Efficient theta-based algorithms
for computing (¢, £)-isogenies
on Kummer surfaces for arbitrary odd £

Ryo Yoshizumi', Hiroshi Onuki?, Ryo Ohashi?,
Momonari Kudo®, and Koji Nuida'*

! Kyushu University, Japan yoshizumi.ryo.483@s.kyushu-u.ac.jp
2 The University of Tokyo, Japan
{hiroshi-onuki,ryo-ohashi}@g.ecc.u-tokyo.ac.jp
3 Fukuoka Institute of Technology, Japan m-kudo@fit.ac.jp
4 National Institute of Advanced Industrial Science and Technology, Japan
nuida@imi.kyushu-u.ac. jp

Abstract. Isogeny-based cryptography is one of the candidates for post-
quantum cryptography. Recently, many isogeny-based cryptosystems us-
ing isogenies between Kummer surfaces were proposed. Most of those
cryptosystems use (2,2)-isogenies. However, to enhance the possibility
of cryptosystems, higher degree isogenies, say (¢, £)-isogenies for an odd
£, is also crucial. For an odd /¢, the Lubicz-Robert gave a formula to
compute (£)Y-isogenies in general dimension g. In this paper, we pro-
pose explicit and efficient algorithms to compute (4, £)-isogenies between
Kummer surfaces, based on the Lubicz-Robert formula. In particular, we
propose two algorithms for computing the codomain of the isogeny and
two algorithms for evaluating the image of a point under the isogeny.
Then, we count the number of arithmetic operations required for each
of our proposed algorithms, and determine the most efficient algorithm
in terms of the number of arithmetic operations from each of two types
of algorithms for each ¢. As an application, using the most efficient one,
we implemented the SIDH attack on B-SIDH in SageMath. In setting
that originally claimed 128-bit security, our implementation was able to
recover that secret key in about 11 hours.

Keywords: Post-quantum cryptography - Isogeny-based cryptography - B-SIDH
- Kummer surface- Theta function

1 Introduction

Isogeny-based cryptography is one of the candidates for post-quantum cryptogra-
phy. Its advantage is that it has relatively small keys, ciphertexts, and signatures.
On the other hand, its processing speed is slower than many of other candidates
for post-quantum cryptography. This mainly comes from the computation of iso-
genies. Therefore, improving the computation of isogenies is important. Many
researches have been done on this topic ([35],[15],[10],[2],[12],[32],[22]).

Vélu’s formulas [35] give a method for calculating ¢-isogenies between elliptic
curves, where an ¢-isogeny is defined to be an isogeny whose kernel is a cyclic
group of order ¢. The computational complexity of Vélu’s formulas is O(¢) op-
erations in the base field. Although the classical Vélu’s formulas are formulas
on the Weierstrass forms and use z- and y-coordinates, it is possible to obtain
formulas using only z-coordinates, i.e., formulas on Kummer lines. In particular,
formulas on Montgomery curves are well known. The first formulas on Mont-
gomery curves were given by Jao and De Feo [15]. They showed a method to
derive formulas for isogenies of arbitrary degree, however, explicit formulas for
isogenies of degree greater than 4 were not given. Costello and Hisil [10] gave
explicit formulas for isogenies of arbitrary odd degree on Montgomery curves.
Their formulas are more efficient than ones derived from the method of Jao and
De Feo. Based on their formulas, isogeny-based schemes such as CSIDH [6] and
B-SIDH [9] were proposed. Later, the formula for the codomain curve of the
isogeny was improved by [24]. The computational complexity of an ¢-isogeny
was reduced to O(v/4) by [2].

A generalization of f-isogenies to 2-dimensional isogenies is called (¢,¢)-
isogenies. In recent years, many cryptosystems which combine isogenies be-
tween elliptic curves and isogenies between higher dimensional abelian varieties
have been proposed ([1,7,11,29] for example). Many of these schemes use (2, 2)-
isogenies for the higher dimensional isogenies. The reason is that the computation
of (2, 2)-isogenies is relatively efficient compared to higher dimensional isogenies
of other degrees. In particular, there is an efficient formula for (2, 2)-isogenies on
Kummer surfaces by [12]. For enhancing the variety of isogeny-based schemes,
it is important to have efficient formulas for isogenies of higher degrees. Indeed,
formulas for (3, 3)-isogenies on Kummer surfaces were given by [32]. For a gen-
eral prime number ¢, formulas for (¢, ¢)-isogenies were given by the Lubicz and
Robert [22].

Lubicz-Robert formula. Let k£ be an algebraically colosed field of character-
istic zero or odd prime number p. Let A be an abelian variety of dimension g
over k, £ = £ be a line bundle on A where %} is a principal and n is even,
and ©¢ be a symmetric theta structure for (4,.%). For any odd prime number
£ coprime to p and a maximal isotropic subgroup K C A[¢] with respect to the
Weil pairing, the isogeny f : A — B = A/K called (£)9-isogeny induces a line
bundle .# on B and a symmetric theta structure ©_4 for (B, .#) of level n. The
theta structure of level n gives a morphism ¢, : A — P* =1 and for = € A, the
projective coordinate ¢, (x) € P’ ~1 is called a theta coordinate of x. Especially,
©n(0) is called a theta-null point. We take a representation of ¢ as a sum of
squares of integers: £ = Y " _, aZ. Then, the Lubicz-Robert [22] gave a formula
which gives a theta coordinate of f(z) € B for z € A up to multiplication by a
constant from some theta coordinates on A in O(¢9n9) operations on k:

68 (£() = 3 T Mult(au, 7 T €)a: - (1)

ecK u=1

For a precise formula, see [22, Corollary 4.6] or Section 2.4.

When n = 2, if A is indecomposable, it is known that the above morphism @9
gives the embedding of the Kummer variety K 4 to P2’ ! where Kummer variety
is the quotient A/(+1). Thus, the above formula for n = 2 gives an efficient way
to calculate a morphism between Kummer varieties.

In [22], (£)9-isogeny calculation algorithm based on (1) (for general dimension
and general level) is given as [22, Algorithm 4]. However, we consider that there
are the following points where improvements can be made:

1. By using (1), we can compute both the theta-null point of a codomain and
the theta coordinate of the image under f for a given point. However, if we
separate codomain and evaluation, are there improvements for each?

2. Which of the possible representations ¢ = ZZ=1 a? makes the algorithm
most efficient?

3. To use (1), we need to construct excellent lifts from given affine lifts, called
normalization. Then, how can normalization be calculated efficiently?

4. In a cryptographic situation, calculating multiplicative inversion is expen-
sive. Can we construct inversion-free algorithms?

5. What are explicit algorithms and their numbers of arithmetic operations on
the base field k?

Our contribution. We propose some explicit algorithms of (¢, £)-isogeny cal-
culations between Kummer surfaces based on the Lubicz-Robert formula (1).
Then, in our algorithms, we make the following contributions for the above
listed points:

1. We consider codomain and evaluation separately, and propose algorithms for
each. In particular, for codomain, we reduce some computation steps to half.
See Section 3.4.

2. We separate two cases: representations £ = Y ! _, a2 such that r = O(1) and
¢ =12+ ...+ 12 Then, for both codomain and evaluation, we provide two
algorithms using these two representations. In addition, for the former case,
we investigate in Section 3.5 in detail.

3. We provide a method to calculate normalization, which improves our isogeny
calculation algorithms. In Section 3.3, we provide some necessary equations,
and in Section 3.4, we propose the concrete method.

4. In our proposed algorithms, we avoid calculating multiplicative inversion on
the base field k.

5. From the above items 1 and 2, we propose four algorithms. For them, we give
explicit algorithms, complexities, and the numbers of arithmetic operations
for small ¢. For details, see Section 3.4 and Section 4.

About these algorithms, see Section 3.1 for overview, and see Section 3.4 for
the concrete algorithms. Here, CodSq is O(¢?) operations algorithms and CodOne
is O(¢*log(¢)) operations algorithm. Similarly, EvalSq is O(¢{?) operations algo-
rithms and EvalOne is O(¢?log(¢)) operations algorithm.

le=>r_ ek, r=0)|[t=1*+---+1°
Codomain CodSq CodOne

Evaluation EvalSq EvalOne
Table 1. Our proposed algorithms in Section 3.4

Moreover, we give implementations of these algorithms and count these op-
erations on k for each 3 < ¢ < 200 (Table 6 in Section 4). As the result, we
determine a more efficient algorithm for each ¢: for codomain, for 3 < ¢ < 11
and ¢ = 19,23, CodOne is more efficient than CodSq, and for other ¢, CodSq is
more efficient. For evaluation, for all 3 < ¢ < 200, EvalOne is more efficient.

In addition, by using the most efficient algorithms selected above, we give
SIDH attack on B-SIDH in about 11 hours (in Section 5).

Our implementation of (¢, ¢)-isogeny counting and an attack on B-SIDH is
written in computer algebra system SageMath [34] and is found at

https://github.com/Yoshizumi-Ryo/ellell-isogeny_sage.

Related works. Santos-Costello-Smith [32] proposed a method for computing
(3, 3)-isogenies between Kummer surfaces. They implicitly utilize theta functions
in their algorithm, but it should be noted that their algorithm is not derived from
the Lubicz-Robert formula (i.e. our proposed algorithm is completely different
from Santos-Costello-Smith’s algotithm). As a result, their (3,3)-isogeny com-
putation algorithm is significantly more efficient than our algorithm (cf. [32,
§4.3]).

Afterward, Santos-Flynn [33] generalized (¢, ¢)-isogenies for any odd number
{. The asymptotic complexity of their algorithm with respect to ¢ is higher
than that of theta-based algorithms, such as those based on the Lubicz-Robert
formula and the Cosset-Robert formula [3]. However, as mentioned in [33, Section
6.3], for £ < 11, their implementations outperform the AVIsogenies v0.7 [4],
which is an implementation of the algorithm based on the Cosset-Robert formula.
In addition, their algorithm outputs the defining equations of the codomain
Kummer surfaces and of the isogeny, unlike theta function-based algorithms.

On the other hand, our algorithms are based on the Lubicz-Robert formula.
We will show that the algorithm based on the Lubicz-Robert formula is more
efficient than that based on the Cosset-Robert formula (see Remark 5). Thus,
for a sufficiently large ¢, it can be said that our algorithm is more efficient than
Santos-Flynn’s algorithm.

Organizations. In Section 2, we recall some facts about theta functions and
their addition algorithms, and the Lubicz-Robert formula. In Section 3, we de-
scribe the costs of arithmetic on Kummer surfaces and give relations for nor-
malization. Then, we give explicit algorithms for codomain and evaluation, and
give their asymptotic complexities. In Section 4, we count the number of the

https://github.com/Yoshizumi-Ryo/ellell-isogeny_sage

operations of their algorithms and decide which is efficient for each ¢. In Sec-
tion 5, we recall B-SIDH and SIDH attack briefly and show the result of the
implementation. Finally, Section 6 gives the conclusion.

2 Preliminaries

In this section, we summarize some facts about abelian varieties and theta func-
tions [3,26,27,30] as well as relevant algorithms [19,21,22,30] which are bases of
our proposed method.

For simplicity, we consider our arguments over the complex number field
C. However, by using algebraic theta functions introduced by Mumford [26],
these arguments are applicable even to the case of an algebraically closed field
of characteristic p where p is coprime to 2¢. For more details, we refer to [30].

In addition, we only consider the case of dimension g = 2 although the
arguments of this section hold for general g > 1.

2.1 Theta functions

Let Hy denote the Siegel upper half-space of degree two defined by
Hy, = {2 € M(2,C) | "2 = £2,Im(£2) > 0}.

Then, an abelian surface A over C is isomorphic to C?/Ag, where A = Q72 @72
for some {2 € Hs. In addition, this {2 determines a principal line bundle %, on
A. For any a,b € Q?, the theta function with characteristics (a, b) is an analytic
function given by

0[4](z, 02) = Z exp(mi “(m + a)2(m + a) + 27 “(m 4+ a)(z + b))

meZ?

for any 2 € C2. We say that an analytic function f on C? is a Ap-periodic
function of level n if f(z +m) = f(2) and f(z + 2m) = exp(—7in ‘mO2m —
2min tzm) f(2) for all z € C? and m € Z2. Then, the set RY, of all Ag-periodic
functions of level n is an n?-dimensional C-vector space. Moreover, the follow-
ing n? functions 6[9](z, £) for b € L1Z2/Z? form a basis of R}, [25]. Since
0[9](2,2) = 0[,05](2,£) for all b € Q% and B € Z?, these functions do not
depend on the representative of b € %ZQ /Z?. We can identify RY, with the vector
space I'(A, Z;") of global sections and thus the basis {6[9](z, %)}b of R}, gives
the morphism
pn: A=C?/Ag — pr°-1

We call p,(0) € P’ =1 the theta-null point and call pn(z) the theta coordinate
of x € A. We write 6;(z) = G[Z?n}(z,%) for i € (Z/nZ)?. Then, we have
0;(—z) = 0_;(z). When n > 3, p, is an embedding [3, Theorem 4.5.1]. When
n = 2, since pa(—z) = p2(2), p2 : A — P3 induces a morphism K4 — P2 from a

Kummer surface K 4 which is the quotient of A by automorphisms (£14). If A
is not a product of elliptic curves, this morphism K4 — P? is an embedding |3,
Theorem 4.8.1].

