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Abstract

We investigate the notion of bit-security for decisional cryptographic properties, as originally
proposed in (Micciancio & Walter, Eurocrypt 2018), and its main variants and extensions,
with the goal clarifying the relation between different definitions, and facilitating their use.
Specific contributions of this paper include: (1) identifying the optimal adversaries achieving
the highest possible MW advantage, showing that they are deterministic and have a very simple
threshold structure; (2) giving a simple proof that a competing definition proposed by (Watanabe
& Yasunaga, Asiacrypt 2021) is actually equivalent to the original MW definition; and (3)
developing tools for the use of the extended notion of computational-statistical bit-security
introduced in (Li, Micciancio, Schultz & Sorrell, Crypto 2022), showing that it fully supports
common cryptographic proof techniques like hybrid arguments and probability replacement
theorems. On the technical side, our results are obtained by introducing a new notion of
“fuzzy” distinguisher (which we prove equivalent to the “aborting” distinguishers of Micciancio
and Walter), and a tight connection between the MW advantage and the Le Cam metric, a
standard quantity used in statistics.

1 Introduction

The level of security provided by a cryptographic construction is customarily measured in “bits”.
The intuition is that breaking an application offering “n bits of security” should have a cost1 com-
parable to mounting a key recovery attack on an ideal cryptographic function with a key space
of size 2n. Formalizing this intuition is not entirely trivial, because cryptographic attacks often
exhibit a trade-off between the cost (e.g., the running time TA) of the attack, and its success
probability ϵA. For (verifiable) search problems, like forging digital signatures, it is well estab-
lished2 that bit security can be defined as the quantity log2(TA/ϵA), minimized over all possible
adversaries A. However, the situation for decision problems (like indistinguishability of ciphertexts,

∗©IACR. A version of this paper appears in the Proceedings of Theory of Cryptography Conferece, TCC 2024.
Springer, Lecture Notes in Computer Science, http://www.springer.de/comp/lncs/index.html. This is the authors’
copy of the work.

1Various measures of cost have been considered, and the reader is referred to [BL13, Appendix B] for a discussion.
For simplicity, in this paper we identify the cost of an attack with its running time.

2This is justified by the fact that one can repeat the attack O(1/ϵ) times to make the success probability arbitrarily
close to 1.
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zero knowledge, pseudorandomness, etc.) is far less clear. We recall that in a decision game the
goal of the adversary is to distinguish between two distributions Xb for b ∈ {0, 1}. So, a naive
approach to measure security could be to mimic the definition for search problems, and replace
the quantity log2(TA/ϵA) with log2(TA/δA), where δA = 2ϵA − 1 is the advantage (over a random
choice) of guessing the bit b. But it is well known that this naive definition leads to paradoxical
situations, where for example [DTT10] an algorithm G is deemed more secure (i.e., it is attributed
a higher level of bit security) as a pseudorandom generator than as a one-way function. This is
at odds with cryptographic intuition because pseudorandomness is a stronger security requirement
than one-wayness. (See [MW18] and references therein for a detailed discussion of this and other
problematic examples.)

During the last few years, several papers have investigated the problem of giving meaningful
definitions of bit security [MW18, WY21, WY23, LMSS22, Lee24], or using them to give a tight se-
curity analysis of cryptographic primitives (e.g., see [ALWW21, LMSS22]). A satisfactory definition
of bit security for decision games was first proposed by Micciancio and Walter in [MW18]. A key
element of their definition is to consider attackers that may output either a bit b ∈ {0, 1} (indicating
a decision between X0 and X1) or a special “don’t know” symbol ⊥. Interestingly, [MW18] shows
that this simple extension of traditional adversaries, together with an appropriate definition of
advantage (already used by [Lev93] in a different context,) allows to resolve all the previously men-
tioned paradoxes, and argues (by means of examples) that this is the right definition of bit security.3

Since then, a number of alternative definitions have appeared [WY21, WY23, LMSS22, Lee24], with
various motivations. Watanabe and Yasunaga [WY21] proposed a competing framework to define
bit security that directly admits what they call an “operational interpretation”, and later argued
[WY23] that it is actually equivalent to the original MW definition [MW18]. A seemingly attractive
feature of their definition is that it only requires standard (non-aborting) adversaries with output
in {0, 1}. A variant of their definition that (similarly to [MW18]) interpolates between search
and decision problems is given in [Lee24]. In a different and orthogonal direction, Li, Micciancio,
Schultz and Sorrell [LMSS22] extend the MW definition to encompass both computational and sta-
tistical security. Informally, statistical security provides a strong measure of security even against
computationally unbounded adversaries. When achievable, statistical security has the advantage
of being easier to anaylze, and not requiring any computational assumptions. In practice, when
setting parameters and optimizing efficiency, it is common to require lower levels of statistical bit
security s, than computational bit security c. For example, s = 80 is usually considered more
than acceptable, while computational security typically requires c ≥ 128 or even higher values to
anticipate possible improvements in the computational complexity of attacks. Li at al. [LMSS22]
define (c, s)-security as satisfied by a protocol that provides either c bits of computational security,
or s bits of statistical security against any possible attack. We remark that a protocol can admit
both attacks with running time much less than 2c (as long as their advantage is less than 2−s) and
(different) attacks achieving advantage very close to 1 (as long as their running time is higher than
2c). In other words, a (c, s)-secure protocol can achieve neither c-bits of computational security
nor s-bits of statistical security. Still, morally, it provides an acceptable level of security wherever

3This is at least for search (key recovery) and decision problems. The work [MW18] also proposes a more general
definition based on information theory that interpolates between search and decision problems (e.g., encompassing
password recovery problems with a polynomially large set of secrets,) but the corresponding notion of bit security
for intermediate cases is largely unexplored. In this paper, we focus on the special case of decision problems which
is the most relevant to cryptography. For search problems, the general bit-security definition of [MW18] reduces to
log2 TA/ϵA, which is standard, and is adopted in this paper too.
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s-bit statistical security and c-bit computational security are considered individually adequate. The
advantage of (c, s)-security is that it allows to seamlessly combine statistical and computational
cryptographic primitives (something very common in practice) and still be able to formally quan-
tify the security level of an application. However, the notion of (c, s)-security has not been further
explored, and, despite its potential usefulness, it has seen little adoption due to the lack of tools to
simplify its usage.

Our Contributions and Techniques In this work, we examine the bit security definitions
of [MW18, WY21, LMSS22], proving structural results about optimal (statistical) adversaries,
clarifying the relation between the MW and WY bit security definitions, and then applying these
results to the recent notion of (c, s)-bit security. Our main contributions, described in more details
in the next subsections, can be summarized as follows:

• We characterize the MW adversaries achieving the optimal (statistical) bit-security advantage.
Specifically, we show that these adversaries may be assumed to be deterministic (Corollary 1)
and have a simple “threshold” structure (Theorems 3).

• We show (Theorem 4) that the WY notion of bit security is equivalent to the original MW
bit security definition. In other words, the definition put forward in [WY21] is not a new
security notion, but a different formulation of MW bit-security which, potentially, may be
more convenient in some settings. We remark that a proof of this equivalence was already
given in [WY23], but, as we are going to describe, that proof contained a gap. We clarify the
relation between the two definitions by filling the gap and also giving a simpler proof of the
equivalence.

• Despite the fact that the WY definition only uses traditional (non-aborting) adversaries,
we show (Theorem 5) that the natural “maximum likelihood” distinguisher can offshoot
the correct bit security level by a large margin. So, the advantages of using standard (non-
aborting) adversaries in the characterization of bit security put forward in [WY21] are unclear.

• We show that common proof techniques widely used in the analysis of cryptographic protocols
can be extended to work with the more general notion of computational-statistical security
from [LMSS22]. Specifically, we show that (c, s)-security fully supports the use of hybrid
arguments (Theorem 6) and probability substitution (Theorem 7).

On the technical side, many of our results rely on a new class of adversaries that further extends
the MW (aborting) adversaries, and that may be of independent interest. Specifically, we make use
of adversaries (for decision games) that may output not just 0, 1 (representing a high confidence
decision) or ⊥ (representing no confidence), but an arbitrary value σ ∈ [−1, 1], with the sign
σ/|σ| ∈ {−1, 1} representing the decision, and the magnitude |σ| ∈ [0, 1] the confidence level that
can vary continuously from 0 (no confidence) to 1 (perfect confidence). Interestingly, we show
(Theorem 1) that these “fuzzy” adversaries still define precisely the same notion of bit security as
the original MW “aborting” adversaries. The robustness of the notion of bit security with respect to
such extensions further supports the use of [MW18] as the standard notion of bit security. Still, our
equivalent definition using fuzzy adversaries with output in the continuous interval [−1, 1] supports
the use of analytical techniques, and it is useful to prove some of the results in this paper. We
believe that the characterization of bit security in terms of these more general fuzzy adversaries
may find other applications, and is of independent interest.
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Related Work As mentioned, our work directly builds on the bit security frameworks of [MW18,
WY21], so is directly related to these works. Our work is also tangentially related to the bit security
framework of [Lee24], though this work mostly focuses on generalizing (a variant of) the framework
of [WY21] to non-decision games, whereas we focus on decision games. Our work on the optimal
adversary for the MW advantage is additionally related to the notion of (binary) hypothesis testing
with an aborting option, see for example [GHVK11], though the measure optimized in that work
does not appear to be related to the MW advantage. The similarity between our work and binary
hypothesis testing with a rejection option is perhaps more obvious from [LJ20, Section 4], where
(in a slightly different setting) optimality of threshold distinguishers was also highlighted. Still in
relation to hypothesis testing, we discuss the implications of [PJL23] to the WY formulation of bit
security.

