
Scalable Mixnets from Mercurial Signatures on Randomizable
Ciphertexts

Masayuki Abe1,2, Masaya Nanri2, Miyako Ohkubo3, Octavio Perez Kempner1, Daniel Slamanig4,
and Mehdi Tibouchi1,2

1 NTT Social Informatics Laboratories, Tokyo, Japan
{msyk.abe,octavio.perezkempner,mehdi.tibouchi}@ntt.com

2 Kyoto University, Kyoto, Japan
nanri.masaya.26n@st.kyoto-u.ac.jp

3 Security Fundamentals Laboratory, CSR, NICT
m.ohkubo@nict.go.jp

4 Research Institute CODE, Universität der Bundeswehr München
daniel.slamanig@unibw.de

Abstract. A mix network, or mixnet, is a cryptographic tool for anonymous routing, taking
messages from multiple (identifiable) senders and delivering them in a randomly permuted order.
Traditional mixnets employ encryption and proofs of correct shuffle to cut the link between each
sender and their input.
Hébant et al. (PKC ’20) introduced a novel approach to scalable mixnets based on linearly
homomorphic signatures. Unfortunately, their security model is too weak to support voting
applications. Building upon their work, we leverage recent advances in equivalence class signa-
tures, replacing linearly homomorphic signatures to obtain more efficient mixnets with security
in a more robust model. More concretely, we introduce the notion of mercurial signatures on
randomizable ciphertexts along with an efficient construction, which we use to build a scalable
mixnet protocol suitable for voting. We compare our approach to other (scalable) mixnet ap-
proaches, implement our protocols, and provide concrete performance benchmarks. Our findings
show our mixnet significantly outperforms existing alternatives in efficiency and scalability. Ver-
ifying the mixing process for 50k ciphertexts takes 135 seconds on a commodity laptop (without
parallelization) when employing ten mixers.

Keywords: Equivalence Class Signatures, Mercurial Signatures, Mixnets, Voting, Anonymity

1 Introduction

The notion of a mixnet originates with the work on untraceable email by Chaum [Cha81], who
proposed the use of multiple servers to shuffle a set of messages (i.e., permute and perform crypto-
graphic operations) in cascade to hide the relation between the initial input and resulting output.
Since their introduction, mixnets have found numerous applications ranging from anonymous messag-
ing [AKTZ17] and routing [CAB+15, KCGDF17, PHE+17] to voting (see e.g., [CRS05, HMMP23a])
and even oblivious RAM [TDE17]. In general, mixnets are required to provide verifiability (i.e.,
misbehavior during the mixing phase can be detected), which usually includes accountability (i.e.,
misbehaving parties can be identified). Verifiable mixnets, e.g., [SK95, Abe98, Abe99, AH01, FS01,
Nef01, JJR02, Gro03, KMW12], require proof of correct shuffling, which adds a considerable overhead
to the non-verifiable, honest-but-curious variant. Recent constructions such as [FLSZ17, AFK+20,
KL21, ABGS23] assume various structures in the input ciphertext that make malicious behaviours
by mix-servers harder, and hence, the proof and verification work easier. Unfortunately, this requires
complex cryptographic building blocks, which are often error-prone and challenging for implementors.
This complexity not only hampers widespread adoption but also raises concerns about the robustness
of the implemented systems.

When mixnets are used in e-voting, one of its prime applications, they typically require users to
create input ciphertexts to the mixnet. Such ciphertexts (the encrypted ballots) must be authenticated
by an authority. This is crucial to enforcing the one-voter-one-vote principle. Therefore, the soundness
of the election result requires trust placed in the authority. This need for authentication adds another
layer of complexity.

Hébant, Phan and Pointcheval [HPP20] (HPP20 hereinafter) merged authentication into the
mixnet structure itself; a certification authority (CA) authorizes each input with a signature, whose
unforgeability is key to achieve an easier approach to verifiable shuffle. This enables a highly scalable
mixnet architecture. The new paradigm requires the signatures to be malleable to carry out shuffling.
Concretely, their mixnet requires three kinds of signature schemes (standard, linearly homomor-
phic [LPJY13], and multi-signatures [BDN18]), and the Groth-Sahai non-interactive zero-knowledge
proof system [GS12] (GS proofs). Unfortunately, this results in a rather complex setup for the whole
system and a new ad-hoc “unlinkability assumption” (Def. 4 from [HPP20]). More importantly, HPP20
guarantee soundness only for honest users, which is unacceptable for voting applications (see Ap-
pendix A for a detailed presentation of their model and related discussion). In this work, we address
the following question:

Can we design a mixnet architecture that reduces implementation complexity and enhances
scalability while providing strong security guarantees?

To answer the above question affirmatively, we follow HPP20’s certified input paradigm leveraging
recent results in Equivalence Class Signatures (EQS) [FHS19], allowing us to propose simpler and
more efficient mixnets. EQS are malleable structure-preserving signatures [AFG+10, AGHO11] (i.e.,
pairing-based signatures with messages and public keys that are elements of a source group and whose
verification is done using paring-product equations) defined over a message vector space. Furthermore,
an EQS allows anyone to jointly adapt a message-signature pair to obtain a new (and unlinkable)
pair based on the concept of equivalence classes, originally defined as [M]R := {N ∈ (G∗)ℓ | ∃ s ∈
Z∗
p : N = s ·M} for any message vector M ∈ (G∗)ℓ with ℓ ≥ 2. A forgery of EQS is considered

as successful only if the forged message is not representative of any equivalence classes defined by
the messages queried to the signing oracle. Besides, EQS provide a notion of class-hiding (it should
be hard to distinguish whether two messages are in the same class or not) and signature adaptation
(adapted signatures should be uniformly random in the space of valid signatures).

EQS have further been studied to consider equivalence classes for the public key only [BHKS18]
or both (latter introduced under the name of mercurial signatures in [CL19]). In addition, Bauer and
Fuchsbauer [BF20] considered a different equivalence relation for the message space and gave the first
construction of Signatures on Randomizable Ciphertexts (SoRC) [BFPV11] using an EQS. In brief, it
signs ElGamal ciphertexts and all randomizations of a ciphertext define an equivalence class.

Our Contribution. In search of more efficient constructions of scalable mixnets with stronger se-
curity properties, we take the SoRC from [BF20] (which is an EQS) as a starting point and extend it
to get a Mercurial Signature on Randomizable Ciphertexts (MSoRC). However, this is not yet a game
changer as it only provides the same weak public-key class hiding guarantees of early constructions
[CL19, CL21, CLPK22] (i.e., original signers can identify adapted signatures for an adapted public
key using their secret key). To overcome this limitation, we incorporate a very recent idea used to
construct interactive threshold mercurial signatures (TMS) [ANPT24] to obtain a construction that
provides a stronger class-hiding notion for the public key. In brief, we present an interactive signing
protocol for our base MSoRC scheme, allowing parties to produce a signature on their combined public
keys. Key-randomizability of the resulting signature provides a stronger class-hiding notion as long
as parties do not share their secret keys. We believe that our new primitive is interesting on its own
and might find various other applications.

Then we go on to show how we can build a scalable mixnet from MSoRC, obtaining a similar
key-randomizability property when compared to HPP20, but without the hurdle of combining lin-
early homomorphic signatures and GS proofs. Moreover, we tailor our MSoRC to the mixnet setting,
further optimizing it. In addition, we rely on a simpler proof system from Couteau and Hartmann
(CH20) [CH20] instead of GS proofs, and use batch verification to further improve efficiency. Over-
all, this allows us to reduce computation and verification costs compared to HPP20, while achieving
stronger security guarantees under minimal trust assumptions, i.e., a single honest mixer.

To show the practicality of our approach, we discuss the application of our mixnet for voting. We
provide a comparison with state-of-the-art alternatives and a Rust implementation of our protocols
alongside corresponding benchmarks demonstrating the efficiency and scalability of our approach.

We emphasize that all the cryptographic building blocks used in this work can be easily im-
plemented with existing cryptographic libraries. Additionally, no complex arithmetic operations or
algorithms are needed.

2

2 Related Work

Signatures on Randomizable Ciphertexts. Originally introduced by Blazy et al. [BFPV11],
SoRC can be seen as a predecessor of EQS [HS14, FHS19] for a specific equivalence relation. The
motivation was to build signatures on ciphertexts that could be adapted to randomizations of them.
The work by Hanser and Slamanig [HS14] together with Fuchsbauer [FHS19] that introduced EQS
allows a controlled form of malleability on message-signature pairs where messages are not ciphertexts
but broadly, can be any tuple defined over (G∗)ℓ with ℓ ≥ 2. To do so, the authors put forth the
notion of equivalence classes, adapting the usual unforgeability notion, as previously mentioned. The
SoRC construction from [BF20] (which is based on [FHS19]) provides a strong notion of class-hiding,
i.e., an adapted message-signature pair looks like a completely random message-signature pair even
when knowing the original message-signature pair.

Our work extends the construction from [BF20] so that signatures can be adapted to a new
verification key representative. Hence, we obtain the first key-randomizable SoRC (i.e., a MSoRC).
We use the technique from [ANPT24] to define an interactive signing protocol to compute a MSoRC
jointly. Consequently, the corresponding secret key is distributed between two parties and we achieve
a strong class-hiding property for the verification keys (public key unlinkability). Looking ahead, users
of our mixnet protocol engage with the authority to produce an MSoRC signature for a message they
choose, allowing them to adapt the signature thus hiding their identity while still being able to prove
that it is valid.

To summarize, our work combines the notion of TMS and SoRC to present a new primitive
(MSoRC) that provides enhanced privacy-preserving features.
Mixnets. The closest work to ours is HPP20, which inspires this work. It is based on linearly
homomorphic signatures and GS proofs. We propose to replace both building blocks, introducing a
new signature scheme that can be jointly computed between each user and the certificate authority
(CA). Our scheme is an interactive MSoRC, and we use it alongside a different proof system to further
improve the efficiency of the shuffle approach from HPP20. On the one hand, the use of MSoRC allows
us to remove the need to combine two different linearly homomorphic signatures with GS proofs to
manage the key-randomizability property required for privacy. On the other hand, the use of CH20
allows us to reduce the computational cost per mix-server. We also improve the security model.
While HPP20 is unsuitable for voting (it only provides guarantees for honest users), our mixnet can
be applied in voting applications as discussed in Section F.

Another recent line of work based on Re-randomizable Replayable CCA encryption (Rand-RCCA)
[CKN03] shares similarities with the above, making it appropriate to discuss. Faonio et al. [FFHR19,
FR22] proposed using Rand-RCCA PKE to circumvent the need for a proof of shuffle, carefully re-
placing it with individual NIZK proofs of plaintext knowledge for each ciphertext and NIZK proofs of
membership for each mixing stage. At the end, servers run a multi-party computation protocol (called
verify-then-decrypt) to obtain the final output. The similarity with HPP20 is that ciphertexts can
be independently randomized, and thus, their solution also scales very well. Unfortunately, proving
security in the universal composability (UC) framework comes at a much higher computational cost
for their solution and they also require a rather complex setup.

As we discuss in Section 7, from a communication as well as computational perspective our ap-
proach outperforms both HPP20 as well as the Rand-RCCA PKE based approach [FR22]. In particular,
compared to HPP20, which is more efficient than [FR22], we improve computation by a factor of 3.5x
and communication up to a factor of around 3x. Moreover, also concretely our approach is highly
efficient and for instance for n = 50k ciphertexts and N = 10 mixers, the worst-case time for mixing
takes around 40 seconds and the verification of the final mixing result takes around 135 seconds.

We do not consider decryption mixnets (e.g.,[DHK21, PHE+17]) in this work as we focus on
mixnets suitable for applications like e-voting, which are require public verifiability of the mixing.

3 Our Approach

We present a high-level overview of our approach, focusing on voting, its primary application. We
assume that a Bulletin Board (BB) is available to all parties.

The idea is that users encrypt their ballots with ElGamal and engage in an interactive signing
protocol with the CA to produce a MSoRC signature for it, which verifies under a jointly computed
public key. For security, the user will contribute to one share of the corresponding secret key, and

3

the authority with two shares (an ephemeral secret key and its long-term secret key). The ephemeral
public key is given to the user. This way, users can publish their ciphertexts and signatures alongside
the ephemeral public key to prove they have a valid vote. Anyone can compute a verification key vki
as the product of user i’s public key with the posted ephemeral public key and the authority’s public
key (vki = Ui,pk +Ei,pk +Apk) to get a (valid) key under which the signature verifies. Unforgeability
of MSoRC signatures guarantees that if a signature verifies under vki, it must have been produced
with the authority’s participation (i.e., the user is allowed to post a vote).

The above signing protocol includes randomizing the user’s ciphertext, ensuring receipt-freeness
(see Sec. F). In brief, users get a valid signature that can be adapted to a randomization of the user
ciphertext but they cannot prove to a third party that the ciphertext encrypts a particular message.

With the above in mind, a user tuple posted to the BB consists of a ciphertext Ci, a signature
σi, the user’s public key Ui,pk, and the ephemeral public key Ei,pk. Since Ui,pk + Ei,pk determines a
unique public key, users could submit Ui,pk +Ei,pk instead of Ui,pk and (separately) Ei,pk. This would
allow them to remain anonymous to other users in the system while the CA can still identify them.
In any case, replay attacks (re-voting) at this stage are easily detectable as it suffice to verify that all
the submitted tuples are different (see Sec. 5 for the details of our signature construction).

The first mix server gets all the tuples, randomizes each ciphertext and verification key, adapts
the signatures, and shuffles everything. Security of MSoRC ensures that no collusion between mix
servers and the CA can break public key unlinkability of honest users as long as one mix server
is honest (i.e., it correctly randomizes the tuples and permutes them). This holds even if the CA
colludes with a subset of mix servers and users. Correctness of this process is ensured proving the
correct randomization of verification keys, which is a discrete log proof on the sum of all of them.

Considering s1, . . . , sN mix servers, sj delivers SSet(j) := {(C ′
0, C ′

1)Π(i), σ
′
Π(i), vk

′
Π(i)}i∈[n] and a

signed NIZK proof of correct mixing to sj+1 using the statement from the previous round as the base
point. The proof is given by:

NIZK{(
i=n∑
i=1

vk′
(j−1)
Π(i) , ρ) :

i=n∑
i=1

vk′
(j)
Π(i) = ρ ·

i=n∑
i=1

vk′
(j−1)
Π(i) }

Servers sign their NIZK proof using an aggregate signature, and we use batch verification for all
proofs. Everyone can publicly verify the aggregate signature to confirm the participation of each
mix server while batch verification validates the output tuple. Only the initial tuples, the final ones,
all the N short NIZK proofs, and server’s public keys are needed for verification. This is because
if the aggregate signature and proofs verify, the output tuple implicitly validates the intermediate
randomizations performed by each mix server. Alternatively, as in HPP20, the mix servers could
perform a second round to produce a multi-signature on the final proof, making the final verification
independent of N .

4 Preliminaries

Notation. The set of integers from 1 to n is denoted as [n]. Zp represents the ring of integers modulus
p. For a set S, r ←$ S denotes that r is sampled uniformly at random from S. The security parameter
κ is usually passed in unary form. We denote by PP the set of public parameters, and for pp ∈ PP we
letMpp be the set of messages, DKpp the set of decryption keys, EKpp, the set of encryption keys, Cpp
the set of ciphertexts, Rpp the set of ciphertext randomness, SKpp the set of signature keys, VKpp the
set of verification keys and Spp the set of signatures. Let BGGen be a PPT algorithm that on input 1κ,
returns public parameters pp ∈ PP s.t. pp = (p,G1,G2,GT , G, Ĝ, e) describes an asymmetric bilinear
group where G1,G2,GT are cyclic groups of prime order p with ⌈log2 p⌉ = κ, G and Ĝ are generators
of G1 and G2, and e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear map.
e is said to be of Type-3 if no efficiently computable isomorphisms between G1 and G2 are known.
Elements in G2 are written with a hat (e.g., X̂ ∈ G2).

ElGamal PKE [ElG86]. Let pp = (p,G1,G2,GT , G, Ĝ, e) and (KeyGen, Enc, Dec). Key generation
KeyGen(pp) chooses dk := x←$ Z∗

p, sets ek := X ← xG and outputs (dk, ek). Encryption Enc(X,M)
outputs ciphertext (C1, C0) := (µG,M + µX) with µ ←$ Z∗

p. Decryption Dec(x, (C0, C1)) outputs
M := C1 − xC0. The ElGamal PKE is IND-CPA in G1 as long as the DDH assumption holds in G1.

