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Abstract. Isogeny-based cryptography is one of the candidates for post-
quantum cryptography. Recently, many isogeny-based cryptosystems us-
ing isogenies between Kummer surfaces were proposed. Most of those
cryptosystems use (2, 2)-isogenies. However, to enhance the possibility
of cryptosystems, higher degree isogenies, say (ℓ, ℓ)-isogenies for an odd
ℓ, is also crucial. For an odd ℓ, the Lubicz-Robert gave a formula to
compute (ℓ)g-isogenies in general dimension g. In this paper, we pro-
pose explicit and efficient algorithms to compute (ℓ, ℓ)-isogenies between
Kummer surfaces, based on the Lubicz-Robert formula. In particular, we
propose two algorithms for computing the codomain of the isogeny and
two algorithms for evaluating the image of a point under the isogeny.
Then, we count the number of arithmetic operations required for each
of our proposed algorithms, and determine the most efficient algorithm
in terms of the number of arithmetic operations from each of two types
of algorithms for each ℓ. As an application, using the most efficient one,
we implemented the SIDH attack on B-SIDH in SageMath. In setting
that originally claimed 128-bit security, our implementation was able to
recover that secret key in about 11 hours.

Keywords: Post-quantum cryptography · Isogeny-based cryptography · B-SIDH
· Kummer surface· Theta function

1 Introduction

Isogeny-based cryptography is one of the candidates for post-quantum cryptogra-
phy. Its advantage is that it has relatively small keys, ciphertexts, and signatures.
On the other hand, its processing speed is slower than many of other candidates
for post-quantum cryptography. This mainly comes from the computation of iso-
genies. Therefore, improving the computation of isogenies is important. Many
researches have been done on this topic ([35],[15],[10],[2],[12],[32],[22]).



Vélu’s formulas [35] give a method for calculating ℓ-isogenies between elliptic
curves, where an ℓ-isogeny is defined to be an isogeny whose kernel is a cyclic
group of order ℓ. The computational complexity of Vélu’s formulas is O(ℓ) op-
erations in the base field. Although the classical Vélu’s formulas are formulas
on the Weierstrass forms and use x- and y-coordinates, it is possible to obtain
formulas using only x-coordinates, i.e., formulas on Kummer lines. In particular,
formulas on Montgomery curves are well known. The first formulas on Mont-
gomery curves were given by Jao and De Feo [15]. They showed a method to
derive formulas for isogenies of arbitrary degree, however, explicit formulas for
isogenies of degree greater than 4 were not given. Costello and Hisil [10] gave
explicit formulas for isogenies of arbitrary odd degree on Montgomery curves.
Their formulas are more efficient than ones derived from the method of Jao and
De Feo. Based on their formulas, isogeny-based schemes such as CSIDH [6] and
B-SIDH [9] were proposed. Later, the formula for the codomain curve of the
isogeny was improved by [24]. The computational complexity of an ℓ-isogeny
was reduced to Õ(

√
ℓ) by [2].

A generalization of ℓ-isogenies to 2-dimensional isogenies is called (ℓ, ℓ)-
isogenies. In recent years, many cryptosystems which combine isogenies be-
tween elliptic curves and isogenies between higher dimensional abelian varieties
have been proposed ([1,7,11,29] for example). Many of these schemes use (2, 2)-
isogenies for the higher dimensional isogenies. The reason is that the computation
of (2, 2)-isogenies is relatively efficient compared to higher dimensional isogenies
of other degrees. In particular, there is an efficient formula for (2, 2)-isogenies on
Kummer surfaces by [12]. For enhancing the variety of isogeny-based schemes,
it is important to have efficient formulas for isogenies of higher degrees. Indeed,
formulas for (3, 3)-isogenies on Kummer surfaces were given by [32]. For a gen-
eral prime number ℓ, formulas for (ℓ, ℓ)-isogenies were given by the Lubicz and
Robert [22].

Lubicz-Robert formula. Let k be an algebraically colosed field of character-
istic zero or odd prime number p. Let A be an abelian variety of dimension g
over k, L = L n

0 be a line bundle on A where L0 is a principal and n is even,
and ΘL be a symmetric theta structure for (A,L ). For any odd prime number
ℓ coprime to p and a maximal isotropic subgroup K ⊂ A[ℓ] with respect to the
Weil pairing, the isogeny f : A → B = A/K called (ℓ)g-isogeny induces a line
bundle M on B and a symmetric theta structure ΘM for (B,M ) of level n. The
theta structure of level n gives a morphism φn : A → Png−1, and for x ∈ A, the
projective coordinate φn(x) ∈ Png−1 is called a theta coordinate of x. Especially,
φn(0) is called a theta-null point. We take a representation of ℓ as a sum of
squares of integers: ℓ =

∑r
u=1 a

2
u. Then, the Lubicz-Robert [22] gave a formula

which gives a theta coordinate of f(x) ∈ B for x ∈ A up to multiplication by a
constant from some theta coordinates on A in O(ℓgng) operations on k:

θBi (f(x)) =
∑
e∈K

r∏
u=1

Mult(au, x̃+ e)aui . (1)
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For a precise formula, see [22, Corollary 4.6] or Section 2.4.
When n = 2, if A is indecomposable, it is known that the above morphism φ2

gives the embedding of the Kummer variety KA to P2g−1 where Kummer variety
is the quotient A/⟨±1⟩. Thus, the above formula for n = 2 gives an efficient way
to calculate a morphism between Kummer varieties.

In [22], (ℓ)g-isogeny calculation algorithm based on (1) (for general dimension
and general level) is given as [22, Algorithm 4]. However, we consider that there
are the following points where improvements can be made:

1. By using (1), we can compute both the theta-null point of a codomain and
the theta coordinate of the image under f for a given point. However, if we
separate codomain and evaluation, are there improvements for each?

2. Which of the possible representations ℓ =
∑r

u=1 a
2
u makes the algorithm

most efficient?
3. To use (1), we need to construct excellent lifts from given affine lifts, called

normalization. Then, how can normalization be calculated efficiently?
4. In a cryptographic situation, calculating multiplicative inversion is expen-

sive. Can we construct inversion-free algorithms?
5. What are explicit algorithms and their numbers of arithmetic operations on

the base field k?

Our contribution. We propose some explicit algorithms of (ℓ, ℓ)-isogeny cal-
culations between Kummer surfaces based on the Lubicz-Robert formula (1).
Then, in our algorithms, we make the following contributions for the above
listed points:

1. We consider codomain and evaluation separately, and propose algorithms for
each. In particular, for codomain, we reduce some computation steps to half.
See Section 3.4.

2. We separate two cases: representations ℓ =
∑r

u=1 a
2
u such that r = O(1) and

ℓ = 12 + · · ·+ 12. Then, for both codomain and evaluation, we provide two
algorithms using these two representations. In addition, for the former case,
we investigate in Section 3.5 in detail.

3. We provide a method to calculate normalization, which improves our isogeny
calculation algorithms. In Section 3.3, we provide some necessary equations,
and in Section 3.4, we propose the concrete method.

4. In our proposed algorithms, we avoid calculating multiplicative inversion on
the base field k.

5. From the above items 1 and 2, we propose four algorithms. For them, we give
explicit algorithms, complexities, and the numbers of arithmetic operations
for small ℓ. For details, see Section 3.4 and Section 4.

About these algorithms, see Section 3.1 for overview, and see Section 3.4 for
the concrete algorithms. Here, CodSq is O(ℓ2) operations algorithms and CodOne

is O(ℓ2 log(ℓ)) operations algorithm. Similarly, EvalSq is O(ℓ2) operations algo-
rithms and EvalOne is O(ℓ2 log(ℓ)) operations algorithm.
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ℓ =
∑r

u=1 a
2
u, r = O(1) ℓ = 12 + · · ·+ 12

Codomain CodSq CodOne

Evaluation EvalSq EvalOne

Table 1. Our proposed algorithms in Section 3.4

Moreover, we give implementations of these algorithms and count these op-
erations on k for each 3 ≤ ℓ < 200 (Table 6 in Section 4). As the result, we
determine a more efficient algorithm for each ℓ: for codomain, for 3 ≤ ℓ ≤ 11
and ℓ = 19, 23, CodOne is more efficient than CodSq, and for other ℓ, CodSq is
more efficient. For evaluation, for all 3 ≤ ℓ < 200, EvalOne is more efficient.

In addition, by using the most efficient algorithms selected above, we give
SIDH attack on B-SIDH in about 11 hours (in Section 5).

Our implementation of (ℓ, ℓ)-isogeny counting and an attack on B-SIDH is
written in computer algebra system SageMath [34] and is found at

https://github.com/Yoshizumi-Ryo/ellell-isogeny_sage.

Related works. Santos-Costello-Smith [32] proposed a method for computing
(3, 3)-isogenies between Kummer surfaces. They implicitly utilize theta functions
in their algorithm, but it should be noted that their algorithm is not derived from
the Lubicz-Robert formula (i.e. our proposed algorithm is completely different
from Santos-Costello-Smith’s algotithm). As a result, their (3, 3)-isogeny com-
putation algorithm is significantly more efficient than our algorithm (cf. [32,
§4.3]).

Afterward, Santos-Flynn [33] generalized (ℓ, ℓ)-isogenies for any odd number
ℓ. The asymptotic complexity of their algorithm with respect to ℓ is higher
than that of theta-based algorithms, such as those based on the Lubicz-Robert
formula and the Cosset-Robert formula [8]. However, as mentioned in [33, Section
6.3], for ℓ ≤ 11, their implementations outperform the AVIsogenies v0.7 [4],
which is an implementation of the algorithm based on the Cosset-Robert formula.
In addition, their algorithm outputs the defining equations of the codomain
Kummer surfaces and of the isogeny, unlike theta function-based algorithms.

On the other hand, our algorithms are based on the Lubicz-Robert formula.
We will show that the algorithm based on the Lubicz-Robert formula is more
efficient than that based on the Cosset-Robert formula (see Remark 5). Thus,
for a sufficiently large ℓ, it can be said that our algorithm is more efficient than
Santos-Flynn’s algorithm.

Organizations. In Section 2, we recall some facts about theta functions and
their addition algorithms, and the Lubicz-Robert formula. In Section 3, we de-
scribe the costs of arithmetic on Kummer surfaces and give relations for nor-
malization. Then, we give explicit algorithms for codomain and evaluation, and
give their asymptotic complexities. In Section 4, we count the number of the
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operations of their algorithms and decide which is efficient for each ℓ. In Sec-
tion 5, we recall B-SIDH and SIDH attack briefly and show the result of the
implementation. Finally, Section 6 gives the conclusion.

2 Preliminaries

In this section, we summarize some facts about abelian varieties and theta func-
tions [3,26,27,30] as well as relevant algorithms [19,21,22,30] which are bases of
our proposed method.

For simplicity, we consider our arguments over the complex number field
C. However, by using algebraic theta functions introduced by Mumford [26],
these arguments are applicable even to the case of an algebraically closed field
of characteristic p where p is coprime to 2ℓ. For more details, we refer to [30].

In addition, we only consider the case of dimension g = 2 although the
arguments of this section hold for general g ≥ 1.

2.1 Theta functions

Let H2 denote the Siegel upper half-space of degree two defined by

H2 = {Ω ∈ M(2,C) | tΩ = Ω, Im(Ω) > 0}.

Then, an abelian surface A over C is isomorphic to C2/ΛΩ where ΛΩ = ΩZ2⊕Z2

for some Ω ∈ H2. In addition, this Ω determines a principal line bundle L0 on
A. For any a, b ∈ Q2, the theta function with characteristics (a, b) is an analytic
function given by

θ
[
a
b

]
(z,Ω) :=

∑
m∈Z2

exp(πi t(m+ a)Ω(m+ a) + 2πi t(m+ a)(z + b))

for any z ∈ C2. We say that an analytic function f on C2 is a ΛΩ-periodic
function of level n if f(z + m) = f(z) and f(z + Ωm) = exp(−πin tmΩm −
2πin tzm)f(z) for all z ∈ C2 and m ∈ Z2. Then, the set Rn

Ω of all ΛΩ-periodic
functions of level n is an n2-dimensional C-vector space. Moreover, the follow-
ing n2 functions θ

[
0
b

]
(z, Ω

n ) for b ∈ 1
nZ

2/Z2 form a basis of Rn
Ω [28]. Since

θ
[
0
b

]
(z, Ω

n ) = θ
[

0
b+β

]
(z, Ω

n ) for all b ∈ Q2 and β ∈ Z2, these functions do not
depend on the representative of b ∈ 1

nZ
2/Z2. We can identify Rn

Ω with the vector
space Γ (A,L n

0 ) of global sections and thus the basis {θ
[
0
b

]
(z, Ω

n )}b of Rn
Ω gives

the morphism
ρn : A = C2/ΛΩ −→ Pn2−1

z 7−→ (θ
[
0
b

]
(z, Ω

n ))b .

We call ρn(0) ∈ Pn2−1 the theta-null point and call ρn(x) the theta coordinate
of x ∈ A. We write θi(z) := θ

[
0

i/n

]
(z, Ω

n ) for i ∈ (Z/nZ)2. Then, we have
θi(−z) = θ−i(z). When n ≥ 3, ρn is an embedding [3, Theorem 4.5.1]. When
n = 2, since ρ2(−z) = ρ2(z), ρ2 : A → P3 induces a morphism KA → P3 from a
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Kummer surface KA which is the quotient of A by automorphisms ⟨±1A⟩. If A
is not a product of elliptic curves, this morphism KA → P3 is an embedding [3,
Theorem 4.8.1].

Next, we recall Riemann relations [26], [19, Theorem 3.1] (Theorem 1). By
using them, we derive some formulas for arithmetic operations on abelian sur-
faces later. To explain it, first we recall the notion of Riemann position [22,
Definition 3.2].