Next, we recall Riemann relations [26], [19, Theorem 3.1] (Theorem 1). By
using them, we derive some formulas for arithmetic operations on abelian sur-
faces later. To explain it, first we recall the notion of Riemann position [22,
Definition 3.2].

Definition 1. For any abelian group G, an 8-tuple (g1, g2, 93, 94; g1, 9%, 95, G4)
of elements of G is said to be in Riemann position (on G) if there exists some
element h € G such that g, = gi+h fori=1,...,4 and g1 + g2+ g3+ g4 = —2h.

Theorem 1 (Riemann relations [26], [19, Theorem 3.1]). Let n be an
even integer. For any 8-tuple (21, 29,23, 24; 21, 2, 25, 24) of elements of C? in
Riemann position, any 8-tuple (i1, iz, 3,14;1),15,15,14) of elements of (Z/nZ)?
in Riemann position, and any character x € (Z/27)? of the group (Z/27)?, we
have

> X1, 41(21)0i 14 (22) > x(0)8isr(28)0i, 14 (2a)

te(2/22)2 te(2,)22)2

= Z X103 11(21) 03 44(23) Z X ()03, 4-(23) 03, 44(24)

te(2/22)2 te(2,)22)2

where, for the indices of functions 0;(z), we regard (Z./27)? as a subgroup of
(Z/nZ)? via the embedding a — Za (a € Z?).

Now, theta coordinates are given as projective coordinates on P**~1. How-
ever, to treat each component as an element of k, we have to fix their theta
coordinates as affine coordinates on A”Q\{O} by taking some representatives.
Here, we define this content precisely [22]:

Definition 2. Let r: A" ~ {0} — P~ be the natural projection. For x € A,
we call any preimage of py(x) for k an affine lift of x. We write an affine lift of
x as & or (0;(x));. Fori € (Z/nZ)?, we write the i*"-coordinate of & by (Z); or
0;(x). For A € C* and an affine lift &, we define \x & as (X - (%))

For later use, we extend the notion of Riemann relations to affine lifts.
Definition 3. Let (z1,x2, x5, x4; T}, 25, x4, z)) be in Riemann position on A and

(@1, .., le) be their affine lifts. Then, we say that (21, ... ,le) satisfy Riemann
relations if for any (i1, iz, i3,44; 1}, 5, %, 1) in Riemann position on (Z/nZ)? and

—

any character x € (Z/27)2, the following equation holds:

> XO@) iy 41 (12)i 4 > X))y g1 (F)is e

te(2/22)2 te(2/22)2

= Z X(t)(ﬂgﬁ)iﬁt(xz)i;ﬂ Z X(t)(ié)igﬂ(i@iﬁt

te(2/22)? te(Z/27)?
Then, by Riemann relations (Theorem 1), we have the following lemma:

Lemma 1. For given (1, x2, x3,324;gc’1,§’2,£cg, xly) being in Riemann position on
A and any affine lifts To, X3, L4, &), Th, x5, &), there exists an affine lift &1 such
that (%1,...,x}) satisfies Riemann relations in the sense of Definition 3.

2.2 Arithmetic on Kummer surfaces

In this subsection, we consider some arithmetic operations on Kummer surfaces
using theta functions of level n = 2 [21]. As mentioned in the previous subsection,
if A is not a product of ellipitc curves, level 2 theta functions give the embedding
of the Kummer surface to the projective space K4 — P3.

In the following, we introduce some known methods for arithmetic calculation
on Kummer surfaces using theta coordinates [21, Section 5|. Here, we assume
that A = C?/Ag, is not isomorphic to a product of elliptic curves as a principally
polarized abelian surface. In other words, all abelian surfaces in this subsection
are Jacobians of some genus-2 hyperelliptic curves. Note that, if A is isomorphic
to a product of elliptic curves as a polarized abelian surface, we can perform the
arithmetic calculation by calculating on each elliptic curve.

The condition that A is the Jacobian of a genus-2 hyperellipctic curve is
equivalent to that the following ten values called even theta-null points of level
(2,2) are all non-zero:

0[313](0,92) for a,b € (Z/2Z)? such that ‘a - b =0 € Z/2Z.
For more details, see [18, Section 3.2]. Under this assumption, by the same
argument as [18, Lemma 3], we have

D x(0)0:4:(0)0:(0) # 0 (2)
te(Z/27)?

—

for all i € (Z/27)? and x € (Z/27)? such that x(i) = 1 € (£1).

In the rest of this paper, we fix one affine lift (6;(0)); of the theta-null point.
Here, we summarize known methods for calculating the following arithmetic
operations on Kummer surfaces:

Differential Addition: Given affine lifts (6;(x)):, (6;(y)):, (6;(z — y))s, output

an affine lift (0;(z +v));.

Doubling: Given an affine lift (6;(z));, output an affine lift (6 (2x));.

Three-way Addition: Given affine lifts (6;(z)), (0;(y))i, (0:(2))s, (0i(z +¥))s,
(0i(y + 2))i, (0i(2 + x));, output an affine lift (

Scalar Multiplication: Given an affine lift (6;(z
an affine lift (6;(Nz));. ~ ~

Normal Addition: Given affine lifts (6;(x));, (6;(y))i, output a set of affine
lfts {(6:(z +)i, (0s(z — 1)):). e ~

Compatible Addition: Given affine lifts (6;(y))i, (0i(2))i, (0i(z+y))s, (0:(x +
2))i, output an affine lift (6;(y + 2));.

6, (x+y+2)).
)); and an integer N, output

These concrete algorithms are written in Section B.2 and their costs are
written in Section 3.2.

Remark 1. In our proposed isogeny algorithm in Section 3.4, we do not use
Normal Addition and Compatible Addition since we give enough information
as inputs not to need those algorithms. Thus, we do not introduce them in
this subsection and they are written in Appendix A and we will not give those
concrete algorithms and costs in Section 3.2. However, since these algorithms
are needed when we construct attacks on B-SIDH in Section 5.2.

For Differential Addition, an affine lift (0:(x + y)); could be obtained from
given affine lifts (0;(x))s, (6;(y))s, (0;(z — y)); by just applying Lemma 1 to
(x + y,x — y,0,0;y,—y, —x,—x) in Riemann position on A. But in fact, the
computation can be made more efficient in the following manner. First we note
that, for any i € (Z/2Z)?, considering (i,0,4,0;4,0,4,0) in Riemann position on
(Z/27)?, we have

Z X001 (z +y)0u(z —) Z X ()0i44(0)6:(0)

te(Z/22.)? te(Z/27)?

= Z X(t)0i1t(2)0: () Z X101+ ()01 (y)
te(Z/22.)? te(Z/27)?
where we used 6;(z) = 0;(—z) and 6;(y) = 6;(—y). Secondly, we define certain

values z* and r;; as follows. For any (i,x) € (Z/2Z)* x (Z//\ZZ)2 such that
x(i) = 1, we define

- (Drewen X004 @)0(@)) (Tre 2z OB)Bi()) "
e S rezyazy2 X(0)0:44(0)0,(0)

where the denominator of the right-hand side is not zero by (2). Here, these z* are

computed from (6;(z)); and (0;(y));. Then, we define x;; for any i, j € (Z/27Z)?
as follows: . (0)
x(2) + x(1

Rij = Z fzﬁj : (5)

X€E(Z/2L)?
s.b.x(i+5)=1

Thus, we can calculate all x;; from the values zX such as x(i) = 1 (note that r;;
is symmetric with respect to ¢ and j). Then, by the inverse Fourier transform,
we have the following relations for i, j € (Z/27Z)%:

Oi(x +y)0;(x —y) + 0;(x +)0 (x — y) = 2k4; . (6)

Differential Addition and Doubling. By using equality (6), when 91(33 —y) #
0 for all i, we have

~ s

Oi(x +y) = =—"r .
Oi(z —y)
Thus, from affine lifts (0:(x))s, (05 (y))s, (05 (z — y))i, we can calculate an affine
lift (0;(x+y)); satisfying (3). We call this operation Differential Addition. When
x =y, we call this Doubling.

(7)

Remark 2. Even if 0:(x —y) = 0 for some i € (Z/27)?, we can still compute
(0;(z + y));. In fact, first we take j € (Z/2Z)? such that 6;(z —y) # 0 and
compute 0;(x + y) by using (7). Then, for i € (Z/2Z)* \ {j}, by (6), we have

Gi(z +y) = 2ki; — 0 (fc‘f‘y)f(y) .

0;(

Three-way Addition. For given affine lifts (6;(x))s, (6;(y))s,(0:(2))i, (0:(x +
Y)i, (0:(y + 2))i, (0:(z 4 2))s, we can calculate (0;(x +y + 2)); as follows. Note
that this Three-way Addition algorithm does not always work on A but work on
some Zariski dense subset of A. For details, we refer to [20, Section 3.6]. Here
for simplicity, we assume 6;(x) # 0,6;(y) # 0, and 6;(z) # 0 for all i, and in
this condition, Three-way Addition algorithm works. First, for x € (Z//\2Z)2, we
define

(X te@/2z) X(0)0:(0)0:(y + 2)) - (X te@/2z) X(0)0:(z +)0 (z + y)) .

EX .= = =
Zte(Z/ZZ)2 x ()6 (y)0:(z)

(8)
These EX are computed from the given affine lifts. Here, by applying Lemma 1
to points (z +y + z,2,y,2;0,—y — z,—z — x,—x — y) in Riemann position
on A, and by focusing (among the resulting Riemann relations) on i indices
(0,0,0,0;0,0,0,0) in Riemann position on (Z/2Z)?, for any x € (Z/QZ) ,
have ;¢ 7072 X (1 V0, (x 41y +2)0,(x) = EX. Then, by the inverse Fourier trans—

form, for any i € (Z/27)?, we have

er(z//ifp X(i)EX
40, (x)

Thus we have obtained the affine lift (8;(x + y + 2));. This operation is called
Three-way Addition (or Extended Addition).

Scalar Multiplication. For a given affine lift (6;(z)); and any integer N > 3,
there are various ways of calculating (6;(Nz)); and the result is denoted by
Mult(N, (6;());). One way to compute it is using the Montgomery ladder [27].
Then, we require n — 1 Doubling and n Differential Addition where n is the bit
length of N — 1. In our implementation of Section 4, we used this calculation
way.

Remark 3. Let x1,...,z, € Abeany elements, (6;(x;))s, (6;(xj, +2;,)): be affine
lifts for 1 < j <rand 1< j < jo <7, and my,...,m, € Z be any integers.
Then, we can compute an affine lift (éi(mlxl + -+ mpx,)); in many different
ways by using Differential Addition, Doubling, Three-way Addition, and Scalar
Multiplication. Now the computation result does not depend on the order of
these operations (cf. [19, Corollary 3.13]).

2.3 Excellent lifts

Here, we recall the notion of excellentness for some conditions (cf. [22, Definitions
3.6, 3.7, 3.10]). In the following definition, Multadd(N,Z, 9,z + y) denotes the
affine lift of Nz 4+ y € A computed from affine lifts Z, g, x + y.

Definition 4. Let ¢ be any odd prime number and K C A[f] be a mazimal
isotropic subgroup with respect to the Weil pairing.

1. For any L-torsion point e € A[l], an affine lift € of e is said to be excellent
if Mult(¢' + 1,€) = Mult(¢,€) as affine lifts where £ = %

2. A set of affine lifts K = {é | e € K} of K is said to be excellent if for
any eight elements in Riemann position on K, their affine lifts in K satisfy
Riemann relations in the sense of Definition 3.

3. For any affine lift & of x € A and an excellent lift € of e € A[{], an
affine lift T te of x + e is said to be excellent with respect to T and € if
Multadd(f,é, %,z + e) = 7 as affine lifts.

4. For For any emcellent lift K and any offine lift & of x € A, a set of affine lifts
T+ K= {z¥e|eec K} is said to be excellent with respect to & and K if for
any eight elements in Riemann position on A included in KU (z+ K), their

affine lifts in K Uz + K satisfy Riemann relations in the sense of Definition
3.

Theorem 2 ([22, Theorems 3.8, 3.11]). With the notation above, the fol-
lowing statements hold:
(i) For any basis {e1,ea} of K ~ (Z/IZ)?* and excellent lifts €1, €3, ej—l\—?g, a set

K of affine lifts of K computed from €, é, eT—T—/eQ is excellent.
(ii) Let K be any e excellent lift of K and T be any aﬁine lift of x € A. In addition,

let 7+ e €1, v+ e eo be excellent lifts. Then, a set x + K of affine lifts of v + K
computed from them is excellent.

Remark 4. For an excellent lift € and A € C*, X x ¢ is also excellent if and only
if A = 1 by Lemma 7 in Section 3.3. Therefore, excellent lifts of e are not
necessarily unique and are at most finitely many.

