
Multi-Designated Detector Watermarking for
Language Models

Zhengan Huang, Gongxian Zeng, Xin Mu, Yu Wang, and Yue Yu

Pengcheng Laboratory, Shenzhen, China
zhahuang.sjtu@gmail.com, gxzeng@cs.hku.hk, mux@pcl.ac.cn,

wangy12@pcl.ac.cn, yuy@pcl.ac.cn

Abstract. In this paper, we initiate the study of multi-designated de-
tector watermarking (MDDW) for large language models (LLMs). This
technique allows model providers to generate watermarked outputs from
LLMs with two key properties: (i) only specific, possibly multiple, desig-
nated detectors can identify the watermarks, and (ii) there is no percepti-
ble degradation in the output quality for ordinary users. We formalize the
security definitions for MDDW and present a framework for constructing
MDDW for any LLM using multi-designated verifier signatures (MDVS).
Recognizing the significant economic value of LLM outputs, we introduce
claimability as an optional security feature for MDDW, enabling model
providers to assert ownership of LLM outputs within designated-detector
settings. To support claimable MDDW, we propose a generic transforma-
tion converting any MDVS to a claimable MDVS. Our implementation of
the MDDW scheme highlights its advanced functionalities and flexibility
over existing methods, with satisfactory performance metrics.

Keywords: Watermarking; Claimability; Off-the-record; Multi-designated ver-
ifier signature; Language model

1 Introduction

Generative artificial intelligence (AI) technique, e.g., large language models (LLMs),
has been widely adopted in the field of language generation and has achieved ex-
cellent performance in a variety of downstream tasks. These tasks span from ma-
chine translation [HAS+23], dialogue system [HD23] to code generation [NIR+23]
and medicine [TTE+23].

However, the abuse of LLMs may lead to several potential harms, including
the generation of fake news [HS24] and instances of academic dishonesty, such as
cheating on writing and coding assignments [KGW+23]. Another potential risk
is that the proliferation of data fabricated by LLMs complicates the acquisition
of superior models, as this data is not sourced from the real world and has to be
excluded before training [RKX+23].

Thus, a crucial challenge lies in distinguishing between texts generated by
LLMs and those written by humans.

Currently, the main approach to address the above issue is to training another
AI model for detection, such as GPTZero⋆. This approach hinges on the critical
assumption that texts generated by LLMs exhibit unique characteristics that can
be identified by AI. However, a significant flaw in this assumption lies in the fact
that LLMs are deliberately engineered to produce content that is indistinguish-
able from human-created works. As a result, any “black-box” detection method
is prone to high false positive and/or false negative rates as LLMs become more
realistic. Existing detectors (e.g., GPTZero, Detectgpt [MLK+23]) do not offer
guarantees of accuracy. In fact, there have already been instances where students
were falsely accused, making headlines in the news [Fow23,Jim23].

Recently, some schemes with formal guarantees of negligible error bounds
have been proposed.

For example, [KGW+23] introduces watermarking for LLMs to achieve such
formal guarantees. They demonstrate that a watermark can be embedded in
the outputs of LLMs with large enough entropy. However, their watermarking
scheme significantly alters the distribution of the generated texts and the water-
mark detection relies on this alteration. Thus, the methodology of the watermark
detection in [KGW+23] has led to degradation in the quality of the watermarked
texts.

To achieve the perfect quality (i.e., there is no degradation in the quality
of watermarked outputs), [CGZ24] proposes a method for embedding a water-
mark if the outputs of LLMs are sufficiently random. The main idea is that
it generates the watermark with a pseudorandom function (PRF) and utilizes
the watermark (i.e., a pseudorandom number) to sample the outputs of LLMs.
The perfect quality of the output is ensured by the undetectability, the notion of
which is formalized in [CGZ24] and requires that without the knowledge of the
secret key of the underlying PRF, the watermarked output is computationally
indistinguishable from that output by the original LLM. However, the solution
proposed in [CGZ24] has a notable limitation. Both the watermark generation
and detection require a secret key, rendering the scheme a privately detectable
watermarking or a symmetric watermarking. If the detection is desired to be
outsourced, the secret key has to be shared to others, which could compromise
its unforgeability.

To address these challenges, [FGJ+23] introduces an asymmetric solution
called publicly detectable watermarking (PDW), where the generation of a wa-
termark requires a secret key of the signature, and public detectability is achieved
through the public verification of the signature. In [FGJ+23], a security notion
called distortion-freeness is proposed for PDW, serving as the asymmetric ver-
sion of undetectability from [CGZ24], to ensure that the watermarking scheme
maintains the quality of the LLM output. More specifically, distortion-freeness in
[FGJ+23] is defined as follows: “without the secret watermarking key, no PPT
machine can distinguish plain LLM output from watermarked LLM output”.
This definition aligns with the way undetectability is defined in [CGZ24]. How-
ever, in the asymmetric setting, the public key is usually known to the public, and

⋆ GPTZero, https://gptzero.me/

2

https://gptzero.me/

a distinguisher with the public key can easily find out whether the LLM output
is watermarked or not, since the watermarking solution in [FGJ+23] is pub-
licly detectable. In other words, in the public-key setting, the distortion-freeness
defined in [FGJ+23] and the completeness are contradictory. Furthermore, for
PDW, any third party can detect watermarks, which may compromise privacy
and other interests (e.g., economic interests). This universal detectability is often
undesirable, particularly when restricted detectability is critical.

Contributions. In this paper, we initiate the study of multi-designated detec-
tor watermarking (MDDW) for LLMs. Generally speaking, for the watermarked
LLM outputs generated via MDDW, multi-designated detectors are allowed to
detect the watermarks, and all the other parties cannot distinguish the water-
marked outputs from the original LLM outputs. The contributions of this paper
is summarized as follows.

– We introduce a new primitive called multi-designated detector watermarking
(MDDW), and formalize its security notions.

– We offer a framework for constructing MDDW from any LLM and multi-
designated verifier signature (MDVS), and show that it achieves the required
security properties.

– We provide a general method to transfer any MDVS to a claimable MDVS.
Then, applying the above framework, we obtain a claimable MDDW, which
allows the model provider to provably claim that some candidate texts are
indeed generated by the LLMs.

– When considering only a single designated verifier, we present a more ef-
ficient concrete designated detector watermarking (DDW) in Appendix H,
compared with the above solution from MDVS. We also provide a detailed
experimental evaluation in Sec. 5 to show that our schemes are practical.

MDDW primitive. In MDDW, there are three kinds of roles involved: model
providers, designated detectors and users. Model providers are the ones who
deliver the LLM service to users and execute the watermarking scheme during the
text generation phase. Designated detectors are the ones responsible for detecting
whether some text was output by the model (by extracting and validating the
watermark). Users are the ones who use the model.

An MDDW scheme consists of five algorithms: a setup algorithm Setup, a
key generation algorithm WatKG for model providers, a key generation algo-
rithm DetKG for designated detectors, a watermarking algorithm WatMar and a
detection algorithm Detect.

