
No Fish Is Too Big for Flash Boys! Frontrunning on DAG-based Blockchains

Jianting Zhang∗ Aniket Kate∗†
∗Purdue University, †Supra Research

Abstract—Frontrunning is rampant in blockchain ecosystems,
yielding attackers profits that have already soared into several
million. Most existing frontrunning attacks focus on manipulat-
ing transaction order (namely, prioritizing attackers’ transac-
tions before victims’ transactions) within a block. However, for
the emerging directed acyclic graph (DAG)-based blockchains,
these intra-block frontrunning attacks may not fully reveal the
frontrunning vulnerabilities as they introduce block ordering
rules to order transactions belonging to distinct blocks.

This work performs the first in-depth analysis of frontrun-
ning attacks toward DAG-based blockchains. We observe that
the current block ordering rule is vulnerable to a novel inter-
block frontrunning attack, which enables the attacker to pri-
oritize ordering its transactions before the victim transactions
across blocks. We introduce three attacking strategies: (i) Fis-
sure attack, where attackers render the victim transactions or-
dered later by disconnecting the victim’s blocks. (ii) Speculative
attack, where attackers speculatively construct order-priority
blocks. (iii) Sluggish attack, where attackers deliberately create
low-round blocks assigned a higher ordering priority by the
block ordering rule.

We implement our attacks on two open-source DAG-based
blockchains, Bullshark and Tusk. We extensively evaluate our
attacks in geo-distributed AWS and local environments by run-
ning up to n = 100 nodes. Our experiments show remarkable
attack effectiveness. For instance, with the speculative attack,
the attackers can achieve a 92.86% attack success rate (ASR)
on Bullshark and an 86.27% ASR on Tusk. Using the fissure
attack, the attackers can achieve a 94.81% ASR on Bullshark
and an 87.31% ASR on Tusk.

We also discuss potential countermeasures for the proposed
attack, such as ordering blocks randomly and reordering
transactions globally based on transaction fees. However, we
find that they either compromise the performance of the system
or make the protocol more vulnerable to frontrunning using
the existing frontrunning strategies.

1. Introduction

Blockchain technology is revolutionizing the regulated
financial market via powerful decentralized finance (DeFi)
protocols, which implement a transparent and decentral-
ized market for users to perform economic activities, e.g.,
cryptocurrency trading. As of September 2024, over 85
billion USD worth of cryptocurrencies has been staked
in the mainstream DeFi platforms [1]. Unfortunately, the

booming market fosters illegal behaviors: frontrunning is
rampant. In the blockchain context, the frontrunning attack
allows the adversary to prioritize its transactions before
the victims’ transactions. As transactions can impact the
states of DeFi, e.g., buying a cryptocurrency will increase
its price, such order-prioritized frontrunning is profitable
and has shown to be happening at a massive scale [2]–
[12]. For instance, a frontrunning called sandwich attack has
yielded 41 million USD since Ethereum was merged [13].
Moreover, the frontrunning attackers are estimated to extract
millions of USD with varying frontrunning attacks, such as
suppression attack [4], imitation attack [10], and arbitrage
across Rollups [12]. Besides monetary losses of DeFi users,
frontrunning is proven to threaten consensus stability and
aggravate network congestion [3], [6], [14].

Despite extensive explorations and studies on frontrun-
ning attacks, existing efforts mainly focus on the Ethereum
network [15]. Therefore, the existing exploited frontrunning
strategies are subjective to Ethereum’s transaction ordering
rule, which determines how transactions are ordered within
a block. Nodes in the current Ethereum network order
transactions based on the maximal extractable value (MEV),
which is empowered by a proposer-builder separation (PBS)
scheme [16]. Figure 1a demonstrates the MEV-based order-
ing rule. The builders first create distinct profitable blocks
with specific transaction orders, such as prioritizing their
transaction Txi

a before the other’s transaction Txv or or-
dering transactions based on the receivable transaction fee.
The proposer/validator then selects the most profitable block
(i.e., the maximal extractable value it can earn) and commits
the block into the blockchain1. Under the MEV-based order-
ing rule, attackers can frontrun the victim transactions using
various attacking strategies, such as increasing transaction
fees by engaging in priority gas auctions [3] or acting as a
builder or validator to customize the order. However, once
blockchains employ distinct ordering rules, these frontrun-
ning strategies will become ineffective.

We observe that the MEV-based ordering rule is
not unique to the gradually growing blockchain mar-
kets. A family of the directed acyclic graph (DAG)-based
blockchains have been recently proposed to improve the
transaction throughput of the system and experienced rapid
growth [17]–[26]. For instance, Sui [27], a production DAG-

1. Note that the PBS scheme involves multiple roles in ordering and
committing blocks, including searchers, builders, relays and proposers. We
simplified the scheme here for illustration purposes.

𝑇𝑥&%,𝑇𝑥"
𝐵%+

𝑇𝑥&',𝑇𝑥"
𝐵'+

𝑇𝑥&,,𝑇𝑥"
𝐵,+⋯

𝐵+-% 𝐵'+⋯𝐵.

Validator
commit the most
profitable block

Committed
blocks

Builder 𝑁% 𝑁' 𝑁,

(a) Transaction ordering in the
Ethereum network

𝑇𝑥"
𝐵%+ ⋯

𝐵,+⋯𝐵.

Block ordering rule

Validator 𝑁%

𝐵&+

𝑇𝑥&
𝐵,+

𝑁& 𝑁,

𝐵&+ 𝐵%+ ⋯

commit multiple blocks

(b) Transaction ordering in
DAG-based blockchains

Figure 1: Frontrunning attacks on distinct blockchains,
where an attacking transaction Txa is intentionally ordered
before a victim transaction Txv. (a) Frontrunning happens
within a block against the MEV-based ordering rule in
Ethereum. (b) Frontrunning happens across blocks against
the block ordering rule in DAG-based blockchains.

based blockchain with a market cap exceeding 4 billion
USD and powering over 100 DeFi protocols as of September
2024 [28], can achieve over 400K transactions per second
(TPS) of raw transactions according to their latest technical
report [21]. Besides, Aptos [29] and Celo [30] are also
developing their DAG-based consensus protocols. Unlike
the single-chain-based ledgers (e.g., Ethereum), where val-
idators can only order and commit a block of transactions
each time, the DAG-based blockchains enable validators to
order multiple blocks within a single instance of consensus.
Specifically, a DAG-based blockchain processes transactions
round-by-round. In each round, every node (i.e., validator)
can propose a block including transactions and connections
to blocks of the previous round. All the proposed blocks
and connections are then disseminated to form a DAG. Due
to the encoded information in the DAG, once a block is
committed via an instance of consensus, all its causal history
(i.e., all blocks for which there is a connection or path
from the committed block to them) can also be ordered and
committed. Consequently, to globally order transactions, the
DAG-based blockchain requires each validator to not only
order transactions within a block but also order blocks in
the causal history via a block ordering rule. Due to these
new ordering features, the existing frontrunning strategies
that target the MEV-based ordering rule may no longer be
effective. This makes us wonder:

Are the DAG-based blockchains more resilient to
frontrunning attacks?

It is non-trivial to answer this question. On the one hand,
the attacker has limited spaces in frontrunning transactions
within a block (which are called intra-block frontrunning in
this paper). Specifically, the DAG-based blockchains allow
validators to create blocks simultaneously. To avoid dupli-
cate transactions packed in multiple blocks, each transaction
is only assigned to one validator for ordering and commit-
ment. In this case, the attacker cannot intra-block frontrun
the victim transaction if it is not assigned to package the
victim transaction. Intra-block frontrunning becomes less

likely if the number of validators is large, and victim trans-
actions are expected to be assigned to validators randomly
(in which the adversary cannot pick up victim transactions
arbitrarily). On the other hand, the DAG-based blockchain
introduces a block ordering rule to order transactions of
causal history blocks. The new ordering rule may expose
DAG-based blockchains to new frontrunning vulnerabilities.

In this paper, we provide the first in-depth analysis of
frontrunning attacks toward DAG-based blockchains. We
discover that the widely adopted block ordering rule in
DAG-based blockchains is susceptible to a novel inter-block
frontrunning attack. Unlike the intra-block frontrunning
working on directly manipulating the order of transactions
within a block, the inter-block frontrunning attack allows the
attacker to intentionally order its blocks before the victims’
blocks, and consequently, the transactions in the attacker’s
blocks will be ordered before the transactions in the victims’
blocks. Figure 1b presents a brief process of the inter-block
frontrunning attack. Specifically, a frontrunning attacker Na

constructs a block Bh
a containing an attacking transaction

Txa to frontrun a victim transaction Txv in another block
Bh

1 . By employing our proposed attacking strategies (Sec-
tion 4), the attacker Na can ultimately ensure that Bh

a is
ordered before Bh

1 , resulting in Txa frontrunning Txv. This
paper explores the unreasonable designs of the vulnerable
block ordering rule that spawns the inter-block frontrunning
strategies, evaluates the attack effectiveness under different
attacking strategies, and discloses factors that impact the
attack effectiveness.

Our contributions can be summarized as follows:
• We present and formulate the first inter-block frontrun-

ning attack against the widely employed block ordering
rule in DAG-based blockchains (Section 3).

• We provide insightful analysis of the order vulner-
abilities in DAG-based blockchains (Section 4). Our
investigation reveals ordering priorities, which moti-
vates us to explore three attacking strategies, including
the fissure attack (Section 4.2), the speculative attack
(Section 4.3), and the sluggish attack (Section 4.4). We
demonstrate how attackers can utilize these attacking
strategies to improve the attack success rate (ASR).

• We implement our frontrunning strategies on two open-
source DAG-based blockchains (i.e., Tusk [18] and
Bullshark [19]) and conduct extensive experiments to
evaluate them in the geo-distributed and local envi-
ronments (Section 5). The experiment results show
remarkable attack effectiveness. For instance, using
the speculative attack on the AWS environment, the
attacker can achieve ASRs of 85.19% to 92.98% on
Bullshark and 81.08% to 87.76% on Tusk under vary-
ing numbers of validators. Using the fissure attack, the
attacker can achieve ASRs of 92.74% to 94.81% ASRs
on Bullshark and 82.56% to 87.31% on Tusk under
varying numbers of attackers.

• We discuss potential countermeasures (Section 6), yet,
none can be seamlessly integrated into the existing
DAG-based blockchains without compromising perfor-
mance or introducing new frontrunning vulnerabilities.

2

To this end, we generalize and model our explored
attacking strategies (Appendix B), which disclose fac-
tors impacting the attack effectiveness. We hope such
generalized models can provide insights for future re-
searchers on designing effective mitigations.

Responsible Disclosure. We initially shared and discussed
our findings about MEV and frontrunning issues on DAG
blockchains with Mysten Labs’s team working on Sui on
June 5, 2024. We then provided them with a detailed paper
on September 10, 2024. They have acknowledged the pro-
posed attacks. They plan to explore long-term mitigation to
handle these attacks.

2. Preliminaries and Related Work

This section first introduces the preliminaries of DAG-
based blockchains. Then, we present existing frontrunning
attacks and relevant mitigations, followed by our motivation.

2.1. DAG-based SMR

Blockchains rely on a fault-tolerant state machine repli-
cation (SMR) process to maintain a transaction ledger2. In
an SMR protocol, n nodes {N1, · · · , Nn} (of which up
to t can be malicious) maintain an ever-growing sequence
of transactions by repeatedly performing three tasks: data
dissemination, ordering, and execution. The SMR protocol
can guarantee the following intrinsic security properties:

Definition 1 (Safety). If sequences of transactions
(tx1, tx2, · · · , txj) and (tx′

1, tx
′
2, · · · , tx′

j′) are committed
by two honest nodes, then txi = tx′

i for all i ≤ min{j, j′}.

Definition 2 (Liveness). If a transaction tx is sent to at
least one honest node, then tx will be eventually committed
by every honest node.

A DAG-based SMR protocol carries on the safety and
liveness guarantees while incredibly enhancing the system
throughput by decoupling data dissemination from metadata
ordering. Briefly, in the network communication layer, nodes
disseminate transactions and construct blocks of transactions
to form a directed acyclic graph (Section 2.1.1). With the
constructed DAG, the consensus logic then introduces zero
communication overhead to order and commit transactions
by employing a block ordering rule (Section 2.1.2).

2.1.1. Construction of a DAG. A DAG-based SMR pro-
cesses in rounds {r1, r2, · · · }. In each round, every node
creates one new block that connects blocks of the previous
round. The round-by-round blocks and their connections
eventually form an ever-growing DAG, where blocks serve
as vertices and connections between blocks serve as edges.
Furthermore, blocks and connections piggyback the follow-
ing information to guarantee safety and liveness.

• Blocks: A block Bi
k created by node Nk in round ri

consists of a collection of transactions (or transaction

2. In this paper, we use the terms ’blockchain’ and ’SMR’ interchange-
ably as they hold the same meaning in the DAG-based blockchain context.

batches) and at least n− t connections to blocks from
the previous round ri−1. Transactions (or transaction
batches) in the block are locally ordered.

• Connections: A block Bi
k includes a set of connections

that piggyback its local ordering preference (LOP) on
its connected blocks. The LOP defines a local order
for the connected blocks and will be used to establish
a consistently global order for all blocks of the DAG.

