
Depth Optimized Circuits for Lattice Based
Voting with Large Candidate Sets

Oskar Goldhahn1 and Kristian Gjøsteen1

NTNU: Norwegian University of Science and Technology, Trondheim Norway
{oskar.goldhahn, kristian.gjosteen}@ntnu.no

Abstract. Homomorphic encryption has long been used to build voting
schemes. Additively homomorphic encryption only allows simple count-
ing functions. Lattice-based fully (or somewhat) homomorphic encryp-
tion allows more general counting functions, but the required parameters
quickly become impractical if used naively. It is safe to leak information
during the counting function evaluation, as long as the information could
be derived from the public result. To exploit this observation, we de-
sign a flexible framework for using somewhat homomorphic encryption
for voting that incorporates random input and allows controlled leakage
of information. We instantiate the framework using novel circuits with
low but significant multiplicative depth exploiting the fact that, in the
context of voting, leakage of certain information during homomorphic
evaluation can be permitted. We also instantiate the framework with a
circuit that uses random input to shuffle without the use of mixnets.

1 Introduction

Most existing approaches to post-quantum voting use mixnets [1] or additively
homomorphic encryption [3, 7, 2]. Another plausible approach would be to use
blind signatures [10]. Mixnet-based approaches are flexible, but they are in gen-
eral vulnerable to italian style attacks where voters hide identifying information
in their vote, enabling coercion or vote-selling. Known lattice based mixnets
also require very large proofs, making them less practical for all but small elec-
tions. Approaches based on additively homomorphic encryption are inflexible,
only supporting certain counting functions, and only support small candidate
sets since plaintext size grows linearly with the number of candidates or options
rather than the entropy of the vote, if multiple candidates are supported at all.
Approaches based on anonymous channels are in general vulnerable to traffic
analysis.

If we build our homomorphic scheme with post-quantum primitives like BGV
[4] we can also multiply homomorphically without much additional work. This
essentially allows us to evaluate arithmetic circuits, which may lead to more space
efficient or flexible voting schemes that can tally complex counting functions pri-
vately. The challenge is that depending on the nested number of multiplications,
the multiplicative depth, we will need larger parameters, keys and ciphertexts.

https://orcid.org/0009-0002-6873-2366
https://orcid.org/0000-0001-7317-8625

Making complex counting functions tally privately and efficiently can be a
challenge, even in the classical setting, often requiring a tradeoff between leaking
some tally details and efficiency [9].

Our Contributions Our results are based on the observation that in voting the
result is more public than the tally, so leaking some information during the tally
is acceptable as long as the leakage could also be computed from the result. In
this case an observer cannot learn anything from the tally they would not have
learned from the result anyways. This idea allows us to optimize a homomorphic
tally computation by carefully leaking information during the computation in a
way that reduces the multiplicative depth of the circuits involved.

We also make the observation that with somewhat homomorphic encryption
we can use randomization, just like in mixnets, by instead passing in additional
random inputs.

Using these observations we design a framework, Randomized Circuit Trees or
RCTs, for somewhat homomorphic encryption with random inputs and leakage,
that permits more efficient branching than with pure arithemtic circuits, both
in operation count and in multiplicative depth.

We hand-craft RCTs of low depth for secure e-voting which can scale to
greater parameters than with known homomorphic voting schemes, but with
similar privacy, offering a privacy advantage over mixnet-based schemes, which
only offer indistinguishability of permutations of votes, rather than indistin-
guishability of votes leading to the same result.

We do not claim that the two observations that lead to our results are novel,
but that our applications of them are.

Related work Our first circuits evaluate a sorting algorithm. There is earlier
work on sorting with low multiplicative depth [5] but they require encrypted
output, which only allows them to achieve multiplicative depth ⌈log ℓ+ 1⌉ +
⌈log n− 1⌉+ 1, where ℓ is the bit-length of the elements and n is the number of
elements compared to the ⌈log ℓ⌉ and ⌈log n+ 1⌉ two of our RCTs achieve.

There is previous work on using multiplicative homomorphic encryption for
post-quantum voting [6]. Their scheme uses bootstrapping, which is expensive,
and though they manage to compress plaintext votes to be linear in the entropy
rather than the number of options they still have intermediate ciphertexts where
the underlying plaintexts are linear in the number of options, so this still cannot
handle a large number of options, unlike our approaches.

There is also existing work on computing complex tally functions privately,
called tally-hiding in the literature, which usually involves viewing tallying as
an auditable or universally verifiable MPC protocol. Existing approaches tend
to instantiate with classical primitives [9, 11], which is no surprise considering
the gap in efficiency between classical and post-quantum MPC. Some of these
could be instantiated with post-quantum primitives instead, but it is unclear how
practical they would be in that setting. Our work can be seen as a continuation of
this line of work that specializes to MPC based on fully homomorphic encryption,

2

and optimizes for BGV in particular by minimizing the multiplicative depth of
the circuits used to avoid bootstrapping.

Structure of paper We start by introducing our RCT framework. Next we in-
troduce some low depth RCTs for various counting functions, such as sorting
and instant runoff voting. Then we define the cryptographic primitive, a some-
what homomorphic encryption scheme with verifiable encryption and decryption,
which we use to keep the internal values of the RCT hidden during evaluation.
Next we define a template for using RCTs to construct voting schemes using
these building blocks. Finally we discuss the parameters necessary and estimate
the runtime and artifact size of some of the schemes.

2 Randomized Circuit Trees

While homomorphic encryption can keep internal values hidden we use controlled
leakage of internal values for efficiency. Values can be obtained or verified using
verifiable distributed decryption.

Efficient Branching In arithmetic circuits branches generally have to be handled
by evaluating both sides of the branch and then using the branch condition
to discard a result. This can waste a lot of work and means that the circuit
computing the branch condition always adds to the depth.

In voting schemes we use distributed trust to have the parties doing the com-
putation also be the parties responsible for doing decryption, so we can optimize
branches by leaking the branch conditions. For this to preserve privacy we need
to make sure that the branch conditions we leak do not leak any information
beyond the result of the election.

Definition 1. A function f : A → B reduces to g : A → C if there exists a
polynomial time function h : C → B such that f = hg.

The algorithm we want to model is one where we look at the outputs of
previous circuits to decide which circuit to compute next. The individual outputs
can be thought of as hints to what the final output is, and the full sequence
of hints should be sufficient to compute the final output while providing no
additional information.

Definition 2. A circuit tree C is a function taking an integer n, and returning a
function from lists of values to circuits taking n inputs. We define the i-repeated
evaluation of Cn at l ∈ V n recursively as follows, where L0 is the empty list, and

Li+1 = Li∥Cn(Li)(l).

In the limit this produces a possibly finite sequence of hint values, C(l) = L∞.
Given a set A ⊂ V ∗ we say that C directly computes a function f : A → V ∗ if
for all l ∈ A, C(l) = f(l). We say that C computes f if f reduces to a function
directly computed by C, and that C opaquely computes f if this function reduces
to f .

3

If a circuit tree opaquely computes a function f , then seeing all its internal
outputs gives the same information as seeing just the final output of f .