Paper organization The rest of this paper is organized as follows. In the rest of this section
we give a more detailed, still informal, description of our results and techniques. Section 2 defines
the notation and preliminary results used in this paper. In Section 3 we formally define fuzzy
adversaries, establish their equivalence (in both the computational and statistical setting) with the
aborting adversaries of [MW18], and then use them to investigate the structure of the (statistical)
MW adversaries achieving the optimal advantage. In Section 4, we explore the WY bit security
definition and its equivalence with the MW bit security. Finally, in Section 5, we build our toolbox
for the use of (c, s)-security in the analysis of cryptographic protocols, establishing the validity
of hybrid arguments and probability replacement theorems. Section 6 concludes with some final
remarks and open problems.

1.1 The Micciancio-Walter Advantage

Consider the problem of distinguishing between two distributions X = (X0, X1) over a set Ω.
(Everything applies more generally to the case of more complex decision games where an adversary
interacts with one of two oracles.) Micciancio and Walter (following [Lev93]) define the advantage
of an “aborting” adversary A : Ω→ {0, 1,⊥} as

advMW
X (A) =

(βA − β̄A)
2

βA + β̄A
, (1)

where βA = Pr[A(xb) = b] and β̄A = Pr[A(xb) = 1 − b] are the probability that A outputs the
correct or incorrect bit, respectively, when b ∈ {0, 1} is chosen at random and xb ← Xb. For
traditional (non-aborting) adversaries with output in {0, 1}, we have β + β̄ = 1, and it is well
known (and quite intuitive) that the best advantage is achieved by an adversary A(x) that on
input a sample x ∈ Ω, outputs the bit b ∈ {0, 1} for which Pr[Xb = x] is highest. Moreover, the
resulting optimal advantage equals precisely the square ∆SD(X0, X1)

2 of the statistical distance
between the two distributions. This allows to easily compute the bit security of X whenever the
probability distributions are efficiently computable. This is a common scenario in cryptography,
where, for example X0 may be an ideal probability distribution used in the theoretical analysis
of a cryptographic scheme (e.g., a discrete gaussian distribution in lattice-based cryptography)
and X1 is an approximate (more efficiently samplable) version of X0 used when implementing the
algorithm in practice (e.g. using floating point numbers). In fact, this was precisely the motivation
in [MW17, MW18].
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However, once the adversary is allowed to output ⊥, it is no longer clear how to determine an
optimal adversarial strategy, even when the probability distributions X0, X1 are efficiently com-
putable. For example, while intuitively it is clear that the adversary A(x) should output ⊥ (and
express low confidence) when the probabilities p0 = Pr{X0 = x} and p1 = Pr{X1 = x} are very
close to each other, it is unclear how close is “very close” or even how to measure closeness, e.g.,
by |p0 − p1|, p0/p1, or some other function (of x) that depends on the global properties of X0

and X1. One of our main goals is to characterize the optimal aborting adversarial strategies, both
to improve our understanding of the MW bit security definition, and offer a simple tool for the
computation of the bit-security distance between specific distributions that may occur in practice.

To this end, we first show that one can equivalently phrase the study of aborting adversaries
in terms of the class of fuzzy adversaries A≈ := {Ã | Ã : Ω → [−1, 1]}. These adversaries’ output
y = A(x) represents not only a guess of which distribution they are given (via y/|y| ∈ {±1}), but
also a confidence level |y| ∈ [0, 1]. One then measures the advantage of fuzzy adversaries with a

“continuous” analogue of (refeq:aborting-advantage) (Definition 6), which we write as advMW,≈
X (Ã).

We prove equivalence (Theorem 10) by giving efficient, advantage-preserving transformations be-
tween the two classes of adversaries. This shows that, when maximized over the set of all possible
adversaries, advMW(A) and advMW,≈(A) are equivalent. Moreover, since the transformations be-
tween fuzzy and aborting adversaries used in our proofs also preserve the adversary’s running
time, they also establish the equivalence between the corresponding notions of computational (and,
looking forward, computational-statistical) bit security.

We then prove a number of useful properties for aborting and fuzzy adversaries. For example, we
show that the MW advantage is a convex function of randomized aborting adversary. As a simple
corollary, we derive that the optimal advantage is always achieved by a deterministic aborting
adversary (Corollary 1), obtained by fixing the randomness of the probabilistic adversary. This
fact, while intuitively obvious4 and often considered a folk theorem, is not generally true, and we
give an explicit counterexample demonstrating how it can fail. (See Lemma 12.)

Next we dig deeper into the structure of the optimal fuzzy adversary when probabilities are
efficiently computable (or adversaries are computationally unbounded.) We already established
that optimal fuzzy adversaries may be assumed to always declare (for any given input) either full
confidence or no confidence at all in their decision. Here we characterize when optimal fuzzy
adversaries have full confidence, i.e., output ±1 instead of 0. Specifically, we show that the optimal
adversary must have confidence 0 precisely when the quantity |log Pr{X0 = x}/Pr{X1 = x}| is
below a certain threshold τ ∈ [0, log 3], which is a simple function of the adversary’s conditional
success probability (Theorem 3).

1.2 Watanabe-Yasunaga Bit Security

We next investigate the optimal adversary for Watanabe-Yasunaga Bit Security. On the technical
side, our work here is less novel, as information theorists had alrady identified [PJL23] a natural
choice of adversaries that fit our purposes. Before discussing the precise results, we briefly provide
some background. Watanabe-Yasunaga Bit security (as originally defined in [WY21]) is specified
in terms of an “inner” adversary A that on input a sample x ← Xb, outputs either 0 or 1. This
adversary is run n times y1 = A(x1), . . . , yn = A(xn) on independent samples xi ← Xb all chosen
from the same unknown distribution. The number of samples n is chosen large enough so that the

4We believe that this is the case because we tend to give convexity for granted.
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value of the bit b can be determined with very high probability µ ≈ 1 (say, µ ≥ 0.99) based on
the output values y1, . . . , yn. So, the total running time is given by n · TA, and [WY21] defines
the bit security to be log2(n · TA), minimized over all inner adversaries A and number of repeti-
tions n such that µ ≥ 0.99. They also show that this quantity can be equivalently estimated as
log(TA/R1/2(A0, A1)) where R1/2 is the Renyi divergence of order 1/2, and Ab = A(Xb) ∈ {0, 1} is
the Bernoulli random variable defined by the output of the adversary on input a sample from Xb.

At this point, it is natural to ask:

• What is the relation between the MW and WY bit security?

• What is the optimal adversary A(x) ∈ {0, 1} for the WY definition?

Notice that since the WY adversaries always output either 0 or 1, they are potentially easier to
use, as the attacker does not have to choose whether or not to abort.

Regarding the first question, [WY21] proves only the inequality5 MW ≤ WY , showing that
WY is a more conservative notion of bit security, and leaving a more precise comparison as an open
problem. In a follow-up paper [WY23] the same authors claimed the equivalence between MW
and WY (up to an additive constant), but with a catch. Technically, they prove the equivalence
between MW and WY bit security for the same class of aborting adversaries (with output in
{0, 1,⊥}) introduced in [MW18]. Then, they claim equivalence with the original WY definition
by informally stating that the definition in [WY21] does not explicitly depend on the size of the
co-domain6 of the adversary A. However, the justification is incorrect because the Renyi divergence
R1/2(A(X0), A(X1)) implicitly depends on the size of the co-domain of A. Despite this gap in the
proof, we show that the main claim of [WY23] (about the equivalence of MW and WY bit security)
is correct, and in the process we give a simpler and tighter proof of this fact. (Theorem 4.)

So, at this point, the WY notion of bit security can be considered an alternative characterization
of the MW bit security, rather than a new definition, and the question is whether this alternative
characterization can help in evaluating the bit security of decision problems. One seemingly at-
tractive feature of the WY is that it uses standard adversaries A(x) which always output 0, 1. This
is because for these adversaries there is a particularly natural attack, that on input a sample x
outputs the bit b for which the probability Pr[Xb = x] is highest. However, this does not seem to
help in evaluating the bit security using the WY characterization: we show (Theorem 5) that there
exist distinguishing games where this natural adversarial strategy yields bit security estimates that
are far from optimal.7

1.3 Computational/Statistical Bit Security

Finally, we investigate the definition of (c, s)-bit security proposed in [LMSS22], to extend MW bit
security to encompass both computational and statistical security. Recall that the MW (computa-
tional) bit security of a problem is the largest c such that T (A)/advMW

X (A) ≥ 2c for all adversaries
A. Similarly, statistical security can be defined as the largest s such that 1/advMW

X (A) ≥ 2s for

5Here and elsewhere we use MW and WY as a shorthand for the number of bits of security as computed according
to the respective definitions.

6By co-domain we mean the set of possible outputs of the adversary, i.e., |{0, 1}| = 2 for traditional distinguishers
and |{0, 1,⊥}| for aborting adversaries

7Specifically, the estimates are twice as high as the optimal, correct value. Recall that bit security (roughly)
measures the exponent of the running time of the adversary. So, a multiplicative factor in bit security estimation is
quite large.
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all adversaries A, where this time the running time of A is ignored. Li et al. [LMSS22] define a
protocol to be (c, s)-secure if for any adversary A

either
T (A)

advMW
X (A)

≥ 2c or
1

advMW
X (A)

≥ 2s.

As explained in the introduction, a protocol satisfying this definition seems to provide an adequate
level of security whenever computational security and statistical security are considered individually
acceptable. Here we point out that a protocol can offer neither c bits of computational security nor
s bits of statistical security, and still be (c, s)-secure. Consider for example a protocol such that
there exist a very efficient adversary Ac with running time T (Ac) = 1 that achieves MW advantage
2−s, and some other adversary As with very large running time T (As) ≥ 2c that achieves MW
advantage ≈ 1. Then, the protocol is neither computationally nor statistically secure because Ac

breaks computational security (for s < c), and As breaks statistical security. So, (c, s)-security is
strictly weaker than both c-bits computational security, and s-bits of statistical security. In fact,
one should expect this to be the case in any application that makes use of both computational and
statistical security primitives, as an adversary can choose to attack the application by trying to
break either one or the other type of primitives.