The constructed DAG defines partial orders between
transactions within a block and between the connected
blocks. However, the DAG is not fully connected, and there
are some missing connections between blocks. To establish
a global order, nodes need to interpret the DAG to decide
which blocks can be eventually ordered and committed. In
a DAG-based SMR, nodes interpret the DAG by dividing
it into waves. Each wave consists of several consecutive
rounds3 and works to select a unanimous leader block (also
called anchor) for the last wave [20]. Once an anchor is
decided, all its causal history (i.e., all blocks for which there
is a connection and path from the anchor to them) will be
ordered and committed (see Section 2.1.2 below).

Figure 2a presents a DAG-based SMR maintained by
n = 4 nodes. The DAG is structured by three-round waves,
and there is an anchor in each wave deciding blocks that
can be committed. For instance, the wave wj+1 selects an
anchor Bi+2

2 in round ri+2, and then all the historically
uncommitted blocks of Bi+2

2 (highlighted by green color)
are eventually committed.

2.1.2. Ordering transactions in DAG-based SMR. With
a DAG of blocks formed in the network communication
layer, nodes then establish a consistently global order for
transactions in the consensus layer. As each block indicates
a local order of its packed transactions, the task performed
by the consensus layer is to order blocks. In particular, the
DAG-based SMR orders blocks via the following steps [20]:

1) Decide anchors. Nodes select an anchor for each wave.
The anchors can be pre-determined in partially syn-
chronous DAG protocols (e.g., Narwhal-Hotstuff [18]
and partially synchronous Bullshark [31]), or ran-
domly decided by a specific round of the wave in the
asynchronous DAG protocols (e.g., DAG-Rider [17],
Tusk [18], and asynchronous Bullshark [19]).

2) Order anchors. Some anchors may have been decided
but not committed due to network delay or malicious
behaviors. Therefore, once a new anchor is decided,
nodes trace the uncommitted anchors from previous
waves. All these uncommitted anchors are eventually
ordered based on their wave numbers.

3) Order historical blocks. Once the uncommitted anchors
are ordered, nodes trace the causal history of each of
them. Thanks to the encoded information in the DAG,
every node can obtain the same historical blocks4.

3. A wave in different DAG-based SMR protocols could be defined to
contain different numbers of rounds for, e.g., latency optimization.

4. We omit the security proof here but recommend that interested readers
read the proof provided by the original papers [17]–[19].

3

𝑁#

𝑁$

𝑁%

𝑁&

𝑟! 𝑟!"# 𝑟!"$

𝐵#! 𝐵#!"# 𝐵#!"$ 𝐵#!"%

𝐵$!

𝐵%!

𝐵&!

𝐵$!"#

𝐵%!"#

𝐵$!"$

𝐵%!"$

𝐵$!"%

𝐵%!"% 𝐵%!"&

wave 𝑤' wave 𝑤'"#

① ②

④

Local Ordering
Preference (LOP) Anchor

𝑟!"% 𝑟!"&

③

(a) The structure of a DAG.

𝐵%"&%

𝐵#"&' 𝐵'"&' 𝐵%"&'

𝐵'" 𝐵#" 𝐵%"
𝐵%#≺𝐵(#≺𝐵'# 𝐵(#$%≺𝐵%

#$%≺𝐵'#$% 𝐵'#$'≺ ≺

1) Depth-first traversal (pre-order)

2) Round-first reordering

𝐵'#$', 𝐵(#$%, 𝐵%# , 𝐵(# , 𝐵%#$%, 𝐵'# , 𝐵'#$%

≺: Order-before relationship

(b) The DR-first ordering rule.

Figure 2: A DAG-based SMR structured by three-round
waves. (a) Each wave decides the blocks that will be com-
mitted (highlighted with different colors). (b) Nodes order
blocks in wave wj via the DR-first ordering rule, where
the tree spawned by the anchor Bi+2

2 and the LOP of each
involved block jointly decide the final order of the blocks.

With a block ordering rule (see below), nodes will
consistently order the historical blocks.

The block ordering rule. The DAG-based SMR relies
on a block ordering rule to achieve zero communication
overhead when ordering blocks. The block ordering rule
can be any deterministic rule. For instance, many DAG-
based SMR protocols (such as [18], [19], [21]) adopt an
ordering rule that combines a Depth-first traversal and a
Round-first reordering operation in their implementations5.
(We therefore call it DR-first ordering rule in this work.)
Figure 2b presents an example of ordering blocks via the
DR-first ordering rule, which consists of two operations:

1) Depth-first traversal: Once an anchor Bi+2
2 is ready to

commit, each node constructs a tree spawned by Bi+2
2 and

all its historically uncommitted blocks, where (i) Bi+2
2 is the

root of the tree; (ii) the first-ordered block in Bi+2
2 ’s LOP

is the root of Bi+2
2 ’s leftmost subtree, the second-ordered

block of Bi+2
2 ’s LOP is the root of Bi+2

2 ’s second leftmost
subtree, and so on. (Note that a block is only located at
the tree when it is first traversed.) Nodes then collect the
blocks of the tree with a pre-order depth-first traversal.
For example, in Figure 2b, the temporary order after tree
traversal is Bi+2

2 , Bi+1
3 , Bi

1, Bi
3, Bi+1

1 , Bi
2, and Bi+1

2 .
2) Round-first reordering: Since a DAG-based SMR cre-

ates blocks round-by-round, each node reorders the traversed

5. An example can be found in https://github.com/facebookresearch/
narwhal/blob/main/consensus/src/lib.rs.

blocks based on their round numbers, to partially capture the
happen-before relationship. This ensures that if there is a
connection (or path) from a block B1 to B2 (i.e., B2 is cre-
ated before B1), then B2 is eventually ordered before B1. In
Figure 2b, the eventual order after the round-first reordering
is Bi

1 ≺ Bi
3 ≺ Bi

2 ≺ Bi+1
3 ≺ Bi+1

1 ≺ Bi+1
2 ≺ Bi+2

2 , where
≺ represents an order-before relation between blocks.

2.2. Frontrunning and Existing Countermeasures

Frontrunning attacks. In the early-stage blockchain/SMR
protocols, nodes jointly work to maintain two security prop-
erties (i.e., safety and liveness). However, neither of these
properties captures order relationships among transactions
while distinct orders can lead to different states of a ledger.
The lack of rational order relationship makes frontrunning
possible. Informally, in a frontrunning attack, an attacker
aims to make its transaction txa ordered and executed before
a victim transaction txv, regardless of the order between txa

and txv when they are created and received by the network.
Frontrunning attacks have shown to be happening at

a massive scale [2]–[12], [32]–[34]. Torres et al. [4] per-
form a large-scale analysis on three types of frontrunning,
identifying almost 200K attacks with an accumulated profit
of 18.41M USD. Zhou et al. [5] evaluate a variant of
frontrunning attack (called sandwich attack), showing that
a single adversarial trader can earn a daily revenue of over
several thousand USD. Qin et al. [7] further demystify the
dark forest of DeFi, showing the sandwich attack can yield
over 174M USD over 32 months. The subsequent works
show that frontrunning, involving actions outside blockchain
(such as centralized exchanges [11] and rollups [12]), can
also yield a large amount of profits.
Existing mitigations. To prevent frontrunning attacks, a line
of consensus protocols [35]–[43] has been proposed. These
solutions are motivated by a key observation: frontrunning
strategies heavily rely on the transaction ordering rule. For
instance, in a maximal extractable value-priority blockchain
like Ethereum, attackers can either set a high transaction fee
or work as the block builder (or proposer) to prioritize or-
dering their transactions. Therefore, to prevent frontrunning,
the core idea of these mitigations is to replace the vulnerable
ordering rule with a frontrunning-resilient ordering rule. For
example, in Pompē [35], transactions are ordered based
on their timestamps received by the majority of validators.
Themis [37] orders transactions based on the local orders
established by the majority of validators. Additionally, many
other solutions [10], [32], [34] advocate to frontrun the
frontrunning attackers and refund profits to victims.
Motivation. We observe that frontrunning attacks can be
constructed strategically against the specific transaction or-
dering rules. Compared to the sing-chain-based blockchain,
the DAG-based blockchain employs several new ordering
features. First, to avoid duplicate transactions packed in
multiple blocks, the DAG-based blockchain allows each
transaction to be packed in the block by only one validator.
Since validators cannot arbitrarily pick up transactions in
their blocks, manipulating the order of transactions within a

4

https://github.com/facebookresearch/narwhal/blob/main/consensus/src/lib.rs
https://github.com/facebookresearch/narwhal/blob/main/consensus/src/lib.rs

block (i.e., intra-block frontrunning) becomes less possible.
On the other hand, to order multiple blocks in the causal
history of an anchor, the DAG-based blockchain introduces
a new block ordering rule, which may expose the protocol to
new frontrunning vulnerabilities. However, upon reviewing
related studies, we find a notable absence of exploration and
analysis of frontrunning attacks on DAG-based blockchains
in the existing literature.

This work is conducted to fill this gap. Through in-
depth analysis, we find even if intra-block frontrunning is
less likely in DAG-based blockchains, attackers can perform
a new frontrunning attack that frontrun victim transactions
across blocks. We call it the inter-block frontrunning attack.
Unlike intra-block frontrunning, inter-block frontrunning is
more possible and powerful. First, inter-block frontrunning
is independent of transaction assignments, meaning that an
attacker can still frontrun the victim transaction even if the
transaction is not assigned to it for ordering and commit-
ment. Additionally, since inter-block frontrunning manipu-
lates the global order of transactions, it can still work toward
the victim transaction even if the transaction has already
been intra-block frontrun. In the following sections, we will
disclose the vulnerabilities of DAG-based blockchains to the
inter-block frontrunning attack6.

3. Problem Definition

This section formally defines a new inter-block frontrun-
ning attack, followed by the threat and system models.

3.1. Inter-block Frontrunning Attack

As illustrated in Section 2.1, a DAG-based SMR relies
on a deterministic block ordering rule to achieve efficient
ordering for blocks. While guaranteeing all honest nodes
maintain a consistent order for blocks, the ordering rule does
not capture the rational order relationship that is resistant to
order manipulations. We find that the lack of such property
renders the existing DAG-based SMR protocols vulnerable
to a new frontrunning attack, called inter-block frontrunning
attack. On a high level, through manipulating the order of
blocks, this attack can manipulate the order of transactions
of these manipulated blocks, making the attacking trans-
action executed before the victim transactions. Formally,
the inter-block frontrunning attack can be defined with a
committing order relationship as follows:

Definition 3 (Block committing order). Let ≺C denote
a block committing order relation in a DAG-based SMR.
Given two distinct blocks Bi and Bj , we define Bi ≺C Bj

if Bi is ordered before Bj after they are committed.

Definition 4 (Inter-block Frontrunning). A block Bv is said
to be frontrun by a block Ba from the attacker Na if Na

creates Ba after witnessing Bv and eventually Ba ≺C Bv.

6. For simplicity, we will use the term frontrunning attack to exclusively
represent the inter-block frontrunning attack in the rest of this paper.

To elaborate further, the block committing order ≺C

defines an order relation only for blocks that are eventually
committed. (Note that a block may not be committed if
the block cannot be traversed by any anchor.) Moreover,
we consider the frontrunning attack a purposeful order
manipulation as previous works [2]–[5]. In other words,
the inter-block frontrunning attack intentionally orders the
attacking block Ba before the target block Bv containing
specific content (e.g., involving significant cryptocurrency
exchange), rather than arbitrarily ordering Ba before any
other block. Therefore, Ba is created and propagated to the
network later than Bv.
The goal of the attack. In our presented inter-block fron-
trunning attacking game, the goal of the attacker is to make
its attacking block Ba eventually ordered and committed
before the victim block Bv, i.e., achieving Ba ≺C Bv. As
we will present in Section 4, the attacker can adopt some at-
tacking strategies to improve the probability of achieving the
attacking goal. Before delving into these attacking strategies,
we define the threat and system models for a DAG-based
SMR for illustration purposes.

3.2. Threat and System Models

This paper considers two types of adversaries: Byzantine
and frontrunning attacker. Byzantine nodes are defined as
adversaries that can behave arbitrarily to violate the security
properties of the DAG-based SMR (i.e., safety and liveness),
but are computationally bounded and cannot break standard
cryptographic constructions. Frontrunning attackers are de-
fined as adversaries that try to manipulate the order between
blocks, i.e., launch the inter-block frontrunning attack. On
the contrary, a node is honest if it is neither a Byzantine
node nor a frontrunning attacker.

We consider a DAG-based SMR consisting of n nodes
(or called validators). Under a non-synchronous network, the
Byzantine fault tolerance of the DAG-based SMR t satisfies
t < n/3 [18]–[22]. Moreover, we assume there are fl (fl ≤
t < n/3) Byzantine nodes and fa (fa < n) frontrunning
attackers. We allow up to n − 1 frontrunning attackers to
exist in the system. This is rational in practice because (i)
every node seeking to maximize profits could potentially
engage in frontrunning attacks [3], [44]; (ii) frontrunning
attackers do not compromise the safety and liveness, i.e.,
the DAG-based SMR can still work regardless of fa. Note
that fa + fl < n because we aim to ensure the presence of
at least one honest node (i.e., victim) whose blocks can be
frontrun in the attacking game. For illustration purposes, we
assume the fa frontrunning attackers are attacking the same
victim block Bv, and the attacking block Ba created by a
designated frontrunning attacker Na is used to illustrate the
attacking process. Nevertheless, frontrunning attackers are
not aware of each other and might compete with each other.