Randomization Efficient privacy preserving computation can be made easier by
randomization. E.g., we can use a random permutation to erase information
about the order of a list. We extend our definition of circuit tree to capture this.

Definition 3. A randomized circuit tree (RCT) RC is a distribution δ over
V n, a function f : V n × V ∗ → V ∗, a circuit tree, C, that directly computes
it and a collapsing function g : V ∗ → A such that for all x, y ∈ supp(δ) and
v ∈ V ∗ we have g(f(x, v)) = g(f(y, v)). Using this equation we can define RC
to directly compute the function h : V ∗ → A such that h(v) = g(f(x, v)) for all
v ∈ V ∗. We say that RC opaquely computes h if C opaquely computes f and for
every v, w ∈ V ∗ such that h(v) = h(w), given a δ-distributed random variable
X, f(X, v) and f(X,w) have the same distribution.

The procedure that randomly generates input using δ and then evaluates C
from an opaque RCT will not leak anything more than the output of h even if
we reveal all the hints during the evaluation of C.

Efficient Validation RCTs can be used to compute, but for verification we can
often do better by using a circuit to check that an input yields a certain output.

Definition 4. Let Cn be the set of circuits taking inputs of length n. Given an
integer n, a family of functions Vn : V ∗ → V ∗ × Cn validates a circuit tree C at
n if for all x ∈ V ∗ and l ∈ V n, for (v, c) = Vn(x) we have c(l) = v iff C(l) = x.
We say that the family validates C if Vn validates it at n for all n. We also
call such a family a validator for C. A validator is opaque if every circuit in its
image reduces to the function computed by C.

For an opaque circuit tree there always exists a trivial opaque validator that
uses the original circuit tree directly. We write VC for a validator for C.

3 Some Randomized Circuit Trees for Voting

We start with an RCT computing the counting function that sorts the votes.
This is very powerful because this makes it impossible to distinguish honest
voters, though it might not sufficiently hide their votes.

We use the first RCT as inspiration for a specialized RCT for instant runoff
voting that allows hiding more information than the sorting function, preventing
italian style attacks.

Finally we describe an RCT computing sort that uses shuffling to improve
on the efficiency of the first RCT in some cases.

Only the last RCT will exploit the randomness, and only the others will
exploit controlled leakage of branch conditions. We leave it to further research to
investigate whether there exist approaches using both randomness and controlled
leakage that are more efficient or support additional counting functions.

4

All our RCTs are over Zp[X]/⟨ΦN (X)⟩, though we will simplify to working
with its factor fields and omit the details of parallelization and movement be-
tween the factor fields to simplify the exposition. Most of the circuits will go
even further and only work on 0 and 1 in the field. We call such values binary
and lists of them bitstrings in the rest of the text.

Our Circuits and RCTs will have parameters that are public and can be
used in branches and arguments that are private and can mainly be used by
circuit operations. The former are written as subscripts while the latter are in
parentheses. Sometimes the output of a circuit is used in a parameter, in which
case this output is a hint for the selection of the next circuit. Outputs that are
only used as arguments and in circuit operations constitute the internals of an
implicitly defined circuit. The length of an argument list is always public.

3.1 Depth Optimized Sorting for Generic Counting

Many existing homomorphic voting schemes work by counting the number of
votes for each option. This is essentially equivalent to doing counting sort. They
work by representing the votes as binary vectors with a single non-zero entry,
ensuring this is the case for the ballots using zero-knowledge proofs. The counting
can then simply add all the ballots and the result for each option can be read
from their index in the decrypted sum. With this method the length of the votes
is linear in the number of options, or exponential in the entropy of the options.

We propose RCTs consisting of circuits of low multiplicative depth where
the length of the votes is linear in the entropy of the valid votes. This makes
other counting functions practical for homomorphic counting, functions which
have traditionally been limited to shuffle based schemes.

We encode options into bitstrings of length ℓ, which circuits operate on. This
means that formally our counting function will not sort the votes but rather
output the binary votes in a sorted list together with some information about
the nonbinary votes. We use bitstrings because binary equality can be done with
fewer and shallower multiplications than equality in the full field.

We determine which votes are properly encoded in binary using the circuit
ValidateBin(b) that for each claimed bit bi computes (bi − 1)bi and outputs the
resulting values. This outputs a 0 vector iff all the bi’s are bits. This has multi-
plicative depth 1, requires 2|b| circuit operations and is easily parallelizable.

Improperly encoded votes (non-binary) are ignored by the rest of the RCT.
Thus who cast a valid vote and who did not becomes public, which to some extent
is unavoidable. Improperly encoded votes also leak details of their encoding.

The main building block of our counting algorithm is Matchb,S(v), a family
of circuits that check whether two bitvectors share values at certain indices.

5

Matchb,S(v)

return (
∏
i∈S

(if bi then vi else (1− vi)))

CountMatchb,S(v)

return
∑
v∈v

Matchb,S(v)

Countv,c(v)

if c = 0

return []

if |v| = ℓ

return (v, c)

c0 ← CountMatchv∥0,[|v|](v)

return Countv∥0,c0(v)∥Countv∥1,c−c0(v)

Lemma 1. Matchb,S has multiplicative depth ⌈log(#S)⌉ and uses at most 2#S−
1 operations.

Proof. Since S and b are parameters the circuits reduce to a multiplication of
#S values where each value needs at most one subtraction. The multiplicative
depth is achieved by using divide and conquer on the multiplications.

Using the matching circuits we build family of circuits, CountMatchb,S(v)
that count the number of votes matching a given bit pattern. Note that the
output of this circuit when applied to all valid votes does not care about the
order of those votes, which means that we, independently of b and S, can always
leak the output of these circuits without leaking any private data.

CountMatch only computes a sum, which does not add to the multiplicative
depth beyond what Match adds. It has at most 2#Sn− 1 operations. It should
be noted that we need the field to have characteristic greater than the number
of votes for this to give the correct result.

Our main algorithm, Count, works by recursively adding to a prefix while
continuously checking how many votes start with that prefix, terminating if
there are none and returning the prefix and count once it has the same length
as a vote. One might think of it as doing binary search on the candidates with
a positive number of votes.

The initial Count is used on the valid votes, with c being the number of valid
votes and v being the empty bitstring. The output will then be a list of pairs
(vi, ci), where ci is the number of occurrences of the vote vi in the valid votes.

Observe that many of the different CountMatch circuits used in the RCT have
overlapping sub-circuits of Match because parts of b are the same, which allows
us to optimize the number of circuit operations in practice by using memoization.

Theorem 1. Countv,c opaquely computes a function that given binary input re-
turns them in sorted order. It has multiplicative depth ⌈log ℓ⌉ and uses at most
v̂ℓ(⌈log ℓ⌉n+ n− 1) circuit operations, where v̂ is the number of unique votes.

