SALSA FRESCA: Angular Embeddings and Pre-Training
for ML Attacks on Learning With Errors

Samuel Stevens ! 2*

Emily Wenger? Cathy Li*2" Niklas Nolte?> Eshika Saxena’? Francois Charton?"

sk

Kristin Lauter 2™

Abstract

Learning with Errors (LWE) is a hard math
problem underlying recently standardized post-
quantum cryptography (PQC) systems for key ex-
change and digital signatures (Chen et al., 2022).
Prior work (Wenger et al., 2022; Li et al., 2023a;b)
proposed new machine learning (ML)-based at-
tacks on LWE problems with small, sparse se-
crets, but these attacks require millions of LWE
samples to train on and take days to recover se-
crets. We propose three key methods—better pre-
processing, angular embeddings and model pre-
training—to improve these attacks, speeding up
preprocessing by 25x and improving model sam-
ple efficiency by 10x. We demonstrate for the
first time that pre-training improves and reduces
the cost of ML attacks on LWE. Our architecture
improvements enable scaling to larger-dimension
LWE problems: this work is the first instance
of ML attacks recovering sparse binary secrets
in dimension n = 1024, the smallest dimension
used in practice for homomorphic encryption ap-
plications of LWE where sparse binary secrets are
proposed (Lauter et al., 2011).

1. Introduction

Lattice-based cryptography was recently standardized by the
US National Institute of Standards and Technology (NIST)
in the 5-year post-quantum cryptography (PQC) competi-
tion (Chen et al., 2022). Lattice-based schemes are believed
to be resistant to attacks by both classical and quantum
computers. Given their importance for the future of infor-
mation security, verifying the security of these schemes
is critical, especially when special parameter choices are
made such as secrets which are binary or ternary, and sparse.

“Work done at Meta; " Co-senior authors ' The Ohio State Uni-
versity “Meta AI Research *University of Chicago. Correspon-
dence to: Frangois Charton, Kristin Lauter <fcharton@meta.com,
klauter @meta.com>.

Preprint; under review.

Both the NIST standardized schemes and homomorphic en-
cryption (HE) rely on the hardness of the “Learning with
Errors” (Regev, 2005, LWE) problem. NIST schemes stan-
dardize small secrets (binomial), and the HE standard in-
cludes binary and ternary secrets (Albrecht, 2017), with
sparse versions used in practice.

The LWE problem is defined as follows: in dimension n,
the secret s € Zy is a vector of length n with integer entries
modulo g. Let A € Z7**" be a uniformly random matrix
with m rows, and e € Z;” an error vector sampled from
a narrow Gaussian x, (see Table 2 for notation summary).
The goal is to find s given A and b, where

b=A-s+e modgq.)

The hardness of this problem depends on the parameter
choices: n, ¢, and the secret and error distributions.

Many HE implementations use sparse, small secrets to im-
prove efficiency and functionality, where all but h entries of
s are zero (so h is the Hamming weight of s). The non-zero
elements have a limited range of values: 1 for binary se-
crets, 1 and —1 for ternary secrets. Sparse binary or ternary
secrets allow for fast computations, since they replace the
n-dimensional scalar product A - s by h sums. However,
binary and ternary secrets might be less secure.

Most attacks on LWE rely on lattice reduction techniques,
such as LLL or BKZ (Lenstra et al., 1982; Schnorr, 1987;
Chen & Nguyen, 2011), which recover s by finding short
vectors in a lattice constructed from A, b and ¢ (Ajtai, 1996;
Chen et al., 2020). BKZ attacks scale poorly to large dimen-
sion n and small moduli g (Albrecht et al., 2015).

ML-based attacks on LWE were first proposed in Wenger
et al. (2022); Li et al. (2023a;b), inspired by viewing LWE
as a linear regression problem on a discrete torus. These
attacks train small transformer models (Vaswani et al., 2017)
to extract a secret from eavesdropped LWE samples (A,
b), using lattice-reduction for preprocessing. Although Li
et al. (2023b) solves medium-to-hard small sparse LWE
instances, for example, dimension n = 512, the approach is
bottlenecked by preprocessing and larger dimensions used
in HE schemes, such as n = 1024.

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

Table 1. Best results from our attack for LWE problems in dimensions n (higher is harder), modulus g (lower is harder) and Hamming
weights h (higher is harder). Our work recovers secrets for n = 1024 for the first time in ML-based LWE attacks and reduces total attack
time for n = 512, log, ¢ = 41 to only 50 hours (assuming full CPU parallelization).

. LWE (A,b) preprocessing time training total

n logaq highesth . cesneeded (hrs/CPU/matrix) time (hrs) time (hrs)
512 41 44 1955 13.1 36.9 50.0
768 35 9 1302 12.4 14.8 927.2
1024 50 13 977 26.0 47.4 73.4

Table 2. Notation used in this work.

Symbol Description

(A,b) LWE matrix/vector pair, withb = A - s+ e.
(a,b) An LWE vector/integer pair, one row of (A, b).
q Modulus of the LWE problem.
] The (unknown) true secret.
Number of nonzero bits in secret.
Error vector, drawn from distribution y.
Standard deviation of the x..
Problem dimension (the dimension of a and s)
The total number of LWE samples available
LWE samples in each subset during reduction
Candidate secret, not necessarily correct
Matrix computed to reduce the coordinates of A.
o(RA)

Preprocessing reduction factor; the ratio oAy

S HAEI 30 =

In this work, we introduce several improvements to Li
et al.’s ML attack, enabling secret recovery for harder LWE
problems in less time. Our main contributions are:

e 25X faster pre-processing using Flatter (Ryan &
Heninger, 2023) and interleaving with polishing (Char-
ton et al., 2024) and BKZ (see §3).

¢ An encoder-only transformer architecture, coupled
with an angular embedding for model inputs. This
reduces the model’s logical and computational com-
plexity and halves the input sequence length, signifi-
cantly improving model performance (see §4).

e The first use of pre-training for LWE to improve
sample efficiency for ML attacks, further reducing pre-
processing cost by 10x (see §5).

Overall, these improvements in both preprocessing and mod-
eling allow us to recover secrets for harder instances of LWE,
i.e. higher dimension and lower modulus in less time and
with fewer computing resources. A summary of our main
results can be found in Table 1.

2. Context and Attack Overview

Wenger et al. (2022); Li et al. (2023a;b) demonstrated the
feasibility of ML-based attacks on LWE. Li et al.’s attack
has 2 parts: 1) data preprocessing using lattice reduction
techniques; 2) model training interleaved with regular calls
to a secret recovery routine, which uses the trained model

as a cryptographic distinguisher to guess the secret. In this
section we provide an overview of ML-based attacks in prior
work to put our contributions in context.

2.1. Attack Part 1: LWE data preprocessing

The attack assumes that ¢ = 4n initial LWE samples (a, b)
(rows of (A, b)) with the same secret are available. Sam-
pling m < n of the 4n initial samples without replacement,
m X n matrices A and associated m-dimensional vectors b
are constructed.

The preprocessing step strives to reduce the norm of the
rows of A by applying a carefully selected integer lin-
ear operator R. Because R is linear with integer en-
tries, the transformed pairs (RA,Rb) mod q are also
LWE pairs with the same secret, albeit larger error. In
practice, R is found by performing lattice reduction on
w- I, A } ’
and finding linear operators [C R] such that the norms
of [C R] A = [w ‘R RA+¢q- C] are small. This
achieves a reduction of the norms of the entries of RA
mod g, but also increases the error in the calculation of
Rb = RA - s + Re, making secret recovery more difficult.
Although ML models can learn from noisy data, too much
noise will make the distribution of Rb uniform on [0, ¢)
and inhibit learning. The parameter w controls the trade-
off between norm reduction and error increase. Reduction
strength is measured by p = Uéff:;) , where o denotes the
mean of the standard deviations of the rows of RA and A.

Li et al. (2023a) use BKZ (Schnorr, 1987) for lattice reduc-
tion. Li et al. (2023b) improves the reduction time by 45 x
via a modified definition of the A matrix and by interleaving
BKZ2.0 (Chen & Nguyen, 2011) and polish (Charton
et al., 2024) (see Appendix C).

the (m + n) x (m + n) matrix A = [

This preprocessing step produces many (RA, Rb) pairs
that can be used to train models. Individual rows of RA
and associated elements of Rb, denoted as reduced LWE
samples (Ra, Rb) with some abuse of notation, are used
for model training. Both the subsampling of m samples
from the original ¢ LWE samples and the reduction step are

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

done repeatedly and in parallel to produce 4 million reduced
LWE samples, providing the data needed to train the model.