Definition 1. For any abelian group G, an 8-tuple (g1, g2, g3, g4; g
′
1, g

′
2, g

′
3, g

′
4)

of elements of G is said to be in Riemann position (on G) if there exists some
element h ∈ G such that g′i = gi+h for i = 1, . . . , 4 and g1+g2+g3+g4 = −2h.

Theorem 1 (Riemann relations [26], [19, Theorem 3.1]). Let n be an
even integer. For any 8-tuple (z1, z2, z3, z4; z

′
1, z

′
2, z

′
3, z

′
4) of elements of C2 in

Riemann position, any 8-tuple (i1, i2, i3, i4; i
′
1, i

′
2, i

′
3, i

′
4) of elements of (Z/nZ)2

in Riemann position, and any character χ ∈ ̂(Z/2Z)2 of the group (Z/2Z)2, we
have  ∑

t∈(Z/2Z)2
χ(t)θi1+t(z1)θi2+t(z2)

 ∑
t∈(Z/2Z)2

χ(t)θi3+t(z3)θi4+t(z4)


=

 ∑
t∈(Z/2Z)2

χ(t)θi′1+t(z
′
1)θi′2+t(z

′
2)

 ∑
t∈(Z/2Z)2

χ(t)θi′3+t(z
′
3)θi′4+t(z

′
4)


where, for the indices of functions θi(z), we regard (Z/2Z)2 as a subgroup of
(Z/nZ)2 via the embedding a 7→ n

2 a (a ∈ Z2).

Now, theta coordinates are given as projective coordinates on Pn2−1. How-
ever, to treat each component as an element of k, we have to fix their theta
coordinates as affine coordinates on An2\{0} by taking some representatives.
Here, we define this content precisely [22]:

Definition 2. Let κ : An2 ∖ {0} → Pn2−1 be the natural projection. For x ∈ A,
we call any preimage of ρn(x) for κ an affine lift of x. We write an affine lift of
x as x̃ or (θ̃i(x))i. For i ∈ (Z/nZ)2, we write the ith-coordinate of x̃ by (x̃)i or
θ̃i(x). For λ ∈ C∗ and an affine lift x̃, we define λ ∗ x̃ as (λ · (x̃)i)i.

For later use, we extend the notion of Riemann relations to affine lifts.

Definition 3. Let (x1, x2, x3, x4;x
′
1, x

′
2, x

′
3, x

′
4) be in Riemann position on A and

(x̃1, . . . , x̃′
4) be their affine lifts. Then, we say that (x̃1, . . . , x̃′

4) satisfy Riemann
relations if for any (i1, i2, i3, i4; i

′
1, i

′
2, i

′
3, i

′
4) in Riemann position on (Z/nZ)2 and
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any character χ ∈ ̂(Z/2Z)2, the following equation holds: ∑
t∈(Z/2Z)2

χ(t)(x̃1)i1+t(x̃2)i2+t

 ∑
t∈(Z/2Z)2

χ(t)(x̃3)i3+t(x̃4)i4+t


=

 ∑
t∈(Z/2Z)2

χ(t)(x̃′
1)i′1+t(x̃

′
2)i′2+t

 ∑
t∈(Z/2Z)2

χ(t)(x̃′
3)i′3+t(x̃

′
4)i′4+t

 .

Then, by Riemann relations (Theorem 1), we have the following lemma:

Lemma 1. For given (x1, x2, x3, x4;x
′
1, x

′
2, x

′
3, x

′
4) being in Riemann position on

A and any affine lifts x̃2, x̃3, x̃4, x̃′
1, x̃

′
2, x̃

′
3, x̃

′
4, there exists an affine lift x̃1 such

that (x̃1, . . . , x̃′
4) satisfies Riemann relations in the sense of Definition 3.

2.2 Arithmetic on Kummer surfaces

In this subsection, we consider some arithmetic operations on Kummer surfaces
using theta functions of level n = 2 [21]. As mentioned in the previous subsection,
if A is not a product of ellipitc curves, level 2 theta functions give the embedding
of the Kummer surface to the projective space KA → P3.

In the following, we introduce some known methods for arithmetic calculation
on Kummer surfaces using theta coordinates [21, Section 5]. Here, we assume
that A = C2/ΛΩ is not isomorphic to a product of elliptic curves as a principally
polarized abelian surface. In other words, all abelian surfaces in this subsection
are Jacobians of some genus-2 hyperelliptic curves. Note that, if A is isomorphic
to a product of elliptic curves as a polarized abelian surface, we can perform the
arithmetic calculation by calculating on each elliptic curve.

The condition that A is the Jacobian of a genus-2 hyperellipctic curve is
equivalent to that the following ten values called even theta-null points of level
(2, 2) are all non-zero:

θ
[ a/2
b/2

]
(0, Ω) for a, b ∈ (Z/2Z)2 such that ta · b = 0 ∈ Z/2Z.

For more details, see [18, Section 3.2]. Under this assumption, by the same
argument as [18, Lemma 3], we have∑

t∈(Z/2Z)2
χ(t)θi+t(0)θt(0) ̸= 0 (2)

for all i ∈ (Z/2Z)2 and χ ∈ ̂(Z/2Z)2 such that χ(i) = 1 ∈ ⟨±1⟩.
In the rest of this paper, we fix one affine lift (θ̃i(0))i of the theta-null point.

Here, we summarize known methods for calculating the following arithmetic
operations on Kummer surfaces:

Differential Addition: Given affine lifts (θ̃i(x))i, (θ̃i(y))i, (θ̃i(x− y))i, output
an affine lift (θ̃i(x+ y))i.
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Doubling: Given an affine lift (θ̃i(x))i, output an affine lift (θ̃i(2x))i.
Three-way Addition: Given affine lifts (θ̃i(x))i, (θ̃i(y))i, (θ̃i(z))i, (θ̃i(x+ y))i,

(θ̃i(y + z))i, (θ̃i(z + x))i, output an affine lift (θ̃i(x+ y + z))i.
Scalar Multiplication: Given an affine lift (θ̃i(x))i and an integer N , output

an affine lift (θ̃i(Nx))i.
Normal Addition: Given affine lifts (θ̃i(x))i, (θ̃i(y))i, output a set of affine

lifts {(θ̃i(x+ y))i, (θ̃i(x− y))i}.
Compatible Addition: Given affine lifts (θ̃i(y))i, (θ̃i(z))i, (θ̃i(x+ y))i, (θ̃i(x+

z))i, output an affine lift (θ̃i(y + z))i.

These concrete algorithms are written in Section B.2 and their costs are
written in Section 3.2.

Remark 1. In our proposed isogeny algorithm in Section 3.4, we do not use
Normal Addition and Compatible Addition since we give enough information
as inputs not to need those algorithms. Thus, we do not introduce them in
this subsection and they are written in Appendix A and we will not give those
concrete algorithms and costs in Section 3.2. However, since these algorithms
are needed when we construct attacks on B-SIDH in Section 5.2.

For Differential Addition, an affine lift (θ̃i(x + y))i could be obtained from
given affine lifts (θ̃i(x))i, (θ̃i(y))i, (θ̃i(x − y))i by just applying Lemma 1 to
(x + y, x − y, 0, 0; y,−y,−x,−x) in Riemann position on A. But in fact, the
computation can be made more efficient in the following manner. First we note
that, for any i ∈ (Z/2Z)2, considering (i, 0, i, 0; i, 0, i, 0) in Riemann position on
(Z/2Z)2, we have ∑

t∈(Z/2Z)2
χ(t)θ̃i+t(x+ y)θ̃t(x− y)

 ∑
t∈(Z/2Z)2

χ(t)θ̃i+t(0)θ̃t(0)


=

 ∑
t∈(Z/2Z)2

χ(t)θ̃i+t(x)θ̃t(x)

 ∑
t∈(Z/2Z)2

χ(t)θ̃i+t(y)θ̃t(y)

 (3)

where we used θi(x) = θi(−x) and θi(y) = θi(−y). Secondly, we define certain
values zχi and κij as follows. For any (i, χ) ∈ (Z/2Z)2 × ̂(Z/2Z)2 such that
χ(i) = 1, we define

zχi :=

(∑
t∈(Z/2Z)2 χ(t)θ̃i+t(x)θ̃t(x)

)(∑
t∈(Z/2Z)2 χ(t)θ̃i+t(y)θ̃t(y)

)
∑

t∈(Z/2Z)2 χ(t)θ̃i+t(0)θ̃t(0)
(4)

where the denominator of the right-hand side is not zero by (2). Here, these zχi are
computed from (θ̃i(x))i and (θ̃i(y))i. Then, we define κij for any i, j ∈ (Z/2Z)2
as follows:

κij :=
1

4

∑
χ∈ ̂(Z/2Z)2

s.t.χ(i+j)=1

χ(i) + χ(j)

2
zχi+j . (5)
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Thus, we can calculate all κij from the values zχi such as χ(i) = 1 (note that κij

is symmetric with respect to i and j). Then, by the inverse Fourier transform,
we have the following relations for i, j ∈ (Z/2Z)2:

θ̃i(x+ y)θ̃j(x− y) + θ̃j(x+ y)θ̃i(x− y) = 2κij . (6)

Differential Addition and Doubling. By using equality (6), when θ̃i(x− y) ̸=
0 for all i, we have

θ̃i(x+ y) =
κii

θ̃i(x− y)
. (7)

Thus, from affine lifts (θ̃i(x))i, (θ̃i(y))i, (θ̃i(x − y))i, we can calculate an affine
lift (θ̃i(x+y))i satisfying (3). We call this operation Differential Addition. When
x = y, we call this Doubling.

Remark 2. Even if θ̃i(x− y) = 0 for some i ∈ (Z/2Z)2, we can still compute
(θ̃i(x + y))i. In fact, first we take j ∈ (Z/2Z)2 such that θ̃j(x− y) ̸= 0 and
compute θ̃j(x+ y) by using (7). Then, for i ∈ (Z/2Z)2 ∖ {j}, by (6), we have

θ̃i(x+ y) =
2κij − θ̃j(x+ y)θ̃i(x− y)

θ̃j(x− y)
.

Three-way Addition. For given affine lifts (θ̃i(x))i, (θ̃i(y))i,(θ̃i(z))i, (θ̃i(x +
y))i, (θ̃i(y + z))i, (θ̃i(z + x))i, we can calculate (θ̃i(x + y + z))i as follows. Note
that this Three-way Addition algorithm does not always work on A but work on
some Zariski dense subset of A. For details, we refer to [20, Section 3.6]. Here
for simplicity, we assume θ̃i(x) ̸= 0, θ̃i(y) ̸= 0, and θ̃i(z) ̸= 0 for all i, and in
this condition, Three-way Addition algorithm works. First, for χ ∈ ̂(Z/2Z)2, we
define

Eχ :=
(
∑

t∈(Z/2Z)2 χ(t)θ̃t(0)θ̃t(y + z)) · (
∑

t∈(Z/2Z)2 χ(t)θ̃t(z + x)θ̃t(x+ y))∑
t∈(Z/2Z)2 χ(t)θ̃t(y)θ̃t(z)

.

(8)
These Eχ are computed from the given affine lifts. Here, by applying Lemma 1
to points (x + y + z, x, y, z; 0,−y − z,−z − x,−x − y) in Riemann position
on A, and by focusing (among the resulting Riemann relations) on indices
(0, 0, 0, 0; 0, 0, 0, 0) in Riemann position on (Z/2Z)2, for any χ ∈ ̂(Z/2Z)2, we
have

∑
t∈(Z/2Z)2 χ(t)θ̃t(x+y+z)θ̃t(x) = Eχ. Then, by the inverse Fourier trans-

form, for any i ∈ (Z/2Z)2, we have

θ̃i(x+ y + z) =

∑
χ∈ ̂(Z/2Z)2 χ(i)E

χ

4θ̃i(x)
. (9)

Thus we have obtained the affine lift (θ̃i(x + y + z))i. This operation is called
Three-way Addition (or Extended Addition).

9



Scalar Multiplication. For a given affine lift (θ̃i(x))i and any integer N ≥ 3,
there are various ways of calculating (θ̃i(Nx))i and the result is denoted by
Mult(N, (θ̃i(x))i). One way to compute it is using the Montgomery ladder [25].
Then, we require n− 1 Doubling and n Differential Addition where n is the bit
length of N − 1. In our implementation of Section 4, we used this calculation
way.

Remark 3. Let x1, . . . , xr ∈ A be any elements, (θ̃i(xj))i, (θ̃i(xj1+xj2))i be affine
lifts for 1 ≤ j ≤ r and 1 ≤ j1 < j2 ≤ r, and m1, . . . ,mr ∈ Z be any integers.
Then, we can compute an affine lift (θ̃i(m1x1 + · · ·+mrxr))i in many different
ways by using Differential Addition, Doubling, Three-way Addition, and Scalar
Multiplication. Now the computation result does not depend on the order of
these operations (cf. [19, Corollary 3.13]).

2.3 Excellent lifts

Here, we recall the notion of excellentness for some conditions (cf. [22, Definitions
3.6, 3.7, 3.10]). In the following definition, Multadd(N, x̃, ỹ, x̃+ y) denotes the
affine lift of Nx+ y ∈ A computed from affine lifts x̃, ỹ, x̃+ y.

Definition 4. Let ℓ be any odd prime number and K ⊂ A[ℓ] be a maximal
isotropic subgroup with respect to the Weil pairing.

1. For any ℓ-torsion point e ∈ A[ℓ], an affine lift ẽ of e is said to be excellent
if Mult(ℓ′ + 1, ẽ) = Mult(ℓ′, ẽ) as affine lifts where ℓ′ = ℓ−1

2 .
2. A set of affine lifts K̃ = {ẽ | e ∈ K} of K is said to be excellent if for

any eight elements in Riemann position on K, their affine lifts in K̃ satisfy
Riemann relations in the sense of Definition 3.

3. For any affine lift x̃ of x ∈ A and an excellent lift ẽ of e ∈ A[ℓ], an
affine lift x̃+ e of x + e is said to be excellent with respect to x̃ and ẽ if
Multadd(ℓ, ẽ, x̃, x̃+ e) = x̃ as affine lifts.