Proof. The first part follows from the discussion above and the fact that only the
outputs of CountMatch are hints. For the second part the multiplicative depth is
⌈log ℓ⌉ from the maximal size of the S used in Match. To bound the number of
operations we start by counting at most ⌈log ℓ⌉ for each Match with memoized
multiplications, which leads to ⌈log ℓ⌉n+n−1 operations in CountMatch. Finally

6

we bound the number of nontrivial recursive branches in Count by v̂ and the
depth of nontrivial recursion by ℓ which bounds the number of CountMatch uses
by their product.

We can trivially bound v̂ by min(n, 2ℓ) but depending on the application
this might be much smaller in practice. In practice the uses of Match can also
be paralellized over the different voters.

Note that there are O(ℓ log ℓ) circuit operations rather than linearly many in
terms of ℓ. We can get linearity by having parallel elections where connections
between votes of different elections are obtained from hash chains. This requires
the scheme to support at least ℓ > 256. Using this approach also bounds the
multiplicative depth.

We can also construct a more efficient validator for this RCT that only does
the initial binarity check and checks for matches with the claimed votes, avoiding
the need to check short prefixes.

We have used the fact that parts of the computation are done in plain to
optimize the branching by aborting early on branches with no votes. Depending
on the details of an election we can take this even further. In many real elections
using plurality voting it is preferable to count candidates that are expected to
have many votes first and the result can often be calculated without counting all
the votes. With our circuit one can also greedily choose the branches that have
the most votes.

3.2 Applications to Structured Votes

The algorithm in the previous section applies to a generic electoral system but
the techniques used can also be specialized to specific systems for increased
efficiency and privacy. In particular it mitigates against italian style attacks,
where one encodes an identifier into the vote in a way that has minimal effect
on the result but can allow voters to prove what they voted for. In return we
need a specialized RCT that is less flexible.

We exemplify this by using the techniques from the previous section to build
a more specialized RCT for instant runoff voting.

Instant Runoff Voting Instant Runoff Voting is an electoral system where the
voters cast a vote with an ordered list of options. The counting works in rounds
where we keep track of a list of eliminated options and we count the number of
votes for each non-eliminated option of which the lower end is eliminated. This
continues until the remaining options reach below a certain threshold.

The options are encoded as ℓ length bitstrings, which are concatenated to
form a cp length list of options. Formally the counting function will output the
counts of the first non-eliminated option in the binary votes for each round and
some information about the non-binary votes.

As before we start by filtering out the non-binary votes. For the rest we need a
modified family of matching circuits, FirstFilteredMatche,b,S(v) that match with
respect to the first non-eliminated vote in the list of votes, v for a single voter
with which the RCT can proceed in a similar fashion as the generic method.

7

FirstFilteredMatche,b,S(v)

if |v| = 1

be ← 1− Σe∈eMatche,[|e|](v1)

bm ← Matchv,S(v1)

return be, bebm

m← ⌊|v|/2⌋
be,1, bm,1 ← FirstFilteredMatche,b,S([v1, . . . , vm−1])

be,2, bm,2 ← FirstFilteredMatche,b,S([vm, . . .])

be ← be,1 + be,2 − be,1be,2

bm ← bm,1 + (1− be,1)bm,2

return be, bp

ShuffleCount(d,v)

r← []

for i ∈ {0, 1}ℓid

vi ← Σj∈[n](vj ·Matchi,[ℓid](dj))

r← r∥vi
return r

The circuits recurse on the list of votes of a given voter. Here e is the list
of eliminated options, be is 0 if all the votes in the current subsequence are
eliminated and bm is 1 if there is a non-eliminated vote and the first is a match.

The circuit has multiplicative depth ⌈log cp⌉ + ⌈log ℓ⌉ and uses at most
2ℓcp#e+ 2cp#S − 7 + 6 · 2⌈log(cp)⌉ circuit operations.

Because of the significant worst case impact from the rounds, where in the
worst case we have as many rounds as options, we will not be using the binary
search method for counting. Instead we will have a small list of options that
we explicitly check for. We start with an empty list of eliminated options that
we add to as options get eliminated. Each round we count the votes for each
non-eliminated option.

Theorem 2. The modified Count described above has multiplicative depth ⌈log cp⌉+
⌈log ℓ⌉ and operation count at most 2ℓcpn2

ℓ + 3n · 22ℓ+⌈log(cp)⌉.

Proof. We can memoize Match for each vote-option pair. We can even memoize
the sum 1−Σe∈eMatche,[|e|](v1). This yields 2ℓcpn2

ℓ operations. The remaining
operations come from recursively processing the bm and be and summing them
up across voters at the end. We end up with at most 6 · 2⌈log(cp)⌉ − 1 operations
for the processing in one use of FirstFilteredMatch. Multiplying by n for the
number of voters and adding n for the operations required for the sum yields
6n ·2⌈log(cp)⌉. We get our final value by bounding the number of rounds by 22ℓ−1

in the worst case where only one option is eliminated each round.

The RCT has a multiplicative depth ⌈log cp⌉ + ⌈log ℓ⌉, which is comparable
to the ⌈log cpℓ⌉ we would get from lifting to the generic method.

The number of circuit operations can be much greater than with the generic
method since we have to perform multiple rounds, which the generic method
would do in the plain without circuits. It should be noted that the number of
operations in both cases are only rough bounds since we only focus on feasibility
for the runtime.

8

3.3 Sorting with Shuffling

The previous examples have not used any random input for the RCT. The idea
for our third RCT is to exploit random input to replicate what shuffle based
voting is doing.

The distribution for the RCT, δ, is the uniform distribution over n length
lists of distinct ℓid length bitstrings such that n ≤ 2ℓid . This will serve as a
random permutation of the votes. A sensible choice here is ℓid = ⌈log n⌉ but
using one greater than this can improve the efficiency of the rejection sampling
we need to do to actually compute δ.

The circuit tree for the RCT, ShuffleCount, takes a random input d, which
should come from δ, and a list of votes v. It sorts the votes using the elements of
d as sorting keys, which with random, hidden and duplicate-free d is the same
as shuffling.

This RCT is more flexible in that it can handle non-binary votes, so the votes
are ℓ-length vectors this time. The RCT also boils down to evaluating only a
single circuit.

Theorem 3. ShuffleCount is opaque and computes the function that sorts the
list of votes, v, and has multiplicative depth ⌈log ℓid + 1⌉ and operation count
less than 2n(ℓ+ 1)2ℓid .

Proof. Let d be the list of distinct bitstrings sampled from δ. The output of
the circuit is only the permuted list with some extra zero-votes inserted. The
extra zero-votes are located at indices where there are no i values in d, which
are uniformly random and independent of the ordering of the di. Opaqueness
follows from the transitivity of permutation and the fact that list that sort to
the same result are permutations of each other. The multiplicative depth follows
from the ℓid multiplications used in Match and the additional vj multiplication,
which we can use divide and conquer to optimize. Note that since vj is a vector
this is actually many multiplications but these can be done in parallel. For the
memoization of Match there is a real time-memory tradeoff. A reasonable choice
here is to memoize the prefixes since those will change less often, which lets us
easily remove older memoized values once they will no longer be used. With this
choice we get n2ℓid+1 total multiplications in the Match across all voters and i,
an additional nℓ2ℓid multiplications from vj and less than nℓ2ℓid additions from
the sum.

