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Abstract. In this paper, we investigate the rough order assumption
(ROC) introduced by Braun, Damg̊ard, and Orlandi at CRYPTO 23,
which posits that class groups of imaginary quadratic fields with no small
prime factors in their order are computationally indistinguishable from
general class groups. We present a novel attack that challenges the va-
lidity of this assumption by leveraging properties of Mordell curves over
the rational numbers. Specifically, we demonstrate that if the rank of
the Mordell curve E−16D is at least 2, it contradicts the rough order
assumption. Our attack deterministically breaks the ROC assumption
for discriminants of a special form, assuming the parity conjecture holds
and certain conditions are met. Additionally, for both special and generic
cases, our results suggest that the presence of nontrivial 3-torsion ele-
ments in class groups can undermine the ROC assumption. Although
our findings are concrete for specific cases, the generic scenario relies on
heuristic arguments related to the Birch and Swinnerton-Dyer (BSD)
conjecture, a significant and widely believed conjecture in number the-
ory. Attacks against 2-torsion elements in class groups are already well
known, but our work introduces a distinct approach targeting 3-torsion
elements. These attacks are fundamentally different in nature, and both
have relatively straightforward countermeasures, though they do not gen-
eralize to higher torsions. While these results do not entirely invalidate
the ROC assumption, they highlight the need for further exploration of
its underlying assumptions, especially in the context of specific torsion
structures within class groups.

1 Introduction

Cryptography based on class groups of imaginary quadratic orders (IQ cryp-
tography, IQC) is a fascinating area pioneered by Buchmann and Williams in
their seminal work [8]. Initially, IQC did not find immediate real-world appli-
cations, leading to a period of limited exploration. However, this changed when
Lipmaa proposed utilizing the unknown order property of class groups of imag-
inary quadratic fields to construct secure accumulators without a trusted setup
[25]. Recently, the unknown order property has gained prominence as a founda-
tion for various cryptographic primitives, including Verifiable Delay Functions
(VDF) [34,30], cryptographic accumulators [4], vector commitments tailored for
blockchain applications, and polynomial commitments used in zero-knowledge
proofs [9].



Alongside the primary exploration of maximal orders in cryptography, sig-
nificant progress has also been made in analyzing cryptographic schemes based
on non-maximal orders. For instance, at EUROCRYPT 2009, Castagnos and
Laguillaumie [14] achieved a major breakthrough by presenting a polynomial-
time chosen-plaintext total break of the NICE family of cryptosystems [24,28,29].
This work not only marked a significant advancement in the field but also intro-
duced a constructive technique that influenced subsequent research. Continuing
their innovative contributions, Castagnos and Laguillaumie introduced a novel
linearly homomorphic encryption scheme in CT-RSA 2015 [15], operating within
the class group of a non-maximal order of an imaginary quadratic field. Further
advancing this research, at ASIACRYPT 2018, Castagnos, Laguillaumie, and
Tucker addressed practical challenges in secure inner product functional encryp-
tion modulo p, exploring schemes based on standard assumptions like DDH
and Learning with Errors (LWE) [16]. In CRYPTO 2019, Castagnos, Catalano,
Laguillaumie, Savasta, and Tucker focused on distributed variants of the ECDSA
digital signature standard, introducing a method for achieving simulation-based
security without relying on non-standard interactive assumptions [12,13]. Finally,
in CRYPTO 2022, Abram, Damg̊ard, Orlandi, and Scholl presented a group-
theoretic framework for secure computation tools, unifying approaches based on
number-theoretic assumptions such as DDH, Decision Composite Residuosity
(DCR), and Quadratic Residuosity (QR) [1].

In this paper, we study the rough order assumption (ROC) introduced by
Braun, Damg̊ard, and Orlandi [6]. This assumption has been utilized in subse-
quent works [5,11], which assert that class groups with no small prime factors
in their order are hard to distinguish from general class groups.

Our Contribution In this paper, we make the following contributions to the
study of cryptographic schemes based on imaginary quadratic fields and the
rough order assumption (ROC):

– We introduce a novel attack on the ROC assumption. Our attack deter-
ministically invalidates the assumption for discriminants of a special form,
provided the parity conjecture holds and certain conditions are met. Specifi-
cally, by applying Proposition 2 from [20], we demonstrate that if the Mordell
curve E−16D has rank at least 2, it reveals the presence of nontrivial 3-torsion
elements in the class groups, thus contradicting the ROC assumption for
these specific discriminants. For generic cases, while our attack still suggests
that nontrivial 3-torsion elements could undermine the ROC assumption, the
results are based on heuristic arguments related to the Birch and Swinnerton-
Dyer (BSD) heuristics. These heuristics, though widely believed, introduce
some uncertainty in the generic scenario.

– We discuss the broader implications of our findings for cryptographic schemes
that rely on the ROC assumption. Our results highlight potential vulnera-
bilities and emphasize the need for re-evaluating and possibly strengthening
cryptographic assumptions or exploring alternative approaches to maintain
robust security guarantees.
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Outline This paper is organized as follows. Subsection 1.1 covers essential proper-
ties and notations related to elliptic curves, imaginary quadratic orders, quadratic
fields, and related algebraic structures. This foundational material is crucial for
understanding the theoretical aspects of our work.