2.2. Attack Part 2: Model training and secret recovery

With 4 million reduced LWE samples (Ra, Rb), a trans-
former is trained to predict Rb from Ra. For simplicity,
and without loss of generality, we will say the transformer
learns to predict b from a. Li et al. train encoder-decoder
transformers (Vaswani et al., 2017) with shared layers (De-
hghani et al., 2019). Inputs and outputs consist of integers
that are split into two tokens per integer by representing
them in a large base B = { with k& ~ 10 and binning
the lower digit to keep the vocabulary small as g increases.
Training is supervised and minimizes a cross-entropy loss.

The key intuition behind ML-attacks on LWE is that to
predict b from a, the model must have learned the secret s.
We extract the secret from the model by comparing model
predictions for two vectors a and a’ which only differ on
one entry. We expect the difference between the model’s
predictions for b and b’ to be small (of the same magnitude
as the error) if the corresponding bit of s is zero, and large
if it is non-zero. Repeating the process on all n positions
yields a guess for the secret.

For ternary secrets, Li et al. (2023b) introduce a two-bit
distinguisher, which leverages the fact that if secret bits s;
and s; have the same value, adding a constant K to inputs at
both these indices should induce similar predictions. Thus,
if u; is the i*" basis vector and K is a random integer, we
expect model predictions for a + Ku; and a + Ku; to be
the same if s; = s;. After using this pairwise method to
determine whether the non-zero secret bits have the same
value, Li et al. classify them into two groups. With only two
ways to assign 1 and —1 to the groups of non-zero secret
bits, this produces two secret guesses.

Wenger et al. (2022) tests a secret guess s* by computing
the residuals b — a - s* over the 4n initial LWE sample. If
s* is correct, the standard deviation of the residuals will be
close to =~ o.. Otherwise, it will be close to the standard
deviation of a uniform distribution over Z,: ¢ / V12.

For a given dimension, modulus and secret Hamming
weight, the performance of ML attacks vary from one secret
to the next. Li et al. (2023b) observes that the difficulty of
recovering a given secret s from a set of reduced LWE sam-
ples (a, b) depends on the distribution of the scalar products
a - s. If a large proportion of these products remain in the
interval (—q/2, ¢/2) (assuming centering) even without a
modulo operation, the problem is similar enough to linear
regression that the ML attack will usually recover the se-
cret. Li et al. introduce the statistic NoMod: the proportion
of scalar products in the training set having this property.
They demonstrate that large NoMod strongly correlates with

Table 3. LWE parameters attacked in our work. For all settings,
we attack both binary and ternary secret distributions s.

n log, ¢q h
512 41 50 < h <70
768 35 5<h<15
1024 50 5<h<15

likely secret recoveries for the ML-attack.

2.3. Improving upon prior work

Li et al. (2023b) recover binary and ternary secrets, for n =
512 and log, ¢ = 41 LWE problems with Hamming weight
< 63, in about 36 days, using 4,000 CPUs and one GPU (see
their Table 1). Most of the computing resources are needed
in the preprocessing stage: reducing one m X n A matrix
takes about 35 days, and 4000 matrices must be reduced to
build a training set of 4 million examples. This suggests two
directions for improving the attack performance. First, by
introducing fast alternatives to BKZ2 . 0, we could shorten
the time required to reduce one matrix. Second, we could
minimize the number of samples needed to train the models,
which would reduce the number of CPUs needed for the
preprocessing stage.

Another crucial goal is scaling to larger dimensions n. The
smallest standardized dimension for LWE in the HE Stan-
dard (Albrecht et al., 2021) is n = 1024. At present, ML
attacks are limited by their preprocessing time and the length
of the input sequences they use. The attention mechanisms
used in transformers is quadratic in the length of the se-
quence, and Li et al. (2023b) encodes n dimensional inputs
with 2n tokens. More efficient encoding would cut down
on transformer processing speed and memory consumption
quadratically.

2.4. Parameters and settings in our work

Before presenting our innovations and results, we briefly
discuss the LWE settings considered in our work. LWE
problems are parameterized by the modulus g, the secret di-
mension n, the secret distribution yg (sparse binary/ternary)
and the hamming weight h of the secret (the number of non-
zero entries). Table 3 specifies the LWE problem settings
we attack. Proposals for LWE parameter settings in homo-
morphic encryption suggest using n = 1024 with sparse
secrets (as low as h = 64), albeit with smaller ¢ than we
consider (Curtis & Player, 2019; Albrecht, 2017). Thus, it
is important to show that ML attacks can work in practice
for dimension n = 1024 if we hope to attack sparse secrets
in real-world settings.

The LWE error distribution remains the same throughout
our work: rounded Gaussian with 0 = 3 (following Al-
brecht et al. (2021)). Table 10 in Appendix B contains all

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

Table 4. Reduction performance and median time to reduce
one matrix for Li et al. (2023b) vs. our work. Li et al.’s method
fails for n > 512 on our compute cluster.

CPU - hours - matrix

n log,qg p

(Lietal, 2023b) Ours
512 41 041 ~ 350 13.1
768 35 071 N/A 12.4
1024 50 0.70 N/A 26.0

Table 5. Tradeoff between reduction quality and reduction er-
ror as controlled by w. n = 1024, log, ¢ = 50.

w 1 3 5 7 10 13

p 0685 0688 0688 0694 0698 0.706
IR|l/q 0341 0.170 0.118 0.106 0.075 0.068

experimental settings, including values for the moduli g,
preprocessing settings, and model training settings.

3. Data Preprocessing

Prior work primarily used BKZ2.0 in the preprocess-
ing/lattice reduction step. While effective, BKZ2 . O is slow
for large values of n. We found that for n = 1024 matrices
it could not finish a single loop in 3 days on an Intel Xeon
Gold 6230 CPU, eventually timing out.

Our preprocessing pipeline. Our improved preprocessing
incorporates a new reduction algorithm Flatter!, which
promises similar reduction guarantees to LLL with much-
reduced compute time (Ryan & Heninger, 2023), allowing
us to preprocess LWE matrices in dimension up to n =
1024. We interleave Flatter and BKZ2.0 and switch
between them after 3 loops of one results in Ap < —0.001.
Following Li et al. (2023b), we run polish after each
Flatter and BKZ2. 0 loop concludes. We initialize our
Flatter and BKZ2 .0 runs with block size 18 and o =
0.04, which provided the best empirical trade-off between
time and reduction quality (see Appendix C for additional
details), and make reduction parameters stricter as reduction
progresses—up to block size 22 for BKz2 . 0 and oo = 0.025
forFlatter.

Preprocessing performance.

Table 4 records the reduction p achieved for each (n, ¢) pair
and the time required, compared with Li et al. (2023b). Re-
call that p measures the reduction in the standard deviation
of A; relative to its original uniform random distribution;
lower is better. Reduction in standard deviation strongly
correlates with reduction in vector norm, but for consistency
with Li et al. (2023b) we use standard deviation.

We record reduction time as CPU - hours - matrix, the
amount of time it takes our algorithm to reduce one LWE

1https ://github.com/keeganryan/flatter

matrix using one CPU. We parallelize our reduction across
many CPUs. For n = 512, our methods improve reduction
time by a factor of 25, and scale easily to n = 1024 prob-
lems. Overall, we find that Flatter improves the time
(and consequently resources required) for preprocessing,
but does not improve the overall reduction quality.

Error penalty w. We run all reduction experiments with
penalty w = 10. Table 5 demonstrates the tradeoff be-
tween reduction quality and reduction error, as measured by
IR]|/g, for n = 1024, log, ¢ = 50 problems. Empirically,
we find that ||R||/¢ < 0.09 is sufficiently low to recover
secrets from LWE problems with e ~ N(0, 3%).

Experimental setup. In practice, we do not preprocess a
different set of 4n (a, b) pairs for each secret recovery ex-
periment because preprocessing is so expensive. Instead, we
use a single set of preprocessed Ra rows combined with an
arbitrary secret to produce different (Ra, Rb) pairs for train-
ing. We first generate a secret s and calculate b = A -s+¢
for the original 4n pairs. Then, we apply the many differ-
ent R produced by preprocessing to A and b to produce
many (Ra, Rb) pairs with reduced norm. This technique en-
ables analyzing attack performance across many dimensions
(varying h, model parameters, etc.) in a reasonable amount
of time. Preprocessing a new dataset for each experiment
would make evaluation at scale near-impossible.