The honest nodes and frontrunning attackers collaborate
to build an ever-growing DAG, similar to how nodes operate
in a DAG-based SMR without frontrunning attackers. For
the consensus layer, this paper focuses on the DR-first order-
ing rule (illustrated in Figure 2b) as it is widely employed by

5

open-source DAG-based SMR protocols, such as Tusk [18],
Bullshark [19], Mysticeti [21], and Sui lutris [25]. Addition-
ally, the local ordering preference (LOP) is assumed to be
based on the descending order of digests of blocks, similar to
the implementations of Tusk [18] and Bullshark [19], which
are representative since many subsequent DAG-based SMR
protocols [20], [22], [25] claim to be built on them.

4. Inter-block Frontrunning Attacking Game

The block ordering rule presents frontrunning attackers
with new opportunities to frontrun transactions in DAG-
based SMR. In this context, the designated frontrunning
attacker Na aims to make its attacking block Ba ordered
before a victim block Bv from node Nv even though Ba is
created after Bv. The attacking process can be modeled as a
game between a victim and frontrunning attackers, where the
frontrunning attackers are said to win the game if they suc-
cessfully frontrun Bv with the Ba. In this section, we give
an insight into the winning rules of the game (Section 4.1).
Guided by these rules, we exploit three attacking strategies
for the frontrunning attackers to increase the probability of
winning: the fissure attack (Section 4.2), the speculative
attack (Section 4.3), and the sluggish attack (Section 4.4).

4.1. Winning Rules in the Game

DR-first ordering rule revisited. Referring back to the DR-
first ordering rule, once a new anchor is selected, nodes
traverse all historically uncommitted blocks of the anchor
with a depth-first traversal and order the traversed blocks
based on their round numbers. In this context, if a block is
traversed first and associated with a smaller round number,
then the block will eventually be ordered and committed
first. This actually indicates two winning rules for the fron-
trunning attackers, where we consider both the attacking
block Ba and the victim block Bv are ordered by the same
anchor (i.e., they are traversed within the same tree)7:

Winning Rule 1 (WR1). If both Ba and Bv belong to the
same round, and Ba is to the left of Bv within the tree
spawned by an anchor, then Ba ≺C Bv.

Winning Rule 2 (WR2). If Ba belongs to a round smaller
than the round of Bv, then Ba ≺C Bv.

Example: Figure 3 illustrates the winning rules for the
frontrunning attackers who are frontrunning either the block
Bi

v or Bi+1
v with the attacking block Bi

a. In Figure 3a, block
Bi+2

3 is selected as an anchor, and the DR-first ordering
rule is employed to order the causal history of Bi+2

3 . In the
LOP of Bi+2

3 , Bi+1
a is prioritized for traversal compared to

Bi+1
v . As Bi+1

a connects to Bi
a but lacks a connection to

Bi
v, traversal from Bi+1

a is feasible for Bi
a but not for Bi

v.
Instead, Bi

v is traversed from Bi+1
v , indicating that Bi

v is
to the right of Bi

a within the tree. According to the WR1,

7. The scenarios where Ba and Bv are ordered by different anchors will
be discussed in Appendix A, as these scenarios render the attack irregular.

① ②
④

LOP
③

𝑁!

𝑁&

𝑁$

𝑁%

𝐵"#

𝐵&#$%

𝑟" 𝑟"&' 𝑟"&%

𝐵'#

𝐵(#

𝐵&#

𝐵(#$%

𝐵'#$%

𝐵"#$%

𝐵&#$'

𝐵(#$'

𝐵'#$'

𝐵"#$'

(a) A temporary DAG structure

𝐵(#$'

𝐵&#$% 𝐵"#$% 𝐵(#$%

𝐵(# 𝐵'# 𝐵&# 𝐵"#

𝐵&# ≺*𝐵"#

𝐵'#$%

(b) Attack in same round

𝐵(#$'

𝐵&#$% 𝐵"#$% 𝐵(#$%

𝐵(# 𝐵'# 𝐵&# 𝐵"#

𝐵'#$%

𝐵&# ≺*𝐵"#$%

(c) Attack in distinct
rounds

Figure 3: Illustration of the winning rules: (a) a DAG from
round ri to round ri+2, containing an attacking block Bi

a

and two victim blocks Bi
v and Bi+1

v ; (b) block Bi
a is ordered

before block Bi
v as Bi

a is to the left of Bi
v; (c) Bi

a is ordered
before Bi+1

v as Bi
a has a smaller round number.

Bi
a is eventually ordered before Bi

v, as shown in Figure 3b.
On the other hand, when Bi+1

v is the victim block that the
attackers are frontrunning, Bi

a is associated with a smaller
round than Bi+1

v . According to the WR2, Bi
a is eventually

ordered before Bi+1
v , as shown in Figure 3c.

Attacks in a nutshell. According to the winning rules, if
the frontrunning attackers want to launch a successful attack,
their attacking block Ba must be either in the tree closer to
the left or created in a smaller round (i.e., at a lower tree
level) than the victim block Bv. To this end, the high-level
idea of the frontrunning attack is to manipulate the formation
of the tree where Ba and Bv are ordered, such that Ba is
either to the left of Bv within the tree or at a lower level of
the tree than Bv. In the following sections, we will present
three attacking strategies that the frontrunning attackers can
employ to manipulate the formation of a tree to increase
their probability of winning the game.

4.2. Fissure Attack

According to the WR1, the frontrunning attack will be
successful if Ba is situated in the tree further to the left
than Bv. To construct a tree with blocks lying in specific
positions, we observe that there exists a connection priority:

Observation 4.2.1 (Connection Priority). Given two
blocks Bi

a and Bi
v from the same round ri that are ordered

and committed by the same anchor, if Bi
a is connected

(directly or indirectly) with more successor blocks than Bi
v,

then Bi
a is more likely to be on the left of and traversed

before Bi
v within the tree spawned by the anchor, and vice

versa.

The connection priority indicates the impact of subse-
quent connections on the ordering priority for blocks within
the same round. To elaborate, a block Bi

1 connected by more

6

𝑁"

𝑁'

𝑁(

𝑁&

𝐵"#
𝑟# 𝑟#$% 𝑟#$'

𝐵&#

𝐵(#$'

𝐵&#$% 𝐵&#$'

𝐵'#$%

𝐵"#$'

𝐵'#$'

𝐵&#$%

𝐵"#$' 𝐵(#$' 𝐵&#$'

𝐵'#$%

𝐵&# 𝐵"#75%

𝐵"#$%

𝐵'#$'

𝐵(#$%

𝐵"# 𝐵&#

𝐵"#$%

𝐵(#$%

① ② ④LOP ③

…

…

…

…

25%

succ
eed

fail

Fissure 𝑁!’s blocks

Anchor
in 𝑟#$'

Figure 4: The fissure attack: the frontrunning attacker Na

creates a fissure between its blocks and the victim Nv’s
blocks by excluding Nv’s blocks from its connections. With
the fissure attack, there are more paths (i.e., 7 paths) to Bi

a

than to Bi
v (i.e., 5 paths) from the anchor round ri+2, leading

that Bi
a is more likely ordered before Bi

v, i.e. 75% vs. 25%.

successor blocks (including direct connections from the next
round and indirect connections via a path) means that more
paths can reach Bi

a from the subsequent rounds, resulting in
a higher probability that Bi

a is closer to the leftmost subtree.
When employing the DR-first ordering rule, Bi

a is more
likely to be traversed and therefore ordered before Bi

v.

Attacking Process. Based on the above observation, the
frontrunning attackers can launch a fissure attack to make
their block ordered before the victim block (as much as
possible) by strategically selecting parent blocks for their
created block. Specifically, the frontrunning attackers always
exclude the blocks created by the victim from the connec-
tions of their blocks, such that the victim block has fewer
connections than the attacking block.

Figure 4 illustrates an example of the fissure attack,
where Nv is the victim and Na is the frontrunning attacker.
In this example, Na is trying to use its attacking block Bi

a to
frontrun the victim’s block Bi

v. According to the connection
priority (Observation 4.2.1), if Bi

a is connected with more
successor blocks compared to Bi

v, then Bi
a is more likely

to be traversed (and consequently ordered) before Bi
v, i.e.,

the frontrunning attack is more likely to succeed. To in-
crease the successful probability of the attack, Na creates
a fissure between its blocks and Nv’s blocks by excluding
Nv’s blocks from the connections of its blocks. With this
fissure, Nv’s blocks (including Bi

v) will never be directly
traversed by Na’s blocks and therefore are less likely to be
traversed before Na’s blocks. (Note that Nv’s blocks can
still be traversed by Na’s blocks indirectly, e.g., from the
path ⟨Bi+2

a , Bi+1
2 , Bi

v⟩.) To conclude, by constructing such a
fissure, the number of paths reaching Bi

v decreases, thereby
increasing the probability of traversing Bi

a before Bi
v. For

instance, in Figure 4, the number of paths from blocks
of round ri+2 to Bi

v is 5, less than 7 paths to Bi
a. Once

selecting an anchor in round ri+2, there are 75% probability

leading to Bi
a ≺C Bi

v (i.e., if one of Bi+2
v , Bi+2

3 , and Bi+2
a

is the anchor), which is higher than 25% probability that
Bi

v ≺C Bi
a (i.e., Bi+2

2 is the anchor). In other words, the
frontrunning attack is more likely to succeed.

4.3. Speculative Attack

In the formation of a tree, the local ordering preference
(LOP) also affects the relative positions between blocks in
the tree and therefore decides the order of blocks accord-
ing to WR1. To elaborate, assume blocks Bi

a and Bi
v are

connected by and traversed from a subsequent block Bi+1
3 .

If Bi
a is locally ordered before Bi

v in Bi+1
3 ’s LOP, then

Bi
a ≺C Bi

v when employing DR-first ordering rule. As
claimed in Section 3.2, the LOP is implemented to sort
blocks by descending order of their digests. Therefore, to
construct a tree with blocks lying in specific positions, we
observe that there exists a digest priority:

Observation 4.3.1 (Digest Priority). Given two blocks
Bi

a and Bi
v from the same round ri that are ordered and

committed by the same anchor, if Bi
a is with a larger digest

than Bi
v, then Bi

a is more likely to be on the left of and
traversed before Bi

v within the tree spawned by the anchor,
and vice versa.

Attacking Process. Given the above observation, the fron-
trunning attackers can manipulate the local order of blocks
by manipulating the digests of their blocks, launching a
so-called speculative attack to make the attacking block
more likely to be ordered before the victim block. Briefly,
when moving to a new round, the frontrunning attacker
speculatively creates multiple new blocks and then picks the
block with the largest digest to broadcast. As a larger digest
is ordered first in the LOPs of the subsequent blocks, the
new block picked by the frontrunning attacker speculatively
is more likely to be ordered before the victim’s block.

Figure 5 demonstrates an example of the speculative
attack. Assume the frontrunning attacker Na is on the same
round ri as the victim Nv when it receives the victim
block Bi

v from Nv. To frontrun Bi
v, Na first creates j

frontrunning blocks {Bi
a1
, · · · , Bi

a∗
, · · · , Bi

aj
} belonging to

the same round as Bi
v by some way, e.g., packing different

transaction batches into blocks8. After that, Na picks the
newly created block with the maximum digest (assume it
is Bi

a∗
in Figure 5) and sends it to the network. (Note

that the other created blocks are abandoned and would not
appear in the network to prevent equivocations.) With the
speculative attack, it is more possible for the frontrunning
attacker to create a new block with a larger digest than
the digest of Bi

v. If this happens, then when moving to the
next round ri+1, nodes that receive both Bi

v and Bi
a∗

will
order Bi

a∗
before Bi

v in their LOPs, leading to a successful
frontrunning attack, as shown in the step (3) of Figure 5.

8. Note that in the implementations of [18], [19], the digest of a block
is calculated with the round number, the name of the creator, the digests
of parent blocks, and the metadata of transaction batches it piggybacks.
Sampling distinct transaction batches is an easy and efficient (but not the
only) way to obtain distinct blocks with different digests.

7

① ②
④

Local order based
on block digest ③

𝑁)

𝑁%
𝑁&
𝑁*

𝐵!"
𝑟" 𝑟"

𝐵$!
"

𝐵!"
𝑟"

𝐵$∗
"

𝐵!"
𝑟"&'

𝐵$#
"…𝐵$∗

" …

(2) Create
many blocks

(3) Pick the one with
the maximum digest

(1) Monitor a
victim block

create broadcast

𝐵$∗
"Committing

order ≺*𝐵!"

Figure 5: The speculative attack: the frontrunning attacker
Na speculatively creates multiple blocks in a round and only
broadcasts the one with the maximum digest to the network.

