
Practical Implementation of Pairing-Based
zkSNARK in Bitcoin Script

Federico Barbacovi1, Enrique Larraia1, Paul Germouty⋆, and Wei Zhang1

nChain
f.barbacovi@nchain.com, e.larraia@nchain.com, germouty.paul@orange.fr,

w.zhang@nchain.com

Abstract. Groth16 is a pairing-based zero-knowledge proof scheme that
has a constant proof size and an efficient verification algorithm. Bitcoin
Script is a stack-based low-level programming language that is used to
lock and unlock bitcoins. In this paper, we present a practical imple-
mentation of the Groth16 verifier in Bitcoin Script deployable on the
mainnet of a Bitcoin blockchain called BSV. Our result paves the way
for a framework of verifiable computation on Bitcoin: a Groth16 proof is
generated for the correctness of an off-chain computation and is verified
in Bitcoin Script on-chain. This approach not only offers privacy but also
scalability. Moreover, this approach enables smart contract capability on
Bitcoin which was previously thought rather limited if not non-existent.

Keywords: Bitcoin · Smart Contract · Zero-Knowledge Proof.

1 Introduction

Zero-knowledge proofs (ZKPs) have been widely adopted to enhance blockchain
technology. For example, zCash [36] and Firo [16] use ZKPs for user privacy, and
Ethereum uses ZKPs for scalability [14]. Bitcoin, on the other hand, is thought
to have limitations that make ZKP integration much more difficult, one of which
is the Bitcoin scripting language. Due to its stack-based structure and primitive
set of opcodes, it is rather difficult to implement the complex mathematical
functions required by most ZKPs.

Despite these limitations, there are many projects trying to integrate ZKPs
and Bitcoin. They determined to make Bitcoin more scalable and more capable
for smart contracts, ultimately making Bitcoin more economically sustainable
and viable even with the diminishing block reward through halving. For exam-
ples, B2 Network [4] and Merlin Chain [23] are working on ZK Rollups to scale
Bitcoin; Bitlayer [9] takes a BitVM [26] approach to create a computational layer
for Bitcoin, while LumiBit [21] adapts ZKEVM to achieve the same. In [27], Ze-
roSync has compressed the bootstrapping process (initial block download) into a
single ZKP verification using a ZKP-circuit-friendly language called Cairo [13],
thus dramatically reducing the time required to start a Bitcoin node. However,

⋆ Formerly nChain researcher. Work done while at nChain.

2 F. Barbacovi, E. Larraia et. al.

in all the examples mentioned above, practically verifying ZKP on-chain has not
yet been realised.

sCrypt [31] has implemented ZKP verification (Groth16, [19]) in Bitcoin
Script on the BSV, a version of Bitcoin, achieving a script size of 1.2MB [32,33].
However, their implementation is not practical, and it falls short for three rea-
sons. First, it cannot be deployed on the BSV mainnet without a collaborating
miner. This is because of a policy that restricts the script size to 500kB [25],
and non-policy-compliant transactions can only be accepted by other miners if
the collaborating miner successfully mines a block. Second, it is not a faith-
ful implementation of the Groth16 verifier as they hard-code in the script data
which should be revealed at the point of spending, thus greatly limiting the ap-
plicability of their code. Third, their approach of using a compiler that converts
TypeScript to Bitcoin Script generally leads to scripts of non-optimal size.

Our main contributions are:

– an implementation of bilinear pairings in Bitcoin Script, which has size1 of
293.6kB, and that can be readily used on the BSV mainnet;

– an implementation of Groth16 verification in Bitcoin Script, which has size2

of 466kB, and that can be readily used on the BSV mainnet;

– an analysis of the trade-off between script size and execution time caused
by large number arithmetics (the smaller the script, the larger the numbers,
hence the longer execution time);

– a significant reduction in transaction fees for on-chain ZKP verification as
the transaction size is significantly reduced.

To achieve this level of optimisation, we use a combination of different techniques,
each providing a significant reduction in script size:3

– stack management: being aware of positions of elements on the stacks and
identifying the best arrangement of data elements and operations that results
in the smallest script;

– no computation of inverses: designing the script to verify a candidate inverse
instead of computing it;

– sparseness: working with field elements represented by polynomials that have
many zero coefficients [30];

– seed choice: choosing an elliptic curve with seed having the smallest Ham-
ming weight.

1 All the sizes are cumulative of the locking and unlocking script size.
2 The size reported here is for one public input, in Section 4 we also report the size
for the Groth16 verifier with two public inputs.

3 It is difficult to pinpoint where exactly the reductions come from, as they are a
combination of all the techniques we employed. However, in the body of the text we
provide rough estimations for each of the techniques we employ.

Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script 3

Our scripts are publicly available on GitHub.4. In the repository, readers can
find a Python code used to generate our scripts,5 another Python code used to
generate the test data for benchmarking purposes, and the references to examples
of on-chain transactions.

Our results enable, for the first time, practical ZKP verification on the main-
net of a Bitcoin version called BSV. 6 While Ethereum uses ZKPs for scalability,
Bitcoin can also use them to enable smart contracts with greater flexibility. That
is, in theory, one can run any computation off-chain and generate a ZKP, which
is verified on chain, that the computation was done correctly. For example, the
computation can be the validation of a token rule set, the enforcement of a fi-
nancial contract, or the execution of instructions based on business logic and
workflows.