4. Model Architecture

Previous ML attacks on LWE use a encoder-decoder trans-
former (Vaswani et al., 2017). A bidirectional encoder pro-
cesses the input and an auto-regressive decoder generates
the output. Integers in both input and output sequences
were tokenized as two digits in a large base smaller than q.
We propose a simpler and faster encoder-only model and
introduce an angular embedding for integers modulo g.

4.1. Encoder-only model

Encoder-decoder models were originally introduced for ma-
chine translation, because their outputs can be longer than
their inputs. However, they are complex and slow at infer-
ence, because the decoder must run once for each output
token. For LWE, outputs (one integer) are always shorter
than inputs (a vector of n integers). Li et al. (2023b) ob-
serve that an encoder-only model, a 4-layer bidirectional
transformer based on DeBERTa (He et al., 2020), achieves
comparable performance with their encoder-decoder model.

Here, we experiment with simpler encoder-only models
without DeBERTa’s disentangled attention mechanism with
2 to 8 layers. Their outputs are max-pooled across the
sequence dimension, and decoded by a linear layer for each
output digit (Figure 1). We minimize a cross-entropy loss.

https://github.com/keeganryan/flatter

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

I:l Input/Output
D Not trainable
D Trainable parameters

D Hidden representations

Figure 1. Encoder-only transformer (§4.1) with angular em-
bedding architecture. See §4.2 for an explanation.

This simpler architecture improves training speed by 25%.

4.2. Angular embedding

Most transformers process sequences of tokens from a fixed
vocabulary, encoded in R¢ by a learned embedding. Typical
vocabulary sizes vary from 32K in Llama2 (Touvron et al.,
2023), to 256K in Jurassic-1 (Lieber et al., 2021). The
larger the vocabulary, the more data needed to learn the
embeddings. LWE inputs and outputs are integers from
Zq. Forn > 512 and ¢ > 23: encoding integers with one
token creates a too-large vocabulary. To avoid this, Li et al.
(2023a;b) encode integers with two tokens by representing
them in base B = ;. with small k and binning the low digit
so the overall vocabulary has < 10K tokens.

This approach has two limitations. First, input sequences are
2n tokens long, which slows training as n grows, because
transformers’ attention mechanism scales quadratically in
sequence length. Second, all vocabulary tokens are learned
independently and the inductive bias of number continuity is
lost. Prior work on modular arithmetic (Power et al., 2022;
Liu et al., 2022) shows that trained integer embeddings
for these problems move towards a circle, e.g. with the
embedding of O close to 1 and ¢ — 1.

To address these shortcomings, we introduce an angular
embedding which strives to better represent the problem’s
modular structure in embedding space, while encoding in-
tegers with only one token. An integer a € Zg is first
converted to an angle by the transformation a — 2#%, and

Table 6. Best recovery results for binary and ternary secrets on
various model architectures (n = 512, log, ¢ = 41). Encoder-
Decoder and DeBERTa models and recovery results are from Li
et al. (2023b); we benchmark DeBERTA samples/sec on our hard-
ware. Encoder (Vocab.) uses prior work’s vocabulary emebedding.
Encoder (Angular) is presented in Section 4.2.

. Samples/ Largest Largest
Architecture Sec Binary h Ternary h
Encoder-Decoder 200 63 58
Encoder (DeBERTa) 83 63 60
Encoder (Vocab.) 256 63 66
Encoder (Angular) 610 66 66

then to the point (sin(27%), cos(27%)) € R2. All input
integers (in Z,) are therefore represented as points on the
2-dimensional unit circle, which is then embedded as an
ellipse in RY, via a learned linear projection W,. Model out-
puts, obtained by max-pooling the encoder output sequence,
are decoded as points in R? by another linear projection
W,. The training loss is the Lo distance between the model
prediction and the point representing b on the unit circle.

4.3. Experiments

Here, we compare our new architecture with previous work,
and assess its performance on larger instances of LWE
(n = 768 and 1024). All comparisons with prior work are
performed on LWE instances with n = 512 and log, ¢ = 41
for binary and ternary secrets, using the same pre-processing
techniques as Li et al. (2023b).

Encoder-only models vs prior designs. In Table 6, we
compare our encoder-only model (with and without the
angular embedding) with the encoder-decoder and the De-
BERTa models from Li et al. (2023b). The encoder-only
and encoder-decoder models are trained for 72 hours on one
32GB V100 GPU. The DeBERTa model, which requires
more computing resources, is trained for 72 hours on four
32GB V100 GPUs. Our encoder-only model, using the
same vocabulary embedding as prior work, processes sam-
ples 25% faster than the encoder-decoder architecture and is
3x faster than the DeBERTa architecture. With the angular
embedding, training is 2.4 x faster, because input sequences
are half as long, which accelerates attention calculations.
Our models also outperform prior designs in terms of secret
recovery: previous models recover binary secrets with Ham-
ming weight 63 and ternary secrets with Hamming weight
60. Encoder-only models with an angular embedding re-
cover binary and ternary secrets with Hamming weights up
to 66. §D.1 in the Appendix provides detailed results.

Impact of model size. Table 7 compares encoder-only
models of different sizes (using angular embeddings). All
models are run for up to 72 hours on one 32GB V100 GPU
onn = 512,log, ¢ = 41. We observe that larger models

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

Table 7. Encoder-only (angular embedding) performance for
varying # of transformer layers and embedding dimensions
(n = 512,1log, ¢ = 41, binary secrets). Samples per second
quantifies training speed; “Recovered” is % recovered out of 100
secrets with h from 49-67; “Hours” is mean hours to recovery.

Layers Emb. Dim. Params Samples/S Recovered Hours

2 128 1.3M 2560 23% 18.9
4 256 4.1M 1114 22% 19.6
4 512 14.6M 700 25% 26.2
6 512 20.9M 465 25% 28.1
8 512 27.2M 356 24% 30.3
Vocabulary embedding Angular embedding
20 20
Succeed?
True
‘i.:‘ o 1 mmm False
310 10
o
5 5

0
0.4 0.5 0.6 0.4 0.5 0.6
Proportion of NoMod Proportion of NoMod
in training data in training data

Figure 2. Count of # successes (orange) and failures (blue) for
various NoMod proportions for vocabulary-based and angular
embedding schemes. n = 512,log, g = 41, h = 57-67.

yield little benefit in terms of secret recovery rate, and small
models are significantly faster (both in terms of training and
recovery). Additional results are in Appendix D.2. We use 4
layers with embedding dimension 512 for later experiments
because it recovers the most secrets (25%) the fastest.

Embedding ablation. Next, we compare our new angular
embedding scheme to the vocabulary embeddings. The
better embedding should recover both more secrets and
more difficult ones (as measured by Hamming weight and
NoMod; see §2.2 for a description of NoMod). To measure
this, we run attacks on identical datasets, n = 512,log, q =
41, h = 57-67 with 10 unique secrets per h. One set of
models uses the angular embedding, while the other uses
the vocabulary embedding from Li et al. (2023b).

To check if angular embedding outperforms vocabulary em-
bedding, we measure the attacked secrets” NoMod. We
expect the better embedding to recover secrets with lower
NoMod and higher Hamming weights (e.g. harder secrets).
As Figure 2 and Table 6 demonstrate, this is indeed the case.
Angular embeddings recover secrets with NoMod= 56 vs.
63 for vocabulary embedding (see Table 29 in Appendix F
for raw numbers). Furthermore, angular embedding models
recover more secrets than those with vocabulary embed-
dings (16 vs. 2) and succeed on higher h secrets (66 vs.
63). We conclude that an angular embedding is superior to
a vocabulary embedding because it recovers harder secrets.

Scaling n. Finally, we use our proposed architecture im-
provements to scale n. The long input sequence length in

prior work made scaling attacks to n > 512 difficult, due
to both memory footprint and slow model processing speed.
In contrast, our more efficient model and angular embed-
ding scheme (§4.1,§4.2) enable us to attack n = 768 and
n = 1024 secrets. Table 8 shows that we can recover up
to h = 9 for both n = 768 and n = 1024 settings, with
< 24 hours of training on a single 32GB V100 GPU. In
§5.1 we show recovery of h = 13 for n = 1024 using a
more sample-efficient training strategy. We run identical
experiments using prior work’s encoder-decoder model, but
fail to recover any secrets with n > 512 in the same com-
putational budget. Our proposed model improvements lead
to the first successful ML attack that scales to real-world
values of n: proposed real-world use cases for LWE-based
cryptosystems recommend using dimensions n = 768 and
n = 1024 (Avanzi et al., 2021; Albrecht et al., 2021; Curtis
& Player, 2019), although they also recommend smaller g
and harder secret distributions than we currently consider.