Upon receiving the public parameter pp output by the setup algorithm Setup,
the model provider can invoke WatKG to generate its key pair (wpk,wsk) for
watermarking, and a designated detector can call DetKG to generate its key pair
(dpk, dsk).

The watermarking algorithm WatMar, invoked by a model provider, takes
the public parameter pp, the model provider’s secret watermarking key wski,
the public keys of all the designated detectors (dpkj)j∈S (where S is the index

3

set of the designated detectors, and the same below), and a prompt p as input,
and outputs a text t embedded with a watermark.

The detection algorithm Detect, invoked by a designated detector, takes the
public parameter pp, a public watermarking key wpki, the designated detector’s
secret key dskj′ , the public keys of all the designated detectors (dpkj)j∈S (where
j′ ∈ S), and a candidate watermarked text t as input, and outputs a bit b,
indicating whether t was watermarked.

Similar to [CGZ24,FGJ+23], the watermarking scheme just uses the LLM as
a black box. Thus, it works without adopting a specific LLM or using specific
configuration (e.g., the specific decoder algorithm, model parameters, etc). In
addition, the detection also works without access to the LLMs or corresponding
configurations.

MDDW security. It is important to note that, compared with the security
notions of symmetric watermarking and publicly detectable watermarking, the
security requirements in the multi-designated detector setting are much more
complex.

The first challenge is ensuring consistency. If a designated detector success-
fully detects a watermark in a given text, how can they be assured that other
designated detectors will also be able to detect it successfully? Another challenge
is preventing designated detectors from provably convincing ordinary users that a
text output by the LLMs is watermarked. If they can do so, the multi-designated
detector functionality would be rendered useless. Moreover, in certain scenarios,
even if designated detectors are unable to convince ordinary users of the water-
mark, it is crucial that the model provider can assert the truth. This mechanism
is very helpful in MDDW, as it allows model providers to claim copyrights on
content such as novels, pictures, or videos created by LLMs, which can yield
considerable economic gains.

In this paper, we require that MDDW should satisfy the following properties.

– Completeness. Completeness requires for any designated detector set S
and any candidate text t generated for the designated detectors in S with
MDDW, as long as t is long enough (to embed a watermark), each detector
in S should be able to extract and validate the watermark from t successfully
using their individual secret detection keys.

– Consistency. Consistency aims to ensure that for any text t, including
those created maliciously, two designated detectors with uncompromised se-
cret keys should not yield different detection results. Furthermore, if one
designated detector accepts that the text t is generated by the LLM, all
other designated detectors in S should obtain the same outcome.

– Soundness. Soundness is formalized to ensure that no PPT adversary can
forge a watermarked text in the name of some model provider, such that some
designated detector, whose secret key is not compromised, would accept the
text is output by the corresponding model owned by this model provider.

– Distortion-freeness.As discussed before, the purpose of distortion-freeness
is to guarantee that the watermarking scheme does not degrade the quality
of the LMM output. Specifically, distortion-freeness for MDDW formalized

4

to require that for any PPT distinguisher without the secret detection keys
of the designated detectors in S, a watermarked text generated for the des-
ignated detectors in S by MDDW should be indistinguishable from a text
output by the original LLM.

– Robustness. It is likely that the text obtained from MDDW is modified
before publication. The watermark detector should be robust enough to de-
tect a watermark even if the text has been artificially altered, provided the
text semantics are preserved. However, in extreme cases where a significant
portion of the text is modified, the watermark should normally become un-
detectable, as the text effectively becomes the adversary’s creation. Thus,
we use a “soft” definition of robustness. Informally, if a continuous segment
of text with length δ remains unaltered, then it is highly unlikely that any
designated detector will fail to detect the watermark. We term this property
δ-robust.

– Off-the-record property for designated set. This property is formalized
to ensure that a text t can be simulated by all the designated detectors in S,
such that it is indistinguishable from a watermarked text generated for them
by MDDW, from the perspective of any third party, even if they possess all
the secret detection keys of the designated detectors in S. Intuitively, this
prevents the designated detectors from convincing a third party that the
text t is watermarked by the model provider, as it can be simulated by
the designated detectors themselves. Moreover, this property allows users to
deny using the LLMs when confronted with third-party suspicions, even if
some designated detectors have exposed their secret keys.

In addition, we introduce two optional security properties for MDDW: off-
the-record property for any subset and claimability.

– Off-the-record property for any subset. This property is similar to the
off-the-record property for designated set, with key differences: the plausible-
looking text t can be simulated by any subset of the designated detectors
in S, and it is indistinguishable from a watermarked text generated for the
designated detectors in S by MDDW, from the perspective of any third party,
even if they possess the secret detection keys of the subset that produced
t. It is crucial to note that the requirement of “any subset” enhances the
meaningfulness of the off-the-record property. For example, if two designated
detectors in S are unable to communicate, the off-the-record property for
designated set loses its significance. Thus, off-the-record for any subset is a
stronger security notion.

– Claimability. Claimability is designed to give the model provider a means
to convincingly demonstrate the public that specific watermarked texts were
generated by the provider’s LLM. This requires two algorithms: Claim and
ClmVer. The model provider runs Claim with their secret watermarking key
to create proof π for some watermarked text t. The public then uses ClmVer
to verify this proof π. Claimability requires that (i) proofs created with
Claim must be correctly validated by ClmVer, (ii) only the model provider

5

can create proofs to claim the LLM’s output, and (iii) no one can falsely
accuse another provider of generating the watermarked text t.

MDDW construction. The following outlines a technical overview of our MDDW
construction.

Framework. We propose a framework for building MDDW, which applies to
any LLM, based on a multi-designated verifier signature (MDVS) scheme. Our
method is inspired by [CGZ24,FGJ+23].

Before providing the high-level description of our framework, we firstly ab-
stract the LLMs as in [CGZ24,FGJ+23,CHS24], disregarding the specifics of
their implementations. LLMs have a “vocabulary” T consisting of words or word
fragments called “tokens”. These models employ neural networks to process and
generate tokens, trained on varied datasets to learn and predict language pat-
terns. During text generation, an LLM takes a prompt p as input and produces a
sequence of tokens t, with each subsequent token predicted based on the preced-
ing context. For notation, let Model denote an auto-regressive language model,
which accepts a prompt p ∈ T and previously generated tokens t as input, out-
putting subsequent tokens over T . For any polynomial n, GenModeln iteratively
invokes Model to generate n tokens.

Next, we briefly recall another building block of our framework, MDVS. An
MDVS scheme consists of five algorithms: a setup algorithm Setup, a signing key
generation algorithm SignKG for signers, a verification key generation algorithm
VerKG for verifiers, a signing algorithm Sign and a verification algorithm Verify.
In a nutshell, given a MDVS signature σ generated for the designated verifiers
in a set S by Sign, only the designated verifiers in S can check the validity of
the signature with Verify.

Now, we show a high-level description of our framework as follows. For a
visual depiction, please see Fig. 1.

The setup algorithm of MDDW is the same is the setup algorithm of MDVS.
The public/secret watermarking (resp., detection) key pairs are generated by
invoking the signing (resp., verification) key generation algorithm of the MDVS.