The paper is structured as follows. In Section 2, we recall the preliminary
notions we need in the rest of the paper, and we introduce the notation we use
for Bitcoin scripts. In Section 3, we detail our implementation of the Optimal
Ate Pairing and of the Groth16 verifier instatiated over the curve BLS12-381.
Finally, in Section 4 we evaluate our scripts according to script size and execution
time, and we compare the cost of verifying a ZKP on BSV and on Ethereum.

2 Preliminaries

2.1 Bitcoin

The Bitcoin blockchain [28] parses block data x into an ordered set of transac-
tions x ∶= (tx1, . . . , txn). Each transaction specifies a list of inputs and outputs.
An output of a transaction is spent if it is referenced as an input of a valid
transaction. An output can only be spent once.

Bitcoin uses a non-Turing complete, stack-based programming language in
which spending conditions can be coded into locking scripts contained in outputs.
Each input of a transaction contains an unlocking script, with the arguments
needed to execute the locking script from the output referenced by the input.
The spending is accepted if the execution terminates with true.

We think of the subroutines that make up a locking script as the implemen-
tations of functions f(x1, . . . , xn), and of the elements in the unlocking script
as the values (x̃1, . . . , x̃n) over which the functions are evaluated. The unlock-
ing script is then the implementation of a predicate (a function that returns
true or false) whose calculation requires the evaluation of various functions (the
subroutines) on the values supplied in the unlocking script.

4 https://github.com/nchain-innovation/zkscript package
5 We generate our scripts as outputs of Python functions, so that they can be composed
and shuffled around in an easy way. The approach we take is similar to that of
BitVM [12], but they use Rust in place of Python.

6 For our optimisations to work on BTC, we need large integer arithmetic.

https://github.com/nchain-innovation/zkscript_package

4 F. Barbacovi, E. Larraia et. al.

Opcode Operation

OP 1SUB Jx0 − 1K← Jx0K OP 1SUB

OP DEPTH JxnK , . . . , Jx0K , Jn + 1K← JxnK , . . . , Jx0K OP DEPTH

OP PICK JxnK , . . . , Jx0K , JxiK← JxnK , . . . , Jx0K , JiK OP PICK

OP EQUAL Jx0 == x1K← Jx0K , Jx1K OP EQUAL

OP VERIFY Pop x0; fail if x0 is false, otherwise, continue ← Jx0K OP VERIFY

OP EQUALVERIFY OP EQUALVERIFY = OP EQUAL OP VERIFY

Table 1. Opcodes used in this paper

Script execution A script is a sequence of opcodes and data objects. It is
evaluated in reverse Polish notation by the Bitcoin Script engine, starting by
pushing to the stack the arguments specified in the unlocking script.

The set of opcodes available for scripting depends on the implementation
of Bitcoin. We will use the BSV implementation [11] because it supports large
numbers (of size up to 10kB) and has the widest opcode support for arithmetic
operations.7 We list the opcodes used in this paper in Table 1; note that they
are not all the ones needed in our implementations.

We introduce some notation that will be used throughout this work:

– ⟪l⟫ denotes data hard-coded in the locking script. Thus, we will write

[foo] ∶= ⟪l⟫[bar]

to denote that the locking script [foo] consists of a subroutine script [bar]
and hard-coded data ⟪l⟫.

– JxK denotes data on top of the stack, i.e., the data we would get if we popped
an element from the stack. More generally, Jx0K , . . . , JxnK means that xn is
the data on top of the stack, xn−1 is the data below xn (second from the
top), and x0 is the data buried at depth n + 1 in the stack.

– Jy0K , . . . , JymK← Jx0K , . . . , JxnK [foo]: Before executing [foo], the top n + 1
elements of the stack are Jx0K,. . .,JxnK, and after executing [foo] the top
m + 1 elements are Jy0K , . . . , JymK.

2.2 Pairings

Bilinear pairings are the building block of many important cryptographic prim-
itives. The most efficient instantiation of a bilinear pairing is the Optimal Ate
pairing [22], which is defined as a map e ∶ G1 ×G2 → GT such that

e(n[A], [B]) = e([A], n[B]) = e([A], [B])n

7 BTC only allows number up to 4 bytes and has disabled various opcodes needed for
arithmetic operations [1].

Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script 5

for any [A] ∈ G1, [B] ∈ G2 and n ∈ Z. Here, G1 and G2 are subgroups of the
group of points on some elliptic curves.

The value of e on (P,Q) ∈ G1 × G2 is computed in two steps. First, we
compute miller(P,Q) ∈ GT , the output of the Miller loop [24], and then we
perform a final exponentiation miller(P,Q)η, where η is an exponent depending
on the instantiation of G1, G2 and GT . We set e(P,Q) ∶= miller(P,Q)η.

In this paper, we instantiate the Optimal Ate Pairing over BLS12 curves [8]
for their robustness against some known attacks [5–7,20] and their efficiency [3].

BLS12 curves BLS12 curves have the form y2 = x3 + b mod q, where b is a
parameter of the curve, and q = (u − 1)2(u4 − u2 + 1)/3 + u is a prime dependent
on a seed u. We write Eb,u(Fqn) to denote set of points of the BLS12 curve with
parameters b and u over Fqn .