In Subsection 1.2, we describe the framework introduced by Castagnos and
Laguillaumie, focusing on the algorithm CLGen and its implications for crypto-
graphic applications. We also present and define the unknown order assumption
and the rough order assumption (ROC).

Following this, in Section 2, we present our attack on the rough order as-
sumption. This Section details our attack strategy, utilizing Proposition 2 from
[20]. We formally state and prove a theorem demonstrating how a high rank of
the Mordell curve E−16D can break the ROC assumption.

In Section 3, we include computational methods and strategies for determin-
ing the rank of Mordell curves, providing a bridge between theory and practical
application. Section 4 examines the impact of our attack on papers that rely on
the rough order assumption. This analysis provides context for our contributions
and situates our work within the broader research landscape.

We conclude by summarizing our findings, discussing the implications for
cryptographic schemes based on class groups, and suggesting possible directions
for future research.

1.1 Preliminaries

In this Subsection, we discuss properties and notations related to elliptic curves
and imaginary quadratic orders. For detailed information on elliptic curves, refer
to [33,32]. For comprehensive details on quadratic orders, see [18].

Elliptic curves are smooth projective algebraic curves of genus one with a
specified point at infinity, denoted by OE . These curves can be expressed in the
long Weierstraß form, where OE serves as the (only) point at infinity. Often, the
curve is presented using an affine equation without explicitly mentioning OE .
An elliptic curve is equipped with a natural group law, with OE serving as the
identity element. The set of rational points on the curve E over a field F is
denoted by E(F ).

In this work, we primarily focus on elliptic curves where F is the field of
rational numbers Q, specifically the Mordell curve Ek : y2 = x3 + k, where k is
an integer. This curve is a key example of an elliptic curve over Q and is central
to our study. Additionally, we occasionally consider elliptic curves over finite
fields Fp in the context of the Birch and Swinnerton-Dyer (BSD) conjecture [3]
and the Mestre–Nagao heuristics [26,27].

The rank of an elliptic curve E over Q is defined as follows. By the Mordell-
Weil theorem, the group of rational points on E, denoted E(Q), is a finitely
generated abelian group. Therefore, it can be written as:

E(Q) ∼= Zr ⊕ T

where:
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– r is the rank of the elliptic curve E, which corresponds to the number of
independent generators of the infinite part,

– T is the torsion subgroup, consisting of points of finite order.

Thus, the rank r represents the number of independent rational points of
infinite order on the elliptic curve.

Switching focus to quadratic fields, a quadratic field K is a subfield of the
complex numbers C with degree 2 over Q. This field can be uniquely expressed as
Q(
√
n), where n is a square-free integer distinct from 1 and 0. The fundamental

discriminant ∆K is defined as n if n ≡ 1 (mod 4) and 4n otherwise.
An order OK in K is a subset of K that forms a subring of K, containing 1,

and serving as a free Z-module of rank 2. The ring of integers O∆K
in K is the

maximal order, which contains all other orders of K. It can be represented as
Z + 1

2 (∆K +
√
∆K)Z. If OK is an order in K with finite index f in O∆K

, then
OK can be expressed as Z + f 1

2 (∆K +
√
∆K)Z = Z + fO∆K

. The integer f is
known as the conductor of OK .

The discriminant of the order OK can be written as ∆f = f2∆K . When refer-
ring to a specific non-maximal order denoted as O∆f

, we classify it accordingly.
The standard representation of a O∆-ideal, for a discriminant ∆, is

a = q

(
aZ +

−b+
√
∆

2
Z

)
where q ∈ Z, a ∈ N, and b ∈ Z such that b2 ≡ ∆ (mod 4a). An ideal is called

primitive if q = 1. If −a < b ≤ a, this expression is uniquely defined, and we
denote a primitive ideal by (a, b). This also corresponds to the positive definite
binary quadratic form ax2 +bxy+cy2 with b2−4ac = ∆. A form ax2 +bxy+cy2

is primitive if its coefficients a, b, and c are relatively prime.
The class group of an order O, denoted cl(O), is the quotient of the group of

fractional ideals by the subgroup of principal ideals within O. It measures the
failure of unique factorization in the ring of integers of O. Formally, the class
group cl(O) is defined as

cl(O) =
Ideal(O)

Principal(O)
,

where Ideal(O) denotes the group of fractional ideals in O and Principal(O)
denotes the subgroup of principal ideals.

The class number hO of O is the order of its class group. It quantifies the
number of distinct ideal classes in cl(O). Formally,

hO = |cl(O)|,

where | · | denotes the order of the group. The class number provides insight
into the arithmetic properties of the order, with a larger class number indicating
a greater failure of unique factorization.

In general, the specific structure of cl(O) as an abelian group remains largely
unknown. For example, even determining the order of cl(O) is already a highly
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non-trivial problem [23]. However, a notable exception is the 2-torsion subgroup
of cl(O); genus theory [18][I.§3] provides a very explicit description of cl(O)[2] ∼=
cl(O)/cl(O)2 by introducing a set of characters χi : cl(O)→ {±1}, where cl(O)2

is recovered as the intersection of the kernels of these characters. The characters
χi correspond to the prime factors mi of the discriminant ∆O (with the prime
2 requiring special treatment), and they can be computed in polynomial time
with respect to the size of mi.