With this RCT the multiplicative depth scales with the number of voters
rather than the number of options. This could thus be more suitable than our
first RCT for elections where there are orders of magnitude more options than
voters. This RCT is also immediately linear in ℓ without the need to resort to
hash chains, and since we do not need binary votes there is a potential for fitting
more options in less space. Additionally all additions in the RCT will only add
up to at most 1, which means that we are free to use a low p.

9

4 RCT Homomorphic Encryption

To implement Randomized Circuit Trees for voting we will use a Homomor-
phic Encryption scheme with Verifiable Encryption and Verifiable Distributed
Decryption, which we will call RCT Homomorphic Encryption. We use security
notions that are near-identical to the security notions of the voting scheme.

Though the RCTs we constructed in section 3 are built with BGV in mind we
do not we do not prove that a Homomorphic Encryption primitive like BGV can
be used to construct a secure RCT Homomorphic Encryption Scheme. Future
work may want to use a different scheme entirely.

Definition 5. A RCT Homomorphic Encryption Scheme for nt parties is a set
of circuits C, one key generation protocol and 5 algorithms:

– KG - Trusted key generation outputs decryption keys sk0, . . . , sknt−1 ∈ SK,
an evaluation key evk ∈ EVK, a validation key vk ∈ VK and an encryption
key pk ∈ PK.

– E - Verifiable encryption takes the public key pk ∈ PK, a message v ∈ V
and outputs a ciphertext c ∈ CT and a proof πc ∈ Π

– D - Verifiable partial decryption takes a decryption key ski ∈ SK and a
ciphertext c ∈ CT and outputs a partial decryption pi ∈ V and a proof
πp,i ∈ Π.

– H - Homomorphic evaluation takes an evaluation key evk ∈ EVK, a circuit
C ∈ C and a ciphertext list c ∈ CT #argC and outputs a ciphertext list y ∈ CT .

– V - Validation takes a validation key vk ∈ VK, a token t ∈ {E ,D}, additional
data dependent on the token and a proof π : Π and outputs ⊥ or ⊤.

– CS - Decryption share combination takes a vector of pi ∈ V and outputs a
single value v ∈ V .

We use three different games for the security definitions that correspond to
the scenarios where everyone is honest, where no one is honest and where one
decryption key holder is honest. The two first games are in Fig. 1.

First we have the correctness game that supposes that everything validates
and the output is computed according to the circuit if everyone is honest.

Definition 6. The Voting HE scheme is correct if for v and C such that |v| =
#arg(C) all the assertions in Correctness(C,v) always hold.

Next we have the integrity game, where the adversary wins if they can pro-
duce valid inputs that make decryption fail to validate or if every validation
passes, but we still get the wrong result. If any of the assertions fail the adver-
sary immediately loses.

Note that this definition requires the identity circuit, ID, to be in C.
Finally we have the privacy game in Fig. 2, which we frame as a distinguishing

game. The adversary has access to an oracle, OPrivb,pk,sk,evk, and can perform
two kinds of queries, an encryption query which encrypts two votes and only
returns one encryption according to the secret bit, b, and a evaluate and decrypt

10

Correctness(C,v)

1 : sk, evk, pk, vk← KG
2 : for i ∈ [|v|]
3 : ci, πc,i ← EKG(vi)

4 : assert Vvk,E(ci, πc,i)

5 : y← Hevk(c, C)
6 : for i ∈ [|sk|]
7 : pi, πp,i ← Dski(y)

8 : assert Vvk,D,i(y, pi, πp,i)

9 : assert C(v) = CS(p)

Integrity(A)

1 : sk, evk, pk, vk← KG
2 : c, πc,p, πp, C ← A(sk, evk, pk, vk)
3 : assert ∀i, |c| = |πc| = |pi| = #arg(C)
4 : assert |p| = |πp| = nt

5 : for i ∈ [|c|]
6 : assert Vvk,E(ci, πc,i)

7 : y← Hevk(c, C)
8 : for i ∈ [nt]

9 : if Vvk,D,i(y,Dski(y))

10 : return ⊥
11 : assert Vvk,D,i(y, pi, πp,i)

12 : y′ ← Hevk(c, ID)

13 : for i ∈ [|sk|]
14 : p′i, πp′,i ← Dski(y

′)

15 : return ¬C(CS(p′)) = CS(p)

Fig. 1: Correctness and integrity games for RCT Homomorphic Encryption

Privacy(A)

1 : sk, evk, pk, vk← KG
2 : b←$ {0, 1}
3 : b′ ← A(sk{2,...}, evk, pk, vk,OPrivb,pk,sk,evk)

4 : return b = b′

OPrivb,pk,sk,evk(E , v0, v1)

c0, πc0 ← Epk(v0)
l0 ← l0∥(c0, πc0)

c1, πc1 ← Epk(v1)
l1 ← l1∥(c1, πc0)

return cb, πcb

OPrivb,pk,sk,evk(D, c, πx, C)

assert |c| = |πc| = #arg(C)
for i ∈ [|c|]

assert Vvk,E(c, πc,i)

if (ci, πc,i) ∈ lb

c′i, πc′,i = l1−b,i

else

c′i, πc′,i = ci, πc,i

c← Hevk(c, C)
c′ ← Hevk(c

′, C)
for i ∈ [|sk|]

pi, πp,i ← Dski(c)

assert Vvk,D,i(c, pi, πp,i)

p′i, πp′,i ← Dski(c
′)

assert Vvk,D,i(c
′, p′i, πp′,i)

v, v′ ← CS(p), CS(p′)

assert v = v′

return p, πp

Fig. 2: Privacy game for RCT Homomorphic Encryption

11

query which evaluates a circuit on a list of ciphertexts and decrypts the result for
the adversary if swapping the ciphertexts in the input that were returned from
the encryption query would yield the same result. In the game the adversary is
given all the keys except one of the secret keys, and can make as many queries
as they want until they guess the secret bit.

Note that we do not capture attacks that involve asking for decryptions on
circuits evaluated on non-fresh ciphertexts. Nor do we protect against replay
attacks. This means that we always have to validate the freshness of the cipher-
texts we homomorphically evaluate and decrypt, as well as remove duplicates.
Techniques such as embedding identities into the zero knowledge proofs can be
used with a modified definition.

If there is an assertion failure, we immediately end the game and flip a random
coin to decide if the adversary wins or loses. The goal of the adversary is to do
better than a random coin flip at guessing which bit the oracle has.

Using RCT Homomorphic Encryption we can perform distributed evaluation
of circuit trees using the protocol in Fig. 3 while keeping inputs hidden and only
revealing the hints. Here we use a Share sub-protocol, which collects a value from
each of the protocol participants and returns it. This can be implemented with
standard digital signatures and can be initialized as part of the trusted setup.
The lemma follows directly from definitions.