4

Zero-Knowledge Proofs. We consider languages in NP defined in terms of a relation LR = {x| ∃ w st.
(x,w) ∈ RL}, where x ∈ X is referred to as the instance and w ∈ W as the witness with RL being
a subset of X ×W . A zero-knowledge proof allows a prover to convince a verifier that (x,w) ∈ RL
without disclosing any information about w. This work uses Zero-Knowledge Proofs of Knowledge
(ZKPoK) and non-interactive arguments (i.e., Non-Interactive Zero-Knowledge arguments or NIZK).
The former are three-round public coin, honest verifier zero-knowledge proofs that satisfy knowledge
soundness (see [Gol01] for further details). The latter are single-round protocols in the common
reference string (crs) model whose syntax we recall next (we refer the reader to [DEF+23] and [CH20]
for formal definitions). A NIZK proof system for a language L is defined by three algorithms: (1)
CRSGen generates a common reference string and (optionally) a trapdoor; (2) Prove produces a proof
for (x,w) ∈ RL; (3) Verify verifies a proof w.r.t. an instance x.

Couteau and Hartmann proposed a framework for building pairing-based NIZK for algebraic
languages [CH20], an extension of linear languages. In particular, their framework is very well-
suited as an alternative to GS proofs [GS08] due to its conceptual simplicity and because it pro-
vides fully adaptive soundness and perfect zero-knowledge with a single random group element as
the crs. We will consider the following linear language LA for A = (A0,A1,A2) ∈ G3 given by
RA := {(x, w) : x ∈ G3, w ∈ Zp s.t. x = Aw}, which captures DDH relations. We show how to
instantiate and batch verify a NIZK for LA in Appendix B, as required by our mixnet scheme.

Mercurial Signatures on Randomizable Ciphertexts. Our definition of mercurial signatures on ran-
domizable ciphertexts adapts the presentation from [BF20] to signatures on randomizable ciphertexts
(similar to what [CL19] does for mercurial signatures when generalizing the ideas from [FHS19]). Thus,
the definitions below can be seen as a merge between the original syntax and security properties of
SoRC and MS schemes. With this in mind, a MSoRC scheme consists of the following polynomial-time
algorithms of which all except Setup are implicitly parametrized by an element pp ∈ PP.

Setup(1κ)→ pp: Generates public parameters.
KeyGen()→ (ek, dk): Generates an encryption key pair.
Enc(ek,m; r)→ c: Produces a ciphertext c under ek for a message m using randomness r.
Dec(dk, c)→ m: Outputs a message m.
Rndmz(ek, c;µ)→ c′: Randomizes a ciphertext c into c′ using randomness µ.
SKG()→ (vk, sk): Generates a signature key pair.
Sign(sk, ek, c; s)→ σ: Produces a signature σ for c under sk using randomness s.
Verify(vk, ek, c, σ)→ 0/1: Verifies (c, σ) w.r.t. vk and ek.
Adapt(σ;µ, ρ)→ σ′: Randomizes a signature σ into σ′ using randomness µ and ρ.

ConvertSK(sk, ρ)→ sk′: Randomizes a secret key sk into sk′ using randomness ρ.

ConvertVK(vk, ρ)→ vk′: Randomizes a verification key vk into vk′ using randomness ρ.

As in [CL19], let R be an equivalence relation where [x]R = {y | R(x, y)} denotes the equivalence
class of which x is a representative. We loosely consider parametrized relations and say they are
well-defined as long as the corresponding parameters are well-defined. We recall that signatures on
randomizable ciphertexts are EQS where Adapt is analogous to ChgRep. More precisely, the equiva-
lence class [c]ek of a ciphertext c under encryption key ek is defined as all randomizations of c, that is,
[c]ek := {c′ | ∃ r ∈ Rpp : c′ = Rndmz(ek, c; r)}. Similarly, equivalence classes of verification and secret
keys are defined as [vk]vk := {vk′ | ∃ r ∈ Rpp : vk′ = rvk} and [sk]sk := {sk′ | ∃ r ∈ Rpp : sk′ = rsk},
respectively.

Definition 1 (Correctness [BF20]). A SoRC scheme is correct if for all pp ∈ PP, for all pairs
(ek, dk) and (sk, vk) in the range of KeyGen(pp) and SKG(pp), respectively, and all m ∈Mpp, r ∈ Rpp

and c ∈ Cpp: Dec(dk,Enc(ek,m; r)) = m and Pr[Verify(vk, ek, c, Sign(sk, ek, c)) = 1] = 1.

Similar to mercurial signatures, unforgeability of MSoRC should allow the adversary to output
signatures under equivalent public keys (which are not considered a forgery). However, since MSoRC
also deal with encryption keys, it is crucial to consider what happens with them and how they are
managed in the unforgeability game. In this regard, the unforgeability notion from BF20 considers a
forgery the case in which the adversary can produce a signature on an encryption of a message for

5

Experiment ExpUNF-I
MSoRC(1

κ,A)
Q← ∅; pp←$ Setup(1κ); (sk, vk)←$ SKG(pp)

(vk∗, ek∗, c∗, σ∗)← ASign(sk,·,·)(vk)
return (ek∗, c∗) /∈ Q ∧ [vk∗]vk = [vk]vk ∧ Verify(vk∗, ek∗, c∗, σ∗) = 1

Oracle Sign(sk, ek, c)

Q← Q ∪ {ek} × [c]ek; return Sign(sk, ek)̧

Fig. 1. Unforgeability experiment (UNF-I).

an encryption key that has not been queried for that message. This strong unforgeability notion lets
the adversary produce signatures under any encryption key pair of its choice. We capture this setting
with the following definition.

Definition 2 (UNF-I). A MSoRC scheme is unforgeable if the advantage of any PPT adversary
A defined by AdvUNF−I

MSoRC(1
κ,A) := Pr [ExpUNF−I

MSoRC(1
κ,A)⇒ true] ≤ ϵ(κ), where ExpUNF−I

MSoRC(1
κ,A) is shown

in Fig. 1.

While the previous unforgeability notion enables applications such as blind signatures [BFPV11],
for our concrete application of mixnet, the encryption keys are either managed by the CA or by some
other set of authorities (if a distributed key generation protocol is used to distribute trust) but not
the users. Therefore, we can relax the unforgeability requirement from Definition 2 so that it’s the
challenger the one that picks the encryption key pair instead of the adversary5. We reflect this with
Definition 3.

Definition 3 (UNF-II). A MSoRC scheme is unforgeable if the advantage of any PPT adversary
A defined by AdvUNF−II

MSoRC(1
κ,A) := Pr [ExpUNF−II

MSoRC(1
κ,A)⇒ true] ≤ ϵ(κ), where ExpUNF−II

MSoRC(1
κ,A) is shown

in Fig. 2.

Experiment ExpUNF-II
MSoRC(1

κ,A)
Q← ∅; pp←$ Setup(1κ); (sk, vk)←$ SKG(pp); (dk, ek)←$ KeyGen(pp)

(vk∗, c∗, σ∗)← ASign(sk,·,·)(vk, ek)
return c∗ /∈ Q ∧ [vk∗]vk = [vk]vk ∧ Verify(vk∗, ek, c∗, σ∗) = 1

Oracle Sign(sk, ek, c)

Q← Q ∪ [c]ek; return Sign(sk, ek)̧

Fig. 2. Unforgeability experiment (UNF-II).

An MSoRC should also provide an encryption scheme with IND-CPA security and full class-hiding.
These properties were defined in [BF20] and are recalled below.

Definition 4 (IND-CPA security & Full Class-Hiding [BF20]). A MSoRC scheme is IND-
CPA and full class-hiding if:

IND-CPA: the advantage of any PPT adversary A defined by AdvIND-CPA
MSoRC,A (κ) := 2·Pr

[
ExpIND-CPA

MSoRC,A (κ)⇒
true]− 1 = ϵ(κ).
Full class-hiding: the advantage of any PPT adversary A defined by AdvFull-CH

MSoRC,A(κ) := 2·Pr
[
ExpFull-CH

MSoRC,A(κ)
⇒ true]− 1 = ϵ(κ).

where ExpIND-CPA
MSoRC,A (κ) and ExpFull-CH

MSoRC,A(κ) are the experiments shown below.

Experiment ExpIND-CPA
MSoRC,A (κ) Experiment ExpFull-CH

MSoRC,A(κ)

pp←$ Setup(1κ) pp←$ Setup(1κ)
b←$ {0, 1}; r ←$Rpp b←$ {0, 1}; r ←$Rpp

(dk, ek)←$ KeyGen(pp) (dk, ek)←$ KeyGen(pp)
(st,m0,m1)← A(ek) (st, c)← A(ek); c0 ←$ Cpp
c← Enc(ek,mb, r) c1 ← Rndmz(ek, c; r)
b′ ←$A(st, c); return b = b′ b′ ← A(st, cb); return b = b′

5 This key observation allows us to obtain an even more efficient MSoRC.

6

Experiment ExpUNF−III

MSoRC(1
κ,A)

Q← ∅; pp←$ Setup(1κ); (b, st)← A(pp); (dk, ek)←$ KeyGen(pp)
(ski, vki)i∈{0,1} ←$ TKGen(pp); vk← vk0 + vk1
(vk∗, c∗, σ∗)← AISign1−b(sk1−b,·,·)(st, vk0, vk1, skb, ek)
return c∗ /∈ Q ∧ [vk∗]vk = [vk]vk ∧ Verify(vk∗, ek, c∗, σ∗) = 1

Oracle ISign1−b(sk1−b, ek, c)

Q← Q ∪ [c]ek; return ISign1−b(sk1−b, ek, c)

Fig. 3. Unforgeability w.r.t an interactive signing protocol.

We consider signature adaptations for a new representative of the public key, extending the defi-
nition from [BF20].

Definition 5 (Signature adaption). A MSoRC scheme is adaptable (under malicious keys) if
for all pp ∈ PP, all (vk, ek, c, σ) ∈ VKpp × EKpp × Cpp × Spp that satisfy Verify(vk, ek, c,
σ) = 1 and all (µ, ρ) ∈ R2

pp, the output of Adapt(σ;µ, ρ) is uniformly distributed over the set {σ′ ∈
Spp | Verify(ConvertVK(vk, ρ), ek, Rndmz(ek, c, µ), σ′) = 1}.

Besides standard definitions, we also consider an interactive signing protocol for MSoRC schemes
as defined below.

ISignP0
(sk0, ek, c)↔ ISignP1

(sk1, ek, c)→ σ: This algorithm is run interactively between parties P0 and
P1. It produces a signature σ for c under sk, implicitly defined as sk0 + sk1.

We now define unforgeability and public-key class-hiding, assuming at least one honest signer.
To prove security, we introduce a key generation algorithm that is run by a trusted third party that
produces (vk, sk) as in SKG but such that vk = vk0 + vk1 and sk = sk0 + sk1 (in practice, each party
will run SKG independently). We require the following property adapted from [ANPT24].

Definition 6 (Security of key generation). TKGen is secure if it outputs vk with the same dis-
tribution as SKG, and there exists a simulator, SimTKGen, s.t. for any sufficiently large κ, any
pp ∈ Setup(1κ), (vk, sk) ∈ SKG(pp), and b ∈ {0, 1}, SimTKGen(vk, b) outputs skb and {vk0, vk1}.
The joint distribution of (vk, vk0, vk1, skb) is indistinguishable from that of TKGen(pp).

For unforgeability, we let the adversary choose one of the signing parties and leak its corresponding
keys. As in Definition 3, the challenger picks the encryption key pair.

Definition 7 (UNF-III). A MSoRC scheme is unforgeable if the advantage of any PPT adversary A
having access to an interactive signing oracle defined by AdvUNF−III

MSoRC(1
κ,A) := Pr [ExpUNF−III

MSoRC(1
κ,A)⇒ true]

≤ ϵ(κ), where ExpUNF−III

MSoRC(1
κ,A) is shown in Fig. 3.

For public key class-hiding, we adapt the original definition from [CL19] in the vein of [ANPT24],
that is, considering an interactive signing protocol. This allows us to obtain a stronger notion of public
key class-hiding when one of the parties is honest. In other words, we get a full public key class hiding
notion when there is no collusion between the two parties. Following the naming convention from
[ANPT24], we formalize this notion as public key unlinkability. As we shall see, this notion suffices
for the discussed applications.

Definition 8 (Public Key Unlinkability). A MSoRC scheme is public key unlinkable if the ad-
vantage of any PPT adversary A defined by AdvPK-UNL

MSoRC (1κ,A) := 2 ·Pr
[
ExpPK-UNL

MSoRC (1κ,A)⇒ true
]
−1 ≤

ϵ(κ), where Expt−PK-UNL
MSoRC (1κ, A) is shown in Fig. 4.

5 Our Signature Scheme

Our departure point is the SoRC from [BF20], which is an EQS based on [FHS19] that signs ElGamal
ciphertexts. In [BF20], a signature consists of four group elements Z = 1

s (x0C0 + x1C1 + G), S =

sG, Ŝ = sĜ and T = 1
s (x0G+ x1X), where (C0, C1) is the ciphertext, X it’s public key, and (x0, x1)

7

Experiment ExpPK-UNL
MSoRC (1κ,A)

pp←$ Setup(1κ); ρ←$Rpp; b←$ {0, 1}; (s̃k, ṽk)←$ TKGen(pp); (ski, vki)i∈{0,1} ←$ TKGen(pp)

vk′ ← ConvertVK(ṽk+ vkb, ρ); b
′ ←$AISign(skb,·,·)(s̃k, ṽk, vk′, vk0, vk1)

return b = b′

Oracle ISign(skb, ek, c, vk)

if vk = vk′ then σ ←$ ISignb(skb, ek, c) return Adapt(σ; ρ)
elseif vk = vki return ISign(ski, ek, c)

Fig. 4. Public key unlinkability experiment.

the scheme’s secret key. Without G, (Z, S, Ŝ) is the EQS from [FHS19]. The idea from [BF20] was
to embed G into Z so that Z can only be adapted to ciphertext randomizations using the additional
element T .

To turn the SoRC from [BF20] into a full-fledged MSoRC we extend the secret key to include one
more element (x2) and use it to sign G in Z. This way, Z can be adapted to a new key representative,
as well as to a ciphertext randomization if T is used. We recall that SPS cannot have less than 3
group elements [AGHO11]. This base construction has almost optimal size and is given below.

MSoRC.KeyGen(): dk := x←$ Z∗
p; ek := X ← xG; return (dk, ek).

MSoRC.Enc(X,M ; r): return (rG,M + rX).
MSoRC.Dec(x, (C0, C1)): return M := C1 − xC0.
MSoRC.Rndmz(X, (C0, C1);µ): return (C0 + µG,C1 + µX).

MSoRC.SKG(): sk := (x0, x1, x2)← Z∗
p ; vk := (x0Ĝ, x1Ĝ, x2Ĝ); return (sk, vk).

MSoRC.Sign((x0, x1, x2), X, (C0, C1)):
s←$ Z∗

p ; Z := 1
s (x0C0 + x1C1 + x2G); S := sG; Ŝ := sĜ; T := 1

s (x0G+ x1X); return (Z, S, Ŝ, T).

MSoRC.Verify((X̂0, X̂1), X, (C0, C1), (Z, S, Ŝ, T)): return 1 if and only if

e(Z, Ŝ) = e(C0, X̂0)e(C1, X̂1)e(G, X̂2) ∧
e(T, Ŝ) = e(G, X̂0)e(X, X̂1) ∧ e(S, Ĝ) = e(G, Ŝ)

MSoRC.Adapt((Z, S, Ŝ, T);µ, ρ): s′ ←$ Z∗
p ;

Z ′ := ρ
s′ (Z + µT); S′ := s′S; Ŝ′ := s′Ŝ;T ′ := ρ

s′T ; return (Z ′, S′, Ŝ′, T ′).
MSoRC.ConvertSK((x0, x1, x2), ρ): return (ρx0, ρx1, ρx2).

MSoRC.ConvertVK((X̂0, X̂1, X̂2), ρ): return (ρX̂0, ρX̂1, ρX̂2).