The 2-torsion subgroup cl(O)[2] is trivial if and only if ∆O = −q or ∆O =
−4q, where q is a prime satisfying q ≡ 3 (mod 4).

1.2 The CL Framework for Unknown Order Group

The framework was first introduced by Castagnos and Laguillaumie [15] and
later refined in [16,12,13], which specifies two algorithms, CLGen and CLSolve.
For the purposes of this paper, we are interested only in the former, so we will
describe only this algorithm.

CLGen, takes as input the security parameter 1λ and a prime q ≥ 2λ, and
outputs a set of public parameters ppcl = (q, s̄, f, gq, Ĝ, F ; ρ), which describe a
class group, where ρ is the randomness used by CLGen. In this tuple, the group
of squares Ĝ contains a cyclic subgroup G ⊆ Ĝ, which factors as the direct
product G = Gq×F ⊆ Ĝ, where F = 〈f〉 is the unique subgroup of order q, and
Gq = 〈gq〉 is the subgroup of qth powers.

The order of Gq is unknown, but it is known that an upper bound s̄ exists
such that s̄ > |Gq|. The class group associated with Gq has odd order, and
computing its order is believed to be difficult when |q| is large. For a discussion
on the choice of cryptographic parameters related to such groups, see [7].

The Cohen-Lenstra heuristics [17] suggest that for imaginary quadratic num-
ber fields:

– approximately 97.6% of the time, the odd part of the class group is cyclic,
– the frequency f(d) of fundamental discriminants for which the order of the

class group is divisible by d is approximately:
• f(3) = 44%,
• f(5) = 24%,
• f(7) = 16%.

These heuristics indicate that while the class group is often cyclic, it fre-
quently contains elements of small odd order. The challenge remains in deter-
mining how difficult it is to find such elements, if they exist. This leads to the
formal definition of the Unknown Order Assumption (ORD):

Definition 1 (Unknown Order Assumption). Let λ be the security param-
eter, q ≥ 2λ a prime, and A a PPT algorithm. The experiment generates public
parameters

ppcl := (q, s̄, f, gq, Ĝ, F ; ρ)← CLGen(1λ, q; ρ)

and runs A(ppcl). We say that A solves the unknown order (ORD) problem if it

outputs a group element h ∈ (Ĝ \ F ) and an integer e 6= 0 such that he = 1. We
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define the advantage AdvORD
A (λ) as the success probability. The ORD assumption

holds if AdvORD
A (λ) is negligible in λ for all PPT A.

Additionally, in [6], Braun, Damg̊ard, and Orlandi introduced the rough order
assumption. This new security assumption states that discriminants for class
groups with rough order are indistinguishable from those in general. Currently,
the topic is not well-explored. Below, we present the original definition of the
rough order assumption as introduced by Braun, Damg̊ard, and Orlandi [6]:

Definition 2 (Rough Order Assumption). Let λ be a security parame-

ter, q ≥ 2λ a prime, C ∈ N, and A be a PPT algorithm. Define Drough
C to

be the uniform distribution over the set {ρ ∈ {0, 1}λ | (q, s̄, f, gq, Ĝ, F ; ρ) ←
CLGen(1λ, q; ρ) ∧ ∀ prime p < C : p - ord(Ĝ)}, We say A solves the C-rough
order (ROC) problem if its advantage

AdvROC

A (λ) :=
∣∣∣Pr
[
1← A(1λ, ρ0) | ρ0 ∈R {0, 1}λ

]
− Pr

[
1← A(1λ, ρ1) | ρ1 ← Drough

C

]∣∣∣
is non-negligible. We say the ROC assumption holds if AdvROC

A (λ) ≤ negl(λ) for
all PPT A.

The definition above posits that class groups sampled under normal condi-
tions are indistinguishable from those sampled with a C-rough order, where a
C-rough order is defined as having no prime factors smaller than C. Note that
the CLGen algorithm avoids certain discriminants to circumvent attacks related
to the 2-torsion subgroup of the class group, as cl(O)[2] is trivial if and only if
∆O = −q or ∆O = −4q, where q is a prime such that q ≡ 3 (mod 4). By ensur-
ing that q is not of this form, CLGen avoids potential vulnerabilities associated
with the 2-torsion subgroup as described by genus theory.

2 Attack on the rough order assumption

In this section, we challenge the validity of the rough order assumption and
present an efficient attack on the corresponding computational problem. Our
attack reduces the problem to one involving the computation or approximation
of the rank of a Mordell curve Ek : y2 = x3 + k over the rational numbers. The
main tool for our attack is Proposition 2 from [20], which we reproduce below
with the necessary adaptations.

Proposition 1. Suppose the positive integer D is squarefree, congruent to 3
(mod 4), and is neither a multiple of 3 nor equal to 1. Then the rank of E−16D
is at most the sum of 1 and the 3-ranks of the class groups of Q(

√
−D) and

Q(
√

3D).

We now present our main Theorem, which is derived specifically for this pa-
per. The Theorem builds on the aforementioned proposition and demonstrates
that the rough order assumption ROC can be invalidated under certain condi-
tions.
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Theorem 1 (informal). Let D be a positive integer that is squarefree, congru-
ent to 3 (mod 4), and neither a multiple of 3 nor equal to 1. Suppose the rank
of the Mordell curve E−16D : y2 = x3− 16D over Q is at least 2. Then this con-
tradicts the rough order assumption ROC for some sufficiently large C, because
the 3-torsion subgroup of E−16D(Q) cannot be trivial.

