouterSMT(BuyOrder.User, ’Subtract’, BuyOrder.Amount)

8. UpdateRouterSMT(SellOrder.User, ’Subtract’, SellOrder.Amount)

9. UpdateRouterSMT(BuyOrder.User, ’Add’, SellOrder.Amount) # Buyer gets tokens

10. UpdateRouterSMT(SellOrder.User, ’Add’, BuyOrder.Amount) # Seller gets funds

11. return Success

12. else

13. return Failure # Invalid trade conditions

14. end if

15. end procedure

3. **Distribute Liquidity Provider Rewards**: - Liquidity providers (LPs) are rewarded based
on the trade volume. The router uses the SMT to keep track of liquidity utilization and calculates
rewards based on the LP’s contribution. LP rewards are recorded as state changes in the SMT and
distributed accordingly.

4. **Final State in the Router’s SMT**: - The final post-trade state is stored in the router’s
Sparse Merkle Tree. This state includes the updated balances of both the buyer and seller, as well
as the LP rewards. The Merkle root is updated to reflect the latest state.

2.7 Sparse Merkle Trees for Order and Balance Tracking

The router leverages Sparse Merkle Trees (SMTs) to efficiently track all off-chain actions, including
orders, trades, and balance updates. Each state transition is stored as a node in the SMT, and
every action (whether it be placing an order or fulfilling a trade) results in an update to the tree.

Router’s SMT Structure

The router’s SMT tracks all state transitions, ensuring that each state change is cryptographically
secure and can be verified using Merkle proofs. The structure of the SMT can be described as
follows:

• **Leaves**: Each leaf node in the SMT represents a specific state transition, such as a balance
update, an order placed in the order book, or a completed trade.

98

• **Branches**: The branches of the SMT represent the intermediary states of multiple leaves.
The hashes of these branches allow for efficient verification of the entire state.

• **Root**: The Merkle root summarizes the state of all active orders, user balances, and
liquidity data. The root is updated after each state transition and can be used for final
verification when settling on-chain.

Example of Router’s SMT for a Trade:

Merkle Root← H(H(Buy Order,Sell Order),H(Balance A,Balance B))

The Merkle root represents the final, cumulative state of all orders and balances in the DEX
system. Each new trade or balance update results in the Merkle root being recalculated to reflect
the latest state.

Merkle Proofs for Verifying Trades

When a trade is executed or a balance is updated, the router provides a Merkle proof to verify the
correctness of the state transition. The Merkle proof consists of:

• **Merkle root**: The latest root of the SMT, which summarizes the entire state of the system.

• **Merkle path**: The set of hashes from the leaf node to the root, proving that a specific
state change (e.g., a trade or balance update) is valid.

• **Leaf node**: The specific node representing the state change (e.g., a user’s balance after a
trade).

The router uses this proof to confirm that a state transition is valid without needing to reveal
the entire state tree. The on-chain hub contract can verify the Merkle proof to ensure that the
off-chain state is valid before updating on-chain balances.

2.8 On-Chain Final Settlement

When users want to settle their balances on-chain or close their payment channels, the router
submits the final off-chain state to the **on-chain hub contract**. The router provides both a
Merkle proof (to validate the state transition in the SMT) and a **zk-SNARK proof** (to
validate that all actions leading to the final state were correct). This two-pronged approach ensures
that the state transitions were valid without requiring extensive on-chain computations.

Closing a Payment Channel

When a user decides to close their payment channel with the DEX, the following process occurs:

• **Provide zk-SNARK and Merkle Proofs**: The router submits both the zk-SNARK proof
(proving that the state transitions were valid) and the Merkle proof (proving that the current
state reflects the final balance) to the on-chain hub contract.

99

• **Verify Proofs On-Chain**: The hub contract verifies the zk-SNARK proof to ensure that
all off-chain state transitions (e.g., order placements, trade executions) were valid. It also
verifies the Merkle proof to confirm that the current state is correctly reflected in the router’s
SMT.

• **Finalize Settlement**: Once both proofs are verified, the hub contract updates the user’s
on-chain balance based on the final state of their off-chain payment channel.

This process ensures that final settlement is secure, efficient, and cryptographically proven.
Pseudocode for On-Chain Settlement:

Algorithm: On-Chain Final Settlement

1. procedure FinalizeSettlement(User, zkProof, MerkleProof)

2. # Verify the zk-SNARK proof for all state transitions

3. if VerifyZKProof(zkProof) == True then

4. # Verify the Merkle proof to confirm the final state

5. if VerifyMerkleProof(MerkleProof) == True then

6. # Update on-chain balances based on final off-chain state

7. UpdateOnChainBalance(User, FinalState)

8. return Success

9. else

10. return Failure # Invalid Merkle proof

11. end if

12. else

13. return Failure # Invalid zk-SNARK proof

14. end if

15. end procedure

In this process, the system ensures that every off-chain action leading to the final on-chain
settlement is valid and secure, eliminating the risk of fraud or incorrect state transitions.