We can further optimize the above construction tailoring it to our mixnet application: we drop S
to obtain a shorter signature (with optimal size), reducing the number of pairings used in verification
by two. Moreover, we can also extend our construction to support a two-party interactive signing
protocol as shown in Fig. 5. We do so using the techniques from [ANPT24] to build TMS, and all
elements are computed analogously (e.g., we compute a blinded version of Z and T , with each party
proving the correctness of each step via short ZKPoK’s). We stress that the four ZKPoK involved are
as simple to implement as a Schnorr proof.

Security. As in related work ([ANPT24, BF20]), we consider the stand-alone model and adversaries in
the Generic Group Model (GGM) for asymmetric bilinear groups to prove the security. Correctness of
our base scheme follows by inspection. In Appendix C, we argue that the interactive variant produces
signatures under the same distribution. Next, we discuss an outline of the unforgeability proof for the
base construction (which is the more general one) and defer the full details to Appendix C where we
also prove unforgeability of the optimized version.

Theorem 9 (Unforgeability). Our base MSoRC is unforgeable in the GGM w.r.t. Definition 2 if
all ZKPoK’s are secure.

8

P0: C0, C1, X, {X̂0
i = x0

i Ĝ, x0
i , X̂

1
i }i∈{0,1,2} P1: C0, C1, X, {X̂1

i = x1
i Ĝ, x1

i , X̂
1
i }i∈{0,1,2}

s0 ←$ Z∗
p; S0 ← s0G; Ŝ0 ← s0Ĝ r ←$ Zp; s1 ←$ Z∗

p

π0 ← ZKPoK[s0]
S0, Ŝ0, π0−−−−−−−→ Ŝ ← s1Ŝ0;Z1 ← rS0 + x1

0C0 + x1
1C1 + x1

2G

T1 ← rS0 + x1
0G+ x1

1X

T0 ← 1
s0
(T1 + x0

0G+ x0
1X)

T1, Z1, π1←−−−−−−− π1 ← ZKPoK[r, x1
0, x

1
1, x

1
2]

Z0 ← 1
s0
(Z1 + x0

0C0 + x0
1C1 + x0

2G)

π̃0 ← ZKPoK[s0, x
0
0, x

0
1, x

0
2]

Z0, T0, π̃0−−−−−−−→ T ← 1
s1
(T0 − rG);Z ← 1

s1
(Z0 − rG)

π̃1 ← ZKPoK[r, s1]

return (σ, π̃1)
σ, π̃1←−−−− σ ← (Z, S , Ŝ, T); return (σ, π̃1)

Fig. 5. Our two-party interactive signing algorithm. ZKPoK’s are defined as: ZKPoK[s0 : S0 = s0G∧Ŝ0 = s0Ĝ],
ZKPoK[(s0, x

0
0, x

0
1, x

0
2) : T0 = 1

s0
(T1+x0

0G+x0
1X)∧S0 = s0G∧Z0 = 1

s0
(Z1+x0

0C0+x0
1C1+x0

2G)∧X̂0
0 = x0

0Ĝ∧
X̂0

1 = x0
1Ĝ∧X̂0

2 = x0
2Ĝ], ZKPoK[(r, x1

0, x
1
1, x

1
2) : T1 = rS0+x1

0G+x1
1X∧Z1 = rS0+ x1

0C0+x1
1C1+x1

2G∧X̂1
0 =

x1
0Ĝ ∧X1

1 = x1
1Ĝ ∧X2

1 = x1
2Ĝ], ZKPoK[(r, s1) : T = 1

s1
(T0 − rG) ∧ S = s1S0 ∧ Ŝ = s1Ŝ0 ∧ Z = 1

s1
(Z0 − rG)].

Enclosed in a box, the modification w.r.t the base scheme.

Proof (sketch): In the GGM, the adversary is given encodings of group elements from the bilinear
group (i.e., random strings), and it can query the respective group oracles to perform group operations
(e.g., test equality, sum, inversion, etc.). To prove unforgeability we first consider an adversary against
our base construction (Def. 2). In brief, we give a reduction that uses an adversary against our MSoRC
scheme to produce a forgery for SoRC scheme in [BF20] (denoted BF20). The reduction receives the
public key pk = (X̂0, X̂1) of BF20, sets pk′ = (αX̂0, αX̂1, αĜ) for α ←$ Z∗

p and interacts with the
adversary A. Whenever A asks for a signature, the reduction forwards the request to the challenger
of BF20. On response σ = (Z, T, S, Ŝ), the reduction sets σ′ = (αZ,αT, S, Ŝ) and sends it back to A.
Whenever A outputs (Z∗, T ∗, S∗, Ŝ∗) for public key pk∗ = βpk′, B outputs (1

αβZ
∗, 1

αβT
∗, S∗, Ŝ∗) as

its forgery for BF20. We note that B is a generic forger and thus, it can obtain β.
To prove that our scheme is also unforgeable when considering an interactive two-party signing

protocol we follow the approach from [ANPT24], which proved a similar result for their threshold
mercurial signature scheme. In brief, we give a simulator whose advantage in breaking unforgeability
for the interactive case is no greater than that of the original game. To do so, we have to consider the
cases in which both parties are honest and when one is malicious.

Our MSoRC’s provide IND-CPA and full class hiding. ElGamal is IND-CPA if the DDH assumption
holds, which we assume. Full class-hiding was already proven in [BF20] giving a reduction to DDH
and so we omit its proof.

Theorem 10 (Signature adaption). Our MSoRC scheme is signature-adaptable under malicious
keys.

The proof follows directly from that of the original SoRC ([BF20], Proposition 2) in both cases
(base and optimized) and thus, we also omit it.

Theorem 11 (Public Key Unlinkability). Our MSoRC scheme is public key unlinkable under
corruption of at most one party.

Proof. It suffices to show that adapted signatures are independent of b, i.e., the adversary gains no
information by knowing one of the shares of the corresponding secret key. For any tuple (X, (C0, C1)),
an adapted signature from one computed using s̃k, skb and a uniformly random ρ verifies under
vk′ = ρ(s̃k+ skb) and has the following distribution for uniformly random values s and δ:

Z =
1

s
(ρ(s̃k

0
+ sk0b)C0 + ρ(s̃k

1
+ sk1b)C1 + ρ(s̃k

1
+ sk1b)G)

T =
1

s
(ρ(s̃k

0
+ sk0b)G+ ρ(s̃k

1
+ sk1b)X), S = sG, Ŝ = sĜ

Since ρ is uniformly random, it perfectly hides b and the adversary gains no information dependent
on b. The same reasoning applies to the optimized variant.

9

MixSetup(1κ) :

pp1 := (p,G1,G2,GT , G, Ĝ, e)←$ BGGen(1κ); (pp2 = Ẑ, ·)←$ NIZK.CRSGen(1κ)

(pp3 = (W, Ŵ), ·)←$ SAS.Setup(1κ); pp← (pp1, pp2, pp3); return pp

MixElGamal(1κ): dk := x←$ Z∗
p; ek := X ← xG; return (ek, dk)

MixKG(pp) :

Si : (sski, spki)←$ SAS.SKG(pp3) ui : (uski, uvki)←$ MSoRC.SKG(pp1)
CA : (ask, avk)←$ MSoRC.SKG(pp1)

MixSignui
(uski, uvki, avk,Mi, ek)↔ MixSignCA(ask, avk, uvki, ek) :

ui : CA :
(C0, C1)← ElGamal.Enc(ek,Mi; γ) (eski, evki)←$ MSoRC.SKG()
π ← ZKPoK[(γ, uski) : C0 = γG

∧ uvki = uski · Ĝ]
(C0, C1), π−−−−−−−−−−−−→ (C′

0, C
′
1)← Rndmz(ek, (C0, C1);µ)

(C′
0, C

′
1), π

′, evki←−−−−−−−−−−−−− π′ ← ZKPoK[µ : (C′
0, C

′
1)

= Rndmz(ek, (C0, C1);µ)]
MSoRC.ISign←−−−−−−→↔

σi ← MSoRC.ISignP0
(uski, (C

′
0, C

′
1)) σi ← MSoRC.ISignP1

(eski + ask , (C0, C1))

vki ← uvki + evki + avk

return (σi, (C
′
0, C

′
1), evki)

Fig. 6. Algorithms MixSetup,MixElGamal,MixKG and MixSign.

6 Our Mixnet Scheme

6.1 Building blocks

Our mixnet scheme requires three different building blocks: an MSoRC to sign ciphertexts, a NIZK proof
system to prove the correct randomization of verification keys, and an aggregate signature (or multi
signature to optimize verification).

As previously mentioned, the NIZK proof system from CH20 is suitable to prove discrete log rela-
tionships and it’s setup is simpler than that of GS proofs. Besides, batch verification considerably re-
duces the costs. We use the sequential aggregate signature (SAS) from Pointcheval and Sanders [PS16]
(see Appendix E for details) as it suits our setting. First of all, its setup is compatible with that of
the MSoRC scheme as it also requires a bilinear group of type-III and the common random string can
be generated in the same way as that of the CH20 NIZK (see Appendix. B). Furthermore, in terms
of efficiency, signatures are only two elements in G1, signing requires only three exponentiations in
G1 (beyond the verification of the aggregate signature up to that point) and the verification cost is
two pairings and N exponentiations in G2 when verifying N messages.

6.2 Construction

This section provides a more detailed discussion of the technical decisions behind our mixnet scheme,
shown in figures 6 and 7.

MixSetup. This algorithm samples the parameters for each building block. For ease of exposition we
assume that a trusted party does the whole setup. However, we stress that all parameters can be
produced via a multi-party protocol in a distributed way (see e.g., [BCG+15]).

MixElGamal. This algorithm generates an ElGamal key pair. In a decentralized setting, multiple
parties (e.g., polling authorities) can run a DKG protocol [Ped91] to distribute trust.

MixKG. This algorithm is independently run by each entity. We assume the usual certified-key setting
where parties register their public key with the CA and prove knowledge of their secret key (to avoid
rogue key attacks). We note that for all users, this explicitly happens during MixSignui

.

10

MixSign. This algorithm is run between a user and the CA to compute a signature as done in
Fig. 5. The first two moves (the user’s ZKPoK and a ZKPoK of correct re-randomization) can be
interleaved with those of the interactive signing, resulting in a protocol with four moves in total.
Moreover, the proof of re-randomization (useful for voting schemes and further discussed on Sec. F)
is optional and can be removed. The user’s ZKPoK serves two purposes: proves plaintext knowledge
and authenticates her. Since ElGamal can be decrypted with knowledge of the encryption randomness,
a proof of plaintext knowledge is just a Schnorr proof on C0. Such a proof is needed to avoid replay
attacks where a user B waits for another user A to submit her ciphertext, randomize it and get a
signature for the same message. The ephemeral key pair used by the CA is introduced to protect
the scheme against maliciously crafted user keys. Without it, malicious users could sample their keys
correlatedly and collude with the first mix server to replace ciphertexts. The share of the ephemeral
public key ensures that each verification key is independent on how users sample their keys.

MixInit. This algorithm corresponds to the initialization phase in which every user submits their
ciphertext (C0, C1)i alongside the corresponding signature σi on it and public keys uvki and evki.
The corresponding verification key for ((C0, C1)i, σi) is computed as vki := uvki + evki + avki. Upon
verification of each tuple, the initial shuffle set is defined as SSet(0) := {(C0, C1)i, σi, vki}

(0)
i∈[n].

Mix. This algorithm is run in cascade by N mixers. The first one takes the initial shuffle set SSet(0)
and does the following:

1. Computes the addition of all verification keys to obtain VK(0) :=
∑i=n

i=1 vk
(0)
i . Multiplies it by ρ to

obtain VK(1) :=
∑i=n

i=1 vk
(1)
i and proves knowledge of ρ in zero-knowledge with respect to VK(0).

As a result, it obtains a proof π(1).
2. Generates an aggregate signature for the message m(1) := π(1)||VK(1). The purpose of this signa-

ture is to bind the mixer’s output to the previous one. For the first mixer, a valid proof ensures
the relation between the permuted and randomized verification keys with those in SSet(0).

3. Runs MSoRC.Rndmz and MSoRC.Adapt using ciphertext and verification key randomizers µ and
ρ to consistently randomize (C0, C1)

(0)
i and σ

(0)
i , obtaining a tuple ((C0, C1)

(1)
i , σ(1)

i) that verifies
under vk

(1)
i := ρ · vk(0)i .6

4. Permutes message tuples and computes a partial aggregate signature for π(1).

Subsequent mixers apply the above procedure, taking the output from the previous mixer as input.

MixVerify. This algorithm can be run by any external party to verify the output of the whole mixing
process. In the following, we discuss the scenario in which verification takes an input linear in the
number of mixers as presented in Fig. 7. On input the initial and final shuffle sets (SSet(0) and
SSet(N)), the final aggregate signature and messages m

(k)
k∈[N], all proofs are verified in batch as in

Sec. 4. The batch verification implicitly validates all mixing steps, ensuring each mixer contributed
to the randomization process. If it fails, each proof can be verified independently to identify the
misbehaving mixer. Since all proofs are signed, a false one provides non-repudiable evidence on the
mixer’s misbehavior. For this reason, during the signing process, each mixing server needs to verify
the partial aggregate signature up to that point and abort if it receives and invalid one.

Constant Verification. Using the multi-signature from [BDN18] (see Appendix E for details), we can
modify the above approach to remove the linear dependency on N at the cost of introducing another
round of interaction as done in HPP20. These modifications are shown with Mix∗ and MixVerify∗ in
Fig. 7 (enclosed in boxes to emphasize that they are optional).

6.3 Security Model

We strengthen the security model from HPP20 so that soundness and privacy hold against malicious
users. For soundness, we guarantee that an adversary cannot successfully modify or replace messages
6 Since the mixer chooses the randomizer ρ, collusion between the user and the CA would be able to break

the anonymity of vk(1)i and, thus, its corresponding tuple. However, such collusion is not considered in our
model, and even if it were, it would not help identify other users’ votes.

11

MixInit({(C0, C1)i, σi, uvki, evki}i∈[n]) : // Each server verifies the initial set
∀ i, j : uvki + evki ̸= uvkj + evkj ∧ foreach i ∈ [n] do

check MSoRC.Verify(uvki + evki + avk, (C0, C1)i, σi)

Mix(sskj , {((C0, C1)i, σi, vki)}
(j−1)

i∈[n] , σ
(j−1), (spkk,mk)k∈[j−1]) :

µ, ρ←$ Z∗
p;π

(j) ← NIZK.Prove(
∑i=n

i=1 vk
(j−1)
i ,

∑i=n
i=1 vk

(j)
i , ρ)

vk
(j)
i ← ρ · vk(j−1)

i ;mj := π(j) ||
∑i=n

i=1 vk
(j)
i

if j = 1 then σ(j) ← SAS.Sign(sskj ,⊥,⊥,mj)
// Each mixer verifies the aggregate signature from previous mixers
if j > 1 then σ(j) ← SAS.Sign(sskj , σ

(j−1), (spkk,mk)k∈[j−1],mj)

foreach i ∈ [n] do

(C0, C1)
(j)
i ← MSoRC.Rndmz(ek, (C0, C1)

(j−1)
i ;µ)

σ
(j)
i ← MSoRC.Adapt(σ

(j−1)
i ;µ, ρ)

{(C0, C1)Π(i), σΠ(i), vkΠ(i)}
(j)

i∈[n] ←$ {(C0, C1)i, σi, vki}
(j)

i∈[n]

return ({(C0, C1)Π(i), σΠ(i), vkΠ(i)}
(j)

i∈[n], π
(j), σ(j))

MixVerify({spkk}k∈[N], {((C0, C1)i, σi, vki)}
(0)

i∈[n], {((C0, C1)i, σi, vki)}
(N)

i∈[n],

π
(k)

k∈[N], {
∑i=n

i=1 vk
(k)
i }k∈[1..N−1], σ

(N)) :

check NIZK.Verify(π
(k)

k∈[N], {
∑i=n

i=1 vk
(k)
i }k∈[0..N])

check SAS.Verify({spkk}k∈[N], {π(k) ||
∑i=n

i=1 vk
(k)
i }k∈[N], σ

(N))

foreach i ∈ [n] check MSoRC.Verify(vk
(N)
i , (C0, C1)

(N)
i , σ

(N)
i)

Mix∗(mski, {mpk1, . . . ,mpkN}, π(N) ||
∑i=n

i=1 vk
(N)
i) :

return MSig.Sign(mski, {mpk1, . . . ,mpkN}, π(N) ||
∑i=n

i=1 vk
(N)
i)

//Any combiner computes msig =
∑
H1(pki, {pk1, . . . , pkN})σi

MixVerify∗(avk, {((C0, C1)i, σi, vki)}
(0)

i∈[n], {((C0, C1)i, σi, vki)}
(N)

i∈[n], π
(N),msig) :

check NIZK.Verify(π(N),
∑i=n

i=1 vk
(N)
i) ∧MSig.Verify(avk, π(N) ||

∑i=n
i=1 vk

(N)
i ,msig)

foreach i ∈ [n] check MSoRC.Verify(vk
(N)
i , (C0, C1)

(N)
i , σ

(N)
i)

Fig. 7. Algorithms MixInit,Mix,MixVerify,Mix∗ and MixVerify∗.

of any user, including malicious ones. Similarly, our privacy notion ensures that messages in the input
shuffle set are unlinkable from those in the output, even if some users collude with some mixers. Both
notions hold if at least one mix server is honest.