4. For any excellent lift K̃ and any affine lift x̃ of x ∈ A, a set of affine lifts
x̃+K = {x̃+ e | e ∈ K} is said to be excellent with respect to x̃ and K̃ if for
any eight elements in Riemann position on A included in K ∪ (x+K), their
affine lifts in K̃ ∪ x̃+K satisfy Riemann relations in the sense of Definition
3.

Theorem 2 ([22, Theorems 3.8, 3.11]). With the notation above, the fol-
lowing statements hold:

(i) For any basis {e1, e2} of K ≃ (Z/ℓZ)2 and excellent lifts ẽ1, ẽ2, ẽ1 + e2, a set
K̃ of affine lifts of K computed from ẽ1, ẽ2, ẽ1 + e2 is excellent.

(ii) Let K̃ be any excellent lift of K and x̃ be any affine lift of x ∈ A. In addition,
let x̃+ e1, x̃+ e2 be excellent lifts. Then, a set x̃+K of affine lifts of x+K
computed from them is excellent.

Remark 4. For an excellent lift ẽ and λ ∈ C∗, λ ∗ ẽ is also excellent if and only
if λℓ = 1 by Lemma 7 in Section 3.3. Therefore, excellent lifts of e are not
necessarily unique and are at most finitely many.
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2.4 Lubicz-Robert formula

In this subsection, we introduce an isogeny calculation formula given by the
Lubicz-Robert [22]. In their paper, the formula is given for a general dimen-
sion and a general even level theta structure. Here we just use the formula in
dimension 2 and level 2 theta structure, i.e., on Kummer surfaces. For a theta
structure, we refer to [22,26].

Let k be an algebraically closed field of characteristic 0 or p > 0 where p
is coprime to 2. Let (A,L0) be a principal polarized abelian surface over k,
L = L 2

0 , and ΘL be a symmetric theta structure. In addition, ℓ be an odd
prime number, and K ⊂ A[ℓ] be a maximal isotropic subgroup with respect to
the Weil pairing. Then, the isogeny f : A → B = A/K induces a line bundle on
B and symmetric theta structure. From an excellent lift K̃ of K, the formula
gives the theta-null point (θBi (0))i of B with O(ℓ2) operations on k. Moreover,
for x ∈ A, an affine lift x̃, and excellent lifts x̃+K, the formula gives a theta
coordinate (θBi (f(x)))i of f(x) ∈ B with O(ℓ2) operations.

Theorem 3 ([22, Corollary 4.6]). The notation is the same as above. Let K̃
be an excellent lift of K and a1, . . . , ar be positive integers such that ℓ =

∑r
u=1 a

2
u.

For any i ∈ (Z/2Z)2, up to multiplication by a constant not depending on i, we
have

θBi (0) =
∑
e∈K

r∏
u=1

Mult(au, ẽ)aui . (10)

For x ∈ A, let x̃ be any affine lift and x̃+K be an excellent lift with respect
to x̃ and K̃. Then, for any i ∈ (Z/2Z)2, up to multiplication by a constant not
depending on i, we have

θBi (f(x)) =
∑
e∈K

r∏
u=1

Mult(au, x̃+ e)aui . (11)

Note that we can take a representation ℓ =
∑r

u=1 a
2
u such that r ≤ 4 by

Lagrange’s four-square theorem. Thus, if we take r such that r = O(1), the
complexities of both of the above formulas are O(ℓ2) arithmetic operations on
k by computing as follows. For (10), first, for a basis {e1, e2} of K, we compute
Mult(au, e1), Mult(au, e2), Mult(au, e1 + e2) for all 1 ≤ u ≤ r. These compu-
tations require O(log(ℓ)) arithmetic operations. Next, we compute their linear
combinations Mult(au,m1e1 + m2e2) for all 0 ≤ m1,m2 < ℓ and 1 ≤ u ≤ r.
These computations require O(ℓ2) arithmetic operations. The case for (11) is
similar (cf. [22, p.16]).

As a special case, in the formulas (10), (11), taking ℓ = 12 + · · · + 12, we
obtain the following formulas:

θBi (0) =
∑
e∈K

(ẽ)ℓi , (12)

θBi (f(x)) =
∑
e∈K

(x̃+ e)ℓi . (13)
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For the formulas (12), (13), we need to calculate ℓth power on k for each e ∈ K.
Thus, their complexities are O(ℓ2 log(ℓ)). Note that, despite of the asymptotically
higher complexity than the previous method, the current method may still be
more efficient than the previous one for some concrete choice of ℓ.

In [22], isogeny calculation algorithm based on (11) (for general dimension
and general level) is given as [22, Algorithm 4]. Here, we consider the case of
dimension 2 and level 2 the same as before. In the algorithm, first we compute
excellent lift of e1, e2, e1 + e2, x, x+ e1, x+ e2 where {e1, e2} is a basis of kernel
K. Then, we compute excellent lifts K̃ and x̃+K. At last, we compute the
right-hand side of (11) for i ∈ (Z/2Z)2.

Remark 5. In [8], the Cosset-Robert gave another (ℓ, ℓ)-isogeny calculation al-
gorithm based on Koizumi’s formula [17] in O(ℓr) operations where r = 2 when
ℓ ≡ 1 (mod 4) and r = 4 when ℓ ≡ 3 (mod 4). In the same way as above, we
write ℓ =

∑r
u=1 a

2
u with au ∈ N. Moreover, let K̃ be an excellent lift of the

kernel K ≃ (Z/ℓZ)2. Let F be an integer (r × r)-matrix such that F tF = ℓ idr
and the first row is (a1, . . . , ar). Now, we define FK : Kr → Kr as the Fℓ-linear
map induced by the matrix F . In [8, Equation (6)], the formula to compute the
theta-null point of the codomain is

θBi (0) =
∑

t(e1,...,er)∈Ker(FK)

r∏
u=1

(ẽu)aui (14)

up to multiplication by a constant. Here, for any e ∈ K, we have t(a1e, . . . , are) ∈
Ker(FK). Hence, in (14), we need to compute and take the sum of the values∏r

u=1 (̃aue)aui
for each e ∈ K. Thus, the complexity of (10) is the same as or

more efficient than the complexity of (14). For more details and general argu-
ments, we refer to [30, Section 4.4.3].

3 Proposed Algorithms

In this section, we propose some explicit algorithms of isogeny calculations be-
tween Kummer surfaces based on the Lubicz-Robert formula (Theorem 3). As
the same notation as Section 2.4, k is an algebraically closed field of character-
istic 0 or p > 0 where p is coprime to 2. As noted at the beginning of Section 2,
the arguments of Sections 2.1 and 2.2 are applicable to the case of not only C
but also the above k.

In our algorithms, calculations of multiplicative inverse on k are avoided
as they are expensive especially in cryptographic situations. Hence we evaluate
costs of algorithms by counting multiplication and square operations on k.

Throughout this section, A is an abelian surface over k, L = L 2
0 is line

bundle where L0 is principal, and ΘL is symmetric theta structure of level 2
for (A,L ). In addition, ℓ is an odd prime number, and K ⊂ A[ℓ] is a maximal
isotropic subgroup with respect to the Weil pairing. Then, B := A/K is an
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induced level 2 symmetric theta structured abelian surface. Moreover, f : A → B
is the isogeny with kernel K.

First, in Section 3.1, we give an overview of our algorithms. In Section 3.2,
we give costs of arithmetic on Kummer surfaces given in Section 2.2. The results
will be used in our isogeny calculation algorithms. Then, in Section 3.3, we
give relations about excellent lifts. in Section 3.4, we give explicit algorithms
of isogeny calculations. At last of this section, in Section 3.5, we consider a
representation ℓ =

∑r
u=1 a

2
u.

3.1 Overview of our proposed algorithms

In this subsection, we introduce an overview about our isogeny calculation algo-
rithms. The explicit algorithms will be given in Section 3.4.

As we have seen in Theorem 3, the theta-null point of codomain B := A/K
can be computed from an excellent lift K̃ of the kernel K. In addition, for
x ∈ A, the theta coordinate of the image f(x) can be computed from an excellent
lift x̃+K. Here, we construct algorithms of codomain and evaluation with the
following inputs and outputs. In this paper, we basically write an excellent lift
by ẽ and any affine lift by e for e ∈ A.

Codomain:
Input: Any affine lifts e1, e2, e1 + e2 of e1, e2, e1 + e2 for a basis {e1, e2} of

K.
Output: Theta-null point (θBi (0))i of B.

Evaluation:
Input: Any affine lifts e1, e2, e1 + e2, x̃, x+ e1, x+ e2 of e1, e2, e1+e2, x, x+

e1, x+ e2 for a basis {e1, e2} of K and any point x ∈ A.
Output: Theta coordinate (θBi (f(x)))i of f(x) ∈ B.

For both cases, we take a representation ℓ =
∑r

u=1 a
2
u. We mainly have two

cases; r = O(1) (e.g., r ≤ 4); and r = ℓ and ℓ = 12 + · · · + 12. For the former
case, we will discuss more in Section 3.5. For the latter case, we use (12) and
(13). Thus, for codomain, we consider two algorithms CodSq using ℓ =

∑r
u=1 a

2
u

and CodOne using ℓ = 12 + · · · + 12. Similarly, for evaluation, we consider two
algorithms EvalSq, EvalOne, see Table 1 in Section 1. As noted in Section 2.4,
CodSq and EvalSq require O(ℓ2) operations, while CodOne and EvalOne require
O(ℓ2 log(ℓ)) operations.

For CodSq, First we compute affine lifts s1e2 + s2e2 for 0 ≤ s1, s2 < ℓ. Then
instead of computing an affine lift m1aue1 +m2aue2, we use s1e1 + s2e2 where
0 ≤ s1, s2 < ℓ and m1au ≡ s1 (mod ℓ), m2au ≡ s2 (mod ℓ). Remark that the
above m1aue1 +m2aue2 and s1e1 + s2e2 are in general different as affine lifts.

In addition, for CodSq and CodOne, we do not need to compute m1e1 +m2e2
for all 0 ≤ m1,m2 < ℓ. It is sufficient to compute them for half of 0 ≤ m1,m2 < ℓ,
since m1e1 +m2e2 = (ℓ−m1)e1 + (ℓ−m2)e2. For more detail, see Section 3.4.

We note that the inputs for our proposed algorithms are affine lifts such
as e1, e2, e1 + e2, while (10) and (11) require excellent lifts. Thus, we need to
compute relations between affine lifts and excellent lifts. We will discuss it in
Section 3.3.
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3.2 Algorithms of arithmetic on Kummer surfaces

In this subsection, we describe explicit algorithms and their costs of calculation
methods given in Section 2.2.

As well as Section 2.2, we use affine lifts (θ̃i(x))i∈(Z/2Z)2 of level 2 theta
coordinates, and algorithms based on Riemann relations of Definition 3, which
take affine lifts as inputs and produce some affine lifts as outputs. Now, remark
that we can choose and fix any affine lift of the theta-null point at the very
beginning.

Notation. In our algorithms, in order to avoid calculating inverse elements on
k, we often hold an element in k as a fraction, i.e., a pair of a numerator and a
denominator. Then, if we hold an element a ∈ k as a pair of n ∈ k and d ∈ k
such that a = n

d , we write the data as (n, d) .
Moreover, we always hold any affine lift θ̃00(x), θ̃01(x), θ̃10(x), θ̃11(x) as five

elements θ′00(x), θ
′
01(x), θ

′
10(x), θ

′
11(x), dx ∈ k such that θ̃i(x) =

θ′
i(x)
dx

(with
common denominator dx) for all i ∈ (Z/2Z)2. In this case, we write the data as
(θ′i(x), dx)i, and write θ′i(x) = Num((θ̃i(x))i, i) and dx = Den((θ̃i(x))i). Since we
can take any affine lift (θ̃i(0))i of the theta-null point, we select (θ̃i(0))i with
denominator d0 = 1. We omit the affine lift of the theta-null point from inputs
for algorithms.

For counting the numbers of operations in the algorithms, we indicate a mul-
tiplication (resp. square) operation on the base field k by M (resp. S). Moreover,
we indicate a multiplication (resp. square) operation computed only from the
theta-null point by M0 (resp. S0). The values are reused after computed once.
We do not count the numbers of addition on k and arithmetic operations on
Z. We note that since we hold some elements as a form of fraction, the results
of our counting are not equal to the existing results such as [21] though the
computation methods are similar.

Lemma 2. For any integers n,N ≥ 1, let (bi,j , ai) for 0 ≤ i ≤ n − 1 and
0 ≤ j ≤ N − 1 be nN fractions in k. Then, the following statements hold:

(i) We can reduce the fractions to

Commondenom

(
(bi,j , ai) 0≤i≤n−1

0≤j≤N−1

)
:= (bi,ja0 · · · ai−1ai+1 · · · aN−1, α) 0≤i≤n−1

0≤j≤N−1

with common denominator α = a0 · · · aN−1 in Ccd(N,n) := ((n+3)N−5)M.
(ii) We can compute only the numerators of the result of (i):

Projcommondenom

(
(bi,j , ai) 0≤i≤n−1

0≤j≤N−1

)
:= (bi,ja0 · · · ai−1ai+1 · · · aN−1) 0≤i≤n−1

0≤j≤N−1

in Cpcd(N,n) := ((n+ 3)N − 6)M.
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Proof. (i) For N elements a0, . . . , aN−1 ∈ k∗, by Lemma 14 in Appendix B.1,
we can compute N elements a0 · · · aM−1aM+1 · · · aN−1 for 0 ≤ M ≤ N − 1
and a product α = a0 · · · aN−1 in (3N−5)M. After that we multiply bM,m by
numerators a0 · · · aM−1aM+1 · · · aN−1 for 0 ≤ M ≤ N−1 and 0 ≤ m ≤ n−1
in nNM. Thus, we can compute the fractions with a common denominator
in ((n+ 3)N − 5)M.