10

2.4 Lubicz-Robert formula

In this subsection, we introduce an isogeny calculation formula given by the
Lubicz-Robert [22]. In their paper, the formula is given for a general dimen-
sion and a general even level theta structure. Here we just use the formula in
dimension 2 and level 2 theta structure, i.e., on Kummer surfaces. For a theta
structure, we refer to [22,26].

Let k be an algebraically closed field of characteristic 0 or p > 0 where p
is coprime to 2. Let (A, %) be a principal polarized abelian surface over k,
L = £, and O be a symmetric theta structure. In addition, ¢ be an odd
prime number, and K C A[¢] be a maximal isotropic subgroup with respect to
the Weil pairing. Then, the isogeny f: A — B = A/K induces a line bundle on
B and symmetric theta structure. From an excellent lift K of K, the formula
gives the theta-null point (§2(0)); of B with O(¢?) operations on k. Moreover,

for x € A, an affine lift Z, and excellent lifts « + K, the formula gives a theta
coordinate (62 (f(z))): of f(x) € B with O(¢?) operations.

Theorem 3 ([22, Corollary 4.6]). The notation is the same as above. Let K
be an excellent lift of K and ay, ..., a, be positive integers such that £ =>"" _ a?.
For any i € (Z/27)?, up to multiplication by a constant not depending on i, we
have

07 (0) =" H Mult(au, €)a,; - (10)

eeK u=1

For x € A, let T be any affine lift and m(be an excellent lift with respect
to & and K. Then, for any i € (Z/27)?, up to multiplication by a constant not
depending on i, we have

6P (f(2)) = 3 T Malt(@u, & F e)ai - (11)

ecK u=1

Note that we can take a representation ¢ = Y.' _ a2 such that r < 4 by
Lagrange’s four-square theorem. Thus, if we take r such that r = O(1), the
complexities of both of the above formulas are O(¢?) arithmetic operations on
k by computing as follows. For (10), first, for a basis {e1,e2} of K, we compute
Mult(ay,e1), Mult(a,,e2), Mult(a,,e; + e2) for all 1 < u < r. These compu-
tations require O(log(¢)) arithmetic operations. Next, we compute their linear
combinations Mult(a,,mie; + maes) for all 0 < my,mo < £ and 1 < u < r.
These computations require O(¢?) arithmetic operations. The case for (11) is
similar (cf. [22, p.16]).

As a special case, in the formulas (10), (11), taking £ = 12 + -+ + 12, we
obtain the following formulas:

HOEDSGHE (12)

eeK
0F (f(z)) =D (zFe)f . (13)
eeK

11

For the formulas (12), (13), we need to calculate £** power on k for each e € K.
Thus, their complexities are O(¢2 log(¥)). Note that, despite of the asymptotically
higher complexity than the previous method, the current method may still be
more efficient than the previous one for some concrete choice of £.

In [22], isogeny calculation algorithm based on (11) (for general dimension
and general level) is given as [22, Algorithm 4]. Here, we consider the case of
dimension 2 and level 2 the same as before. In the algorithm, first we compute
excellent lift of e, ea, €1 + €9, x, + e1,x + ea where {e1, es} is a basis of kernel

K. Then, we compute excellent lifts K and z + K. At last, we compute the
right-hand side of (11) for i € (Z/27)?.

Remark 5. In [8], the Cosset-Robert gave another (¢, ¢)-isogeny calculation al-
gorithm based on Koizumi’s formula [17] in O(¢") operations where r = 2 when
£ =1 (mod4) and r = 4 when ¢ = 3 (mod 4). In the same way as above, we
write £ = 3.7 _ a2 with a, € N. Moreover, let K be an excellent lift of the

u=1"u
kernel K =~ (Z/{Z)?. Let F be an integer (r X r)-matrix such that F'F = /id,
and the first row is (aq,...,a,). Now, we define F : K" — K" as the Fy-linear

map induced by the matrix F'. In [8, Equation (6)], the formula to compute the
theta-null point of the codomain is

r

07(0) = > | J [COI% (14)

te1,..er)EKer(Fi) u=1

up to multiplication by a constant. Here, for any e € K, we have ¢(aqe, ..., aq¢e) €
Ker(Fk). Hence, in (14), we need to compute and take the sum of the values

—~—

[T.— (aue), ; for each e € K. Thus, the complexity of (10) is the same as or
more efficient than the complexity of (14). For more details and general argu-
ments, we refer to [30, Section 4.4.3].

3 Proposed Algorithms

In this section, we propose some explicit algorithms of isogeny calculations be-
tween Kummer surfaces based on the Lubicz-Robert formula (Theorem 3). As
the same notation as Section 2.4, k is an algebraically closed field of character-
istic 0 or p > 0 where p is coprime to 2. As noted at the beginning of Section 2,
the arguments of Sections 2.1 and 2.2 are applicable to the case of not only C
but also the above k.

In our algorithms, calculations of multiplicative inverse on k are avoided
as they are expensive especially in cryptographic situations. Hence we evaluate
costs of algorithms by counting multiplication and square operations on k.

Throughout this section, A is an abelian surface over k, ¥ = %2 is line
bundle where . is principal, and @ is symmetric theta structure of level 2
for (A,.%). In addition, ¢ is an odd prime number, and K C A[{] is a maximal
isotropic subgroup with respect to the Weil pairing. Then, B := A/K is an

12

induced level 2 symmetric theta structured abelian surface. Moreover, f : A — B
is the isogeny with kernel K.

First, in Section 3.1, we give an overview of our algorithms. In Section 3.2,
we give costs of arithmetic on Kummer surfaces given in Section 2.2. The results
will be used in our isogeny calculation algorithms. Then, in Section 3.3, we
give relations about excellent lifts. in Section 3.4, we give explicit algorithms
of isogeny calculations. At last of this section, in Section 3.5, we consider a

representation £ = Y"" _ aZ.

3.1 Overview of our proposed algorithms

In this subsection, we introduce an overview about our isogeny calculation algo-
rithms. The explicit algorithms will be given in Section 3.4.

As we have seen in Theorem 3, the theta-null point of codomain B := A/K
can be computed from an excellent lift K of the kernel K. In addition, for
x € A, the theta coordinate of the image f(x) can be computed from an excellent

lift z + K. Here, we construct algorithms of codomain and evaluation with the
following inputs and outputs. In this paper, we basically write an excellent lift
by é and any affine lift by € for e € A.

Codomain:
Input: Any affine lifts e7,e3,e1 + e3 of e1, ea,e1 + €5 for a basis {e1,ea} of
K.
Output: Theta-null point (62(0)); of B.
Evaluation:
Input: Any affine lifts ey,e3, e;1 + €2, T, x + €1,z + e of ey, €0, €1 +€9, 2,2+
e1,x + e for a basis {e1, ea} of K and any point x € A.
Output: Theta coordinate (02 (f(z))); of f(z) € B.

For both cases, we take a representation £ =)" | a%. We mainly have two

cases; 1 = O(1) (e.g., r < 4);and r = £ and £ = 12 + - .- + 12. For the former
case, we will discuss more in Section 3.5. For the latter case, we use (12) and
(13). Thus, for codomain, we consider two algorithms CodSq using £ =Y. _, a2
and CodOne using ¢ = 1% + --- + 12, Similarly, for evaluation, we consider two
algorithms EvalSq, EvalOne, see Table 1 in Section 1. As noted in Section 2.4,
CodSq and EvalSq require O(f?) operations, while CodOne and EvalOne require
O(£%log(¢)) operations.

For CodSq, First we compute affine lifts sjeq + soeq for 0 < s1, 89 < £. Then
instead of computing an affine lift mya,e; + moa,ea, we use sje; + saep where
0 < s1,82 < ¢ and mya, = s1 (mod £), maa, = s2 (mod £). Remark that the
above miaye; + moayeo and sye; + sgeq are in general different as affine lifts.

In addition, for CodSq and CodOne, we do not need to compute mie; + maes
for all 0 < my, mgy < £. It is sufficient to compute them for half of 0 < mq, my < ¢,
since mie; + moeg = (£ — mq)ey + (£ — ma)es. For more detail, see Section 3.4.

We note that the inputs for our proposed algorithms are affine lifts such
as €y, ez, e] + ey, while (10) and (11) require excellent lifts. Thus, we need to
compute relations between affine lifts and excellent lifts. We will discuss it in
Section 3.3.

13

3.2 Algorithms of arithmetic on Kummer surfaces

In this subsection, we describe explicit algorithms and their costs of calculation
methods given in Section 2.2.

As well as Section 2.2, we use affine lifts (éi(x))ie(z/n)z of level 2 theta
coordinates, and algorithms based on Riemann relations of Definition 3, which
take affine lifts as inputs and produce some affine lifts as outputs. Now, remark
that we can choose and fix any affine lift of the theta-null point at the very
beginning.

Notation. In our algorithms, in order to avoid calculating inverse elements on
k, we often hold an element in k as a fraction, i.e., a pair of a numerator and a
denominator. Then, if we hold an element a € k as a pair of n € k and d € k
such that a = %, we write the data as (n,d) .

Moreover, we always hold any affine lift 0go(z), 601 (2), 010(2), 611 () as five

clements 0} (z), 0, (z), 0io(x), 0}, (x), d, € k such that 0;(z) = aéi(:) (with

common denominator d,) for all i € (Z/2Z)?. In this case, we write the data as
(0)(x),dy)s, and write 0}(z) = Num((f;(x));,) and d, = Den((f;(z));). Since we
can take any affine lift (6;(0)); of the theta-null point, we select (8;(0)); with
denominator dg = 1. We omit the affine lift of the theta-null point from inputs
for algorithms.

For counting the numbers of operations in the algorithms, we indicate a mul-
tiplication (resp. square) operation on the base field k by M (resp. S). Moreover,
we indicate a multiplication (resp. square) operation computed only from the
theta-null point by Mg (resp. Sp). The values are reused after computed once.
We do not count the numbers of addition on k and arithmetic operations on
Z. We note that since we hold some elements as a form of fraction, the results
of our counting are not equal to the existing results such as [21] though the
computation methods are similar.

Lemma 2. For any integers n,N > 1, let (b; j,a;) for 0 < i < n—1 and
0<j<N—1benN fractions in k. Then, the following statements hold:

(i) We can reduce the fractions to

Commondenom <(bi,j7 ;) 0<i<n—1) = (bijao - @i—1Git1 - AN—1, Q) 0<i<n—1
0<jEN-1 0<jEN-1

with common denominator o = ag - --an—1 in Ceqg(N,n) := ((n+3)N—5)M.

(ii) We can compute only the numerators of the result of (i):

PI‘Oj commondenom ((bi’j, ai) 0§i<n—1) = (bi’jao Qi —1Q541 G,Nfl) 0<i<n—1

0<j<N-1 0<j<N-1

in Cpea(N,n) := ((n +3)N — 6)M.

14

Proof. (i) For N elements ag,...,any—_1 € k*, by Lemma 14 in Appendix B.1,
we can compute N elements ag---ap—1ap41---an—1 for 0O< M <N -1
and a product & = ag - - - an—1 in (3N —5)M. After that we multiply bas ., by
numerators ag - --ap—1ap41--can—1 for0 < M < N—land0<m <n-1
in nNM. Thus, we can compute the fractions with a common denominator
in (n+3)N —5)M.

(ii) This is the same as (i) except for not computing a.

|

Costs of arithmetics on Kummer surfaces. Next, we evaluate costs of
arithmetics on Kummer surfaces. First we give the cost to compute k;; defined
by (5) as follows. First, we calculate 2z using (4) for i = 0:

(Zte(z/22)2 X(t)ét (33)2)(2156(2/22)2 x()0:(y)?)

Zte(zmz)? x(t)6:(0)?

X
Z0 =

Then, we calculate k;; by using (5) for ¢ = j, i.e., ki = izxaz’/ﬁ)? X (4) -
The next lemma is almost the same as [21, Lemma 5.1] except that we hold

each affine lift as fractions with common denominator. From Algorithm 6 in

Appendix B.2, we have the following number of arithmetic operations:

Lemma 3. With the above notation, the following statements hold:

(i) Computing ki; for all i € (Z/2Z)? requires 4S¢ + 9S + 17M.
(i) When x =y, (i) reduces to 4Sy + 10S + 12M.

Once we calculate (k;;); for some z; and y;, we can reuse ¢/(0)? for other x5
and ys. Thus, we will count the 4Sg only once.

The following lemma gives the number of arithmetic operations for Differen-
tial Addition and Doubling based on (7). From Algorithm 7 in Appendix B.2,
we have the following number of arithmetic operations:

Lemma 4 (Differential Addition, Doubling). For given any affine lifts
(0i())is (0i(y))i, (0s(z —y))i with 0;(x —y) # O for all i, computing the affine

lift (6;(x + y)): requires Capq == 4Sp + 9S + 33M. When « =y, the cost reduces
to Cdbl = 450 + 10S + 28M.

Remark 6. As mentioned in Remark 2, we can compute (8;(z+y)); if 6;(z—y) =
0 for some 7. However, for simplicity, in our algorithms below, we always assume
the condition 6;(z — y) # 0 for all ¢ when we use Differential addition. Note
that if z € A is 4-torsion point, this assumption 6; () # 0 often does not hold.
Similarly, our implementation works only on this assumption. Unless we treat
4-torsion points, this assumption almost certainly holds experimentally.