Proof. Consider the Mordell curve E−16D : y2 = x3 − 16D over Q. According
to the proposition, if D is squarefree, congruent to 3 (mod 4), and is neither a
multiple of 3 nor equal to 1, then the rank of E−16D is at most the sum of 1 and
the 3-ranks of the class groups of Q(

√
−D) and Q(

√
3D).

Assume, for the sake of contradiction, that the rank of E−16D is at least 2.
This implies that the sum of the 3-ranks of the class groups of Q(

√
−D) and

Q(
√

3D) must be at least 1. In other words, at least one of these class groups
must have a nontrivial 3-torsion element.

Now, by the Scholz reflection Theorem [31], the 3-rank of the class group of
Q(
√
−D) is either equal to or one greater than the 3-rank of the class group of

Q(
√

3D) (since D is assumed to be a negative fundamental discriminant and not
equal to −3).

Thus, if the 3-rank of the class group of Q(
√

3D) is non-zero, the 3-rank of
the class group of Q(

√
−D) must also be non-zero, and vice versa. This implies

that both class groups contain nontrivial 3-torsion elements.
However, the rough order assumption ROC asserts that for a sufficiently large

C, the class group should have no prime factors smaller than C, including 3. The
existence of nontrivial 3-torsion elements directly contradicts this assumption.

Therefore, if the rank of E−16D is at least 2, this would break the rough order
assumption ROC by implying the presence of nontrivial 3-torsion in the class
group. This contradiction invalidates the rough order assumption under these
conditions. ut

Finding the rank of a Mordell curve Ek with a large coefficient k = −16D
(where D is a large integer with more than 1000 bits) is a challenging task
[19][Section 15.5]. In the next Section, we show how to overcome this challenge
for special discriminants and how to tackle the general case using some heuristic
methods.

3 Heuristic Insights on the Rank of Elliptic Curves

In addressing the challenge of determining whether a Mordell curve Ek : y2 =
x3 + k has rank at least 2, especially when dealing with large coefficients, we
face significant computational obstacles. In this Subsection, we present heuristic
insights that offer valuable evidence regarding the rank of elliptic curves. These
insights help us navigate the difficulties associated with verifying the expected
rank for curves with coefficients k larger than 1000 bits, which are critical for
real-world cryptographic applications.

We begin by identifying a family of discriminants where we have developed
a fully working attack, enabling us to effectively assess the rank in these specific
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cases. This approach provides a robust methodology for dealing with particu-
lar instances. We then extend our focus to the general case, applying heuristic
methods to gain a better understanding of the curve’s rank and to potentially
overcome some of the computational limitations inherent in this process.

3.1 Special discriminants

It is well known that the rough order assumption can be compromised for dis-
criminants with specific forms. These discriminants exhibit particular structural
properties that make them vulnerable to certain attacks, thus providing a clear
path to undermining the rough order assumption in these cases.

In [2], Belabas, Kleinjung, Sanso, and Wesolowski illustrate that there are
specific choices of discriminants for which the low order assumption [10, Defi-
nition 1] does not hold. These discriminants are associated with special forms
defined in Theorems 1 and 2, and Corollary 1 of their paper. Breaking the low
order assumption involves finding an element µ in a finite group G and an integer
d < 2λ such that µ 6= 1G and µd = 1G, where 1G denotes the identity element of
G. Since the low order assumption is a weaker condition compared to the rough
order assumption, a violation of the low order assumption implies that the rough
order assumption is also invalidated.

By leveraging techniques from [22], we identify special discriminants of the
form D = 3

4z
2 ± 4, where our Theorem 1 effectively demonstrates how to break

the rough order assumption (but not the low order assumption). We show below
how these techniques can be applied to achieve this result. The formulae (11)
derived in [22][Subsection 6.1] reveal a correlation between the coefficient k and
a point P (x, y) in Ek. We report them here:

x = z2 + a, k = −a2
(

3

4
z2 + a

)
, y = z

(
z2 +

3

2
a

)
Choosing a = ±4 yields a Mordell curve E−16D (compatible with Theorem 1)

for discriminants of the form D = 3
4z

2 ± 4.
We can rewrite the curve as Ez : y2 = x3 +(−12z2 +64), and the 3-isogenous

curve as y2 = x3 + (324z2 − 1728). This construction represents a well-known
family of elliptic curves with a generic rank of 1. As z varies, we expect the rank
of Ez to be 1, 2, or greater than 2, with probabilities of 50%, 50%, and 0%,
respectively. This expectation parallels the behavior of random elliptic curves,
where the rank is typically 0, 1, or greater than 1, with the same probabilities.
The rationale is that the rank should be even or odd with equal probability.