HEEvalCircuitTreei,C(x)

h, n, j ← [], |x|, 0
loop

y← Hevk(x, Cn(h))
pi, πpi ← Dski(y)

p← Sharei(pi)

if CS(p) = []

break

h← h∥CS(p)
y← Hevk(x,VC(h)1)
pi, πpi ← Dski(y)

p, πp ← Sharei(pi, πpi)

return h,p, πp

Fig. 3: Protocol for evaluating a circuit tree using a RCT HE Scheme

Lemma 2. When using a correct HE Scheme honestly executed HEEvalCircuitTree
produces the same result as evaluating the circuit tree if the result is finite.

12

5 Cryptographic Voting

Before we can introduce our voting scheme we have to define what they are. We
will be using an extractable voting scheme to simplify the security definitions and
proofs. This corresponds to our choice for homomorphic encryption to always
include the identity circuit.

Definition 7. An Extractable Voting Scheme is a tallying function f , one setup
protocol, one casting algorithm, one tallying protocol, one verification algorithm
and one extraction algorithm:

– Setup - Trusted setup outputs tallying keys tki ∈ T K, a validation key vk ∈
VK and a casting key ck ∈ CK.

– Cast - Verifiable casting takes the casting key ck ∈ CK, a vote v ∈ V and
outputs a ballot c ∈ B and a proof πc ∈ Π

– Tally - Tallying takes a list of ballots ci ∈ B with proofs πci ∈ Π, a partial
tallying key tki ∈ T K and outputs a result r ∈ R and a proof πr

– Extract - Extraction takes all the tallying keys tk ∈ T K, a ballot c ∈ B, a
validation key vk ∈ VK, and outputs a vote v ∈ V or ⊥.

– Validate - Validation takes a validation key vk ∈ VK, a token t ∈ {Cast,Tally},
additional data dependent on the token and a proof π ∈ Π and outputs ⊥/⊤.

The correctness game (Fig. 4) supposes that honest execution passes all the
validations, the ballots produced extract properly and the result is the same as
we would get when using the counting function directly.

Definition 8. A Voting scheme is correct if all the assertions in Correctness(v)
always pass for all lists of votes v.

In the integrity game (4) the adversary wins if they can produce valid ballots
that fail to extract, where an honest tally fails to validate or can use them to
produce a validated tally result that is inconsistent with the counting function
on the extracted votes.

The reason we need extractability is to be able to peek inside the ballots
for the integrity game. Some definitions allow both honest and adversarially
generated ballots and only require a result consistent with the honest votes. This
does not work for our scheme because deciding whether the output of a generic
tallying function is consistent with a certain partial input can be inefficient.

If any of the assertions fail the adversary immediately loses.
In the privacy game (5) the adversary wins if they can distinguish between

tallies yielding same result involving one of two sets of votes.
Note that this definition does not capture replay attacks. We can protect

against replay attacks by filtering equal votes before tallying. We could also
prevent replay attacks by mixing authentication data with the casting proofs,
but to simplify exposition we do not.

If there is an assertion failure, we immediately end the game and flip a random
coin to decide if the adversary wins or loses. The goal of the adversary is to do
better than a random coin flip at guessing which bit the oracle has.

13

Correctness(v)

1 : tk, vk, ck← Setup

2 : for i ∈ [|v|]
3 : ci, πc,i ← Castck(vi)

4 : assert Validatevk,Cast(ci, πc,i)

5 : assert vi = Extracttk,vk(ci)

6 : r, πr ← Tally(c)

7 : assert Validatevk,Tally(r, πr)

8 : assert r = f(v)

Integrity(A)

1 : tk, ck, vk← Setup

2 : c, πc, r, πr ← A(tk, ck, vk)
3 : for i ∈ [|c|]
4 : assert Validatevk,Cast(ci, πc,i)

5 : if Extracttk,vk(ci) = ⊥
6 : return ⊤
7 : vi ← Extracttk,vk(ci)

8 : r′, πr′ ← Tallytk(c)

9 : if Validatevk,Tally(r
′, c, πr′) = ⊥

10 : return ⊤
11 : assert Validatevk,Tally(r, c, πr)

12 : return ¬f(v) = r

Fig. 4: Correctness and integrity games for a voting scheme

Privacy(A)

1 : tk, ck, vk← KG
2 : b←$ {0, 1}
3 : c, πc ← A(tk{2,...}, ck, vk,OVPrivb,ck)

4 : assert |c| = |πc|
5 : l0, l1 ← OVPrivb,ck, c′ ← c, πc′ ← πc

6 : for i ∈ [|c|]
7 : assert Validatevk,Cast(ci, πci)

8 : for j ∈ [|lb|]
9 : if (ci, πc,i) = lb[j]

10 : (c′i, πc′,i)← lb−1[j]

11 : r, πr ← Tallytk1(lb∥c,A)

12 : r′, πr′ ← Tallytk1(lb−1∥c,A)

13 : assert Validatevk,Tally(r, lb∥c, πr)

14 : assert Validatevk,Tally(r
′, lb−1∥c, πr′)

15 : assert r = r′

16 : b′ ← A(r, πr, r
′, πr′)

17 : return b = b′

OVPrivb,ck(v0, v1)

c0, πc0 ← Castck(v0)

l0 ← l0∥(v0, c0, πc0)

c1, πc1 ← Castck(v1)

l1 ← l1∥(v1, c1, πc1)

return cb, πcb

Fig. 5: Privacy game for a voting scheme

14

All our voting schemes follow the same template. Given an opaque random-
ized circuit treeRC implementing the tallying function and a RCT Homomorphic
Encryption Scheme HE = (KG, E ,D,H,V, CS) capable of evaluating all the cir-
cuits in RC and the ones used in HEGetRandom, we build the voting scheme as
described in Fig. 6.

Setup

sk, evk, pk, vk← KG
b←$ δ

d, πd ← Epk(b)
tki ← ski, evk,d

ck← pk

vk← evk, vk,d

return tk, ck, vk

Castck(v)

c, πc ← Epk(v)
return c, πc

Tallytki(c)

h,p, πp ← HEEvalCircuitTreei,C(d∥c)
r ← g(h)

πr ← h,p, πp

return r, πr

Extracttk(c)

y← Hevk(c, ID)

for i ∈ [|tk|]
pi, πp,i ← Di,tki(y)

assert Vvk,D,i(pi, πp,i,y)

v ← CS(p)
πv ← p, πp

return v, πv

Validatevk,Cast(c, πc)

return Vvk,E(c, πc)

Validatevk,Tally(c, r, πr)

y← Hevk(d∥c,VC(h)1)
for i ∈ [nt]

p, πp ← πr,i

assert Vvk,D,i(p, πp,y)

assert CS(p) = VC(h)0 ∧ g(h) = r

Fig. 6: Voting Scheme Template

The proofs for the following claims can be found in appendix C. They are
trivial because when substituting the tally the games are nearly identical, except
that for the voting scheme the adversary we are more restricted in which circuits
can be used.

Theorem 4. The voting scheme is correct if the RCT Homomorphic Encryption
Scheme is correct.

Theorem 5. Given an adversary A against the integrity game for the voting
scheme, there exists an adversary against the integrity game for the RCT Ho-
momorphic Encryption Scheme, with equal or greater advantage.