Given the watermarking secret key wsk (which belongs to a model provider),
a designated detector set S (whose public keys are {dpkj}j∈S), and a prompt
p, the watermarking algorithm WatMar, run by the model provider, proceeds as
follows.

(i) Prompt Processing. The model provider begins by using GenModelℓ (given a
prompt p and the previously generated tokens t) to generate text in blocks
of ℓ tokens.

(ii) Generating MDVS signatures. Take the last ℓ tokens of the current token se-
quence t as message m. The model provider generates a signature σ̂ on m for
the designated detectors in S, with the signing algorithm of the underlying
MDVS. It is crucial to note that the model provider’s secret key wsk is the
signing secret key, and {dpkj}j∈S are actually the corresponding verification
public keys of the designated detectors in S.

6

<latexit sha1_base64="Hixo8HSyHyFdnDxjE5iKL5SELL0=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWMV+wFpKJvtpl262Q27E6WU/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmFldW19o7hZ2tre2d0r7x80jco0ZQ2qhNLtiBgmuGQN5ChYO9WMJJFgrWh4M/Vbj0wbruQDjlIWJqQvecwpQSsFnXveHyDRWj11yxWv6s3gLhM/JxXIUe+Wvzo9RbOESaSCGBP4XorhmGjkVLBJqZMZlhI6JH0WWCpJwkw4np08cU+s0nNjpW1JdGfq74kxSYwZJZHtTAgOzKI3Ff/zggzjq3DMZZohk3S+KM6Ei8qd/u/2uGYUxcgSQjW3t7p0QDShaFMq2RD8xZeXSfOs6l9Uz+/OK7XrPI4iHMExnIIPl1CDW6hDAygoeIZXeHPQeXHenY95a8HJZw7hD5zPH5QJkXY=</latexit>)

<latexit sha1_base64="ZC+IGvkFNo3j9tb+m2xf1AzOUJs=">AAAB73icbVBNTwIxEJ3FL8Qv1KOXRmLiiewaoh6JXjxi4gIJbEi3dKGh2y5tV0M2/AkvHjTGq3/Hm//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRU8tUEeoTyaVqh1hTzgT1DTOcthNFcRxy2gpHtzO/9UiVZlI8mElCgxgPBIsYwcZK7a6fYKXkU69ccavuHGiVeDmpQI5Gr/zV7UuSxlQYwrHWHc9NTJBhZRjhdFrqppommIzwgHYsFTimOsjm907RmVX6KJLKljBorv6eyHCs9SQObWeMzVAvezPxP6+Tmug6yJhIUkMFWSyKUo6MRLPnUZ8pSgyfWIKJYvZWRIZYYWJsRCUbgrf88ippXlS9y2rtvlap3+RxFOEETuEcPLiCOtxBA3wgwOEZXuHNGTsvzrvzsWgtOPnMMfyB8/kDQBaQHw==</latexit>*

<latexit sha1_base64="o+qwouHZS2BcHAnfqeJvvpQZssY=">AAACMnicbVDLSsNAFJ34rPFVdekmWJQKpSQi6kYoutFdBfuAppTJ5DYdnEzCzEQoab/JjV8iuNCFIm79CKdtEG09MMyZc+/hzj1ezKhUtv1izM0vLC4t51bM1bX1jc381nZdRokgUCMRi0TTwxIY5VBTVDFoxgJw6DFoeHeXo3rjHoSkEb9V/RjaIQ447VKClZY6+WvXg4DyFDMacPCH5oEraRDi8+Lk7jgll/mRkqXsnQ4mZDA8NF3g/o+zky/YZXsMa5Y4GSmgDNVO/sn1I5KEwBVhWMqWY8eqnWKhKGEwNN1EQozJHQ6gpSnHIch2Ol55aO1rxbe6kdCHK2us/nakOJSyH3q6M8SqJ6drI/G/WitR3bN2SnmcKOBkMqibMEtF1ig/y6cCiGJ9TTARVP/VIj0sMFE6ZVOH4EyvPEvqR2XnpHx8c1yoXGRx5NAu2kNF5KBTVEFXqIpqiKAH9Ize0LvxaLwaH8bnpHXOyDw76A+Mr28VEKtP</latexit>

� = (�1, . . . ,�|�|)

<latexit sha1_base64="KLYGIuoCX9egmA9VzjvBOrNj0+8=">AAADqHicdVJbb9MwFHYTLiNc1sEjLxbVUIemKoEJ0CSkCR6YhJCKtK5DdRU5zklqzXFC7LBVmfvT+BG88W9wLyDalCNZOvrOd26fT1QIrrTv/2o57q3bd+7u3PPuP3j4aLe99/hc5VXJYMBykZcXEVUguISB5lrARVECzSIBw+jywzw+/A6l4rk809MCxhlNJU84o9pC4V7rB4kg5bKmgqcSYuM9JxqudZTUBLJiUmtj8DvcwEKfEEtN8pIKMeOEy9ENUTzN6M34eDZb8KuijnND6jlztt3W617bXkRAomlZ5lfLpiqpP4L8nMcgTGh5QpjuelZhzGFjvoP/NiXmz3BXEy7AdE/DV93GHAdEwje83Cjk26s1ReH4eFMrW+uwyWysuR4s6FxWEFt05x4BGf/9rrDd8Xv+wnDTCVZOB62sH7Z/kjhnVQZSM0GVGgV+occ1LTVnVg2PVAoKyi5pCiPrSpqBGteLQzN43yIxtp9un9R4gf6bUdNMqWkWWWZG9URtxubgttio0snbcc1lUWmQbNkoqQTWOZ5fLY55CUyLqXUoK7mdFbOJFYlpe9ueFSHYXLnpnL/sBa97R1+OOifvV3LsoKfoGeqiAL1BJ+gU9dEAMWff+eScOQP3hdt3h+7XJdVprXKeoDVzo9+w50HX</latexit>

t = t0

8 i 2 [|�|] : do{
x GenModel`(p, t)

}while(H3(x) 6= �i)

t i := x , t t k t i

<latexit sha1_base64="ED40aNu0EpBqz9ecrf1Nds6S13E=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVUj0W9eCxgv3AdinZNNuGZpMlyVrK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdDPzW09UaSbFg5nE1I/wQLCQEWys9Ni9lWOBlZLjXrHklt050CrxMlKCDPVe8avblySJqDCEY607nhsbP8XKMMLptNBNNI0xGeEB7VgqcES1n84vnqIzq/RRKJUtYdBc/T2R4kjrSRTYzgiboV72ZuJ/Xicx4ZWfMhEnhgqyWBQmHBmJZu+jPlOUGD6xBBPF7K2IDLHCxNiQCjYEb/nlVdK8KHvVcuW+UqpdZ3Hk4QRO4Rw8uIQa3EEdGkBAwDO8wpujnRfn3flYtOacbOYY/sD5/AHQepEG</latexit>+