While (c, s)-bit security was introduced in [LMSS22] (and successfully used to analyze a practical
protocol), this was done via direct manipulation of the definition. In this paper we establish a
tight connection between the MW advantage advMW

X (A) and a standard distance measure used
in statistics: the (squared) Le Cam distance ∆2

LC(A(X0), A(X1)) between the adversary’s output
probability distributions. Then, we use this connection to prove several useful properties of the
(c, s)-bit security which support two of the most common proof techniques in cryptography:

• The “hybrid argument” (see Theorem 6 for the formal statement): consider a sequence of dis-
tributions X0, . . . , Xk. If the game defined by any pair of neighboring distributions (Xi−1, Xi)
is (c, s)-secure, then the game defined by the extremal distributions (X0, Xk) is also (c′, s′)-
secure, for c′ ≈ c− log k and s′ ≈ s− log k.

• The “distribution replacement” theorem (see Theorem 7 for the formal statement): Consider
a decision game (XY

0 , XY
1 ) parameterized by a distribution Y . If distinguishing between

(Y, Y ′) is (c, s)-secure, and (XY
0 , XY

1 ) is (c, s)-secure, then (XY ′
0 , XY ′

1 ) is also (c′, s′)-secure,
for c′ ≈ c and s′ ≈ s.

Our results improve or extend previous work. For example, [MW18] had already proved a hybrid
theorem for computational bit security, and hybrid theorems for statistical bit security are essen-
tially a form of (pythagorean) triangle inequality for the associated distance functions between
distributions. The novelty here is to establish the validity of hybrid arguments in the more general
computational-statistical setting, where each pair of neighboring distributions (Xi−1, Xi) may be
neither computationally nor statistically indistinguishable. Distribution replacement theorems for
bit security were previously proved in [MW18, Yas21], but only for the setting where (XY

0 , XY
1 )

are computationally close and (Y, Y ′) are statistically close (either in the max-log or Hellinger dis-
tance.) Our theorem allows both (XY

0 , XY
1 ) and (Y, Y ′) to be close in the much weaker sense of

computational-statistical bit security.
Both types of techniques are cornerstones for the modular analysis of complex cryptographic

protocols that combine several cryptographic primitives. Our results support the uniform use of
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computational-statistical bit-security to analyze both the final application and its building blocks,
including neighboring hybrids (Xi−1, Xi) and probability replacements (Y, Y ′). Moreover, they
support the seamless combination of computational and statistical security primitives, while at
the same time offering tight security estimates, which, before our work, could only be done either
informally or using ad-hoc methods. The connection with the Le Cam metric, which underlies our
proofs, is also of independent interest, and may find other applications.

2 Preliminaries

We will make use of the following variant of the Cauchy-Schwarz inequality.

Lemma 1 (Bergström’s Inequality). For any real numbers a1, . . . , an, and positive reals b1, . . . , bn,
we have that

(
∑

i∈[n] ai)
2∑

i∈[n] bi
≤

∑
i∈[n]

a2i
bi
.

Proof. Rearrange the Cauchy-Schwarz inequality to ⟨c,d⟩2
∥c∥22

≤ ∥d∥22 and let ci =
√
bi, di = ai/

√
bi.

2.1 Distances between Distributions

We use several similarity measures between (discrete) probability distributions X0, X1. Below we
write Xb(x) as a shorthand for Pr{Xb = x}.

• Statistical Distance: ∆SD(X0, X1) =
1
2

∑
x |X0[x]−X1[x]|,

• (Squared) Hellinger Distance: ∆2
H(X0, X1) =

1
2

∑
x(
√
X0[x]−

√
X1[x])

2

• (Squared) Le Cam Distance: ∆2
LC(X0, X1) =

1
2

∑
x

(X0[x]−X1[x])2

X0[x]+X1[x]

• Renyi Divergence of order 1/2: ∆1/2(X0, X1) = −2 ln
∑

x

√
X0[x]X1[x]

It is well known that ∆SD, ∆H and ∆LC are distance functions, i.e., they satisfy the triangle
inequality. They are also closely related as follows.

Lemma 2 ([PW22, Section 7].). For any two distributions X0, X1 we have

∆2
H(X0, X1) ≤ ∆SD(X0, X1) ≤

√
2∆H(X0, X1)

∆H(X0, X1) ≤ ∆LC(X0, X1) ≤
√
2∆H(X0, X1).

In other words, ∆H and ∆LC are equivalent (up to a constant factor), while ∆SD is polynomially
related to them. As for the divergence ∆1/2, it easily follows from the definitions that it can be
expressed as a monotonically increasing function of the Hellinger distance:

∆1/2(X0, X1) = 2 ln
1

1−∆2
H(X0, X1)

.

8



Lemma 3. For any two distributions X0, X1 such that ∆1/2(X0, X1) <∞, we have

∆2
H(X0, X1) ≤

1

2
∆1/2(X0, X1) ≤

∆2
H(X0, X1)

1−∆2
H(X0, X1)

.

In particular, if ∆2
H(X0, X1) ≤ 1/2, then ∆2

H(X0, X1) ≤ 1
2∆1/2(X0, X1) ≤ 2∆2

H(X0, X1).

Proof. Easily follows from the bounds 1 − (1/t) ≤ ln t ≤ t − 1 and relation ∆1/2(X0, X1) =
−2 ln(1−∆2

H(X0, X1)). See [WY23] for details.

2.2 Cryptographic Games

Cryptographic games are defined by one or more randomized, stateful programs ⅁ used by an
adversary A to carry out an attack A⅁. When running A⅁, the adversary only has black-box access
to ⅁, which is used as an oracle. There are two main categories of cryptographic games. In a
search game, the final output of A⅁ is determined by ⅁ and indicates if the attack was successful.
A decision game ⅁ = (⅁0,⅁1) is a pair of oracles with identical interfaces, so that an adversary
A may interact with either of them A⅁0 , A⅁1 . This time it is A that produces an output at the
end of the interaction. We refer to the set of all possible outputs of A as the co-domain of the
adversary, and classify adversaries based on their co-domain. We consider three main classes of
adversaries: traditional adversaries A ∈ A0,1 with co-domain {0, 1}, aborting adversaries A ∈ A⊥
with co-domain {0, 1,⊥}, and fuzzy adversaries A ∈ A≈ with co-domain [−1, 1]. The goal of the
adversary is to determine if it is interacting with either ⅁0 or ⅁1. A’s advantage in distinguishing
between ⅁0 and ⅁1 is defined later on. We write A(⅁b) for the random variable describing the
final output of A at the end of the interaction, and A(⅁) as an abbreviation for the pair of output
distributions (A(⅁0), A(⅁1)) over the co-domain of A. We remark that the output distribution
A(⅁b) is defined over the internal randomness of both A and ⅁b. We write A(⅁b; r) when we want
to make the randomness of A explicit.

In the simplest, prototypical example ⅁ = (⅁0,⅁1) is a pair of probability distributions over a
common set Ω. The only interaction between A and ⅁b is to receive a single sample x ← ⅁b from
Ω, upon which A(x) produces its final output. In other words, the adversary A is just a (possibly
randomized) algorithm with input in Ω. For simplicity, the reader may keep this simple case in
mind throughout the paper, instead of arbitraty games. In any case, once a game ⅁ and adversary
A have been chosen, the output A(⅁) = (A(⅁0), A(⅁1)) is always a pair of probability distributions.

Cryptographic protocols can be parameterized by other cryptographic primitives or distributions
used as building blocks. So, for example, we may write P Y for a cryptographic program that uses
a probability distribution Y , and P Y ′

for the same program run with a different distribution Y ′.
Similarly, security games (⅁Y

0 ,⅁Y
1 ) can be parameterized by Y .

We remark that the running time of an adversary A against a game ⅁ does not include the time
required to run ⅁ in the interaction A(⅁). In other words, we only account for the time taken by
A to write its oracle queries and read the answers. We consider adversaries running in strict (e.g.
polynomial) time, i.e., we assume that the running time of A in a run A(⅁b) does not depend on
how ⅁b answers the oracle queries. In particular, A has the same running time in A(⅁0) and A(⅁1).
The running time of an adversary A is denoted by TA or T (A).

In some settings it is useful to define also a notion of running time for the game ⅁. However, it
should be clear that the (total) running time of ⅁ in an execution A(⅁) typically depends on the
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adversary A.8 The time taken to run ⅁ in an execution A(⅁) is denoted TA
⅁ . Then, we can define

the running time of a game ⅁ relative to the running time of A as follows.

Definition 1. The (relative) running time of ⅁ is defined as the maximum

T⅁ = sup
A

TA
⅁

TA

over all possible adversaries A.

For decision games (⅁0,⅁1) we always assume that ⅁0 and ⅁1 have the same running time.
Using this definition, the total running time to run A(⅁) (including both the time for A and for ⅁)
can be bounded as

TA(⅁) = TA + TA
⅁ ≤ TA · (1 + T⅁) .

In the asymptotic setting both the game ⅁κ = (⅁κ,0,⅁κ,1) and adversary Aκ are parametrized
by a security parameter κ, and all quantities (e.g., Aκ’s advantage in winning a decision game,
its running time TAκ , etc.) become functions of κ. Notice that Aκ may depend arbitrarily on
κ, i.e., we consider non-uniform adversaries. Technically, A(κ, τκ) is an algorithm that takes as
input the security parameter κ and an advice string τκ that depends on the security parameter.
However, we will make only very limited use of non-uniformity: in most of our results τκ is a
very short (typically constant size, independently of κ) string. So, the non-uniformity can be easily
eliminated by running A(κ, τ) on all possible value of τ , estimating A’s advantage, and then picking
the best value of τ to carry out the attack.