5. Training Methods

The final limitation we address is the 4 million preprocessed
LWE samples for model training. Recall that each training
sample is a row of a reduced LWE matrix RA € Z;7**",
so producing 4 million training samples requires reducing
~ % LWE matrices. Even with the preprocessing
improvements highlighted in §3, for n = 1024, this means
preprocessing between 2000 and 4500 matrices at the cost
of 26 hours per CPU per matrix. > To further reduce total
attack time, we propose training with fewer samples and

pre-training models.

5.1. Training with Fewer Samples

We first consider simply reducing training dataset size and
seeing if the attack succeeds. Li et al. always use 4M train-
ing examples. To test if this many is needed for secret recov-
ery, we subsample datasets of size N = [100K, 300K, 1M,
3M] from the original 4M examples preprocessed via the
techniques in §3. We train models to attack LWE problems
n = 512,log, ¢ = 41 with binary secrets and h = 30-45.
Each attack is given 3 days on a single V100 32GB GPU.

Table 9 shows that our attack still succeeds, even when as
few as 300K samples are used. We recover approximately
the same number of secrets with 1M samples as with 4M,
and both settings achieve the same best / recovery. Using
1M rather than 4M training samples reduces our preprocess-
ing time by 75%. We run similar experiments for n = 768
and n = 1024, and find that we can recover up to h = 13

>We bound the number of reduced matrices needed because
some rows of reduction matrices R are 0, discarded after prepro-
cessing. Between m and n 4+ m nonzero rows of R are kept, so

we must reduce between 4’?31200 and 4’007%000 matrices.

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

Table 8. Secret recovery time for larger dimensions n with encoder-only model with 4 layers, embedding dimension of 512 and
angular embedding We only report the training hours (on one V100 GPU) for successful secret recoveries, out of 10 secrets per h value.

Samples/ Hours to recovery for different / values
n log, q Sec
h=5 h="7 h=9 h=11
768 35 355 3.1,18.6,18.9 9.1,21.6,24.9 15.9,27.7 -
1024 50 256 1.6,6.2,7.6,8.8,34.0,41.4,43.7 4.6,7.4,13.5,16.7 21.3 -
. . 9 am- ,
Table 9. # Training samples needed to recover secrets without s Baseline
pre-training. (n = 512, log, ¢ = 41, binary secrets). We report E£T 3m- @ Pretrained
of secrets recovered among h = 30-45 (10 secrets for each h), a § M
the highest h recovered, and the average attack time among secrets o ’
recovered with 1M, 3M and 4M training samples. ‘EE M | I
o
Training samples Total# Besth Mean Hours (S : : : :
0 80K 240K 440K

300K 1 32 30.3
IM 18 44 28.0+11.6
3M 21 44 26.5+£10.5
4M 22 44 25.3 £8.9

secrets for n = 1024 with only 1M training samples. Those
results are in Tables 17 to 20 in Appendix E.1.

5.2. Model Pre-Training

To further improve sample efficiency, we introduce the first
use of pre-training in LWE. Pre-training models has im-
proved sample efficiency in language (Devlin et al., 2019;
Brown et al., 2020) and vision (Kolesnikov et al., 2020); we
hypothesize similar improvements are likely for LWE. Thus,
we frame secret recovery as a downstream task and pre-train
a transformer to improve sample efficiency when recovering
new secrets, further reducing preprocessing costs.

Formally, an attacker would like to pre-train a model param-
eterized by 6 on samples {(a’, ")} such that the pre-trained
parameters 6* are a better-than-random initialization for
recovering a secret from new samples {(a, b)}. Although
pre-training to get #* may require significant compute, 6*
can initialize models for many different secret recoveries,
amortizing the initial cost.

Pre-training setup. First, we generate and reduce a new
dataset of 4 million Ra’ samples with which we pre-train
a model. The #*-initialized model will then train on the
(Ra, Rb) samples used in §5.1, leading to a fair comparison
between a randomly-initialized model and a 6*-initialized
model. Pre-training on the true attack dataset is unfair and
unrealistic, since we assume the attacker will train 8* before
acquiring the real LWE samples they wish to attack.

The pre-trained weights 6* should be a good initialization
for recovering many different secrets. Thus, we use many
different secrets with the 4M rows Ra’. In typical recov-
ery, we have 4M rows Ra and 4M targets Rb. In the pre-
training setting, however, we generate 150 different secrets

Pretraining Steps

Figure 3. Mean minimum number of samples needed to re-
cover binary secrets as a function of # pre-training steps.
(n = 512, log, ¢ = 41, binary secrets).

so that each Ra’ has 150 different possible targets. So
the model can distinguish targets, we introduce 150 spe-
cial vocabulary tokens t,, one for each secret s;. We con-
catenate the appropriate token ¢, to row Ra’ paired with
RV = Ra’ -s; + e. Thus, from 4M rows Ra’, we produce
600M triplets (Ra’, t,,, Rb’). The model learns to predict
RV from arow Ra’ and an integer token t,.>

We hypothesize that including many different Ra’, RY’
pairs produced from different secrets will induce strong
generalization capabilities. When we train the §*-initialized
model on new data with an unseen secret s, we indicate that
there is a new secret by adding a new token ¢, to the model
vocabulary that serves the same function as ¢, above. We
randomly initialize the new token embedding, but initialize
the remaining model parameters with those of 8*. Then we
train and extract secrets as in §2.2.

Experiments. For pre-training data, we use 4M Ra’ rows
reduced to p = 0.41, generated from a new set of 4n LWE
(a, b) samples. We use binary and ternary secrets with Ham-
ming weights from 30 to 45, with 5 different secrets for each
weight, for a total of 150 secrets and 600M (Ra’, t,,, Rb')
triplets for pre-training. We pre-train an encoder-only trans-
former with angular embeddings for 3 days on 8x 32GB
V100 GPUs with a global batch size of 1200. The model
sees H28M total examples, less than one epoch. We do not
run the distinguisher step during pre-training because we
are not interested in recovering these secrets.

We use the weights * as the initialization and repeat §5.1’s
experiments. We use three different checkpoints from pre-
training as 6* to evaluate the effect of different pre-training

3ts, is embedded using a learned vocabulary.

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

100 300K Samples 1M Samples
4
5 75
2
c 7.l I S
e i | T b o | YT
=
0
3M Samples 4M Samples
100
4
s 75
2
e 50
g PEEF S AR AR, P Y Y T
=
0
0 80K 240K 440K 0 80K 240K 440K

Pretraining steps Pretraining steps

Figure 4. How pre-training affects mean hours to secret recov-
ery for different training dataset sizes. (n = 512, log, ¢ = 41,
binary secrets). Among secrets recovered by all checkpoints; trend
lines calculated using only the pre-trained checkpoints.

amounts: 80K, 240K and 440K pre-training steps.

Results. Figure 3 demonstrates that pre-training improves
sample efficiency during secret recovery. We record the
minimum number of samples required to recover each secret
for each checkpoint. Then we average these minimums
among secrets recovered by all checkpoints (including the
randomly initialized model) to fairly compare them. We find
that 80K steps improves sample efficiency, dropping from
1.7M to 409K mean samples required. However, further
pre-training does not further improve sample efficiency.

Recall that using fewer samples harms recovery speed (see
Table 9). Figure 4 shows trends for recovery speed for
pre-trained and randomly initialized models for different
numbers of training samples. We find that any pre-training
slows down recovery, but further pre-training might mini-
mize this slowdown. Appendix E has complete results.