<latexit sha1_base64="ED40aNu0EpBqz9ecrf1Nds6S13E=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVUj0W9eCxgv3AdinZNNuGZpMlyVrK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdDPzW09UaSbFg5nE1I/wQLCQEWys9Ni9lWOBlZLjXrHklt050CrxMlKCDPVe8avblySJqDCEY607nhsbP8XKMMLptNBNNI0xGeEB7VgqcES1n84vnqIzq/RRKJUtYdBc/T2R4kjrSRTYzgiboV72ZuJ/Xicx4ZWfMhEnhgqyWBQmHBmJZu+jPlOUGD6xBBPF7K2IDLHCxNiQCjYEb/nlVdK8KHvVcuW+UqpdZ3Hk4QRO4Rw8uIQa3EEdGkBAwDO8wpujnRfn3flYtOacbOYY/sD5/AHQepEG</latexit>+

<latexit sha1_base64="kVQtTHQ4fUoyFwvYic2LWabcBmg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWMF+wFNKJvtpl26uwm7E6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmltfWNzq7xd2dnd2z+oHh61TZJpylo0EYnuRsQwwRVrIUfBuqlmREaCdaLx3czvPDFteKIecZKyUJKh4jGnBK0UBCOCeWD4UJJpv1rz6t4c7irxC1KDAs1+9SsYJDSTTCEVxJie76UY5kQjp4JNK0FmWEromAxZz1JFJDNhPr956p5ZZeDGibal0J2rvydyIo2ZyMh2SoIjs+zNxP+8XobxTZhzlWbIFF0sijPhYuLOAnAHXDOKYmIJoZrbW106IppQtDFVbAj+8surpH1R96/qlw+XtcZtEUcZTuAUzsGHa2jAPTShBRRSeIZXeHMy58V5dz4WrSWnmDmGP3A+fwB15ZH5</latexit>

�̂

<latexit sha1_base64="bwc5abD023xgTw/J1TIJ6E04ySs=">AAACJ3icbVBNS8NAEN34WetX1aOXYBEqSElE1JMU9eBFUGqr0JSw2U7axc0m7E7EEvJvvPhXvAgqokf/idtawa8HA2/fm2FnXpAIrtFx3qyx8YnJqenCTHF2bn5hsbS03NRxqhg0WCxidRlQDYJLaCBHAZeJAhoFAi6Cq8OBf3ENSvNYnmM/gXZEu5KHnFE0kl/a9xBuUIfZyVGznle/XnXelXnFE50Y9WZ989h3K1+WB1HSyzDPfWdjwy+VnaozhP2XuCNSJiOc+qVHrxOzNAKJTFCtW66TYDujCjkTkBe9VENC2RXtQstQSSPQ7Wx4Z26vG6Vjh7EyJdEeqt8nMhpp3Y8C0xlR7Onf3kD8z2ulGO61My6TFEGyz4/CVNgY24PQ7A5XwFD0DaFMcbOrzXpUUYYm2qIJwf198l/S3Kq6O9Xts+1y7WAUR4GskjVSIS7ZJTVyTE5JgzByS+7JE3m27qwH68V6/Wwds0YzK+QHrPcP9rumlw==</latexit>

MDVS.Sign(. . . , S, H1(t0))

<latexit sha1_base64="dnoPUtQR+V9Tme4SkjIm+bTQQjk=">AAACRXicbVBNSysxFM348Z5WfVZdugkWQUHKjIjvLUUXuhEqWBU6Zcikd2wwkwzJnadlmD/nxr07/4EbF4q41fRjodYDgcM5594kJ86ksOj7D97E5NT0r98zs5W5+YU/i9Wl5TOrc8OhybXU5iJmFqRQ0ESBEi4yAyyNJZzHVwd9//w/GCu0OsVeBu2UXSqRCM7QSVE1DBFuME6KENKsW2BZRj4NJSTIjNHXdGDbpDgEdaw7IMvIJaUsN77OZWW5NbZpM6rW/Lo/AB0nwYjUyAiNqHofdjTPU1DIJbO2FfgZtgtmUHAJZSXMLWSMX7FLaDmqWAq2XQxaKOm6Uzo00cYdhXSgfp4oWGptL41dMmXYtd+9vviT18ox+dcuhMpyBMWHFyW5pKhpv1LaEQY4yp4jjBvh3kp5lxnG0RVfcSUE3788Ts6268Fufedkp7a3P6pjhqySNbJBAvKX7JEj0iBNwskteSTP5MW78568V+9tGJ3wRjMr5Au89w83PbWs</latexit>

t0 GenModel`(p, t)

<latexit sha1_base64="gYUdyZHgbTs4TLlEQoMx6Sa8zmU=">AAACVXicbVFNaxQxGM6Mtdb1o6sevQQXpV6WmVKqF6HopccqblvYLEMm885saD6G5B1xDfMnexH/iRfB7OyC2vpC4OH5yMeTslXSY5b9SNI7O3d37+3dHz14+Ojx/vjJ03NvOydgJqyy7rLkHpQ0MEOJCi5bB1yXCi7Kqw9r/eILOC+t+YyrFhaaN0bWUnCMVDFWrIRGmsCVbAxU/egVQ/iKXRs+cVNZLb8Nxp6xqHjZaP6OLTmGDe6ZbVXn6WlxeDDkyjow0O0yYN8X2esRA1P92bsYT7JpNgy9DfItmJDtnBXja1ZZ0WkwKBT3fp5nLS4CdyiFgn7EOg8tF1e8gXmEhmvwizC00tOXkalobV1cBunA/p0IXHu/0mV0ao5Lf1Nbk//T5h3WbxdBmrZDMGJzUN0pipauK6aVdCBQrSLgwsl4VyqW3HGB8SPWJeQ3n3wbnB9O8+Pp0cejycn7bR175Dl5QQ5ITt6QE3JKzsiMCHJNfiZJkibfk1/pTrq7sabJNvOM/DPp/m9aULVp</latexit>

Randomization

� = �̂ �H2(t0)

<latexit sha1_base64="gYUdyZHgbTs4TLlEQoMx6Sa8zmU=">AAACVXicbVFNaxQxGM6Mtdb1o6sevQQXpV6WmVKqF6HopccqblvYLEMm885saD6G5B1xDfMnexH/iRfB7OyC2vpC4OH5yMeTslXSY5b9SNI7O3d37+3dHz14+Ojx/vjJ03NvOydgJqyy7rLkHpQ0MEOJCi5bB1yXCi7Kqw9r/eILOC+t+YyrFhaaN0bWUnCMVDFWrIRGmsCVbAxU/egVQ/iKXRs+cVNZLb8Nxp6xqHjZaP6OLTmGDe6ZbVXn6WlxeDDkyjow0O0yYN8X2esRA1P92bsYT7JpNgy9DfItmJDtnBXja1ZZ0WkwKBT3fp5nLS4CdyiFgn7EOg8tF1e8gXmEhmvwizC00tOXkalobV1cBunA/p0IXHu/0mV0ao5Lf1Nbk//T5h3WbxdBmrZDMGJzUN0pipauK6aVdCBQrSLgwsl4VyqW3HGB8SPWJeQ3n3wbnB9O8+Pp0cejycn7bR175Dl5QQ5ITt6QE3JKzsiMCHJNfiZJkibfk1/pTrq7sabJNvOM/DPp/m9aULVp</latexit>