We use the parity conjecture to guide the decision in Algorithm 1 on
whether the rough order assumption (ROC) breaks for a given discriminant of
the form D = 3

4z
2 ± 4. The parity conjecture helps us predict the parity (odd

or even) of the rank of the corresponding elliptic curve E−16D. According to the
parity conjecture, the algebraic rank of an elliptic curve and its analytic rank
have the same parity, meaning both are either even or odd. By computing the
global root number wE , we determine the parity of the rank of E−16D. If the
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rank is predicted to be even for this family of elliptic curves, it indicates that the
rough order assumption (ROC) is broken, according to Theorem 1. Conversely, if
the rank is predicted to be odd, the rough order assumption (ROC) is more likely
to hold. However, it is important to note that this method may miss detecting
violations of the rough order assumption (ROC) when the rank is odd and
greater than 1. Nevertheless, such cases are expected to occur infrequently, as
ranks greater than 1 are highly uncommon in practice.

Computing the Parity for the Mordell Curve For a Mordell curve Ek :
y2 = x3+k, the parity of the rank is closely related to the global root number
wE . The global root number is the product of local root numbers at various
primes p, including the prime at infinity, and provides an indicator of the parity
of the analytic rank. Specifically:

wE = (−1)analytic rank(Ek)

If wE = −1, the analytic rank is odd, and by the parity conjecture, the
algebraic rank is also odd. Conversely, if wE = +1, both ranks are even.

To compute the global root number for the Mordell curve Ek, we must:

– Compute the local root number w∞ at the infinite prime.
– Compute the local root numbers wE,p for all primes p that divide the dis-

criminant ∆E of the elliptic curve Ek.
– The product of these local root numbers will give the global root number
wE .

For a Mordell curve Ek, the local root number at infinity w∞ is determined
by the sign of the leading term in the equation. Since the Mordell curve Ek :
y2 = x3 + k has a positive cubic term x3, the root number at infinity is always:

w∞ = −1

For each prime p, the local root number wE,p depends on the reduction type
of the curve at that prime. Mordell curves of the form Ek : y2 = x3 + k have
bad reduction at primes dividing k and at p = 2 and p = 3, and good reduction
otherwise. For a Mordell curve, the local root number at a prime p is computed
as follows:

– If p - ∆E (i.e., p does not divide the discriminant ∆E), the curve has good
reduction at p, and the local root number wE,p is:

wE,p = +1

– If p | ∆E (i.e., p divides the discriminant ∆E), the curve has bad reduction at
p, and we compute wE,p based on the residue of ∆E modulo p. Specifically:

• If p = 2, the local root number wE,2 depends on the behavior of the
curve at 2, which can be determined from the 2-adic valuation of ∆E

and the reduction type.
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• If p ≥ 3, the local root number wE,p is determined by the quadratic
residue ∆E (mod p). If ∆E is a quadratic residue modulo p, then wE,p =
+1. If ∆E is not a quadratic residue modulo p, then wE,p = −1.

Finally, the global root number wE is computed as:

wE = w∞
∏
p|∆E

wE,p

If wE = −1, the rank is odd (and likely r = 1). If wE = +1, the rank is even
(and likely r = 2).

Algorithm 1: Check the rough order assumption for special discrimi-
nants of the form D = − 3

4z
2 ± 4

Input : Discriminant D = − 3
4z

2 ± 4
Output: True if ROC is invalidated, False otherwise

1 Compute the Mordell curve E16D from the discriminant D;
2 Compute global root number wE ;
3 if wE == +1 then
4 return True

5 else
6 return False

Thus, the decision in the algorithm is based on whether the computed heuris-
tic score suggests a break in the rough order assumption ROC , guided by the
rank parity obtained from the global root number. If the rank is even, we can
be certain that the rough order assumption ROC does not hold, as Theorem 1
indicates that such cases lead to deviations from the expected behavior. Accord-
ing to the parity conjecture, the rank of an elliptic curve is expected to be either
even or odd with equal probability.

Complexity of Computing the Global Root Number For a Mordell curve
Ek : y2 = x3 +k where k = −16D and D is a prime number, the computation of
the global root number wE involves a few straightforward steps. The discriminant
∆E of the curve is −110592D2, and the prime factors are 2, 3, and D.

Since D is a prime, the factorization of ∆E is trivial and requires constant
time, O(1). Calculating the local root numbers wE,2, wE,3, and wE,D involves
evaluating the reduction types at these primes. These computations are typically
performed in constant time, O(1), since they involve modular arithmetic and
standard evaluations for local root numbers. Finally, multiplying the local root
numbers to determine the global root number wE also takes constant time, O(1).

Therefore, the overall complexity of computing the global root number for
Ek in this case is O(1), indicating that the computation is highly efficient and
independent of the size of the prime D.
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3.2 General Case

For the specific Mordell curve E−16D considered in this paper, its rank provides
a lower bound on the 3-rank of the class group. While the rank of this curve
is frequently 0 or 1, the Cohen-Lenstra heuristics [17] and numerical evidence
indicate that the 3-rank of the associated class group can occasionally be at
least 2, although this happens only with limited probability. Consequently, the
lower bound derived from the rank generally does not pose a significant challenge
to the rough order assumption, though potential exceptions cannot be entirely
ruled out. The exact frequency of curves with rank 2 or higher is uncertain, but
such curves do exist, and their proportion is expected to diminish as |D| < N
increases. While finding such curves at random for large D remains difficult, it
is not impossible, particularly with the use of heuristic methods.