Definition 12 (Soundness). A mixnet is said to be sound in the certified key setting, if any
PPT adversary A has a negligible success probability in the following security game:

1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (uvki)i∈I∗

– decides on the set I of the (honest and corrupted) users that will generate a message
– proves knowledge of the secrete keys for each corrupted user in I∗ to get the MSoRC signatures σi

and ephemeral verification keys evki for ciphertexts of its choice
– generates the tuples (Ti)i∈I∗ for the corrupted users and provides messages (Mi)i∈I\I∗ for the

honest users
3. The challenger generates the keys of the honest users (ski, vki)i∈I\I∗ and their tuples (Ti)i∈I\I∗ .

The initial shuffle set is thus defined by SSet = (Ti)i∈I .
4. The adversary mixes SSet in a provable way into (SSet′, proof ′).

The adversary wins if MixVerify(SSet,SSet′, proof ′) = 1 but {Dec∗(SSet)} ̸= {Dec∗(SSet′)}, where
Dec∗ extracts the plaintexts using the decryption key.

12

Theorem 13 (Soundness). Our Mixnet scheme is sound in the certified key setting assuming the
unforgeability of our MSoRC scheme and the kerMDH assumption.

Proof Sketch. We first note that if the verification passes, soundness of the NIZK proof guarantees
(under the kerMDH assumption) that ∀ vk′i ∈ SSet′ ∧ vki ∈ SSet :

∑
vk′i =

∑
αvki. This, together

with the unforgeability of MSoRC, implies that ∀ vk′i : vk
′
i = α(uski+eski+ask)Ĝ since [vk′i]vk = [vki]vk.

Observe that for each uski (regardless of whether it is maliciously chosen or not), the value eski + ask
“fixes” the corresponding (and unique) equivalence class, and that is outside the adversary’s control.
This proves that the verification keys in the output shuffle set are a permutation of the ones in the
input shuffle set. Consequently, the ciphertexts in the output shuffle set are also a permutation of the
ciphertexts from the input shuffle set, which concludes the proof.

In the privacy game, the adversary provides two possible permutations for the case where the mix
server follows the protocol and it wins if it can identify the permutation used.

Definition 14 (Privacy). A mixnet is said to provide privacy in the certified key setting, if any
PPT adversary A has a negligible advantage in guessing b in the following security game:

1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (uvki)i∈I∗

– decides on the corrupted mix-servers J ∗ and generates itself their keys (spki)i∈J ∗

– decides on the set I of the (honest and corrupted) users that will generate a message
– decides on the set J of the (honest and corrupted) mix-servers that will make mixes
– proves its knowledge of the secrete keys for each corrupted user in I∗ to get the MSoRC signatures

σi and ephemeral verification keys evki for ciphertexts of its choice
– generates the message tuples (Ti)i∈I∗ for corrupted users
3. The challenger generates the keys of the honest mix-servers (sskj , spkj)j∈J\J ∗ and the keys of the

honest users (uski, uvki)i∈I\I∗ and their message tuples (Ti)i∈I∗ .

The initial shuffle set is thus defined by SSet(0) = (Ti)i∈I . The challenger randomly chooses a bit
b←$ {0, 1} and then enters into a loop for j ∈ J with the attacker:

– if j ∈ J ∗, A builds itself the new shuffle set SSet(j) with the proof proof(j)

– if j /∈ J ∗, A provides two permutations Πj,0 and Πj,1 of its choice, then the challenger runs the
mixing with Πj,b, and provides the output (SSet(j),proof(j))

In the end, the adversary outputs its guess b′ for b. The experiment outputs 1 if b′ = b and 0 otherwise.

Theorem 15 (Privacy). Our Mixnet scheme is private in the certified key setting if at least one mix
server is honest, assuming the public key unlinkability and signature adaption of our MSoRC scheme,
and the SXDH assumption.

Proof. We analyze what happens when an honest mixer runs the protocol, showing that in the
adversary’s view the output shuffle set and proof are independent on the permutation chosen and
any other information available to the adversary. Without loss of generality, we consider an honest
mixer j that gets SSet(j−1) = {((C0, C1)i, σi, Σi, vki)}

(j−1)
i∈[n] and proof(j−1). Soundness guarantees

that SSet(j−1) is well-formed with respect to the initial tuple SSet(0). The challenger, running mixer
j:

1. randomizes each vki ∈ SSet(j−1) with ρ to get vk
(j−1)
i . The public key unlinkability of MSoRC

guarantees that vk
(j−1)
i is unlinkable to the adversary (even if it knows the user’s secret key and

any previous randomizer from a corrupted mixer).
2. randomizes each (C0, C1)

(j−1)
i with µ and adapts Σ

(j−1)
i with µ and ρ to get (C0, C1)

(j)
i and

Σ
(j)
i . On the one hand, security of ElGamal under DDH ensures that (C0, C1)

(j)
i is unlinkable to

(C0, C1)
(j)
i . On the other hand, signature adaption of MSoRC guarantees that Σ

(j)
i looks like a

freshly computed signature for (C0, C1)
(j)
i and thus, unlinkable to Σ

(j−1)
i .

13

6.4 Extensions

As discussed in Appendix. F (where we present a detailed discussion concerning the application of
our scheme to e-voting), the encryption key pair can be distributed among a set of trustees (e.g., as
in [CGGI13]). Besides, longer plaintexts may have to be supported for complex voting rules or to
allow redundant encoding for the convenience of final counting. The authors of [BF20] discussed how
their SoRC scheme can be generalized to sign a vector of ElGamal ciphertexts without increasing
signature size. The idea is to define a key vector so that multiple ciphertexts can be encrypted using
the same randomness. Our construction is compatible with such generalization, allowing users to
obtain a single signature for multiple ciphertexts. Given an encryption key ek = (ek1, · · · , ekn), a
signing key (x0, · · · , xn+1), a ciphertext consisting of C0 = rG and Ci = Mi + reki for 1 ≤ i ≤ n, the
signature is:

Z := 1
s

(∑i=n
i=0 xiCi + xn+1G

)
, T := 1

s

(
x0G+

∑i=n
i=1 xieki

)
, Ŝ := sĜ

This way, users can encrypt, e.g., the ranking preference for each candidate keeping the signature
size constant. Since every vote is decrypted individually, the validity of each vote can be verified
at decryption time and malformed votes can be discarded. This contrasts with homomorphic voting
schemes like [CFSY96] for which adding such functionality is costly and non-trivial.

7 Evaluation

In this section, we first compare the complexity our work with state-of-the-art mixnets constructions.
Subsequently we present experimental results of our protocol’s implementation.

Comparison. We compare our mixnet with the works by Hébant et al. [HPP20] and Faonio and Russo
[FR22] in Table 17. Computational and communication costs for verification in HPP20 consider the
use of a multi-signature as originally reported by the authors. Consequently, for HPP20, we include
verification costs of the individual proofs required to produce the multi-signature as part of the mixing
computational costs. HPP20 does not specify which signature the servers use to sign their proofs and
so we consider the use of BLS [BLS04] as it is highly efficient and compatible with their setting.

In our case, we consider the standard scenario where verification depends linearly on the number of
mixers, and the optimized one, which has constant costs. In the standard one, the mixers do not need
to verify individual proofs, but they need to verify the partial aggregate signature. Therefore, we report
the computational cost that corresponds to the last mixer who has to perform N exponentiations in
G2 to verify the messages from all previous servers. Regarding the optimized case, we include the
cost of verifying each individual proof and the final aggregate signature as part of the mixing process
just as we do for HPP20. For in and out communication we include the server’s public keys needed
to verify the signatures and related messages (considering their original representation with sizes in
source group instead of Zp).

Comparison with [FR22] requires us to make some assumptions since NIZK proofs NIZKsnd and
NIZKmx are not fully specified in their works [FFHR19, FR22, FHR23]. Consequently, we make the
simplifying assumptions (which are in their favor) that for NIZKmx we have a simple adaptively sound
QA-NIZK due to Kiltz and Wee [KW15], which under SXDH has a proof size of 2G1 elements, and a
Grot-Sahai NIZK for NIZKsnd (just considering pairing product equations) with a size of 4G1 + 4G2

elements. This allows us to compare the approaches in Table 1, where we consider the popular
BLS12-381 curve where sizes of group elements in bits are as follows: |G2| = 2 · |G1|, |G1| = 2 ·
|Zp|, |Zp| = 256 and |GT | = 12 · 381. For the scalar multiplications in the groups G1 (E1) and G2

(E2), the exponentiation in group GT (ET) as well as pairing computation (P), we have that scalar
multiplications in G1 are the cheapest and the operations in G2, GT and P are a factor of 2 as well as
7 more expensive than in G1. Firstly, we observe that HPP20 and our approach only linearly depend
on the paramters n and N . In contrast [FR22] have a dependcency on n ·N in the verification costs
and generally higher computational and bandwidth costs overall. When taking a closer comparison
7 We note that Faonio et al. initially proposed the use of Rand-RCCA PKE as a building block to construct

mixnets in [FFHR19]. There, the Rand-RCCA PKE needs to provide public verifiability. In [FR22] the
authors manage to get rid of this property, achieving more efficient constructions.

14

Table 1. Comparison of mixnet approaches.∗ denotes the use of Mix∗ and MixVerify∗ in our scheme to optimize
verification.

Scheme Mixing
Comp.

Rand-RCCA [FR22] (7n+ 6)E1 + (7n+ 8)E2 + 2nET + (9n+ 8)P
HPP20 [HPP20] (10n+ 12N + 11)E1 + (7n+ 12N + 10)E2 + (8N − 2)P
Ours∗ (6n+ 5)E1 + (2n+N + 2)E2 + (N + 6)P
Ours (6n+ 5)E1 + (2n+N + 2)E2 + 2P

Comm. (in) Comm. (out)
Rand-RCCA [FR22] (7n+ 2N)G1 + 8nG2 + nGT (16n+ 4)G1 + 12nG2 + 2nGT

HPP20 [HPP20] (8n+ 10N + 7)G1 + (6n+ 8N + 8)G2 (8n+ 17)G1 + (6n+ 16)G2

Ours∗ (4n+N + 2)G1 + (4n+ 6N)G2 (4n+ 3)G1 + (4n+ 3)G2

Ours (4n+N + 2)G1 + (4n+ 5N)G2 (4n+ 3)G1 + (4n+ 2)G2

Verification
Comp.

Rand-RCCA [FR22] (6N(n+ 1)− 6n)E1 + (6N + 4nN)E2 − 4nE2 + 4NET + 4n(N − 1)P
HPP20 [HPP20] (8n+ 14)P
Ours∗ (14n+ 5)P
Ours (14n+N + 3)P

Comm.
Rand-RCCA [FR22] (16n+ 4)G1 + 12nG2 + 2nGT

HPP20 [HPP20] (12n+ 4)G1 + (14n+ 7)G2

Ours∗ (10n+ 1)G1 + (8n+ 3)G2

Ours (10n+ 2N + 1)G1 + (8n+ 7N + 1)G2

Table 2. Running times of each protocol in seconds.

MixVerify
n MixInit Mix MixVerify∗ (N = 5) (N = 10)
1k 2.7 0.8 2.7 2.7 2.7
10k 27.1 8.3 27 27 27
25k 67.6 20.7 67.4 67.4 67.4
50k 135 41.3 134.5 134.6 134.5

with the more scaleable solution due to HPP20, our effort for verification is comparable (even for
the variant where we are linear in N as typically N ≤ 10), but in all other aspects we improve. For
instance, when setting n = 1000 and N = 10, mixing is around 3.5x more efficient with our approach
and our bandwidth savings are around 1.5x (for inputs as well as outputs to mixing) and around 3x
for the optimized case (and 1.1x for the unoptimized one).

Experimental Results. We implemented a prototype of our protocols in Rust using the blasters library
[Lab21], which implements the pairing-friendly BLS12-381 curve. BLAKE3 [OANWO20] was used to
instantiate hash functions. Source code and documentation to reproduce our results are available
upon request. We used Rust’s Criterion library and the nightly compiler with no extra optimizations
to run the benchmarks on a MacBook Pro M3 with 32GB of RAM. The (interactive) signing protocol
of our MSoRC scheme (Fig. 5) takes 6.4ms while MixSign (which includes the ZKPoK’s) takes 8.1ms.

Running times of other protocols are summarized in Table 2, confirming the linear complexity
of our mixnet scheme. In all cases, the standard deviation was below 1s. In this regard, we recall
that the main difference in terms of computation between MixVerify and MixVerify∗ is on the number
of N pairings and multi-exponentiation executed. A paring takes around 380 microseconds while a
multi-exponentiation for N = 10 takes 737 microseconds. Thus, for a small N , their difference in the
running times is less noticeable compared to others as shown in the table. We omit Mix∗ as it’s a
single signature computation but recall that in that case, each mixer runs MixVerify before Mix∗ and
one gets higher overall running times for the mixing process.

15

Our prototype does not make use of parallelization libraries such as Rayon. However, our scheme
is highly compatible with such techniques due to the individual processing of tuples during mixing
and verification. Moreover, practical deployments would use proper servers, allowing our solution to
scale further.

8 Conclusion

We developed the notion of MSoRC as a combination of threshold mercurial signatures and signatures
on randomizable ciphertexts. We presented a concrete instantiation with an optimized variant that
fits naturally as the core building block for the scalable mixnet framework of HPP20 [HPP20].

Our improvements over HPP20 are twofold. From the efficiency point of view, substituting GS
proofs and incorporating aggregate signatures, we obtain an even more efficient, scalable mixnet
protocol. This is demonstrated by our benchmarks on both verification strategies. In addition, public-
key unlinkability of our MSoRC scheme is the cornerstone for our stronger security that withstands
collusion between users and mix servers, or mix servers and the certificate authority while the users
are assumed honest in previous work. As a result, our mixnet suits more practical e-voting where
individual voters are not fully trustful. Scalability of our mixnet is supported by an implementation.
In this regard, for 50k voters and 10 mix servers the worst-case time for mixing takes around 40
seconds and the verification of the whole mixing process (input validation plus out verification) takes
less than 5 minutes on a commodity laptop, without any parallelization technique. We also stress
the modular design of our approach that allows for a smoother integration of the required building
blocks.

References

Abe98. M. Abe. Universally verifiable mix-net with verification work independent of the number of
mix-servers. In EUROCRYPT’98, LNCS 1403, pages 437–447. Springer, Heidelberg, May / June
1998.

Abe99. M. Abe. Mix-networks on permutation networks. In ASIACRYPT’99, LNCS 1716, pages 258–
273. Springer, Heidelberg, November 1999.

ABGS23. D. F. Aranha, C. Baum, K. Gjøsteen, and T. Silde. Verifiable mix-nets and distributed de-
cryption for voting from lattice-based assumptions. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’23, page 1467–1481, New York,
NY, USA, 2023. Association for Computing Machinery.

ABR23. D. Aranha, M. Battagliola, and L. Roy. Faster coercion-resistant e-voting by encrypted sorting.
In Proceedings of E-Vote-ID 2023. Tartu University Press, June 2023. 8th International Joint
Conference on Electronic Voting, E-Vote-ID ; Conference date: 03-10-2023 Through 06-10-2023.

Adi08. B. Adida. Helios: Web-based open-audit voting. In USENIX Security 2008, pages 335–348.
USENIX Association, July / August 2008.