(ii) This is the same as (i) except for not computing α.
⊓⊔

Costs of arithmetics on Kummer surfaces. Next, we evaluate costs of
arithmetics on Kummer surfaces. First we give the cost to compute κii defined
by (5) as follows. First, we calculate zχ0 using (4) for i = 0:

zχ0 =
(
∑

t∈(Z/2Z)2 χ(t)θ̃t(x)
2)(
∑

t∈(Z/2Z)2 χ(t)θ̃t(y)
2)∑

t∈(Z/2Z)2 χ(t)θ̃t(0)
2

.

Then, we calculate κii by using (5) for i = j, i.e., κii =
1
4

∑
χ∈ ̂(Z/2Z)2 χ(i)z

χ
0 .

The next lemma is almost the same as [21, Lemma 5.1] except that we hold
each affine lift as fractions with common denominator. From Algorithm 6 in
Appendix B.2, we have the following number of arithmetic operations:

Lemma 3. With the above notation, the following statements hold:

(i) Computing κii for all i ∈ (Z/2Z)2 requires 4S0 + 9S+ 17M.
(ii) When x = y, (i) reduces to 4S0 + 10S+ 12M.

Once we calculate (κii)i for some x1 and y1, we can reuse θ′i(0)
2 for other x2

and y2. Thus, we will count the 4S0 only once.
The following lemma gives the number of arithmetic operations for Differen-

tial Addition and Doubling based on (7). From Algorithm 7 in Appendix B.2,
we have the following number of arithmetic operations:

Lemma 4 (Differential Addition, Doubling). For given any affine lifts
(θ̃i(x))i, (θ̃i(y))i, (θ̃i(x − y))i with θ̃i(x − y) ̸= 0 for all i, computing the affine
lift (θ̃i(x+ y))i requires Cdfa := 4S0 + 9S+ 33M. When x = y, the cost reduces
to Cdbl := 4S0 + 10S+ 28M.

Remark 6. As mentioned in Remark 2, we can compute (θ̃i(x+y))i if θ̃i(x−y) =
0 for some i. However, for simplicity, in our algorithms below, we always assume
the condition θ̃i(x − y) ̸= 0 for all i when we use Differential addition. Note
that if z ∈ A is 4-torsion point, this assumption θ̃i(z) ̸= 0 often does not hold.
Similarly, our implementation works only on this assumption. Unless we treat
4-torsion points, this assumption almost certainly holds experimentally.

Remark 7. After a calculation of (θ̃i(x+ y))i once, the cost to calculate (θ̃i(x+
z))i using Differential Addition reduces to Crdfa := 5S+33M since we can reuse
the data θ′i(0)

2, θ′i(x)2.
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The following lemma gives the number of arithmetic operations for Three-
way Addition based on (8) and (9). From Algorithm 8 in Appendix B.2, we have
the following number of arithmetic operations:

Lemma 5 (Three-way Addition). For given affine lifts (θ̃i(x))i, (θ̃i(y))i,
(θ̃i(z))i, (θ̃i(x+ y))i, (θ̃i(y+ z))i, (θ̃i(z+x))i with θ̃i(x) ̸= 0, θ̃i(y) ̸= 0, θ̃i(z) ̸= 0
for all i, computing (θ̃i(x+ y + z))i using (8) and (9) requires 48M.

The following lemma is used in isogeny calculations. Here, for any odd prime
number ℓ and ℓ′ := ℓ−1

2 , we define a subset Hℓ ⊂ Z2 as

Hℓ :={(m1, 0) ∈ Z2 | 1 ≤ m1 ≤ ℓ′} ⊔ {(0,m2) ∈ Z2 | 1 ≤ m2 ≤ ℓ′}
⊔{(m1,m2) ∈ Z2 | 1 ≤ m1, 1 ≤ m2, m1 +m2 < ℓ}
⊔{(m1,m2) ∈ Z2 | ℓ′ < m1 < ℓ, m1 +m2 = ℓ} .

(15)

If we define Hℓ := {(m1,m2) ∈ (Z/ℓZ)2 | (m1,m2) ∈ Hℓ}, then for any x ∈
(Z/ℓZ)2 ∖ {0}, we have x ∈ Hℓ if and only if −x /∈ Hℓ.

Lemma 6. With the notation above, we have the following costs:

(i) For given affine lifts (θ̃i(e1))i, (θ̃i(e2))i, and (θ̃i(e1 + e2))i, computing all
affine lifts (θ̃i(m1e1+m2e2))i for (m1,m2) ∈ Hℓ requires Chlc(ℓ) := 2Cdbl+

( ℓ
2−1
2 − 5)Crdfa when ℓ ≥ 5. When ℓ = 3, it requires once Differential Addi-

tion, thus, Chlc(3) := Cdfa.
(ii) For given affine lifts (θ̃i(e1))i, (θ̃i(e2))i, (θ̃i(e1 + e2))i, (θ̃i(x))i, (θ̃i(x+ e1))i,

(θ̃i(x + e2))i, computing all affine lifts (θ̃i(x + m1e1 + m2e2))i for 0 ≤
m1,m2 < ℓ requires Clc+(ℓ) := 48M+ 2Cdfa + (ℓ2 − 6)Crdfa when ℓ ≥ 3.

Proof. For (i), since #Hℓ =
ℓ2−1
2 and we already have (θ̃i(e1))i, (θ̃i(e2))i, (θ̃i(e1+

e2))i, the number of (m1,m2) not having (θ̃i(m1e1+m2e2))i is ℓ2−1
2 −3. Among

them, we can compute (θ̃i(2e1))i, (θ̃i(2e2))i by Doubling. After that we reuse
some values to compute other affine lifts, see Remark 7. For (ii), first we compute
(θ̃i(x+ e1 + e2))i by Three-way Addition in 48M. For remaining (m1,m2), it is
similar to (i). ⊓⊔

In the above lemma, asymptotically, we have Chlc(ℓ) =
5
2ℓ

2S+ 33
2 ℓ2M+O(1)M

and Clc+(ℓ) = 5ℓ2S+ 33ℓ2M+O(1)M.

3.3 Normalization

In this subsection, as noted in Section 3.1, we give relations of affine lifts and
excellent lifts.

First, we give a fundamental equality used later. This lemma is a generaliza-
tion of [19, Lemma 3.10] and [20, Lemma 2].
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Lemma 7. Let x1, . . . , xr ∈ A and let xi, xi + xj be any affine lifts for 1 ≤
i ≤ r, 1 ≤ i < j ≤ r. Let

∑r
i=1 mixi for mi ∈ Z be the affine lifts computed

from xi, xi + xj by using computation of Section 2.2. In addition, we take any

λi, λij ∈ k∗, and we put x̃i := λi ∗xi and x̃i + xj := λij ∗xi + xj. Let ˜∑r
i=1 mixi

for mi ∈ Z be the affine lift computed from x̃i, x̃i + xj. Then, we have

r̃∑
i=1

mixi =

 ∏
1≤i≤r

λ
m2

i
i

 ·

 ∏
1≤i<j≤r

(
λij

λiλj

)mimj

 ∗
r∑

i=1

mixi .

Proof. We show the claim by induction for r ≥ 1. The case of r = 1 is just
Equation (17) of [19, Lemma 3.10]. Next, we consider the case of r = 2. The
case of m2 = 1 is just Equation (16) of [19, Lemma 3.10]. For a general integer
m2, we have

˜m1x1 +m2e2 = Multadd(m2, x̃2, m̃1x1, ˜m1x1 + x2)

= Multadd(m2, λ2 ∗ x2, λ
m2

1
1 ∗m1x1,

(
λ
m2

1
1 λ2

(
λ12

λ1λ2

)m1
)
∗m1x1 + x2)

=

(
λ
m2

1
1 λ

m2
2

2

(
λ12

λ1λ2

)m1m2
)
∗m1x1 +m2x2 .

Thus, we obtained the result for r = 2. Next, we assume that the result holds for
r. Here, ˜m1e1 + · · ·+mr+1er+1 is the result of Three-way Addition of ˜m1e1 + · · ·+mr−1er−1

and m̃rer and ˜mr+1er+1. m1e1 + · · ·+mr+1er+1 is similar. Thus, from [20,
Lemma 2] and the induction hypothesis, we obtain the result for r + 1. ⊓⊔

Codomain. When we use the Lubicz-Robert formula, we need excellent lifts of
the kernel. (A,L , ΘL ) and K ⊂ A[ℓ] are thesame notations as earlier.

For e ∈ K, let e be any affine lift and ẽ be an excellent lift with ẽ = λ ∗ e for
λ ∈ k∗. Then since Mult(m, ẽ) = λm2 ∗ Mult(m, e) for m ∈ Z by Lemma 7, we
have

λℓ =
Mult(ℓ′, e)i

Mult(ℓ′ + 1, e)i
(16)

where ℓ′ = ℓ−1
2 for i ∈ (Z/2Z)2.

Let {e1, e2} be a basis of K ≃ (Z/ℓZ)2 and ẽ1, ẽ2, ẽ1 + e2 be excellent
lifts. Then, the set K̃ = { ˜m1e2 +m2e2 | 0 ≤ m1,m2 < ℓ} computed from
ẽ1, ẽ2, ẽ1 + e2 is excellent by Theorem 2. In addition, for any affine lifts e1, e2, e1 + e2,
we write the affine lift of m1e2+m2e2 computed from e1, e2, e1 + e2 by m1e2 +m2e2.
If ẽ1 = λ1 ∗ e1, ẽ2 = λ2 ∗ e2, ẽ1 + e2 = λ12 ∗ e1 + e2 for λ1, λ2, λ12 ∈ k∗, we have
the following some relational expressions. Here,

∏
ẽ means (

∏
ẽi)i.

Lemma 8. The notation is the same as above. Let a1, . . . , ar be positive integers
such that ℓ =

∑r
u=1 a

2
u. Let m1,m2 be integers such that 0 ≤ m1,m2 < ℓ. For

each 1 ≤ u ≤ r, we divide aum1 and aum2 by ℓ, i.e., aum1 = t1,uℓ + s1,u and
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aum2 = t2,uℓ+ s2,u where t1,u, t2,u, s1,u, s2,u are integers with 0 ≤ s1,u, s2,u < ℓ.
Then, we have

m1e1 =
(
λℓ
1

)ℓ−2m1 ∗ (ℓ−m1)e1, m2e2 =
(
λℓ
2

)ℓ−2m2 ∗ (ℓ−m2)e2 ,

m1e1 +m2e2 =

((
λℓ
1

)ℓ−2m1
(
λℓ
2

)ℓ−2m2

(
λℓ
12

λℓ
1λ

ℓ
2

)ℓ−m1−m2
)

∗ (ℓ−m1)e1 + (ℓ−m2)e2 ,

(17)

r∏
u=1

( ˜m1aue1 +m2aue2) =

((
λℓ
1

)h1
(
λℓ
2

)h2

(
λℓ
12

λℓ
1λ

ℓ
2

)h12
)

∗
r∏

u=1

s1,ue1 + s2,ue2

(18)
where

h1 : = m2
1 + ℓ

r∑
u=1

t21,u − 2m1

r∑
u=1

aut1,u, h2 := m2
2 + ℓ

r∑
u=1

t22,u − 2m2

r∑
u=1

aut2,u,

h12 : = m1m2 + ℓ

r∑
u=1

t1,ut2,u −m1

r∑
u=1

aut2,u −m2

r∑
u=1

aut1,u

and they satisfy 0 ≤ h1, h2, h12 ≤ r(ℓ− 1). In addition, we have

( ˜m1e1 +m2e2)
ℓ =

((
λℓ
1

)m2
1
(
λℓ
2

)m2
2

(
λℓ
12

λℓ
1λ

ℓ
2

)m1m2)
∗ (m1e1 +m2e2)

ℓ . (19)

Proof. By Lemma 7, we have

˜m1e1 +m2e2 =

(
λ
m2

1
1 λ

m2
2

2

(
λ12

λ1λ2

)m1m2
)
∗m1e1 +m2e2 .

Then, by raising the both sides to the ℓth power, we have (19). Now, by the
excellentness, we have m̃1e1 = ˜(ℓ−m1)e1. In addition, by Lemma 7, we have
m̃1e1 = λ

m2
1

1 ∗ m1e1 and ˜(ℓ−m1)e1 = λ
(ℓ−m1)

2

1 ∗ (ℓ−m1)e1. Hence, we have
m1e1 = λℓ2−2ℓm1

1 ∗ (ℓ−m1)e1. Now, m̃2e2 and ˜m1e1 +m2e2 are similar, thus we
have (17).

Similarly by the excellentness, we have ˜m1aue1 +m2aue2 = ˜s1,ue1 + s2,ue2.
Applying Lemma 7 to the right-hand side, we have

˜m1aue1 +m2aue2 =

(
λ
s21,u
1 λ

s22,u
2

(
λ12

λ1λ2

)s1,us2,u)
∗ s1,ue1 + s2,ue2 .

At last, taking the product for 1 ≤ u ≤ r, we can show (18). Then, we have
h1ℓ =

∑r
u=1 s

2
1,u and h2ℓ =

∑r
u=1 s

2
2,u and h12ℓ =

∑r
u=1 s1,us2,u. Since 0 ≤

s1,u, s2,u ≤ ℓ− 1, we have 0 ≤ h1, h2, h12 ≤ r(ℓ− 1). ⊓⊔
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Evaluation. Let K̃ be any excellent lift, x̃ be any affine lift of x ∈ A, and x̃+ e
be an excellent lift with respect to K̃ and x̃. For any affine lifts e and x+ e, we
put ẽ = λ ∗ e and x̃+ e = µ ∗ x+ e for λ, µ ∈ k∗. Since Multadd(ℓ, ẽ, x̃, x̃+ e) =

(λℓ2 · (µλ )
ℓ) ∗ Multadd(ℓ, e, x̃, x+ e) by Lemma 7, we have(µ

λ

)ℓ
=

x̃i

(λℓ)ℓ · Multadd(ℓ, e, x̃, x+ e)i
(20)

for i ∈ (Z/2Z)2.