2.3 Bit Security

Consider an adversary A against a decision game ⅁ = (⅁0,⅁1), where A(⅁b) may output 0, 1 or
some other values. Throughout the paper we will use the following definitions and notation:

(success probability) βA = Pr[A(⅁b) = b]

(failure probability) β̄A = Pr[A(⅁b) = 1− b]

(output probability) αA = βA + β̄A

(distinguishing gap) δA = βA − β̄A

where all probabilities are computed over the random choice of b ← {0, 1}, and the randomness
of ⅁b and A. Notice that αA equals the probability that the output of A is in {0, 1}. So, for
standard adversaries A ∈ A0,1 that always output a bit A(⅁b) ∈ {0, 1}, we have αA = 1 and
δA = 2βA − 1 = Pr{A(⅁1) = 1} − Pr{A(⅁0) = 1}. But we will use the definition of βA, β̄A, αA and
δA also for unrestricted adversaries that may output values outside of {0, 1}. It is well-known that,
in the case of probability distributions X = (X0, X1), the highest possible distinguishing gap equals
the statistical distance ∆SD(X0, X1) = maxA∈A0,1 δA and it is achieved by a very simple adversary

AX
SD(x) =

{
0 if Pr[X0 = x] > Pr[X1 = x]
1 if Pr[X0 = x] < Pr[X1 = x]

(2)

8This is most obvious when ⅁ is a game where A may issue an arbitrary number of calls to the game oracles.
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(When Pr[X0 = x] = Pr[X1 = x], the output of A can be chosen arbitrarily without affecting the
gap δ.) This is easily generalized to arbitrary decision games ⅁ = (⅁0,⅁1), where

∆SD(⅁0,⅁1) = max
A∈A0,1

δA. (3)

Since δA = βA − β̄A is the difference between two probabilities, and the maximum over all A is
non-negative, we always have ∆SD(⅁0,⅁1) ∈ [0, 1].

2.3.1 The MW Bit Security Measure

Micciancio and Walter [MW18] suggested to use a more general class of adversaries A⊥, which
output either 0, 1, or a special “don’t know” symbol ⊥, and demonstrated that these adversaries,
together with an appropriate notion of advantage, allow to resolve several theoretical paradoxes
related to the definition of a cryptographically meaningful notion of “bit security”. (The reader is
referred to [MW18] for intuition and justification of this definition.)

Definition 2 (MW Advantage). For any (possibly randomized) MW distinguisher A ∈ A⊥ and
decision game ⅁ = (⅁0,⅁1), the advantage of A is9

advMW
⅁ (A) =

δ2A
αA

=
(βA − β̄A)

2

βA + β̄A

The (squared) MW distance between two distributions is

∆2
MW(⅁0,⅁1) = sup

A∈A⊥

advMW
⅁ (A) ∈ [0, 1]. (4)

If we restrict our attention to “non-aborting” adversaries A ∈ A0,1, we have αA = 1, and
advMW

⅁ (A) = δ2A is the square of the distinguishing gap. This immediately gives the following
inequality.

Lemma 4. For any decision game ⅁ = (⅁0,⅁1), we have

∆SD(⅁0,⅁1) ≤ ∆MW(⅁0,⅁1).

Proof. Using (3) and the definition of ∆MW, we get

∆SD(⅁0,⅁1) = sup
A∈A0,1

δA = sup
A∈A0,1

√
advMW

⅁ (A) ≤ ∆MW(⅁0,⅁1)

where the inequality follows from taking the supremum over a larger set A ∈ A⊥.

It is also easy to see that the MW distance satisfies the data processing inequality.

Lemma 5 (Data-Processing Inequality). For any decition game ⅁ = (⅁0,⅁1) and game transfor-
mation10 Γ, we have that

∆MW(Γ(⅁0),Γ(⅁1)) ≤ ∆MW(⅁0,⅁1).
9This is syntactically different, but perfectly equivalent to the definition given in [MW18], which defines the

advantage as αA · (2β∗
A − 1)2, where β∗

A = βA/αA.
10A transformation is simply a game Γ(⅁b) with oracle access to ⅁b. Applying Γ to a game ⅁ defines a new game

(Γ(⅁0),Γ(⅁1)).
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Proof. For any aborting adversary A, define AΓ(⅁b) := A(Γ(⅁b)). It is straightforward to see that

∆2
MW(Γ(⅁0),Γ(⅁1)) = sup

AΓ

advMW
⅁ (AΓ) ≤ sup

A
advMW

⅁ (A) = ∆2
MW(⅁0,⅁1).

We will use the following construction from [MW18] to transform an aborting adversary A ∈ A⊥
to one with only two possible output values. For any adversary A ∈ A⊥, decision game ⅁ = (⅁0,⅁1),

and value z ∈ {0, 1,⊥}, let b̂ = A
A(⅁)
SD (z) ∈ {0, 1} be the bit such that Pr{A(⅁b̂) = z} is highest.

(This bit can be given as a non-uniform advice, or estimated probabilistically by repeatedly running
A(⅁b̂) for b̂ ∈ {0, 1} with independent randomness.) Given b̂, let

Az(⅁b) = if (A(⅁b) = z) then b̂ else ⊥ (5)

be the modified adversary that first runs z′ ← A(⅁b), and then outputs b̂ if z′ = z or ⊥ otherwise.
Notice that Az differs from A just by a relabeling of its output. So, it has the same running time
T (Az) = T (A).

Lemma 6 ([MW18, Lemma 1]). For any pair decision game ⅁ = (⅁0,⅁1), aborting adversary
A ∈ A⊥, and value z ∈ {0, 1,⊥}, the modified adversary Az in (5) has advantage

advMW
⅁ (Az) =

(Pr{A(⅁0) = z} − Pr{A(⅁1) = z})2

2(Pr{A(⅁0) = z}+ Pr{A(⅁1) = z})
.

2.3.2 The WY Bit Security Measure

In [WY21], an alternative bit security measure was introduced. The definition is parameterized by
a “high enough” probability threshold µ ≈ 1, but it can be shown that the precise value of µ has
only a marginal impact on the definition. An equivalent quantity (without the parameter µ) is also
defined in terms of the Renyi divergence of order 1/2.

Definition 3. Let ⅁ = (⅁0,⅁1) be a decision game, µ ∈ [0, 1], and ϵA,Bk
:= Prb[Bk(A(⅁b)

k) = b],
where A ∈ A0,1, k ∈ N, Bk : {0, 1}k → {0, 1}, and Xk is the product distribution over {0, 1}k of k
independent copies of X = A(⅁b). Define

WYµ
⅁(A) = min

k
min
Bk

{log2(k · TA) | ϵA,Bk
≥ 1− µ}, WYµ

⅁ := min
A∈A0,1

WYµ
⅁(A). (6)

WY⅁(A) := log2 T (A) + log2

⌈
1

∆1/2(A(⅁0), A(⅁1))

⌉
, WY⅁ := min

A∈A0,1

WY⅁(A). (7)

We say that two bit security measures are equivalent if they differ by an additive constant
factor. While not highlighted as a formal statement, [WY21] shows that all these measures are
essentially equivalent.

Lemma 7 ([WY21, implicit]). For any distinguishing game ⅁ := (⅁0,⅁1), for any constants µ ≤ µ′,
one has that ∣∣∣WYµ

⅁ −WYµ′

⅁

∣∣∣ ≤ O(1). (8)∣∣WY⅁ −WYµ
⅁
∣∣ ≤ O(1), (9)
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Proof. The (stronger) bound

∀A ∈ A0,1 :
∣∣∣WYµ

⅁(A)−WYµ′

⅁ (A)
∣∣∣ ≤ ln(ln(

1

4µ2
)) ≤ O(1) (10)

follows from simple algebraic manipulations of [WY21, Lemmas 4 and 6], which bound the minimum
k in (6) via

ln( 1
4µ)

∆1/2(A(⅁0), A(⅁1))
≤ k ≤

⌈
ln( 1

4µ2 )

∆1/2(A(⅁0), A(⅁1))

⌉
. (11)

Multiplying by TA and taking logarithms yields nearly matching upper and lower bounds on WYµ
⅁,

which suffice to establish (10). One then gets the claimed result by minimizing (10) over A.

Equivalence with the MW bit security is proved in [WY23], but technically only for aborting
adversaries, which we denote WY⊥

⅁ = minA∈A⊥ WY⅁(A).

Lemma 8 ([WY23, Theorems 1 and 2]). For any distinguishing game ⅁ := (⅁0,⅁1),∣∣∣WY⊥
⅁ −MW⅁

∣∣∣ ≤ O(1).

Note that the measure WY⊥
⅁ is not a priori equal to WY⅁, as minimizing over a larger set A⊥

may produce smaller values. So, Lemma 8 does not imply that WY⅁ and MW⅁ are equivalent.
Still, this is true, as we will show in Section 4.

2.3.3 Computational/Statistical Bit security

Sometimes, in cryptography, one can achieve a strong notion of security, where no adversary can
break a cryptographic function with high probability, regardless of the computational cost incurred
by the attack. In the MW bit-security framework, the number of bits of statistical security of a
decision game ⅁ can be defined as follows.

Definition 4. A distinguishing game ⅁ = (⅁0,⅁1) has s bits of statistical security if for every
adversary A, advMW

⅁ (A) ≤ 2−s.

Contrast this with the definition of (computational) bit-security, where the requirement is that
advMW

⅁ (A) ≤ T (A) · 2−c. It immediately follows from the definition that any problem achieving s
bits of statistical security, also offers s bits of computational security. So, statistical bit-security is
a strengthening of computational bit-security. In particular, when combining computational and
statistical primitives within a single protocols, one can treat all of them has achieving a given
number c = s of computational security bits. However, this is often undesirable in practice because
one typically wants to use a higher value of c than for s. In order to combine computational and
statistical bit-security analysis in an efficient manner, [LMSS22] proposes the following notion of
computational-statistical bit-security.