For BLS12-381, we have u = −(263+262+260+257+248+216) and b = 4. When
instantiating the Optimal Ate Pairing over this curve, G1, G2 and GT are cyclic
groups of order r = u4−u2+1, G1 is a subgroup of Eb,u(Fq), while GT = Fq12 . To
construct G2, we set Fq2 = Fq[t]/(1+t2), and then G2 is a subgroup of Eb′,u(Fq2),
where b′ = (1 + t)b ∈ Fq2 .

2.3 zkSNARKs

Circuits and NP relations. Let C ∶ Fℓ+h
r → {0,1} be a polynomial-size arith-

metic circuit over a finite field Fr. The NP relation RC for C is defined as

RC ∶= {(a;w) ∈ Fℓ
r × Fh

r ∣ C(a,w) = 1} .

The vector a = (a1, . . . , aℓ) is the statement of the relation, sometimes also called
the instance or public input, and the vector w is the witness or private input.
The language associated to RC is LC ∶= {a ∈ Fn

r ∣ ∃w ∈ {0,1}h s.t. (a;w) ∈RC}.

zkSNARKs A preprocessing, zero-knowledge, succinct, non-interactive, ar-
gument system of knowledge (zkSNARK8) for RC is a triplet of algorithms
Π ∶= (Setup,Prove,Verify) such that Setup takes as input a security parame-
ter λ and the description of the circuit C, and it outputs a pair of keys pk and
vk. The prover Prove takes pk, the statement a and the witness w and outputs
a proof π ∈ G1 ×G2 ×G1, that is π ← Prove(pk,a,w). The verifier Verify takes
vk, a, π and it either accepts or rejects, that is {true, false} ← Verify(vk,a, π).
The proof purportedly is for the statement “a ∈ LC”.

Groth16 Groth16 [19] follows the linear interactive proof paradigm [10] with
security in the generic group model, and can thus be instantiated with pair-
ings. Given π = ([A]1, [B]2, [C]1), the result of Verify on the public input

8 In this paper, we use ZKP and zkSNARK interchangeably. It is understood that
there is a subtle difference which is not relevant to this paper.

6 F. Barbacovi, E. Larraia et. al.

a = (a1, . . . , aℓ) and the proof π is the result of an equation of pairings:

e([A]1, [B]2) = e([α]1, [β]2) ⋅ e(
ℓ

∑
i=0

ai[Pi]1, [γ]2) ⋅ e([C]1, [δ]2) (1)

where [α]1, [β]2, [γ]2, [δ]2 and the [Pi]1’s9 are part of vk, and a0 = 1.
Note that the equation (1) depends on C only via the number of public inputs.

This means that a Bitcoin Script implementation of Verify will be independent of
the complexity of the calculations happening in C, and will scale only according
to the number of public inputs. Furthermore, the size of the proof π is fixed to
that of three groups element, once again independent of C.

These properties make Groth16 the best candidate for implementing zk-
SNARK verification on-chain as it induces the least transaction size and com-
putational complexity, resulting in low fees and fast execution time.

3 Implementation of Pairings and Groth16 in Script

We now outline our implementation of the Optimal Ate Pairing and of the
Groth16 verifier in Bitcoin Script. First, we break down the scripts into sub-
routines. That is, we look at the operations required to compute the Optimal
Ate Pairing and to verify a Groth16 proof, and we decompose these operations
into simpler ones that we efficiently implement. Second, in constructing the sub-
routines we assume that the spender (the prover in the zkSNARK framework)
supplies to the script (the verifier) additional input data to simplify the proof
verification. The script will then verify that the data supplied is the one pur-
ported to be, and use it if it is, or fail otherwise. See Section 3.1 for an example
of the input data supplied by the spender.

Remark 1. In Bitcoin, the prover/verifier framework of zkSNARKs is transposed
to that of a payer who constructs the locking script (the Groth16 verifier) and of a
spender who shows a zero-knowledge proof to prove they have the right to spend.
While in zkSNARKs only the verifier carries the burden of verifying the proof,
in our setup we assume that also the prover performs part of the computation
required to verify the proof, so to reduce the size of the Bitcoin Script Groth16
verifier. This means that there is an additional burden on the prover, which is
quantified by the amount of work required to compute the product of the three
Miller loops in (6). This added burden is acceptable as it is easier to increase
efficiency of off-chain computations rather than optimising script size.

The Optimal Ate Pairing is computed as e(P,Q) = miller(P,Q)η, see Sec-
tion 2.2. We implement it by first implementing the Miller loop, and then the
final exponentiation. That is, we construct a script [millerLoop] that computes

9 The [Pi]’s are the evaluations of the QAP polynomials of the public inputs cor-
responding to the R1CS system of C on the verifier pre-computed challenge (the
so-called toxic waste generated in the setup), [18].

Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script 7

the function (P,Q) ↦ miller(P,Q), and a script [finalExponentiation] that
computes the function (−)↦ (−)η. More precisely, on input data

[inputMillerLoop] = JauxmillerK , JP K , JQK

[inputFinalExponentiation] =
q
auxexp

y
, Jx0K

(2)

where x0 ∈ Fq12 , and auxmiller, auxexp is auxiliary data, they compute

Jmiller(P,Q)K← [inputMillerLoop] [millerLoop]
Jxη

0K← [inputFinalExponentiation] [finalExponentiation]
(3)

Then the script implementing the Optimal Ate Pairing is

[pairing] = [millerLoop] [finalExponentiation] (4)

Indeed, on input [inputPairing] =
q
auxexp

y
, JauxmillerK , JP K , JQK, we get

Je(P,Q)K← [inputPairing] [pairing]

We approach the Groth16 verifier in a similar way. By rearranging (1) from
Section 2.3 using the bilinear properties of e and its definition, we see that
Groth16 verification entails verifying the following equation

(miller([A]1, [B]2) ⋅miller(
ℓ

∑
i=0

ai[Pi]1,−[γ]2) ⋅miller([C]1,−[δ]2))
η

= e([α]1, [β]2)
(5)

Hence, we need a script [multiScalarMultiplication] that computes the func-
tion (a1, . . . , aℓ)↦ ∑ℓ

i=0 ai[Pi]1, and a script [tripleMillerLoop] that computes
the product of the three Miller loops in (5). Then, the Groth16 verifier is10

[groth16Verifier] = [multiScalarMultiplication]
[tripleMillerLoop] [finalExponentiation]
⟪e([α]1, [β]2)⟫ OP EQUALVERIFY

(6)

We now detail the challenges to implement the subroutines the make up
[pairing] and [groth16Verifier], and our proposed solutions.

3.1 Optimising the Miller loop

The value miller(P,Q) for curves in the BLS12 family is computed according to
algorithm (1), where evℓT,Q

(P) denotes the evaluation of the line through T and
Q at P .

10 Note that e([α]1, [β]2) can be hard-coded because [α]1, [β]2 are part of vk and are
known before the proof is generated.

8 F. Barbacovi, E. Larraia et. al.

Algorithm 1 Miller Loop

Inputs: P ∈ G1, Q ∈ G2, u = ∑n
i=0 ui2

i, ui ∈ {−1,0,1}, un ≠ 0
Output: miller(P,Q) ∈ GT

out← 1
if un = 1 then

T ← Q
else

T ← −Q
end if
for i = n − 1, . . . ,0 do

out← out2

T ← 2T
if ui = 1 then

out← out ⋅ evℓT,Q(P)
T ← T +Q

else
out← out ⋅ evℓT,−Q(P)
T ← T −Q

end if
end for

Seed choice To obtain the most efficient implementation of [millerLoop], we
seek to minimise the length of the loop and the cost of performing the operations
in each iteration. The length of the loop and the number of operations performed
can be minimised by choosing a curve whose seed u has small Hamming weight
(number of non-zero bits) and bit-length. Our choice is BLS12-381, for which u
has bit-length 64 and Hamming weight equal to 6, see Section 2.2.

Sparseness. The number of operations performed in the Miller loop can be
further reduced by leveraging sparseness as explained by Scott in [29]. Both out
and the line evaluations belong to the finite field extension Fq12 , but many of the
coefficients of the line evaluations are zero (that is why Scott calls them sparse).
Leveraging this knowledge, we reduce the size of the script required to multiply
two line evaluations from 1kB (the size of our implementation of multiplication
over Fq12 , to 150 bytes (the size of our script for the multiplication of two sparse
elements).

Remark 2. When implementing [tripleMillerLoop] for (6), instead of com-
puting miller([A]1, [B]2), miller (∑ℓ

i=0 ai[Pi]1,−[γ]2) and miller([C]1,−[δ]2) one
after the other, we parallelise the computation. Namely, as evaluatingmiller(−,−)
means executing algorithm (1), instead of repeating the loop three times, we go
through the loop once, and at every iteration we carry out the computations
required by each of the three terms appearing in (6). In this way, we can multi-
ply together the sparse elements coming from the various line evaluations, thus
amplifying the size optimisation resulting from leveraging sparseness.

Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script 9

Verifying the gradient. Finally, we look at reducing the cost of performing
the various operations required by the Miller loop. To update the value of T ,
we sum points in G2 ⊂ Eb′,u(Fq2), while to update out, we need to compute line
evaluations. The most inefficient part of these operations is the calculation of
the gradient of the line through two points on the curve. The inefficiency is due
to the fact that computing the gradient requires inverting an element in a finite
field, an operation whose cost in Bitcoin Script is substantial.11

To avoid the overhead of computing the gradient on-chain, we verify a can-
didate provided in the unlocking script as part of the auxiliary data auxmiller.
Namely, every time we need the gradient of the line through two points R1,R2 ∈
G2, we expect the gadient λ ∈ Fq2 to be supplied in auxmiller, and we verify that
λ is computed correctely by verifying

λ ⋅ (xR2 − xR1) = yR2 − yR1

where Ri = (xi, yi) ∈ Fq2 × Fq2 . Note that verification is very efficient, as once λ
is verified, it can be used multiple times. Putting it into numbers, verifying the
gradient instead of computing it on chain allows us to save roughly 3 ⋅ log(q) =
3 ⋅ 381 ∼ 1100 bytes.

3.2 Optimising the final exponentiation

Final exponentiation is the same for [pairing] and [groth16Verifier], and it
entails raising an element of Fq12 to the power η. To minimise the script size of
[finalExponentiation], we follow the standard approach in the literature and
split the final exponentiation in an easy and a hard part

[finalExponentiation] = [easyExponentiation] [hardExponentiation]

In the hard part, we leverage the Frobenius map Fqn → Fqn , z → zq, to fix
the cost of [hardExponentiation] to (roughly) that of performing five expone-
tiations to the power u.