6. Related Work

Using machine learning for cryptanalysis. An increasing
number of cryptanalytic attacks in recent years have incor-
porated ML models. Often, models are used to strengthen
existing cryptanalysis approaches, such as side channel or
differential analysis (Chen & Yu, 2021). Of particular in-
terest is recent work that successfully used ML algorithms
to aid side-channel analysis of Kyber, a NIST-standardized
PQC method (Dubrova et al., 2022). Other ML-based crypt-
analysis schemes train models on plaintext/ciphertext pairs
or similar data, enabling direct recovery of cryptographic
secrets. Such approaches have been studied against a vari-
ety of cryptosystems, including hash functions (Goncharov,
2019), block ciphers (Gohr, 2019; Benamira et al., 2021;
Chen & Yu, 2021; Alani, 2012; So, 2020; Kimura et al.,
2021; Baek & Kim, 2020), and substitution ciphers (Ah-
madzadeh et al., 2021; Srivastava & Bhatia, 2018; Aldarrab

& May, 2020; Greydanus, 2017). The three ML-based LWE
attacks upon which this work builds, SALSA (Wenger et al.,
2022), PICANTE (Li et al., 2023a), and VERDE (L. et al.,
2023b), also take this approach.

Al for Math. The use of neural networks for arithmetic
was first considered by Siu & Roychowdhury (1992), and
recurrent networks by Zaremba et al. (2015), Kalchbrenner
et al. (2015) and Kaiser & Sutskever (2015). Transformers
have been used to solve problems in symbolic and numerical
mathematics, integration(Lample & Charton, 2020), linear
algebra (Charton, 2022), arithmetic (Charton, 2024) and
theorem proving (Polu & Sutskever, 2020). With the ad-
vent of large language models, recent research has focused
on training or fine-tuning language models on math word
problems: problems of mathematics expressed in natural
language (Meng & Rumshisky, 2019; Griffith & Kalita,
2021; Lee et al., 2023). The limitations of these approaches
were discussed by Nogueira et al. (2021) and Dziri et al.
(2023). Modular arithmetic was first considered by Power
et al. (2022) and Wenger et al. (2022). Its difficulty was
discussed by Palamas (2017) and Gromov (2023).

7. Discussion & Future Work

Our contributions are spread across multiple fronts: faster
preprocessing (25x fewer CPU hours), simpler architecture
(25% more samples/sec), better token embeddings (2.4 x
faster training) and the first use of pre-training for LWE
(10x fewer samples). These lead to 250x fewer CPU hours
spent preprocessing and 3 x more samples/sec for for n =
512,log, g = 41 LWE problems, and lead to the first ML
attack on LWE for n = 768 and n = 1024. Although we
have made substantial progress in pushing the boundaries
of machine learning-based attacks on LWE, much future
work remains in both building on this pre-training work and
improving models’ capacity to learn modular arithmetic.

Pre-training. Pre-training improves sample efficiency after
80K steps; however, further improvements to pre-training
should be explored. First, our experiments used just one set
of 4AM R A combined with multiple secrets. To encourage
generalization to new R A, pre-training data should include
different original As. Second, our transformer only has
14.1M parameters, and may be too small to benefit from
pre-training. Third, pre-training data does not have to come
from a sniffed set of 4n (a,b) samples. Rather than use
expensive preprocessed data, we could simulate reduction
and generate random rows synthetically that look like RA.

ML for modular arithmetic. NoMod experiments consis-
tently show that more training data which does not wrap
around the modulus leads to more successful secret recovery
(see Figure 2 and Li et al. (2023b)). This explains why a
smaller modulus ¢ is harder for ML approaches to attack,

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

and indicates that models are not yet learning modular arith-
metic (Wenger et al., 2022). Further progress on models
learning modular arithmetic problems will likely help to
achieve secret recovery for smaller ¢ and larger h.

Acknowledgements

We thank Mark Tygert for his always insightful comments
and Mohamed Malhou for running experiments.

8. Impact Statement

The main ethical concern related to this work is the possi-
bility of our attack compromising currently-deployed PQC
system. However, at present, our proposed attack does not
threaten current standardized systems. If our attack scales to
higher h and lower ¢ settings, then its impact is significant,
as it would necessitate changing PQC encryption standards.
For reproducability of these results, our code will be open
sourced after publication and is available to reviewers upon
request.

References

Ahmadzadeh, E., Kim, H., Jeong, O., and Moon, I. A Novel
Dynamic Attack on Classical Ciphers Using an Attention-
Based LSTM Encoder-Decoder Model. IEEE Access,
2021.

Ajtai, M. Generating hard instances of lattice problems. In
Proc. of the ACM symposium on Theory of Computing,
1996.

Alani, M. M. Neuro-cryptanalysis of DES and triple-DES.
In Proc. of NeurIPS, 2012.

Albrecht, M., Chase, M., Chen, H., et al. Homomor-
phic encryption standard. In Protecting Privacy through
Homomorphic Encryption, pp. 31-62. 2021. https:
//eprint.iacr.org/2019/939.

Albrecht, M. R. On dual lattice attacks against small-secret
LWE and parameter choices in HElib and SEAL. In Proc.
of EUROCRYPT, 2017. ISBN 978-3-319-56614-6.

Albrecht, M. R., Player, R., and Scott, S. On the concrete
hardness of learning with errors. Journal of Mathematical
Cryptology, 9(3):169-203, 2015.

Albrecht, M. R., Gopfert, F., Virdia, F., and Wunderer, T.
Revisiting the expected cost of solving usvp and applica-
tions to lwe. In Proc. of ASTACRYPT, 2017.

Aldarrab, N. and May, J. Can sequence-to-sequence
models crack substitution ciphers? arXiv preprint
arXiv:2012.15229, 2020.

Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyuba-
shevsky, V., Schanck, J. M., Schwabe, P., Seiler, G., and
Stehlé, D. CRYSTALS-Kyber (version 3.02) — Submis-
sion to round 3 of the NIST post-quantum project. 2021.
Available at https://pg-crystals.org/.

Baek, S. and Kim, K. Recent advances of neural attacks
against block ciphers. In Proc. of SCIS, 2020.

Benamira, A., Gerault, D., Peyrin, T., and Tan, Q. Q. A
deeper look at machine learning-based cryptanalysis. In
Proc. of Annual International Conference on the Theory
and Applications of Cryptographic Techniques, 2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Proc. of NeurIPS, 2020.

Charton, F. Linear algebra with transformers. Transactions
in Machine Learning Research, 2022.

Charton, F. Can transformers learn the greatest common
divisor? arXiv:2308.15594, 2024.

Charton, F., Lauter, K., Li, C., and Tygert, M. An efficient
algorithm for integer lattice reduction. STAM Journal on
Matrix Analysis and Applications, 45(1), 2024.

Chen, H., Chua, L., Lauter, K., and Song, Y. On the
Concrete Security of LWE with Small Secret. Cryp-
tology ePrint Archive, Paper 2020/539, 2020. URL
https://eprint.iacr.org/2020/539.

Chen, L., Moody, D., Liu, Y.-K., et al. PQC Stan-
dardization Process: Announcing Four Candidates
to be Standardized, Plus Fourth Round Candi-
dates. US Department of Commerce, NIST, 2022.
https://csrc.nist.gov/News/2022/

pgc-candidates-to-be-standardized-and-round-4.

Chen, Y. and Nguyen, P. Q. BKZ 2.0: Better Lattice Security
Estimates. In Proc. of ASIACRYPT, 2011.

Chen, Y. and Yu, H. Bridging Machine Learning and Crypt-
analysis via EDLCT. Cryptology ePrint Archive, 2021.
https://eprint.iacr.org/2021/705.

Curtis, B. R. and Player, R. On the feasibility and
impact of standardising sparse-secret LWE parameter
sets for homomorphic encryption. In Proc. of the
ACM Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, 2019.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, £.. Universal transformers. In Proc. of ICLR,
2019.

https://eprint.iacr.org/2019/939
https://eprint.iacr.org/2019/939
https://pq-crystals.org/
https://eprint.iacr.org/2020/539
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://eprint.iacr.org/2021/705

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

Devlin, J., Chang, M.-W.,, Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the Conference
of the North American Chapter of the Association for
Computational Linguistics, 2019. URL https://
aclanthology.org/N19-1423.

Dubrova, E., Ngo, K., and Girtner, J. Breaking a fifth-order
masked implementation of crystals-kyber by copy-paste.

Cryptology ePrint Archive, 2022. https://eprint.

iacr.org/2022/1713.

Dziri, N., Lu, X., Sclar, M., Li, X. L., et al. Faith and
fate: Limits of transformers on compositionality. arXiv
preprint arXiv:2305.18654, 2023.

Gohr, A. Improving attacks on round-reduced speck32/64
using deep learning. In Proc. of Annual International
Cryptology Conference, 2019.

Goncharov, S. V. Using fuzzy bits and neural networks to
partially invert few rounds of some cryptographic hash
functions. arXiv preprint arXiv:1901.02438, 2019.