2.9 Liquidity Provision and LP Rewards Distribution

Liquidity provision is a key component of the decentralized exchange (DEX) on Overpass Channels.
Liquidity providers (LPs) deposit assets into the system, enabling traders to execute orders by
leveraging the available liquidity in the pools. The rewards for providing liquidity are distributed
based on the trading activity and the LP’s contribution to the liquidity pool.

Depositing Liquidity to the Hub Contract

Liquidity providers deposit assets directly into the on-chain hub contract, which manages the
liquidity pools for different trading pairs (e.g., ETH/USDT, BTC/ETH). Each LP is issued **LP
tokens** representing their share of the pool, which entitles them to a proportional share of the
trading fees and rewards.

The process of depositing liquidity works as follows:

1. LP Deposits Assets On-Chain: An LP deposits a certain amount of assets (e.g., 100 ETH)
into the hub contract.

100

2. LP Tokens Minted: In return, the LP receives LP tokens that represent their proportional
share in the liquidity pool. These tokens can be used to track the LP’s stake in the pool and
earn rewards based on trading activity.

3. Hub Contract Updates Liquidity Pools: The hub contract updates the corresponding
liquidity pool for the specific trading pair (e.g., ETH/USDT) to reflect the newly added
liquidity.

Pseudocode for Liquidity Deposit:

Algorithm: Liquidity Deposit

1. procedure DepositLiquidity(LP, Token, Amount)

2. # LP deposits assets into the on-chain hub contract

3. MintLPTokens(LP, Token, Amount) # Issue LP tokens to the liquidity provider

4. UpdateLiquidityPool(Token, Amount) # Update the liquidity pool state

5. return Success

6. end procedure

Once the liquidity is deposited, the LP is eligible to earn rewards based on the trading volume
in the pool.

Off-Chain Liquidity Utilization

Once liquidity is deposited into the hub contract, the router manages its utilization in off-chain
trades. The router keeps track of which trades are consuming liquidity from specific pools and
ensures that LPs are compensated for providing liquidity.

• **Liquidity Tracking in SMT**: Each time liquidity is used to fulfill a trade, the router
updates its Sparse Merkle Tree (SMT) to reflect the amount of liquidity consumed. This
ensures that the off-chain state accurately tracks liquidity usage.

• **LP Rewards Calculation**: As trades are executed off-chain, the router calculates the
trading fees and rewards for each LP based on their contribution to the liquidity pool.

• **Final State Recorded in SMT**: The final state of liquidity utilization is recorded in the
router’s SMT, ensuring that the rewards distribution can be verified using Merkle proofs.

LP Rewards Distribution Based on Usage

LPs are rewarded based on the trading activity that occurs within the liquidity pool. The more
trades that are executed using the liquidity provided by the LP, the higher the rewards they earn.
The process works as follows:

1. **Trade Execution**: When a trade is executed off-chain, the router calculates the trading
fees based on the volume of the trade.

2. **Proportional Reward Allocation**: The fees generated from the trade are distributed to
LPs based on their contribution to the liquidity pool. LPs that have provided more liquidity
receive a larger share of the fees.

101

3. **Update in the SMT**: The router updates the SMT to record the rewards distribution,
ensuring that the rewards are properly reflected in the final state.

Pseudocode for LP Rewards Distribution:

Algorithm: LP Rewards Distribution

1. procedure DistributeLPRewards(TradeVolume, Pool, FeePercentage)

2. # Calculate total fees for the trade

3. TotalFees = TradeVolume * FeePercentage

4. for each LP in Pool do

5. # Calculate LP’s share based on their contribution

6. LpShare = LP.Contribution / Pool.TotalLiquidity

7. # Distribute fees to the LP

8. LpReward = TotalFees * LpShare

9. UpdateRouterSMT(LP, ’Add’, LpReward) # Update SMT with the LP reward

10. end for

11. return Success

12. end procedure

Once the rewards are calculated and distributed, the LPs can claim their rewards either off-chain
by keeping the LP tokens or on-chain by closing their channel with the hub contract.

2.10 Order Lifecycle with zk-SNARK Validations and SMT Updates

The lifecycle of an order on the DEX follows a highly secure and efficient process, with every
action verified through zk-SNARK proofs and reflected in the router’s Sparse Merkle Tree. This
ensures that only valid orders are processed, trades are executed correctly, and state transitions are
cryptographically secured.