Remark 7. After a calculation of (6;(x + y)); once, the cost to calculate (6;(x +
z)); using Differential Addition reduces to Crqrq := 5S + 33M since we can reuse
the data 6(0)2, 0%(z)?.

15

The following lemma gives the number of arithmetic operations for Three-
way Addition based on (8) and (9). From Algorithm 8 in Appendix B.2, we have
the following number of arithmetic operations:

Lemma 5 (Three-way Addition). For given affine lifts (0:(x))s, ~(9~1(y))1,
(0i(2))i, (0i(x+y))i, (0i(y+2))i, (05(2+)); with 6;(x) # 0,0;(y) # 0,0:(z) # 0
for all i, computing (0;(x +y + z)); using (8) and (9) requires 48M.

The following lemma is used in isogeny calculations. Here, for any odd prime

number £ and ¢ := %, we define a subset Hy C Z? as

Hy:={(m1,0) € Z* |1 <my <LYU{(0,mp) €Z* |1 <my < '}
u{(ml,mg) S ZQ | 1<my, 1 <mg, mi +me < é} (15)
u{(ml,mg) EZ2 | U < my < £, my+ msg :E} .

If we define H, := {(mz1,m2) € (Z/¢Z)? | (m1,mz) € Hy}, then for any = €

(Z/07)? < {0}, we have x € Hy if and only if —z ¢ H,.

Lemma 6. With the notation above, we have the following costs:

(i) For given affine lifts (05(e1))i, (0i(e2))s, and (6;(e1 + €2)):, computing all
affine lifts (éi(mlel +maes)); for (my,me) € Hy requires Chie(£) := 2Cqp +
(ﬁ% —5)Crafq when £ >5. When £ = 3, it requires once Differential Addi-
tion, thus, Chic(3) = Cafq.

(ii) For given affine lifts (0:(e1))s, (0;(€2))i, (i(e1 + €2))i, (0;(2))i, (Bi(x +€1))s,
(0i(z + e2))i, computing all affine lifts (0;(x + mier + maes)); for 0 <
mi,my < € requires Ciey () := 48M + 2Cqpq + (02 — 6)Cprapq when £ > 3.

Proof. For (i), since #Hy = ﬂT_1 and we ah[eady have (0;(e1))q, (9}(62))1‘, (Bi(er+
€2)):, the number of (my, ms) not having (6;(mie1 +maez)); is 2771 —3. Among
them, we can compute (6;(2e1))s, (9;(2e2)); by Doubling. After that we reuse
some values to compute other affine lifts, see Remark 7. For (ii), first we compute

(0;(x + e1 + e2)); by Three-way Addition in 48M. For remaining (mq,ms), it is
similar to (i). O

In the above lemma, asymptotically, we have Cpc(£) = 2625+ 2202M+O(1)M
and Cjeq (€) = 502S + 330*M + O(1)M.
3.3 Normalization

In this subsection, as noted in Section 3.1, we give relations of affine lifts and
excellent lifts.

First, we give a fundamental equality used later. This lemma is a generaliza-
tion of [19, Lemma 3.10] and [20, Lemma 2].

16

Lemma 7. Let z1,...,z, € A and let @;,x; + x; be any affine lifts for 1 <
1 <rl1 <1<y <r. Let Z:Zl m;x; for m; € Z be the affine lifts computed
from T, x; + x5 by using computation of Section 2.2. In addition, we take any

Xis Aij € k*, and we put &; :== \; *T; and xmj = N\ijxx; +x;. Let Yy i mux;
for m; € Z be the affine lift computed from z;,x; + x;. Then, we have

- m? N\ s

1<i<r 1<i<j<r

Proof. We show the claim by induction for » > 1. The case of r = 1 is just
Equation (17) of [19, Lemma 3.10]. Next, we consider the case of r = 2. The
case of mg = 1 is just Equation (16) of [19, Lemma 3.10|. For a general integer
ms, we have

e~

o
mix1 + moes = Multadd(ma, £2, m121, Mix1 + T2)

2 2 by m
= Multadd(ma, A2 * T3,)\71"1 * T1T1, ()\71711)\2 <)\ 1;)) xMyT1 + T2)
1A2

m2\m?2)\12 e e E e —
= (Al 1)\2 2 ()\1>\2) * ML + Moo .

Thus, we obtained the result for » = 2. Next, we assume that the result holds for
r. Here, miey + - -+ + my11€,41 is the result of Three-way Addition of mie; + ofjr/mr_ler_l
and m,e, and m,:l\e/rﬂ. mie; + -+ myp1er41 is similar. Thus, from [20,
Lemma 2] and the induction hypothesis, we obtain the result for r + 1. a

Codomain. When we use the Lubicz-Robert formula, we need excellent lifts of
the kernel. (4,.Z,0¢) and K C A[{] are thesame notations as earlier.

For e € K, let € be any affine lift and € be an excellent lift with € = A xe for
A € k*. Then since Mult(m,é) = A™? x Mult(m,€) for m € Z by Lemma 7, we
have o

N Mult(¢ ,e)i (16)
Mult(é/ +].7 e)i
where ¢/ = 5L for i € (Z/2Z)%.

Let {e1,ea} be a basis of ~ (Z/IZ)? and é,éa, emg be excellent
lifts. Then, the set K = {m1€m2€2 | 0 < my,me < £} computed from
€1, €2, eT—T—/eg is excellent by Theorem 2. In addition, for any affine lifts €7, €3, e1 + ea,
we write the affine lift of mjes+moes computed from e, €3, €1 + e by myes + moes.
If €1 = A\ x€1,é3 = Ao x €3, 61/—7—?2 = Ao ¥ e1 + es for A1, Ao, A2 € k*, we have
the following some relational expressions. Here, [] € means (][] €;);.

Lemma 8. The notation is the same as above. Let aq, ..., a, be positive integers
such that ¢ = 2221 a2. Let my,my be integers such that 0 < my,mg < {. For

each 1 < u < r, we divide a,m1 and a,ma by ¢, i.e., aymy = t1 4,0 + s1,, and

17

ayMo = to 4l + S, where t1 4,12 4, 51,4, 52,4 are integers with 0 < 81,4, 82, < L.
Then, we have

fama (¢ —mq)eq, Moty = (/\S)#Qm2 x (0 —ma)es
Al
ATAS

mrer = (A])

mier + mae; = ((Aﬁ)“ml (r) (

L—my1—mo
)) x (L —my)er + (L —ma)es ,
(17)

r o)\g his r
H(mlauel + maayes) = (()\{)’h ()\g)hz (>\g1)\21g> > * H S1,u€1 + S2,u€2
112

u=1 u=1
(18)
where

r T r T
hl L= m% + E Z t%,u — 2m1 Z autlyu, hz = mg =+ £ Z t%,u — 2m2 Z ath’u,
u=1 u=1 u=1 u=1

T s s
hig 1 =mymg + ¢ E tiuto,u — M E Ayt — M2 E Ayt
u=1 u=1 u=1

and they satisfy 0 < hy, ha, h1o < r(€ —1). In addition, we have

o m2 m2 2\ mimz -
(mier + maes)t = <()\§) TN <>\41;e> > (mye; + maez)t . (19)
112

Proof. By Lemma 7, we have

2 2)\12 mima
m m —_—
m161+m262:(/\11)\22<>\>\))*m161+m262 .
1A2

Then, by raising the both sides to the /! power, we have (19). Now, by the

excellentness, we have mye; = (£ —my)er. In addition, by Lemma 7, we have
o 2 _ _ 2 —_—_—
mie; =)\Tl xmie; and ({ —mq)e; =)\gz ma)” (¢ —mq)e;. Hence, we have

mie; =)\{272&7@1 * (£ —my)er. Now, maes and mye; + moeo are similar, thus we
have (17).

Similarly by the excellentness, we have mlaueﬁ/mgau@ = S1,u€1 + S2.u62.
Applying Lemma 7 to the right-hand side, we have

2 2)\ S1,u82,u
- ST,u\52,u 12 P
miayer + maayes = [A" A, * 81 y€1 + S22 .

A1 o
At last, taking the product for 1 < u < r, we can show (18). Then, we have

hit =% _, s%u and hot = Y. _; s%u and hiol = > | $1.452,. Since 0 <
S1,usS2,u < ¢ —1, we have 0 < hy, hg, hia <7 —1). m|

18

Evaluation. Let K be any excellent lift, Z be any affine lift of 2 € A, and z + e
be an excellent hft with respect to K and z. For any affine lifts € and = + e, we
put é = Asxeand & +e = puxz +e for A, u € k*. Since Multadd(/, ¢, 7 :EJre)
(AE (5)%) * Multadd((, €, &,z + €) by Lemma 7, we have

% T
[ad) R S 2
()\) (M) Multadd(4,e, 2,7 + e); (20
for i € (Z/2Z)2.

Lemma 9. The notation is the same as above. Let A, Ao, \1o be the same as

Lemma 8 and x + €1 = p1*x + €1, T + ex = po*x + ea for p, uo € k*. Moreover,
let © + ml/é\l_:— maes be the set of affine lifts computed from €71, €3, 6?:—?2, T,
T+ e ,m/:&—\/eg. Similarly, let x + mie; + maoes be the set of affine lifts computed
fromer, ez, e1 + e, T, x + e1, x + ex. Then, we have the following two equalities:

s

[T (@uz + miaser +maayes)
u=1
)\ mimsa e ma e mo T
= ()\‘{) ()\é) ; 12 /% 'u—? * H(auw + miaye; + maayez) .
ATAS M A u—l

(21)

(z+mie; + m2€2)é

_ <(>\§) ()\e) ()\liz >m1m2 (/ﬁ)ml (;é)m2) . FTTE +m262)€)
AAS A X

(22)

Proof. (21) is obtained by Lemma 7. By applying £ = 12 + --- 4+ 12 to (21), we
have (22). ad

3.4 Explicit algorithms of the Lubicz-Robert formula

In this subsection, we propose explicit algorithms computing the theta-null point
of the codomain B and computing the theta coordinate of the image of x € A
under f based on the Lubicz-Robert formula (Theorem 3).

In the rest of this paper, logarithm always has base 2. Recall that M (resp.
S) means the cost of a multiplication (resp. square) operation on k. In addition,
P(N) for any positive integer N means the cost of computing N** power of an
element in k. For integers Ni,...,N,, and A € k, P({Ny,..., N, }) means the
cost of computing NI powers ANt ... ANm all.

Codomain. Here, we calculate the theta-null point of the codomain using the
Lubicz-Robert formula. As noted in Section 3.1, we give two algorithms CodSq,
CodOne for computation of the theta-null point of a codomain.

19

CodSq is based on (10) using £ = Y. _, a? and CodOne is based on (12) using
=12 +...+12

On the other hand, in CodSq, we use equalities mja,e; +moa,e2 = 51 461 +
Sou€2 if miay, = s1, (mod £) and mea, = s2,, (mod ¢) as follows. The affine lift
s1€1 + s2e2 and mya,e1 + maoaqes correspond to the same projective coordinate
but are not equal as affine lifts. Thus, by multiplying by an appropriate constant,
we can compute mia,ei + maayez from sy ,e1 + Sz 4€2. By this way, we avoid
computing linear combinations many times.

We summarize these two options CodSq and CodOne in Table 2.

[[Formula[Normalization [Algorithm[Complexity
CodSq || (10) |(17) and (18) 1 o)
CodOne|| (12) (19) 2 O(£*1og(¢))
Table 2. Two calculation methods of the codomain

In any case, since (level 2) a projective theta coordinate of an element e € K is
the same as one of the inverse element —e, we can reduce the complexity to half.
To explain that, we use a subset H, C Z? of (15) in Section 3.2. Then, for a basis
{e1,ex} of K, we have {mye; +maes € K | (my1,m2) € Hy}U{—(mie;+maez) €
K | (my,m2) € Hi} = K\ {0}.

For CodSq, remark that affine lifts of mye; +maes for (mq, ms) € Hy are not
sufficient since it is not necessarily (s1,4,52,4) € He. Thus, we have to extend
affine lifts mie; + maeq for (my,ma) € Hp to 0 < my,mae < ¢ using (17) of
Lemma 8. Especially, it is not clear whether CodSq is more efficient.

Explicit algorithms of CodSq and Cod0One are Algorithm 1 and 2, respectively.

Remark 8. For CodSq and CodOne, since we compute mye; + maoes for (mq,ms) €
Hy first, we have £'e; and 'e; and ¢'e; + £'e5. Thus, when we compute)\‘17)\é, Af{z
using (16), we only need (¢ +1)e; and (¢ + 1)eg and (¢ + 1)e; + (¢ 4 1)es.
They are computed from mie; + mgey for (mq,ms) € Hy by Differential Ad-
dition. Moreover, we only need these the i‘"-coordinate for one i € (Z/2Z)2.

Especially, we can compute £'ey, l'eq, £'e1 + {'eq in O(1)M.

Here, we give complexities of CodSq and CodOne.