Greydanus, S. Learning the enigma with recurrent neural
networks. arXiv preprint arXiv:1708.07576, 2017.

Griffith, K. and Kalita, J. Solving Arithmetic Word Prob-
lems with Transformers and Preprocessing of Problem
Text. arXiv preprint arXiv:2106.00893, 2021.

Gromov, A. Grokking modular arithmetic. arXiv preprint
arXiv:2301.02679, 2023.

He, P, Liu, X., Gao, J., and Chen, W. Deberta: Decoding-
enhanced bert with disentangled attention. arXiv preprint
arXiv:2006.03654, 2020.

Kaiser, L. and Sutskever, I. Neural GPUs learn algorithms.
arXiv preprint arXiv:1511.08228, 2015.

Kalchbrenner, N., Danihelka, I., and Graves, A. Grid long
short-term memory. arXiv preprint arxiv:1507.01526,
2015.

Kimura, H., Emura, K., Isobe, T., Ito, R., Ogawa, K., and
Ohigashi, T. Output Prediction Attacks on SPN Block
Ciphers using Deep Learning. Cryptology ePrint Archive,
2021. URL https://eprint.iacr.org/2021/
401.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung,
J., Gelly, S., and Houlsby, N. Big transfer (bit): General
visual representation learning. In Proc. of ECCV, 2020.

Lample, G. and Charton, F. Deep learning for symbolic
mathematics. In Proc. of ICLR, 2020.

10

Lauter, K., Naehrig, M., and Vaikuntanathan, V. Can homo-
morphic encryption be practical? Proceedings of the 3rd
ACM workshop on Cloud computing security workshop,
pp.- 113-124, 2011.

Lee, N., Sreenivasan, K., Lee, J. D., Lee, K., and Papail-
iopoulos, D. Teaching arithmetic to small transformers.
arXiv preprint arXiv:2307.03381, 2023.

Lenstra, H., Lenstra, A., and Lovész, L. Factoring polyno-
mials with rational coefficients. Mathematische Annalen,
261:515-534, 1982.

Li, C. Y., Sotdkov4, J., Wenger, E., Malhou, M., Garcelon,
E., Charton, F., and Lauter, K. Salsa Picante: A Machine
Learning Attack on LWE with Binary Secrets. In Proc.
of ACM CCS, 2023a.

Li, C. Y., Wenger, E., Allen-Zhu, Z., Charton, F., and Lauter,
K. E. SALSA VERDE: a machine learning attack on
LWE with sparse small secrets. In Proc. of NeurIPS,
2023b.

Lieber, O., Sharir, O., Lenz, B., and Shoham, Y. Jurassic-
1: Technical details and evaluation. White Paper. AI21
Labs, 1:9, 2021.

Liu, Z., Kitouni, O., Nolte, N. S., Michaud, E., Tegmark,
M., and Williams, M. Towards understanding grokking:
An effective theory of representation learning. Proc. of
NeurIPS, 2022.

Meng, Y. and Rumshisky, A. Solving math word prob-
lems with double-decoder transformer. arXiv preprint
arXiv:1908.10924, 2019.

Micciancio, D. and Voulgaris, P. Faster exponential time al-
gorithms for the shortest vector problem. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms,
2010.

Nogueira, R., Jiang, Z., and Lin, J. Investigating the limita-
tions of transformers with simple arithmetic tasks. arXiv
preprint arXiv:2102.13019, 2021.

Palamas, T. Investigating the ability of neural net-
works to learn simple modular arithmetic. 2017.
https://project—archive.inf.ed.ac.uk/
msc/20172390/msc_proj.pdf.

Polu, S. and Sutskever, I. Generative language mod-
eling for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization Beyond Overfit-

ting on Small Algorithmic Datasets. arXiv preprint
arXiv:2201.02177, 2022.

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://eprint.iacr.org/2022/1713
https://eprint.iacr.org/2022/1713
https://eprint.iacr.org/2021/401
https://eprint.iacr.org/2021/401
https://project-archive.inf.ed.ac.uk/msc/20172390/msc_proj.pdf
https://project-archive.inf.ed.ac.uk/msc/20172390/msc_proj.pdf

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

Regev, O. On Lattices, Learning with Errors, Random
Linear Codes, and Cryptography. In Proc. of the ACM
Symposium on Theory of Computing, 2005.

Ryan, K. and Heninger, N. Fast practical lattice reduction
through iterated compression. Cryptology ePrint Archive,
2023. URL https://eprint.iacr.org/2023/
237 .pdf.

Schnorr, C.-P. A hierarchy of polynomial time lattice ba-
sis reduction algorithms. Theoretical Computer Science,
1987. URL https://www.sciencedirect.com/
science/article/pii/0304397587900648.

Siu, K.-Y. and Roychowdhury, V. Optimal depth neural
networks for multiplication and related problems. In
Proc. of NeurIPS, 1992.

So, J. Deep learning-based cryptanalysis of lightweight
block ciphers. Security and Communication Networks,
2020.

Srivastava, S. and Bhatia, A. On the Learning Capabil-
ities of Recurrent Neural Networks: A Cryptographic
Perspective. In Proc. of ICBK, 2018.

The FPLLL development team. fplll, a lattice reduction
library, Version: 5.4.4. Available at https://github.
com/fplll/fplll, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A., Shazeer, N., Parmar, N., et al. Attention is all
you need. In Proc. of NeurIPS, 2017.

Wenger, E., Chen, M., Charton, F., and Lauter, K. Salsa:
Attacking lattice cryptography with transformers. In Proc.
of NeurlIPS, 2022.

Zaremba, W., Mikolov, T., Joulin, A., and Fergus, R. Learn-
ing simple algorithms from examples. arXiv preprint
arXiv:1511.07275, 2015.

11

https://eprint.iacr.org/2023/237.pdf
https://eprint.iacr.org/2023/237.pdf
https://www.sciencedirect.com/science/article/pii/0304397587900648
https://www.sciencedirect.com/science/article/pii/0304397587900648
https://github.com/fplll/fplll
https://github.com/fplll/fplll

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

A. Appendix

We provide details, additional experimental results, and analysis ommitted in the main text:

Appendix B: Attack parameters

Appendix C: Lattice reduction background
Appendix D: Additional model results (Section 4)
Appendix E: Additional training results (Section 5)
Appendix F: Further NoMod analysis

SNhWD -

B. Parameters for our attack

For training all models, we use a learning rate of 1075, weight decay of 0.001, 3000 warmup steps, and an embedding
dimension of 512. We use 4 encoder layers, and 8 attention heads for all encoder-only model experiments, except the
architecture ablation in Table 7. We use the following primes: ¢ = 2199023255531 for n = 512, ¢ = 34088624597 for
n = 768, and ¢ = 607817174438671 for n = 1024. The rest of the parameters used for the experiments are in Table 10.

Table 10. LWE, preprocessing, and training parameters. For the adaptive increase of preprocessing parameters, we start with block
size (31, flatter a1, and LLL-delta 6; and upgrade to B2, a2, and J2 at a later stage. Parameters base B and bucket size are used to tokenize
the numbers for transformer training.

LWE parameters Preprocessing settings Model training settings
n log, ¢ h b1 B2 oy a9 01 02 Base B Bucket size Batch size
512 41 <70 18 22 0.04 0.025 096 09 137438953471 134217728 256
768 35 <11 18 22 0.04 0.025 096 09 1893812477 378762 128

1024 50 <11 18 22 0.04 0.025 096 09 25325715601611 5065143120 128

C. Additional background on lattice reduction algorithms

Lattice reduction algorithms reduce the length of lattice vectors, and are a building block in most known attacks on
lattice-based cryptosystems. If a short enough vector can be found, it can be used to recover LWE secrets via the dual,
decoding, or uSVP attack (Micciancio & Voulgaris, 2010; Albrecht et al., 2017; 2021). The original lattice reduction
algorithm, LLL (Lenstra et al., 1982), runs in time polynomial in the dimension of the lattice, but is only guaranteed to
find an exponentially bad approximation to the shortest vector. In other words the quality of the reduction is poor. LLL
iterates through the ordered basis vectors of a lattice, projecting vectors onto each other pairwise and swapping vectors until
a shorter, re-ordered, nearly orthogonal basis is returned.