AF04. M. Abe and S. Fehr. Adaptively secure feldman VSS and applications to universally-composable
threshold cryptography. In Advances in Cryptology - CRYPTO 2004, 24th Annual International
CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, Lec-
ture Notes in Computer Science 3152, pages 317–334. Springer, 2004.

AFG+10. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-preserving sig-
natures and commitments to group elements. In CRYPTO 2010, LNCS 6223, pages 209–236.
Springer, Heidelberg, August 2010.

AFK+20. A. Aggelakis, P. Fauzi, G. Korfiatis, P. Louridas, F. Mergoupis-Anagnou, J. Siim, and M. Zajac.
A non-interactive shuffle argument with low trust assumptions. In CT-RSA 2020, LNCS 12006,
pages 667–692. Springer, Heidelberg, February 2020.

AGHO11. M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. Optimal structure-preserving signatures in
asymmetric bilinear groups. In CRYPTO 2011, LNCS 6841, pages 649–666. Springer, Heidelberg,
August 2011.

AH01. M. Abe and F. Hoshino. Remarks on mix-network based on permutation networks. In PKC 2001,
LNCS 1992, pages 317–324. Springer, Heidelberg, February 2001.

AKTZ17. N. Alexopoulos, A. Kiayias, R. Talviste, and T. Zacharias. MCMix: Anonymous messaging via
secure multiparty computation. In USENIX Security 2017, pages 1217–1234. USENIX Associ-
ation, August 2017.

ANPT24. M. Abe, M. Nanri, O. Perez Kempner, and M. Tibouchi. Interactive threshold mercurial signa-
tures and applications. Cryptology ePrint Archive, Paper 2024/625, 2024.

16

BCG+15. E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. Secure sampling of public
parameters for succinct zero knowledge proofs. In 2015 IEEE Symposium on Security and
Privacy, pages 287–304. IEEE Computer Society Press, May 2015.

BDN18. D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller blockchains. In
ASIACRYPT 2018, Part II, LNCS 11273, pages 435–464. Springer, Heidelberg, December 2018.

BF20. B. Bauer and G. Fuchsbauer. Efficient signatures on randomizable ciphertexts. In SCN 20,
LNCS 12238, pages 359–381. Springer, Heidelberg, September 2020.

BFPV11. O. Blazy, G. Fuchsbauer, D. Pointcheval, and D. Vergnaud. Signatures on randomizable cipher-
texts. In PKC 2011, LNCS 6571, pages 403–422. Springer, Heidelberg, March 2011.

BG02. D. Boneh and P. Golle. Almost entirely correct mixing with applications to voting. In ACM
CCS 2002, pages 68–77. ACM Press, November 2002.

BGR98. M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular exponentiation
and digital signatures. In EUROCRYPT’98, LNCS 1403, pages 236–250. Springer, Heidelberg,
May / June 1998.

BGR12. S. Bursuc, G. S. Grewal, and M. D. Ryan. Trivitas: Voters directly verifying votes. In E-Voting
and Identity, pages 190–207, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

BHKS18. M. Backes, L. Hanzlik, K. Kluczniak, and J. Schneider. Signatures with flexible public key:
Introducing equivalence classes for public keys. In ASIACRYPT 2018, Part II, LNCS 11273,
pages 405–434. Springer, Heidelberg, December 2018.

BLS04. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal of
Cryptology, 17(4):297–319, September 2004.

CAB+15. C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig. HORNET: High-speed onion
routing at the network layer. In ACM CCS 2015, pages 1441–1454. ACM Press, October 2015.

CCC+22a. D. Chaum, R. Carback, J. Clark, C. Liu, M. Nejadgholi, B. Preneel, A. T. Sherman, M. Yaksetig,
Z. Yin, F. Zagórski, and B. Zhang. Votexx: A solution to improper influence in voter-verifiable
elections. E-Vote-ID 2022., 2022.

CCC+22b. D. Chaum, R. Carback, J. Clark, C. Liu, M. Nejadgholi, B. Preneel, A. T. Sherman, M. Yaksetig,
Z. Yin, F. Zagórski, and B. Zhang. Votexx: A solution to improper influence in voter-verifiable
elections. IACR Cryptol. ePrint Arch., page 1212, 2022.

CCM08. M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure voting system. In 2008
IEEE Symposium on Security and Privacy, pages 354–368. IEEE Computer Society Press, May
2008.

CFSY96. R. Cramer, M. K. Franklin, B. Schoenmakers, and M. Yung. Multi-autority secret-ballot elections
with linear work. In EUROCRYPT’96, LNCS 1070, pages 72–83. Springer, Heidelberg, May
1996.

CGGI13. V. Cortier, D. Galindo, S. Glondu, and M. Izabachène. Distributed elgamal à la pedersen:
Application to helios. In Proceedings of the 12th ACM Workshop on Workshop on Privacy in
the Electronic Society, WPES ’13, page 131–142, New York, NY, USA, 2013. Association for
Computing Machinery.

CGY24. V. Cortier, P. Gaudry, and Q. Yang. Is the JCJ voting system really coercion-resistant? In 37th
IEEE Computer Security Foundations Symposium (CSF), CSF 2024, Enschede, Netherlands,
2024. IEEE. This is the long version of the paper published at CSF 2024.

CH11. J. Clark and U. Hengartner. Selections: Internet voting with over-the-shoulder coercion-
resistance. In Financial Cryptography and Data Security - 15th International Conference, FC
2011, Gros Islet, St. Lucia, February 28 - March 4, 2011, Revised Selected Papers, Lecture Notes
in Computer Science 7035, pages 47–61. Springer, 2011.

CH20. G. Couteau and D. Hartmann. Shorter non-interactive zero-knowledge arguments and ZAPs
for algebraic languages. In CRYPTO 2020, Part III, LNCS 12172, pages 768–798. Springer,
Heidelberg, August 2020.

Cha81. D. L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.
ACM, 24(2):84–90, feb 1981.

CKLM13. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Verifiable elections that scale for
free. In PKC 2013, LNCS 7778, pages 479–496. Springer, Heidelberg, February / March 2013.

CKN03. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In
CRYPTO 2003, LNCS 2729, pages 565–582. Springer, Heidelberg, August 2003.

CL19. E. C. Crites and A. Lysyanskaya. Delegatable anonymous credentials from mercurial signatures.
In CT-RSA 2019, LNCS 11405, pages 535–555. Springer, Heidelberg, March 2019.

CL21. E. C. Crites and A. Lysyanskaya. Mercurial signatures for variable-length messages. PoPETs,
2021(4):441–463, October 2021.

CL24. Y. Chen and Y. Lindell. Feldman’s verifiable secret sharing for a dishonest majority. IACR
Cryptol. ePrint Arch., page 31, 2024.

17

CLPK22. A. Connolly, P. Lafourcade, and O. Perez-Kempner. Improved constructions of anonymous
credentials from structure-preserving signatures on equivalence classes. In PKC 2022, Part I,
LNCS 13177, pages 409–438. Springer, Heidelberg, March 2022.

CP93. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in Cryptology —
CRYPTO’ 92, pages 89–105, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

CRS05. D. Chaum, P. Y. A. Ryan, and S. A. Schneider. A practical voter-verifiable election scheme. In
ESORICS 2005, LNCS 3679, pages 118–139. Springer, Heidelberg, September 2005.

CS11. V. Cortier and B. Smyth. Attacking and fixing helios: An analysis of ballot secrecy. In CSF
2011 Computer Security Foundations Symposium, pages 297–311. IEEE Computer Society Press,
2011.

DEF+23. B. David, F. Engelmann, T. Frederiksen, M. Kohlweiss, E. Pagnin, and M. Volkhov. Updatable
privacy-preserving blueprints. Cryptology ePrint Archive, Paper 2023/1787, 2023.

DHK21. C. Diaz, H. Halpin, and A. Kiayias. The nym network: The next generation of privacy infras-
tructure. Online, 2021.

ElG86. T. ElGamal. On computing logarithms over finite fields. In CRYPTO’85, LNCS 218, pages
396–402. Springer, Heidelberg, August 1986.

FFHR19. A. Faonio, D. Fiore, J. Herranz, and C. Ràfols. Structure-preserving and re-randomizable RCCA-
secure public key encryption and its applications. In ASIACRYPT 2019, Part III, LNCS 11923,
pages 159–190. Springer, Heidelberg, December 2019.

FGHP09. A. L. Ferrara, M. Green, S. Hohenberger, and M. Ø. Pedersen. Practical short signature batch
verification. In CT-RSA 2009, LNCS 5473, pages 309–324. Springer, Heidelberg, April 2009.

FHR23. A. Faonio, D. Hofheinz, and L. Russo. Almost tightly-secure re-randomizable and replayable
CCA-secure public key encryption. In PKC 2023, Part II, LNCS 13941, pages 275–305. Springer,
Heidelberg, May 2023.

FHS19. G. Fuchsbauer, C. Hanser, and D. Slamanig. Structure-preserving signatures on equivalence
classes and constant-size anonymous credentials. Journal of Cryptology, 32(2):498–546, April
2019.

FLSZ17. P. Fauzi, H. Lipmaa, J. Siim, and M. Zajac. An efficient pairing-based shuffle argument. In
ASIACRYPT 2017, Part II, LNCS 10625, pages 97–127. Springer, Heidelberg, December 2017.

FR22. A. Faonio and L. Russo. Mix-nets from re-randomizable and replayable cca-secure public-key
encryption. In Security and Cryptography for Networks, pages 172–196, Cham, 2022. Springer
International Publishing.

FS87. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Advances in Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg, 1987.
Springer Berlin Heidelberg.

FS01. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In CRYPTO 2001, LNCS
2139, pages 368–387. Springer, Heidelberg, August 2001.

Gol01. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, Cam-
bridge, UK, 2001.

Gro03. J. Groth. A verifiable secret shuffle of homomorphic encryptions. In PKC 2003, LNCS 2567,
pages 145–160. Springer, Heidelberg, January 2003.

GS08. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In EURO-
CRYPT 2008, LNCS 4965, pages 415–432. Springer, Heidelberg, April 2008.

GS12. J. Groth and A. Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J.
Comput., 41(5):1193–1232, 2012.

Hea07. J. Heather. Implementing stv securely in pret a voter. In 20th IEEE Computer Security Foun-
dations Symposium (CSF’07), pages 157–169, 2007.

HMMP23a. T. Haines, R. Mosaheb, J. Müller, and I. Pryvalov. SoK: Secure E-voting with everlasting
privacy. PoPETs, 2023(1):279–293, January 2023.

HMMP23b. T. Haines, R. Mosaheb, J. Müller, and I. Pryvalov. Sok: Secure e-voting with everlasting privacy.
Proc. Priv. Enhancing Technol., 2023(1):279–293, 2023.

HMQA23. T. Haines, J. Müller, and I. n. Querejeta-Azurmendi. Scalable coercion-resistant e-voting under
weaker trust assumptions. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied
Computing, SAC ’23, page 1576–1584, New York, NY, USA, 2023. Association for Computing
Machinery.

HPP20. C. Hébant, D. H. Phan, and D. Pointcheval. Linearly-homomorphic signatures and scalable
mix-nets. In PKC 2020, Part II, LNCS 12111, pages 597–627. Springer, Heidelberg, May 2020.

HS14. C. Hanser and D. Slamanig. Structure-preserving signatures on equivalence classes and their
application to anonymous credentials. In ASIACRYPT 2014, Part I, LNCS 8873, pages 491–511.
Springer, Heidelberg, December 2014.

JCJ05. A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections. In Proceedings
of the 2005 ACM Workshop on Privacy in the Electronic Society, WPES ’05, page 61–70, New
York, NY, USA, 2005. Association for Computing Machinery.

18

JJR02. M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets robust for electronic voting by
randomized partial checking. In USENIX Security 2002, pages 339–353. USENIX Association,
August 2002.

Kat23. J. Katz. Round optimal robust distributed key generation. IACR Cryptol. ePrint Arch., page
1094, 2023.

KCGDF17. A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford. Atom: Horizontally scaling strong
anonymity. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
page 406–422, New York, NY, USA, 2017. Association for Computing Machinery.

KER+22. C. Killer, M. Eck, B. Rodrigues, J. von der Assen, R. Staubli, and B. Stiller. Provotumn: Decen-
tralized, mix-net-based, and receipt-free voting system. In 2022 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), pages 1–9, 2022.

KL21. T. Krips and H. Lipmaa. More efficient shuffle argument from unique factorization. In CT-
RSA 2021, LNCS 12704, pages 252–275. Springer, Heidelberg, May 2021.

KMW12. S. Khazaei, T. Moran, and D. Wikström. A mix-net from any CCA2 secure cryptosystem. In
ASIACRYPT 2012, LNCS 7658, pages 607–625. Springer, Heidelberg, December 2012.

KW15. E. Kiltz and H. Wee. Quasi-adaptive NIZK for linear subspaces revisited. In EUROCRYPT 2015,
Part II, LNCS 9057, pages 101–128. Springer, Heidelberg, April 2015.

Lab21. P. Labs. High performance implementation of bls12 381. Online, 2021.
LOS+06. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Sequential aggregate signatures and

multisignatures without random oracles. In EUROCRYPT 2006, LNCS 4004, pages 465–485.
Springer, Heidelberg, May / June 2006.

LPJY13. B. Libert, T. Peters, M. Joye, and M. Yung. Linearly homomorphic structure-preserving signa-
tures and their applications. In CRYPTO 2013, Part II, LNCS 8043, pages 289–307. Springer,
Heidelberg, August 2013.

LQT20. W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso. VoteAgain: A scalable coercion-resistant
voting system. In USENIX Security 2020, pages 1553–1570. USENIX Association, August 2020.

MMR22. D. Mestel, J. Müller, and P. Reisert. How efficient are replay attacks against vote privacy? a
formal quantitative analysis. In 2022 IEEE 35th Computer Security Foundations Symposium
(CSF), pages 179–194, 2022.

MN07. T. Moran and M. Naor. Split-ballot voting: everlasting privacy with distributed trust. In ACM
CCS 2007, pages 246–255. ACM Press, October 2007.

MRV16. P. Morillo, C. Ràfols, and J. L. Villar. The kernel matrix Diffie-Hellman assumption. In ASI-
ACRYPT 2016, Part I, LNCS 10031, pages 729–758. Springer, Heidelberg, December 2016.

Nef01. C. A. Neff. A verifiable secret shuffle and its application to e-voting. In ACM CCS 2001, pages
116–125. ACM Press, November 2001.

OANWO20. J. O’Connor, J.-P. Aumasson, S. Neves, and Z. Wilcox-O’Hearn. Blake3. Online, 2020.
Oka97. T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In Security Pro-

tocols, 5th International Workshop, LNCS 1361, pages 25–35, Paris, France, April 7–9 1997.
Springer, Heidelberg.

PB09. K. Peng and F. Bao. A design of secure preferential e-voting. In E-Voting and Identity, Second
International Conference, VoteID 2009, Luxembourg, September 7-8, 2009. Proceedings, Lecture
Notes in Computer Science 5767, pages 141–156. Springer, 2009.

Ped91. T. P. Pedersen. A threshold cryptosystem without a trusted party (extended abstract) (rump
session). In EUROCRYPT’91, LNCS 547, pages 522–526. Springer, Heidelberg, April 1991.

PHE+17. A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis. The loopix anonymity system.
In USENIX Security 2017, pages 1199–1216. USENIX Association, August 2017.

PS16. D. Pointcheval and O. Sanders. Short randomizable signatures. In CT-RSA 2016, LNCS 9610,
pages 111–126. Springer, Heidelberg, February / March 2016.

PS18. D. Pointcheval and O. Sanders. Reassessing security of randomizable signatures. In CT-
RSA 2018, LNCS 10808, pages 319–338. Springer, Heidelberg, April 2018.

Sch80. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, oct 1980.

Sch91. C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, 1991.

SK95. K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical solution to the im-
plementation of a voting booth. In EUROCRYPT’95, LNCS 921, pages 393–403. Springer,
Heidelberg, May 1995.

TDE17. R. R. Toledo, G. Danezis, and I. Echizen. Mix-oram: Using delegated shuffles. In Proceedings of
the 2017 on Workshop on Privacy in the Electronic Society, WPES ’17, page 51–61, New York,
NY, USA, 2017. Association for Computing Machinery.