1. (Alg. 1, lines 3-4) When we calculate o™ for 0 < my < £, we compute indi-
vidually. Thus, we can approximate P({m? | 0 < my < £}) = O(£log(¢))M.
The case for P({m3 | 0 < ma < ¢}) is similar.

2. (Alg. 1, lines 5-6) When we calculate g™™2 for (mq,me) € Hj, since

2
max{mims | (mi,mq) € Hy} = @7—1’ we calculate 32, 33,34, -- ,5541

straightforwardly. Thus, we approximate P({mims | (m1,ms2) € Hy}) =
1¢2M. Similarly, we approximate P({m? 4+ m32 +mymy | (m1,ms) € Hy}) =
202M.

1

Lemma 10. From Algorithms 1 and 2, these costs are as follows:

20

Algorithm 1 CodSq

Input: Affine lifts e1,€z,e1 + ez of the basis {e1, e2} of the kernel.
Output: A projective theta-null point of the codomain.

1: Compute mie; + maoes for (m1,m2) € Hy. (>)Chic(€)
2: Compute (a1,d1) such that ”‘1 = \{ using (16). (>)O(OM
3: Compute (az2,dz) such that 0‘2 =)} using (16). (>)O(HOM
4: Compute (a2, d12) such that O‘“’ = A, using (16). (>)O(M
5: (ﬁ,d) = (Otlg -dq - d27d12 cQq - 042) where % = %. (>)4M
6: ((a1,d), (az,d),(8,d)) :== Commondenom((a1,d1), (a2,dz), (B8,d")).(>)Cea(3,1) = TM
7: Take a representation £ =" _| al.
8: Calculate aj, a3, 8°,d° for needed s in lines 9, 13. (>)6reM
9: Extend mie1 + maes from Hy to 0 < ma,ma < £ using 7). (|>)(3£2 — 40+ 3)M
10 (B((0)), di)s = (T, Nom((B(0))s, aui), 1)s for i € (Z/22)%. ()A(r —)M
11: for (m1,m2) € H; do
12: aumi = Lt 0 + S1,u, Guma = ltay + o, for 1 <u <7
13: (en,ca) := (ozi” calr . pghiz ghithathiz) where hy, ho, hyo are of (18). (>)2M
14: ta:=ca-]],_,Den(s1uer + S2.u€2). (>)rM
15: for i € (Z/27)?
16: tn = 2cn - [[_, Num(s1,u€1 + S2,u€2, Qut). (>)rM
17 (00))di) = (OUF(0)) ta+ di - sy - ta). (>)3M
18: end for
19: end for
20: (‘%(f(o)))ie(Z/zZ)? := Projcommondenon((0;(f(0)), di)z‘e(Z/zz)2)-
) Clea(4, 1) = 10M
21: return (0;(f(0)),1);.

CodSq: (37 + 2)2M + 3£2S + O(0)M
CodOne: L02M + 32P(¢) + 262S + O(Clog(£))M .

Especially, the complexity of CodSq is O(¢*)M and that of CodOne is O(¢2 log(¢))M
since P(¢) = O(log(¢)). Concrete counts of operations for each ¢ are written in
Section 4.

Evaluation. We give similar algorithms for general points, i.e., for x € A,
we compute the theta coordinate of f(x) € B from some theta coordinates of
€1,€2,€61 +€2,2,T + €1, + es.

Remark that we need to compute all linear combinations x 4+ myeq + moes
for 0 < my,mg < £, not only for (my,mq) € Hy.

In the same notations as codomain, let €7,e5 and e; + eo be affine lifts of
e1,ez and ey + ey for a basis {e1,ea} of K. For given any affine lifts &,z + ey,
and x + es of x,x 4 e1, and = + eo, we give a projective theta coordinate of the
image f(z).

Now, we give two concrete algorithms EvalSq and EvalOne. EvalSq is based

n (11) and EvalOne is based on (13). We summarize in Table 3.

21

Algorithm 2 CodOne

Input: Affine lifts e1,€z,e1 + ez of the basis {e1, e2} of the kernel.
Output: A projective theta-null point of the codomain.

1: Compute miei + maeg for (mi1, ma) € Hy. (>)Chic(0)
2: Here is the same as lines 2 to 6 of Algorithm 1.

3: Calculate a;n% for 0 <my </ (H)P{m? |0 <my < £})
4: Calculate a;lg for 0 <mg </ (B)P({m3 | 0 < ma < £})
5: Calculate g™'™2 for (mi,m2) € Hy (>)P({mimz | (m1,m2) € H,})
6: Calculate d™T™3+™1™2 for (my,my) € H,y.

(>)P({m? +m3 + mama | (m1,ma) € He})
7: for (mi,m2) € H; do

8 (cn,cq) = (aT? a;nQ . g dm%+m§+m1mz) (>)2M
9: Compute Num(mye; + maea, i)’ for i € (Z/27)2. (>)4P(¢)
10: Compute Den(mye; + mzez)’. (D)P(E)
11: Num(Exzcl(mi, m2),1) := ¢, - Num(mie; + maea, i)’ for i € (Z/27). (>)4M
12: Den(Exzcl(mi,mz2)) := cq - Den(myie; + maes)®. (>)1IM
13: end for

14: Calculate Num(FEzcl(0,0)) := Num(#;(0),) for i € (Z/2Z)>. (>)4P(¢)

15: Calculate Den(Excl(0,0)) := 1.
16: (Bxcl(mi, m2))(m,mq) = Projcommondenom((Excl(ml,mg))(mlymﬁ)
w.r.t. i € (Z/22)? and (m1,mse) € Ho U {(0 O)}.(l>)CpCd(Z L 4) = (2 +0(1))M
17: 0;(£(0)) := Excl(m1, mz); for i € (Z/27)>.
18: for (mi,m2) € H, do
19: for i€ (Z/27)?

20: 0:(£(0)) := 0,(f(0)) + 2Ezcl(m1, m2);.
21: end for
22: end for

23: return (0;(f(0)), 1);.

14
In advance, we calculate (Af)™F (A4)™> (%)mlm2 for all 0 < mq,mg < £ and
172
/\fQ, /\é2 which are independent on .

Their explicit algorithms of EvalSq,EvalOne are Algorithms 3, 4 respectively.

Remark 9. For EvalOne, we can use the similar optimization as Remark 8.
Concretely, since we compute x + mie; + meeg for 0 < my,mo < £ first, we
have z + (¢ — 1)ey and & + (£ — 1)es. Hence, when we compute (§1)° and (§2)*,
we only need x + fe; and z + fes which are computed from x + mie; + moes
by Differential Addition. Moreover, we only need the i*"*-coordinate for one
i € (Z/27)%. Especially, we can compute (“—1) and (‘;—2)‘7 in O(1)M. This is
also valid for EvalSq if a, = 1 for some u.

Lemma 11. By Algorithms 8 and 4, we give concrete costs of EvalSq and
EvalOne as follows. Here, v’ := #{a1,...,a,} < r for a representation { =

D u=1 a;.
EvalSq: (57 + 33r" + 15)02M + 57425 + O ()M

22

HFormula‘ Normalization‘Algorithm‘ Complexity
EvalSq || (11) (21) 3 o(®)
EvalOne|| (13) (22) 4 O(log(0))
Table 3. Two calculation methods of the evaluation

EvalOne: 5102M + 502P(() + 50%S + O({)M .

Especially, the complexity of EvalSq is O(¢?) and that of EvalOne is O(¢? log(¥)).
Concrete counts of operations for each £ are written in Section 4.

3.5 Representation £ =Y _. a?

u=1 "u

When we use Algorithm CodSq or EvalSq, we take a representation of ¢ by the
sum of squares of positive integers: £ = >_' _ a2.1f ¢ = 3, such a representation is
only 3 = 12412412, Otherwise, i.e. £ > 5, what kind of representation is efficient
for each algorithms? In the following, for £ > 5, we except the representation
£ =12+ ..+ 12 since the case is just CodOne and EvalOne.

For CodSq, by the asymptotic complexity in Lemma 10, we should take a
representation such that r is minimized. On the other hand, for EvalSq, by their
asymptotic complexities in Lemmas 10, 11, we should take a representation such
that (57 4+ 33r')M + 5¢'S is minimized where ' := #{aq,...,a, }(> 2).

Lemma 12. Let ¢ be a prime number such that ¢ > 5. For each of CodSq and
EvalSq, and for each ¢, we should take a representation ¢ = 22:1 a2 (instead
of =12+ .. +12) as follows:

1. If £ £ —1 (mod 24), the minimum value Tyyn of v for each £ is as follows.
When £ =1 (mod 4), rmin = 2, when £ = 3 (mod 8), rmin = 3, and when
=7 (mod 24), Ty = 4. Moreover, there exists a representation satisfying
7 = Tiin and 1’ = 2. Thus, for any CodSq and EvalSq, we should take any
such representation with v = rp;, and v’ = 2.

2. If £ = —1 (mod 24), the minimum value T4y, of r is 4. Thus, for CodSq, we
take a representation with r = 4. For EvalSq, for each ¢ < 200, under the
assumption M : S = 3 : 2, we should take a representation in Table 4 which
minimizes (5r + 33r")M + 5¢/S.

Proof. 1. By Fermat’s theorem on sums of two squares, there exists a repre-
sentation such that r = 2, if and only if £ =1 (mod 4). In this case, clearly,
r’ = 2. Next, we consider the other case, £ = 3 (mod 4). By Legendre’s
three-square theorem, there exists a representation such that » = 3, if and
only if £ =3 (mod 8). In addition, in this case, it is known that there exists
a representation such that » = 3 and ' = 2. When ¢ = 7 (mod 8), by La-
grange’s four-square theorem, there exists a representation such that r = 4.
Then, there exists a representation such that r = 4,7’ = 2 if and only if
¢ =1 (mod 3). This condition is equivalent to £ =7 (mod 24). In any case,
since ' = 2, r and (57 + 337’)M + 5¢'S are minimized.

23

A

lgorithm 3 EvalSq

e
Input: Affine lifts e1,e3,e1 + €2, T,7 + €1, T + e3 and ()\li)m%()\g)m%(%)mlm"’.

7
AT,

Output: A projective theta coordinate of f(z).

T 2

1: Take a representation £ =5 _, a.
2: Compute Gy €1, avez, ay(e1 + €2),auT, ay(er +), an(ez +) for 1 <u < 7.
(D)Gcmlt({au | 1 S u S T})
3: Compute a,x + miayer + maayez for 0 < mi,ms < £ and for 1 <u < 7.
Here, r' := #{a1,...,a,}. (>)r Cler (£)
4: Compute (71, d1) such that - = (%)l using (20). (>)O()M
5: Compute (72, dz) such that 32 = (ﬁ—i)[using (20). (>)O)M
6: ((71,4d), (72, d)) := Commondenom((y1, d1), (y2,d2)). (>)Cea(2,1) = 3M
7: Calculate numerators of v, 3" for 0 <m < £ — 1. (>)2(¢£ — 2)M
8: Calculate d™ for 0 < m < 2(¢ —1). (>)(2¢—3)M
9: Take a representation £ =" _, al.
10: (05(f(x)),d;) == (0,1) for i € (Z/27)*.
11: for 0 < mi,me < £ do
14
12: e o= Nam((A])™5 (N5)™3 (52,)™072) - A" - 45 (>)2M
172
13: cq = Den((/\f)mf(/\g)mé(%)mlmz) . dm1+m27 (D)lM
172
14: tq:=cq-[],_, Den(ayx + miaver + maayez). (>)rM
15: for i € (Z/2Z)* do
16: tn = cn - [_, Num(auz + miauer + maaues, aut). (>)rM
17 (O (@) di) = O (@) - ta+ds -ty di - ta). (>)3M
18: end for
19: end for
20: (0;(f()))iez/22)2 = Projcommondenom((0;(f(x)), d:)ie(z/22)2)-
(>)Cpea(4,1) = 10M
21: return (0;(f(z)),1).
2. By Lagrange’s four-square theorem, we have r,;, = 4. Now, (5r 4+ 33r")M +

5r'S is minimized if and only if (57+33r")-3+5r"-2 = 15r+109r' is minimized.
For each ¢ < 200, by comparing 157 + 1097 for all representations, we have
the result of Table 4. ad

Table 5 summarises Lemma 12.

4

In

Counting the Number of Operations

this section, we count the number of operation on k of algorithms CodSq,

Cod0One, EvalSq, and EvalOne of Section 3.4. Here, we consider that the base

fie
th
th

Id is [Fp»> for the sake of application to isogeny-based cryptography. Remark
at characteristic p does not affect the number of operation. Here, we consider
e cost as M : S =3:2 and thus we compare an integer 3m + 2s for mM + sS.

Table 6 shows the values of 3m + 2s for each algorithm and for each ¢. The
underlined values in red font are the minimum ones for each /.

24

el Yk |
23] 5-17+2-3% [7]2
47] 2-12+5-3% |5/2
71|22 +2-3% +7%[4|3
167|| 5-1°+2-97 |7|2
191 4*+7.5° |8]2
Table 4. The most efficient representation for £ such that £ = —1 (mod 24) for EvalSq.