Theorem 6. Given an adversary A with advantage A against the privacy game
for the voting scheme there exists a trivial wrapper adversary using A with at

15

least as much advantage against the privacy game for the RCT Homomorphic
Encryption Scheme.

16

6 Instantiating the HE Scheme

Our main goal with this section is to demonstrate viability. Choosing optimal
parameters for leveled homomorphic encryption with BGV is an active research
area [8], and combining this with verifiable encryption and decryption does not
make it easier. We leave optimal parameter selection to future work.

As mentioned we will be using BGV [4] for encryption. We refer to Aranha et
al. [1] for how to do verifiable encryption and verifiable distributed decryption.
For our comparison we use 11000 voters as in Black et al. [2]. This means that
our schemes using counting will need to instantiate BGV with a plaintext ring of
characteristic at least 11000. We choose 65537. We will provide parameters for
votes with 256 bits of entropy, which is enough for most names and can fit instant
runoff voting votes with cp = 16 and ℓ = 4. Our generic RCT using counting
is woefully inefficient in the worst case when every voter votes differently, so
we omit its analysis, though it could be interesting to investigate whether this
limitation matters in practice. For the shuffling RCT we use ℓid = 14, which is
enough for 11000 voters.

Using the parameters for multiplicative depth 9 from Gouert et al. [8], which
uses a ring of characteristic 65537 we get 58 µs per multiplication when amortiz-
ing over the 3840 slots, and since our RCTs are highly parallel we can run most
operations over multiple slots. This gives us around 1.48 · 109 multiplications a
day, and additions are faster than multiplications. The parameter choice uses
F655376 as the field for the circuits, which gives each slot an entropy of over 96
bits, so ℓ = 3 allows 288 bits of entropy for our shuffling RCT.

The ciphertexts with this parameter set have a size of 23040 · 360 bits, or
1.04 MB. The decryption proofs can be batched by using a random linear com-
bination of the ciphertexts with their decryptions subtracted, so the size of this
is negligible compared to the size of the ballots. The proofs of valid encryption
are around the same order of magnitude as the ciphertexts.

Counting function entropy mult. depth circ. ops.

Instant Runoff 256 6 158× 106

Generic w/ Shuffling ∼ 288 5 1442× 106

Fig. 7: Efficiency estimates for some of our voting RCTs

In conclusion, these schemes yield runtime and artifact size that are large
but practical. We improve on Black et al. [2] by providing a lattice based voting
scheme that can handle instant runoff voting with 16 candidates and more.

17

References

[1] Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde.
“Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-
Based Assumptions”. In: ACM CCS 2023: 30th Conference on Computer
and Communications Security. Ed. by Weizhi Meng, Christian Damsgaard
Jensen, Cas Cremers, and Engin Kirda. Copenhagen, Denmark: ACM
Press, Nov. 2023, pp. 1467–1481. doi: 10.1145/3576915.3616683.

[2] Ian Black, Emma McFall, Juliet Whidden, Bryant Xie, and Ryann Cartor.
Practical Quantum-Safe Voting from Lattices, Extended. Cryptology ePrint
Archive, Report 2022/1686. 2022. url: https://eprint.iacr.org/2022/
1686.

[3] Xavier Boyen, Thomas Haines, and Johannes Mueller. Epoque: Practical
End-to-End Verifiable Post-Quantum-Secure E-Voting. Cryptology ePrint
Archive, Report 2021/304. 2021. url: https://eprint.iacr.org/2021/
304.

[4] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled)
fully homomorphic encryption without bootstrapping”. In: ITCS 2012: 3rd
Innovations in Theoretical Computer Science. Ed. by Shafi Goldwasser.
Cambridge, MA, USA: Association for Computing Machinery, Jan. 2012,
pp. 309–325. doi: 10.1145/2090236.2090262.

[5] Gizem S. Çetin, Yarkin Doröz, Berk Sunar, and Erkay Savas. “Depth
Optimized Efficient Homomorphic Sorting”. In: Progress in Cryptology -
LATINCRYPT 2015: 4th International Conference on Cryptology and In-
formation Security in Latin America. Ed. by Kristin E. Lauter and Fran-
cisco Rodŕıguez-Henŕıquez. Vol. 9230. Lecture Notes in Computer Science.
Guadalajara, Mexico: Springer, Cham, Switzerland, Aug. 2015, pp. 61–80.
doi: 10.1007/978-3-319-22174-8_4.

[6] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
“A Homomorphic LWE Based E-voting Scheme”. In: Post-Quantum Cryp-
tography - 7th International Workshop, PQCrypto 2016. Ed. by Tsuyoshi
Takagi. Fukuoka, Japan: Springer, Cham, Switzerland, Feb. 2016, pp. 245–
265. doi: 10.1007/978-3-319-29360-8_16.

[7] Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler.
“Practical Quantum-Safe Voting from Lattices”. In: ACM CCS 2017: 24th
Conference on Computer and Communications Security. Ed. by Bhavani
M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. Dallas,
TX, USA: ACM Press, Oct. 2017, pp. 1565–1581. doi: 10.1145/3133956.
3134101.

[8] Charles Gouert, Rishi Khan, and Nektarios Georgios Tsoutsos. Optimizing
Homomorphic Encryption Parameters for Arbitrary Applications. Cryptol-
ogy ePrint Archive, Report 2022/575. 2022. url: https://eprint.iacr.
org/2022/575.

[9] Nicolas Huber et al. “Kryvos: Publicly Tally-Hiding Verifiable E-Voting”.
In: ACM CCS 2022: 29th Conference on Computer and Communications
Security. Ed. by Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine

18

https://doi.org/10.1145/3576915.3616683
https://eprint.iacr.org/2022/1686
https://eprint.iacr.org/2022/1686
https://eprint.iacr.org/2021/304
https://eprint.iacr.org/2021/304
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-319-22174-8_4
https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1145/3133956.3134101
https://doi.org/10.1145/3133956.3134101
https://eprint.iacr.org/2022/575
https://eprint.iacr.org/2022/575

Shi. Los Angeles, CA, USA: ACM Press, Nov. 2022, pp. 1443–1457. doi:
10.1145/3548606.3560701.

[10] Guillaume Kaim, Sébastien Canard, Adeline Roux-Langlois, and Jacques
Traoré. “Post-quantum Online Voting Scheme”. In: FC 2021 Workshops.
Ed. by Matthew Bernhard et al. Vol. 12676. Lecture Notes in Computer
Science. Virtual Event: Springer, Berlin, Heidelberg, Germany, Mar. 2021,
pp. 290–305. doi: 10.1007/978-3-662-63958-0_25.

[11] Kim Ramchen, Chris Culnane, Olivier Pereira, and Vanessa Teague. “Uni-
versally Verifiable MPC and IRV Ballot Counting”. In: FC 2019: 23rd In-
ternational Conference on Financial Cryptography and Data Security. Ed.
by Ian Goldberg and Tyler Moore. Vol. 11598. Lecture Notes in Computer
Science. Frigate Bay, St. Kitts and Nevis: Springer, Cham, Switzerland,
Feb. 2019, pp. 301–319. doi: 10.1007/978-3-030-32101-7_19.