To improve the quality of the reduction, the BKZ (Schnorr, 1987) algorithm generalizes LLL by projecting basis vectors
onto k — 1-dimensional subspaces, where k& < n is the “blocksize”. (LLL has blocksize 2.) As k approaches n, the quality
of the reduced basis improves, but the running time is exponential in k, so is not practical for large block size. Experiments
in (Chen et al., 2020) with running BKZto attack LWE instances found that block size £ > 60 and n > 100 was infeasible
in practice. Both BKZ and LLL are implemented in the fplll library (The FPLLL development team, 2023), along with
an improved version of BKZ: BKZ2 .0 (Chen & Nguyen, 2011). Charton et al. proposed an alternative lattice reduction
algorithm similar to LLL. In practice we use it as a polishing step after each BKZ loop concludes. It “polishes” by
iteratively orthogonalizing the vectors, provably decreasing norms with each run.

A newer alternative to LLL is flatter (Ryan & Heninger, 2023), which provides reduction guarantees analogous to LLL
but runs faster due to better precision management. flatter runs on sublattices, and leverages clever techniques for
reducing numerical precision as the reduction proceeds, enabling it to run much faster than other reduction implementations.
Experiments in the original paper show flatter running orders of magnitude faster than other methods on high-
dimensional (n > 1024) lattice problems. The implementation of f1atter® has a few tunable parameters, notably «,
which characterizes the strength of the desired reduction in terms of lattice “drop”, a bespoke method developed by (Ryan &
Heninger, 2023) that mimics the Lovasz condition in traditional LLL (Lenstra et al., 1982). In our runs of flatter, we
set a = 0.04 initially and decrease it to o = 0.025 after the lattice is somewhat reduced, following the adaptive reduction
approach of (Li et al., 2023b).

*https://github.com/keeganryan/flatter

12

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

D. Additional Results for §4
D.1. Architecture Comparison

Tables 11, 12, (for binary secrets) and Tables 13, and 14 (for ternary secrets) expand on the results in Table 6 by showing
how three different model architectures perform on binary and ternary secrets with different Hamming weights. We see that
the encoder-only model architecture with angular embedding improves secret recovery compared to the encoder-decoder
model and the encoder-only model with two-token embedding. Notably, the encoder-only model with angular embedding is
able to recover secrets up to i = 66 for both binary and ternary secrets, which is a big improvement compared to previous
work.

Table 11. Secret recovery (# successful recoveries/# attack attempts) with various model architectures for h = 57 to h = 66
(n = 512, log, ¢ = 41, binary secrets).

h
57 58 59 60 61 62 63 64 65 66

Encoder-Decoder 1/10 1/10 1/10
Encoder (Vocabulary) 0/10 0/7 2/10 0/10 0/8 0/10 1/10 0/9 0/8 0/8
Encoder (Angular) 2/10 0/7 3/10 2/10 1/8 1/710 2/10 1/9 1/8 2/8

Architecture

Table 12. Average time to recovery (hours) for successful recoveries with various model architectures for h = 57 to h = 66
(n = 512, log, ¢ = 41, binary secrets).

Architecture h
4 57 58 59 60 61 62 63 64 65 66
Encoder-Decoder 10.0 - 20.0 - - - 17.5 - - -
Encoder (Vocabulary) - - 198 - - - 22.0 - - -
Encoder (Angular) 330 - 370 332 29.1 267 298 571 316 288

Table 13. Secret recovery (# successful recoveries/# attack attempts) with various model architectures for h = 57 to h = 66
(n = 512,log, g = 41, ternary secrets).

h
57 58 59 60 61 62 63 64 65 66

Encoder-Decoder - 1/10 - - - - - - - -
Encoder (Vocabulary) 0/9 1/8 0/9 0/9 1/10 0/8 0/7 0/7 0/10 1/9
Encoder (Angular) 09 1/8 09 09 1/10 08 0/7 07 010 1/9

Architecture

Table 14. Average time to recovery (hours) for successful recoveries with various model architectures for h = 57 to h = 66
(n = 512, log, ¢ = 41, ternary secrets).

Architect h
renttecture 57 58 59 60 61 62 63 64 65 66
Encoder-Decoder - 275 - - - - - - - -
Encoder (Vocabulary) - 248 - - 282 - - - - 344
Encoder (Angular) - 576 - - 474 - - - - 703

D.2. Architecture Ablation

Here, we present additional results from the architecture ablation experiments summarized in Table 7. The results in Table 15
and Table 16 show the number of successful recoveries and average time to recovery with varying architectures across
different Hamming weights. We see that increasing transformer depth (number of layers) tends to improve recovery but

13

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

also increases average recovery time. Increasing the embedding dimension from 256 to 512 with 4 layers improves secret
recovery. Thus, we choose 4 layers with a hidden dimension of 512 as it recovers the most secrets (25%) the fastest (26.2
mean hours).

Table 15. Effect of different transformer depths (# of layers) and widths (embedding dimension) on secret recovery (# successful
recoveries/# attack attempts) with encoder-only model (n = 512, log, ¢ = 41, binary secrets).

h
49 51 53 55 57 59 6l 63 65 67

128 2/9 410 5/10 3/9 2/10 2/8 1/9 3/10 1/9 0/10
256 2/9 4/10 5/10 3/9 2/10 2/8 1/9 2/10 1/9 0/10
512 3/9 4/10 5/10 4/9 2/10 2/8 1/9 3/10 1/9 0/10
512 39 4/10 5/10 3/9 2/10 2/8 2/9 3/10 1/9 0/10
512 3/9 4/10 5/10 4/9 2/10 2/8 1/9 2/10 1/9 0/10

Layers Emb Dim

0N R~ BN

Table 16. Effect of different transformer depths (# of layers) and widths (embedding dimension) on average time to recovery
(hours) with encoder-only model (n = 512, log, ¢ = 41, binary secrets).

h
49 51 53 55 57 59 61 63 65 67

128 87 100 83 140 11.0 55 115 179 189 -
256 309 11.0 123 303 399 104 206 133 196 -
512 272 154 182 352 354 173 243 322 262 -
512 44.1 188 20.7 342 305 194 479 321 281 -
512 464 225 240 44.6 346 238 280 29.0 303 -

Layers Emb Dim

o ol A

E. Additional Results for §5
E.1. Training with Fewer Samples

Here, we present additional results from scaling n to 768 and 1024 (without pre-training) as summarized in Table 8.
Tables 17 and 18 show the results for the n = 768, log, ¢ = 35 case with binary secrets. Similarly, Tables 19 and 20 show
the results for the n = 1024, log, ¢ = 50 case with binary secrets.

Table 17. Successful secret recoveries out of 10 trials per h Table 18. Average time (hours) to successful secret recov-
with varying amounts of training data (n = 768, log, ¢ = eries with varying amounts of training data (n = 768,
35, binary secrets). log, ¢ = 35, binary secrets).
Samples h # Samples f

5 7 9 11 5 7 9 11

100K 1 - - - 100K 1.4 - - -

300K 1 1 - - 300K 0.7 123 - -

1M 4 3 2 - 1M 279 245 392 -

3M 2 3 1 - 3M 17.8 13.0 442 -

4iM 3 3 2 - 4AM 135 185 21.8 -

E.2. Model Pre-Training

In this section, we expand upon the pre-training results summarized in Figures 3 and 4. For each pre-training checkpoint, we
measure number of successful recoveries out of 10 trials per h and the average time in hours to successful secret recovery
for h = 30 to h = 45. We also vary the number of samples from 100K to 4M to see which setup is most sample efficient. In
all of these experiments, 7 = 512 and q are fixed, log, ¢ = 41, with binary secrets. The results are presented as follows: no

14

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

Table 19. Successful secret recoveries out of 10 trials per h Table 20. Average time (hours) to successful secret recov-
with varying amounts of training data (n = 1024, log, ¢ = eries with varying amounts of training data (n = 1024,
50, binary secrets). log, ¢ = 50, binary secrets).
h
#Samples 5 5 9 41 13 15 #Samples 55 9 41 13 15
100K 3 - - - - - 100K 11.6 - - - - -
300K 6 3 - - - - 300K 14.8 17.7 - - - -
1M 6 4 1 - 1 - 1M 157 29.2 36.1 - 474 -
3M 6 4 1 1 - - M 148 14.0 29.6 39.8 - -
M 7 5 1 - - - M 199 106 213 - - -

pre-training baseline (Tables 21 and 22), 80K steps pre-training (Tables 23 and 24), 240K steps pre-training (Tables 25 and
26), and 440K steps pre-training (Tables 27 and 28).