WB09. R. Wen and R. Buckland. Masked ballot voting for receipt-free online elections. In E-Voting
and Identity, Second International Conference, VoteID 2009, Luxembourg, September 7-8, 2009.
Proceedings, Lecture Notes in Computer Science 5767, pages 18–36. Springer, 2009.

19

Yan23. Q. Yang. Résistance à la coercition en vote électronique : conception et analyse. (Coercion-
resistance in electronic voting : design and analysis). PhD thesis, University of Lorraine, Nancy,
France, 2023.

Appendix

A Mixnets from Linearly Homomorphic Signatures

This section presents HPP20’s mixnet framework [HPP20], the cornerstone upon which we build upon.
Simply put, it is based on the idea that each ciphertext can be handled independently, and servers
(mixers) are responsible for randomizing and permuting them. Their shuffle approach comprises four
algorithms: MixSetup (global parameters), MixKG (key material for the CA, servers and users), MixInit
(run by users to cast their messages) and Mix (run by servers to mix messages), and MixVerify (verifies
the outcome).

First, users run MixInit to send a tuple Ti = (Ci, σi, vki, Σi) where Ci is an ElGamal ciphertext
containing the user’s plaintext message, σi is the user’s one-time linearly homomorphic signature for
Ci, and Σi is the CA’s linearly homomorphic signature for vki (the public key against σi verifies).
Notably, this requires a rather complex set up of tags to randomize each signature, and the use of
“canonical vectors” to enforce correct randomizations of keys and ciphertexts. This contrasts with our
approach that, thanks to the use of MSoRC, removes the need for different signature schemes.

Once all N users in the system have submitted their tuples, the initial shuffle set SSet(0) = (Ti)ni=1

is assembled. Subsequently, the Mix process takes place and every server Sj outputs a new shuffle
set SSet(j) = {(CΠ(i), σΠ(i), vkΠ(i), ΣΠ(i))

(j)
i∈[n], (π

(j), σ(j))}, containing the server’s NIZK proof and
signature (π(j), σ(j)) to verify the the correct randomization of each element of TΠ(i).

The linear dependence on N for the server’s proofs and signatures (π(k), σ(k))Nk=1 can be removed
using Groth-Sahai proofs. As explained in HPP20, each server can compute a partial (updatable) proof
proof(j) from proof(j−1). Servers verify the individual proofs and the final proof proof(N) to then sign
proof(N) using the multi-signature scheme from Boneh-Drijvers-Neven [BDN18]. As a result, only the
initial and last shuffle sets (SSet(0) and SSet(N)) and a single proof-signature pair are required to
run MixVerify.

Security Model. HPP20 requires soundness and privacy for honest users. Informally, soundness means
that all plaintexts of honest users in the input shuffle set are in the output shuffle set. Likewise, privacy
means that messages of honest users are unlinkable from the input shuffle set to the output shuffle
set. For soundness, only the initial input shuffle set and output shuffle set are considered.

Definition 16 (Soundness for Honest Users [HPP20]). A mixnet is said to be sound for honest
users in the certified key setting, if any PPT adversary A has a negligible success probability in the
following security game:

1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (vki)i∈I∗

– proves its knowledge of the secrete keys to get the certifications Σi on vki for i ∈ I∗
– decides on the set I of the (honest and corrupted) users that will generate a message
– generates the message tuples (Ti)i∈I∗ for corrupted users but provides the messages (Mi)i∈I\I∗

for the honest ones
3. The challenger generates the keys of the honest users (ski, vki)i∈I\I∗ and their tuples (Ti)i∈I\I∗ .

The initial shuffle set is thus defined by SSet = (Ti)i∈I .
4. The adversary mixes SSet in a provable way into (SSet′, proof ′).

The adversary wins if MixVerify(SSet,SSet′, proof ′) = 1 but {Dec∗(SSet)} ̸= {Dec∗(SSet′)}, where
Dec∗ extracts the plaintexts using the decryption key, but ignores messages of non-honest users (using
the private keys of honest users) and sets of plaintexts can have repetitions.

The privacy games allows the adversary to provide two possible permutations for honest mix
servers so that the challenger uses one of them. The adversary’s goal is to identify which was the
permutation used, capturing the unlinkability notion behind the privacy definition.

20

Definition 17 (Privacy for Honest Users [HPP20]). A mixnet is said to provide privacy for
honest users in the certified key setting, if any PPT adversary A has a negligible advantage in guessing
b in the following security game:

1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (vki)i∈I∗

– proves its knowledge of the secrete keys to get the certifications Σi on vki for i ∈ I∗
– decides on the corrupted mix-servers J ∗ and generates itself their keys
– decides on the set J of the (honest and corrupted) mix-servers that will make mixes
– decides on the set I of the (honest and corrupted) users that will generate a message
– generates the message tuples (Ti)i∈I∗ for corrupted users but provides the messages (Mi)i∈I\I∗

for the honest ones
3. The challenger generates the keys of the honest mix-servers j ∈ J \ J ∗and the keys of the honest

users (ski, vki)i∈I\I∗ and their message tuples (Ti)i∈I∗ .

The initial shuffle set is thus defined by SSet = (Ti)i∈I . The challenger randomly chooses a bit
b←$ {0, 1} and then enters into a loop for j ∈ J with the attacker:

– let I∗j−1 be the set of indices of the tuples of the corrupted users in the input shuffle set SSet(j−1)

– if j ∈ J ∗, A builds itself the new shuffle set SSet(j) with the proof proof(j)

– if j /∈ J ∗, A provides two permutations Πj,0 and Πj,1 of its choice, with the restriction they
must be identical on I∗j−1, then the challenger runs the mixing with Πj,b, and provides the output
(SSet(j),proof(j))

In the end, the adversary outputs its guess b′ for b. The experiment outputs 1 if b′ = b and 0 otherwise.

Security against malicious users. Security for honest users is not sufficient for voting applications.
To see why, we consider the following example that is possible in their model. Assume the adversary
controls four out of ten voters in an election of three candidates (C1, C2 and C3). Let us also assume
that the six votes from honest users are distributed so that C1 gets four, C2 gets one and so does C3.
Initially, the adversary mandates the coerced users to vote such that two votes are given to C1, one to
C2 and one to C3. Once that all votes are casted an exit poll reveals that C1 is the favourite. Knowing
this, the adversary colludes with the first mix server to change the votes of coerced users such that
only the vote for C3 is counted (the others are replaced by randomizations of that vote). None of the
votes from honest users is discarded nor modified yet the election outcome changes. While such an
action is not a flaw in the security model, it is clearly a violation of voting schemes known as fairness.
The essential problem is that the universal verifiability is lost under the collusion of the first mix
server and some users. The authors consider a partial fix to this issue, adding another Groth-Sahai
proof as discussed in Section 6.1 from HPP20. However, such fix still allows replay attacks [CS11]
that should also be avoided in voting applications.

B Couteau & Hartmann’s Proof System

Below we give the NIZK proof system for LA in the framework of CH20 (Section 7.1). Security has
been proven under the kerMDH assumption [MRV16] in [CH20].

– NIZK.CRSGen(1κ): pp←$ BGGen(1κ); z ←$ Zp; τ ← z; Z ← zG; crs← (pp, Z); return ((pp, crs), τ)

– NIZK.Prove(crs,A, x, w): r ←$ Zp;
a← rA; d← wZ + rG; π ← (a, d); return π

– NIZK.Verify(crs,A,x, (a, d)):
return e(d,A0) = e(Z, x0) + e(G, a0) ∧ e(d,A1)
= e(Z, x1) + e(G, a1) ∧ e(d,A2) = e(Z, x2) + e(G, a2)

21

Batch Verification. The proof system from [CH20] is compatible with the batch verification technique
from [FGHP09] that ports the small exponents test [BGR98] to the pairing setting. Given two valid
proofs (a, d) and (a′, d′) for A and A′ respectively, a naive verification would have to check six pairing
equations:

e(d,A0) = e(Z, x0) + e(G, a0) ∧ e(d,A1) = e(Z, x1) + e(G, a1)

∧ e(d,A2) = e(Z, x2) + e(G, a2) ∧ e(d′,A′
0) = e(Z, x′0) + e(G, a′0)

∧ e(d′,A′
1) = e(Z, x′1) + e(G, a′1) ∧ e(d′,A′

2) = e(Z, x′2) + e(G, a′2)

With [FGHP09], a verifier can instead sample (δi)i∈[6] where δi is an ℓ-bit element of Zp and
check a single equation given by: e(d,Aδ1

0 Aδ2
1 Aδ3

2) + e(d′,A′δ4
0 A′δ5

1 A′δ6
2) = e(Z, xδ10 xδ21 xδ32 x′0

δ4x′1
δ5x′2

δ6)

+ e(G, aδ10 aδ21 aδ32 a′0
δ4a′1

δ5a′2
δ6).

There is an efficiency trade-off: the larger ℓ is (in general ℓ = 80), the better are the soundness
guarantees.

C Security Proofs

Correctness. In the following, we argue that the interactive variant of our MSoRC scheme produces
signatures under the same distribution. Looking closer at how Z and T are computed, we have:

Z =
1

s1
(Z0 − rG) =

1

s1

(
1

s0

(
Z1 + x0

0C0 + x0
1C1 + x0

2G
)
− rG

)
=

1

s1

(
1

s0

((
rS0 + x1

0C0 + x1
1C1 + x1

2G
)
+ x0

0C0 + x0
1C1 + x0

2G
)
− rG

)
=

1

s1

(
1

s0

(
rs0G+

(
x0
0 + x1

0

)
C0 +

(
x0
1 + x1

1

)
C1 +

(
x0
2 + x1

2

)
G
)
− rG

)
=

1

s0s1

((
x0
0 + x1

0

)
C0 +

(
x0
1 + x1

1

)
C1 +

(
x0
2 + x1

2

)
G
)

Similarly, T is computed as:

T =
1

s1
(T0 − rG) =

1

s1

(
1

s0

(
T1 + x0

0G+ x0
1X

)
− rG

)
=

1

s1

(
1

s0

((
rS0 + x1

0G+ x1
1X

)
+ x0

0G+ x0
1X − rG

))
=

1

s0s1

((
x0
0 + x1

0

)
G+

(
x0
1 + x1

1

)
X
)
+

1

s1

(1

s0
rs0G− rG

)
=

1

s0s1

((
x0
0 + x1

0

)
G+

(
x0
1 + x1

1

)
X
)

It follows that s0s1, x0
0+x1

0, x0
1+x1

1 and x0
2+x1

2 correspond to s, x0, x1 and x2 in the single party
variant.

Theorem 1 (Unforgeability). Our base MSoRC is unforgeable in the GGM w.r.t. Definition 2 if all
ZKPoK’s are secure.

Proof. We begin considering an adversary A against the unforgeability game from Def. 2, which makes
use of the standard (single party) signing protocol. Subsequently, we construct a simulator that, given
access to an adversary A′ in the unforgeability game from Def. 3 (considering adversarial encryption
keys), plays the role of an adversary against the unforgeability game from Def. 2. We then show that
the simulator wins whenever A′ wins. However, as we previously proved that no such adversary A′

can successfully produce a forgery, we conclude that no adversary can exists against Def. 3, which is
our goal.

We reduce the security of our base scheme (Def. 2) to that of [BF20]. Thus, we consider a reduction
B playing the role of the adversary against [BF20]. B receives pk = (X̂0, X̂1) from the challenger,
it picks α ←$ Z∗

p , sets pk′ := (αX̂0, αX̂1, αĜ) for our scheme and forwards it to A. Whenever A
asks for a signature on (C

(i)
0 , C

(i)
1 , X(i)), B forwards to the signing oracle of [BF20]. On receiving

σ(i) = (Z(i), T (i), S(i), Ŝ(i)), it sets σ(i)′ = (αZ(i), αT (i), S(i), Ŝ(i)) and returns it to A. Whenever A
outputs (Z∗, T ∗, S∗, Ŝ∗) and (C∗

0 , C
∗
1 , X

∗) for public key pk∗ = βpk′, B outputs (1
αβZ

∗, 1
αβT

∗, S∗, Ŝ∗)
for the same query. We note that B is a generic forger and thus, it can obtain β. To see how, we

22

P0: sk0, pk0, pk1, (C0, C1) P1: pk0, pk1, (C0, C1)

(Z′, S′, Ŝ′, T ′)← Sign(sk, (C0, C1))

(S0, Ŝ0, π0)← A(st)
S0,Ŝ0,π0−−−−−−→ Z1 ←$ G1;S ← S′; Ŝ ← Ŝ′;T ←$ G1

T1,Z1,π1←−−−−−− π1 ← ZKPoK.Sim(T1, Z1, S0, (C0, C1))

(T0, Z0, π̃0)← A(st, T1, Z1, π1)
Z0,T0,π̃0−−−−−−→ Z ← Z′;T ← T ′

π1 ← ZKPoK.Sim(Z,Z0, S0, Ŝ0)

return (σ, π1)
σ,π̃1←−−− σ ← (Z, S, Ŝ, T); return (σ, π̃1)

P0: pk0, pk1, (C0, C1) P1: sk1, pk0, pk1, (C0, C1)

(Z′, S′, Ŝ′, T ′)← Sign(sk, (C0, C1))

S0 ← S′; Ŝ0 ← Ŝ′

π0 ← ZKPoK.Sim(S0, Ŝ0)
S0,Ŝ0,π0−−−−−−→ (Z1, π1)← A(st, S0, Ŝ0, π0)

r ← ZKPoK.Ext(π1)
T1,Z1,π1←−−−−−−

Z0 ← Z′P r;T0 ← T ′P r

π̃0 ← ZKPoK.Sim({Zi, Ti, Ci}i∈{0,1}, Y0)
Z0,T0,π̃0−−−−−−→ (σ, π̃1)← A(st, Z0, T0, π0)

return (σ, π̃1)
σ,π̃1←−−− return (σ, π̃1)

Fig. 8. Simulator’s algorithm for corrupted P0 (above) and for corrupted P1 (below).

proceed as done in [CL19] (Claim 1). Since A is a generic forger, the forged key must be computed
as a linear combination of previously seen elements. Thus, for all i ∈ {0, 1, 2}:

X̂∗
i = χ1Ĝ+ χ1

0X̂0 + χ1
1X̂1 + χ0

2X̂2 +

k∑
j=1

χ1
s,jŜj

Taking the discrete logarithm base Ĝ, we get:

x∗
i = χ1 + χ1

0x0 + χ1
1x1 + χ0

2x2 +

k∑
j=1

χ1
s,jsj

The above is a multivariate polynomial of degree O(k) in x0, x1, x2, s1, . . . , sk. Consider the probability
that two formally different polynomials collide such that x∗

i = βxi, but B cannot obtain β ∈ Z∗
p despite

seeing A’s queries to the group and signing oracles and their results. By Schwartz-Zippel lemma, such
probability is O(kp), which is negligible.

In the following, we switch our attention to the security of the interactive signing protocol from
Fig. 5 as used in Def. 3.

For an adversary A′ against the unforgeability game of Def. 3, we construct a simulator that, given
access to A′, plays the role of the adversary in the unforgeability game of Def. 2. The simulator gets pp
and vk from the challenger. Subsequently, it calls A on pp to obtain b and executes SimTKGen(vk, b) to
get (skb, vk0, vk1). Now the simulator invokes A′ with (skb, vk0, vk1) as input. From this point onwards,
A′ can make signing queries and in the following we show that regardless the corruption case, the
simulator is able to simulate the honest party and that such interaction is indistinguishable from the
real execution in the view of A′. Whenever A′ queries a message, the simulator forwards the query to
it’s signing oracle and obtains a signature (Z ′, S′, Ŝ′, T ′). From there, the simulator proceeds as shown
in Fig. 8 (left side for the case where b = 0 or right side for the case where b = 1), as corresponds.

We observe that in the first case (Fig. 8, left side), a real computation of Z1 is indistinguishable
from that of Z ′ as the former includes a uniformly random factor and the latter is uniformly random.
This is also the case for T1 and T ′. Moreover, the zero-knowledge property of π1 conceals this infor-
mation. Looking at the second round, the simulated nature of σ cannot be distinguished by A′ due
to the soundness of both π̃0 and π̃1. The second case (Fig. 8, right side) is analogous to the first one.