For the easy part, we need to compute one Frobenius map, and to invert an
element in Fq12 . Instead of performing inversion on-chain, similarly to what we
did in the Miller loop, we verify an inverse candidate supplied in the unlocking
script as part of the auxiliary data auxexp. Namely, as we need the inverse of an
element z ∈ Fq12 , we expect the inverse z′ to be supplied in auxexp, and on-chain
we verify z ⋅z′ = 1 ∈ Fq12 . This allows us to fix the cost of [easyExponentiation]
to constant (it is independent of the curve parameters).

Remark 3. Even if the Frobenius map entails raising an element to the power q,
its implementation is of constant size because it only requires multiplying the
components of z ∈ Fqn by some constants.

11 If z ∈ Fq, then inverting z in Bitcoin Script requires O(log(q)) operations using
Fermat’s Little Theorem.

10 F. Barbacovi, E. Larraia et. al.

3.3 Optimising the multi scalar multiplication

The hardest subroutine to optimise in (6) is [multiScalarMultiplication].
The reason is that this subroutine computes ∑ℓ

i=0 ai[Pi]1, which depends both
on circuit-specific values: the [Pi]′s, see Section 2.3, and on values supplied by
the prover: the public inputs a1, . . . , aℓ.

As the public inputs are supplied by the prover, they are not known when
[multiScalarMultiplication] is constructed, and therefore the script must
take into account the worst case scenario, namely, ai = r.

The cost of computing∑ℓ
i=0 ai[Pi]1 scales linearly with ℓ, which is unfortunate

as a single multiplication ai[Pi]1 costs about 35kB via double-and-add (and
verifying the gradient as in Section 3.1). To optimise the size of the script we use
a standard trick: pass the ℓ public inputs ai of C as witness and a hash of them
as public input. This makes the size of the script independent of the number of
public inputs at the cost of increasing the computational burden of the prover.

More specifically, let H ∶ {0,1}∗ → Fd
r be a cryptographic hash function where

Fr is the field over which C is defined. Then, the augmented relation for which
we prove satisfiability is

R′ ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
((h1, . . . , hd); (a1, . . . , aℓ,w))

RRRRRRRRRRRRR

C(a1, . . . , aℓ,w) = 1
(h1, . . . , hd) =H(a1, . . . , aℓ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

In this way, we keep the size of the script fixed to that of a Groth16 verifier
for a circuit with d public inputs. Indeed, in a proof for relation R′ the prover
supplies d public inputs h1, . . . , hd for which the circuit corresponding to R′
verifies that (h1, . . . , hd) is the digest of (a1, . . . , aℓ), the original public inputs
that are now passed as private inputs, and that C(a1, . . . , aℓ,w) = 1. The public
inputs h1, . . . , hd are a commitment to the public inputs a1, . . . , aℓ.

For example, if ℓ > 2 we can set H to be the (vector) Pedersen hash over
the JubJub curve [34], whose base field is the scalar field Fr of BLS12-381. A
Pedersen hash digest is just a single group element of JubJub h = (h1, h2) ∈ F2

r.
Thus, d = 2 and the verification script only needs to compute h1[P ′1] + h1[P ′2],
instead of an ℓ-multi scalar multiplication.

3.4 Subroutine-independent optimisations

In this section we detail some optimisations that we apply to all the subroutines
appearing in (4) and (6).

Stack management Stacks are data structures equipped only with push and
pop operations, which means that we can only access the top element of the
stack. This property makes storage and retrieval of temporary variables a task
with great impact on script size.

During script execution, the Bitcoin Script Engine has two stacks at its dis-
posal, the main stack, also referred to as the stack, and the altstack. One can

Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script 11

only push and pull elements from the altstack, which is why it is customary to
use it to store variables. We take a different approach, we use the bottom of
the stack instead. As the depth of the stack can be obtained with the opcode
OP DEPTH, the bottom of the stack can be thought to have a fixed position, and
can be used to store variables.

The variable we need more often in [pairing] and [groth16Verifier] is q,
which we store at the bottom of the stack, and fetch with the following script

[fetchq] = OP DEPTH OP 1SUB OP PICK (7)

In this way, we save ∼ 50 bytes compared to pushing q to the stack every time
we need it.

Remark 4 (Make fetching secure). As there is no way to efficiently push an
element to the bottom of the stack, we assume q is supplied in the unlocking
script as part of the auxiliary data. To ensure that it is the one we assume it to
be, i.e., the parameter q of BLS12-381, we use the following script

[verifyq] = OP DEPTH OP 1SUB OP PICK ⟪q⟫ OP EQUALVERIFY

Arithmetic over finite fields All the subroutines in (4) and (6) require arith-
metic over (a finite field extension of) Fq. The biggest impact of finite field
arithmetic on script size comes from modulo operations by q. To efficiently mod
by q, we employ two techniques.

First, as taking the residue class modulo q is a homomorphism Z → Fq, in-
stead of taking a modulo after every operation, we do it only once in a while.
A similar approach was taken in [17], but we improve it by using the modulo
threshold, i.e., the upper bound on the size of the numbers during script exe-
cution, as a parameter of the script. Tuning this parameter we have a trade-off
between script size and execution time, see Section 4.