Randomization

� = �̂ �H2(t0)

<latexit sha1_base64="ZeEjPZTWaNwh6fwelfPzgI/1Lbk=">AAAB/XicbVDLSsNQEL3xWesrPnZugkVwVRIp6rLoxmUF+4AmhJvbSXvpzYN7J2INwV9x40IRt/6HO//GpM1CWw8MHM6ZYWaOFwuu0DS/taXlldW19cpGdXNre2dX39vvqCiRDNosEpHseVSB4CG0kaOAXiyBBp6Arje+LvzuPUjFo/AOJzE4AR2G3OeMYi65+qGN8ICen9oQxKMUs8y1qq5eM+vmFMYisUpSIyVarv5lDyKWBBAiE1SpvmXG6KRUImcCsqqdKIgpG9Mh9HMa0gCUk06vz4yTXBkYfiTzCtGYqr8nUhooNQm8vDOgOFLzXiH+5/UT9C+dlIdxghCy2SI/EQZGRhGFMeASGIpJTiiTPL/VYCMqKcM8sCIEa/7lRdI5q1vn9cZto9a8KuOokCNyTE6JRS5Ik9yQFmkTRh7JM3klb9qT9qK9ax+z1iWtnDkgf6B9/gC9zJVp</latexit>

t1

<latexit sha1_base64="nyxZqEuihP7WGqsdwrPqdlq+gyc=">AAACBnicbVBNS8NAEN34WetX1aMIwSJ4KokU9Vj04rGC/YAmhM120i7dTcLuRCxpTl78K148KOLV3+DNf2P6cdDWBwOP92aYmefHgmu0rG9jaXlldW29sFHc3Nre2S3t7Td1lCgGDRaJSLV9qkHwEBrIUUA7VkClL6DlD67HfuselOZReIfDGFxJeyEPOKOYS17pyEF4QD9IHZBxP8Us89KRo3lP0lFW9Eplq2JNYC4Se0bKZIa6V/pyuhFLJITIBNW6Y1sxuilVyJmArOgkGmLKBrQHnZyGVIJ208kbmXmSK10ziFReIZoT9fdESqXWQ+nnnZJiX897Y/E/r5NgcOmmPIwThJBNFwWJMDEyx5mYXa6AoRjmhDLF81tN1qeKMsyTG4dgz7+8SJpnFfu8Ur2tlmtXszgK5JAck1NikwtSIzekThqEkUfyTF7Jm/FkvBjvxse0dcmYzRyQPzA+fwC8spnv</latexit>

t |�|……

Fig. 1 The MDDW framework based on MDVS

(iii) Randomizing MDVS signatures⋆⋆. This process involves performing the XOR
operation on the MDVS signature σ̂ and the hash value of the last ℓ tokens
of the current token sequence t. For simplicity, we denote the XOR result as
σ.

(iv) Sampling tokens with rejection. Let σi represent the i
th bit of σ, for i ∈ [|σ|].

Firstly, generate a candidate ℓ-bit token sequence x using GenModelℓ with
given a prompt p and the current token sequence t. Compute the hash value
of x. If the hash value matches σ1, then accept x and append it to the
end of t. Otherwise, reject x and generate a new candidate sequence. For
σ2, σ3, and continuing through σ|σ|, repeat the above steps by calculating
the hash value of the last ℓ bits of the current t and comparing it to σi

(i ∈ {2, · · · , |σ|}), appending the sequence only if they match.

That is the main idea for generating the MDDW watermarked texts.
The detection process is similar to the watermarking process, so we will not

delve into many details here. Given the watermarking public key wpk (which
belongs to a model provider), a designated detector set S (whose public keys
are {dpkj}j∈S), a secret detection key dskj′ belonging to a detector j′ ∈ S,
and a token sequence t, the detection algorithm Detect, run by the detector
j′, proceeds as follows. First, divide t into contiguous blocks of ℓ tokens each.
Then, using the predetermined method (which involves hashing and comparing
operations) and the verification algorithm of the underlying MDVS, extract a
watermark or signature from the token block (if one is embedded) with the help
of the verification secret key of the designated detector (i.e., dskj′).

Security analysis.Our generic MDDW construction is based on an MDVS scheme,
ensuring that many of its security properties are directly derived from those of
the MDVS. For example, the consistency of our MDDW is inherited directly
from the consistency of the underlying MDVS, the soundness of our MDDW is

⋆⋆ Very recently, [FGJ+23] also independently proposes a similar randomization step in
their watermarking framework in their latest version, in order to eliminate the need
for pseudorandom signatures. However, as discussed in the aforementioned section,
it still fails to achieve meaningful distortion-freeness in the public-key setting.

7

also guaranteed by the existential unforgeability of the underlying MDVS, and so
on. Moreover, following [CGZ24,FGJ+23], we also assume that any contiguous
block of ℓ tokens contains at least α bits of min-entropy. With this assumption
and the properties of random oracle, we can show that our MDDW achieves
distortion-freeness.

Regarding the optional security requirements, the off-the-record property for
any subset of our MDDW is implied by the off-the-record property for any sub-
set of the underlying MDVS, and some MDVS schemes provide this security
[DHM+20,MPR22]. However, to the best of our knowledge, it seems that cur-
rently no known security property of MDVS can ensure the claimability of our
MDDW.

To ensure claimability in our generic MDDW, we introduce the security no-
tion of claimability for MDVS, an extension of the claimability notions for des-
ignated verifier signatures [YHW+23] and ring signatures [PS19].

Similar to the claimability notion for MDDW, claimability for MDVS requires
two algorithms: Claimmdvs and ClmVermdvs. A genuine signer uses Claimmdvs with
their secret signing key to generate proof π for a signature σ they created. The
public then uses ClmVermdvs to verify this proof π. This security also requires
that (i) proofs created with Claimmdvs must be correctly validated by ClmVermdvs,
(ii) no one can successfully claim a signature that they did not generate, and
(iii) no one can falsely accuse others of being the signer.

By applying this claimability to the underlying MDVS, we can show that our
generic MDDW achieves claimability.

Construction of MDVS with claimability. We provide a generic method to trans-
form any MDVS into an MDVS with claimability, abbreviated as CMDVS. The
main idea, with some details omitted, is as follows. To generate a CMDVS sig-
nature, first produce an MDVS signature σmdvs. Then, use a standard signature
scheme to sign the signer’s public key and the MDVS signature σmdvs, produc-
ing a standard signature. Next, commit the signer’s public key, the designated
verifiers’ public keys and the standard signature with a commitment scheme to
produce a commitment com. The CMDVS signature comprises (σmdvs, com). To
make a claim, the signer reveals the opening of the commitment com, includ-
ing the standard signature and the randomness used for the commitment. The
claim verification process involves checking the correctness of the opening and
the validity of the standard signature.