Order Placement and Validation

When a user places an order (either buy or sell), the router validates the order using a zk-SNARK
proof to ensure that all conditions are met. This includes verifying that the user has the required
balance or assets to fulfill the order.

Steps in Order Placement:

1. **User Submits Order**: The user submits a buy or sell order to the off-chain router, speci-
fying the asset, price, and quantity.

2. **zk-SNARK Validation**: The router triggers a zk-SNARK circuit to validate the order.
For buy orders, it verifies that the user has sufficient funds locked in their payment channel.
For sell orders, it checks that the user has enough of the asset to sell.

3. **Order Added to Order Book**: Once validated, the router adds the order to the off-chain
order book and updates its Sparse Merkle Tree (SMT) to reflect the new state.

Pseudocode for Order Placement with zk-SNARK Validation:

102

Algorithm: Order Placement

1. procedure SubmitOrder(User, OrderType, Amount, Price)

2. if OrderType == ’Buy’ then

3. zkProof = zkSNARK_Validate_BuyOrder(User, Amount, Price)

4. if zkProof is valid then

5. AddOrderToOrderBook(User, ’Buy’, Amount, Price)

6. UpdateRouterSMT(User, ’Buy’, Amount, Price)

7. else

8. RejectOrder(User) # Insufficient funds or invalid conditions

9. end if

10. else if OrderType == ’Sell’ then

11. zkProof = zkSNARK_Validate_SellOrder(User, Amount, Price)

12. if zkProof is valid then

13. AddOrderToOrderBook(User, ’Sell’, Amount, Price)

14. UpdateRouterSMT(User, ’Sell’, Amount, Price)

15. else

16. RejectOrder(User) # Insufficient assets or invalid conditions

17. end if

18. end if

19. end procedure

This process ensures that only valid orders are placed and prevents spam or invalid orders from
entering the system.

Order Matching and Trade Execution

Once an order is placed and added to the order book, the router constantly checks for matching
orders. When a buy order and sell order meet the necessary conditions (price, quantity, etc.), the
router executes the trade off-chain, updating the balances of both parties.

Steps in Order Matching and Trade Execution:

1. **Order Matching**: The router scans the order book for matching orders. A buy order is
matched with a sell order if the price and quantity are compatible.

2. **Trade Validation with zk-SNARKs**: Before executing the trade, the router generates zk-
SNARK proofs for both the buyer and seller to ensure that both parties can fulfill the trade
(e.g., buyer has enough funds, seller has enough assets).

3. **Trade Execution**: Once validated, the router updates the off-chain balances of both
parties and records the trade in its SMT.

Pseudocode for Order Matching and Trade Execution:

Algorithm: Order Matching and Trade Execution

1. procedure MatchOrders()

2. for each BuyOrder in BuyOrderBook do

103

3. for each SellOrder in SellOrderBook do

4. if BuyOrder.Price >= SellOrder.Price and

5. BuyOrder.Amount >= SellOrder.Amount then

6. # Validate both orders using zk-SNARKs

7. buyerProof = zkSNARK_Validate_BuyOrder(BuyOrder.User, BuyOrder.Amount)

8. sellerProof = zkSNARK_Validate_SellOrder(SellOrder.User, SellOrder.Amount)

9. if buyerProof is valid and sellerProof is valid then

10. ExecuteTrade(BuyOrder, SellOrder)

11. UpdateRouterSMT(BuyOrder.User, ’Subtract’, BuyOrder.Amount)

12. UpdateRouterSMT(SellOrder.User, ’Subtract’, SellOrder.Amount)

13. UpdateRouterSMT(BuyOrder.User, ’Add’, SellOrder.Amount)

14. UpdateRouterSMT(SellOrder.User, ’Add’, BuyOrder.Amount)

15. RemoveMatchedOrders(BuyOrder, SellOrder)

16. end if

17. end if

18. end for

19. end for

20. end procedure

This process ensures that trades are executed only when both orders are valid and all conditions
are met. The off-chain router takes care of updating the balances and recording the trade in its
Sparse Merkle Tree.

Trade Finalization and Settlement

After the trade is executed and recorded in the router’s SMT, the users may choose to settle on-
chain. The final state is submitted to the on-chain hub contract, along with zk-SNARK and Merkle
proofs, to finalize the trade and update the users’ on-chain balances.

Steps in Trade Finalization:

1. **Final State Submission**: When a user closes their payment channel, the router provides
the final state of their off-chain balance, along with zk-SNARK and Merkle proofs.