Second, we batch modulo operations, so that q must be fetched only once.
We explain the technique in the case of addition, but it can be applied to any
other operation. As elements of Fqn are given by tuples (z1, . . . , zn) of elements
in Fq, computing (z1, . . . , zn) + (z̃1, . . . , z̃n) means computing zi + z̃i mod q for
i = 1, . . . , n. Being Bitcoin Script a stack-based language, we must compute each
component zi+ z̃i mod q and place it on top of the stack. Instead of sequentially
computing zi+ z̃i mod q for i = 1, . . . , n, we compute zi+ z̃i for i = n, . . . ,1, place
them on the altstack, and then sequentially take the modulo of each element.
With this technique, we save (n − 1) bytes for every modulo operation.

Remark 5 (Preventing overflows). As we remarked in Section 2, the BSV im-
plementation supports large numbers. However, policy restrictions dictate that
the numbers must fit in 10kB. To avoid overflows, we proceed as follows. As the
operations executed in [groth16Verifier] are fixed, and we know the largest
size of the input data fed to the script, when constructing the script we keep
track of the size of the numbers we are working with. For example, if we multiply

12 F. Barbacovi, E. Larraia et. al.

two numbers of bit size at most ∣q∣, we know that the result has bit size at most
2∣q∣. Then, in the script we reduce modulo q before the numbers overflow.

We go one step further: we introduce a modulo threshold variable that is
supplied at the point of script construction and that dictates when to perform
modulo operations. See Section 4.1 for more information.

4 Script benchmarking

We now benchmark our scripts according to three metrics: script size, script
execution time, and the cost of publishing a transaction with the script on-
chain. Based on the first two metrics, we select the optimal modulo threshold,
see Section 4.1, and then we compare the monetary cost of executing our script
to that of executing an equivalent script on Ethereum, see Section 4.2.

4.1 Script size and execution time

When constructing the [pairing] and [groth16Verifier], we can choose the
threshold after which modulo operations are carried out. Namely, we can choose
the largest size the numbers can reach during script execution before we mod
by q and bring them back to Fq. Changing the threshold for modulo operations
allows us to strike a balance between script size and execution time. Indeed, the
more often we mod by q, the bigger the script size, but the lower the execution
time of the script, as it will work with smaller numbers.

Below, we plot the threshold for the modulo operations against script size
and execution time, respectively, for [pairing] and [groth16Verifier] with
one and two public parameters, i.e., ℓ = 1 and ℓ = 2. We run our tests in a BSV
regtest v1.0.8 on a processor Intel Core i7, 2.6 Ghz, 6-Core.

While BSV can support transactions with arbitrary script size and execution
time, and with numbers of length up to 750kB, current policy restrictions impose
that the locking script is at most 500kB, that it executes in at most 1 second,
and that the numbers12 must fit in 10kB [25].

Figure 1 shows that the size of [pairing] decreases rapidly when the mod-
ulo threshold increases from 50 bytes (which implies that we mod by q after
every operation) to 2kB. Further increases of the modulo threshold result in
small further decreases of the script size, but at the cost of a higher execution
time. In particular, when the modulo threshold reaches 4kB, the execution time
approaches the policy threshold of 1 second. As there is not a big difference in
either script size or execution time when the modulo threshold passes from 2kB
to 3kB, we take a conservative stance and choose 2kB as the optimal modulo
threshold for the [pairing]. This choice results in a script of size 286kB and
with execution time of circa 0.47s.

Figure 2 shows that the size of [groth16Verifier] behaves similarly. Namely,
the size of the script decreases rapidly when the modulo threshold increases from

12 By numbers we mean elements on the stack that are used in mathematical operations.

Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script 13

Fig. 1. Size and execution time of [pairing] as functions of the modulo threshold

Fig. 2. Size and execution time of [groth16Verifier] as functions of the modulo
threshold

50 bytes to 2kB, but further increases do not decrease the script size too much.
For Groth16, we approach the consensus threshold of 1s execution time when the
modulo threshold approaches 3kB. We choose as optimal modulo threshold 2kB,
which results in script of sizes 426kB and 460kB, for one and two public inputs,
respectively, and with execution times of circa 0.67s and 0.70s, respectively.

Remark 6. In the Figures 1 and 2, we focus on the size of the locking script
because the modulo threshold does not affect the size of the unlocking script.
However, in Section 4.2 we will take into account both locking and unlocking
script, as the cost of publishing of script on-chain depends on both.

4.2 Monetary cost

In this section, we compare the transaction fees for the Optimal Ate Pairing
and the Groth16 verifier on BSV and Ethereum, respectively. For simplicity,
the comparison only focuses on the cost for the computation to be done by the

14 F. Barbacovi, E. Larraia et. al.

nodes in a network. We do not take other factors such as the cost to maintain
the respective network or the time it takes for the transaction to be confirmed
and published.

The results presented in Table 2 and Table 3 make it apparent that as of May
2024, it is much cheaper to execute bilinear pairings and the Groth16 verifier on
BSV than on Ethereum.13

In BSV, a miner executes a script [S] = [unlock][lock] if there is a transac-
tion txlock with an output txOutlock that has [lock] as locking script, and there
is a transaction txunlock with an input txInunlock that spends txOutlock and that
has [unlock] as unlocking script. In this situation, consensus requires a miner to
execute [S], regardless of what operations are contained in it.14 Thus, we model
the cost of executing a script in BSV as the dollar value of the transaction fees
required to publish [S] on-chain.