L (>5) | r | example
£=1 (mod 4) 2]2 5=17+427
£ =3 (mod 8) 3 (2] 11=17+17+37
(=7 (mod 24) || 4 [2][7=1"4+174+1742°
£=—1 (mod 24)||r > 4| - See Table 4

Table 5. An efficient representation £ =" _| a? where ' = #{a1,...,a,}.

£|| Codsq| CodOne|| EvalSq|EvalOne ¢|| Codsq| CodOne|| EvalSq| EvalOne

O()O@log b)) O()O@logl) ~R9IT 871061[1107293]] 2469014] 2051306
3l 1071 771 2118 1823 97|(1035741|1244930|| 2932321 2323755
5[2711 2452|| 8270|5164 101|[1122983]1426324|| 3176858| 2641778
71l 6740] 5282|| 18034| 10619 103|[1426148|1563008|| 3812926| 2874753
11]| 14924 13876|| 41573] 27053 107|[1399436|1686874|| 3840095| 3102377
13|| 18579 19466|| 54745 37749 109||1307811|1750586|| 3701596 3219441
17]| 31829 32740|| 91496 63336 113|[1405469|1785742|| 3976406| 3306842
19]| 44376| 43676|| 121861| 83431 127||2166776(2618972|| 5796664| 4757679
23|| 71692| 68158|| 228845 128574 131|[2096960|2357542|| 5754983| 4375653
29| 92627| 108580|| 265217| 204366 137|[2065769|2578540|| 5844425| 4785669
31|(129896| 131354 347335| 245053 139(|2360796|2799332|| 6479773| 5158276
37(150807| 173612]| 428398 327161 149(|2443367|3216862| 6910958| 5927196
41]|185105| 213334|| 526691| 401713 151|[3061844|3474890|| 8190025| 6361003
43(1226500| 248600|| 623287| 464048 157||2712747|3756698|| 7672825 6876571
47((297904| 313726|| 952613| 580903 163|[3245712|3850136|| 8903431| 7093396
53309335 378028|| 878633| 704968 167(|3293819|4250704||12022895| 7780491
59/(426020| 494794((1169783| 915391 173(|3744484|4561804| 9315983| 8349627
61(/409683| 528968|(1161502| 978503 179||3913640|4883890(/10739111| 8938851
67(/549240| 593390|/1509055| 1108635 181|[3605295|4993700(|10194670| 9139723
71|[678412| 704272((2363562| 1305458 191(|4896904|6108136||16601459|11053113
73586713 704588]|1663126] 1316091 193([4099125|5119244(|11591572| 9497845
79/(839528| 919016(2244289| 1691121 197([4270919|5624758||12075206| 10361340
83|(842600| 962854(|2311751| 1784042 199||5315588|6036608||14222314(11048011
Table 6. Values of 3m + 2s where mM + sS is the count of operations of (¢, ¢)-isogeny

25

Algorithm 4 EvalOne

14
Input: Affine lifts e7,e3,e1 + €2, Z,2 +e1,T + e2 and (A‘f)m% ()\g)mg(%)mlm2 and
2

PY5Y
(0:(z))s-
Output: A projective theta coordinate of f(z).

1: Compute z + mier + maeg for 0 < mqy,ma < £. (>)Ciet (0)
2: Here is the same as lines 4 to 8 of Algorithm 3.
3: for 0 < mi,m2 < £ do
2
4 e = Num((AD)™T (M) (£33)™172) 47 - 452 (>)2M
172
2
5 Cq = Den((Ag)m%(Ag)mg(%)m1mz).dm1+m27 (D)].M
172
6: Compute Num(z + mie; + maes, i)’ for i € (Z/27)>. (>)4P(¢)
7: Compute Den(z + mie; + mzez)’. (>)P(£)
8 Num(Exzcl(mi,ms2),i) = cn - Num(z + maer + maea, i)’ for i € (Z/22)%. (>)4M
9: Den(Excl(mi,mz2),1) := cq - Den(x + mies + maez,i)’. (>)4aM
10: end for
11: (Bxcl(mi, m2))(m,,m,) := Projcommondenom((Excl(mi, m2))(m;,ms

)(m1 ma))
w.r.t. i € (Z/2Z)% and 0 < my,ma < L. (D)Cpcd(€§74) :)(762 +O0()M
12: 0i(f(x)) := 0 for i € (Z/27)>.
13: for 0 < mi,me < £ do
14: for i € (Z/27)* do

15: 0;(f(x)) := 0;(f(x)) + Excl(mi, m2);.
16: end for
17: end for

18: return (0;(f(z)), 1);.

Codomain. For 3 < ¢ < 11 and ¢ = 19,23, CodOne is the most efficient, and
for ¢ = 13,17 and ¢ > 29, CodSq is the most efficient. Indeed, the asymptotic
complexity of CodOne is O(¢?log(¢)), but that of CodSq is O(¢?).

The cost of CodSq depends on r which is determined by ¢ (mod 8).

The cost of CodOne depends on the Hamming weight of /, since we calculate
£*" power many times in the algorithm. In fact, for example, the cost of CodOne
is large when ¢ = 127 = (1111111)5 and ¢ = 191 = (10111111)s.

Evaluation. For 3 < ¢ < 200, EvalOne is more efficient, even though the
asymptotic complexity of EvalOne is O(¢2log(f)) and that of EvalSq is O(¢?).
For sufficiently large ¢, EvalSq would be more efficient. The smallest ¢ that
EvalSq is more efficient is 509.

As well as codomain, the cost of EvalSq depends on r and r’ which are
determined by ¢ (mod 24). Concretely, see Table 5 and Table 4. The cost of
EvalOne depends on the Hamming weight of /.

26

5 Application to Attack on B-SIDH

In this section, we implement SIDH attack on key exchange protocol B-SIDH.
In the attack, we calculate (¢, ¢)-isogenies between Kummer surfaces. Then, we
will use the result of Section 3 and Section 4.

5.1 SIDH (B-SIDH) attacks

In this subsection, we explain SIDH (B-SIDH) attacks briefly.

B-SIDH is key exchange protocol given by Costello [9] which is based on the
same problem as SIDH [15], but by using quadratic twist of elliptic curve we can
use smaller characteristic than one of SIDH.

The security of both SIDH and B-SIDH is guaranteed by the hardness of
Supersingular Isogney with Torsion Problem below. Here, p is a prime number
and k is a finite field of characteristic p.

Problem 1 (Supersingular Isogney with Torsion). Let Ny and Np be coprime
integers, Fy/k and Ep/k be elliptic curves, pp : Ey — Ep be Np-isogeny, and
{P4,Qa} be a basis of Eg[Ny].

Then, given Na, Ng, Ey, Ep, Pa,Qa,¢5(Pa), ¢5(Pg), construct ¢p.

SIDH attacks. However, in 2022, Castryck, Decru [5] and Maino, Martindale,
Panny, Pope, Wesolowski [23] and Robert [31] gave a polynomial-time attack
on SIDH by solving the above problem. Thus, as noted in [5], the security of
B-SIDH was also broken.

In the attack, the following lemma based on a criterion by Kani [16] is es-
sential. Here, we consider the case of dimension one, even though it holds for a
general dimension, see [31, Lemma 3.4].

Lemma 13 (|31, Lemma 3.4]). Let E, Eq, E5, and E' be elliptic curves. For
coprime dy,ds, let f1,g1 be di-isogenies and fo,go be do-isogenies such that the
following diagram is commutative:

j oLy)

J]

E2 — El
g1

Then, an isogeny F' : E x E' — E1 X Ey defined by a matrix (f} §2> is (d,d)-
—f2 g1

isogeny where d := dy + do with respect to the natural product polarizations on
E X E' and E1 x Ey. In addition, the kernel of F is represented by

Ker F = {(f1(P),g2(P)) € Ex E' | P € E\[d]} .

27

Now, we construct an attack on SIDH for the following case: p =3 (mod 4)
and Ej is a supersingular elliptic curve Ey/F,2 : y* = 2® + z. In addition,
we can assume Ny > Np, if necessary by changing Alice and Bob of SIDH
protocol. Then, for a := Ny — Np, as given in Section 5.2 below, there exists
a way to construct «a(P,),a(@a) for some a-isogeny a : Ey — E’ by using
the information of End(Ep), Then, we have the left-hand side diagram below by
taking the pushout of ¢ and . Hence, we have the right-hand side commutative
diagram below:

E0ﬂ>EB E/4&>EO
™ I
E/7>E/B EbﬁEB
B a

We apply Lemma 13 to the above right-hand side diagram, namely, let F' :
E' x Ep — Ey X E; be the (N4, Na)-isogeny given by a matrix < Z, SZZ?),

—¥B
Then, we have

Ker F = {(a(P), o5(P)) € E' x Ep | P € Eo[N4l} .

Since the attacker has (a(Pa), p5(Pa)), (a(Qa4), ¢5(Q.4)) which generate Ker I,

the attacker can calculate F'. Then, the attacker takes a basis {S1, Sa} of Eg[Ng]

and computes F((0,.5;)) = (¢5(S;),a’(S;)) for i = 1,2. Since Ker o5 = (¢5(S1), ¥5(52)),
the attacker gets the generator of Ker ¢p.

Difference between attacks on SIDH and attacks on B-SIDH. One of
the differences between SIDH and B-SIDH is the number of prime factors of N4
and Np. In SIDH, N4 and Ng are the form of 2¢ or 3%, on the other hand, in
B-SIDH, N4 and Ng have a lot of prime factors. At the point of attacks, since
attackers need to compute to (N4, Na)-isogeny F, for SIDH they compute the
composition of (2, 2)-isogenies or (3, 3)-isogenies. On the other hand, for B-SIDH
they compute the composition high digree isogenies, i.e., if Ny = £ ---£,, is the
prime factorization, they compute the composition of (¢;,¢;)-isogenies. In fact,
although an implementation of attack on SIDH is given by Castryck-Decru [5,
Section 9], for B-SIDH it is not given.

5.2 Concrete construction of attack on B-SIDH

Computation of images of some a-isogeny. The notation is the same as
Section 5.1, i.e., p is a prime number such that p = 3 (mod 4), Fy is a super-
singular elliptic curve Eg/Fp2 : y?> = 2 + 2, Ny > Np are coprime integers,
and {P4,Q4} is a basis of Eyg[N,4]|. As noted in the previous section, we can
construct a(Py),a(Q4) for some a-isogeny « : Fy — E’ where a := Ng — Np.
Here, we give the construction.

28

We use some theory about quaternion algebra and refer to [13, Section 2].
The endomorphism ring End(Ejp) is isomorphic to the maximal order Oy =
(1,1, ”TJ, #) with i2 = —1,j2 = —p, k = ij of H(—1, —p). Concretely, we have
the isomorpshim by ¢+ i and 7 + j where ¢ : Ey — Eq is (z,y) — (—x,v/—1y)
and 7 : Eg — Epis (z,y) = (2P, y?). In addition, we use FullRepresentInteger, (M)
of [14, Algorithm 1] which gives an element of Oy of norm M for a given integer
M > p.

First, by applying FullRepresentInteger, (aNp), we obtain an (aNp)-
isogeny 7 : Eg — Fo. Then, we decompose 7 to an a-isogeny a : Ey — E’ and
an Np-isogeny 0 : E' — Ey with 6 o o = 7. Then, since d 0 6 = [Np] g, the left-
hand side diagram below is commutative. Since [Ng]g' oo = ao[Ng]g,, we have
the right-hand side commutative diagram. Here, since ged(a, Ng) = 1 and we
have Ker § = (Eo[Np]), we can calculate § : Ey — E’. Then, by the right-hand

side commutative diagram, we have a(Py) = 5(7(%)) and a(Qa) = 5(7(%:))

« [NB]EO
E() HE/ EO 4>E0
’Yl / l[NB]E/ ’Yl loz
EO ﬁE’ EO ?E/
o

Composition of isogeny. As we have just seen, when we attack on B-SIDH,
we calculate isogeny of high degree. Thus, we decompose the isogeny to prime-
degree isogenies. We generalize the situation slightly.

Let K C A[N] be a maximal isotropic subgroup and F : A — B be the
(N, N)-isogeny. When N = {; ---{,, is the prime factorization, we have a de-
composition F' = @, o --- 0y where p; : A; — A;11 is an (¢;, £;)-isogeny with
A1 = A and Am+1 = B.

For a basis {f1, fo} of K ~ (Z/NZ)?, from theta coordinates f;, fo, we will
calculate a theta-null point of B. To do this, first we calculate f; + fo by Normal
Addition. Then, we multiply fi, f2, fi + fo by Mult(fy---£,,,*) and call them
e1,€3,e1 + eg. Since €7, e; are affine lifts of a basis of Ker 1, we can calculate
theta null point of As. Then, we compute affine lifts Mult(ls--- £, + 1, f1) of
f1+e and Multadd(ls - - - p, fa, f1, f1+ f2) of f1 4+ e2. From them we calculate
a theta coordinate of the image ©1(f1) € As. Similarly, we calculate one of
va(f2) € As. By iterating this calculation m times, we have a theta-null point
of B. Thus, the total cost is 5mC,,;; and m times Normal Addition and m
times codomain calculation and 2m times evaluations. Remark that since we use
Normal Addition we need once a calculating square root for one step.