2. **On-Chain Verification**: The on-chain hub contract verifies both the zk-SNARK proof
(ensuring that the off-chain actions were valid) and the Merkle proof (ensuring that the final
balance is accurate).

3. **Final Settlement**: Once verified, the hub contract updates the user’s on-chain balance
based on the final off-chain state.

Pseudocode for Final Settlement:

Algorithm: Final Settlement and Balance Update

1. procedure SettleOnChain(User, zkProof, MerkleProof)

2. if VerifyZKProof(zkProof) == True then

3. if VerifyMerkleProof(MerkleProof) == True then

4. UpdateOnChainBalance(User, FinalState)

104

5. return Success

6. else

7. return Failure # Invalid Merkle proof

8. end if

9. else

10. return Failure # Invalid zk-SNARK proof

11. end if

12. end procedure

This ensures that the final on-chain balance reflects all valid off-chain actions, creating a secure
and efficient settlement process.

3 Security and Efficiency through zk-SNARKs and SMTs

The use of zk-SNARKs and Sparse Merkle Trees ensures the security, privacy, and efficiency of the
Overpass Channels DEX. Every action is cryptographically proven, ensuring that only valid trades
are executed, liquidity providers are compensated accurately, and users’ final balances are securely
settled on-chain.

3.1 Scalability with Off-Chain Processing

By performing most operations off-chain, the DEX minimizes the load on the underlying blockchain.
This allows the system to scale to handle a high volume of trades without being constrained by
on-chain throughput. The use of zk-SNARK proofs ensures that all off-chain actions are secure and
verifiable, while the Sparse Merkle Tree structure enables efficient tracking and verification of state
transitions.

3.2 Privacy through zk-SNARKs

zk-SNARKs enable private transactions by allowing the router to validate actions without revealing
sensitive information, such as the exact amount of a user’s balance or the details of a trade. This
ensures that users’ financial privacy is preserved, even as their actions are verified cryptographically.

3.3 Security through Merkle Proofs

The use of Sparse Merkle Trees allows for efficient verification of the system’s state. Every state
transition (whether it be an order placement, trade execution, or liquidity update) is recorded in
the SMT, ensuring that the entire history of actions can be cryptographically proven. This reduces
the risk of fraud or manipulation and ensures that final on-chain settlements are based on a valid,
verifiable off-chain state.

4 Advanced Order Types and Centralized Exchange-like Ex-
perience

One of the goals of the Overpass Channels DEX architecture is to provide a user experience that
rivals that of centralized exchanges (CEXs) while maintaining the security, privacy, and trustless

105

nature of a decentralized system. To achieve this, the DEX supports a variety of advanced order
types, fast execution, and an order book that feels as responsive as its centralized counterparts.

4.1 Order Types in the DEX

The Overpass Channels DEX supports multiple order types, enabling users to execute complex
trading strategies. These order types are implemented off-chain via the router, which handles the
order matching and execution while ensuring that every action is validated via zk-SNARKs.

Market Orders

A market order allows a trader to buy or sell an asset immediately at the best available price. This
order type does not specify a price; instead, it is executed against the current available orders in
the order book.

Steps in Market Order Execution:

1. **Order Submission**: A trader submits a market order (buy or sell) to the router.

2. **Order Matching**: The router immediately matches the market order with the best avail-
able limit orders in the order book.

3. **zk-SNARK Validation**: The router verifies the trader’s balance via a zk-SNARK proof
before executing the trade.

4. **Execution**: The trade is executed at the best available price, and the corresponding
balances are updated in the Sparse Merkle Tree (SMT).

Pseudocode for Market Order Execution:

Algorithm: Market Order Execution

1. procedure SubmitMarketOrder(User, OrderType, Amount)

2. # Fetch best available order from the order book

3. BestOrder = FetchBestAvailableOrder(OrderType)

4. if BestOrder is found then

5. # Validate market order using zk-SNARK

6. zkProof = zkSNARK_ValidateOrder(User, Amount)

7. if zkProof is valid then

8. # Execute market order at the best price

9. ExecuteTrade(User, BestOrder, Amount)

10. UpdateRouterSMT(User, ’Subtract’, Amount)

11. UpdateRouterSMT(BestOrder.User, ’Add’, Amount)

12. return Success

13. else

14. return Failure # Invalid balance or conditions

15. end if

16. else

17. return Failure # No matching orders available

18. end if

19. end procedure

106

Limit Orders

A limit order allows traders to specify the price at which they want to buy or sell an asset. The
trade will only be executed if the market price reaches the specified limit price or better.