From the analysis of Section 4.1, we see that the optimal modulo thresholds
for the Optimal Ate Pairing and the Groth16 verifier are given by 2kB in both
cases. The script size for [pairing] and [groth16Verifier] can be read off
from Figure 1 and Figure 2, and are 286kB for [pairing], and 426kB, 460kB for
[groth16Verifier] with ℓ = 1, ℓ = 2, respectively; the size of [unlockPairing],
see (2), is 7.6kB, while the size of the unlocking script of [groth16Verifier]
with ℓ = 1 is 40kB, and with ℓ = 2 is 60kB.

To estimate fee rates on the BSV blockchain and the BSVUSD conversion
rate, we download data from WhatsOnChain.com [35]. We consider the aver-
age fee rate and the exchange rate for the period going from 15/03/2024 to
12/06/2024. We trim the series by removing the values below the 5th percentile
and above the 95th percentile. Then, we take the 25th, 50th, and 75th percentile
from the time series of fee rates as estimates of low, medium and high fee rates.
They come out to be: 57, 79 and 120 sats/kB, respectively. As estimate of the
exchange rate, we take the average price of the trimmed time series, which is
$73 per BSV. The results of the calculations are presented in Table 2 for the
Optimal Ate Pairing, and in Table 3 for Groth16 verifier.

The cost to execute an Ethereum contract is proportional to the computa-
tional complexity of the underlying code, with computational units measured in
terms of gas. Hence, the cost of executing a contract in Ethereum is given by
how many units of gas it requires, and gas cost at the time of execution.

Since EIP-1108 [2], the cost of executing one pairing is of 79000 (= 34000 +
45000) gas units, whereas the cost of executing the Groth16 verifier is of 153150
(= 34000 ⋅3+45000+6150, see [2]) gas units for one public statement, and 159300
for two public statements. We estimate the cost of executing the scripts with the
same method as for BSV fee rates. We download the data from Etherscan.io [15],
and we calculate three fee rates: low: 11 gwei/gas,15 medium: 16 gwei/gas, and

13 Note that Ethereum uses a different curve. However, their implementation of pairings
is state-of-the-art, so the comparison made here can be considered fair.

14 The only exception is if the script does not abide by the policies set forth by the
miner. For the purpose of this analysis we assume that [S] satisfies such policies.

15 1 gwei equates to 10−9 ETH.

Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script 15

Blockchain

Fee rate
Low Medium High

BSV $0.012 $0.016 $0.025
Ethereum $2.95 $4.29 $6.43

Table 2. Cost of executing the Optimal Ate Pairing in BSV and Ethereum.

Groth16 verifier (ℓ = 1) Groth16 verifier (ℓ = 2)

Blockchain

Fee rate
Low Medium High Low Medium High

BSV $0.018 $0.024 $0.037 $0.0019 $0.026 $0.040
Ethereum $5.78 $8.32 $12.48 $5.95 $8.65 $12.97

Table 3. Cost of executing the Groth16 verifier in BSV and Ethereum.

high: 24 gwei/gas, as well as an estimated exchange rate of $3394 per ETH.16

The results of the calculations are presented in Table 2 for the Optimal Ate
Pairing, and in Table 3 for the Groth16 verifier.

5 Conclusion

We have demonstrated not only that it is practical to implement the Groth16
verifier in Bitcoin Script, but also that the cost of executing it is much cheaper
than that of executing an equivalent script in Ethereum, see Section 4. As part
of our future work, we plan to implement more pairing-based cryptographic
primitives in Bitcoin Script so that the Bitcoin blockchain can leverage this
fruitful area of cryptography to its full strength.

References

1. Bitcoin (BTC) Wiki, Script. https://en.bitcoin.it/wiki/Script
2. Antonio Salazar Cardozo, Zachary Williamson: EIP-1108: Reduce alt bn128 pre-

compile gas costs,” Ethereum Improvement Proposals, no. 1108, May 2018. https:
//eips.ethereum.org/EIPS/eip-1108

3. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof
systems. Designs, Codes and Cryptography 91(11), 3333–3378 (2023)

4. B Squared: Zero-Knowledge Proof Verification Commitment for ZK-Rollup on Bit-
coin. https://docs.bsquared.network/zpvc

5. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal
of cryptology 32, 1298–1336 (2019)

16 Note that, even if the exchange rate of BSV per ETH were 1:1, then executing the
scripts on BSV would still be much cheaper. For example, at the price of $3394 per
BSV, the Optimal Ate Pairing at high fee rate would cost only $1.16.

https://en.bitcoin.it/wiki/Script
https://eips.ethereum.org/EIPS/eip-1108
https://eips.ethereum.org/EIPS/eip-1108
https://docs.bsquared.network/zpvc

16 F. Barbacovi, E. Larraia et. al.

6. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving nfs for the dis-
crete logarithm problem in non-prime finite fields. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. pp. 129–155.
Springer (2015)

7. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques. pp. 1–16. Springer (2014)

8. Barreto, P.S., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Advances in Cryptology—CRYPTO 2002: 22nd Annual
International Cryptology Conference Santa Barbara, California, USA, August 18–
22, 2002 Proceedings 22. pp. 354–369. Springer (2002)

9. Bit Layer: Bitlayer: A Bitcoin Computational Layer Architecture
Based on the BitVM Paradigm. https://static.bitlayer.org/