One standard approach for estimating the rank of elliptic curves is the
Mestre–Nagao method, which is informed by the Birch and Swinnerton-Dyer
conjecture [3]. According to this conjecture, curves that exhibit a notably large
number of points modulo p for most primes p tend to have many rational points
as well. The method constructs a score S(k,B) based on the number of points
Np(Ek) on Ek(Fp) for all primes p ≤ B, where Ek has good reduction. This
score helps estimate the rank of the curve by identifying rational points on Ek
for values of k within a search range where S(k,B) exceeds a certain threshold.
Originally proposed by Mestre [26] to find elliptic curves with high Mordell–Weil
rank, this technique was later refined by Nagao [27] and has been useful in the
search for curves with higher ranks.

S(k,B) =
∑
p<B

where Ek has good reduction at p

log

(
Np(Ek)

p

)
,

where exp(−S(k,B)) represents the partial product. According to the Birch and
Swinnerton-Dyer conjecture, if Ek has a high rank, these partial products should
approach zero quickly, leading to a large value for S(k,B).

Although higher ranks (i.e., r > 1) remain rare, especially for Mordell curves,
the parity conjecture provides a useful heuristic for predicting whether a curve
has rank 0 or 1. However, applying the Mestre–Nagao method, particularly for
Mordell curves with large coefficients k (e.g., greater than 1000 bits), becomes
computationally infeasible, especially in contexts relevant to cryptographic ap-
plications. For real-world use, the method has limitations in reliably identifying
curves with ranks r ≥ 2, and the rank 0 problem remains unsolved in number
theory.

In our case, excluding curves with rank 0 provides enough information to
evaluate the rough order assumption (ROC). By using the parity conjecture
along with the Mestre–Nagao heuristic, it is possible to predict whether the rank
of E−16D is even or odd. If the rank is predicted to be even, the rough order
assumption (ROC) may be violated, as outlined in Theorem 1. Conversely, if the
rank is odd, the assumption is more likely to hold.
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While the Mestre–Nagao score remains a useful heuristic tool, it should be
applied cautiously in this context, as it is not always reliable for detecting curves
with higher ranks. This limitation highlights the need for further refinement in
both theoretical and practical methods for evaluating the rough order assump-
tion (ROC), particularly in cryptographic applications.

3.3 Attack Implementation

We implemented the attack using SageMath to demonstrate both the correctness
of the algorithm and its feasibility. The code for all algorithms and experiments
is available at:

https://anonymous.4open.science/r/rough-order-sage-CC18

This code provides a comprehensive framework for evaluating the rank of
Mordell curves, implementing methods for both special discriminants and the
generic case, as described in the Subsections above. This flexibility allows for
easy experimentation with different parameters and facilitates further research
in this area.

4 Attacks on the Papers and Countermeasures

This section explores vulnerabilities in papers that rely on rough order assump-
tions, including the original works introducing these assumptions [6,5,11], in the
context of our attack. We analyze key weaknesses in these papers and discuss
potential countermeasures to mitigate the risks posed by the attack.

The primary assumption in these papers is that class group orders behave
similarly to random integers with respect to the sizes of their prime factors.
Specifically, this assumption implies that a significant fraction of class groups will
have C-rough order, where C is a threshold value. The value C determines the
minimum size of prime factors considered ”large,” meaning that prime factors
smaller than C are considered ”small.” The parameter B represents a bound
related to the size or complexity of the class group. If C is small relative to B,
then it is expected that many class groups will have prime factors larger than
C.

However, when considering our attack on the 3-torsion, this assumption in-
troduces vulnerabilities. Specifically, our attack exploits the presence of small
prime factors in the class group order, with a particular focus on the 3-torsion.
Since the assumption that class group orders are C-rough is directly undermined
by this attack, the 3-torsion behavior in the class group structure provides an
exploitable weakness in cryptographic protocols relying on rough order assump-
tions.
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Secure Threshold Cryptography Based on Class Groups [6] Assuming the rough
order assumption holds, the paper significantly simplifies zero-knowledge proto-
cols and their security proofs. It enables a much cleaner design and analysis of
zero-knowledge protocols compared to using more complex assumptions, such
as the strong root assumption. The rough order assumption is primarily used
in theoretical proofs, and nothing in practical implementations depends on the
specifics of the challenger used in these proofs. For the Multi-Party Computa-
tion (MPC) protocol discussed in the paper, the required soundness property
is met if an adversarially generated ciphertext is proven to be well-formed and
the plaintext can be extracted from the proof. This requirement is weaker than
full knowledge soundness, which would also necessitate extracting the cipher-
text’s randomness. Thus, the assumption that class groups with rough order are
indistinguishable from general class groups is sufficient for ensuring soundness
in this context. However, if the rough order assumption fails—such as when a
distinguisher with an advantage close to 1 is found—it could expose practical
vulnerabilities. While the rough order assumption facilitates a cleaner theoreti-
cal framework, practical implementations might still be at risk if the assumption
is not valid. This new computational assumption, though emerging and not yet
well-studied, has already impacted future work by enabling a more straightfor-
ward design and analysis of zero-knowledge protocols. Alternative, more estab-
lished assumptions, like the strong root assumption, could be used, but they
come with increased complexity.