Definition 5 ([LMSS22]). A distinguishing game ⅁ is said to have (c, s)-bits of security if for any
adversary A ∈ A⊥,

advMW
⅁ (A) ≤ max(T (A)2−c, 2−s),

i.e., either c ≤ log2
T (A)

advMW
⅁ (A)

, or s ≤ log2
1

advMW
⅁ (A)

.
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The notions of computational and statistical security corresponds to the following special cases
of (c, s)-security:

• A problem has c bits of computational security iff it is (c,∞)-bit secure

• A problem has s bits of computational security iff if is (∞, s)-bit secure.

Since any problem offering s bits of statistical security also offers s bits of computational security,
(c, s)-bit security is equivalent to (max(c, s), s)-bit security. In other words, one can always assume
c ≥ s. In particular, computational security can be equivalently formulated as (c, c)-bit security,
rather than (c,∞).

(c, s)-security is easily defined for search problems as well: A search game ⅁ has (c, s)-bits of
security if any adversary A has success probability11 Pr{A(⅁)} at most max(T (A)2−c, 2−s).

3 Structure and properties of optimal MW adversaries

In this section we characterize the MW adversaries achieving optimal advantage, and prove some
useful properties about them. This is done by introducing an alternative, more general, class of
adversaries (which we call “fuzzy” adversaries,) that still achieves the same optimal advantage
(and bit security) of standard MW adversaries. We use the added flexibility provided by fuzzy
adversaries to investigate optimal adversarial strategies.

MW adversaries are generalized as follows. Recall that the output of an MW distinguisher is
either a bit b ∈ {0, 1}, representing a high confidence decision between the two distributions, or
a special symbol ⊥ expressing no confidence. We generalize this to distinguishers for which the
output confidence level can vary continuously from 0 (no confidence) to 1 (high confidence). For
this type of distinguishers, it is convenient to map the two values b ∈ {0, 1} to a sign

b̃ = (−1)b = (1− 2b) = ±1 (12)

so that the output of A can be described by a single number σ ∈ [−1, 1], with sign(σ) = σ/|σ| =
b̃ ∈ {±1} representing the decision bit and |σ| ∈ [0, 1] the confidence level.12 We also set ⊥̃ = 0,
so that any MW distinguisher A with output A(⅁b) = y ∈ {0, 1,⊥} can be represented by a fuzzy
one Ã with output Ã(⅁b) = ỹ ∈ {1,−1, 0} ⊂ [−1, 1]. Notice that this transformation preserves the
cost of the adversary T (Ã) = T (A) as the only difference between the two is the symbol used to
encode the final output. We write Ã⊥ = {Ã | A ∈ A⊥} for the set of aborting adversaries with this
alternative output representation.

Definition 6 (Fuzzy Distinguisher). A fuzzy distinguisher for a decision game ⅁ = (⅁0,⅁1) is a
(possibly randomized) adversary A with output in [−1, 1]. The advantage and bit-security of A in

the game ⅁ are advMW
⅁ (A) =

δ̃2A
α̃A

and MW⅁(A) = log2(T (A)/adv
MW
⅁ (A)) where

δ̃A = Eb[b̃ ·A(⅁b)] and α̃A := Eb [|A(⅁b)|]

are the correlation (between the correct result and the output of A) and expected confidence of A.
The set of all possible fuzzy distinguishers is denoted A≈.

11We recall that for a search problem, the output of A(⅁) is determined by the game ⅁.
12When σ = 0, the confidence |σ| = 0 is zero, and the decision sign(σ) is irrelevant. For concreteness, we define

sign(0) = 0.
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Note that Ã⊥ ⊂ A≈, so we can view aborting adversaries as a special case of fuzzy adversaries.
The following lemma shows that the definition of advantage given in Definition 6 respects this
identification. This justifies the use of the same notation advMW

⅁ (A) and MW⅁(A) for the advantage
and bit security of both aborting A ∈ A⊥ and fuzzy adversaries A ∈ A≈.

Lemma 9. For any aborting adversary A ∈ A⊥ and corresponding fuzzy adversary Ã ∈ A≈ we
have δ̃Ã = δA, α̃Ã = αA, T (Ã) = T (A), advMW

⅁ (Ã) = advMW
⅁ (A) and MW⅁(Ã) = MW⅁(A).

Proof. It is easy to check that δ̃Ã = δA and α̃Ã = αA by evaluating the expectations over the set

0, 1,−1 of all possible values. It follows that advMW
⅁ (Ã) = δ̃2

Ã
/α̃Ã = δ2A/αA = advMW

⅁ (A). Finally,

A and Ã have the same running time T (A) = T (Ã). So, we also have

MW⅁(Ã) = log2(T (Ã)/advMW
⅁ (Ã)) = log2(T (A)/advMW

⅁ (A)) = MW⅁(A).

3.1 Equivalence of Aborting and Fuzzy adversaries

Using fuzzy adversaries, we may define the maximum (statistical) advantage in attacking a decision
game ⅁ as

(∆≈
MW(⅁))2 = sup{advMW

⅁ (A) | A ∈ A≈},

and similarly for bit security

MW≈(⅁) = inf{MW⅁(A) | A ∈ A≈}.

Since we are optimizing over a larger class of adversaries A≈ ⊃ A⊥, it immediately follows from the
definitions that ∆MW(⅁) ≤ ∆≈

MW(⅁) and MW(⅁) ≥ MW≈(⅁), and in principle these inequalities
could be strict. But, as we will see, this is not the case, i.e., aborting and fuzzy adversaries define
precisely the same notion of advantage and bit security for decision games. This is proved using
the following transformation.

Lemma 10. Let N : A≈ → A⊥ be the transformation13

N[A](⅁b; r) =

{
1−sign(A(⅁b;r))

2 with probability |A(⅁b; r)|
⊥ otherwise.

Then, for any decision game ⅁ = (⅁0,⅁1) and adversary A ∈ A≈, we have

advMW
⅁ (A) = advMW

⅁ (N[A]).

13More precisely, N[A] is the aborting adversary that runs the fuzzy attack a← A(⅁b) ∈ [−1, 1], and then outputs
(1− sign(a))/2 with probability |a| and ⊥ with probability 1−|a|. Note that the output of N[A] is always in {0, 1,⊥},
i.e., N[A] ∈ A⊥ is a valid aborting adversary.

15



Proof. We have that

δN[A] = Pr
b,r
[N[A](⅁b; r) = b]− Pr

b,r
[N[A](⅁b; r) = 1− b]

= Eb

[
|A(⅁b)| · Pr

[
1− sign(A(⅁b))

2
= b

]
−|A(⅁b)| · Pr

[
1− sign(A(⅁b))

2
= 1− b

]]
= Eb[|A(⅁b)| · (Pr[sign(A(⅁b)) = 1− 2b]− Pr[sign(A(⅁b)) = −(1− 2b)])]

= Eb[|A(⅁b)| · (Pr[sign(A(⅁b)) = (−1)b]− Pr[sign(A(⅁b)) = −(−1)b])]
= Eb[|A(⅁b)| · (Pr[(−1)b · sign(A(⅁b)) = 1]− Pr[(−1)b · sign(A(⅁b)) = −1])]
= Eb[|A(⅁b)| · E[(−1)b · sign(A(⅁b))]]

= Eb

[
(−1)b ·A(⅁b)

]
= δA,

and
αN[A] = Pr

b,r
[N[A](⅁b; r) ̸= ⊥] = Eb,r[|A(⅁b; r)|] = αA.

It then follows that advMW
⅁ (A) = δA

2

αA
=

δN[A]
2

αN[A]
= advMW

⅁ (N[A]), i.e. N preserves the advantage.

Clearly, the transformation N also preserves the complexity of the adversary T (N[A]) ≈ T [A],
as the additional operations performed by N[A] have negligible cost. It immediately follows that
aborting and fuzzy adversaries are equivalent, both for statistical and computational bit security.

Theorem 1. Aborting and Fuzzy MW adversaries are equivalent, i.e., they define the same notions
of advantage and bit security

∆≈
MW(⅁) = ∆MW(⅁)

MW≈(⅁) = MW(⅁).

Proof. We need to show that ∆MW(⅁) ≥ ∆≈
MW(⅁) and MW(⅁) ≤ MW≈(⅁). For any A ∈ A≈, the

aborting adversary N[A] ∈ A⊥ satisfies

advMW
⅁ (A) = advMW

⅁ (N[A]) ≤ sup
A′

advMW
⅁ (A′) = ∆2

MW(⅁0,⅁1).

Therefore, (∆≈
MW(⅁))2 = supA advMW

⅁ (A) ≤ ∆2
MW(⅁). A similar argument works for bit security,

using the fact that T (A) ≈ T (N(A)).

3.2 Convexity and Determinism

In general, cryptographic adversaries can use randomness. Using fuzzy adversaries it is easy to
turn any randomized adversary into a deterministic one. In the following lemma we give a simple
transformation from (randomized) aborting adversaries to deterministic fuzzy ones. For simplicity,
we present the lemma for the simple problem of distinguishing between two probability distributions
X = (X0, X1). A more general statement for arbitrary games will be proved later in this section.
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Lemma 11. Let F : A⊥ → A≈ be the transformation

F[A](x) = Pr
r
[A(x; r) = 0]− Pr

r
[A(x; r) = 1]

mapping a (randomized) aborting adversary A to a deterministic fuzzy advversary F[A] ∈ A≈.
Then, for any decision problem X = (X0, X1) and adversary A ∈ A⊥ we have

advMW
⅁ (A) ≤ advMW

X (F[A]).

In particular, the optimal advantage ∆2
MW(⅁) is achieved by a deterministic A ∈ A≈.