Lemma 9. The notation is the same as above. Let λ1, λ2, λ12 be the same as
Lemma 8 and x̃+ e1 = µ1∗x+ e1, x̃+ e2 = µ2∗x+ e2 for µ1, µ2 ∈ k∗. Moreover,
let ˜x+m1e1 +m2e2 be the set of affine lifts computed from ẽ1, ẽ2, ẽ1 + e2, x̃,

x̃+ e1 ,x̃+ e2. Similarly, let x+m1e1 +m2e2 be the set of affine lifts computed
from e1, e2, e1 + e2, x̃, x+ e1, x+ e2. Then, we have the following two equalities:

r∏
u=1

( ˜aux+m1aue1 +m2aue2)

=

((
λℓ
1

)m2
1
(
λℓ
2

)m2
2

(
λℓ
12

λℓ
1λ

ℓ
2

)m1m2 (
µℓ
1

λℓ
1

)m1 (
µℓ
2

λℓ
2

)m2)
∗

r∏
u=1

(aux+m1aue1 +m2aue2) .

(21)

( ˜x+m1e1 +m2e2)
ℓ

=

((
λℓ
1

)m2
1
(
λℓ
2

)m2
2

(
λℓ
12

λℓ
1λ

ℓ
2

)m1m2 (
µℓ
1

λℓ
1

)m1 (
µℓ
2

λℓ
2

)m2)
∗ (x+m1e1 +m2e2)

ℓ .

(22)

Proof. (21) is obtained by Lemma 7. By applying ℓ = 12 + · · · + 12 to (21), we
have (22). ⊓⊔

3.4 Explicit algorithms of the Lubicz-Robert formula

In this subsection, we propose explicit algorithms computing the theta-null point
of the codomain B and computing the theta coordinate of the image of x ∈ A
under f based on the Lubicz-Robert formula (Theorem 3).

In the rest of this paper, logarithm always has base 2. Recall that M (resp.
S) means the cost of a multiplication (resp. square) operation on k. In addition,
P (N) for any positive integer N means the cost of computing N th power of an
element in k. For integers N1, . . . , Nm and λ ∈ k, P ({N1, . . . , Nm}) means the
cost of computing N th

i powers λN1 , . . . , λNm all.

Codomain. Here, we calculate the theta-null point of the codomain using the
Lubicz-Robert formula. As noted in Section 3.1, we give two algorithms CodSq,
CodOne for computation of the theta-null point of a codomain.
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CodSq is based on (10) using ℓ =
∑r

u=1 a
2
u and CodOne is based on (12) using

ℓ = 12 + · · ·+ 12.
On the other hand, in CodSq, we use equalities m1aue1 +m2aue2 = s1,ue1 +

s2,ue2 if m1au ≡ s1,u (mod ℓ) and m2au ≡ s2,u (mod ℓ) as follows. The affine lift
s1e1 + s2e2 and m1aue1 +m2aue2 correspond to the same projective coordinate
but are not equal as affine lifts. Thus, by multiplying by an appropriate constant,
we can compute m1aue1 +m2aue2 from s1,ue1 + s2,ue2. By this way, we avoid
computing linear combinations many times.

We summarize these two options CodSq and CodOne in Table 2.

Formula Normalization Algorithm Complexity
CodSq (10) (17) and (18) 1 O(ℓ2)

CodOne (12) (19) 2 O(ℓ2 log(ℓ))
Table 2. Two calculation methods of the codomain

In any case, since (level 2) a projective theta coordinate of an element e ∈ K is
the same as one of the inverse element −e, we can reduce the complexity to half.
To explain that, we use a subset Hℓ ⊆ Z2 of (15) in Section 3.2. Then, for a basis
{e1, e2} of K, we have {m1e1+m2e2 ∈ K | (m1,m2) ∈ Hℓ}⊔{−(m1e1+m2e2) ∈
K | (m1,m2) ∈ Hℓ} = K ∖ {0}.

For CodSq, remark that affine lifts of m1e1+m2e2 for (m1,m2) ∈ Hℓ are not
sufficient since it is not necessarily (s1,u, s2,u) ∈ Hℓ. Thus, we have to extend
affine lifts m1e1 +m2e2 for (m1,m2) ∈ Hℓ to 0 ≤ m1,m2 < ℓ using (17) of
Lemma 8. Especially, it is not clear whether CodSq is more efficient.

Explicit algorithms of CodSq and CodOne are Algorithm 1 and 2, respectively.

Remark 8. For CodSq and CodOne, since we compute m1e1 +m2e2 for (m1,m2) ∈
Hℓ first, we have ℓ′e1 and ℓ′e2 and ℓ′e1 + ℓ′e2. Thus, when we compute λℓ

1, λ
ℓ
2, λ

ℓ
12

using (16), we only need (ℓ′ + 1)e1 and (ℓ′ + 1)e2 and (ℓ′ + 1)e1 + (ℓ′ + 1)e2.
They are computed from m1e1 +m2e2 for (m1,m2) ∈ Hℓ by Differential Ad-
dition. Moreover, we only need these the ith-coordinate for one i ∈ (Z/2Z)2.
Especially, we can compute ℓ′e1, ℓ′e2, ℓ′e1 + ℓ′e2 in O(1)M.

Here, we give complexities of CodSq and CodOne.

1. (Alg. 1, lines 3-4) When we calculate αm2
1 for 0 ≤ m1 < ℓ, we compute indi-

vidually. Thus, we can approximate P ({m2
1 | 0 ≤ m1 < ℓ}) = O(ℓ log(ℓ))M.

The case for P ({m2
2 | 0 ≤ m2 < ℓ}) is similar.

2. (Alg. 1, lines 5-6) When we calculate βm1m2 for (m1,m2) ∈ Hℓ, since
max{m1m2 | (m1,m2) ∈ Hℓ} = ℓ2−1

4 , we calculate β2, β3, β4, · · · , β ℓ2−1
4

straightforwardly. Thus, we approximate P ({m1m2 | (m1,m2) ∈ Hℓ}) =
1
4ℓ

2M. Similarly, we approximate P ({m2
1 +m2

2 +m1m2 | (m1,m2) ∈ Hℓ}) =
3
4ℓ

2M.

Lemma 10. From Algorithms 1 and 2, these costs are as follows:
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Algorithm 1 CodSq

Input: Affine lifts e1, e2, e1 + e2 of the basis {e1, e2} of the kernel.
Output: A projective theta-null point of the codomain.
1: Compute m1e1 +m2e2 for (m1,m2) ∈ Hℓ. (▷)Chlc(ℓ)
2: Compute (α1, d1) such that α1

d1
= λℓ

1 using (16). (▷)O(ℓ)M

3: Compute (α2, d2) such that α2
d2

= λℓ
2 using (16). (▷)O(ℓ)M

4: Compute (α12, d12) such that α12
d12

= λℓ
12 using (16). (▷)O(ℓ)M

5: (β, d′) := (α12 · d1 · d2, d12 · α1 · α2) where β
d′ =

λℓ
12

λℓ
1λ

ℓ
2
. (▷)4M

6: ((α1, d), (α2, d), (β, d)) := Commondenom((α1, d1), (α2, d2), (β, d
′)).(▷)Ccd(3, 1) = 7M

7: Take a representation ℓ =
∑r

u=1 a
2
u.

8: Calculate αs
1, α

s
2, β

s, ds for needed s in lines 9, 13. (▷)6rℓM
9: Extend m1e1 +m2e2 from Hℓ to 0 ≤ m1,m2 < ℓ using (17). (▷)(3ℓ2 − 4ℓ+ 3)M

10: (θ′i(f(0)), di)i := (
∏r

u=1 Num((θ̃i(0))i, aui), 1)i for i ∈ (Z/2Z)2. (▷)4(r − 1)M
11: for (m1,m2) ∈ Hℓ do
12: aum1 = ℓt1,u + s1,u, aum2 = ℓt2,u + s2,u for 1 ≤ u ≤ r.
13: (cn, cd) := (αh1

1 · αh2
2 · βh12 , dh1+h2+h12) where h1, h2, h12 are of (18). (▷)2M

14: td := cd ·
∏r

u=1 Den(s1,ue1 + s2,ue2). (▷)rM
15: for i ∈ (Z/2Z)2 do
16: tn := 2cn ·

∏r
u=1 Num(s1,ue1 + s2,ue2, aui). (▷)rM

17: (θ′i(f(0)), di) := (θ′i(f(0)) · td + di · tn, di · td). (▷)3M
18: end for
19: end for
20: (θ′i(f(0)))i∈(Z/2Z)2 := Projcommondenom((θ′i(f(0)), di)i∈(Z/2Z)2).

(▷)Cpcd(4, 1) = 10M
21: return (θi(f(0)), 1)i.

CodSq: ( 52r +
53
2 )ℓ2M+ 5

2ℓ
2S+O(ℓ)M .

CodOne: 49
2 ℓ2M+ 5

2ℓ
2P (ℓ) + 5

2ℓ
2S+O(ℓ log(ℓ))M .

Especially, the complexity of CodSq is O(ℓ2)M and that of CodOne is O(ℓ2 log(ℓ))M
since P (ℓ) = O(log(ℓ)). Concrete counts of operations for each ℓ are written in
Section 4.

Evaluation. We give similar algorithms for general points, i.e., for x ∈ A,
we compute the theta coordinate of f(x) ∈ B from some theta coordinates of
e1, e2, e1 + e2, x, x+ e1, x+ e2.

Remark that we need to compute all linear combinations x +m1e1 +m2e2
for 0 ≤ m1,m2 < ℓ, not only for (m1,m2) ∈ Hℓ.

In the same notations as codomain, let e1, e2 and e1 + e2 be affine lifts of
e1, e2 and e1 + e2 for a basis {e1, e2} of K. For given any affine lifts x̃, x+ e1,
and x+ e2 of x, x+ e1, and x+ e2, we give a projective theta coordinate of the
image f(x).

Now, we give two concrete algorithms EvalSq and EvalOne. EvalSq is based
on (11) and EvalOne is based on (13). We summarize in Table 3.
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Algorithm 2 CodOne

Input: Affine lifts e1, e2, e1 + e2 of the basis {e1, e2} of the kernel.
Output: A projective theta-null point of the codomain.
1: Compute m1e1 +m2e2 for (m1,m2) ∈ Hℓ. (▷)Chlc(ℓ)
2: Here is the same as lines 2 to 6 of Algorithm 1.
3: Calculate α

m2
1

1 for 0 ≤ m1 < ℓ (▷)P ({m2
1 | 0 ≤ m1 < ℓ})

4: Calculate α
m2

2
2 for 0 ≤ m2 < ℓ (▷)P ({m2

2 | 0 ≤ m2 < ℓ})
5: Calculate βm1m2 for (m1,m2) ∈ Hℓ (▷)P ({m1m2 | (m1,m2) ∈ Hℓ})
6: Calculate dm

2
1+m2

2+m1m2 for (m1,m2) ∈ Hℓ.
(▷)P ({m2

1 +m2
2 +m1m2 | (m1,m2) ∈ Hℓ})

7: for (m1,m2) ∈ Hℓ do
8: (cn, cd) := (α

m2
1

1 · αm2
2

2 · βm1m2 , dm
2
1+m2

2+m1m2). (▷)2M
9: Compute Num(m1e1 +m2e2, i)

ℓ for i ∈ (Z/2Z)2. (▷)4P (ℓ)
10: Compute Den(m1e1 +m2e2)

ℓ. (▷)P (ℓ)
11: Num(Excl(m1,m2), i) := cn · Num(m1e1 +m2e2, i)

ℓ for i ∈ (Z/2Z)2. (▷)4M
12: Den(Excl(m1,m2)) := cd · Den(m1e1 +m2e2)

ℓ. (▷)1M
13: end for
14: Calculate Num(Excl(0, 0)) := Num(θi(0), i)

ℓ for i ∈ (Z/2Z)2. (▷)4P (ℓ)
15: Calculate Den(Excl(0, 0)) := 1.
16: (Excl(m1,m2))(m1,m2) := Projcommondenom((Excl(m1,m2))(m1,m2))

w.r.t. i ∈ (Z/2Z)2 and (m1,m2) ∈ Hℓ ⊔ {(0, 0)}.(▷)Cpcd(
ℓ2+1

2
, 4) = ( 7

2
ℓ2 +O(1))M

17: θ′i(f(0)) := Excl(m1,m2)i for i ∈ (Z/2Z)2.
18: for (m1,m2) ∈ Hℓ do
19: for i ∈ (Z/2Z)2 do
20: θ′i(f(0)) := θ′i(f(0)) + 2Excl(m1,m2)i.
21: end for
22: end for
23: return (θ′i(f(0)), 1)i.

In advance, we calculate (λℓ
1)

m2
1(λℓ

2)
m2

2(
λℓ
12

λℓ
1λ

ℓ
2
)m1m2 for all 0 ≤ m1,m2 < ℓ and

λℓ2

1 , λℓ2

2 which are independent on x.
Their explicit algorithms of EvalSq,EvalOne are Algorithms 3, 4 respectively.

Remark 9. For EvalOne, we can use the similar optimization as Remark 8.
Concretely, since we compute x+m1e1 +m2e2 for 0 ≤ m1,m2 < ℓ first, we
have x+ (ℓ− 1)e1 and x+ (ℓ− 1)e2. Hence, when we compute (µ1

λ1
)ℓ and (µ2

λ2
)ℓ,

we only need x+ ℓe1 and x+ ℓe2 which are computed from x+m1e1 +m2e2
by Differential Addition. Moreover, we only need the ith-coordinate for one
i ∈ (Z/2Z)2. Especially, we can compute (µ1

λ1
)ℓ and (µ2

λ2
)ℓ in O(1)M. This is

also valid for EvalSq if au = 1 for some u.

Lemma 11. By Algorithms 3 and 4, we give concrete costs of EvalSq and
EvalOne as follows. Here, r′ := #{a1, . . . , ar} ≤ r for a representation ℓ =∑r

u=1 a
2
u.