Bitlayer-Technical-Whitepaper.pdf
10. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-

interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) Theory
of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo,
Japan, March 3-6, 2013. Proceedings

11. Bitcoin SV: https://github.com/bitcoin-sv/bitcoin-sv
12. BitVM: Official BitVM implementation in Rust. https://github.com/BitVM/

BitVM
13. Cairo: The Cairo Programming Language. https://book.cairo-lang.org/

title-page.html#the-cairo-book
14. Ethereum Org: ZERO-KNOWLEDGE ROLLUPS. https://ethereum.org/en/

developers/docs/scaling/zk-rollups/
15. Etherscan: etherscan.io. https://etherscan.io/
16. Firo: https://firo.org
17. franchfrog42: zkBaguette applied to zkSnarks. https://github.com/

frenchfrog42/zk-hackaton
18. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and

succinct nizks without pcps. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings

19. Groth, J.: On the size of pairing-based non-interactive arguments. In: Advances in
Cryptology - EUROCRYPT 2016

20. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity
for the medium prime case. In: Annual international cryptology conference. pp.
543–571. Springer (2016)

21. LumiBit: LumiBit’s ZK-EVM. https://lumibit.gitbook.io/lumibit-gitbook/
overview/lumibit-101/lumibits-zk-evm

22. Matsuda, Seiichi and Kanayama, Naoki and Hess, Florian and Okamoto, Eiji: Opti-
mised Versions of the Ate and Twisted Ate Pairings. In: Cryptography and Coding.
pp. 302–312. Springer Berlin Heidelberg (2007)

23. Merlin Chain: ZK Rollup on Bitcoin. https://docs.merlinchain.io/

merlin-docs/zk-rollup-on-bitcoin
24. Miller, V.S.: The weil pairing, and its efficient calculation. Journal of Cryptology

17(4), 235–261 (Sep 2004). https://doi.org/10.1007/s00145-004-0315-8
25. Patrick Fromberg: BSV Consensus Limits. https://github.com/bitcoin-sv/

bitcoin-sv/wiki/Consensus-Limits

https://static.bitlayer.org/Bitlayer-Technical-Whitepaper.pdf
https://static.bitlayer.org/Bitlayer-Technical-Whitepaper.pdf
https://github.com/bitcoin-sv/bitcoin-sv
https://github.com/BitVM/BitVM
https://github.com/BitVM/BitVM
https://book.cairo-lang.org/title-page.html#the-cairo-book
https://book.cairo-lang.org/title-page.html#the-cairo-book
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://etherscan.io/
https://firo.org
https://github.com/frenchfrog42/zk-hackaton
https://github.com/frenchfrog42/zk-hackaton
https://lumibit.gitbook.io/lumibit-gitbook/overview/lumibit-101/lumibits-zk-evm
https://lumibit.gitbook.io/lumibit-gitbook/overview/lumibit-101/lumibits-zk-evm
https://docs.merlinchain.io/merlin-docs/zk-rollup-on-bitcoin
https://docs.merlinchain.io/merlin-docs/zk-rollup-on-bitcoin
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/s00145-004-0315-8
https://github.com/bitcoin-sv/bitcoin-sv/wiki/Consensus-Limits
https://github.com/bitcoin-sv/bitcoin-sv/wiki/Consensus-Limits

Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script 17

26. R. Linus: BitVM: Computing Anything on Bitcoin. https://bitvm.org/bitvm.
pdf

27. Robin Linus and Lukas George: ZeroSync: Introducing Validity Proofs to Bitcoin.
https://zerosync.org/zerosync.pdf

28. S. Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System
29. Scott, M.: Pairing implementation revisited. Cryptology ePrint Archive, Paper

2019/077 (2019), https://eprint.iacr.org/2019/077, https://eprint.iacr.

org/2019/077

30. Scott, M.: A note on twists for pairing friendly curves. http://indigo.ie/

~mscott/twists.pdf

31. sCrypt Inc: https://scrypt.io
32. sCrypt Inc: sCrypt Transaction. https://test.whatsonchain.com/tx/

2396a4e52555cdc29795db281d17de423697bd5cbabbcb756cb14cea8e947235

33. sCrypt Inc: Tutorial 5: Zero Knowledge Proofs. hhttps://docs.scrypt.io/

tutorials/zkp

34. Sean Bowe: https://github.com/zkcrypto/jubjub
35. TAAL: whatsonchain.com. https://whatsonchain.com/
36. zCash: https://z.cash

https://bitvm.org/bitvm.pdf
https://bitvm.org/bitvm.pdf
https://zerosync.org/zerosync.pdf
https://eprint.iacr.org/2019/077
https://eprint.iacr.org/2019/077
https://eprint.iacr.org/2019/077
http://indigo.ie/~mscott/twists.pdf
http://indigo.ie/~mscott/twists.pdf
https://scrypt.io
https://test.whatsonchain.com/tx/2396a4e52555cdc29795db281d17de423697bd5cbabbcb756cb14cea8e947235
https://test.whatsonchain.com/tx/2396a4e52555cdc29795db281d17de423697bd5cbabbcb756cb14cea8e947235
hhttps://docs.scrypt.io/tutorials/zkp
hhttps://docs.scrypt.io/tutorials/zkp
https://github.com/zkcrypto/jubjub
https://whatsonchain.com/
https://z.cash

	Practical Implementation of Pairing-Based zkSNARK in Bitcoin Script