For x € A, from an affine lift Z, we will calculate a theta coordinate of
F(zx). We calculate =+ e; by Normal Addition. Then, we calculate z + ez by
Compatible Addition. Thus, we can calculate theta coordinate of the image of
v1(x) € As. In one step, we need three times calculations of square roots.

Remark 10. For applying this argument to the attack on B-SIDH, since the
domain A is a product of elliptic curves, A does not satisfy the assumption of

29

non-zeroness of even theta-null points. Thus, on A we prepare needed affine lifts
by using additions of elliptic curves. Since for As,..., A, the probability that
each A; is a product of elliptic curves is O(12), we consider that does not happen
for sufficiently large p such as the parameter of B-SIDH.

5.3 Implementation of the attack

We implemented the attack on B-SIDH for the following parameter based on
[13, Appendix.C]:

p = 0x1E409D8D53CF3BEB65B5F41FB53B25EBEAF37761CD8BA996684150A40FFFFFFFF,

N4y =3%.31.43.59-271-311-353-461-593-607 - 647 - 691 - 743 - 769 - 877 - 1549,
Np =232.521.7.11-163-1181-2389-5233-8353-10139-11939-22003-25391 - 41843.

Here, p is 257-bit and N4 is 216-bit and Np is 213-bit. In addition, p = 3
(mod 4), N4 | (p—1),Np | (p+1), and N4 > Np. We used this parameter since
(2,2)-isogeny is not main point of this paper and 2t Ny4.

As we have just seen in Section 5.1, we calculate the image of two points for
(N4, Na)-isogeny F': E' x Eg — Ey x Ef;.

We implemented this attack using our algorithms in Computer algebra sys-
tem SageMath [34]. Then, we done the attack in about 40500 seconds (11.25
hours) on an Apple M1 3200MHz CPU. The implementation can be found in

https://github.com/Yoshizumi-Ryo/ellell-isogeny_sage.

6 Conclusion

In this paper, we gave explicit inversion-free algorithms of (¢, £)-isogeny between
Kummer surfaces based on the Lubicz-Robert formula for an odd prime number
L.

Specifically, we proposed two algorithms using two representations £ = > _, a?
with 7 = O(1) and ¢ = 12 + .- + 12 for codomain and evaluation each. Then,
we made several improvements. First, for codomain, we reduced the complexity
of computing affine lifts to half. Second, for representations £ = > _ a2, we
determined the most efficient representation for each ¢. Third, we constructed
relations to compute excellent lifts from affine lifts using in the Lubicz-Robert
formula. Then, we provided some improvements based on the relations. Fourth,
in our algorithms, we avoided computing multiplicative inversions, which are
expensive for cryptrographic situations. Finally, by counting and comparing the
number of arithmetic operations, we determined the most efficient algorithm for
each ¢ from each of two algorithms.

In addition, using the most efficient one, we implemented the SIDH attack
on B-SIDH in SageMath. In setting that originally claimed 128-bit security, we

were able to recover 128-bit secure B-SIDH in about 11 hours.

30

https://github.com/Yoshizumi-Ryo/ellell-isogeny_sage

References

10.

11.

12.

13.

14.

Basso, A., Maino, L., Pope, G.: FESTA: Fast Encryption from Supersingular Tor-
sion Attacks. In: Guo, J., Steinfeld, R. (eds.) ASTACRYPT 2023, Part VII. LNCS.
vol. 14444, pp. 98-126. Springer Nature Singapore, Singapore (2023)

Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. In: ANTS XIV—Proceedings of the Fourteenth Algorithmic
Number Theory Symposium. Open Book Ser., vol. 4, pp. 39-55. Math. Sci. Publ.,
Berkeley, CA (2020). https://doi.org/10.2140/0bs.2020.4.39

. Birkenhake, C., Lange, H.: Complex abelian varieties, Grundlehren der math-

ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 302. Springer-Verlag, Berlin, second edn. (2004), https://doi.org/10.1007/
978-3-662-06307-1

Bisson, G., Cosset, R., Robert, D.: AVIsogenies v0.7 (Abelian Varieties and Iso-
genies), Magma package for explicit isogenies between abelian varieties (2021),
https://www.math.u-bordeaux.fr/~damienrobert/avisogenies/

Castryck, W., Decru, T.: An Efficient Key Recovery Attack on SIDH. In: Hazay,
C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS. vol. 14008, pp. 423-447.
Springer Nature Switzerland, Cham (2023)

Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An Efficient
Post-Quantum Commutative Group Action. In: Peyrin, T., Galbraith, S. (eds.)
ASTACRYPT 2018, Part III. LNCS. vol. 11274, pp. 395—-427. Springer International
Publishing, Cham (2018)

Chen, M., Leroux, A., Panny, L.. SCALLOP-HD: Group Action from 2-
Dimensional Isogenies. In: Tang, Q., Teague, V. (eds.) Public-Key Cryptography
— PKC 2024. pp. 190-216. Springer Nature Switzerland, Cham (2024)

Cosset, R., Robert, D.: Computing (¢, £)-isogenies in polynomial time on Jacobians
of genus 2 curves. Mathematics of Computation 84(294), 1953-1975 (2015), http:
//www.jstor.org/stable/24489183

Costello, C.: B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion.
In: Moriai, S., Wang, H. (eds.) ASTACRYPT 2020, Part II. LNCS. vol. 12492, pp.
440-463. Springer International Publishing, Cham (2020)

Costello, C., Hisil, H.: A Simple and Compact Algorithm for SIDH with Arbitrary
Degree Isogenies. In: Takagi, T., Peyrin, T. (eds.) ASTACRYPT 2017, Part II.
LNCS. vol. 10625, pp. 303-329. Springer International Publishing, Cham (2017)
Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQIsignHD: New Dimensions
in Cryptography. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part I.
LNCS. vol. 14651, pp. 3-32. Springer Nature Switzerland, Cham (2024)

Dartois, P., Maino, L., Pope, G., Robert, D.: An Algorithmic Approach to (2, 2)-
isogenies in the Theta Model and Applications to Isogeny-based Cryptography.
Cryptology ePrint Archive, Paper 2023/1747 (2023), https://eprint.iacr.org/
2023/1747, to appear in Asiacrypt2024

De Feo, L., Kohel, D.; Leroux, A., Petit, C., Wesolowski, B.: SQISign: Compact
Post-quantum Signatures from Quaternions and Isogenies. In: Moriai, S., Wang,
H. (eds.) ASTACRYPT 2020, Part I. LNCS. pp. 64-93. Springer International Pub-
lishing, Cham (2020)

De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New Algorithms for the Deur-
ing Correspondence. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V.
LNCS. vol. 14008, pp. 659-690. Springer Nature Switzerland, Cham (2023)

31

https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.1007/978-3-662-06307-1
https://doi.org/10.1007/978-3-662-06307-1
https://www.math.u-bordeaux.fr/~damienrobert/avisogenies/
http://www.jstor.org/stable/24489183
http://www.jstor.org/stable/24489183
https://eprint.iacr.org/2023/1747
https://eprint.iacr.org/2023/1747

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Feo, L.D., Jao, D., Plat, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. Journal of Mathematical Cryptology 8(3), 209-247
(2014), https://doi.org/10.1515/jmc-2012-0015

Kani, E.: The number of curves of genus two with elliptic differentials. Journal fiir
die reine und angewandte Mathematik, vol. 1997, no. 485 148, 93-122 (1997)
Koizumi, S.: Theta Relations and Projective Normality of Abelian Varieties.
American Journal of Mathematics 98(4), 865-889 (1976), http://www. jstor.org/
stable/2374034

Lubicz, D., Robert, D.: Efficient pairing computation with theta functions. In:
Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, pp. 251
269. Springer, Berlin (2010), https://doi.org/10.1007/978-3-642-14518-6_21
Lubicz, D., Robert, D.: Computing isogenies between abelian varieties. Compos.
Math. 148(5), 1483-1515 (2012), https://doi.org/10.1112/50010437X12000243
Lubicz, D., Robert, D.: A generalisation of Miller’s algorithm and applications to
pairing computations on abelian varieties. J. Symbolic Comput. 67, 68-92 (2015),
https://doi.org/10.1016/j.jsc.2014.08.001

Lubicz, D., Robert, D.: Arithmetic on abelian and Kummer varieties. Finite Fields
Appl. 39, 130-158 (2016), https://doi.org/10.1016/j.£ffa.2016.01.009
Lubicz, D., Robert, D.: Fast change of level and applications to isogenies.
Res. Number Theory 9(1), Paper No. 7, 28 (2023), https://doi.org/10.1007/
s40993-022-00407-9

Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A Direct Key
Recovery Attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS. vol. 14008, pp. 448-471. Springer Nature Switzerland, Cham (2023)
Meyer, M., Reith, S.: A Faster Way to the CSIDH. In: Chakraborty, D., Iwata,
T. (eds.) INDOCRYPT 2018. vol. 11356, pp. 137-152. Springer International Pub-
lishing, Cham (2018)

Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of fac-
torization. Mathematics of Computation 48, 243-264 (1987), https://api.
semanticscholar.org/CorpusID: 4262792

Mumford, D.: On the equations defining abelian varieties. I. Inventiones mathe-
maticae (4), 287-354. https://doi.org/10.1007/BF01389737

Mumford, D.: Abelian Varieties Tata Institute of Fundamental Research (1970),
https://api.semanticscholar.org/CorpusID:115766011

Mumford, D.: Tata lectures on theta. II, Progress in Mathematics, vol. 43.
Birkhduser Boston, Inc., Boston, MA (1984), https://doi.org/10.1007/
978-0-8176-4578-6, jacobian theta functions and differential equations, With the
collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura
Nakagawa, K., Onuki, H.: QFESTA: Efficient Algorithms and Parameters for
FESTA Using Quaternion Algebras. In: Reyzin, L., Stebila, D. (eds.) CRYPTO
2024, Part V. LNCS. vol. 14924, pp. 75-106. Springer Nature Switzerland, Cham
(2024)

Robert, D.: Efficient algorithms for abelian varieties and their moduli spaces.
Habilitation a diriger des recherches, Université de Bordeaux (UB) (Mar 2021),
https://hal.science/tel-03498268

Robert, D.: Breaking SIDH in Polynomial Time. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part V. LNCS. vol. 14008, pp. 472-503. Springer Nature
Switzerland, Cham (2023)

Santos, M.C.R., Costello, C., Smith, B.: Efficient (3,3)-isogenies on fast Kum-
mer surfaces. Cryptology ePrint Archive, Paper 2024 /144 (2024), https://eprint.
iacr.org/2024/144

32

https://doi.org/10.1515/jmc-2012-0015
http://www.jstor.org/stable/2374034
http://www.jstor.org/stable/2374034
https://doi.org/10.1007/978-3-642-14518-6_21
https://doi.org/10.1112/S0010437X12000243
https://doi.org/10.1016/j.jsc.2014.08.001
https://doi.org/10.1016/j.ffa.2016.01.009
https://doi.org/10.1007/s40993-022-00407-9
https://doi.org/10.1007/s40993-022-00407-9
https://api.semanticscholar.org/CorpusID:4262792
https://api.semanticscholar.org/CorpusID:4262792
https://doi.org/10.1007/BF01389737
https://doi.org/10.1007/BF01389737
https://api.semanticscholar.org/CorpusID:115766011
https://doi.org/10.1007/978-0-8176-4578-6
https://doi.org/10.1007/978-0-8176-4578-6
https://hal.science/tel-03498268
https://eprint.iacr.org/2024/144
https://eprint.iacr.org/2024/144

33.

34.

35.

Santos, M.C.R., Flynn, E.V.: Isogenies on kummer surfaces (2024), https://
arxiv.org/abs/2409.14819

The Sage Developers: SageMath, the Sage Mathematics Software System (Version
10.3) (2024), https://www.sagemath.org

Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B 273,
A238-A241 (1971)

33

https://arxiv.org/abs/2409.14819
https://arxiv.org/abs/2409.14819
https://www.sagemath.org

A Additional arithmetic on Kummer surfaces of Section
2.2

As mentioned in Remark 1 in Section 2.2, in this section, we introduce Normal
Addition and Compatible Addition. They are used attack on B-SIDH.

Normal Addition. Next, we consider the case that (6;(z—y)); is not given as a
part of input. Then, remark that we cannot distinguish (05(x+y)); from (6;(z —
y)): by using (0;(x));, (0i(y))s only, since (0;(y)); = (0;(—y)):. Nonetheless, we
can compute a set (unordered pair) {(X;);, (Y3):} := {(0:i(x + y)). (0i(z —y))i}
as follows. First, remark that for any pair of (6;(z +v)); and (9 (r —y)); which
satisfies (3) and for any A € C*, a pair of A (6;(z +y)); and X s (0:(x —y)); also
satisfies (3). Thus, we may fix X, := 1, and then we have Yy = koo by (7). Here,
we assume that ko9 # 0. If necessary, we replace by another 1 with k;; # 0.