4.4. Sluggish Attack

According to WR2, the frontrunning attack will be
successful if Ba is created in a smaller round than Bv. This
indicates a round priority in the DR-first ordering rule:

Observation 4.4.1 (Round Priority). Given two blocks Bi
a

and Bj
v from distinct rounds but are ordered and committed

by the same anchor, if Bi
a is associated with a smaller round

number than Bj
v (i.e., ri < rj), then Bi

a must be ordered
before Bj

v, and vice versa.

Attacking process. The frontrunning attacker can utilize
this round priority to launch a so-called sluggish attack.
Briefly, as blocks with smaller round numbers have ordering
priority, the frontrunning attacker can intentionally delay its
block creation and dissemination, thus slowing down the
advancement of its round view. In this case, the designated
frontrunning attacker Na in a sluggish round can make its
attacking block ordered before the victim block even though
the victim block appeared in the network earlier. Figure 6
illustrates an example of the sluggish attack. Specifically,
to frontrun the victim block Bi+1

v , Na monitors the round
number of the victim Nv and always keeps its round number
lower than Nv’s round number. This is feasible because:
(i) when receiving a new block belonging to a round (e.g.,
ri+1) from Nv, Na can make sure that Nv must finish its
round ri; (ii) Na then keeps its round number lower than
ri by delaying the creation of its block belonging to round
ri. Once Na receives the target block Bi+1

v from Nv, it
constructs and propagates its attacking block Bi

a. As Na is
under a smaller round than Nv, Bi

a will be associated with a
smaller round number than Bi+1

v . Beneficial from the round
priority, when both Bi

a and Bi+1
v are ordered and committed

by the same anchor (i.e., the anchor Bi+2
2 in Figure 6), Bi

a is
ordered before Bi+1

v , i.e., the frontrunning attack succeeds.

5. Evaluation

In this section, we evaluate the effectiveness of the pro-
posed frontrunning attack on two open-source DAG-based

𝐵*!

𝑁)

𝑁$

𝑁%

𝑟! 𝑟!"#
𝐵)!"#

𝑟!"$

sluggish
block

𝐵$!"$

𝐵*!

𝐵)!"#

𝐵$!"$

DR-first

⋯ ≺. 𝐵*! ≺. 𝐵)!"# ≺. ⋯ ≺. 𝐵$!"$
Committing order

order

𝑁*

Figure 6: The sluggish attack: the frontrunning attacker Na

slows down to move to a new round so that it can create an
attacking block Bi

a with a smaller round number than the
victim block Bi+1

v .

SMR protocols, including Tusk [18] and Bullshark [19].
Through our evaluation, we identify some factors that can
significantly influence the effectiveness of the attack. No-
tably, some of these factors are highly influential and can
be readily manipulated by frontrunning attackers. This high-
lights the urgent need for the development of pertinent
mechanisms to counteract this newly discovered attack.

5.1. Implementation and Evaluation Metric

We implement all three attacking strategies (discussed in
Section 4) based on the codebase of each comparison DAG-
based SMR protocol, i.e., Tusk9 and Bullshark10. As many
subsequent DAG-based SMR protocols (such as Shoal [20],
Sailfish [22], and Sui lutris [25]) claim to be implemented
based on Bullshark or Tusk, we believe our attack im-
plementation and evaluation are representative. Tusk and
Bullshark adopt a primary-worker architecture to disperse
transactions and construct blocks. In the primary-worker
architecture, there are fw workers constructing transaction
batches for each node. When creating blocks, nodes pack-
age the metadata (i.e., the hash) of the transaction batches
received from workers into the blocks. Moreover, both Tusk
and Bullshark adopt the DR-first ordering rule, and the LOP
is based on the descending order of digests of blocks. The
digest of a block is calculated with the round number, the
name of the block creator, the digests of connected parent
blocks, and the metadata of transaction batches it piggy-
backs. Additionally, similar to the evaluation settings of
Tusk and Bullshark, the fl Byzantine nodes are implemented
as crashed nodes, i.e., they do not create blocks during
the runtime of the protocol. We call these fl Byzantine
nodes liveness attackers in the rest of this section since
they are working on breaking the liveness of DAG-based
SMR. Furthermore, there are fa frontrunning attackers in the
protocol. Each frontrunning attacker in our implementation
keeps monitoring blocks from the victims and can perform
the following three attacking strategies:

9. https://github.com/asonnino/narwhal/
10. https://github.com/asonnino/narwhal/tree/bullshark. Note that this is

an implementation of the partially synchronous version of Bullshark [31].

8

https://github.com/asonnino/narwhal/
https://github.com/asonnino/narwhal/tree/bullshark

• Fissure attack: Whenever creating a new block, the
frontrunning attacker excludes blocks of the victim
node that it is attacking from the connections of its
new block.

• Speculative attack: Whenever a frontrunning attacker
is ready to create a new block, it first calculates at
most pmax digests of blocks with different samples
of transaction batches, where pmax is an attacking
parameter used in our evaluation for the speculative
attack. Then, the frontrunning attacker constructs the
block with the maximum calculated digest and sends
it to other nodes.

• Sluggish attack: The frontrunning attacker multiplies
the timeout of creating a new block by an attacking
factor ts. By doing this, the attacker delays the process
of block creation.

To evaluate the effectiveness of the frontrunning attacks
using various attacking strategies-specifically, how much
these attacking strategies can enhance the success rate of
making the attacking block ordered before the victim block-
we implement a baseline in the experiments:

• Baseline: In the baseline attack, a frontrunning attacker
monitors the victim blocks and constructs attacking
blocks without manipulating the order of blocks.

Due to the simplicity, the implementation of the above
attacking strategies (including the baseline) is lightweight
with about 700 lines of code in both Tusk and Bullshark.
Evaluation metric. In the following evaluation, we use the
attack success rate (ASR) to evaluate the effectiveness of
the frontrunning attack, which is calculated by the probabil-
ity that frontrunning attackers eventually win the attacking
game, i.e., they successfully frontrun the victim block.

5.2. Experimental Setup

Our evaluation is conducted to analyze the frontrunning
attack happening across blocks. To this end, we need to
collect the block data, including their creators, connected
blocks, and committed positions11. However, we cannot de-
rive the historically real-world block data from the deployed
DAG-based blockchain (e.g., Sui) since their blockchain
explorers (e.g., suiscan [45]) do not archive the block data.
Collecting the block data by becoming a validator (with
modified code) of the real-world DAG-based blockchain is
economically unrealistic. For instance, a validator candidate
must accrue at least 30M SUI of state (approximately $45M
at the time of writing) before it can request to join in the
validator set of Sui blockchain12.

Since we cannot collect real-world block data for replay,
we evaluate the proposed frontrunning attacks using real-
time block data generated locally during our experiments.
Specifically, we designate a victim node for each test to
generate victim blocks randomly. All frontrunning attackers
attack the same victim blocks by constructing corresponding

11. The committed position is same as the term block height used in
Ethereum, which can be used to indicate the order among blocks.

12. https://docs.sui.io/guides/operator/validator-config

attacking blocks upon monitoring the victim blocks. In our
implementation, all blocks are associated with a new label
block height to indicate the committed order of blocks. All
block information, including the creators and block heights,
is recorded in logs for the analysis of frontrunning attacks.

We conducted month-long experiments to comprehen-
sively evaluate the effectiveness of the attack with different
attacking strategies. These experiments were executed in
both a single server (Section 5.3 - 5.5) and a geo-distributed
AWS environment (for large-scale network evaluations, see
Section 5.6). Specifically, the server runs Ubuntu 22.04 and
is equipped with 48 CPU cores, 128GB of RAM, and 10TB
SSD. Each measurement running in the server contains at
least 500 times of attacks until we get a steady attack
success rate. In the AWS setting, we deployed and ran our
experiments in t3x.large EC2 instances, each of which has 4
CPU cores, 16GB of RAM, and a 5 Gbps bandwidth. Each
measurement running in the AWS environment contains 100
times of attacks for monetary savings, yet we are able to
show the incredible effectiveness of the attack. The two
attacking parameters are respectively set by pmax = 50 and
ts = 2 as we observed from our evaluation that there are
less than 50 digests the attacker can create in each round,
and ts = 2 is enough for the attacker to be processing in
slower rounds than honest nodes.

5.3. Attack Effectiveness under Multiple Frontrun-
ning Attackers

We first evaluate the effectiveness of different attacking
strategies under varying ratios of frontrunning attackers
fa/n. Specifically, we set the ratio of frontrunning attackers
fa/n = 0.1, 0.3, 0.5, 0.7, 0.9. We conduct two groups of
experiments with 10 nodes and 30 nodes respectively (i.e.,
n = 10 and n = 30). Figure 7 and 8 respectively show the
attack success rates on Bullshark and Tusk. For each figure,
the left two sub-figures represent results with n = 10 under
varying numbers of liveness attackers fl, and the right two
sub-figures represent results with n = 30 under varying fl.
Note that in the figures, we start the y-axis at 30% (or 20%)
to better illustrate the changes and differences.
Effectiveness of the fissure attack. From the experiment
results, we observe that given n, fl, and fw, the fissure attack
is more effective with increasing fa. Incredibly, compared
to the baseline (with around 48% ASR), the fissure attack
can enhance the ASR by approximately 4% to 47% under
varying ratios of frontrunning attackers, achieving up to
94.81% ASR on Bullshark. For Tusk, the fissure attack can
enhance the ASR by up to 45% (compared to about 42%
ASR of the baseline), achieving up to 87.31% ASR.

Moreover, we observe some exceptional cases. In the
cases where only the victim node exists in the system (e.g.,
n = 10, fl = 0, fa = 9 or n = 10, fl = 2, fa = 7), the
attackers are unable to frontrun the victim blocks. This is
primarily because any anchors cannot traverse the victim
block and, consequently, the victim block will not be com-
mitted. To elaborate, when fl + fa = n − 1, there are no
honest nodes, except for the victim itself, to connect blocks

9

https://docs.sui.io/guides/operator/validator-config

Baseline Fissure Speculative Sluggish

30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7 0.9
30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7
30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7

𝑛 = 10, 𝑓! = 0, 𝑓" = 2 𝑛 = 10, 𝑓! = 2, 𝑓" = 2 𝑛 = 30, 𝑓! = 0, 𝑓" = 2 𝑛 = 30, 𝑓! = 6, 𝑓" = 2

The ratio of front-running attackers 𝑓#/𝑛 The ratio of front-running attackers 𝑓#/𝑛 The ratio of front-running attackers 𝑓#/𝑛 The ratio of front-running attackers 𝑓#/𝑛

A
tta

ck
 S

uc
ce

ss
 R

at
e

(%
)

30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7 0.9

Figure 7: The attack effectiveness on Bullshark under varying numbers of frontrunning attackers fa.

Baseline Fissure Speculative Sluggish

30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7 0.9
20
30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7
30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7 0.9
30
40
50
60
70
80
90

100

0.1 0.3 0.5 0.7

𝑛 = 10, 𝑓! = 0, 𝑓" = 2 𝑛 = 10, 𝑓! = 2, 𝑓" = 2 𝑛 = 30, 𝑓! = 0, 𝑓" = 2 𝑛 = 30, 𝑓! = 6, 𝑓" = 2

A
tta

ck
 S

uc
ce

ss
 R

at
e

(%
)

The ratio of front-running attackers 𝑓#/𝑛 The ratio of front-running attackers 𝑓#/𝑛 The ratio of front-running attackers 𝑓#/𝑛 The ratio of front-running attackers 𝑓#/𝑛

Figure 8: The attack effectiveness on Tusk under varying numbers of frontrunning attackers fa.

from the victim. The victim block is therefore only traversed
once a victim’s block is selected as an anchor. However,
the anchor belonging to the victim is not connected by
enough subsequent blocks and is considered invalid. (Note
that DAG-based SMR protocols consider a selected anchor
valid only if it was connected by at least t+1 blocks, where
t = ⌊n

3 ⌋ is the Byzantine fault tolerance of the protocol.)
Therefore, the victim block would never be ordered and
committed. Furthermore, we observe the fissure attack even
degrades the ASR on Tusk when n = 10, fl = 2, fa = 1 as
shown in Figure 8. We analyze one hypothesis explaining
this degradation case in Appendix C. Briefly, the attackers
omitting the victim’s blocks might require more time to
move to new rounds and thereby make their blocks con-
nected by fewer honest nodes than the victim block.

Effectiveness of the speculative attack. For both Bullshark
and Tusk protocols, the speculative attack is affected slightly
by the ratio of frontrunning attackers. By modeling the
speculative attack in Appendix B.3, we show that the spec-
ulative attack is independent of the number of frontrunning
attackers but is very relevant to the number of workers fw
(which will be also illustrated in Section 5.5). Nonethe-
less, compared to the baseline with only two workers (i.e.,
fw = 2), the speculative attack can still enhance the ASR by
about 18% on Bullshark and by about 15% ASR on Tusk.

Effectiveness of the sluggish attack. The sluggish attack
exhibits fluctuations in its effectiveness based on the ratio
of frontrunning attackers. Specifically, the sluggish attack
can enhance the ASR when there are either very few or
very many frontrunning attackers, but it may degrade the
ASR otherwise For instance, under n = 10 and fl = 0
(i.e., the leftmost sub-figure in both Figure 7 and 8), the
sluggish attack can increase the ASR by 15% with fa = 1
on Tusk but decrease the ASR by 8% with fa = 5 on
Bullshark. This is primarily because the sluggish attack is
more likely to experience an ordering delay when many

frontrunning attackers are slowing down the creation of
blocks. When experiencing an ordering delay, the attacking
block is ordered by a later anchor than the anchor that orders
the victim block and therefore is ordered after the victim
block (see Appendix A for more details).