Proof. We first show that δF[A] = δA. We have that

δF[A] = Eb[b̃ · F[A](Xb)]

= Eb[(−1)b · (Pr
r
[A(Xb; r) = 0]− Pr

r
[A(Xb; r) = 1])]

=
1

2

(
E[(−1) · (Pr

r
[A(X1; r) = 0]− Pr

r
[A(X1; r) = 1])]

)
+

1

2

(
E[(+1) · (Pr

r
[A(X0; r) = 0]− Pr

r
[A(X0; r) = 1])]

)
=

E[Prr[A(X1; r) = 1]] + E[Prr[A(X0; r) = 0]]

2

− E[Prr[A(X1; r) = 0]] + E[Prr[A(X0; r) = 1]]

2
= Eb[Pr

r
[A(Xb; r) = b]]− Eb[Pr

r
[A(Xb; r) = 1− b]]

= βA − β̄A = δA.

We next show that αF[A] ≤ αA. We have that

αF[A] = Eb[|F[A](Xb)|]

= Eb

[∣∣∣Pr
r
[A(Xb; r) = 0]− Pr

r
[A(Xb; r) = 1]

∣∣∣]
≤ Eb

[
Pr
r
[A(Xb; r) = 0] + Pr

r
[A(Xb; r) = 1]

]
= αA.

It follows that advMW
X (A) = δA

2

αA
≤ δF[A]

2

αF[A]
= advMW

X (F[A]).

Notice that the result of the transformation F[A] is not in general an efficient algorithm, because
it requires the computation of the probabilities14 Prr[A(x; r) = b] for b = 0, 1. So, Lemma 11 says
little about the (computational) bit security under deterministic attacks. Moreover, it says nothing
about the existence of deterministic aborting adversaries A ∈ A⊥ because F[A] is fuzzy.15

We would like to prove a similar result (for arbitrary decision games) that produces deterministic
aborting adversaries, and address the efficiency issue (at least in the non-uniform setting). We will
show that for any randomized aborting adversary A there is a value of the randomness r such that
the deterministic adversary Ar(·) = A(·; r) is at least as good as A. But before doing so, we observe
that (perhaps contrary to intuition) this is not generally true for arbitrary notions of advantage.

14Naturally, one could approximate these probabilities in a relatively efficient manner by repeatedly running A(x; ri)
on a given input x and many independent random ri. However, this would result in a randomized algorithm.

15Note that turning F[A] into an aborting adversary N[F[A]] using Lemma 10 does not work, because the result of
N is generally a randomized algorithm.
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Lemma 12. There is a pair of efficiently samplable distributions X = (X0, X1), randomized distin-
guisher A(x; r) and advantage function adv⋆X such that adv⋆X (A) is strictly bigger than adv⋆X (A(·; r))
for all r.

Proof. Let X0 and X1 be the uniform distributions over {0} and {0, 1, 2, 3} rexpectively, and
consider a randomized distinguisher A(x; r) using a single bit of randomness r ∈ {0, 1} that works
as follows: if x ≤ 2r then A(x; r) = 0, and A(x; r) = ⊥ otherwise.

Consider the output of A(x; r) when x ← Xb for b ← {0, 1}. It is easy to see that A(·; r) is
correct precisely when b = 0. So, A has success probability β = 1/2 regardless of the value of the
randomness r. On the other hand, the failure probability is β̄0 = 1/8 when r = 0 (for b = 1 and
x = 0), β̄1 = 3/8 when r = 1 (for b = 1 and x ∈ {0, 1, 2}) and β̄ = (β̄0 + β̄1)/2 = 1/4 when r is
chosen at random. Now define the advantage function16

adv⋆X (A) =
∣∣βA − sin(2πβ̄A)

∣∣ · (βA − β̄A).

Using this function we can compute adv⋆X (A) ≈ 0.125, adv⋆X (A(·; 0)) ≈ 0.077 and adv⋆X (A(·; 1)) ≈
0.025. So, the advantage of the randomized adversary A is strictly bigger than both A(·; 0) and
A(·; 1).

We prove the existence of deterministic optimal aborting adversaries using a convexity ar-
gument. For any adversaries A,B ∈ A⊥ and θ ∈ [0, 1], define the convex combination C =
θ ·A+ (1− θ) ·B as the (randomized) adversary that runs A with probability θ and B with prob-
ability 1− θ. Notice that the convex combination is taken over the randomness, not the output of
the adversaries, so that the result is still an aborting adversary in A⊥.

Theorem 2. For any decision game ⅁, the advantage advMW
⅁ (A) is a convex function of A ∈ A⊥,

i.e., for any two adversaries A,B ∈ A⊥ and θ ∈ (0, 1), the convex combination C = θ·A+(1−θ)·B ∈
A⊥ satisfies

advMW
⅁ (C) ≤ θ · advMW

⅁ (A) + (1− θ) · advMW
⅁ (B).

Proof. Using the definition of C, we see that

βC = Pr[C(⅁b) = b] = θ · Pr[A(⅁b) = b] + (1− θ) · Pr[B(⅁b) = b]

= θ · βA + (1− θ) · βB

and similarly for β̄C , αC and δC . Therefore, by Lemma 1,

advMW
⅁ (C) =

δ2C
αC

=
(θ · δA + (1− θ) · δB)2

θ · αA + (1− θ) · αB

≤ θ ·
δ2A
αA

+ (1− θ) ·
δ2B
αB

= θ · advMW
⅁ (A) + (1− θ) · advMW

⅁ (B).

16Similarly to the MW advantage (βA− β̄A)
2/(βA + β̄A) and statistical distance (βA− β̄A), we define this function

as a simple combination of βA and β̄A. We included the (βA − β̄A) factor so that the advantage measure retains
the appealing feature that “trivial adversaries” (with βA = β̄A) have advantage 0. Our definition is otherwise rather
arbitrary.
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An immediate consequence of convexity is that optimal aborting adversaries A ∈ A⊥ can be
easily derandomized by fixing the value of the randomness that achieves the highest advantage.

Corollary 1. For any decision game ⅁ and (randomized) adversary A(·; r), there is a value of r such
that the deterministic adversary Ar(·) = A(·; r) has advantage at least advMW

⅁ (Ar) ≥ advMW
⅁ (A).

Proof. Any randomized adversary A ∈ A⊥ can be written as a convex combination A =
∑

r Pr[r]·Ar

of deterministic adversaries Ar(·) = A(·; r) indexed by the randomness r. It follows by Theorem 2
that

advMW
⅁ (A) ≤

∑
r

Pr[r] · advMW
⅁ (Ar) ≤ max

r
advMW

⅁ (Ar). (13)

Choosing the value of r that achieves the maximum gives a deterministic adversary Ar with an
advantage which is at least as good as A.

Note that the deterministic adversary of Corollary 1 has the same running time T (Ar) = T (A)
as the original randomized adversary because we are just fixing the randomness. So, Corollary 1
says that the optimal bit-security is achieved by a deterministic adversary. However, this is only
true in a non-uniform setting, where the optimal randomness r can be hardwired in the code of A.
In a uniform setting, when considering probability ensembles over larger and larger sets indexed by
a security parameter κ, determinining the optimal value of r can be computationally difficult. In
particular, trying all possible values of r and estimating which one is best is not computationally
feasible because there are exponentially (in κ) possible values of r, and, in any case, it would result
again in a randomized adversary. This is the only result in this paper that makes essential use of
the non-uniform model.

3.3 Threshold Adversaries are Optimal

In this subsection we focus on the simple problem of distinguishing between two probability distribu-
tions X = (X0, X1) over a set Ω (as opposed to arbitrary distinguishing games), in the statistical se-
curity setting, i.e., when the computational cost of the distinguisher is not taken into account. This
problem reduces to determining the highest possible advantage ∆2

MW(X ) = advMW
X (A) achieved by a

(computationally unbounded) adversary A. All our adversaries can be implemented very efficiently
given oracle access to the probabilities Pr{Xb = x}. So, the results apply to the computational
security setting as well when the probability distributions X0, X1 are efficiently computable.

In the case of traditional (non-aborting) adversaries, it is well known that this problem admits
a very simple, closed form optimal distinguisher

AX
SD(x) = sign(Pr{X0 = x} − Pr{X1 = x})

which, on input a sample x, outputs the bit b ∈ {0, 1} such that the probability Pr{Xb = x} is high-
est. Note that the distinguisher AX

SD is efficient only when the probabilities Pr{X0 = x},Pr{X1 =
x} are efficiently computable. In this subsection we explore if a similar, closed form optimal dis-
tinguisher can also be described for the more general aborting A⊥ and fuzzy A≈ adversaries.

The next lemma shows that even for fuzzy distinguishers, the “sign” of the output should be
set to sign(A(x)) = sign(Pr{X0 = x} − Pr{X1 = x}) and the only extra freedom afforded by fuzzy
adversaries is the choice of the confidence |A(x)|.
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Lemma 13. For any A ∈ A≈ and X = (X0, X1), define the modified adversary

Â(x) = |A(x)| · sign(Pr{X0 = x} − Pr{X1 = x})

that on input x outputs the same confidence |A(x)| as A, and fixes the sign of the output to match
AX

SD(x). Then, this modified adversary satisfies advMW
X (Â) ≥ advMW

X (A).

Proof. It is straightforward to verify that
∣∣∣Â(x; r)∣∣∣ ≤ |A(x; r)|. So, the expected confidence of the

modified adversary satisfies αÂ ≤ αA. We also have

|δA| =
∣∣∣Eb;r[(−1)b ·A(Xb; r)]

∣∣∣
=

∣∣∣∣∣∑
x

Er[A(x; r) · Pr{X0 = x} − Pr{X1 = x}
2

]

∣∣∣∣∣
≤

∑
x

Er[|A(x; r)| · |Pr{X0 = x} − Pr{X1 = x}|
2

]

=
∑
x

Er[Â(x; r) · Pr{X0 = x} − Pr{X1 = x}
2

]

=
∣∣∣Eb;r[(−1)b · Â(Xb; r)]

∣∣∣ = δÂ.