An Improved Threshold Homomorphic Cryptosystem Based on Class Groups [5]
Similar to the approach in the previous work, the authors of this paper leverage
the rough order assumption (ROC) to enhance the efficiency of their threshold
homomorphic cryptosystem. By assuming ROC , they facilitate weak reconstruc-
tion in Verifiable Secret Sharing (VSS) protocols and ensure statistical security
with Pedersen commitments. This assumption is crucial for the design and anal-
ysis of efficient Σ-style zero-knowledge proofs. Under ROC , these proofs are
unconditionally set-membership sound, which means no malicious prover can
prove a false statement with a probability greater than 1/C. The paper fur-
ther claims that, under this assumption, the proofs are computationally sound
even for normally sampled class groups, meaning that no malicious probabilistic
polynomial-time (PPT) prover can prove a false statement with a probability
greater than 1/C + negl(λ).

Proving this computational soundness is not straightforward. The reduction
process involves deciding if a statement is false, which typically requires knowl-
edge of discrete logs that the reduction does not possess, making the decision
inefficient. However, the paper addresses this challenge by showing that these
zero-knowledge proofs can be effectively used in a broader context. Specifically,
they suggest that in higher-level protocols, it is generally possible to determine
efficiently if the protocol has been compromised. This implies that a reduction
to ROC becomes feasible. The approach involves proving the security of the
higher-level protocol in a rough-order group using the unconditional soundness
of the zero-knowledge proofs. Then, it is argued that when a normal-order group
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is used, the adversary’s advantage in breaking the high-level protocol is at most
negligibly greater. This holds true since otherwise, the adversary would imply
the existence of a distinguisher for ROC . Thus, while ROC simplifies theoretical
considerations and provides efficiency benefits, practical implementations must
remain cautious due to the emerging and not yet thoroughly studied nature of
this assumption. Our work further illustrates these practical risks by demonstrat-
ing how the failure of ROC assumptions can lead to vulnerabilities, highlighting
the need for continued scrutiny and potentially alternative assumptions in prac-
tical applications.

Publicly Verifiable Secret Sharing over Class Groups and Applications to DKG
and YOSO [11] Similar to the other papers, this work also relies on the rough
order assumption (ROC) to construct a secure Publicly Verifiable Secret Shar-
ing (PVSS) scheme over class groups. The paper introduces a sharing proof
ΠSh, which is a zero-knowledge proof designed to ensure correct secret sharing
within a Distributed Key Generation (DKG) protocol. The core idea is that for
any correct sharing, if a random polynomial m∗ ∈ Zq[X] is sampled, then for
properly generated shares, the relation

∑n
i=1 σivim

∗(αi) = 0 must hold, where
vi are certain values derived from Theorem 1. This property allows for con-
structing a verification equation using group elements pki and Bi, enabling an
efficient zero-knowledge proof of correct secret sharing. However, a potential is-
sue arises if a malicious prover introduces elements Hi 6= 1 into the group, which
could manipulate the proof into passing incorrectly. To address this, the paper
randomizes the proof by adding a multiple of q to the values wi, making the
cancellation of malicious terms less likely unless the prover can break the rough
order assumption. This additional step ensures robustness without significantly
increasing communication or computational complexity. As with previous pa-
pers, if the rough order assumption fails, the security of the PVSS scheme may
be compromised, particularly when small prime factors are present in the class
group order. Our analysis further highlights how our attack on 3-torsion can ex-
ploit weaknesses introduced by the rough order assumption, demonstrating the
importance of continued analysis and potential refinements to these assumptions
in practical applications.

Countermeasures: To defend against our 3-torsion attack, it is crucial to
address specific vulnerabilities associated with class groups. One effective coun-
termeasure involves avoiding discriminants of special shapes or forms that are
known to break the rough order assumption. Specifically, discriminants of the
form D = − 3

4z
2 ± 4 are particularly susceptible to vulnerabilities, as demon-

strated in Subsection 3.1. These special forms can lead to class groups with
significant 3-torsion, thereby compromising the security of cryptographic pro-
tocols. Additionally, discriminants identified in [2], which break the low order
assumption, are also dangerous as they can similarly undermine the rough order
assumption and expose vulnerabilities to 3-torsion attacks. Furthermore, incor-
porating the Mestre-Nagao heuristic during the class group generation process,
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such as when using the CLGen algorithm, can provide an additional layer of se-
curity. The Mestre-Nagao heuristic evaluates the potential rank of the generated
class groups by assessing the number of rational points on corresponding elliptic
curves. By applying this heuristic and setting a threshold to limit the heuris-
tic score S(k,B), one can filter out class groups that are likely to exhibit high
ranks and substantial 3-torsion. This approach helps in reducing the likelihood
of encountering vulnerabilities and enhances the robustness of cryptographic
protocols against attacks related to 3-torsion.

5 Conclusion

In this paper, we have examined the rough order assumption (ROC) and its im-
plications for cryptographic schemes based on class groups of imaginary quadratic
fields. Through our analysis, we demonstrated that the assumption is challenged
when the rank of the Mordell curve E−16D is at least 2. Specifically, the pres-
ence of nontrivial 3-torsion elements in the class groups of Q(

√
−D) and Q(

√
3D)

contradicts the ROC assumption for sufficiently large C.
Our findings indicate that the rough order assumption may not hold in sce-

narios where such Mordell curves have high ranks, suggesting potential vul-
nerabilities in cryptographic applications relying on this assumption. This re-
sult highlights the need for further investigation into alternative assumptions or
strengthening of existing ones to ensure the robustness of cryptographic schemes
based on class groups.