23

In both cases, the simulator outputs whatever A′ outputs. Hence, whenever A′ wins, the simulator
wins.

Theorem 18 (Unforgeability of our optimized MSoRC). Our optimized scheme is unforgeable
in the GGM under corruption if at most one party is corrupted and if all ZKPoK’s are secure.

Proof. We consider an adversary A similar to that one against the unforgeability game from Def. 2.
The difference is that we let the challenger generate the encryption keys and give the adversary access
to ek only. To prove unforgeability we follow a similar strategy (in parts verbatim) to that of [BF20].
The main difference is that now, the generic adversary no longer controls the secret key dk = x.
Consequently, group elements output by the adversary can be a linear combination of previously seen
elements, which includes the representation of x in the GGM. To prove that our modified scheme is
also unforgeable w.r.t. the interactive signing protocol, we need to modify the simulator from Fig. 8
to drop S and simulate it in the first ZKPoK, which can easily be done under DDH.

We begin observing that the challenger picks (sk, vk) = ((x0, x1, x2), (X̂
∗
0 = x0Ĝ, X̂∗

1 = x1Ĝ, X̂∗
2 =

x2Ĝ)), (dk, ek) = (x,X = xG), and randomness si for each of the adversary’s signing queries.
After seeing vk and signatures (Zi, Ŝi, Ti)

k
i=1 (computed with randomness si) on queries (C(i)

0 ,C(i)
1)ki=1,

A outputs (C
(k+1)
0 , C(k+1)

1), a signature (Z∗, Ŝ∗, T ∗) and verification key vk∗ = (X̂∗
0 , X̂

∗
1 , X̂

∗
2). Since

A is a generic forger, all computed elements must be a linear combination of previously seen elements.
Consequently, the following equations should hold for a suitable set of coefficients chosen by A:

C
(i)
0 = γ(i)G+ γ(i)

x X +

i−1∑
j=1

(γ
(i)
z,jZj + γ

(i)
t,jTj)

C
(i)
1 = κ(i)G+ κ(i)

x X +

i−1∑
j=1

(κ
(i)
z,jZj + κ

(i)
t,jTj)

Z∗ = ζG+ ζ(i)x X +

k∑
j=1

(ζz,jZj + ζt,jTj)

Ŝ∗ = ϕĜ+ ϕ0X̂0 + ϕ1X̂1 + ϕ2X̂2 +

k∑
j=1

ϕs,jŜj

T ∗ = τG+ τ (i)x X +

k∑
j=1

(τz,jZj + τt,jTj)

X̂∗
0 = χ0Ĝ+ χ0

0X̂0 + χ0
1X̂1 + χ0

2X̂2 +

k∑
j=1

χ0
s,jŜj

X̂∗
1 = χ1Ĝ+ χ1

0X̂0 + χ1
1X̂1 + χ0

2X̂2 +

k∑
j=1

χ1
s,jŜj

X̂∗
2 = χ2Ĝ+ χ2

0X̂0 + χ2
1X̂1 + χ2

2X̂2 +

k∑
j=1

χ2
s,jŜj

Moreover, for all 1 ≤ i ≤ k, we can write the discrete logarithms zi and ti in basis G of the
elements Zi =

1
si
(x0C

(i)
0 +x1C

(i)
1 +x2G) and Ti =

1
si
(x0G+x1X) from the oracle answers. We have:

zi =
1

si
(x0(γ

(i) + γ(i)
x x+

i−1∑
j=1

(γ
(i)
z,jzj + γ

(i)
t,j tj))

+ x1(κ
(i) + κ(i)

x x+

i−1∑
j=1

(κ
(i)
z,jzj + κ

(i)
t,jtj)) + x2)

24

ti =
1

si
(x0 + x1x)

A successful forgery (Z∗, Ŝ∗, T ∗) on (C
(k+1)
0 , C(k+1)

1) satisfies the verification equations, and we
can take the discrete logarithms in base e(G, Ĝ) for each equation as shown below:

(ζ + ζxx+

k∑
j=1

(ζz,jzj + ζt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0c
(k+1)
0 + αx1c

(k+1)
1 + αx2

(1)

(τ + τxx+

k∑
j=1

(τz,jzj + τt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0 + αx1x

(2)

Equations (1) and (2) are valid with respect to the forged key (X̂∗
0 , X̂

∗
1 , X̂

∗
2). However, since

verification pass, we have that [X̂∗
i]pk = [X̂i]pk and thus ∃ α ∈ Z∗

p s.t. X̂∗
i = αX̂i, i ∈ {0, 1, 2}8.

Furthermore, we can interpret the previous verification equations as multivariate rational functions
in variables x0, x1, x2, x, s1, . . . , sk, unknown to A.

We begin analyzing if α can be zero modulo any xi, as this will prove useful later. We can take
the discrete logarithms in base Ĝ for each equation defining X̂∗

i to obtain:

αx0 = χ0 + χ0
0x0 + χ0

1x1 + χ0
2x2 +

k∑
j=1

χ0
s,jsj

αx1 = χ1 + χ1
0x0 + χ1

1x1 + χ0
2x2 +

k∑
j=1

χ1
s,jsj

αx2 = χ2 + χ2
0x0 + χ2

1x1 + χ2
2x2 +

k∑
j=1

χ2
s,jsj

From the above, it follows that for α to be zero modulo any xi, all the of coefficients must be zero,
which is a contradiction.

In the following, we assume without loss of generality that (ϕ+ϕ0x0+ϕ1x1+ϕ2x2+
∑k

j=1 ϕs,jsj) ̸=
0 because Ŝ∗ ̸= 0.

As in [BF20], we now interpret the equalities over the ring Zp(s1, . . . , sk)[x0, x1, x2, x] as well
as over Zp(s1, . . . , sk)[x0, x1, x2, x]/(x0, x1, x2, x) ≡ Zp(s1, . . . , sk)

9. Over such quotient zi = 0 and
ti = 0, and thus, (1) and (2) become:

ζ(ϕ+

k∑
j=1

ϕs,jsj) = 0 (3)

τ(ϕ+

k∑
j=1

ϕs,jsj) = 0 (4)

8 Such relation is efficiently checkable by the challenger (it knowns sk).
9 This interpretation is possible because x0, x1 and x2 never appear in the denominators of any expression.

25

Case 1: If (ϕ +
∑k

j=1 ϕs,jsj) = 0 then ϕ = ϕs,j = 0. However, this would imply that S∗ is a linear
combination of the public key. But this can only hold if it’s the trivial one, leading to a contradiction.
Case 2: (ϕ+

∑k
j=1 ϕs,jsj) ̸= 0. We have ∀i ∈ {1, . . . , k} : τ = ζ = 0. Hence, (1) and (2) turn into:

(ζxx+

k∑
j=1

(ζz,jzj + ζt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0c
(k+1)
0 + αx1c

(k+1)
1 + αx2

(5)

(τxx+

k∑
j=1

(τz,jzj + τt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0 + αx1x

(6)

Computing the above modulo (x0, x1, x2) we get ζx = τx = 0. Putting back x2 and looking modulo
(x0, x1), we get:

(

k∑
j=1

ζz,j
1

sj
)(ϕ+ ϕ2x2 +

k∑
j=1

ϕs,jsj) = α (7)

(

k∑
j=1

τz,j
x2

sj
)(ϕ+ ϕ2x2 +

k∑
j=1

ϕs,jsj) = 0 (8)

We deduce τz,j = 0 ∀j ∈ {1, . . . , k}. Now, equation (6) modulo (x, x1) becomes:

(

k∑
j=1

τt,j
1

sj
)(ϕ+ ϕ0x0 +

k∑
j=1

ϕs,jsj) = α (9)

We first observe that there exists j0 such that τt,j0 ̸= 0 as otherwise T ∗ would be zero and thus a
contradiction. Then, looking at the degrees in sj0 , the left hand size of the equation has degsj0 = −1,
which means that (ϕ + ϕ0x0 +

∑k
j=1 ϕs,jsj) should have degree one in sj0 . Hence, there is also at

least one ϕs,j0 ̸= 0. Suppose there exist j1 ̸= j2 ∈ {1, . . . , k} such that ϕs,j1 ̸= 0 and ϕs,j2 ̸= 0. As in
[BF20], that leads to a contradiction. So there is only one non-zero coefficient. Similarly, we conclude
∀i ∈ {1, . . . , k} \ {j0} : ζz,j = τt,j = 0.

Now, equations (5) and (6) become:

(ζz,j0zj0 +

k∑
j=1

(ζt,j
x0 + x1x

sj
))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 + ϕs,j0sj0) = αx0c
(k+1)
0 + αx1c

(k+1)
1 + αx2

(10)

(τt,j0
x0 + x1x

sj0
)(ϕ+ ϕ0x0 + ϕ1x1 + ϕ2x2 + ϕs,j0sj0) = αx0 + αx1x (11)

equating coefficients for x0 we get τt,j0ϕs,j0 = α, which means that τt,j0 ̸= 0. Moreover, we deduce,
ϕ = ϕ0 = ϕ1 = ϕ2 = 0. Besides, ζz,j0ϕs,j0 = α (taking modulo x0, x1). This means that ζz,j0 = τt,j0 .
Now, we have:

26

Prover: S0, Ŝ0, s0 Verifier: S0, Ŝ0

a1 ←$ Zp;A1 = a1G; Â1 = a1Ĝ
A1, Â1−−−−−→

c←−−−− c←$ Zp

q1 = a1 − cs0
q1−−−−−→ return A1 = q1G+ cS0 ∧ Â1 = q1Ĝ+ cŜ0

Fig. 9. ZKPoK protocol for π0.

Prover: Z, T, Ŝ, Z0, T0, Ŝ0, r, s1 Verifier: Z, T, Ŝ, Z0, T0, Ŝ0

a1, a2 ←$ (Zp)
2;A1 = a1G+ a2T

A2 = a1G+ a2Z; Â4 = a2Ŝ0
A1, A2, Â4−−−−−−−−→

q1 = a1 − cr
c←−−−−−−−− c←$ Zp

q2 = a2 − cs1
q1, q2−−−−→ return A1 = q1G+ q2T + cT0

∧ A2 = q1G+ q2Z + cZ0 ∧ Â4 = q2Ŝ0 + cŜ

Fig. 10. ZKPoK protocol for π̃1.

x0c
(j0)
0 ζz,j0ϕs,j0 + x1c

(j0)
1 ζz,j0ϕs,j0

+ϕs,j0sj0

k∑
j=1

(ζt,j
x0 + x1x

sj
) = αx0c

(k+1)
0 + αx1c

(k+1)
1

(12)

Equating coefficients for x0 and x1 we get that c(j0)0 = c
(k+1)
0 and c

(j0)
1 = c

(k+1)
1 , meaning that it’s

a ciphertext that has already been queried.
The above means that the adversary cannot win the unforgeability game in the ideal world (because

the first winning condition cannot be met if the other two hold). It remains to see that the statistical
distance from the adversary’s point of view when interacting in the real game (for concrete choices
of x0, x1, x2, x, s1, . . . , sk) with the ideal one is negligible. This follows from the analysis in [BF20],
which applies the Schwartz-Zippel lemma [Sch80].

D Zero-knowledge Proofs

We instantiate the ZKPoK of our interactive signing protocol in the ROM using known techniques [FS87,
Sch91, CP93]. π0 := (ZKPoK[s0 : S0 = s0G ∧ Ŝ0 = s0Ĝ]) is shown in Fig.9. π1 := (ZKPoK[(r, x1

0, x
1
1, x

1
2) :

T1 = rS0+x1
0G+x1

1X ∧ Z1 = rS0+x1
0C0+x1

1C1+x1
2G ∧ X̂1

0 = x1
0Ĝ ∧ X1

1 = x1
1Ĝ ∧ X1

2 = x1
2Ĝ]) is

shown in Fig.11. They are a simple application of standard ZKPoK. However, π̃0 := (ZKPoK[(s0, x
0
0, x

0
1, x

0
2) :

T0 = 1
s0
(T1 + x0

0G+ x0
1X) ∧ Z0 = 1

s0
(Z1 + x0

0C0 + x0
1C1 + x0

2G) ∧ S0 = s0G ∧ X̂0
0 = x0

0Ĝ ∧ X̂0
1 =

x0
1Ĝ ∧ X̂0

2 = x0
2Ĝ]) and π̃1 := (ZKPoK[(r, s1) : T = 1

s1
(T0−rG) ∧ Z = 1

s1
(Z0−rG) ∧ Ŝ = s1Ŝ0]) in-

clude multiplication of witness variables in some clauses. Hence, we need to re-arrange the statements.
We change π̃0 into

ZKPoK[(s0, x
0
0, x

0
1, x

0
2) : T1 = s0T0 − x0

0G− x0
1X ∧

Z1 = s0Z0 − x0
0C0 − x0

1C1 − x0
2G ∧

S0 = s0G ∧
X̂0

0 = x0
0Ĝ ∧ X̂0

1 = x0
1Ĝ ∧ X̂0

2 = x0
2Ĝ]

and turn π̃1 into ZKPoK[(r, s1) : T0 = rG+ s1T ∧ Z0 = rG+ s1Z ∧ Ŝ = s1Ŝ0]
These statements are equivalent to the original ones that were shownm in Fig. 12 and Fig. 10.

E Aggregate and Multi-signatures

We recall the sequential aggregate signature from [PS16].

27

Prover: T1, Z1, {X̂1
i , x

1
i }i∈{0..2}, Verifier: T1, Z1, {X̂1

i }i∈{0..2},

S0, X,C0, C1, r S0, X,C0, C1

a1, a2, a3, a4 ←$ (Zp)
4

A1 = a1S0 + a3G+ a4X
A2 = a1S0 + a3C0 + a4C1 + a2G

Â3 = a3Ĝ; Â4 = a4Ĝ; Â5 = a2Ĝ
A1, A2, Â3, Â4, Â5−−−−−−−−−−−−−−→

q1 = a1 − cr; q2 = a2 − cx1
2

c←−−−−−−−− c←$ Zp

q3 = a3 − cx1
0; q4 = a4 − cx1

1
q1, q2, q3, q4−−−−−−−−−→ return A1 = q1S0 + q3G+ q4X + cT1

∧ A2 = q1S0 + q3C0 + q4C1 + q2G+ cZ1

∧ Â3 = q3Ĝ+ cX̂1
0 ∧ Â4 = q4Ĝ+ cX̂1

1

∧ Â5 = q2Ĝ+ cX̂1
2

Fig. 11. ZKPoK protocol for π1.

Prover: {Ti, Zi}i∈{0,1}, S0, s0, Verifier: {Ti, Zi}i∈{0,1}, S0,

{X̂0
i , x

0
i }i∈{0..2}, X,C0, C1 {X̂0

i }i∈{0..2}, X,C0, C1

a1, a2, a3, a4 ←$ (Zp)
5;A2 = a1T − a4G

A1 = a1T0 − a2G− a3X
A2 = a− 1Z0 − a2C0 − a3C1 − a4G

A3 = a1G; Â4 = a2Ĝ; Â5 = a3Ĝ

Â6 = a6Ĝ
A1 . . . Â6−−−−−−−→

q1 = a1 − cs0; q2 = a2 − cx0
0

c←−−−−−−−− c←$ Zp

q3 = a3 − cx0
1; q4 = a4 − cx0

2
q1, q2, q3, q4−−−−−−−−−→ return A1 = q1T0 − q2G− q3X + cT1

∧ A2 = q1Z0 − q2C0 − q3C1 − q4G+ cZ1

∧ A3 = q1G+ cS0 ∧ Â4 = q2Ĝ+ cX̂0
0

∧ Â5 = q3Ĝ+ cX̂0
1 ∧ Â6 = q5Ĝ+ cX̂0

2

Fig. 12. ZKPoK protocol for π̃0.

– SAS.Setup(1κ): pp←$ BGGen(1κ); w ←$ Zp;
W ← wG; Ŵ ← wĜ; return (pp,W, Ŵ).

– SAS.SKG(pp): sk←$ Z∗
p; pk← skĜ; return (sk, pk).

– SAS.Sign(sk, σ, (m1, . . . ,mr), (pk1, . . . , pkr),m):
if r = 0 then σ ← (G,W) elseif (r > 0
∧ SAS.Verify(σ, (m1, . . . ,mr), (pk1, . . . , pkr)) = 0) ∨ m = 0 ∨ ∃ pkj ∈ {pk1, . . . , pkr} : pkj =
pk return ⊥
else t←$ Z∗

p;σ
′ ← (tσ1, t(σ2 + (sk ·m)σ1)) return σ′.