EvalSq: (5r + 33r′ + 15)ℓ2M+ 5r′ℓ2S+O(ℓ)M .
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Formula Normalization Algorithm Complexity
EvalSq (11) (21) 3 O(ℓ2)

EvalOne (13) (22) 4 O(ℓ2 log(ℓ))
Table 3. Two calculation methods of the evaluation

EvalOne: 51ℓ2M+ 5ℓ2P (ℓ) + 5ℓ2S+O(ℓ)M .

Especially, the complexity of EvalSq is O(ℓ2) and that of EvalOne is O(ℓ2 log(ℓ)).
Concrete counts of operations for each ℓ are written in Section 4.

3.5 Representation ℓ =
∑r

u=1 a
2
u

When we use Algorithm CodSq or EvalSq, we take a representation of ℓ by the
sum of squares of positive integers: ℓ =

∑r
u=1 a

2
u. If ℓ = 3, such a representation is

only 3 = 12+12+12. Otherwise, i.e. ℓ ≥ 5, what kind of representation is efficient
for each algorithms? In the following, for ℓ ≥ 5, we except the representation
ℓ = 12 + · · ·+ 12 since the case is just CodOne and EvalOne.

For CodSq, by the asymptotic complexity in Lemma 10, we should take a
representation such that r is minimized. On the other hand, for EvalSq, by their
asymptotic complexities in Lemmas 10, 11, we should take a representation such
that (5r + 33r′)M+ 5r′S is minimized where r′ := #{a1, . . . , ar}(≥ 2).

Lemma 12. Let ℓ be a prime number such that ℓ ≥ 5. For each of CodSq and
EvalSq, and for each ℓ, we should take a representation ℓ =

∑r
u=1 a

2
u (instead

of ℓ = 12 + · · ·+ 12) as follows:

1. If ℓ ̸≡ −1 (mod 24), the minimum value rmin of r for each ℓ is as follows.
When ℓ ≡ 1 (mod 4), rmin = 2, when ℓ ≡ 3 (mod 8), rmin = 3, and when
ℓ ≡ 7 (mod 24), rmin = 4. Moreover, there exists a representation satisfying
r = rmin and r′ = 2. Thus, for any CodSq and EvalSq, we should take any
such representation with r = rmin and r′ = 2.

2. If ℓ ≡ −1 (mod 24), the minimum value rmin of r is 4. Thus, for CodSq, we
take a representation with r = 4. For EvalSq, for each ℓ < 200, under the
assumption M : S = 3 : 2, we should take a representation in Table 4 which
minimizes (5r + 33r′)M+ 5r′S.

Proof. 1. By Fermat’s theorem on sums of two squares, there exists a repre-
sentation such that r = 2, if and only if ℓ ≡ 1 (mod 4). In this case, clearly,
r′ = 2. Next, we consider the other case, ℓ ≡ 3 (mod 4). By Legendre’s
three-square theorem, there exists a representation such that r = 3, if and
only if ℓ ≡ 3 (mod 8). In addition, in this case, it is known that there exists
a representation such that r = 3 and r′ = 2. When ℓ ≡ 7 (mod 8), by La-
grange’s four-square theorem, there exists a representation such that r = 4.
Then, there exists a representation such that r = 4, r′ = 2 if and only if
ℓ ≡ 1 (mod 3). This condition is equivalent to ℓ ≡ 7 (mod 24). In any case,
since r′ = 2, r and (5r + 33r′)M+ 5r′S are minimized.
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Algorithm 3 EvalSq

Input: Affine lifts e1, e2, e1 + e2, x̃, x+ e1, x+ e2 and (λℓ
1)

m2
1(λℓ

2)
m2

2(
λℓ
12

λℓ
1λ

ℓ
2
)m1m2 .

Output: A projective theta coordinate of f(x).
1: Take a representation ℓ =

∑r
u=1 a

2
u.

2: Compute aue1, aue2, au(e1 + e2), aux, au(e1 + x), au(e2 + x) for 1 ≤ u ≤ r.
(▷)6Cmlt({au | 1 ≤ u ≤ r})

3: Compute aux+m1aue1 +m2aue2 for 0 ≤ m1,m2 < ℓ and for 1 ≤ u ≤ r.
Here, r′ := #{a1, . . . , ar}. (▷)r′Clc+(ℓ)

4: Compute (γ1, d1) such that γ1
d1

= (µ1
λ1

)ℓ using (20). (▷)O(ℓ)M

5: Compute (γ2, d2) such that γ2
d2

= (µ2
λ2

)ℓ using (20). (▷)O(ℓ)M
6: ((γ1, d), (γ2, d)) := Commondenom((γ1, d1), (γ2, d2)). (▷)Ccd(2, 1) = 3M
7: Calculate numerators of γm

1 , γm
2 for 0 ≤ m ≤ ℓ− 1. (▷)2(ℓ− 2)M

8: Calculate dm for 0 ≤ m ≤ 2(ℓ− 1). (▷)(2ℓ− 3)M
9: Take a representation ℓ =

∑r
u=1 a

2
u.

10: (θ′i(f(x)), di) := (0, 1) for i ∈ (Z/2Z)2.
11: for 0 ≤ m1,m2 < ℓ do
12: cn := Num((λℓ

1)
m2

1(λℓ
2)

m2
2(

λℓ
12

λℓ
1λ

ℓ
2
)m1m2) · γm1

1 · γm2
2 (▷)2M

13: cd := Den((λℓ
1)

m2
1(λℓ

2)
m2

2(
λℓ
12

λℓ
1λ

ℓ
2
)m1m2) · dm1+m2 . (▷)1M

14: td := cd ·
∏r

u=1 Den(aux+m1aue1 +m2aue2). (▷)rM
15: for i ∈ (Z/2Z)2 do
16: tn := cn ·

∏r
u=1 Num(aux+m1aue1 +m2aue2, aui). (▷)rM

17: (θ′i(f(x)), di) := (θ′i(f(x)) · td + di · tn, di · td). (▷)3M
18: end for
19: end for
20: (θ′i(f(x)))i∈(Z/2Z)2 := Projcommondenom((θ′i(f(x)), di)i∈(Z/2Z)2).

(▷)Cpcd(4, 1) = 10M
21: return (θ′i(f(x)), 1)i.

2. By Lagrange’s four-square theorem, we have rmin = 4. Now, (5r+33r′)M+
5r′S is minimized if and only if (5r+33r′)·3+5r′·2 = 15r+109r′ is minimized.
For each ℓ < 200, by comparing 15r + 109r′ for all representations, we have
the result of Table 4. ⊓⊔

Table 5 summarises Lemma 12.

4 Counting the Number of Operations

In this section, we count the number of operation on k of algorithms CodSq,
CodOne, EvalSq, and EvalOne of Section 3.4. Here, we consider that the base
field is Fp2 for the sake of application to isogeny-based cryptography. Remark
that characteristic p does not affect the number of operation. Here, we consider
the cost as M : S = 3 : 2 and thus we compare an integer 3m+ 2s for mM+ sS.
Table 6 shows the values of 3m + 2s for each algorithm and for each ℓ. The
underlined values in red font are the minimum ones for each ℓ.
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ℓ
∑r

u=1 a
2
r r r′

23 5 · 12 + 2 · 32 7 2
47 2 · 12 + 5 · 32 5 2
71 22 + 2 · 32 + 72 4 3
167 5 · 12 + 2 · 92 7 2
191 42 + 7 · 52 8 2

Table 4. The most efficient representation for ℓ such that ℓ ≡ −1 (mod 24) for EvalSq.

ℓ (≥ 5) r r′ example
ℓ ≡ 1 (mod 4) 2 2 5 = 12 + 22

ℓ ≡ 3 (mod 8) 3 2 11 = 12 + 12 + 32

ℓ ≡ 7 (mod 24) 4 2 7 = 12 + 12 + 12 + 22

ℓ ≡ −1 (mod 24) r ≥ 4 – See Table 4
Table 5. An efficient representation ℓ =

∑r
u=1 a

2
u where r′ = #{a1, . . . , ar}.

ℓ CodSq CodOne EvalSq EvalOne

O(ℓ2)O(ℓ2log ℓ) O(ℓ2)O(ℓ2log ℓ)

3 1071 771 2118 1823
5 2711 2452 8270 5164
7 6740 5282 18034 10619

11 14924 13876 41573 27053
13 18579 19466 54745 37749
17 31829 32740 91496 63336
19 44376 43676 121861 83431
23 71692 68158 228845 128574
29 92627 108580 265217 204366
31 129896 131354 347335 245053
37 150807 173612 428398 327161
41 185105 213334 526691 401713
43 226500 248600 623287 464048
47 297904 313726 952613 580903
53 309335 378028 878633 704968
59 426020 494794 1169783 915391
61 409683 528968 1161502 978503
67 549240 593390 1509055 1108635
71 678412 704272 2363562 1305458
73 586713 704588 1663126 1316091
79 839528 919016 2244289 1691121
83 842600 962854 2311751 1784042

ℓ CodSq CodOne EvalSq EvalOne

89 871961 1107298 2469014 2051306
97 1035741 1244930 2932321 2323755

101 1122983 1426324 3176858 2641778
103 1426148 1563008 3812926 2874753
107 1399436 1686874 3840095 3102377
109 1307811 1750586 3701596 3219441
113 1405469 1785742 3976406 3306842
127 2166776 2618972 5796664 4757679
131 2096960 2357542 5754983 4375653
137 2065769 2578540 5844425 4785669
139 2360796 2799332 6479773 5158276
149 2443367 3216862 6910958 5927196
151 3061844 3474890 8190025 6361003
157 2712747 3756698 7672825 6876571
163 3245712 3850136 8903431 7093396
167 3293819 4250704 12022895 7780491
173 3744484 4561804 9315983 8349627
179 3913640 4883890 10739111 8938851
181 3605295 4993700 10194670 9139723
191 4896904 6108136 16601459 11053113
193 4099125 5119244 11591572 9497845
197 4270919 5624758 12075206 10361340
199 5315588 6036608 14222314 11048011

Table 6. Values of 3m+2s where mM+ sS is the count of operations of (ℓ, ℓ)-isogeny
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Algorithm 4 EvalOne

Input: Affine lifts e1, e2, e1 + e2, x̃, x+ e1, x+ e2 and (λℓ
1)

m2
1(λℓ

2)
m2

2(
λℓ
12

λℓ
1λ

ℓ
2
)m1m2 and

(θi(x))i.
Output: A projective theta coordinate of f(x).
1: Compute x+m1e1 +m2e2 for 0 ≤ m1,m2 < ℓ. (▷)Clc+(ℓ)
2: Here is the same as lines 4 to 8 of Algorithm 3.
3: for 0 ≤ m1,m2 < ℓ do
4: cn := Num((λℓ

1)
m2

1(λℓ
2)

m2
2(

λℓ
12

λℓ
1λ

ℓ
2
)m1m2) · γm1

1 · γm2
2 (▷)2M

5: cd := Den((λℓ
1)

m2
1(λℓ

2)
m2

2(
λℓ
12

λℓ
1λ

ℓ
2
)m1m2) · dm1+m2 . (▷)1M

6: Compute Num(x+m1e1 +m2e2, i)
ℓ for i ∈ (Z/2Z)2. (▷)4P (ℓ)

7: Compute Den(x+m1e1 +m2e2)
ℓ. (▷)P (ℓ)

8: Num(Excl(m1,m2), i) := cn · Num(x+m1e1 +m2e2, i)
ℓ for i ∈ (Z/2Z)2. (▷)4M

9: Den(Excl(m1,m2), i) := cd · Den(x+m1e1 +m2e2, i)
ℓ. (▷)4M

10: end for
11: (Excl(m1,m2))(m1,m2) := Projcommondenom((Excl(m1,m2))(m1,m2))

w.r.t. i ∈ (Z/2Z)2 and 0 ≤ m1,m2 < ℓ. (▷)Cpcd(ℓ
2, 4) = (7ℓ2 +O(1))M

12: θ′i(f(x)) := 0 for i ∈ (Z/2Z)2.
13: for 0 ≤ m1,m2 < ℓ do
14: for i ∈ (Z/2Z)2 do
15: θ′i(f(x)) := θ′i(f(x)) + Excl(m1,m2)i.
16: end for
17: end for
18: return (θ′i(f(x)), 1)i.

Codomain. For 3 ≤ ℓ ≤ 11 and ℓ = 19, 23, CodOne is the most efficient, and
for ℓ = 13, 17 and ℓ ≥ 29, CodSq is the most efficient. Indeed, the asymptotic
complexity of CodOne is O(ℓ2 log(ℓ)), but that of CodSq is O(ℓ2).

The cost of CodSq depends on r which is determined by ℓ (mod 8).

The cost of CodOne depends on the Hamming weight of ℓ, since we calculate
ℓth power many times in the algorithm. In fact, for example, the cost of CodOne
is large when ℓ = 127 = (1111111)2 and ℓ = 191 = (10111111)2.

Evaluation. For 3 ≤ ℓ < 200, EvalOne is more efficient, even though the
asymptotic complexity of EvalOne is O(ℓ2 log(ℓ)) and that of EvalSq is O(ℓ2).
For sufficiently large ℓ, EvalSq would be more efficient. The smallest ℓ that
EvalSq is more efficient is 509.

As well as codomain, the cost of EvalSq depends on r and r′ which are
determined by ℓ (mod 24). Concretely, see Table 5 and Table 4. The cost of
EvalOne depends on the Hamming weight of ℓ.
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5 Application to Attack on B-SIDH

In this section, we implement SIDH attack on key exchange protocol B-SIDH.
In the attack, we calculate (ℓ, ℓ)-isogenies between Kummer surfaces. Then, we
will use the result of Section 3 and Section 4.

5.1 SIDH (B-SIDH) attacks

In this subsection, we explain SIDH (B-SIDH) attacks briefly.
B-SIDH is key exchange protocol given by Costello [9] which is based on the

same problem as SIDH [15], but by using quadratic twist of elliptic curve we can
use smaller characteristic than one of SIDH.