It follows that advMW
X (A) = δ2A/αA ≤ δ2

Â
/αÂ = advMW

X (Â).

Notice that if A ∈ Ã⊥, then Â ∈ Ã⊥. So, when applied to aborting adversaries, Lemma 13
shows that the adversary achieving the optimal advantage ∆2

MW(X ) must agree with AX
SD, except

possibly for replacing the output with ⊥ when confidence is low.
At this point we are left with the problem of determining how a fuzzy adversary should set the

output confidence, and, as a special case, when an aborting adversary should output ⊥. To this
end, define the function

ℓX (x) = log
Pr{X0 = x}
Pr{X1 = x}

= log Pr{X0 = x} − log Pr{X1 = x} (14)

and consider the class of adversaries that output ⊥ when |ℓX (x)| is below a given threshold.
Note that

∣∣ℓ(X0,X1)(x)
∣∣ = ∣∣ℓ(X1,X0)(x)

∣∣ is symmetric in the ordering of the two distributions, and

sign(ℓX (x)) = AX
SD(x) because log is a monotonically increasing function.

Definition 7. We say that A ∈ A≈ is a threshold distinguisher between two distributions X =
(X0, X1) over a set Ω if there is a threshold τ ≥ 0 such that17

A(x) =

{
0 if |ℓX (x)| ≤ τ
sign(ℓX (x)) if |ℓX (x)| > τ

17The choice that A(x) = 0 when |ℓX (x)| = τ is somehow arbitrary. We will use a threshold τ such that |ℓX (x)| = τ
with probability 0.
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Theorem 3. Let X = (X0, X1) be a pair of probability distributions on a set Ω. Then, the optimal
advantage ∆2

MW(X ) is achieved by a threshold distinguisher A. Moreover, the threshold

τ∗ = log

(
4

3− 2β∗
A

− 1

)
is a simple function of the conditional success probability β∗

A = βA/αA. In particular, as β∗
A ∈

[1/2, 1], the threshold satisfies exp(τ) ∈ [1, 3].

Proof. Let A ∈ A≈ be an optimal fuzzy adversary, and assume without loss of generality that
αA, δA > 0, i.e., A is non-trivial. Now, fix any point x∗ in the support of X0, X1, and define

α∗ =
Pr{X0 = x∗}+ Pr{X1 = x∗}

2
> 0

δ∗ =
|Pr{X0 = x∗} − Pr{X1 = x∗}|

2
.

We will prove that

• δ∗

α∗ ≤ δA
2αA

if and only if |ℓX (x∗)| ≤ τ∗ (and similarly for ≥),

• if δ∗

α∗ ≤ δA
2αA

then |A(x∗)| = 1, and

• if δ∗

α∗ ≥ δA
2αA

then |A(x∗)| = 0.

In particular, since |A(x∗)| = 0 and |A(x∗)| = 1 are mutually exclusive, it must be |ℓX (x∗)| ≠ τ∗.
Note that the values α∗, δ∗ and τ∗ satisfy

δA
2αA

= β∗
A −

1

2
= 1− 2

exp(τ∗) + 1

δ∗

α∗ =
exp(|ℓ(x∗)|)− 1

exp(|ℓ(x∗)|) + 1
= 1− 2

exp(|ℓ(x∗)|) + 1
.

Since τ 7→ 1−2/(exp(τ)+1) is is a monotonically increasing function, this proves that |ℓX (x∗)| ≤ τ∗

if and only if (δ∗/α∗) ≤ δA/(2αA).
Now assume (δ∗/α∗) ≤ δA/(2αA) and (for contradiction) |A(x∗)| < 1. Consider a modified

adversary A∗ which is identical to A, except that |A∗(x∗)| = |A(x∗)|+ ϵ, for some ϵ < 1− |A(x∗)|.
Using the definition of δA and αA, we get δA∗ = δA + ϵ · δ∗, and αA∗ = αA + ϵ · α∗. So, this
modification increases the advantage of A by

advMW
X (A∗)− advMW

X (A) =
(δA + ϵ · δ∗)2

αA + ϵ · α∗ −
δ2A
αA

=
ϵ2(δ∗)2 + 2ϵδAα

∗
A

(
δA
2αA
− δ∗

α∗

)
αA + ϵα∗

≥ ϵ2(δ∗)2

αA + ϵα∗ > 0.

This is a contradiction to the optimality of A.
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Similarly, if (δ∗/α∗) ≥ δA/(2αA) and (for contradiction) |A(x∗)| > 0, we may define a modified
adversary A∗ that reduces the confidence |A∗(x∗)| = |A(x∗)| − ϵ of A on x∗ by some ϵ < |A(x∗)|.
This increases the advantage of A by

advMW
X (A∗)− advMW

X (A) =
(δA − ϵ · δ∗)2

αA − ϵ · α∗ −
δ2A
αA

=
ϵ2(δ∗)2 − 2ϵδAα

∗
A

(
δA
2αA
− δ∗

α∗

)
αA − ϵα∗

≥ ϵ2(δ∗)2

αA − ϵα∗ > 0,

again contradicting the optimality of A.

4 Equivalence of MW and WY bit security

In [WY23], it is claimed that for any decision game ⅁, the quantities WY(⅁) and MW(⅁) are equal
up to an additive constant, i.e., the MW and WY notions of bit-security are equivalent. However,
[WY23] only proves the statement for a variant of the WY security definition that uses aborting
adversaries (i.e., the MW adversaries with output in {0, 1,⊥} introduced in [MW18]), rather than
the traditional (non-aborting, inner) adversaries used in [WY21] to defineWY security. To close this
gap, [WY23] informally states that changing the class of adversaries does not affect the definition of
WY(⅁), and justifies the assertion saying that the definition does not explicitly depend on the size
of the co-domain18 of the adversary A. However, this reasoning is incorrect because the quantity
∆1/2(A(⅁)) used in the definition implicitly depends on the size of the co-domain of A. Still, the
equivalence claimed in [WY23] holds true, as shown in the following theorem which gives a direct
proof that WY⅁ and MW⅁ are equivalent.

The theorem makes use of the following technical lemma to modify an aborting adversary in
such a way that it uses only two of the output symbols in {0, 1,⊥}.

Lemma 14. For any decision game ⅁ = (⅁0,⅁1), and aborting adversary A ∈ A⊥, there exists a
modified adversary A′ ∈ A⊥ with output in {b̂,⊥} (for some fixed b̂ ∈ {0, 1}) and similar running
time T (A) = T (A′), such that

advMW
⅁ (A′) ≥ 1

2 · adv
MW
⅁ (A).

Proof. Let A′ = Az be the modified adversary from Lemma 6 with z the value in {0, 1} that
maximizes the advantage advMW

⅁ (Az). For i ∈ {0, 1}, j ∈ {0, 1,⊥}, let pi,j = Pr{A(⅁i) = j}, so
that βA = (p0,0 + p1,1)/2, β̄A = (p0,1 + p1,0)/2 and, by Lemma 6,

advMW
⅁ (Aj) =

(p0,j − p1,j)
2

2(p0,j + p1,j)
.

18Recall that the co-domain of A is the set of all possible outputs of A, e.g., {0, 1} or {0, 1,⊥}.
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We can then bound

advMW
⅁ (A) =

(βA − β̄A)
2

βA + β̄A

=
1

2

((p0,0 − p1,0)− (p0,1 − p1,1))
2

(p0,0 + p1,0) + (p0,1 + p1,1)

≤ (p0,0 − p1,0)
2

2(p0,0 + p1,0)
+

(p0,1 − p1,1)
2

2(p0,1 + p1,1)

= advMW
⅁ (A0) + advMW

⅁ (A1)

≤ 2advMW
⅁ (Az)

where the first inequality is Lemma 1, and the second one follows by our choice of z.

We also need a variant of Lemma 14 which gives a tight connection between the MW advantage
and the (squared) Le Cam distance of the adversary output probability distributions A(⅁). A
similar statement was previously proved in [WY23] under the condition that ∆1/2(A(⅁)) ≤ 1, and
with worse multiplicative constants.

Lemma 15. For any decision game ⅁ = (⅁0,⅁1) and aborting adversary A ∈ A⊥, there is a
modified adversary A′ ∈ A⊥ with similar running time T (A) ≈ T (A′), such that

advMW
⅁ (A) ≤ ∆2

LC(A(⅁)) ≤ 3advMW
⅁ (A′).

Proof. The proof proceeds as in Lemma 14, using the same notation, except that this time advMW
X (Az)

is maximized over z ∈ {0, 1,⊥}. As in the proof of Lemma 14, we still have

advMW
X (A) ≤ advMW

X (A0) + advMW
X (A1).

To prove the new lemma we notice that

∆2
LC(A(X0), A(X1)) =

∑
j∈{0,1,⊥}

(p0,j − p1,j)
2

2(p0,j + p1,j)
=

∑
j∈{0,1,⊥}

advMW
X (Aj)

which is at least advMW
X (A0) + advMW

X (A1) and at most 3advMW
X (Az).

Theorem 4. For any decision game ⅁, WY(⅁) = MW(⅁) + Θ(1).

Proof. The inequality MW⅁ ≤WY⅁ was already proved in [WY21]. Here we prove WY⅁ ≤ MW⅁+
O(1). Note that by Lemma 15, Lemma 2 and Lemma 3, for any adversary A, we have

advMW
⅁ (A) ≤ ∆2

LC(A(⅁)) ≤ 2 ·∆2
H(A(⅁)) ≤ ∆1/2(A(⅁)).

So, by Lemma 14, for any adversary A there is an adversary A′ such that

MW⅁(A) = log2
T (A)

advMW
⅁ (A)

≥ log2
T (A′)

2advMW
⅁ (A′)

≥ log2
T (A′)

∆1/2(Az(⅁))
− 1.
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Note that A′ has co-domain {b,⊥} (rather than {0, 1}). But since ∆1/2 does not give any special
meaning to the symbols output by the adversary, we can view A′ as a valid adversary for WY⅁. So,
we get that MW⅁(A) ≥WY⅁(A

′)− 1. Since A was arbitrary, this proves the theorem.