5.4. Attack Effectiveness under Crash Faults

We then evaluate the attack effectiveness under the live-
ness attackers fl. In our experiments, the liveness attackers
do not create any blocks and perform as crash nodes. In
this case, if the protocol decides an anchor belonging to a
liveness attacker, then the selected anchor is invalid (in fact,
it does not appear in the local DAG of any node), and the
blocks of the corresponding wave will be ordered by a later
valid anchor. To explore the impact of liveness attackers on
the attack effectiveness, we set the ratio of liveness attackers
fl/n = 0, 0.1, 0.2, 0.3. Similarly, we conduct several groups
of experiments with varying n and fa.

Figure 9 and 10 respectively show the experiment results
on Bullshark and Tusk. From these results, we observe that
the ASRs increase overall for all attacking strategies with
an increasing ratio of liveness attackers fl/n. In particular,
compared to the baseline with varying ratios of liveness
attackers fl/n, the fissure attack can enhance the ASR
by approximately 14% to 18% under fa/n = 0.3 and
by approximately 26% to 32% under fa/n = 0.5. For
the comparison between the baseline and the speculative
attack, the ASRs have been increased by about 15% to 20%
with varying fl/n on Bullshark and have been increased by
about 11% to 17% with varying fl/n on Tusk. The sluggish
attack achieves lower ASR compared to the baseline with
multiple frontrunning attackers due to the ordering delay (as
explained in Section 5.3). However, the difference in the
ASR between the sluggish attack and the baseline becomes
smaller as more liveness attackers exist in the system.

10

Baseline Fissure Speculative Sluggish

30
40
50
60
70
80
90

100

0 0.1 0.2 0.3
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3

𝑛 = 10, 𝑓# = 3, 𝑓" = 2 𝑛 = 10, 𝑓# = 5, 𝑓" = 2 𝑛 = 30, 𝑓# = 9, 𝑓" = 2 𝑛 = 30, 𝑓# = 15, 𝑓" = 2

A
tta

ck
 S

uc
ce

ss
 R

at
e

(%
)

The ratio of liveness attackers 𝑓!/𝑛 The ratio of liveness attackers 𝑓!/𝑛 The ratio of liveness attackers 𝑓!/𝑛 The ratio of liveness attackers 𝑓!/𝑛

30
40
50
60
70
80
90

100

0 0.1 0.2 0.3
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3

Figure 9: The attack effectiveness on Bullshark under varying ratios of liveness attackers fl/n.

Baseline Fissure Speculative Sluggish

30
40
50
60
70
80
90

100

0 0.1 0.2 0.3
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3

𝑛 = 10, 𝑓# = 3, 𝑓" = 2 𝑛 = 10, 𝑓# = 5, 𝑓" = 2 𝑛 = 30, 𝑓# = 9, 𝑓" = 2 𝑛 = 30, 𝑓# = 15, 𝑓" = 2

The ratio of liveness attackers 𝑓!/𝑛 The ratio of liveness attackers 𝑓!/𝑛 The ratio of liveness attackers 𝑓!/𝑛 The ratio of liveness attackers 𝑓!/𝑛

A
tta

ck
 S

uc
ce

ss
 R

at
e

(%
)

Figure 10: The attack effectiveness on Tusk under varying ratios of liveness attackers fl/n.

This is because the victim block will be more likely to
experience an ordering delay with more liveness attackers
in the system. (Recall that anchors belonging to liveness
attackers are invalid since they are not received and voted
by other nodes.) As a consequence, both the victim block
and the attacking block are still ordered and committed
by the same anchor. The above experiment results prove
the existence of the ordering delay and its impact on the
effectiveness of the frontrunning attack. To conclude, the
ratio of liveness attackers can affect the effectiveness of the
attack by affecting the formation of ordering delays.

Moreover, we observe that the enhancement of ASRs on
Bullshark is more modest compared to the more pronounced
increase observed on Tusk. This is because Bullshark adopts
a stronger round-moving rule in its partially synchronous
version [31]. Specifically, different from Tusk where nodes
move to the next round right after receiving n − t blocks,
nodes of Bullshark set a timer to wait for an anchor. In this
case, the attacking block in Bullshark has more time to be
received by other nodes and therefore is less likely to experi-
ence the ordering delay. According to the conclusion above,
the attack effectiveness in Bullshark is affected slightly by
liveness attackers.

5.5. Scale-out with Workers

We next evaluate the impact of workers on the attack
effectiveness. In the DAG-based SMR protocol, workers are
originally introduced to scale out the system by creating
retrieval transaction batches for nodes. We find that workers
in our proposed attacking game can affect the attack effec-
tiveness as well. Intuitively, with more workers, the specu-
lative attack can speculatively construct more blocks (with

different transaction batches)13 and therefore is more likely
to create a block with a larger digest than that of the victim
block. We prove this theoretical speculation in this section.
Specifically, we conduct a group of experiments by setting
the number of workers fw = 1, 2, 4, 8 respectively. Figure 11
shows the effectiveness of various attacking strategies under
varying numbers of workers connected by a node fw.

From the experiment results, we observe that the specu-
lative attack becomes more effective on both Bullshark and
Tusk with an increasing number of workers connected by
a node fw, while the effectiveness of the fissure attack and
the sluggish attack is independent of fw. Specifically, the
ASR of the speculative attack can reach up to 84.08% under
fw = 8 on Bullshark. Compared to the baseline (around
46% ASR), the speculative attack can enhance the ASR by
38%. Besides, for Tusk, the speculative attack can enhance
the ASR by approximately 33% for the baseline under
fw = 8, achieving up to 73.02% ASR. These experiment
results show the incredible effectiveness achieved by the
speculative attack. Moreover, the enhancement of the attack
effectiveness is positively related to the number of workers.
As a consequence, while the DAG-based protocol creates
more workers to help improve performance, such a scale-
out architecture also makes the protocol more vulnerable to
the frontrunning attack.

5.6. Attack Effectiveness under WAN Setting

We finally evaluate our attacks on the wide area network
(WAN) setting, where we run nodes on AWS EC2 instances
across 6 regions (3 in North America and 3 in Europe).

13. More precisely, the speculative attack is impacted by the number of
new transaction batches per round, which is determined by not only fw but
also some node parameters, e.g., the delay of creating batches. We simplify
our experiments here and give more analysis in Appendix B.1

11

Baseline Fissure Speculative Sluggish

30
40
50
60
70
80
90

100

1 2 4 8

𝑛 = 10, 𝑓# = 3, 𝑓! = 0 𝑛 = 30, 𝑓# = 9, 𝑓! = 0

30
40
50
60
70
80
90

100

1 2 4 8
30
40
50
60
70
80
90

100

1 2 4 8

𝑛 = 10, 𝑓# = 3, 𝑓! = 0 𝑛 = 30, 𝑓# = 9, 𝑓! = 0

A
tta

ck
 S

uc
ce

ss
 R

at
e

(%
)

The number of workers 𝑓" The number of workers 𝑓" The number of workers 𝑓" The number of workers 𝑓"

30
40
50
60
70
80
90

100

1 2 4 8

Figure 11: The attack effectiveness on Bullshark (left two) and Tusk (right two) under varying numbers of workers fw.

From previous experiment results, we find different attack-
ing strategies are affected by different factors. For example,
the fissure attack is mainly affected by the ratio of frontrun-
ning attackers fa/n, while the speculative attack is mainly
affected by the number of workers fw. To better reflect
attacking strategies deployed in practice, in the following
experiments, we set half of the nodes frontrunning attackers
(each of which is associated with 1 worker) for the fissure
and sluggish attacks. For the speculative attack, we set 1/3
nodes frontrunning attackers, each of which is associated
with analogous 8 workers.
Attacks in various network scales. We first evaluate the
scalability of our attacks, i.e., the attack effectiveness under
various network scales. To this end, we set different numbers
of nodes n =30, 52, 79, and 100 (same-level network scale
as Sui). The experiment results are shown in Table 1, from
which we find the speculative attack is the most effective and
can achieve 92.86% ASR on Bullshark and 86.27% ASR on
Tusk in a realistic network scale n = 100. Additionally, the
ASRs of the fissure and speculative attacks enhance with the
increasing network scale. One hypothesis explanation is that
frontrunning attackers can benefit from the increasing delay
of moving to new rounds as the network scales. To elaborate,
for instance, since workers create transaction batches at a
fixed speed, a speculative attacker can create more specula-
tive blocks if the delay of moving to new rounds increases.
With more speculative blocks, the speculative attacker is
more likely to inter-block frontrun the victim block.
Attacks under crash faults. We then evaluate the impact
of crash faults on the attack effectiveness under a realistic
network, where we set n = 30. Table 2 concludes the
experiment results. We can observe that the speculative
attack is still the most effective. In particular, the speculative
attack can achieve 87.5% ASR on Bullshark and 85.32%
ASR on Tusk, which highlights the critical need to design
countermeasures for this inter-block frontrunning attack. In
the next section, we will discuss countermeasures.

TABLE 1: Attack success rate (%) with varying numbers of
nodes n under the WAN setting.

Bullshardk Tusk
n 30 52 79 100 30 52 79 100

Baseline 50.76 48.53 49.23 47.62 39.81 40.38 44.19 44.23
Fissure 73.23 79.07 80.26 78.72 60.95 66.67 62.79 67.31

Speculative 85.19 89.66 92.98 92.86 81.08 85.42 87.76 86.27
Sluggish 41.28 39.02 40.0 39.13 35.64 42.86 41.07 47.62

TABLE 2: Attack success rate (%) with varying ratios of
crashed nodes (i.e., fl/n) under the WAN setting.

Bullshardk Tusk
fl/n 0 0.1 0.2 0 0.1 0.2

Baseline 50.76 46.36 51.43 39.81 34.21 38.18
Fissure 73.23 72.93 81.97 60.95 66.97 66.67

Speculative 85.19 87.5 85.59 81.08 82.52 85.32
Sluggish 41.28 41.44 41.59 35.64 40.18 41.96

6. Mitigations

In this section, we will discuss some mitigations against
the inter-block frontrunning attack on DAG-based SMR
protocols, as well as their limitations. It is worth noting
that the term frontrunning is not a new concept on the
blockchain but the existing exploited frontrunning attacks
focus on manipulating the order of transactions within a
block. Essentially, the inter-block frontrunning attack is
similar to the traditional (intra-block) frontrunning attack,
where both aim to place the attacker’s transactions before the
victims’ transactions. Therefore, motivated by existing coun-
termeasures towards the intra-block frontrunning attack, we
can mitigate the inter-block frontrunning attack from two
directions: order fairness and content agnostic.
Order fairness. The first one is to introduce the order-
fairness property to the block ordering rule as many order-
fairness consensus protocols do [35]–[40]. The idea of
preventing frontrunning attacks with order-fairness property
is to define a reasonable ordering indicator based on the
time when blocks are created so that the frontrunning block
(which is created later than the victim block) cannot be
ordered before the victim block. For instance, similar to
Pompē [35], each node creates blocks piggybacked on the
signed timestamps from other nodes, with which nodes then
order blocks based on the middle timestamp of their piggy-
backed signed timestamps. The timestamp-based mitigation
can guarantee the attacker cannot frontrun blocks as long
as other honest nodes have a consistently received order
for blocks; however, it will fail if honest nodes are not
sufficiently synchronized or suffer from some network-level
attacks (e.g., the adversary delays messages among honest
nodes). Furthermore, we can also refer to the solutions
from [36], [37], [40], where each node first locally orders
blocks according to the receiption time, and then these local
orders are integrated into a global order via a fair algorithm.
However, these solutions require a longer time to order and