The security of both SIDH and B-SIDH is guaranteed by the hardness of
Supersingular Isogney with Torsion Problem below. Here, p is a prime number
and k is a finite field of characteristic p.

Problem 1 (Supersingular Isogney with Torsion). Let NA and NB be coprime
integers, E0/k and EB/k be elliptic curves, φB : E0 → EB be NB-isogeny, and
{PA, QA} be a basis of E0[NA].

Then, given NA, NB , E0, EB , PA, QA, φB(PA), φB(PB), construct φB .

SIDH attacks. However, in 2022, Castryck, Decru [5] and Maino, Martindale,
Panny, Pope, Wesolowski [23] and Robert [31] gave a polynomial-time attack
on SIDH by solving the above problem. Thus, as noted in [5], the security of
B-SIDH was also broken.

In the attack, the following lemma based on a criterion by Kani [16] is es-
sential. Here, we consider the case of dimension one, even though it holds for a
general dimension, see [31, Lemma 3.4].

Lemma 13 ([31, Lemma 3.4]). Let E,E1, E2, and E′ be elliptic curves. For
coprime d1, d2, let f1, g1 be d1-isogenies and f2, g2 be d2-isogenies such that the
following diagram is commutative:

E
f1 //

f2

��

E1

g2

��
E2 g1

// E′

Then, an isogeny F : E×E′ → E1×E2 defined by a matrix
(

f1 ĝ2
−f2 ĝ1

)
is (d, d)-

isogeny where d := d1 + d2 with respect to the natural product polarizations on
E × E′ and E1 × E2. In addition, the kernel of F is represented by

KerF = {(f̂1(P ), g2(P )) ∈ E × E′ | P ∈ E1[d]} .
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Now, we construct an attack on SIDH for the following case: p ≡ 3 (mod 4)
and E0 is a supersingular elliptic curve E0/Fp2 : y2 = x3 + x. In addition,
we can assume NA > NB , if necessary by changing Alice and Bob of SIDH
protocol. Then, for a := NA − NB , as given in Section 5.2 below, there exists
a way to construct α(PA), α(QA) for some a-isogeny α : E0 → E′ by using
the information of End(E0), Then, we have the left-hand side diagram below by
taking the pushout of φB and α. Hence, we have the right-hand side commutative
diagram below:

E0
φB //

α

��

EB

α′

��
E′

φ′
B

// E′
B .

E′ α̂ //

φ′
B

��

E0

φB

��
E′

B
α̂′
// EB .

We apply Lemma 13 to the above right-hand side diagram, namely, let F :

E′ × EB → E0 × E′
B be the (NA, NA)-isogeny given by a matrix

(
α̂ φ̂B

−φ′
B α′

)
.

Then, we have

KerF = {(α(P ), φB(P )) ∈ E′ × EB | P ∈ E0[NA]} .

Since the attacker has (α(PA), φB(PA)), (α(QA), φB(QA)) which generate KerF ,
the attacker can calculate F . Then, the attacker takes a basis {S1, S2} of EB [NB ]
and computes F ((0, Si)) = (φ̂B(Si), α

′(Si)) for i = 1, 2. Since KerφB = ⟨φ̂B(S1), φ̂B(S2)⟩,
the attacker gets the generator of KerφB .

Difference between attacks on SIDH and attacks on B-SIDH. One of
the differences between SIDH and B-SIDH is the number of prime factors of NA

and NB . In SIDH, NA and NB are the form of 2a or 3b, on the other hand, in
B-SIDH, NA and NB have a lot of prime factors. At the point of attacks, since
attackers need to compute to (NA, NA)-isogeny F , for SIDH they compute the
composition of (2, 2)-isogenies or (3, 3)-isogenies. On the other hand, for B-SIDH
they compute the composition high digree isogenies, i.e., if NA = ℓ1 · · · ℓm is the
prime factorization, they compute the composition of (ℓi, ℓi)-isogenies. In fact,
although an implementation of attack on SIDH is given by Castryck-Decru [5,
Section 9], for B-SIDH it is not given.

5.2 Concrete construction of attack on B-SIDH

Computation of images of some a-isogeny. The notation is the same as
Section 5.1, i.e., p is a prime number such that p ≡ 3 (mod 4), E0 is a super-
singular elliptic curve E0/Fp2 : y2 = x3 + x, NA > NB are coprime integers,
and {PA, QA} is a basis of E0[NA]. As noted in the previous section, we can
construct α(PA), α(QA) for some a-isogeny α : E0 → E′ where a := NA −NB .
Here, we give the construction.
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We use some theory about quaternion algebra and refer to [13, Section 2].
The endomorphism ring End(E0) is isomorphic to the maximal order O0 =
⟨1, i, i+j

2 , 1+k
2 ⟩ with i2 = −1, j2 = −p, k = ij of H(−1,−p). Concretely, we have

the isomorpshim by ι 7→ i and π 7→ j where ι : E0 → E0 is (x, y) 7→ (−x,
√
−1y)

and π : E0 → E0 is (x, y) 7→ (xp, yp). In addition, we use FullRepresentIntegerO0
(M)

of [14, Algorithm 1] which gives an element of O0 of norm M for a given integer
M > p.

First, by applying FullRepresentIntegerO0
(aNB), we obtain an (aNB)-

isogeny γ : E0 → E0. Then, we decompose γ to an a-isogeny α : E0 → E′ and
an NB-isogeny δ : E′ → E0 with δ ◦ α = γ. Then, since δ̂ ◦ δ = [NB ]E′ , the left-
hand side diagram below is commutative. Since [NB ]E′ ◦α = α◦ [NB ]E0 , we have
the right-hand side commutative diagram. Here, since gcd(a,NB) = 1 and we
have Ker δ̂ = γ(E0[NB ]), we can calculate δ̂ : E0 → E′. Then, by the right-hand
side commutative diagram, we have α(PA) = δ̂(γ( PA

NB
)) and α(QA) = δ̂(γ(QA

NB
)).

E0
α //

γ

��

E′

[NB ]E′

��

δ

~~
E0

δ̂

// E′

E0

γ

��

[NB ]E0// E0

α

��
E0

δ̂

// E′

Composition of isogeny. As we have just seen, when we attack on B-SIDH,
we calculate isogeny of high degree. Thus, we decompose the isogeny to prime-
degree isogenies. We generalize the situation slightly.

Let K ⊂ A[N ] be a maximal isotropic subgroup and F : A → B be the
(N,N)-isogeny. When N = ℓ1 · · · ℓm is the prime factorization, we have a de-
composition F = φm ◦ · · · ◦ φ1 where φi : Ai → Ai+1 is an (ℓi, ℓi)-isogeny with
A1 = A and Am+1 = B.

For a basis {f1, f2} of K ≃ (Z/NZ)2, from theta coordinates f1, f2, we will
calculate a theta-null point of B. To do this, first we calculate f1 + f2 by Normal
Addition. Then, we multiply f1, f2, f1 + f2 by Mult(ℓ2 · · · ℓm, ∗) and call them
e1, e2, e1 + e2. Since e1, e2 are affine lifts of a basis of Kerφ1, we can calculate
theta null point of A2. Then, we compute affine lifts Mult(ℓ2 · · · ℓm + 1, f1) of
f1 + e1 and Multadd(ℓ2 · · · ℓm, f2, f1, f1 + f2) of f1 + e2. From them we calculate
a theta coordinate of the image φ1(f1) ∈ A2. Similarly, we calculate one of
φ2(f2) ∈ A2. By iterating this calculation m times, we have a theta-null point
of B. Thus, the total cost is 5mCmlt and m times Normal Addition and m
times codomain calculation and 2m times evaluations. Remark that since we use
Normal Addition we need once a calculating square root for one step.

For x ∈ A, from an affine lift x̃, we will calculate a theta coordinate of
F (x). We calculate x+ e1 by Normal Addition. Then, we calculate x+ e2 by
Compatible Addition. Thus, we can calculate theta coordinate of the image of
φ1(x) ∈ A2. In one step, we need three times calculations of square roots.

Remark 10. For applying this argument to the attack on B-SIDH, since the
domain A is a product of elliptic curves, A does not satisfy the assumption of
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non-zeroness of even theta-null points. Thus, on A we prepare needed affine lifts
by using additions of elliptic curves. Since for A2, . . . , Am the probability that
each Ai is a product of elliptic curves is O( 10p ), we consider that does not happen
for sufficiently large p such as the parameter of B-SIDH.

5.3 Implementation of the attack

We implemented the attack on B-SIDH for the following parameter based on
[13, Appendix.C]:

p = 0x1E409D8D53CF3BEB65B5F41FB53B25EBEAF37761CD8BA996684150A40FFFFFFFF,

NA = 356 · 31 · 43 · 59 · 271 · 311 · 353 · 461 · 593 · 607 · 647 · 691 · 743 · 769 · 877 · 1549,

NB = 232 ·521 ·7·11·163·1181·2389·5233·8353·10139·11939·22003·25391·41843.

Here, p is 257-bit and NA is 216-bit and NB is 213-bit. In addition, p ≡ 3
(mod 4), NA | (p−1), NB | (p+1), and NA > NB . We used this parameter since
(2,2)-isogeny is not main point of this paper and 2 ∤ NA.

As we have just seen in Section 5.1, we calculate the image of two points for
(NA, NA)-isogeny F : E′ × EB → E0 × E′

B .
We implemented this attack using our algorithms in Computer algebra sys-

tem SageMath [34]. Then, we done the attack in about 40500 seconds (11.25
hours) on an Apple M1 3200MHz CPU. The implementation can be found in

https://github.com/Yoshizumi-Ryo/ellell-isogeny_sage.

6 Conclusion

In this paper, we gave explicit inversion-free algorithms of (ℓ, ℓ)-isogeny between
Kummer surfaces based on the Lubicz-Robert formula for an odd prime number
ℓ.

Specifically, we proposed two algorithms using two representations ℓ =
∑r

u=1 a
2
u

with r = O(1) and ℓ = 12 + · · · + 12 for codomain and evaluation each. Then,
we made several improvements. First, for codomain, we reduced the complexity
of computing affine lifts to half. Second, for representations ℓ =

∑r
u=1 a

2
u, we

determined the most efficient representation for each ℓ. Third, we constructed
relations to compute excellent lifts from affine lifts using in the Lubicz-Robert
formula. Then, we provided some improvements based on the relations. Fourth,
in our algorithms, we avoided computing multiplicative inversions, which are
expensive for cryptrographic situations. Finally, by counting and comparing the
number of arithmetic operations, we determined the most efficient algorithm for
each ℓ from each of two algorithms.

In addition, using the most efficient one, we implemented the SIDH attack
on B-SIDH in SageMath. In setting that originally claimed 128-bit security, we
were able to recover 128-bit secure B-SIDH in about 11 hours.
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A Additional arithmetic on Kummer surfaces of Section
2.2

As mentioned in Remark 1 in Section 2.2, in this section, we introduce Normal
Addition and Compatible Addition. They are used attack on B-SIDH.

Normal Addition. Next, we consider the case that (θ̃i(x−y))i is not given as a
part of input. Then, remark that we cannot distinguish (θ̃i(x+y))i from (θ̃i(x−
y))i by using (θ̃i(x))i, (θ̃i(y))i only, since (θ̃i(y))i = (θ̃i(−y))i. Nonetheless, we
can compute a set (unordered pair) {(Xi)i, (Yi)i} := {(θ̃i(x+ y))i, (θ̃i(x− y))i}
as follows. First, remark that for any pair of (θ̃i(x+ y))i and (θ̃i(x− y))i which
satisfies (3) and for any λ ∈ C∗, a pair of λ∗ (θ̃i(x+y))i and 1

λ ∗ (θ̃i(x−y))i also
satisfies (3). Thus, we may fix X0 := 1, and then we have Y0 = κ00 by (7). Here,
we assume that κ00 ̸= 0. If necessary, we replace by another i with κii ̸= 0.

In the above notation, equality (6) becomes κij =
1
2 (XiYj +XjYi). Thus, for

all i ∈ (Z/2Z)2, we have Xi

X0
· Yi

Y0
= κii

κ00
and Xi

X0
+ Yi

Y0
= 2κi0

κ00
. Hence, Xi

X0
and Yi

Y0

are solutions of the following quadratic equation:

κ00t
2 − 2κi0t+ κii = 0 . (23)

If x or y is a 2-torsion point, then we have x − y ∈ {±(x + y)} and hence
(θi(x+ y))i = (θi(x− y))i as projective theta coordinates, therefore Xi

X0
= Yi

Y0
=

κi0

κ00
. Thus, in this case, we can compute the set {(Xi)i, (Yi)i} from κij .
Otherwise, we have x− y ̸∈ {±(x+ y)} and hence (Xi)i ̸= (Yi)i as projective

theta coordinates. Therefore, there exists α ∈ (Z/2Z)2 such that Xα

X0
̸= Yα

Y0
. Then

the quadratic equation (23) with i = α has two distinct solutions; among them,
we can set Xα

X0
= κα0+

√
Dα

κ00
by symmetry where Dα := κ2

α0 − καακ00 (note that
now Dα ̸= 0). Since we fixed X0 = 1, we have

Xα =
κα0 +

√
Dα

κ00
.

Moreover, for the remaining i ∈ (Z/2Z)2 ∖ {0, α}, we have the following linear
equation: (

1 1
Xα

X0

Yα

Y0

)( Yi

Y0
Xi

X0

)
=

( 2κi0

κ00
2κiα

κ00

)
.

Since det

(
1 1
Xα

X0

Yα

Y0

)
= −2

√
Dα

κ00
̸= 0, by solving the above linear equation, we can

calculate Xi as follows:

Xi =
Xακi0 − κiα√

Dα

.