Due to the correctness of the standard signature and the commitment scheme,
the generated claim will be verified successfully. Regarding the second require-
ment of claimability, note that the CMDVS signature contains com, produced
by committing the signer’s public key, the designated verifiers’ public keys and
the standard signature. If another party tries to claim that they generated the
CMDVS signature, they would need to provide an opening of com with their own
public key, distinct from the actual signer’s public key. This would imply two
different openings for the same commitment, contradicting the binding property
of the commitment scheme. As for the third requirement of claimability, it pri-
marily relies on the existential unforgeability of the standard signature. This is

8

because the generated claim contains a standard signature, which is inherently
difficult to forge without access to the signer’s secret key.

Discussions. Here, we provide some discussions, which contains some further
contributions and future works.

More efficient concrete DDW.Our generic framework of MDDW implies a generic
designated detector watermarking (DDW), when there is only one designated
detector (i.e., there is only one designated verifier in the corresponding MDVS
scheme). However, when plugging the concrete MDVS (e.g., [AYSZ14]) with
one designated verifier into our framework, the resulting DDW is not very effi-
cient. In Appendix H, we consider a more efficient concrete DDW. The concrete
DDW is based on the designated verifier signature (DVS) [LV05,SBWP03]. Com-
pared with the DDW scheme from the MDVS [AYSZ14], the DDW from DVS
[LV05,SBWP03] has shorter length of watermark (appropriately only 1/4 of the
length of the DDW from [AYSZ14]). Thus, given a fixed length of the text out-
put by the LLM, we can embed more watermarks, which also implies that the
DDW from DVS [LV05,SBWP03] is more robust. The experimental results in
Sec. 5 also show that DDW in Appendix H is practical.

Bit Length of watermarks for any subset. When considering the off-the-record
property for any subset, we have the following theorem for the bit length of
watermarks, with a proof inspired by [DHM+20, Theorem 1].

Theorem 1. If an MDDW scheme supports the off-the-record property for any
subset and soundness, then the size of the generated watermarks must be Ω(n),
where n is the number of the designated detectors (i.e., |S| = n).

Proof. Suppose that there exists a distinguisher D who knows all detectors’
secret keys. Formally, the off-the-record property for any subset requires the
existence of a PPT algorithm FgeAS (please refer to Def. 13), that takes the
public parameter pp, the public key of the signer wpki, the public keys of the
designated detectors (dpkj)j∈S , the secret keys of the designated detectors in
the corrupted set (dskj)j∈Scor and a prompt p as input, and outputs a text t,
which is indistinguishable from a real one output by WatMar.

Given a text generated by FgeAS with a corrupted detector set Scor ⊆ S, D
can distinguish whether some designated detector is in Scor or not, by verifying
the validity of the watermark (i.e., the MDVS signature). Note that the off-the-
record property for any subset and soundness guarantee that only the detectors
in Scor would accept the watermark. Thus, D can determine the set Scor when
given a text generated by FgeAS. Therefore, the watermark must contain enough
bits to indicate Scor. Since Scor ⊆ S and it can be an arbitrary subset, there
are 2|S| = 2n kinds of different subsets. Thus, the bit length of watermark is
at least log2 2

|S| = log2 2
n = n. Considering that the text output by WatMar

is indistinguishable from that output by FgeAS, the bit length of watermark
embedded in the text output by WatMar is also Ω(n). ⊓⊔

Strengthening the security models. It is important to note that in this paper,
claimability is defined as optional for MDDW. If it is considered a mandatory

9

security requirement, then an MDDW scheme must include the algorithms Claim
and ClmVer. In this case, several security models (e.g., the game defining sound-
ness) can be strengthened by granting the adversary access to the claiming oracle.
Similar enhancements can be applied to the security models of MDVS. We will
not elaborate on the details and leave this for future work.

Error-correcting code.We note that several works [FGJ+23,QYH+24,CG24] have
considered the use of error-correction codes to enhance watermarking schemes.
It improves robustness and relaxes the entropy assumption by allowing the wa-
termarking scheme to tolerate errors caused by adversarial modifications or
low entropy token distribution in rejection sampling. We emphasize that error-
correction codes can also be applied to our work to achieve the same effects.
Since error-correction codes are essentially specialized coding schemes that alter
the form of signatures, they would not affect our MDDW framework.

Empirical attacks.We stress that, similar to existing works like [KGW+23,CGZ24,FGJ+23],
our scheme is also vulnerable to certain empirical attacks, like the emoji attack
and translation attack. For a more detailed introduction to these attacks, please
refer to [KGW+23,CGZ24]. Actually, [CGZ24] concludes that no undetectable
watermarking schemes can be completely unremovable.

Other watermarking schemes. Recently, there is a line of works using cryp-
tographic tools to construct watermarking schemes for LLMs, besides the afore-
mentioned works [KGW+23,CGZ24,FGJ+23]. Here, we summarized some works
as follows.

Piet et al. [PSF+23] systematically analyze watermarking schemes in the
secret key setting. Their study focuses on assessing generation quality and ro-
bustness to minor edits for practical protocol parameters. They conclude that
distortion-freeness is too strong a property for practice. However, as pointed out
in [FGJ+23], this conclusion was drawn from quality assessment performed by
the chat version of Llama 2 7B [TMS+23], and they remark that Llama 2 7B’s
quality assessment likely does not generalize, since higher fidelity models may
reveal weaknesses in distortion-inducing watermarking schemes.

Zhang et al. [ZEF+23] formally prove that “strong” robustness is impossible
in watermarking schemes. They further demonstrate that their attack works
in practice against a range of secret-key watermarking schemes (including the
[KGW+23] scheme). On the other hand, [ZEF+23] also points out that “weak
watermarking schemes” do exist and can be useful. To be noticed, our security
notion of robustness is a kind of weak notions.

Qu et al. [QYH+24] present a watermarking scheme for LLMs that uses error
correction codes to gain robustness. Similarly, Christ and Gunn [CG24] construct
pseudorandom error-correction codes and applies it to show an undetectable
watermarking scheme.

Roadmap. We recall some preliminaries in Sec. 2. Then, we introduce the prim-
itive of MDDW and formalize its security notions in Sec. 3. In Sec. 4, we provide
a framework of constructing MDDW for any LLM from MDVS, and show that

10

it achieves all required security properties. Finally, we present the experimental
results in Sec. 5.

2 Preliminaries

Notations. We assume that the security parameter λ is an (implicit) input
to all algorithms. For any n ∈ N, let [n] := {1, 2, · · · , n}. For a finite set S,
let |S| denote the number of elements in S, and x ← S denote the process of
sampling x from S uniformly at random. For a distribution Dist, we use x← Dist
to denote the process of sampling x from Dist. A function f of λ is negligible if
f ∈ O(1

poly(λ)) for any polynomial poly(·). For simplicity, we write f(λ) ≤ negl(λ)

to mean that f is negligible. Throughout this paper, let ϵ denote the empty list
or empty string.