Steps in Limit Order Placement and Execution:

1. **Order Submission**: A trader submits a limit order specifying the price and amount.

2. **zk-SNARK Validation**: The router generates a zk-SNARK proof to validate the trader’s
balance or assets required for the order.

3. **Order Added to Order Book**: If validated, the limit order is added to the order book.

4. **Order Matching**: The router continuously monitors the order book to check if there is a
match with an incoming buy or sell order that meets the limit price.

5. **Execution**: When the conditions are met (e.g., the market price matches or exceeds the
limit price), the router executes the trade, and the balances are updated in the SMT.

Pseudocode for Limit Order Execution:

Algorithm: Limit Order Execution

1. procedure SubmitLimitOrder(User, OrderType, Amount, LimitPrice)

2. # Validate the limit order using zk-SNARK

3. zkProof = zkSNARK_ValidateLimitOrder(User, Amount, LimitPrice)

4. if zkProof is valid then

5. # Add limit order to the order book

6. AddOrderToOrderBook(User, OrderType, Amount, LimitPrice)

7. UpdateRouterSMT(User, ’Lock’, Amount) # Lock funds for the order

8. return Success

9. else

10. return Failure # Invalid balance or conditions

11. end if

12. end procedure

Stop-Loss Orders

A stop-loss order allows traders to set a predefined price at which an asset should be sold to limit
losses. The order is triggered when the asset’s market price falls to the stop price.

Steps in Stop-Loss Order Execution:

1. **Order Submission**: The trader submits a stop-loss order with a specified stop price and
amount.

2. **zk-SNARK Validation**: The router verifies the stop-loss order using a zk-SNARK proof
to ensure that the user has sufficient assets to sell.

3. **Order Triggering**: Once the asset’s market price reaches the stop price, the router triggers
the stop-loss order and converts it into a market order.

107

4. **Execution**: The market order is executed, and the trader’s assets are sold at the best
available price.

Pseudocode for Stop-Loss Order Execution:

Algorithm: Stop-Loss Order Execution

1. procedure SubmitStopLossOrder(User, Amount, StopPrice)

2. # Validate the stop-loss order using zk-SNARK

3. zkProof = zkSNARK_ValidateStopLoss(User, Amount, StopPrice)

4. if zkProof is valid then

5. AddStopLossOrder(User, Amount, StopPrice)

6. UpdateRouterSMT(User, ’Lock’, Amount) # Lock assets for stop-loss

7. return Success

8. else

9. return Failure # Invalid balance or conditions

10. end if

11. end procedure

12. procedure TriggerStopLossOrder(User, Amount, StopPrice)

13. if MarketPrice <= StopPrice then

14. ConvertStopLossToMarketOrder(User, Amount)

15. SubmitMarketOrder(User, ’Sell’, Amount)

16. end if

17. end procedure

Stop-Limit Orders

A stop-limit order combines the functionality of a stop-loss order and a limit order. Once the stop
price is reached, the order becomes a limit order, and the trade will only be executed at the limit
price or better.

Steps in Stop-Limit Order Execution:

1. **Order Submission**: The trader submits a stop-limit order specifying the stop price, limit
price, and amount.

2. **zk-SNARK Validation**: The router validates the order and the trader’s balance using a
zk-SNARK proof.

3. **Order Triggering**: When the market price reaches the stop price, the order is converted
into a limit order.

4. **Execution**: The limit order is executed once the market price meets or exceeds the limit
price.

Pseudocode for Stop-Limit Order Execution:

Algorithm: Stop-Limit Order Execution

108

1. procedure SubmitStopLimitOrder(User, Amount, StopPrice, LimitPrice)

2. # Validate the stop-limit order using zk-SNARK

3. zkProof = zkSNARK_ValidateStopLimit(User, Amount, StopPrice, LimitPrice)

4. if zkProof is valid then

5. AddStopLimitOrder(User, Amount, StopPrice, LimitPrice)

6. UpdateRouterSMT(User, ’Lock’, Amount) # Lock assets for stop-limit

7. return Success

8. else

9. return Failure # Invalid balance or conditions

10. end if

11. end procedure

12. procedure TriggerStopLimitOrder(User, Amount, StopPrice, LimitPrice)

13. if MarketPrice <= StopPrice then

14. ConvertStopLimitToLimitOrder(User, Amount, LimitPrice)

15. SubmitLimitOrder(User, ’Sell’, Amount, LimitPrice)

16. end if

17. end procedure

4.2 Order Book Management and User Experience

The order book in the Overpass Channels DEX is designed to provide a fast, responsive experience
similar to that of centralized exchanges. The order book is managed off-chain by the router and
continuously updated as new orders are placed, matched, or cancelled.