The previous theorem shows that one can use WY(⅁) as an alternative characterization of
MW(⅁). This is potentially interesting, as WY(⅁) only makes use of traditional (non-aborting)
adversaries, which are perhaps more intuitive and easier to use. (This was indeed one of the
motivations of [WY21].) In particular, it is tempting to assume that, since the inner adversary
of [WY21] always outputs either 0 or 1 (i.e., it never aborts), the optimal WY advantage in
distinguishing between two distributions X = (X0, X1) is achieved by the maximum likelihood
distinguisher AX

SD. Perhaps counterintuitively, the following theorem shows that this is not the
case, and even if [WY21] does not make use of aborts, the obvious (inner) distinguishing strategy
AX

SD is not optimal, and can in fact substantially overestimate the number of bits of security by a
factor19 close to 2.

Theorem 5. There exist (efficiently samplable, efficiently computable) distributions X = (X0, X1)
such that

WYX (A
X
SD) ≥ 2 ·MW(X )−O(1).

Proof. The choice of X below is from [Sur21, Lemma 2], where it was used to show the suboptimality
of distinguishing a product distribution X⊗n = (X⊗n

0 , X⊗n
1 ) by first computing AX

SD “coordinate-
wise” (sometimes called Scheffé’s test). Consider the distributions X = (X0, X1) shown in following
table, where ϵ ≤ 1/8:

0 1 2

X0 0.5 0.5− ϵ ϵ
X1 0.5− ϵ 0.5 + ϵ 0

AX
SD 0 1 0

AX
MW ⊥ ⊥ 0

AX
SD(X0) 0.5 + ϵ 0.5− ϵ

AX
SD(X1) 0.5− ϵ 0.5 + ϵ

The table also shows the optimal AX
SD distinguisher, its output distribution on input X0 and X1,

and a candidate20 MW distinguisher which we will use in our proof. The intuition is clear: if the
sample is 2, then it certainly comes from distributionX0, but for the other samples the distinguisher
does not have enough confidence to make the call. This distinguisher succeeds with probability
β = ϵ/2, but it never fails. So, it achieves advantage (β − β̄)2/(β + β̄) = β = ϵ/2. Since AMW runs
in constant time, the decisional problem X has at most log2(2/ϵ) = 1 + log2(1/ϵ) bits of security.

Let’s now estimate the advantage achieved by ASD as an inner distinguisher. We first evaluate
the Hellinger distance

∆2
H(A

X
SD(X0), A

X
SD(X1)) = 1−

√
1− 4ϵ2 ≤ 4ϵ2

where we have used the inequality 1 −
√
1− x ≤ x, which is valid for all x ∈ [0, 1]. Finally, using

Lemma 3, we bound
∆1/2(A

X
SD(X )) ≤ 4∆2

H(A
X
SD(X )) ≤ 16ϵ2.

19This is a doubling of the number of security bits k, so it corresponds to overestimating the cost of the attack by
an exponential factor 2k.

20This is indeed the optimal MW distinguisher when ϵ ≤ 1/8. When ϵ ≥ 1/8, then AX
SD becomes optimal.
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Since ASD also runs in constant time, the upper bound on bit security it gives is log2(1/(16ϵ
2)) =

2 log2(1/ϵ) − 4. In summary, if ϵ = 2−k (for any k ≥ 3), the bit security is at most k + 1, but the
WY framework with non-aborting distinguisher ASD only provides a very weak bound of 2k−4

5 A Toolbox for Analysis of (c, s)-Bit Security

In this section we use the close relation between the MW and the Le Cam distance (Lemma 15) to
establish two fundamental tools for the use of computational-statistical bit security in the analysis
of complex cryptograhic protocols: the hybrid proof technique, and the probability replacement
theorem.

Theorem 6. Let X0, . . . , Xk be a sequence of cryptographic games. If for all i = 1, . . . , k, Xi =
(Xi−1, Xi) is (ci, si)-bit secure, then X = (X0, Xk) is (c, s)-bit secure for

c = min
i
(ci)− 2 log2(

√
3k)

s = min
i
(si)− 2 log2(

√
3k)

Proof. Using Lemma 15 we get the upper bound√
advMW

X (A) ≤ ∆LC(A(X0), A(Xk))

≤
∑
i

∆LC(A(Xi), A(Xi+1))

≤
√
3
∑
i

max
zi

√
advMW

Xi
(Azi)

≤
√
3k

√
max

i
(T (Azi)2−ci , 2−si).

So, since T (A) ≈ T (Azi) for all i, the advantage advMW
X (A) is at most

3k2max(T (A)2−mini ci , 2−mini si) = max(T (A)2−c, 2−s).

This proves that X is at least (c, s)-secure.

This may be seen as an extension of [MW18, Theorem 7], which is an analogous result for
(c, c)-bit security, though with slightly smaller21 loss of log2(2k

2) = 2 log2(
√
2k) bits.

We next establish a distribution replacement theorem for (c, s)-bit security for games ⅁Y pa-
rameterized by a distribution Y . This was done in [MW18] under the assumption that (Y0, Y1) is
statistically ((∞, s)-bit) secure, and in [WY23] under the assumption that (Y0, Y1) is computation-
ally ((c, c)-bit) secure. We extend this to a (c, s)-bit security assumption below.

21One can recover the exact same loss (log2(2k
2) = 2 log2(

√
2k)) by giving a variant of Lemma 15 with constant

factor 2 rather than 3. This can be done by comparing advMW
X (A) to ∆2

LC(X
′
0, X

′
1), where X ′

b ∈ [0, 1]2 is the first two
coordinates of A(Xb) ∈ [0, 1]3. This is to say that one can exactly generalize [MW18, Theorem 7] by working with
(X ′

0, X
′
1) that are positive measures of total mass ≤ 1 rather than probability measures of total mass = 1. We avoid

doing this as the quantitative improvement is small, at the cost of a large amount of conceptual overhead.
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Theorem 7. Let ⅁,Y be decision games. If ⅁Y0 is (c, s)-bit secure, and Y is (c′, s′)-bit secure, then
⅁Y1 is (c′′, s′′)-bit secure, where c′′ = min(c−2, c′−3− log2(1+T⅁)), and s′′ = min(s−2, s′−3). In
particular, if Y and ⅁Y0 are (c, s)-bit secure and22 T⅁ = O(1), then ⅁Y1 is almost (c, s)-bit secure,
up to a small additive constant term in bit security.

Proof. Let A be any adversary. By Lemma 15 and the triangle inequality (for ∆LC), we have We
compute √

advMW
⅁Y1

(A) ≤ ∆LC(A(⅁Y1
0 ), A(⅁Y1

1 ))

≤ ∆LC(A(⅁Y1
0 ), A(⅁Y0

0 )) + ∆LC(A(⅁Y0
0 ), A(⅁Y0

1 )) + ∆LC(A(⅁Y0
1 ), A(⅁Y1

1 )).

We bound each term in the last sum separately. For the middle term, using the upper bound in
Lemma 15 and T (A) = T (Az), we get

∆LC(A(⅁Y1
0 ), A(⅁Y0

0 )) ≤
√
3max

z
advMW

⅁Y0
(Az) ≤

√
3max(TA2−c, 2−s)

The other terms are bound constructing distinguishers A0, A1 against the game Y as follows. AY
0

simulates the execution of A in the game ⅁Y
0 and flips the answer, i.e., it outputs 1 − a when A

outputs a ∈ {0, 1}, and ⊥ otherwise. AY
1 simulates the execution of A in the game ⅁Y

1 , and outputs
the same result as A. Then, we have

∆LC(A(⅁Y1
0 ), A(⅁Y0

0 )) = ∆LC(A0(Y0), A0(Y1))

≤
√

3max
z

advMW
Y (Az

0)

≤
√
3max(T (A)(1 + T⅁)2−c′ , 2−s′)

and similarly for the last term ∆LC(A(⅁Y0
1 ), A(⅁Y0

1 )) using adversary A1. Combining the three terms
gives the bound in the theorem.

6 Conclusion and Open Problems

We developed a number of useful tools to evaluate the bit security of decisional cryptographic prop-
erties, in the statistical and computational setting, or even combinations of the two. These include
a characterization of the structure of the optimal statistical “aborting” adversaries to facilitate
the use of approximate probability distributions (like uniform or discrete gaussians), and general
hybrid arguments and probability replacement theorems to combine subprotocols together and
support modular security analysis. More tools may be added to the toolbox in the future, but we
believe that the results presented in this paper already demonstrate that computational-statistical
bit-security can be quite usable and useful.

For all results in this paper we focused on decision problems, which are the hardest case, but
combining decisional primitives with search ones should be fairly straightforward, as the definition
of bit security for search problems is standard. An interesting direction for future work is to

22Recall from Definition 1 that T⅁ is the relative running time of ⅁. So, T⅁ = O(1) is quite common, e.g., when
oracle calls can be answered in linear time.
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explore the space between search and decision problems. These include, for example, problems
with small (polynomially sized) search space, like password authenticated key exchange. Two works
[MW18, Lee24] offer general definitions that interpolate between search and decision problems, but
the significance of those definitions for intermediate problems is unclear. Similarly to what was done
in [MW18] for search and decision problems, it would be interesting to analyze a representative set of
protocols falling in-between search and decision primitives, possibly in conjunction with standard
search and decision primitives, to see if the bit-security estimates provided by those definitions
match the cryptographic intuition behind the informal notion of bit-security.

Another interesting direction for further work is to make good use of the definition of computational-
statistical bit-security (proposed in [LMSS22] and studied in this work) to formally analyze concrete
protocols of practical interest, and make provable (still tight) claims about their security.
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