– SAS.Verify(σ, (m1, . . . ,mr), (pk1, . . . , pkr)):
return σ1 ̸= 1G ∧ e(σ1, Ŵ +

∑
i mipki) = e(σ2, Ĝ)

Its security considers the certified keys setting from [LOS+06] (i.e., users must prove knowledge of
their secret key if they want to produce a signature) and is proven in the generic group model for type-
III pairings, under the Pointcheval-Sanders assumption given in Definition 19. Alternatively, as shown
by the same authors [PS18], it’s also possible to prove security under a non-interactive assumption
(the q-MSDH-1 assumption, which is itself a variant of the q-SDH assumption) in the random oracle
model with a small modification to the scheme that doesn’t incur any efficiency overhead.

Definition 19 (PS Assumption). Let BGGen be a type-III bilinear group generator and A a
PPTalgorithm. The Pointcheval-Sanders (PS) assumption over BGGen states that the following prob-
ability is negligible in κ:

Pr

Q := ∅; pp←$ BGGen(1κ)

x, y ←$ Z∗
p; X̂ ← xĜ; Ŷ ← yĜ

(A∗, B∗,m∗)← AOx,y(·)(pp, X̂, Ŷ)

:
m∗ /∈ Q ∧ A∗ ̸= 1G
∧ B∗ = (A∗)x+m·y

 ,

28

where Q is the set of queries that A has issued to the oracle Ox,y(m) := Q ← Q ∪ {m};A ←
G∗; return (A,Ax+m·y).

We also recall the (aggregatable) multisignature signature of Boneh-Drijvers-Neven [BDN18],
which uses two full-domain hash functions H0 : {0, 1}∗ → G2 and H1 : {0, 1}∗ → Zp.

– MSig.Setup(1κ): pp←$ BGGen(1κ); return pp.
– MSig.SKG(pp): sk←$ Z∗

p; pk← skĜ; return (sk, pk).
– MSig.KeyAgg({pk1, . . . , pkN}):

avk←
∑
H1(pki, {pk1, . . . , pkN})pki; return avk.

– MSig.Sign(ski, {pk1, . . . , pkN},m):
return σi = ski · H0(m)
//From all the individual signatures any combiner
//computes msig =

∑
H1(pki, {pk1, . . . , pkN})σi MSig.Verify(avk,m,msig):

return e(G,msig) = e(H0(m), avk)

F Application to E-voting

As evidenced by the vast literature (see e.g., [SK95, Abe98, Abe99, AH01, BG02, Adi08, CKLM13,
LQT20, KER+22, ABGS23]), voting (or e-voting) is by far the most popular application of mixnets.
We demonstrate that our mixnet construction naturally supports a receipt-free e-voting scheme.

Our scheme follows the standard blueprint of mix-type e-voting. There are voters, a certificate
authority (CA), mix servers (MX), and tally servers (TA). We implicitly use a trustful bulletin board
(BB) that records all published data authentically and in a non-erasable manner. The election process
consists of four phases, i.e., setup, registration, vote casting, and tallying, which correspond to our
mixnet procedures.

Setup phase. MixSetup and MixKG are executed by relevant entities. Each voter ui generates a key pair
(uski, uvki). CA generates the public parameters and key pair (ask, avk). The tally servers generate
an ElGamal encryption key pair, dk and ek, by running a secure distributed key generation protocol,
e.g., [Kat23, AF04, CL24]. All public parameters and verification keys are published authentically.

Registration phase. Once the voting phase begins, ui decides their vote Mi and engages in MixSign
with the CA. This process is one-time for each voter. Voter ui obtains an encrypted and signed ballot
(σi, C

′
i, uvki, evki). In MixSign, CA’s proof of re-randomization, π′ ← ZKPoK[µ : C ′

i = Rndmz(ek, Ci;µ)],
must be done in a simulatable manner for the sake of receipt-freeness. The standard five-round aug-
mentation of sigma-protocols provides fully simulatable zero-knowledge. A sigma-protocol for disjunc-
tive coupling of the statement with a knowledge of secret-key uski gives a non-interactive designated
verifier proof in the random oracle model that also suffices for the purpose.

Casting phase. Each voter casts their ballot (σi, C
′
i, uvki, evki) on BB. Communication happens over

a public channel, and the process is done only once.

Tallying phase. MixInit is invoked to screen irregular votes. It is a public process that can be executed
by, e.g., a representative of mix servers. Each mix server executes Mix in order and MixVerify at the
end. Once the verification passes, the tallying servers decrypt every verified ciphertext with distributed
ElGamal decryption and publish a proof of correct decryption. The final result is publicly computed
from the decryption result published on BB.

F.1 Security

Trust model. First, we clarify which authority is trusted for which property.

CA: Trusted for verifiability, which relies on the unforgeability of the CA’s signatures. Untrusted for
ballot privacy. Trusted for receipt-freeness.

MX: Untrusted for verifiability and receipt freeness. At least 1 server is trusted for privacy.
TA: Untrusted for verifiability and receipt freeness. At least k-out-of-N servers are trusted for privacy.
BB: Trusted for all properties. It authentically holds data, i.e., it is publicly verifiable who wrote

what.

No trust is assumed on voters for any property.

29

Receipt-freeness. Receipt-freeness inherently requires a moment when the coercer does not monitor
or control every user. We require absence of the coercer during the execution of MixSign. The commu-
nication is done through an untappable channel or assumes the absolute absence of the coercer. Since
the ciphertext is randomized by the CA, the user cannot prove to the coercer that it used the coercer’s
ciphertext. After the user obtains the signature, it can only be adapted to a ciphertext randomization,
so it’s not possible to change the encrypted vote. More formally, we define receipt-freeness in a way
that user ui completed the registration with vote Mi of its own choice and can create a fake view of
MixSign concerning a forced vote M̃i that is indistinguishable from the actual view. We recall MixSign
to explain how ui creates such a fake view.

1. Follow the first step of MixSignui
with M̃i to create (C̃i,π).

2. Pick C ′
i and evki from the real view. Simulate a proof of re-encryption for C ′

i and C̃i : π′ ←
ZKPoK[C ′

i = Rndmz(ek, C̃i)].
3. Use the real view for MSoRC.ISign.

The simulated view differs from the proper distribution at C ′
i and π. Distinguishing C ′

i being
re-randomization of C̃i or not is infeasible if the DDH assumption holds in G1. Simulation of π′ is due
to the quality of the zero-knowledge simulator. Accordingly, the fake view is indistinguishable from
the real one if the SXDH assumption holds for BGGen.

Thus, vote selling or buying is of no use. We stress that users can be coerced before the execution
of MixSign. If users are mandated to use a given vote M̃i, during MixSign, users can use their real
choice Mi during the signing process. The computationally bounded coercer will have no way to
distinguish between cases. If users are coerced afterward, the unforgeability of MSoRC guarantees
that ciphertext-signature pairs can only be adapted to the same plaintext.

Verifiability, fairness, and voter privacy. A voting result is correct if it is equal to the outcome
obtained by applying the tally computation on the votes Mi of voters who completed the registration
and casting phases. (Note that, in our scheme, Mi is uniquely determined for each transcript of
a completed registration.) A voting scheme is universally verifiable when any third party (verifier)
accepts the final voting result if and only if it is correct. The “only if” part can be relaxed by
incorporating computational assumptions or the trust model. The above verifiability captures the
notion of fairness that no votes can be altered once votes are cast.

Our scheme is verifiable since the mixnet is sound, all proofs made by MX are publicly verifiable,
and the distributed decryption by TA is also sound and publicly verifiable. Note that the soundness
of the mixnet requires the unforgeability of the signatures of CA. Hence, CA is trusted in a way that
it would not do anything that risks the unforgeability of MSoRC (e.g., share its secret key).

Verifiability also depends on the fact that every input to the mixnet comes from one voter as the
security of the mixnet only concerns one-to-one correspondence between the input ciphertexts and the
resulting plaintexts. Verifiablity captures the one-voter-one-vote principle, which must be considered
separately. Our design choice is to authenticate users at the registration and casting phases to maintain
structural consistency between the voting scheme and the underlying mixnet for easier understanding.
We could also choose CA to send the encrypted ballot to BB on behalf of each user at the end of
each registration. In this case, MixInit can be replaced with the trust of CA. This would not change
the trust model since CA is trusted for soundness in our original construction.

We note that voting with authentication inherently reveals who has voted or not. Some consider
this as a benefit for democracy, while others view it as a risk to privacy. Practical non-cryptographic
countermeasures have been considered, e.g., CA casting null votes for absentees. Another approach
would be that if CA sends the ballots to BB on voters’ behalf, uvki and evki in a ballot are replaced
with uvki + evki. It protects absentees’ privacy and provides so-called everlasting privacy [CFSY96,
MN07, HMMP23b], which claims privacy against unbound adversaries under trust assumptions. A
drawback would be that it requires more trust in CA.

Common threats for mix-type voting. A replay attack violates a particular voter’s privacy by copying a
victim’s encrypted ballot and seeing if the same vote appears at the end. This is a common risk for mix-
type voting with public bulletin boards where ballots are published successively during the casting
phase. Many voting schemes have been proven vulnerable to these attacks [MMR22] and possible
alternatives to mitigate them should be compatible with receipt-freeness. Our scheme prevents this

30

by letting the voters prove their knowledge of the plaintext, and it accommodates receipt-freeness
thanks to the re-encryption.

An italian attack [Hea07] can also violate the privacy of a particular voter and it is effective for
coercion. In preferential voting, there could be some rarely chosen combination of preferences. The
coercer can pick such a rare choice and ask a victim to submit it. As it appears at the end, the coercer
can see if the victim obeyed. It is an unavoidable threat against any open-ballot voting with a large
space of choices. We refer to [PB09, Yan23] for more discussion.

F.2 Comparison

Table 3. Comparison of trust model and voting properties. V = Voter, CA = Certification Authority, MX
= Mix Servers, TA = Tallying Authority, U = Untrusted, T = Trusted, (x, N) = x-out-of-N trust. RF =
Receipt Freeness, CR = Coercion Resistance, RA = Replay Attack Resistance, F = Fairness, UV = Universal
Verifiability. See text for details on each term.

Scheme Privacy Soundness Properties
V CA MX TA V CA MX TA RF/CR RA F UV

Rand-RCCA U - (1, N) (k, N) U - U (k, N) × ✓ ✓ ✓
HPP20 T U (1, N) (k, N) T T U (k, N) × × × ×
Ours U U (1, N) (k, N) U T U (k, N) ✓ ✓ ✓ ✓

Table 3 compares the trust model and voting properties of our construction with previously
discussed mix-type voting schemes that follow the same blueprint. “Privacy” stands for the infeasibility
of associating individual votes and voters when all voters are honest. The “Soundness” columns show
which entity must be trusted to guarantee a correct outcome. Namely, if an authority marked as T
acts in a way that betrays the defined trust, the result of the election can be incorrect, i.e., different
from what is directly computed from the plain input, and it is not necessarily noticed by the public.
“U” for soundness means that, if the result of the election is obtained, it is correct without assuming
any trustful behavior on the respective authority. The “Properties” columns show if the respective
property is achieved even if voters and all authorities marked as U are corrupted. In Appendix G,
we extend the comparison to voting schemes that follow a different paradigm.

HPP20 and Rand-RCCA. The model from [FFHR19, FR22, FHR23] does not discuss any authen-
tication mechanism, but we assume users can post signed ciphertexts to the BB using a previously
registered key with the CA (although the corresponding entry in the table is left empty as it’s not de-
fined in their work). Since they include proofs of plaintext knowledge, replay attacks can be avoided,
but they cannot provide receipt-freeness (nor coercion-resistance). Privacy and verifiability are en-
sured by their verify-then-decrypt protocol. Considering HPP20, as discussed in Appendix A, their
model only provides guarantees for honest users, and hence, they cannot achieve any of the properties
required for e-voting.

G Extended Comparison of Voting Schemes

Voting schemes are generally required to provide ballot privacy (no coalition of malicious parties
can learn the voter’s vote), verifiability (voters can verify that their vote was cast and counted as
cast) and coercion resistance (a coercer who interacts with a voter during the voting phase cannot
determine if coercion was successful or not from the election outcome). Sometimes, a weak form of
coercion resistance called receipt-freeness [Oka97] is also considered. This notion states that voters
cannot prove how they voted to a potential coercer. Additionally, some notion of fairness is considered
alongside integrity to ensure that no partial tally is leaked, and no ballot can be altered during the
tally phase. Such guarantees are of utmost importance considering corruption scenarios during the
tally phase, which can incorporate information from exit polls to influence the outcome. Similarly to
the coercion case, robust notions of verifiability usually cover fairness. Last but not least, security
against replay attacks protects honest users from malicious ones that try to cast the same vote. Many

31

voting schemes have been proven vulnerable to these attacks [MMR22] and alternatives to mitigate
them should be compatible with receipt-freeness.

Several countermeasures to coercion have been proposed in the literature, e.g., Fake Creden-
tials [JCJ05], Masking [WB09], Panic Password [CH11], Nullification [CCC+22a, CCC+22b]. Some
of these approaches are tailored to homomorphic tallying where only the aggregated result is pub-
lished. We focus on JCJ [JCJ05, CCM08, BGR12, CGY24, ABR23] and VoteAgain [LQT20, HMQA23]
that are well-studied mix-type coercion resistant schemes in the literature. Furthermore, VoteAgain
also aims for scalability and thus its suitable for comparison with our work.

JCJ & variants – Fake credentials. The voting scheme by Jakobsson, Juels and Catalano (JCJ) [JCJ05]
is the standard benchmark for coercion resistance. In this model, users manage real and fake creden-
tials. Whenever they are under the influence of a coercer, users can vote using their fake creden-
tials to convince the coercer that their vote was cast. However, the protocol only counts votes from
real credentials, whose use is indistinguishable from the fake ones in the coercer’s view. Subsequent
work identified security and efficiency issues in JCJ, proposing several improvements (see e.g., Civ-
itas/Trivitas [CCM08, BGR12] and CHide [CGY24, ABR23]). Under the JCJ framework, the most
efficient protocol under a strong resistance-coercion definition is [ABR23] and has computational
complexity O(n log n) due to sorting. In all cases, users must keep their real credentials safe and
protect them from the coercer. Our work is closer to the JCJ model because we require the absence
of a coercer at the beginning.

VoteAgain [LQT20]. Lueks, Querejeta-Azurmendi and Troncoso proposed a voting scheme based on
the revoting paradigm, which assumes that the user will be free from the coercer at some point before
the voting phase ends. Since each voter can vote multiple times, votes must be filtered so that only the
last vote is counted as valid, and coercers cannot identify which votes have been filtered. To achieve
better scalability, VoteAgain trades off trust for efficiency. Indeed, its security model makes several
trust assumptions: 1) the adversary never gets access to the voter’s credentials, 2) the authority
is trusted, and 3) a tally server, responsible for filtering the votes is also trusted. Follow-up work
[HMQA23] by Haines, Muller and Querejeta-Azurmendi slightly improved trust assumptions but still
required all the previous considerations. Besides, the computational complexity is also O(n log n) due
to the insertion of log n dummies for every ballot. In this regard, we stress that VoteAgain and JCJ
consider different definitions and corruption scenarios for coercion-resistance, which are incomparable
in many ways.

Our Work. Ballot privacy, verifiability and fairness follow from the stronger privacy and soundness
notions of our mixnet protocol. This contrasts with HPP20, which was unable to provide fairness as
evidenced in Appendix A. Receipt-freeness was also already addressed before (recall the randomization
on the user’s ciphertext done by the CA during the interactive signing). For coercion-resistance the
situation is slightly different as our model contrasts with other works in the literature and each of
them introduces its tailored definition. However, as previously outlined, unforgeability and perfect
adaption of our MSoRC scheme together with receipt-freeness do provide a form of coercion-resistance.
Our work achieves all the previously-mentioned properties with O(n) complexity under minimal trust
assumptions. In particular, we only require an authenticated communication with the BB whereas
JCJ and VoteAgain require an anonymous channel, which is a much stronger assumption and even
harder to achieve in practice.

32

	Scalable Mixnets from Mercurial Signatures on Randomizable Ciphertexts