12

commit blocks because nodes must wait to receive enough
local orders to determine a global order.
Content-agnostic ordering. Another direction to prevent
frontrunning attacks is to integrate the content-agnostic or-
dering into the block ordering rule [46]–[48]. The high-level
idea is to hide the content of transactions/blocks via some
encryption algorithms and reveal the transactions/blocks af-
ter they are ordered. In this case, the frontrunning attacker
might neither construct the attacking blocks nor manipulate
the order among blocks since it cannot recognize the ”target
block” containing the transactions it wants to frontrun. For
instance, Fino [47] integrates a secret sharing scheme into
the DAG-based SMR protocol, where each user first en-
crypts the content of a transaction and secret shares its key to
nodes, and eventually, nodes decrypt the transaction after it
is ordered. However, the content-agnostic ordering solutions
have several intrinsic limitations. First, they introduce extra
computation and communication overhead for both users
and nodes. Second, they cannot prevent content-agnostic
frontrunning attacks [49], where the frontrunning attacker
just wants to order its block before another block from its
perceived victim node.
Non-deterministic ordering. The existing frontrunning mit-
igations can be somehow followed, but they all have limita-
tions when applied to prevent our inter-block frontrunning
attack in DAG-based SMR protocols, as discussed above.
We find that there is another simple mitigation aiming to
resist the inter-block frontrunning attack. Specifically, the
frontrunning strategies proposed in Section 4 are severely
relying on the block ordering rule. As the block ordering rule
is deterministic (and public), the frontrunning attackers can
intentionally construct a DAG that prioritizes ordering their
blocks with our proposed attacking strategies. Therefore, to
prevent such intentional behaviors, the DAG-based SMR
protocol can adopt a random block ordering rule, which
combines randomness generated in rounds to order all his-
torically uncommitted blocks of each anchor. For instance,
one can hash the randomness and the block digest, and order
blocks based on the values of the hash results. Since the
hash results are random (but note that they are identical
for every node), there will be no ordering priorities that are
originally constructed by the attacking strategies. Eventually,
the attackers will not achieve a considerable success rate
with the proposed attacking strategies. However, such a
random block ordering rule inevitably ignores the happen-
before relationship among blocks (i.e., a block B1 should
be ordered before another block B2 if B1 is connected by
B2 or there is a path from B2 to B1), which may lead
to some application-layer problems, e.g., many transactions
with data dependencies may experience execution failure
and have to rollback. Additionally, such hashing operations
will introduce extra computation overhead.
Transactions reordering. Moreover, nodes can globally
reorder transactions after the DR-first ordering rule to elim-
inate the impact of inter-block frontrunning. For instance,
the Sui blockchain currently reorders all transactions based
on their gas fees after validators collect all transactions of
blocks via the DR-first ordering rule. This reordering oper-

ation can make our proposed attacking strategies ineffective
as they only manipulate the order of blocks generated by the
DR-first ordering rule. However, it may make the protocol
more vulnerable to frontrunning attacks using the existing
attacking strategies, e.g., by setting higher transaction fees.
Specifically, after monitoring a victim transaction TXv from
a validator’s block, the frontrunning attacker can construct
a block including the attacking transaction Txa. To make
frontrunning succeed, the frontrunning attacker only needs
to set the gas fee of TXa higher than that of TXv without
crafting the formation of DAG as our proposed attacks
do. Note that such a gas-based attacking strategy in DAG-
based blockchains is even more effective compared to that
employed in non-DAG blockchains. This is because, unlike
the existing frontrunning attacks that could fail if Txa (even
with a high gas fee) is not included in the same block as
TXv, the frontrunning attack in the DAG-based blockchain
allows Txa and Txv to be included in distinct blocks.

7. Conclusion and Discussion

In this paper, we present a new frontrunning attack on
DAG-based blockchains. We further discover three attacking
strategies that the attackers can employ to increase the attack
success rate. Our extensive experiments show remarkable
attack effectiveness, highlighting the urgency of designing
an effective countermeasure against the proposed attack.
Consensus instability and performance loss. Inter-block
frontrunning attacks may further cause impacts on the con-
sensus stability and performance of DAG-based blockchains.
Specifically, since the block ordering rule is deterministic, a
frontrunning attacker knows whether its attacking block will
benefit from the causal order of a received leader block Bi

L.
If Bi

L implies that the attacker’s block will be ordered before
the victim block, the attacker includes Bi

L in its newly
created block in the next round ri+1 (i.e., votes for the leader
block). Otherwise, the attacker excludes Bi

L. This vote-for-
favor behavior can cause a leader block to fail to receive
sufficient votes for commitment, ultimately preventing the
leader block and its causal history from being committed in
its wave. Additionally, given that the inter-block frontrun-
ning necessitates the attacking block associating a round
equal to and smaller than that of the victim block, inter-
block frontrunning attackers may deliberately slow down
their block creation until they detect a victim block. This
strategy compromises both the transaction throughput and
the confirmation latency of DAG-based blockchains.
Attack contentions. In many frontrunning scenarios, fron-
trunning attackers compete to attack the same victim trans-
actions, leading to the failure of many attacking transac-
tions to be committed. For instance, in Ethereum, multi-
ple builders craft their block that orders their frontrunning
transaction before the victim transaction. As Ethereum only
allows one block to be committed each time (i.e., in each
consensus instance), only one of the competing attackers can
win in the frontrunning game while the others fail to commit
their frontrunning transactions. Unfortunately, such attack
contentions have little impact on inter-block frontrunning

13

attackers in DAG-based blockchains. Specifically, DAG-
based blockchains allow multiple blocks to be proposed
and committed in each consensus instance. Even though
attackers compete to inter-block frontrun the same victim
blocks with their own attacking blocks, their attacking strate-
gies are independent and don’t interfere with each other for
block commitment (e.g., the speculative attack only crafts
the attacker’s own block). As a result, all attacking trans-
actions can be executed and committed before the victim
transaction. In our experiments, attackers frontrun the same
victim blocks independently without communicating with
each other, which indicated the attack effectiveness under
attack contentions.
Specific frontrunning strategies. The proposed attacking
strategies in § 4 are specifically designed to exploit the
DR-first ordering rule, which has been employed in many
open-source DAG-based blockchains, such as Tusk, Bull-
shark, and Mysticeti. If a DAG-based blockchain deploys
a different block ordering rule, these strategies will be-
come ineffective. However, frontrunning opportunities may
still arise if no protections are employed, particularly in
block ordering rules that are pre-defined and deterministic,
where adversaries can intentionally manipulate the block
order to their advantage. This work aims to reveal the
frontrunning vulnerabilities of the ordering rule in DAG-
based blockchains. Due to the limited availability of open-
source DAG blockchains and the vagueness of the block
ordering rules in the literature, we have not identified other
block ordering rules currently in use. This leaves a big space
for future exploration of various inter-block frontrunning
strategies in DAG-based blockchains.

Acknowledgment

We thank Alberto Sonnino for his insights on the MEV and
frontrunning issues on DAG-based blockchains. This work is
supported in part by the National Science Foundation (NSF)
under grant CNS1846316 and a research gift by Supra Labs.

References

[1] DeFiLlama. Defilama - defi overview. https://defillama.com/. Ac-
cessed: 2024.

[2] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok:
Transparent dishonesty: front-running attacks on blockchain. In FC,
pages 170–189. Springer, 2019.

[3] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,
Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0:
Frontrunning in decentralized exchanges, miner extractable value, and
consensus instability. In IEEE S&P, pages 910–927, 2020.

[4] Christof Ferreira Torres, Ramiro Camino, et al. Frontrunner jones
and the raiders of the dark forest: An empirical study of frontrunning
on the ethereum blockchain. In USENIX Security, pages 1343–1359,
2021.

[5] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and
Arthur Gervais. High-frequency trading on decentralized on-chain
exchanges. In IEEE S&P, pages 428–445, 2021.

[6] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur
Gervais. On the just-in-time discovery of profit-generating transac-
tions in defi protocols. In IEEE S&P, pages 919–936, 2021.

[7] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain
extractable value: How dark is the forest? In IEEE S&P, pages 198–
214, 2022.

[8] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos,
Zhipeng Wang, Ye Wang, Kaihua Qin, Roger Wattenhofer, Dawn
Song, and Arthur Gervais. Sok: Decentralized finance (defi) attacks.
IEEE S&P, pages 2444–2461, 2023.

[9] Robert McLaughlin, Christopher Kruegel, and Giovanni Vigna. A
large scale study of the ethereum arbitrage ecosystem. In USENIX
Security, pages 3295–3312, 2023.

[10] Kaihua Qin, Stefanos Chaliasos, Liyi Zhou, Benjamin Livshits, Dawn
Song, and Arthur Gervais. The blockchain imitation game. In
USENIX Security, pages 3961–3978, 2023.

[11] Lioba Heimbach, Vabuk Pahari, and Eric Schertenleib. Non-atomic
arbitrage in decentralized finance. In IEEE S&P, pages 224–224,
2024.

[12] Christof Ferreira Torres, Albin Mamuti, Ben Weintraub, Cristina
Nita-Rotaru, and Shweta Shinde. Rolling in the shadows: Analyz-
ing the extraction of MEV across layer-2 rollups. arXiv preprint
arXiv:2405.00138, 2024.

[13] libMEV. MEV - dashboard. https://libmev.com/. Accessed: 2024.

[14] Zihao Li, Jianfeng Li, Zheyuan He, Xiapu Luo, Ting Wang, Xiaoze
Ni, Wenwu Yang, Xi Chen, and Ting Chen. Demystifying defi MEV
activities in flashbots bundle. In ACM CCS, pages 165–179, 2023.

[15] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–32,
2014.

[16] Lioba Heimbach, Lucianna Kiffer, Christof Ferreira Torres, and Roger
Wattenhofer. Ethereum’s proposer-builder separation: Promises and
realities. In ACM IMC, pages 406–420, 2023.

[17] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander
Spiegelman. All you need is DAG. In ACM PODC, pages 165–175,
2021.

[18] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and
Alexander Spiegelman. Narwhal and tusk: a DAG-based mempool
and efficient bft consensus. In ACM EuroSys, pages 34–50, 2022.

[19] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lef-
teris Kokoris-Kogias. Bullshark: DAG bft protocols made practical.
In ACM CCS, pages 2705–2718, 2022.

[20] Alexander Spiegelman, Balaji Aurn, Rati Gelashvili, and Zekun Li.
Shoal: Improving DAG-bft latency and robustness. arXiv preprint
arXiv:2306.03058, 2023.

[21] Kushal Babel, Andrey Chursin, George Danezis, Lefteris Kokoris-
Kogias, and Alberto Sonnino. Mysticeti: Reaching the limits of
latency with uncertified DAGs. arXiv preprint arXiv:2310.14821,
2023.

[22] Nibesh Shrestha, Rohan Shrothrium, Aniket Kate, and Kartik Nayak.
Sailfish: Towards improving latency of DAG-based bft. In IEEE S&P,
2025.

[23] Dahlia Malkhi, Chrysoula Stathakopoulou, and Maofan Yin. Bbca-
chain: One-message, low latency bft consensus on a DAG. arXiv
preprint arXiv:2310.06335, 2023.

[24] Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro. Cordial
miners: Fast and efficient consensus for every eventuality. In DISC,
2023.

[25] Same Blackshear, Andrey Chursin, George Danezis, Anastasios
Kichidis, Lefteris Kokoris-Kogias, Xun Li, Mark Logan, Ashok
Menon, Todd Nowacki, Alberto Sonnino, et al. Sui lutris: A
blockchain combining broadcast and consensus. In ACM CCS, 2024.

[26] Balaji Arun, Zekun Li, Florian Suri-Payer, Sourav Das, and Alexander
Spiegelman. Shoal++: High throughput DAG bft can be fast! arXiv
preprint arXiv:2405.20488, 2024.

14

https://defillama.com/
https://libmev.com/

𝐵)#
𝑟# 𝑟#$! 𝑟#$%

𝐵*#

𝐵)#
𝑟# 𝑟#$! 𝑟#$%

𝐵*#

① ② ④LOP Anchor③

(a) The victim block 𝐵!" is the anchor (b) The attacking block 𝐵$" is the anchor

𝒲=3

𝑁)

𝑁%

𝑁&

𝑁*

𝑁)

𝑁%

𝑁&

𝑁*

Figure 12: The conditions where an involved block is des-
ignated as an anchor (different colored blocks represent
distinct waves): (a) the attack is failed if the victim block
Bi

v is designated as an anchor; (b) the attack is successful
if the attacking block Bi

a is designated as an anchor.

[27] The Sui Team. The sui blockchain. https://sui.io/. Accessed: 2024.

[28] Suiscan. Sui blockchain defi. https://suiscan.xyz/mainnet/directory?
cat=DEFI. Accessed: 2024.

[29] The Aptos Team. Aptos networks. https://aptosfoundation.org/.
Accessed: 2024.

[30] The Celo Team. Celo networks. https://celo.org/. Accessed: 2024.

[31] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lef-
teris Kokoris-Kogias. Bullshark: The partially synchronous version.
arXiv preprint arXiv:2209.05633, 2022.

[32] Zhuo Zhang, Zhiqiang Lin, Marcelo Morales, Xiangyu Zhang, and
Kaiyuan Zhang. Your exploit is mine: instantly synthesizing counter-
attack smart contract. In USENIX Security, pages 1757–1774, 2023.

[33] Wuqi Zhang, Zhuo Zhang, Qingkai Shi, Lu Liu, Lili Wei, Yepang Liu,
Xiangyu Zhang, and Shing-Chi Cheung. Nyx: Detecting exploitable
front-running vulnerabilities in smart contracts. In IEEE S&P, pages
146–146, 2024.

[34] Chaofan Shou, Yuanyu Ke, Yupeng Yang, Qi Su, Or Dadosh, Assaf
Eli, David Benchimol, Doudou Lu, Daniel Tong, Dex Chen, et al.
Backrunner: Mitigating smart contract attacks in the real world. arXiv
preprint arXiv:2409.06213, 2024.

[35] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo
Alvisi. Byzantine ordered consensus without byzantine oligarchy. In
USENIX OSDI, pages 633–649, 2020.

[36] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-
fairness for byzantine consensus. In CRYPTO, pages 451–480.
Springer, 2020.

[37] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram
Kannan. Themis: Fast, strong order-fairness in byzantine consensus.
In ACM CCS, pages 475–489, 2023.

[38] Klaus Kursawe. Wendy, the good little fairness widget: Achieving
order fairness for blockchains. In ACM AFT, pages 25–36, 2020.