A Untrusted Setup

While our scheme uses trusted setup practical applications often require un-
trusted setup. We show how to efficiently perform the setup in an untrusted
setting.

“Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-
Based Assumptions”[1] already touches upon how to perform distributed setup
for BGV. The interesting part of the setup is the part that samples an encrypted
random element from the distribution of the RCT. For many distributions, such
as the distribution used in our shuffle scheme, we can do rejection sampling
homomorphically to hide the random element from the trustees given that at
least one trustee is honest. We can also use homomorphic encryption with zero
knowledge proofs to prove that the resulting ciphertext is an encryption of an
element in the support.

We start with showing how to do rejection sampling with circuits. With
our RCT for shuffling in mind we also want to sample the bits independently
and reject based on previously sampled bits because this allows us to sample
one bitstring in the list of distinct bitstrings at a time and reject if there is a
collision.

Definition 9. A Rejection Sequence S is a finite sequence of circuits taking a
strictly increasing number of arguments and returning a single boolean result such
that there exists a b such that S0(b) = 1 and for any b such that Si−1(b) = 1,
there exists a b′ such that Si(b∥b′) = 1. A rejection sequence S defines the
following algorithm for rejection sampling using a random tape r;

19

https://doi.org/10.1145/3548606.3560701
https://doi.org/10.1007/978-3-662-63958-0_25
https://doi.org/10.1007/978-3-030-32101-7_19

RejectionSampleS(r)

i, l,b← 0, 0, []

while i < |S|
b′ ← getr(#arg(Si)− l)

if Si(b∥b′) = 1

i, l,b← i+ 1,#arg(Si),b∥b′

return b

We say that the rejection sequence implements the distribution induced by this
algorithm. A rejection sequence is uniform if for all Si and b ∈ {0, 1}#arg(Si−1)

such that Si−1(b) = 1 the number of b′-s such that Si(b∥b′) = 1 is independent
of b. For uniform rejection sequences we define the accept probability of S at
i, Pi

S , as the proportion of b′ where this happens.

Note that the support of the distribution induced by S is the set of b such
that Si(b) = 1 for all i.

Theorem 7. A uniform rejection sequence implements a uniform distribution.

Proof. For a uniform rejection sequence the probability of sampling any given
element is either zero or

∏
i Pi

S

Theorem 8. For a uniform rejection sequence S, the distribution of outputs
of RejectionSampleS and the distribution of outputs of the internal Si calls are
independent.

Proof. The outputs of the internal Si calls are 1 with probability Pi
S and 0

otherwise. This probability only depends on the index, which depends only on
the output of previous Si calls.

This tells us that the outputs of S calls in a uniform rejection sequence do
not leak anything about the output other than that it is in the support.

Using these rejection sequences we can generate random input for circuit
trees.

A.1 Validation

Similarly to with RCTs we can validate the output of a rejection sequence by
checking that a value is in its support instead of reusing the rejection sequence
to recompute it.

Definition 10. Let S be a rejection sequence, then a circuit C with #arg(S)
arguments and one output validates S if it outputs 1 precisely for the support of
S.

We can always construct a validator by combining S with ValidateBin. We
use VS for an arbitrary validator for S.

20

A.2 Homomorphic Evaulation

To homomorphically evaluate rejection sequences we first need to evaluate a
random tape to use as input for the rejection sequence. The random tape works
by having all the parties XOR random binary inputs.

Because computing XOR adds multiplicative depth we reset the final bit-
string by creating a fresh sharing of it. This does mean that we don’t have a
sampled value, but rather a sharing of a sampled value, and the RCTs need their
circuits augmented to add together the shares first.

HEGetRandomi,pk,vk,ski,evk(n)

bi ←$ {0, 1}n

ci, πci ← Epk(bi)

c, πc ← Sharei(ci, πci)

for i ∈ [|c|]
assert Vvk,E(ci, πc,i)

r← Hevk(r, ci,XOR)

ei ←$ V

di, πdi ← Epk(ei)

d, πd ← Sharei(di, πd,i)

for di ∈ d

assert Vvk,E(di, πdi)

r← Hevk(r,di, SUB)

pi, πpi ← Dski(r)

p, πp ← Sharei(pi, πpi)

for pi ∈ p

assert Vvk,D,i(πpi ,pi, r)

x← CS(p)
return d,x, πd

XOR(a,b)

for i ∈ [|a|]
ci ← ai + bi − 2 ∗ ai ∗ bi

return c

Theorem 9. With a correct HE scheme and honest key generation all the as-
sertions in an honestly executed HEGetRandom succeed and it produces plaintexts
x, ciphertexts di and encryption proofs πd,i such that the encryption proofs val-
idate the di-s and summing x and the ei used to get the di-s element wise yields
a n-length bitstring b.

Proof. The assertions involving V succeed because the HE scheme is correct
and all the inputs are honestly generated. For the rest we need to keep track
of the plaintexts used to generate the ciphertexts. The bi are random n-length
bitstrings, so the ci are n-length encryptions of random bitstrings. The plaintext
in r, let us call this b, is the XOR of the random bitstrings, which is also a n-
length random bitstring. For the rest we can verify that x = r′ −

∑
i ei so

x+
∑

i ei = b, which is a n-length bitstring.

21

Theorem 10. If every party except one in HEGetRandom samples bi non-uniformly
and the output validates, then the output encodes a uniformly random bitstring.

Proof. If the xor of the semi-honest parties is binary, then xoring this with a
uniform bitstring yields a uniform bitstring. If the xor is not binary, then using
the xor circuit on it and a bitstring cannot produce a bistring, so the validation
is guaranteed to fail. If the validation succeeded then we must get a uniform
bitstring.

Using the random tape, a rejection sequence and an RCT HE we build a
rejection sampling protocol, HERejectionSample in Figure 8.

HERejectionSamplei,S,pk,vk,ski,evk

j ← 0

d← []

πd ← []

x← []

while j < |S|
d′,x′, πd′ ← HEGetRandomi,pk,vk,ski,evk(#argSj)
y← Hevk(d

′,x′,ADD)

y← Hevk(y,Sj)
pi, πpi ← Dski(y)

p, πp ← Sharei(pi, πpi)

for pk ∈ p

assert Vvk,D,i(pk, πpk ,y)

v← CS(p)
if v = 1

j ← j + 1

d← d∥d′

πd ← πd∥πd′

x← x∥x′

y← Hevk(d,x,VS)
pi, πpi ← Dski(y)

p, πp ← Sharei(pi, πpi)

return d,x,p, πd, πp

Fig. 8: Homomorphic Rejection Sampling

Lemma 3. With a correct HE scheme and honest key generation all the asser-
tions in an honestly executed HERejectionSample succeed and it produces plain-
texts x, ciphertexts di and encryption proofs πd,i such that the encryption proofs

22

validate the di and summing x and the ei used to get di element wise yields a
bitstring b such that evaluating Sj on prefixes of b always returns 1

Proof. From Theorem 9 and its proof we know that all the assertions involving V
will succeed and that for each iteration of the while loop there exist plaintexts e′i
encrypting to the d′

i and a #argSj-length bitstring b′ such that x′+
∑

i e
′
i = b′.