Centralized Exchange-like Speed

The DEX’s off-chain architecture allows for near-instantaneous order placement and matching,
providing a user experience that feels as fast as using a centralized exchange. The key to achieving
this speed is by performing the order matching and validation off-chain, using zk-SNARKs for
verification while keeping on-chain interactions minimal.

Features of CEX-like Speed and Experience:

• **Instant Order Book Updates**: Since the order book is managed off-chain, new orders
appear in the order book instantly once validated.

• **Fast Order Matching**: The off-chain router constantly scans for matching orders, ensuring
that trades are executed as quickly as possible once the conditions are met.

• **Secure Execution with zk-SNARKs**: Every order and trade is validated securely using
zk-SNARK proofs, ensuring that the system remains decentralized and trustless, even while
delivering a centralized exchange-like experience.

4.3 Liquidity, Depth, and Advanced Trading Strategies

To further replicate the feel of a centralized exchange, the DEX supports deep liquidity pools and
allows for advanced trading strategies. With LPs providing liquidity across multiple trading pairs,

109

traders can execute large orders without causing significant slippage, similar to what they would
expect on a traditional exchange.

Features for Advanced Trading Strategies:

• **High Liquidity**: LPs deposit assets into the on-chain hub contract, creating deep liquidity
pools for major trading pairs.

• **Low Slippage**: The deep liquidity pools reduce slippage, enabling large trades to be
executed without significantly affecting the market price.

• **Advanced Order Types**: The DEX supports various order types (market, limit, stop-loss,
stop-limit), allowing traders to implement sophisticated trading strategies.

110

Index

50% Spending Rule for Off-Chain Transactions, 31

Advanced Order Types and Centralized
Exchange-like Experience, 105

Analysis, 68
Appendix, 83
Application of Sparse Merkle Trees in the Overpass

Hierarchy, 62
Assignment to Wallet Contracts, 38

Balance Consistency, 25
Bandwidth and Latency Analysis, 23
Battery Charging Interaction with Intermediate

Contracts, 53, 59
Battery Charging Mechanism for Storage Nodes, 51,

57
Benefits of Sparse Merkle Trees in Overpass

Channels, 61

Censorship Resistance in Overpass Channels, 68
Channel State Verification for Both Channels, 84
Circuits, 83
Client and On-Chain Challenge Mechanism, 50
Comparative Analysis: Overpass Channels vs. Other

Solutions, 28
Comparisons with Alternative Approaches, 24
Computational Costs of Proof Verification, 22
Conclusion, 81
Conditional Payments, 38
Conditional Transactions using zk-SNARKs, 38
Confidential Voting Systems, 78
Cross-Intermediate Contract Rebalancing and

Global Liquidity Management, 11
Cross-Shard Operations, 77
Cross-Shard Transaction Security, 33
Cryptographic Proofs and Tamper-Evident Records,

36

Decentralized Exchange (DEX) on Overpass, 93
Deterministic Conflict Resolution, 31
Dynamic Rebalancing Analysis, 4

Efficiency and Cost Analysis, 72
Elimination of Need for Watchtowers, 35
Estimated Throughput, 71

Example Scenario: Alice and Bob’s DEX
Interaction, 29

Factors Affecting TPS, 71
Fee Distribution, 65, 74
Fixed Supply and Initial Distribution, 64
Fluid Liquidity through Dynamic Rebalancing, 3
Formal Definition of Balance Consistency, 25
Fraud Prevention Mechanisms in Overpass Channels,

30
Front-Running Prevention, 28
Future Directions and Challenges, 80

Gaining Control Over All Redundancies is
Impractical, 49

Global Payment System, 79
Governance and Treasury, 65

Hash Time-Locked Contracts (HTLC) in Overpass
Channels, 39

Hierarchical Ordering and System-Level Efficiency,
40

Hierarchical Security: Redundancy in the Network
Itself, 50

Hierarchical Sparse Merkle Trees in Overpass
Channels, 61

Hierarchical Structure, 41
Horizontal Scalability without Validators, 2
How the Wallet Should Work, 66

Implementation Considerations, 54, 60, 62
Implementing Beneficial Arbitrage within Overpass

Channels, 29
Implications and Practical Considerations, 26
Incentivizing and Maintaining via Staking and

Battery Charging, 50
Incentivizing Storage Nodes, 56
Independent Verification and Instant Finality, 3
Individual User Devices and Wallet Trees, 46
Instant and Asynchronous Nature, 20
Integrating Beneficial MEV: Enabling Arbitrage

without Compromising Privacy, 55, 60
Integration, 64
Integration with L1 Blockchain, 75