[39] Christian Cachin, Jovana Mićić, Nathalie Steinhauer, and Luca Zano-
lini. Quick order fairness. In FC, pages 316–333. Springer, 2022.

[40] Ke Mu, Bo Yin, Alia Asheralieva, and Xuetao Wei. Separation is
good: A faster order-fairness byzantine consensus. In NDSS, 2024.

[41] Wuhui Chen, Yikai Feng, Jianting Zhang, Zhongteng Cai, Hong-Ning
Dai, and Zibin Zheng. Auncel: Fair byzantine consensus protocol with
high performance. In IEEE INFOCOM, pages 1–10, 2024.

[42] Heena Nagda, Shubhendra Pal Singhal, Mohammad Javad Amiri,
and Boon Thau Loo. Rashnu: Data-dependent order-fairness. VLDB
Endowment, 17(9):2335–2348, 2024.

[43] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair
consensus in the permissionless setting. In ACM ASIA-PKCW, pages
3–14, 2022.

[44] Sarisht Wadhwa, Luca Zanolini, Francesco D’Amato, Aditya As-
gaonkar, Chengrui Fang, Fan Zhang, and Kartik Nayak. Data in-
dependent order policy enforcement: Limitations and solutions. In
ACM CCS, 2024.

[45] Suiscan. Sui blockchain explorer. https://suiscan.xyz/mainnet/home.
Accessed: 2024.

[46] Peyman Momeni, Sergey Gorbunov, and Bohan Zhang. Fairblock:
Preventing blockchain front-running with minimal overheads. In
SecureComm, pages 250–271. Springer, 2022.

[47] Dahlia Malkhi and Pawel Szalachowski. Maximal extractable value
(MEV) protection on a DAG. arXiv preprint arXiv:2208.00940, 2022.

[48] Haoqian Zhang, Louis-Henri Merino, Vero Estrada-Galinanes, and
Bryan Ford. Flash freezing flash boys: Countering blockchain front-
running. In IEEE ICDCS Workshop, pages 90–95, 2022.

[49] Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng
Zhu. Sok: MEV countermeasures: Theory and practice. arXiv preprint
arXiv:2212.05111, 2022.

Appendix A.
Attacks across Anchors

The attacking strategies presented in Section 4 only con-
sider the condition where both the victim block Bv and the
attacking block Ba are ordered and committed by the same
anchor. However, the construction of the DAG is subject
to asynchronous block dissemination, leading to arbitrary
connections between blocks. In some cases, Bv and Ba may
be ordered and committed by different anchors no matter if
they belong to the same round (for fissure and speculative
attacks) or different rounds (for sluggish attack), leading that
the attack involves across anchors. In the following, we will
discuss distinct scenarios where the frontrunning attack is
across anchors and analyze their impacts on the successfully
attacking probability.

(1) Bv or Ba is the anchor: Once Bv and Ba belong to
the same round and one of them is selected as an anchor, the
frontrunning attack is across anchors. In this case, the block
selected as the anchor will be prioritized for ordering and
commitment, preceding the other block, which must await
ordering by the subsequent anchor. Figure 12 demonstrates
two distinct scenarios where Bv and Ba are designated as
the anchor respectively. In Figure 12a, the victim block Bi

v

is designated as the anchor in round ri, and if both Bi
v and

Bi
a are eventually committed, then Bi

v is ordered before Bi
a,

i.e., the frontrunning attack fails. In contrast, if the attacking
block Bi

a is designated as the anchor, and both Bi
v and Bi

a

are eventually committed, then Bi
a is ordered before Bi

v,
leading to a successful attack (as shown in Figure 12b).

(2) Ordering delay: The precondition for a block to be
ordered and committed by an anchor is the existence of a
path between the block and the anchor, i.e., the block can
be traversed from the anchor. As a consequence, if a block
is not traversable for the anchor within the same wave, it
will undergo a delay in being ordered and committed until
subsequent anchors undertake the ordering task. This can
result in an attack across anchors, where Bv and Ba are

15

https://sui.io/
https://suiscan.xyz/mainnet/directory?cat=DEFI
https://suiscan.xyz/mainnet/directory?cat=DEFI
https://aptosfoundation.org/
https://celo.org/
https://suiscan.xyz/mainnet/home

𝑁)

𝑁%

𝑁&

𝑁*

𝐵)#

𝐵*#

𝑟# 𝑟#$! 𝑟#$% 𝑟#$&

(b) The attacking block 𝐵$" is ordered after
the victim block 𝐵!" due to ordering delay

① ② ④LOP Anchor③ 𝒲=3

𝐵%#$!

𝐵&#$&

(a) The attacking block 𝐵$"+' is ordered after
the victim block 𝐵!" due to ordering delay

𝐵)#
𝑟# 𝑟#$! 𝑟#$% 𝑟#$&

𝐵%#$!

𝐵&#$&

𝐵*#,!

𝑟#,!

𝑁)

𝑁%

𝑁&

𝑁*

Figure 13: The conditions where an involved block expe-
riences a delay in being ordered (different colored blocks
represent distinct waves): (a) the attacking block Bi−1

a is
not traversable for the nearest anchor Bi+1

2 and therefore
is delayed for ordering; (b) the attacking block Bi

a is not
traversable for the nearest anchor Bi+1

2 and therefore is
delayed for ordering.

ordered and committed by distinct anchors designated in
different waves. Figure 13 presents two scenarios where Bv

and Ba are ordered and committed by different anchors.
In Figure 13a, the victim block Bi

v belongs to round ri
while the attacking block Bi−1

a is created in round ri−1

(assume after the sluggish attack). However, since Bi−1
a

experiences an ordering delay, Bi−1
a is eventually ordered

later than Bi
v even though Bi−1

a is associated with a smaller
round number, i.e., the frontrunning attack with the sluggish
attacking strategy is failed. To elaborate, since block Bi+1

2
is selected as an anchor in round ri+1, and Bi

v is traversable
for Bi+1

2 but Bi−1
a is not, Bi

v can be ordered and committed
by Bi+1

2 while Bi
a will be ordered and committed by a sub-

sequent anchor Bi+3
3 in round ri+3. Similarly, in Figure 13b,

where both the victim block Bi
v and the attacking block Bi

a

belong to round ri, the attacking block Bi
a is experiencing

an ordering delay while the victim Bi
v is not, and therefore

Bi
a is ordered after Bi

v, i.e., the attack fails.

Appendix B.
Attacking Strategies Modeling and Analysis

To better understand the effectiveness of the inter-block
frontrunning attack under different system parameters in
practice and design effective countermeasures, we formally
model and generalize the attacking strategies proposed in
Section 4. We emphasize that our current model ignores the
network-layer attacks (Section 7) because we only focus
on the impact of our proposed attacking strategies on the
attack effectiveness; otherwise, the network-layer attacks
will make the formation of the DAG unpredictable, and
we cannot evaluate the attack effectiveness based on the
unpredictable DAG. Note that due to space constraints, we
omit the equation simplification process and include them
in the full version of the paper.

B.1. System Model

We model the inter-block frontrunning attack as a game
among n nodes N = {N1, · · · , Nn} with fa (fa < n)

collusive frontrunning attackers A = {Na1 , · · · , Nafa
} and

fl (fl ≤ t) liveness attackers L = {Nl1 , · · · , Nlfl
}. Besides,

each node is associated with fw workers, and the DAG inter-
prets every W consecutive rounds as a wave. Furthermore,
as we will show in the following section, the number of
rounds required to order and commit Bv and Ba can impact
the attacking probability. Therefore, we define ∇r as the
number of rounds between Bv and the nearest anchor round
after which both Bv and Ba are committed. For instance,
∇r = 2 in Figure 12a while ∇r = 3 in Figure 13a.

In this game, there is a victim block Bv created by a
victim node Nv and an attacking block Ba created by a
designated frontrunning attacker Na. It is said that A win
the game if Ba successfully frontruns Bv. This game has
the following properties:

(1) Prop1: Random anchors. The anchors are selected
randomly, in which every node’s block in the anchor round
shares the same probability of being selected as an anchor.

(2) Prop2: Random digest. The hash function used to
calculate the block digests can produce uniformly distributed
outputs (i.e., ensuring uniformity). In this case, for any block
digest, there is a 50% probability that a newly created block
digest will be greater than it.

(3) Prop3: Predictable transaction batches. In the data
dissemination layer, each worker generates one transaction
batch in each round. The number of transaction batches that
can be packed into a new block (denoted nbat) is predictable
and equal to the number of workers fw.

Even though in practice, nbat can also be affected by
several parameters (such as the delay of creating a block,
the delay of creating a transaction batch, and the transac-
tion rate), we assume nbat = fw to simplify our model.
This assumption is consistent with our observations in the
evaluation, and we believe that this simplification does not
affect the evaluation of the attack effectiveness.

(4) Prop4: Time-relevant ordering delay. A block is
more likely to experience an ordering delay if it is created
and dispersed later than another block. This is because nodes
in the DAG-based blockchains will move to the next round
once they receive n − t blocks from the current round.
Consequently, a slow block will be excluded from the con-
nections of their newly created blocks and will experience
an ordering delay.
Attack across anchors. In the following sections, we will
model the inter-block frontrunning attack under distinct
attacking strategies while considering the conditions where
the attack is across anchors (Appendix A). For illustration
purposes, we define the following mutually exclusive condi-
tions for the victim block Bv and the attacking block Ba:

Φ1 : Bv is an anchor; Φ2 : Ba is an anchor;
Φ3 : Bv is ordered after Ba due to the ordering delay;
Φ4 : Ba is ordered after Bv due to the ordering delay;

Let Pr(Φ1), Pr(Φ2), Pr(Φ3), and Pr(Φ4) denote the
probabilities of Φ1, Φ2, Φ3, and Φ4 respectively. Since each

16

wave will select an anchor in the anchor round, we have
Pr(Φ1) = Pr(Φ2) = 1

W · 1
n = 1

Wn according to Prop1.
On the other hand, Φ3 and Φ4 indicate that Bv and Ba

are ordered by different anchors due to the ordering delay.
Intuitively, Bv and Ba are more likely to be ordered by
the same anchor if their anchors are far apart, i.e., there
are more rounds for the anchors to construct paths to them.
In this case, the number of liveness attackers fl can affect
the probabilities of Pr(Φ3) and Pr(Φ4) because liveness
attackers can prolong the selection of a valid anchor. To
conclude, Pr(Φ3) and Pr(Φ4) should be negatively related
to fl, and we respectively let Pr(Φ3) = τ1 and Pr(Φ4) =
τ2. It is worth noting that since the attacking block Ba is
created later than the victim block Bv in the attacking game,
we have τ1 < τ2 according to Prop4. Additionally, as we
will discuss below, τ2 varies with distinct attacking strategies
as they somewhat delay the creation of Ba.

B.2. Analysis on the Fissure Attack

Without loss of generality, we assume the victim block
Bi

v and the attacking block Bi
a are created in the same round

ri. We assume all honest nodes have both Bi
v and Bi

a in the
connections of their blocks belonging to round ri+1

14.
Uneven connections. When performing the fissure attack, A
create their blocks σi+1

a = {Bi+1
a1

, · · · , Bi+1
afa

} in round ri+1

without connecting Bi
v. This will lead to uneven connections

between Bi
v and Bi

a. Let Ci+1
a denote the set of blocks in

round ri+1 that connect Bi
a, and Ci+1

v denote the set of
blocks in round ri+1 that connect Bi

v. Under the assumption
that all honest nodes’ blocks connect both Bi

v and Bi
a, we

have Ci+1
a = Ci+1

v

⋃
σi+1
a . In this case, we have (1) if a

block from σi+1
a is the first traversed block of round ri+1,

then Bi
a is ordered before Bi

v because Bi
a is connected by

the block but Bi
v is not; (2) if, otherwise, a block from

Ci+1
v is the first traversed block of round ri+1, then the

order between Bi
a and Bi

v depends on the block digest (i.e.,
50% probability that Bi

a is ordered before Bi
v according

to Prop2). To conclude, let Ffis
0 denote the probability of

ordering Bi
a before Bi

v by the blocks in ri+1, we can get:

Ffis
0 =

|σi+1
a |

|Ci+1
a |

· 1 + |Ci+1
v |

|Ci+1
a |

· 1
2
=

1

2
+

fa
2(n− fl)

(1)

Cumulative influence. In the fissure attack, A keep ex-
cluding the blocks of the victim from the connections of
their blocks. Therefore, it has a cumulative influence in this
attacking game. To elaborate, blocks in Ci+1

a and blocks
in Ci+1

v are also connected with the uneven numbers of
blocks in round ri+2, denoted by Ci+2

σa
and Ci+2

σv
respec-

tively. Due to the influence of the fissure attack, we have
|Ci+2

σa
| ≥ |Ci+2

σv
|. The difference in connections between

14. In practice, Bi
v and Bi

a can be connected by distinct honest nodes’
blocks in round ri+1. However, the number of honest nodes connecting Bi

v
is close to the number of honest nodes connecting Bi

a, which determines
the calculation of the attacking probability. Therefore, we can simplify it
with this assumption.