For a random variableX, themin-entropy H∞(X) is − log(maxx Pr[X = x]).
Let a||b denote the tail-to-head concatenation of a and b. In a bit string a,

ai represents the ith bit of a, unless indicated otherwise.
Throughout this paper, bold lower-case letters denote vectors or sequence of

tokens, e.g., t = (t1, . . . , t|t|) is a |t|-dimension vector, and usually the number of
dimensions can be inferred from the context. For a vector or sequence of tokens
t, let t[i] denote the ith element of (t1, · · · , t|t|), and t[−i] denote the ith last
element of (t1, · · · , t|t|). For i ≤ j, t[i : j] denotes (ti, ti+1, · · · , tj), and t[−i :]
denotes the last i elements of (t1, · · · , t|t|). We sometimes adapt these notations
to bit strings, such as a[1] and a[−i].

2.1 Language models

We follow [KGW+23,CGZ24,FGJ+23] in our definition of a language model, and
refer to language models simply as models in this paper.

Definition 1 (Auto-regressive model). An auto-regressive model Model over
token vocabulary T is a deterministic algorithm that takes as input a prompt
p ∈ T and tokens previously output by the model t ∈ T and outputs a probability
distribution p = Model(p, t) over T .

For all ℓ ∈ N, GenModelℓ wraps around Model to implement a generative
model. GenModelℓ iteratively generates ℓ tokens. Decode is the specific decoding
method, e.g., argmax.

Algorithm 1 Generative model GenModelℓ(p ∈ T , t ∈ T)
1: for i = 1, · · · , ℓ do
2: t← t||Decode(Model(p, t))

3: return t

Following [FGJ+23], we assume that any contiguous block of ℓ ∈ N tokens
contains at least α bits of min-entropy, i.e., no particular sample is more than
2−α likely to happen.

11

Assumption 1 For any prompt p and tokens t, the new tokens t′ ← GenModelℓ(p, t) ∈
T ℓ were sampled from distributions with min-entropy at least α.

Entities. In the scenarios discussed in this paper, three types of entities are
involved.

– Model provider. The model provider delivers the large language model (LLM)
service, generating LLM outputs for specified configurations based on re-
ceived prompts. An honest model provider will execute the watermarking
scheme using their watermarking secret key during the text generation phase.

– Designated detector. The designated detector, using their own detection se-
cret key, checks if a text is watermarked with respect to a specific model
provider, without access to the model weights or the model provider’s secret
watermarking key.

– User. Users create prompts that are sent to the LLM to receive the model
output in return.

2.2 Multi-designated verifier signature

We recall the definition of multi-designated verifier signature (MDVS) from
[DHM+20,MPR22], with some adjustments.

An MDVS scheme, associated with message spaceM, is a tuple of algorithms
MDVS = (Setup,SignKG,VerKG,Sign,Verify), where
• Setup(1λ) → pp: On input the security parameter λ, the setup algorithm
outputs a public parameter pp.
• SignKG(pp) → (spk, ssk): On input pp, the signing key generation algorithm
outputs a public key spk and a secret key ssk for a signer.
• VerKG(pp)→ (vpk, vsk): On input pp, the verification key generation algorithm
outputs a public key vpk and a secret key vsk for a verifier.
• Sign(pp, sski, {vpkj}j∈S ,m)→ σ: On input pp, a signing secret key sski, pub-
lic keys of the designated verifiers {vpkj}j∈S , and a message m, the signing
algorithm outputs a signature σ.
• Verify(pp, spki, vskj′ , {vpkj}j∈S ,m, σ) → b: On input pp, a signing public key
spki, a secret key vskj′ of a verifier such that j′ ∈ S, public keys of the
designated verifiers {vpkj}j∈S , a messagem, and a signature σ, the verification
algorithm outputs a bit b ∈ {0, 1}.
In this paper, we require that an MDVS scheme should satisfy correctness,

consistency, existential unforgeability, and off-the-record property for designated
set.

Definition 2 (Correctness). We say that MDVS is correct, if for any signer
i, any message m ∈M, any verifier identity set S and any j′ ∈ S, it holds that

Pr

pp← Setup(1λ)

(spki, sski)← SignKG(pp)

{(vpkj , vskj)← VerKG(pp)}j∈S

σ ← Sign(pp, sski, {vpkj}j∈S ,m)

:
Verify(pp, spki, vskj′ ,

{vpkj}j∈S ,m, σ) ̸= 1

 = 0.

12

Gcons
MDVS,A(λ):

pp← Setup(1λ)

(i∗, S∗,m∗, σ∗)← AOSK ,OVK ,OSPK ,OVPK ,OS ,OV (pp)

If ∃ j∗0 , j
∗
1 ∈ S∗, such that

Verify(pp, spki∗ , vskj∗0 , {vpkj}j∈S∗ ,m∗, σ∗) ̸= Verify(pp, spki∗ , vskj∗1 , {vpkj}j∈S∗ ,m∗, σ∗),

where all keys are the honestly generated outputs of the key generation oracles, and

OVK is never queried on j∗0 or j∗1
then return 1

Return 0

Gunforg
MDVS,A(λ):

pp← Setup(1λ)

(i∗, S∗,m∗, σ∗)← AOSK ,OVK ,OSPK ,OVPK ,OS ,OV (pp)

where OSK is never queried on i∗, and OS is never queried on (i∗, S∗,m∗)

If ∃ j∗ ∈ S∗, such that

Verify(pp, spki∗ , vskj∗ , {vpkj}j∈S∗ ,m∗, σ∗) = 1, where all keys are the honestly

generated outputs of the key generation oracles, and OVK is never queried on j∗

then return 1
Return 0

Fig. 2 Games Gcons
MDVS,A(λ) and Gunforg

MDVS,A(λ) for MDVS, and the oracles are given in
Fig. 3

Signer Key Generation Oracle OSK (i):
1. On the first call to OSK on i, compute (spki, sski)← SignKG(pp), output and store (spki, sski).

2. On subsequent calls, simply output (spki, sski).

Verifier Key Generation Oracle OVK (j):
1. On the first call to OVK on j, compute (vpkj , vskj)← VerKG(pp), output and store (vpkj , vskj).

2. On subsequent calls, simply output (vpkj , vskj).

Public Signer Key Generation Oracle OSPK (i):
1. (spki, sski)← OSK (i); output spki.

Public Verifier Key Generation Oracle OVPK (j):
1. (vpkj , vskj)← OVK (j); output vpkj .

Signing Oracle OS (i, S,m):
1. (spki, sski)← OSK (i), {vpkj ← OVPK (j)}j∈S .

2. Output σ ← Sign(pp, sski, {vpkj}j∈S ,m).

Verification Oracle OV (i, j′ ∈ S, S,m, σ):
1. spki ← OSPK (i), (vpkj′ , vskj′)← OVK (j′)

2. {vpkj ← OVPK (j)}j∈S .