111

Intermediate Contract Circuits, 85
Introduction, 1

Key Components of the Wallet Interface, 66
Key Innovations, 2
Key Safeguard: Pending Transaction Acceptance, 30

L1 DNS Integration, 77
L1’s Sharding Architecture, 75
Liquidity Provision and LP Rewards Distribution,

100
Liquidity, Depth, and Advanced Trading Strategies,

109

Memory and Storage Considerations, 22
Merkle Tree Structure, 62
Minimal Cross-Shard Data, 62
Mitigating(MEV) in Overpass Channels, 27
Mitigation of Security Concerns for Extended

Absence, 30

No Incentive for Attackers, 50

Off-Chain Router, 94
On-Chain Final Settlement, 99
On-Chain Hub Contract, 93
On-Chain Verification, 35
Online Requirements, 20
Optimized UX/UI, 68
Optimizing the System, 72
Order Book Management and User Experience, 109
Order Lifecycle with zk-SNARK Validations and

SMT Updates, 102
Order Types in the DEX, 106
Overview, 18
Overview of the System Components, 93

Periodic Channel Updates and Off-Chain Storage
Nodes, 46

Post-Quantum Security, 80
Potential Bottlenecks and Mitigations, 24
Potential Transaction Throughput, 71
Potential Vulnerabilities and Mitigations, 55
Practicality of zk-SNARKs, 20
Prevention of Old State Submission, 33
Privacy Analysis, 74
Privacy as a Shield Against MEV, 27
Privacy Preservation, 19
Privacy through zk-SNARKs, 105
Privacy-Enhanced Transactions with zk-SNARKs, 2
Privacy-Preserving Analytics, 81
Private Asset Transfers, 78

Proof Consistency, 34
Proof Generation and Verification, 18

Quantitative Analysis of MEV Reduction, 28

Remarks, 75
Root Contract and Global State, 48

Scalability and Performance, 70
Scalability at System Level, 23
Scalability with Off-Chain Processing, 105
Secure Health Records Management, 79
Security and Efficiency through zk-SNARKs and

SMTs, 105
Security and Robustness of the Battery Charging

System, 54, 59
Security and Trust Considerations, 25
Security through Merkle Proofs, 105
Smart Contract Integration, 76
Sparse Merkle Trees for Order and Balance Tracking,

98
Sparse Merkle Trees for State Tracking, 95
Staking to Become a Storage Node, 51, 56
Storage Nodes and Data Management, 46
Storage Nodes and Intermediate Contracts, 47
Summary of Intermediate Contract Circuit

Responsibilities, 88
System Architecture, 72
System-Level Efficiency, 44

Theorem of Balance Consistency, 25
Token Utility and Fee Structure, 65
Tokenomics, 64
Trade Execution Process, 97
Transaction Processing, 37
Transaction Processing and Conflict Resolution, 37

Unilateral Channels: How They Work, 19
Updated Example Code for Wallet-Level Grouping,

66
Use Cases for Privacy, 77

Wallet-Managed Channel Grouping, 66
Why the Redundant Copy Attack is Pointless, 48

zk-SNARK Circuit, 62
zk-SNARK Circuit for Transaction Validation, 18
zk-SNARK Integration for Validating Every Action,

96
ZK-SNARK Proofs and State Updates, 32
zk-SNARKs, 17

112

	Introduction
	Key Innovations
	Horizontal Scalability without Validators
	Privacy-Enhanced Transactions with zk-SNARKs
	Independent Verification and Instant Finality
	Fluid Liquidity through Dynamic Rebalancing
	Dynamic Rebalancing Analysis
	Cross-Intermediate Contract Rebalancing and Global Liquidity Management

	zk-SNARKs
	Overview
	zk-SNARK Circuit for Transaction Validation
	Proof Generation and Verification
	Privacy Preservation
	Unilateral Channels: How They Work
	Instant and Asynchronous Nature
	Online Requirements
	Practicality of zk-SNARKs
	Computational Costs of Proof Verification
	Memory and Storage Considerations
	Bandwidth and Latency Analysis
	Scalability at System Level
	Comparisons with Alternative Approaches
	Potential Bottlenecks and Mitigations
	Security and Trust Considerations

	Balance Consistency
	Formal Definition of Balance Consistency
	Theorem of Balance Consistency
	Implications and Practical Considerations

	Mitigating(MEV) in Overpass Channels
	Privacy as a Shield Against MEV
	Front-Running Prevention
	Quantitative Analysis of MEV Reduction
	Comparative Analysis: Overpass Channels vs. Other Solutions
	Example Scenario: Alice and Bob's DEX Interaction
	Implementing Beneficial Arbitrage within Overpass Channels