Nv and Na exists in every subsequent round until the next
anchor round. Therefore, the cumulative probability that
Bi

a is ordered before Bi
v via the fissure attack can be

defined as Pfis(∇r) that is related to ∇r. Furthermore, we
observe that as blocks get farther away from Bi

v and Bi
a,

the influence of these attacking blocks will diminish. This
is because as the number of rounds increases, Bi

v will be
more likely to be traversed indirectly by the blocks from
A (e.g., in Figure 4, Bi

v can be traversed by Bi+2
a via the

path ⟨Bi+2
a , Bi+1

2 , Bi
v⟩). To this end, we introduce a decay

factor γ ∈ (0, 1) to model such a diminished influence.
Consequently, for each ∇r, Pfis(∇r) can be calculated by:

Pfis(∇r) =

∇r∑
k=1

γk−1Ffis
0 (2)

Impact of attacks across anchors. When evaluating the
probability that A win the game under the fissure attack
Pfis
Adv(∇r), we need to consider the scenarios where the

attack is across anchors, i.e., the conditions Φ1 − Φ4 as
mentioned in Appendix B.1. Moreover, since the fissure
attack excludes blocks from the victim nodes, A may require
more time to collect enough blocks (i.e., n − t blocks) to
move to the next round. In this case, the attacking block
will likely experience an ordering delay. Therefore, we use
τfis2 to denote the probability of Φ4 under the fissure attack,
where τfis2 > τ2. Specifically, Pfis

Adv(∇r) can be calculated
as follows:

Pfis
Adv(∇r) =

 0, if Φ1 or Φ4 satisfies,
1, if Φ2 or Φ3 satisfies,
Pfis(∇r), Otherwise.

=
1

Wn
· 0 + τfis2 · 0 + 1

Wn
· 1 + τ1 · 1

+ (1− 1

Wn
− 1

Wn
− τ1 − τfis2) · Pfis(∇r)

=
1

Wn
+ τ1︸ ︷︷ ︸

replaced by α

+(1− 2

Wn
− τ1 − τfis2)︸ ︷︷ ︸

replaced by βfis

·Pfis(∇r)

=α+ βfis · Pfis(∇r)

(3)

In the above equation, we introduce two factors α = 1
Wn+τ1

and βfis = 1− 2
Wn − τ1 − τfis2 to simplify the expression.

Expected attacking success rate. Pfis
Adv(∇r) indicates that

A win the attacking game when Bv is ordered and com-
mitted by a subsequent anchor after ∇r rounds. We now
calculate the expected probability that A win the attacking
game. Let P (∇r) denote the distribution function of ∇r.
Note that since liveness attackers do not create blocks, both
Bv and Ba can only be ordered by an anchor that is not
from the liveness attackers. Eventually, the probability that
Bv and Ba require R rounds to be ordered is:

P (∇r = R) =
1

W
(
n− fl

n
)(
fl
n
)⌊R/W⌋ (4)

17

Note that:

lim
m→∞

m∑
R=1

P (∇r = R) = 1 (5)

When combining Equation (1)-(5), we can get the expected
probability that A win the attacking game E[Pfis

Adv(∇r)] by:

E[Pfis
Adv(∇r)] =

∞∑
R=1

P (∇r = R) · Pfis
Adv(∇r)

=

∞∑
R=1

P (∇r = R) · α+

∞∑
R=1

P (∇r = R) · βfis · Pfis(∇r)

=α+ βfis
∞∑

R=1

1

W
(
n− fl

n
)(
fl
n
)⌊R/W⌋ ·

R∑
k=1

γk−1Ffis
0

=α+ β · 1

W
· (n− fl)

n
· Ffis

0 ·
∞∑

R=1

(
fl
n
)⌊R/W⌋ ·

R∑
k=1

γk−1

=α+
(n+ fa − fl)β

fis

2Wn

∞∑
R=1

(
fl
n
)⌊R/W⌋

R∑
k=1

γk−1

(6)

B.3. Analysis on Speculative Attack

One-shot influence. Unlike the fissure attack, the specula-
tive attack has a one-shot influence in this attacking game.
Specifically, the high-level idea of the speculative attack is to
create an attacking block Ba with the largest possible digest,
which is only decided by the round of Ba and is independent
of the subsequent rounds. In this case, the probability that
A wins the game under the speculative attack is determined
by how possible Na is to create a block with a larger
digest than that of Bv in a round. Recall that each node
has fw transaction batches when creating a new block (cf.
Prop3), and therefore Na can create Mfw blocks in each
round, where Mfw is the number of permutations of the
fw transaction batches. Recall that the probability that each
block created by Na has a larger digest than that of Bv is
50% (cf. Prop2). If we define Fpkm(fw) as the probability
that Na can create at least one block with a larger digest
than the digest of Bv, then we have:

Fpkm(fw) = 1− 1

2Mfw
(7)

Impact of attacks across anchors. Similarly, we need to
consider the speculative attack across anchors. Since the
speculative attack needs to construct multiple blocks to get
an attacking block with the largest digest, it takes Na more
time to get a new block. In this case, the attacking block
will likely experience an ordering delay. Therefore, we use
τpkm2 to denote the probability of Φ4 under the speculative
attack, where τpkm2 > τ2. Eventually, we can calculate
the probability that A win the attacking game under the

speculative attack Ppkm
Adv by :

Ppkm
Adv =

 0, if Φ1 or Φ4 satisfies,
1, if Φ2 or Φ3 satisfies,
Fpkm(fw), Otherwise.

=
1

Wn
· 0 + τpkm2 · 0 + 1

Wn
· 1 + τ1 · 1

+ (1− 1

Wn
− 1

Wn
− τ1 − τpkm2) · Fpkm(fw)

=
1

Wn
+ τ1︸ ︷︷ ︸

replaced by α

+(1− 2

Wn
− τ1 − τpkm2)︸ ︷︷ ︸

replaced by βpkm

·Fpkm(fw)

=α+ βpkm · Fpkm(fw)
(8)

Similarly, we introduce factors α = 1
Wn + τ1 and βpkm =

1− 2
Wn − τ1 − τpkm2 to simplify the expression.

Expected attacking success rate. Similarly, we evaluate
the expected attacking success rate of the speculative attack
E[Ppkm

Adv (∇r)] by considering that Bv (or Ba) is ordered
by the anchor after distinct numbers of rounds ∇r. Note
that since Ppkm

Adv is independent of ∇r, we have Ppkm
Adv =

Ppkm
Adv (∇r). Consequently, when combining Equation (4)-

(5), (7)-(8), we can evaluate E[Ppkm
Adv (∇r)] by:

E[Ppkm
Adv (∇r)]

=

∞∑
R=1

P (∇r = R) · Ppkm
Adv (∇r) = 1 · Ppkm

Adv

=α+ βpkm(1− 1

2Mfw
)

(9)

B.4. Analysis on Sluggish Attack

When performing the sluggish attack, the designated
frontrunning attacker Na strategically delays the process of
the block creation. As we introduced in Section 5.1, one
of the approaches to slow down is to multiply the timeout
of creating new blocks by an attacking factor ts. With an
appropriate ts, Na can be just working in a round smaller
than the round of the victim block Bv, in which Na can
create the attacking block Ba with a round number smaller
than Bv and successfully front-run Bv. Therefore, we define
the probability that Na can create Ba in a smaller round than
Bv as a function Fslg(ts) that is related to ts.
Sluggish dilemma. With the sluggish attack, if, fortunately,
the victim block Bv and the attacking block Ba are ordered
and committed by the same anchor, then Ba must be or-
dered before Bv, i.e., A win the game. However, from our
evaluation, we observe that there is a sluggish dilemma in
the sluggish attack due to the ordering delay. Specifically,
in the DAG-based SMR protocol, a node can move to the
next round ri+1 once it receives n − f blocks from the
current round ri, and its newly created block in ri+1 will
connect the received n − f blocks but not the blocks of
ri that it has not received. In this case, if the designated
frontrunning attacker Na is too slow to make its attacking
block Ba connected by blocks of the subsequent rounds,
then Ba will experience an ordering delay, as illustrated in
Figure 13(a). On the other hand, if Na moves too fast (or at
a normal speed as honest nodes), then Na may be working18

in a larger round than (or the same round as) the victim Nv

after it monitors Bv, which will make the attack failed.
Impact of attacks across anchors. Because of the sluggish
dilemma, A are more likely to experience an ordering delay
when performing the sluggish attacking strategy. Therefore,
we use τslg2 to denote the probability of Φ4 under the
speculative attack, where τslg2 > τ2. Let Pslg

Adv denote the
probability that A win the attacking game under the slug-
gish attack. Similarly, when considering the attack crossing
anchors, we have:

Pslg
Adv =

 0, if Φ1 or Φ4 satisfies,
1, if Φ2 or Φ3 satisfies,
Fslg(ts), Otherwise.

=
1

Wn
· 0 + τslg2 · 0 + 1

Wn
· 1 + τ1 · 1

+ (1− 1

Wn
− 1

Wn
− τ1 − τslg2) · Fslg(ts)

=
1

Wn
+ τ1︸ ︷︷ ︸

replaced by α

+(1− 2

Wn
− τ1 − τslg2)︸ ︷︷ ︸

replaced by βslg

·Fslg(ts)

=α+ βslgFslg(ts)
(10)

Similarly, we introduce factors α = 1
Wn + τ1 and βslg =

1− 2
Wn − τ1 − τslg2 to simplify the expression.

Expected attacking success rate. Let E[Pslg
Adv(∇r)] denote

the expected success rate of the sluggish attack. Similar to
the analysis of the speculative attack, Pslg

Adv is independent
of ∇r and therefore Pslg

Adv = Pslg
Adv(∇r). Eventually, when

combining Equation (4)-(5), (10), we have:

E[Pslg
Adv(∇r)]

=

∞∑
R=1

P (∇r = R) · Pslg
Adv(∇r) = 1 · Pslg

Adv

=α+ βslg · Fslg(ts)

(11)

Appendix C.
Evaluation and Analysis on the Degradation of
the Fissure Attack

In Section 5.3, we observe the degradation of the fissure
attack on Tusk. We speculate this is because the delegated

frontrunning attacker needs more time to move to the next
round, in which honest nodes are less likely to connect the
attacking block. Specifically, in the Tusk protocol, nodes
move to the next round once they receive and can connect
n − t blocks from the current round, where t = ⌊n−1

3 ⌋
is the Byzantine fault tolerance of the protocol. Since the
frontrunning attackers do not connect blocks from the victim
node, they need to receive more blocks (i.e., n−t+1 > n−t)
and thereby require more time before they can move to the
next round and create a new block. If fa + fl ≤ t, the
victim node and other honest nodes can process normally
without waiting for the slow blocks from the attackers. In
this case, honest nodes will connect the victim block but
not the attacking block, making the attacking block more
likely to be ordered after the victim block according to the
connection priority (Observation 4.2.1).

To verify this hypothesis, we further evaluate the fissure
attack with different n, fa, and fl satisfying fa + fl =
⌊n−1

3 ⌋. The results are shown in Table 3. We find that the
fissure attack on Tusk indeed degrades the ASR when fa is
small but will perform effectively with fa increasing. For
the Bullshark protocol that delays all nodes’ movement as
analyzed in Section 5.4, the fissure attack works effectively
in most cases.

TABLE 3: Attack success rate (%) with varying parameters
n, fa, and fl satisfying fa + fl = ⌊n−1

3 ⌋.

n [fa, fl]
Bullshark Tusk

Baseline Fissure Baseline Fissure

10 [1, 2] 47.32 51.84 40.1 24.37
[2, 1] 48.41 58.09 37.75 31.37

13
[1, 3] 50.59 50.12 42.45 22.32
[2, 2] 52.5 53.13 40.2 34.39
[3, 1] 50.95 58.69 34.39 39.71

16

[1, 4] 47.36 47.2 39.68 18.08
[2, 3] 45.91 53.95 38.06 32.43
[3, 2] 49.47 57.43 34.95 42.7
[4, 1] 46.36 59.1 33.98 40.08

19
[1, 5] 49.5 37.74 43.12 18.37
[3, 3] 45.89 57.2 41.5 39.32
[5, 1] 47.76 63.06 40.7 46.81

25
[1, 7] 49.52 38.69 44.22 21.56
[4, 4] 50.28 58.46 37.31 46.77
[7, 1] 49.13 63.67 36.68 48.39

19

	Introduction
	Preliminaries and Related Work
	DAG-based SMR
	Construction of a DAG
	Ordering transactions in DAG-based SMR

	Frontrunning and Existing Countermeasures

	Problem Definition
	Inter-block Frontrunning Attack
	Threat and System Models

	Inter-block Frontrunning Attacking Game
	Winning Rules in the Game
	Fissure Attack
	Speculative Attack
	Sluggish Attack

	Evaluation
	Implementation and Evaluation Metric
	Experimental Setup
	Attack Effectiveness under Multiple Frontrunning Attackers
	Attack Effectiveness under Crash Faults
	Scale-out with Workers
	Attack Effectiveness under WAN Setting

	Mitigations
	Conclusion and Discussion
	References
	Appendix A: Attacks across Anchors
	Appendix B: Attacking Strategies Modeling and Analysis
	System Model
	Analysis on the Fissure Attack
	Analysis on Speculative Attack
	Analysis on Sluggish Attack

	Appendix C: Evaluation and Analysis on the Degradation of the Fissure Attack