In the above notation, equality (6) becomes r;; = £(X;Y; + X;Y;). Thus, for
all i € (Z/27)?, we have ot - Yo = fii and Xl + YL = 2ri0 Hence, i(((‘) and YL

: Xo Yo Koo K00
are solutions of the following quadratic equatlon

Iioot2 - 2/€i0t + Ky = 0. (23)

If z or y is a 2-torsion point, then we have x —y € {£(z + y)} and hence
(0;(x +1y)); = (0;(x — y)); as projective theta coordinates, therefore i((o = % =
70 Thus, in this case, we can compute the set {(X;);, (Y;);} from r;.

Otherwise, we have z —y ¢ {£(x +y)} and hence (X;); # (¥;); as projective
theta coordinates. Therefore, there exists a € (Z/2Z)? such that)}((—3‘ # % Then
the quadratic equation (23) with ¢ = « has two distinct solutions; among them,

we can set))g = K“":V by symmetry where D,, := K2y — Kaakoo (note that
now D, # 0). Since we fixed Xy = 1, we have
Ra0 + V Da

K00

Xo =

Moreover, for the remaining i € (Z/2Z)? ~ {0, a}, we have the following linear

equation:
L () (5
Xo Yo | | X0) = { 260
XO Yo X(J Koo

1 1 o
Since det (Xo ya> = =2vDq # 0, by solving the above linear equation, we can

R

Koo

Xo Yo

calculate X; as follows:
Xakio — Kia

VDo
Moreover, since k;; = X;Y;, we have Y; = ,;Q if X; # 0. Even if X; = 0, we can
compute Y; in the same way as we compute X;.

Thus, from affine lifts (6;(z)):, (6;(y))i, we have obtained the set {(6;(x +
Y)i, (0i(z —v)):}. We call this algorithm Normal Addition (cf. [21, Section 5.2]).
Remark that this operation requires one square root computation.

X, =

34

Compatible Addition. For given (6;(y))s, (0:(2))s, (Bi(z + v))i, (0i(x + 2))s,
we can compute (6;(y+z)); as follows. If y or z is a 2-torsion point, since (6;(y+
2))i = (Bi(y — z)); as projective theta coordinates, it suffices to compute the
Normal Addition of (6;(y)); and (f;(z));. Otherwise, we can compute (8;(y+ 2));
by using Normal Addition twice as follows. Firstly, we calculate the set {Y, Z} :=

{(0:(y+2))i, (0:(y—2));} from (0;(y));, (0;(2)); using Normal Addition. Then, we
compute the set S of Normal Addition of Y and (6;(z+%)):. Y = (0:(y+ 2))i,
we have S = {(0;(z + 2y + 2))i, (0i(x — 2));}. Thus, in this case, (8;(z + z)); is
not contained in S since neither y nor z is a 2-torsion point. On the other hand,
if Y = (6;(y — 2))s, we have S = {(0;(z + 2y — 2))s, (0:(x + 2))s}. Thus, if S
contains the projective theta coordinate (0;(z + 2))s, we have Z = (0;(y + 2))i.

Otherwise, we have Y = (0;(y+z2));. We call this algorithm Compatible Addition
(cf. [19, Section 3.2.1]).

B Explicit algorithms of Section 3.2

In this appendix, as mentioned in Section 3.2, we give some concrete algorithms
of arithmetic on Kummer surfaces.

B.1 Batch inversion

First, in order to unify the denominators of some given fractions (Lemma 2), we
give an algorithm to compute some products from given elements of k (Algo-
rithm 5) and an evaluation of its cost (Lemma 14). For any integer M > 0, we
write the binary expansion as M = (d,,_1,...,dg)s where M = Zyz_ol d;2" for
d; € {0,1}. Here, we do not require d,,_1 = 1.

Lemma 14. Let N > 2 and ag,...,an—_1 € k. Then the output of Algorithm 5
satisfies that @ = o == ag---an—1 and qpr = Qpp = Qg+ AN —1GM+1 - AN—1
forany M =0,...,N —1, and Algorithm 5 requires (3N — 5)M. If the part « of
the output is not needed, then the cost reduces to (3N — 6)M.

Proof. As for line 2 in the algorithm, let L denote the set of all leaves of the
binary tree T, and for each node v of T, let L(v) denote the set of all v/ € L
that is covered by v, i.e., the upward path from v’ to the root of T involves
the node v. Then we have a =[], ¢ alv] and o =[], e oy 2lv] for any
M € {0,...,N—1}. Now a recursive argument implies that a[v] =],c () a[w]
for any node v of T'; this follows from the fact that for each non-leaf node v,
L(v) is the disjoint union of L(v}) and L(v}) if v has two child nodes v} and v5,
and L(v) = L(v") otherwise where v’ is the unique child node of v. The former
case occurs N — 1 times in total by the argument of “counting losers in knockout
tournament”, therefore N — 1 multiplications on k are performed during this
process. Finally, for the root v[0;0] of T', we have

a = a[v[0;0]] = H afw] = H afw] = «

we L(v[0;0]) wel

35

since L(v[0;0]) = L. Hence the part & of the output is correct.

Secondly, a recursive argument also implies that b[v] =[], 1 () 2[w] for
any node v of T'. Indeed, this follows from the fact that for each non-leaf node
v, if v has two child nodes v} and v4, then L \ L(v}) is the disjoint union of
L~ L(v) and L(v4) and vice versa; while if v has a single child node v’, then
L~ L(v') = L~ L(v). (Note that the relations b[v[1;0]] = b[v[0; 0]] - a[v[1; 1]] and
blv[1; 1]] = b[v[0;0]] - a[v[1; 0]] also hold for nodes at level 1.) Multiplication on k
occurs only when a non-leaf node v is of the former type (except for the case of the
root v = v[0;0]); now two multiplications on k are performed in the calculation
at the two child nodes. By the argument at the previous paragraph, there are
(N —1) — 1= N — 2 such nodes v, hence there are 2(N — 2) multiplications in
total. Finally, for each leaf v[n; M] with 0 < M < N — 1, we have

apr = blu[n; M| = H afw] = H a[w]

weL~L(v[n;M]) weL~{v[n;M]}

=qag AM—1QM+1 """ AN—1 = Q)\f

since L(v[n; M]) = {v[n; M]}. Hence the part &, of the output is correct.

The total number of multiplication is (N — 1) +2(N —2) = 3N — 5. Now if
the part « of the output is not needed, then the calculation of a[v[0;0]] in the
algorithm can be removed, decreasing the number of multiplications by one; i.e.,
3N — 6 multiplications in total. a

Ezample 1. We give an example of Lemma 14 in the case of N = 6. Then, we
use the following two binary trees:

- a[v[3; 0]]=ao
a[v[2; 0]]=apa1 .

_— av[3; 1])]=a1

[1§ 0}]=aoa1a2a3

T~ a[v[3; 2]]=as

a[v[2; 1)]=azas -

L
<

a[v[0; 0]] =a=apaiaz2a3a4as T a[v[3; 3]]=as

o a[v[3;4]]=a4
afv[l; 1]]=aqas — a[v[2;2]]=a4as

T afu[3; 5))=as

b[v[3; 0]]=a1azazaqas

b[v[2; 0]|=azazasas
b[v[3; 1]]=apazaszasas

o

[v[1;0]]=a4as

/
/ T o b[v[3; 2]|=apaiazasas
b[v[2; 1]]=apaiasas

_

b[v[0;0]] =1 b[v[3; 3]]=apaiazaqas

\ b[v[3; 4]]=apaiazazas

—

blv[1; 1]]=apaiasas — b[v[2; 2]]=agaiazas
b[v[3; 5]]=apaiazasay

B.2 Concrete algorithms

Here, we write concrete algorithms used in Lemma 3, Lemma 4, and Lemma 5,
see the following table:

Content [Lemma [Algorithm

Computing x; Lemma 3|Algorithm 6
Differential Addition,|Lemma 4|Algorithm 7
Doubling

Three-way Addition [Lemma 5|Algorithm 8
Table 7. Correspondence between lemmas and algorithms

37

Algorithm 5 Algorithm to compute some products

Input: N elements ag,...,an—1 € k (N >2)
Output: N products anr := ao - apm—1apm+1---an—1 for 0 < M < N —1 and a

1:
2:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

product o :=ap---an—1
Write N — 1 = (dn-1,...,do)2 where d,—1 =1 # possible since N > 2
Generate a binary tree T with 0-th level (root) to n-th level (leaves), where
- for £ =0,...,n, the {-th level consists of nodes v[¢; 0], v[¢; 1], ..., v[¢; N;] where
N, =|(N=1)/2""*| = (dn-1,...,dn—t)2 (now N§ = 0);
-for £=0,...,n — 1, node v[{; c] has child node(s) v[¢ + 1;2¢c] and v[¢ + 1;2¢c + 1]
(if it exists); we call v[€ + 1;2¢ + 1] the sibling node of v[¢ + 1;2¢] and vice versa
Multiply from leaves to the root
for each leaf v := v[n;] do
afv] == ac
end for
for { =n — 1 downto 0 do
for each node v := v[¢;] do
if v has two child nodes v] and v5 then
afv] := a[vi] - a[vs] (>) 1M
else
a[v] := a[v’] for the unique child node v’ of v
end if
end for
end for
Multiply from root to leaves
b[v[0;0]] :=1 €k # v[0;0] is the root of T
b[v[1;0]] := a[v[1;1]] and blv[1;1]] := a[v[1;0]] # Ni =1 since N > 2
for { =2 ton do
for each node v := v[¢; ¢] (with its parent node ¢) do
if v has the sibling node v’ then

b[v] :=b[d] - a[v’] (>) 1M
else
b[v] := b[?)]
end if
end for
end for
return & = bfvn; M]| for M =0,...,N —1 (as anr) and & := afv[0;0]] (as)

(>) total: (3N —5)M

38

Algorithm 6 Algorithm to calculate x;; in Lemma 3 (i) (resp. (ii))

Input: Affine lifts (0;(x),ds)s, (0;(y), dy);.
Output: «;; for all i € (Z/27)%.

1: Calculate 6}(0)2, 0}(x)?,0;(y)? for all i € (Z/2Z)?. (>)4So + 8S (resp. 4Sq + 45)

: for x € (Z//-\ZZ)2 (4 elements in total) do

8 = (Trequyazy XOO@)) - (Z e aamz XD ()?). (>)IM (resp. 15)

2

3

4 dy= Y0 2)0m2 X(£)01(0).
5: end for

6: (2'%,d
7
8
9

)XE<Z//55)2 := Commondenom((2'y, dX)Xe(Z//iZP)' (>)Cea(4,1) = 11M
PR =D T x(1)2's for i € (Z/27)°.
s dy = 4d - (dy - dy)?. (>)1S + 2M (resp. 2S + 1M)
: return (K, dw),. (>) total : 4S9 +9S + 17M (resp. 4So + 10S + 12M)

Algorithm 7 Differential Addition (resp. Doubling)

Input: Affine lifts (0;(z),dx)i, (0i(y),dy)i, and (0;(x —y),dz—y)i-

Output: The affine lift (6;(z + v)):.
1: Compute (x};,dx); for i € (Z/2Z)? by Algorithm 6.

(>)4So + 9S + 17M (resp. 4So + 10S + 12M)

/

2: (0i(x +y),duty)ie(z/2z)2 = Commondenom((k;, 0i (= — Y))ie(z/22)2)-

(5)Ceq(4,1) = 11M

3: 0(x+y) i=du—y - 0i(z +y) for all i € (Z/27). (>)4M
4: dz+y = d,i . d1+y. (D)lM
5: return (0;(z + y), doty)i- (>)total: 4Sg + 9S + 33M (resp. 4So + 10S + 28M)

39

Algorithm 8 Three-way Addition

Input: Affine lifts (63(2),)i, (6:(v), dy)s, (03(2),d2)i, (03(x +), duty)i,

(0;(3/ + Z)7 dy+2)i7 and (0/(2 + $)7 dz+1)i'

Output: The affine lift (6;(z + y + 2))i.

— = =
W R o9

14:
15:
16:
17:

RY =37 (222 X(1)0:(0)0; (y + 2) for all x € (Z/2Z) (>)4M
Ry =3, cz/m x()0:(z + z)0;(x + y) for all ll x ¢ € (Z/QZ) (>)4m
L3 =37, z/0my2 X(1)0:(y)0i(2) for all x € (Z/QZ) (>)4M
for x € (Z/2Z)? do
E'’X = RY - RY. (>)IM
dy = L3.
end for

Commondenon((E'X, dy)

X Xe(m2)' (D)Ccd(47 1) =11M

(B, d), e arame =

for i € (Z/27)*
0i(x+y+2) =3, x()EX
di = 49;(3})

: end for
: (9;(3C +y+2), dz+y+z)i€(Z/2Z)2 = Commondenom((@é(x +y+2), di)z’e(Z/QZ)?)~
(

5)Cea(4,1) = 11M

Qotytz = dotytz dytz - dogo - dogy - d. (>)4M
duys i= dy - dy - do. (>)2M
Calculate 6;(x +y + 2) := 0i(x +y + 2) - duy for all i € (Z/27)°. (>)4M
return (0;(z +y + 2), doty+z)i- (>) total: 48M

40

	 Efficient theta-based algorithms for computing (,)-isogenies on Kummer surfaces for arbitrary odd