Based on these results, we conclude that some pre-training helps to recover secrets with less samples, but more pre-training
is not necessarily better. We also see that more pre-training increases the average time to successful secret recovery.

Table 21. Successful secret recoveries out of 10 trials per & with no model pre-training (n = 512, log, ¢ = 41, binary secrets).
h

#Samples 55 31 35 33 34 35 36 37 38 39 40 41 42 43 44 45
100K - - - - Lo
1010) <

1M - - 3 2 1 - 3 1 2 1 1 1 - - 2 .-
3M 1 - 4 3 1 - 2 1 3 1 1 2 - - 2 .-
AM 1 - 4 3 1 1 3 1 3 1 1 1 - - 2 .-

Table 22. Average time (hours) to successful secret recovery with no model pre-training (n = 512, log, ¢ = 41, binary secrets).

h

#Samples 30 51 35 33 34 35 36 37 38 39 40 4l 42 43 44 45
100K - - - - - - - - - -
300K - - 303 - ; ; - ; - ; - ...

1M - - 211 369 363 - 275 219 239 165 507 529 - - 368 -
3M 144 - 218 27.6 418 - 198 255 227 181 395 443 - - 378 -
AM 172 - 228 265 29.1 697 227 227 209 214 290 257 - - 405 -

Table 23. Successful secret recoveries out of 10 trials per with 80K steps model pre-training (n = 512, log, ¢ = 41, binary secrets).

h

#Samples 55 31 35 33 34 35 36 37 38 39 40 41 42 43 44 45
100K - - 1 1 - = = = - oL
300K 1 - 2 2 - - 1 - 1 1 - - - - 2 .

1M 1 - 3 2 1 - 1 - 1 1 1 - - - 1 -
3M 1 - 3 2 1 - 1 - 1 1 1 - - - 2 .
AM 1 - 3 2 - - 1 - 1 1 1 - - - 1 -

15

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

Table 24. Average time (hours) to successful secret recovery with 80K steps model pre-training (n = 512,log, ¢ = 41, binary
secrets).

h
#Samples 30 31 35 33 34 35 36 37 38 39 40 41 42 43 44 45
100K - - 292 321 - - - - - - - Lo
300K 577 - 476 269 - - 317 - 626 556 - - - - 509 -
M 534 - 370 256 617 - 251 - 659 300 448 - - - 514 -
3M 344 - 418 251 575 - 262 - 451 236 384 - - - 397 -
AM 351 - 309 330 - - 352 - 365 218 268 - - - 321 -

Table 25. Successful secret recoveries out of 10 trials per . with 240K steps model pre-training (n = 512,log, ¢ = 41, binary
secrets).

h
#Samples 5 31 3 33 34 35 36 37 38 39 40 41 42 43 44 45
100K - - - 1 - - ..o
300K 1 - 2 2 - - 2 - 2 1 - - . L .
M 1 - 2 2 1 - 1 - 1 1 1 - - - 1 -
3M 1 - 2 2 - - 2 - 2 1 1 - - - 1 -
AM 1 - 2 2 1 - 2 - 1 1 1 - - - 1 -

Table 26. Average time (hours) to successful secret recovery with 240K steps model pre-training (n = 512, log, ¢ = 41, binary
secrets).

h
#Samples 30 31 35 33 34 35 36 37 38 39 40 41 42 43 44 45
100K - - - 210 - - - o - - Lo
300K 493 - 308 233 - - 505 - 642 379 - - - - o .
1M 494 - 295 234 508 - 201 - 248 242 519 - - - 619 -
3M 489 - 382 197 - - 385 - 509 202 577 - - - 474 -
AM 424 - 349 195 558 - 290 - 241 183 540 - - - 524 -

Table 27. Successful secret recoveries out of 10 trials per / with 440K steps model pre-training (n = 512,log, ¢ = 41, binary
secrets).

h
#Samples 55 31 35 33 34 35 36 37 38 39 40 41 42 43 44 45
100K - - 1 1 - - - - ..
300K - - 1 2 - - 1 1 1 1 - - - - 1 -
1M 1 - - 2 - - 1 - 2 1 1 - - - 1 -
3M 1 - 1 2 - < 1 - 1 1 1 - - - 2 °-
AM 1 - 1 2 - - 2 - 1 1 1 - - - 2 .

F. Results of NoMod Analysis

As another performance metric for our approach, we measure the NoMod factor for the secrets/datasets we attack. Li et al.
computed NoMod as follows: given a training dataset of LWE pairs (Ra, Rb) represented in the range (—q/2, ¢/2) and
known secret s, compute z = Ra - s — Rb. If ||z]| < ¢/2, we know that the computation of Ra - s did not cause Rb to
“wrap around” modulus ¢g. The NoMod factor of a dataset is the percentage of (Ra, Rb) pairs for which ||z|| < ¢/2.

Although NoMod is not usable in a real world attack, since it requires a priori knowledge of s, it is a useful metric for

16

SALSA FRESCA: Angular Embeddings and Pre-Training for ML Attacks on LWE

Table 28. Average time (hours) to successful secret recovery with 440K steps model pre-training (n = 512, log, ¢ = 41, binary
secrets).

h
#Samples 30 31 35 33 34 35 36 37 38 39 40 41 42 43 44 45
100K - - 333 200 - - - - - - - - Lo
300K - - 398 129 - - 290 605 362 491 - - - - 591 -
M 569 - - 166 - - 186 - 436 249 364 - - - 534 -
3M 509 - 323 122 - - 252 - 223 189 424 - - - 608 -
AM 583 - 300 135 - - 346 - 197 223 457 - - - 597 -

understanding attack success in a lab environment. Li et al. derived an empirical result stating that attacks should be
successful when the NoMod factor of a dataset is > 67. The NoMod analysis indicates that models trained in those
experiments were only learning secrets from datasets in which the majority of Rb values do not “wrap around” ¢. If models
could be trained to learn modular arithmetic better, this might ease the NoMod condition for success.

One of the main goals of introducing the angular embedding is to introduce some inductive bias into the model training
process. Specifically, teaching models that O and ¢ — 1 are close in the embedding space may enable them to better learn the
modular arithmetic task at the heart of LWE. Here, we examine the NoMod factor of various datasets to see if the angular
embedding does provide such inductive bias. If it did, we would expect that models with angular embeddings would recover
secrets from datsets with NoMod < 67. Table 29 lists NoMod percentages and successful secret recoveries for the angular
and tokenization schemes described in §4.2.

Table 29. NoMod percentages for Verde data n = 512, log, ¢ = 41, binary secrets (varying h and secrets indexed 0-9), comparing
performance of angular vs. normal embedding. Key: recovered by angular only, recovered by both, not recovered.

h o 1 2 3 4 5.6 7 8 9

57 45 49 52 41 51 46 51 57 60 49
58 48 48 48 48 38 43 52 52 45 48
59 43 46 56 50 66 63 35 46 41 40
60 48 48 52 59 50 58 48 49 51 54
61 60 49 43 41 56 42 42 41 41 50
62 45 42 45 54 55 43 61 56 54 42
63 56 60 55 54 63 47 54 51 45 43
64 44 46 41 41 41 47 45 43 41 55
65 45 51 48 60 45 48 41 48 45 50
66 45 51 39 64 45 47 43 60 48 55
67 43 47 48 49 40 47 48 51 50 46

Table 30. NoMod percentages for n = 768, log, ¢ = 35 secrets Table 31. NoMod percentages for n = 1024, log, ¢ = 50 se-

(varying h and secrets indexed 0-9). Key: secret recovered, crets (varying h and secrets indexed 0-10). Key: secret recov-

secret not recovered. ered, secret not recovered.
h 0 1 2 3 4 5 6 7 8 9 h 0 1 2 3 4 5 6 7 8 9
5 61 61 52 61 93 68 66 61 56 62 5 62 66 70 69 81 81 81 53 69 94
7 52 61 56 77 52 68 56 67 56 61 7 62 47 80 80 69 56 57 52 57 69
9 52 55 46 49 52 48 56 60 60 70 9 56 69 52 49 52 53 56 57 46 52
11 55 42 44 55 46 46 54 55 60 51 11 44 52 52 62 61 62 56 56 52 49
13 46 45 60 48 43 43 55 48 60 43 13 51 46 56 40 46 52 44 49 68 53
15 41 38 48 43 40 43 45 43 43 59 15 61 46 40 45 46 41 38 47 48 44

17