Moreover, since κii = XiYi, we have Yi =
κii

Xi
if Xi ̸= 0. Even if Xi = 0, we can

compute Yi in the same way as we compute Xi.
Thus, from affine lifts (θ̃i(x))i, (θ̃i(y))i, we have obtained the set {(θ̃i(x +

y))i, (θ̃i(x−y))i}. We call this algorithm Normal Addition (cf. [21, Section 5.2]).
Remark that this operation requires one square root computation.
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Compatible Addition. For given (θ̃i(y))i, (θ̃i(z))i, (θ̃i(x + y))i, (θ̃i(x + z))i,
we can compute (θ̃i(y+z))i as follows. If y or z is a 2-torsion point, since (θ̃i(y+
z))i = (θ̃i(y − z))i as projective theta coordinates, it suffices to compute the
Normal Addition of (θ̃i(y))i and (θ̃i(z))i. Otherwise, we can compute (θ̃i(y+z))i
by using Normal Addition twice as follows. Firstly, we calculate the set {Y, Z} :=
{(θ̃i(y+z))i, (θ̃i(y−z))i} from (θ̃i(y))i, (θ̃i(z))i using Normal Addition. Then, we
compute the set S of Normal Addition of Y and (θ̃i(x+ y))i. If Y = (θ̃i(y+ z))i,
we have S = {(θ̃i(x + 2y + z))i, (θ̃i(x − z))i}. Thus, in this case, (θ̃i(x + z))i is
not contained in S since neither y nor z is a 2-torsion point. On the other hand,
if Y = (θ̃i(y − z))i, we have S = {(θ̃i(x + 2y − z))i, (θ̃i(x + z))i}. Thus, if S
contains the projective theta coordinate (θ̃i(x+ z))i, we have Z = (θ̃i(y + z))i.
Otherwise, we have Y = (θ̃i(y+z))i. We call this algorithm Compatible Addition
(cf. [19, Section 3.2.1]).

B Explicit algorithms of Section 3.2

In this appendix, as mentioned in Section 3.2, we give some concrete algorithms
of arithmetic on Kummer surfaces.

B.1 Batch inversion

First, in order to unify the denominators of some given fractions (Lemma 2), we
give an algorithm to compute some products from given elements of k (Algo-
rithm 5) and an evaluation of its cost (Lemma 14). For any integer M ≥ 0, we
write the binary expansion as M = (dn−1, . . . , d0)2 where M =

∑n−1
i=0 di2

i for
di ∈ {0, 1}. Here, we do not require dn−1 = 1.

Lemma 14. Let N ≥ 2 and a0, . . . , aN−1 ∈ k. Then the output of Algorithm 5
satisfies that α̃ = α := a0 · · · aN−1 and α̃M = αM := a0 · · · aM−1aM+1 · · · aN−1

for any M = 0, . . . , N − 1, and Algorithm 5 requires (3N − 5)M. If the part α of
the output is not needed, then the cost reduces to (3N − 6)M.

Proof. As for line 2 in the algorithm, let L denote the set of all leaves of the
binary tree T , and for each node v of T , let L(v) denote the set of all v′ ∈ L
that is covered by v, i.e., the upward path from v′ to the root of T involves
the node v. Then we have α =

∏
v∈L a[v] and αM =

∏
v∈L∖{v[n;M ]} a[v] for any

M ∈ {0, . . . , N −1}. Now a recursive argument implies that a[v] =
∏

w∈L(v) a[w]
for any node v of T ; this follows from the fact that for each non-leaf node v,
L(v) is the disjoint union of L(v′1) and L(v′2) if v has two child nodes v′1 and v′2,
and L(v) = L(v′) otherwise where v′ is the unique child node of v. The former
case occurs N −1 times in total by the argument of “counting losers in knockout
tournament”, therefore N − 1 multiplications on k are performed during this
process. Finally, for the root v[0; 0] of T , we have

α̃ = a[v[0; 0]] =
∏

w∈L(v[0;0])

a[w] =
∏
w∈L

a[w] = α
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since L(v[0; 0]) = L. Hence the part α̃ of the output is correct.

Secondly, a recursive argument also implies that b[v] =
∏

w∈L∖L(v) a[w] for
any node v of T . Indeed, this follows from the fact that for each non-leaf node
v, if v has two child nodes v′1 and v′2, then L ∖ L(v′1) is the disjoint union of
L ∖ L(v) and L(v′2) and vice versa; while if v has a single child node v′, then
L∖L(v′) = L∖L(v). (Note that the relations b[v[1; 0]] = b[v[0; 0]] ·a[v[1; 1]] and
b[v[1; 1]] = b[v[0; 0]] ·a[v[1; 0]] also hold for nodes at level 1.) Multiplication on k
occurs only when a non-leaf node v is of the former type (except for the case of the
root v = v[0; 0]); now two multiplications on k are performed in the calculation
at the two child nodes. By the argument at the previous paragraph, there are
(N − 1)− 1 = N − 2 such nodes v, hence there are 2(N − 2) multiplications in
total. Finally, for each leaf v[n;M ] with 0 ≤ M ≤ N − 1, we have

α̃M = b[v[n;M ]] =
∏

w∈L∖L(v[n;M ])

a[w] =
∏

w∈L∖{v[n;M ]}

a[w]

= a0 · · · aM−1aM+1 · · · aN−1 = αM

since L(v[n;M ]) = {v[n;M ]}. Hence the part α̃M of the output is correct.

The total number of multiplication is (N − 1) + 2(N − 2) = 3N − 5. Now if
the part α of the output is not needed, then the calculation of a[v[0; 0]] in the
algorithm can be removed, decreasing the number of multiplications by one; i.e.,
3N − 6 multiplications in total. ⊓⊔

Example 1. We give an example of Lemma 14 in the case of N = 6. Then, we
use the following two binary trees:

a[v[0; 0]]=α=a0a1a2a3a4a5

a[v[1; 1]]=a4a5 a[v[2; 2]]=a4a5

a[v[3; 5]]=a5

a[v[3; 4]]=a4

a[v[1; 0]]=a0a1a2a3

a[v[2; 1]]=a2a3

a[v[3; 3]]=a3

a[v[3; 2]]=a2

a[v[2; 0]]=a0a1

a[v[3; 1]]=a1

a[v[3; 0]]=a0
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b[v[0; 0]] = 1

b[v[1; 1]]=a0a1a2a3 b[v[2; 2]]=a0a1a2a3

b[v[3; 5]]=a0a1a2a3a4

b[v[3; 4]]=a0a1a2a3a5

b[v[1; 0]]=a4a5

b[v[2; 1]]=a0a1a4a5

b[v[3; 3]]=a0a1a2a4a5

b[v[3; 2]]=a0a1a3a4a5

b[v[2; 0]]=a2a3a4a5

b[v[3; 1]]=a0a2a3a4a5

b[v[3; 0]]=a1a2a3a4a5

B.2 Concrete algorithms

Here, we write concrete algorithms used in Lemma 3, Lemma 4, and Lemma 5,
see the following table:

Content Lemma Algorithm
Computing κii Lemma 3 Algorithm 6

Differential Addition, Lemma 4 Algorithm 7
Doubling

Three-way Addition Lemma 5 Algorithm 8
Table 7. Correspondence between lemmas and algorithms
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Algorithm 5 Algorithm to compute some products
Input: N elements a0, . . . , aN−1 ∈ k (N ≥ 2)
Output: N products αM := a0 · · · aM−1aM+1 · · · aN−1 for 0 ≤ M ≤ N − 1 and a

product α := a0 · · · aN−1

1: Write N − 1 = (dn−1, . . . , d0)2 where dn−1 = 1 # possible since N ≥ 2
2: Generate a binary tree T with 0-th level (root) to n-th level (leaves), where

- for ℓ = 0, . . . , n, the ℓ-th level consists of nodes v[ℓ; 0], v[ℓ; 1], . . . , v[ℓ;N ′
ℓ] where

N ′
ℓ = ⌊(N − 1)/2n−ℓ⌋ = (dn−1, . . . , dn−ℓ)2 (now N ′

0 = 0);
- for ℓ = 0, . . . , n− 1, node v[ℓ; c] has child node(s) v[ℓ+ 1; 2c] and v[ℓ+ 1; 2c+ 1]
(if it exists); we call v[ℓ+ 1; 2c+ 1] the sibling node of v[ℓ+ 1; 2c] and vice versa

3: # Multiply from leaves to the root
4: for each leaf v := v[n; c] do
5: a[v] := ac

6: end for
7: for ℓ = n− 1 downto 0 do
8: for each node v := v[ℓ; c] do
9: if v has two child nodes v′1 and v′2 then

10: a[v] := a[v′1] · a[v′2] (▷) 1M
11: else
12: a[v] := a[v′] for the unique child node v′ of v
13: end if
14: end for
15: end for
16: # Multiply from root to leaves
17: b[v[0; 0]] := 1 ∈ k # v[0; 0] is the root of T
18: b[v[1; 0]] := a[v[1; 1]] and b[v[1; 1]] := a[v[1; 0]] # N ′

1 = 1 since N ≥ 2
19: for ℓ = 2 to n do
20: for each node v := v[ℓ; c] (with its parent node v̂) do
21: if v has the sibling node v′ then
22: b[v] := b[v̂] · a[v′] (▷) 1M
23: else
24: b[v] := b[v̂]
25: end if
26: end for
27: end for
28: return α̃M := b[v[n;M ]] for M = 0, . . . , N − 1 (as αM ) and α̃ := a[v[0; 0]] (as α)

(▷) total: (3N − 5)M
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Algorithm 6 Algorithm to calculate κii in Lemma 3 (i) (resp. (ii))
Input: Affine lifts (θ′i(x), dx)i, (θ

′
i(y), dy)i.

Output: κii for all i ∈ (Z/2Z)2.
1: Calculate θ′i(0)

2, θ′i(x)
2, θ′i(y)

2 for all i ∈ (Z/2Z)2. (▷)4S0 + 8S (resp. 4S0 + 4S)
2: for χ ∈ ̂(Z/2Z)2 (4 elements in total) do
3: z′

χ
0 := (

∑
t∈(Z/2Z)2 χ(t)θ

′
t(x)

2) · (
∑

t∈(Z/2Z)2 χ(t)θ
′
t(y)

2). (▷)1M (resp. 1S)
4: dχ :=

∑
t∈(Z/2Z)2 χ(t)θ

′
t(0)

2.
5: end for
6: (z′

χ
0 , d)χ∈ ̂(Z/2Z)2 := Commondenom((z′

χ
0 , dχ)χ∈ ̂(Z/2Z)2). (▷)Ccd(4, 1) = 11M

7: κ′
ii :=

∑
χ∈ ̂(Z/2Z)2 χ(i)z

′χ
0 for i ∈ (Z/2Z)2.

8: dκ := 4d · (dx · dy)2. (▷)1S+ 2M (resp. 2S+ 1M)
9: return (κ′

ii, dκ)i. (▷) total : 4S0 + 9S+ 17M (resp. 4S0 + 10S+ 12M)

Algorithm 7 Differential Addition (resp. Doubling)
Input: Affine lifts (θ′i(x), dx)i, (θ

′
i(y), dy)i, and (θ′i(x− y), dx−y)i.

Output: The affine lift (θ̃i(x+ y))i.
1: Compute (κ′

ii, dκ)i for i ∈ (Z/2Z)2 by Algorithm 6.
(▷)4S0 + 9S+ 17M (resp. 4S0 + 10S+ 12M)

2: (θ′i(x+ y), dx+y)i∈(Z/2Z)2 := Commondenom((κ′
ii, θi(x− y))i∈(Z/2Z)2).

(▷)Ccd(4, 1) = 11M
3: θ′i(x+ y) := dx−y · θ′i(x+ y) for all i ∈ (Z/2Z)2. (▷)4M
4: dx+y := dκ · dx+y. (▷)1M
5: return (θ′i(x+ y), dx+y)i. (▷)total: 4S0 + 9S+ 33M (resp. 4S0 + 10S+ 28M)
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Algorithm 8 Three-way Addition
Input: Affine lifts (θ′i(x), dx)i, (θ

′
i(y), dy)i, (θ

′
i(z), dz)i, (θ

′
i(x+ y), dx+y)i,

(θ′i(y + z), dy+z)i, and (θ′i(z + x), dz+x)i.
Output: The affine lift (θ̃i(x+ y + z))i.
1: Rχ

1 :=
∑

t∈(Z/2Z)2 χ(t)θ
′
t(0)θ

′
t(y + z) for all χ ∈ ̂(Z/2Z)2. (▷)4M

2: Rχ
2 :=

∑
t∈(Z/2Z)2 χ(t)θ

′
t(z + x)θ′t(x+ y) for all χ ∈ ̂(Z/2Z)2. (▷)4M

3: Lχ
2 :=

∑
t∈(Z/2Z)2 χ(t)θ

′
t(y)θ

′
t(z) for all χ ∈ ̂(Z/2Z)2. (▷)4M

4: for χ ∈ ̂(Z/2Z)2 do
5: E′χ := Rχ

1 ·Rχ
2 . (▷)1M

6: dχ := Lχ
2 .

7: end for
8: (Ẽχ, d)

χ∈ ̂(Z/2Z)2 := Commondenom((E′χ, dχ)
χ∈ ̂(Z/2Z)2). (▷)Ccd(4, 1) = 11M

9: for i ∈ (Z/2Z)2 do
10: θ′i(x+ y + z) :=

∑
χ χ(i)Ẽχ.

11: di := 4θ′i(x).
12: end for
13: (θ′i(x+ y + z), dx+y+z)i∈(Z/2Z)2 := Commondenom((θ′i(x+ y + z), di)i∈(Z/2Z)2).

(▷)Ccd(4, 1) = 11M
14: dx+y+z := dx+y+z · dy+z · dz+x · dx+y · d. (▷)4M
15: dxyz := dx · dy · dz. (▷)2M
16: Calculate θ′i(x+ y + z) := θ′i(x+ y + z) · dxyz for all i ∈ (Z/2Z)2. (▷)4M
17: return (θ′i(x+ y + z), dx+y+z)i. (▷) total: 48M
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