For the final assertion and properties of the outputs we proceed by induction on
the length of S. In the base case everything is length zero, so the assertion at
the end is trivial, and the lemma holds vacuously.

For the induction step the induction hypothesis on S with the last circuit
removed means that before the last iteration of the while loop the proofs πd are
valid for d and there exists a binary vector b satisfying the lemma on all but
the last element of S.

Since honest evaluation and decryption corresponds to evaluating the circuit
on the underlying plaintext v = 1 iff Sj(b∥b′) = 1. After executing the contents
of the if statement we have x+

∑
i ei∥e′i = b∥b′ where ei∥e′i encrypts to di.

Corollary 1. In the above lemma VS(b) = 1, and p are shares combining to 1.

By using HERejectionSample we can do distributed setup with the same prim-
itives and trust assumptions we need anyways.

B RCT for Limited Voting

Limited Voting is an electoral system where the voters get to vote for a small
set of different options at once. The voter submits a list of votes. The result is a
list of options with the number of votes they got.

Options are encoded the same way as our first RCT, except now each vote
will have a cp length list of distinct options. We leak information about the votes
with invalid encoding. Formally our counting function produces a sorted list of
the nonbinary votes from voters that did not vote for the same option multiple
times in addition to some information about votes from voters with duplicated
or non-binary votes.

As with the first RCT the we start by filtering out voters with non-binary
votes using ValidateBin. The next step is to check for duplicated votes among
the votes of each of the remaining voters. To do this we use the following circuit
to check for equality of ℓ-length bitstrings;

Eq(v,v′)

return
∏
i∈[ℓ]

1− (vi − v′i)
2

CheckDup(v)

return
∑

0≤i<j<|v|

Eq(vi, vj)

The circuit outputs 1 if they are equal and 0 if they are not. It needs 4ℓ− 1
circuit operations and has multiplicative depth ⌈log(ℓ)⌉+ 1.

We then use this circuit to check that all pairs of votes of a given voter
are distinct. For efficiency we instead count the number of pairs that are equal,
which reveals information about the votes of voters with invalid votes but gives
the same result for all voters with valid votes.

23

Lemma 4. CheckDup has multiplicative depth ⌈log ℓ⌉+1 and uses 2ℓcp(cp−1)−1
operations.

Proof. The multiplicative depth comes solely from Eq, which multiplies ℓ values
that have already been multiplied once. The number of operations can be easily
counted.

It is also easy to parallelize across different voters.
After filtering non-binary votes and removing duplicates we can concatenate

the votes from each individual voter and count them as in Section 3.1.

Theorem 11. The count described above has multiplicative depth ⌈log ℓ⌉ and
uses at most v̂ℓ(⌈log ℓ⌉ncp + ncp − 1) circuit operations.

Proof. This follows immediately from instantiating Count with cpn votes.

As with generic method the validation circuits are dwarfed by the final count-
ing circuits for reasonable elections.

Looking at just the cost of counting we can compare the efficiency of the
specialized limited voting RCT to what we would get by lifting to the generic
RCT by considering lists of options as options in their own right, which yields
multiplicative depth ⌈log cpℓ⌉ and operation count at most v̂ℓcp(⌈log ℓcp⌉n+n−
1). The multiplicative depth of the specialized method is significantly better. The
operation count is also better but the comparison somewhat misleading since the
number of unique votes, v̂, will be different for both counting methods. With
the specialized method it is bounded by min(ncp, 2

ℓ) while with the generic
method it is bounded by min(n, 2ℓ+cp), which makes the specialized method
much more suited for elections with the number of options on the order of the
number of voters. The specialized method might also have more duplicated votes
in practice.

Similarly to the generic method we can construct a validator that only checks
the binarity and lack of duplicates and matches with the full options that are
actually present in the votes.

C Proofs from Section 5

Theorem 12. If the underlying HE scheme is correct, then the voting scheme
is also correct.

Proof. Correctness of the underlying HE scheme guarantees that all honestly
generated ciphertexts validate, all honestly generated decryptions from those
ciphertexts validate and that the result after decryption is the same as the circuit
applied to the plaintexts used to generate the encryptions.

We investigate the assertions in the correctness game for the voting scheme.
The cast validation just validates the honest encryption, so it succeeds. The

extract validation checks that we get back the underlying vote when we use the
identity circuit, which succeeds. The tally validation checks that the decryptions

24

computed in the tally are valid, which succeed. It also checks that the validator
validates the output, which succeeds from the definition of validator and the
computation of CS(p), and g(h) = r, which is trivial in the honest case. The
final assertion in the game checks that the result of the tally corresponds to
the tallying function, which succeeds because the result of the tally comes from
evaluating a circuit tree that evaluates the tallying function.

IntegrityReductionA(sk, evk, pk, vk)

b←$ δ

d, πd ← Epk(b)
tki ← ski, evk,d

ck← pk

vk← evk, vk,d

c, πc, r, πr ← A(tk, ck, vk)
for i ∈ [|c|]

if Extracttk(ci) = ⊥
y← Hevk(c, C)
for i ∈ [|sk|]

pi, πp,i ← Dski(y)

ci, πc,i,p, πp, ID

return d∥c, πd∥πc,p, πp,VC(h)1

Fig. 9: Integrity Game Reduction

Theorem 13. Given an adversary A with advantage A against the integrity
game for the voting scheme IntegrityReductionA

1 is an adversary with at least as
much advantage against the integrity game for the RCT Homomorphic Encryp-
tion Scheme.

Proof. Consider the case where A wins the game. In the first case they win by
making extraction fail, which means that the ballot that made extraction fail was
a valid encryption. In this case IntegrityReductionA wins by making honest de-
cryption of evaluated identity circuit fail to validate. In the second caseA wins by
making the honest tally result fail to validate, in which case IntegrityReductionA
wins by making honest decryption of the evaluated validation circuit fail to val-
idate. In the final case A wins by making the final result inconsistent with the
result, at which point all the decryptions and encryptions are valid. In this case
IntegrityReductionA wins by making the final equality in the game not hold. Since
A winning always means that IntegrityReductionA wins we can deduce that the
latter has at least as much advantage.
1 from Figure 9

25

Theorem 14. Given an adversary A with advantage A against the privacy
game for the voting scheme there exists a trivial wrapper adversary using A with
at least as much advantage against the privacy game for the RCT Homomorphic
Encryption Scheme.

Proof. We do not provide an explicit reduction this time. The idea is the similar
as with integrity. Use the game for the RCT Homomorphic Encryption Scheme
to generate the inputs for A by performing most of the honest setup. Use the
oracle to do the tally and encryptions, and find that the resulting adversary
always wins when A does.

26

	Depth Optimized Circuits for Lattice Based Voting with Large Candidate Sets