Future work could explore practical methods for detecting and mitigating the
effects of such attacks, as well as evaluate other assumptions that may provide
better security guarantees in the context of imaginary quadratic fields.

The following problems remain open:

– Investigating whether there are other families of rank 1 elliptic curves that
might also challenge the rough order assumption, given that our attack was
effective in the special case of rank 1 elliptic curves associated with specific
discriminants.

– Advancing methods to determine whether an elliptic curve has rank 0. While
this remains a challenging problem, progress in this area could enhance our
understanding of elliptic curves and improve the practical application of the
rough order assumption (ROC).

– Extending the method to torsion structures larger than 3-torsion. While
our results primarily address the 3-torsion case, exploring attacks on higher
torsion elements may provide a more comprehensive understanding of the
rough order assumption and its cryptographic implications.
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Claudio Orlandi for fruitful discussions.

15



References

1. Abram, D., Damg̊ard, I., Orlandi, C., Scholl, P.: An algebraic framework for silent
preprocessing with trustless setup and active security. In: Dodis, Y., Shrimpton,
T. (eds.) Advances in Cryptology – CRYPTO 2022. pp. 421–452. Springer Nature
Switzerland, Cham (2022)

2. Belabas, K., Kleinjung, T., Sanso, A., Wesolowski, B.: A note on the low order as-
sumption in class groups of imaginary quadratic number fields. Mathematical Cryp-
tology 3(1), 44–51 (Jul 2023), https://journals.flvc.org/mathcryptology/

article/view/129193

3. Birch, B., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves. i. Journal für die reine
und angewandte Mathematik 212(7), 7–25 (1963)

4. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to iops and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
Advances in Cryptology – CRYPTO 2019. pp. 561–586. Springer International
Publishing, Cham (2019)

5. Braun, L., Castagnos, G., Damg̊ard, I., Laguillaumie, F., Melissaris, K., Or-
landi, C., Tucker, I.: An improved threshold homomorphic cryptosystem based on
class groups. Cryptology ePrint Archive, Paper 2024/717 (2024), https://eprint.
iacr.org/2024/717

6. Braun, L., Damg̊ard, I., Orlandi, C.: Secure multiparty computation from threshold
encryption based on class groups. In: Handschuh, H., Lysyanskaya, A. (eds.) Ad-
vances in Cryptology – CRYPTO 2023. pp. 613–645. Springer Nature Switzerland,
Cham (2023)

7. Buchmann, J., Hamdy, S.: A survey on IQ cryptography, pp. 1–16. De Gruyter,
Berlin, New York (2001). https://doi.org/doi:10.1515/9783110881035.1, https://
doi.org/10.1515/9783110881035.1

8. Buchmann, J., Williams, H.C.: A key-exchange system based
on imaginary quadratic fields. J. Cryptology 1, 107–118 (1988).
https://doi.org/10.1007/BF02351719

9. Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers. In:
Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020. pp.
677–706. Springer International Publishing, Cham (2020)

10. Bünz, D.B.B., Fisch, B.: A survey of two verifiable delay functions. Cryptology
ePrint Archive, Report 2018/712 (2018)

11. Cascudo, I., David, B.: Publicly verifiable secret sharing over class groups and ap-
plications to dkg and yoso. In: Joye, M., Leander, G. (eds.) Advances in Cryptology
– EUROCRYPT 2024. pp. 216–248. Springer Nature Switzerland, Cham (2024)

12. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party
ecdsa from hash proof systems and efficient instantiations. In: Boldyreva, A., Mic-
ciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019. pp. 191–221. Springer
International Publishing, Cham (2019)

13. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-
efficient threshold ec-dsa. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) Public-Key Cryptography – PKC 2020. pp. 266–296. Springer International
Publishing, Cham (2020)

14. Castagnos, G., Laguillaumie, F.: On the security of cryptosystems with quadratic
decryption: The nicest cryptanalysis. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 260–277. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

16

https://journals.flvc.org/mathcryptology/article/view/129193
https://journals.flvc.org/mathcryptology/article/view/129193
https://eprint.iacr.org/2024/717
https://eprint.iacr.org/2024/717
https://doi.org/doi:10.1515/9783110881035.1
https://doi.org/10.1515/9783110881035.1
https://doi.org/10.1515/9783110881035.1
https://doi.org/10.1007/BF02351719


15. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from ddh. In:
Nyberg, K. (ed.) Topics in Cryptology — CT-RSA 2015. pp. 487–505. Springer
International Publishing, Cham (2015)

16. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted in-
ner product functional encryption modulo p. In: Peyrin, T., Galbraith, S. (eds.)
Advances in Cryptology – ASIACRYPT 2018. pp. 733–764. Springer International
Publishing, Cham (2018)

17. Cohen, H., Lenstra, Jr., H.W.: Heuristics on class groups of number fields. In:
Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in
Math., vol. 1068, pp. 33–62. Springer, Berlin (1984)

18. Cox, D.A.: Primes of the form x2 + ny2. A Wiley-Interscience Publication, John
Wiley & Sons Inc., New York (1989), fermat, class field theory and complex mul-
tiplication
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