	Fraud Prevention Mechanisms in Overpass Channels
	Key Safeguard: Pending Transaction Acceptance
	Mitigation of Security Concerns for Extended Absence
	Deterministic Conflict Resolution
	50% Spending Rule for Off-Chain Transactions
	ZK-SNARK Proofs and State Updates
	Cross-Shard Transaction Security
	Prevention of Old State Submission
	Proof Consistency
	On-Chain Verification
	Elimination of Need for Watchtowers
	Cryptographic Proofs and Tamper-Evident Records

	Transaction Processing and Conflict Resolution
	Transaction Processing
	Assignment to Wallet Contracts

	Conditional Payments
	Conditional Transactions using zk-SNARKs
	Hash Time-Locked Contracts (HTLC) in Overpass Channels

	Hierarchical Ordering and System-Level Efficiency
	Hierarchical Structure
	System-Level Efficiency

	Storage Nodes and Data Management
	Individual User Devices and Wallet Trees
	Periodic Channel Updates and Off-Chain Storage Nodes
	Storage Nodes and Intermediate Contracts
	Root Contract and Global State
	Why the Redundant Copy Attack is Pointless
	Gaining Control Over All Redundancies is Impractical
	Hierarchical Security: Redundancy in the Network Itself
	Client and On-Chain Challenge Mechanism
	No Incentive for Attackers
	Incentivizing and Maintaining via Staking and Battery Charging
	Staking to Become a Storage Node
	Battery Charging Mechanism for Storage Nodes
	Battery Charging Interaction with Intermediate Contracts
	Security and Robustness of the Battery Charging System
	Implementation Considerations
	Potential Vulnerabilities and Mitigations
	Integrating Beneficial MEV: Enabling Arbitrage without Compromising Privacy

	Incentivizing Storage Nodes
	Staking to Become a Storage Node
	Battery Charging Mechanism for Storage Nodes
	Battery Charging Interaction with Intermediate Contracts
	Security and Robustness of the Battery Charging System
	Implementation Considerations
	Integrating Beneficial MEV: Enabling Arbitrage without Compromising Privacy

	Hierarchical Sparse Merkle Trees in Overpass Channels
	Benefits of Sparse Merkle Trees in Overpass Channels
	Application of Sparse Merkle Trees in the Overpass Hierarchy

	Implementation Considerations
	Merkle Tree Structure
	zk-SNARK Circuit
	Minimal Cross-Shard Data
	Integration

	Tokenomics
	Fixed Supply and Initial Distribution
	Governance and Treasury
	Token Utility and Fee Structure
	Fee Distribution

	Wallet-Managed Channel Grouping
	Key Components of the Wallet Interface
	How the Wallet Should Work
	Updated Example Code for Wallet-Level Grouping
	Optimized UX/UI

	Analysis
	Censorship Resistance in Overpass Channels
	Scalability and Performance
	Potential Transaction Throughput
	Factors Affecting TPS
	Estimated Throughput
	System Architecture
	Optimizing the System

	Efficiency and Cost Analysis
	Fee Distribution

	Privacy Analysis
	Remarks
	Integration with L1 Blockchain
	L1's Sharding Architecture
	Smart Contract Integration
	Cross-Shard Operations
	L1 DNS Integration

	Use Cases for Privacy
	Confidential Voting Systems
	Private Asset Transfers
	Secure Health Records Management
	Global Payment System

	Future Directions and Challenges
	Post-Quantum Security
	Privacy-Preserving Analytics

	Conclusion
	Appendix
	Circuits
	Channel State Verification for Both Channels
	Intermediate Contract Circuits
	Summary of Intermediate Contract Circuit Responsibilities

	Decentralized Exchange (DEX) on Overpass
	Overview of the System Components
	On-Chain Hub Contract
	Off-Chain Router
	Sparse Merkle Trees for State Tracking
	zk-SNARK Integration for Validating Every Action
	Trade Execution Process
	Sparse Merkle Trees for Order and Balance Tracking
	On-Chain Final Settlement
	Liquidity Provision and LP Rewards Distribution
	Order Lifecycle with zk-SNARK Validations and SMT Updates

	Security and Efficiency through zk-SNARKs and SMTs
	Scalability with Off-Chain Processing
	Privacy through zk-SNARKs
	Security through Merkle Proofs

	Advanced Order Types and Centralized Exchange-like Experience
	Order Types in the DEX
	Order Book Management and User Experience
	Liquidity, Depth, and Advanced Trading Strategies