3. Output b← Verify(pp, spki, vskj′ , {vpkj}j∈S ,m, σ).

Fig. 3 The oracles for the games defining security notions for MDVS

Definition 3 (Consistency). We say that MDVS is consistent, if for any PPT
adversary A,

Advcons
MDVS,A(λ) = Pr[Gcons

MDVS,A(λ) = 1] ≤ negl(λ)

where Gcons
MDVS,A(λ) is shown in Fig. 2.

13

Gotr-ds
MDVS,A,FgeDS(λ):

pp← Setup(1λ), b← {0, 1}

b′ ← AOSK ,OVK ,OSPK ,OVPK ,O(b)
otr-chl

,OV (pp)

where O(0)
otr-chl(i, S,m) outputs OS (i, S,m), O(1)

otr-chl(i, S,m) outputs σ ← FgeDS(pp,

spki, {vskj}j∈S ,m) (where all keys are the honestly generated outputs of the key

generation oracles),

let Q denote the set of query-response of O(b)
otr-chl ,

all queries (i, S,m) to O(b)
otr-chl should satisfy that OSK is never queried on i,

and all queries (i′, j′, S′,m′, σ′) to OV should satisfy “ ̸ ∃ (∗, ∗, ∗, σ) ∈ Q s.t. σ = σ′”

If b′ = b, then return 1
Return 0

Gotr-as
MDVS,A,FgeAS(λ):

pp← Setup(1λ), b← {0, 1}

b′ ← AOSK ,OVK ,OSPK ,OVPK ,O(b)
otr-chl

,OV (pp)

where O(0)
otr-chl(i, S, Scor,m) outputs OS (i, S,m), O(1)

otr-chl(i, S, Scor,m) outputs

σ ← FgeAS(pp, spki, {vpkj}j∈S , {vskj}j∈Scor ,m) (where all keys are the honestly

generated outputs of the key generation oracles),

let Q denote the set of query-response of O(b)
otr-chl ,

all queries (i, S, Scor,m) to O(b)
otr-chl should satisfy that (1) Scor ⊂ S, (2) OSK is never

queried on i, and (3) for all j ∈ S \ Scor, OVK is never queried on j,

all queries j to OVK should satisfy “ ̸ ∃ (∗, S, Scor, ∗, ∗) ∈ Q s.t. j ∈ S \ Scor”,

and all queries (i′, j′, S′,m′, σ′) to OV should satisfy “ ̸ ∃ (∗, ∗, ∗, ∗, σ) ∈ Q s.t. σ = σ′”

If b′ = b, then return 1
Return 0

Fig. 4 Games Gotr-ds
MDVS,A,FgeDS(λ) and Gotr-as

MDVS,A,FgeAS(λ) for MDVS, and the oracles are
given in Fig. 3

Definition 4 (Unforgeability). We say that MDVS is unforgeable, if for any
PPT adversary A,

Advunforg
MDVS,A(λ) = Pr[Gunforg

MDVS,A(λ) = 1] ≤ negl(λ)

where Gunforg
MDVS,A(λ) is shown in Fig. 2.

Definition 5 (Off-the-record for designated set). We say that MDVS is
off-the-record for designated set, if there is a PPT algorithm FgeDS, taking
(pp, spki, {vskj}j∈S ,m) as input and outputting σ, such that for any PPT ad-
versary A,

Advotr-ds
MDVS,A,FgeDS(λ) = |Pr[Gotr-ds

MDVS,A,FgeDS(λ) = 1]− 1

2
| ≤ negl(λ)

where Gotr-ds
MDVS,A,FgeDS(λ) is shown in Fig. 4.

14

Now, we recall the off-the-record property for any subset for MDVS [DHM+20].
Note that unlike [DHM+20], in this paper, the off-the-record property is defined
as optional for MDVS. Note that off-the-record property for any subset implies
off-the-record property for designated set.

Definition 6 (Off-the-record for any subset). We say that MDVS is off-
the-record for any subset, if there is a PPT algorithm FgeAS, taking (pp, spki,
{vpkj}j∈S , {vskj}j∈Scor ,m) (where Scor ⊂ S) as input and outputting σ, such
that for any PPT adversary A,

Advotr-as
MDVS,A,FgeAS(λ) = |Pr[Gotr-as

MDVS,A,FgeAS(λ) = 1]− 1

2
| ≤ negl(λ)

where Gotr-as
MDVS,A,FgeAS(λ) is shown in Fig. 4.

3 Multi-designated detector watermarking

In this section, we introduce a primitive called multi-designated detector water-
marking (MDDW), and formalize its security notions.

An MDDW scheme for an auto-regressive modelModel over token vocabulary
T is a tuple of algorithms MDDW = (Setup,WatKG,DetKG,WatMar,Detect),
where
• Setup(1λ) → pp: On input the security parameter λ, the setup algorithm
outputs a public parameter pp.
• WatKG(pp) → (wpk,wsk): On input pp, the watermarking key generation al-
gorithm outputs a public/secret key pair (wpk,wsk) for watermarking.
• DetKG(pp)→ (dpk, dsk): On input pp, the detection key generation algorithm
outputs a public/secret key pair (dpk, dsk) for a detector.
• WatMar(pp,wski, {dpkj}j∈S ,p) → t: On input pp, a watermarking secret key
wski, public keys of the designated detectors {dpkj}j∈S , and a prompt p ∈ T ,
the watermarking algorithm outputs t ∈ T .
• Detect(pp,wpki, dskj′ , {dpkj}j∈S , t)→ b: On input pp, a watermarking public
key wpki, a secret key dskj′ of a detector such that j′ ∈ S, public keys of the
designated detectors {dpkj}j∈S , and a candidate watermarked text t ∈ T , the
detection algorithm outputs a bit b ∈ {0, 1}.
We provide further explanations here. The watermarking key generation al-

gorithm WatKG (run by the model providers) and the detection key generation
algorithm DetKG (run by the detectors) generate their respective public/secret
key pairs. To generate watermarked texts that can only be detected by desig-
nated detectors in a set S, the model provider (holding watermarking secret
key wski) runs WatMar(pp,wski, {dpkj}j∈S ,p) to produce t. A detector j′ ∈ S
can then execute Detect(pp,wpki, dskj′ , {dpkj}j∈S , t) using their own detection
secret key dskj′ to check whether t is watermarked .

Regarding security, we require that an MDDW scheme should satisfy com-
pleteness, consistency, soundness, distortion-freeness, robustness, and off-the-
record property for designated set. The formal definitions of these security re-
quirements are as follows.

15

Gcons
MDDW,A(λ):

pp← Setup(1λ)

(i∗, S∗, t∗)← AOWK ,ODK ,OWPK ,ODPK ,OW ,OD (pp)

If ∃ j0, j1 ∈ S∗, such that Detect(pp,wpki∗ , dskjβ , {dpkj}j∈S∗ , t∗) = β for all β ∈ {0, 1},
where all keys are the honestly generated outputs of the key generation oracles, and
ODK is never queried on j0 or j1

then return 1
Return 0

Gsound
MDDW,A(λ):

pp← Setup(1λ)

(i∗, S∗, t∗)← AOWK ,ODK ,OWPK ,ODPK ,OW ,OD (pp)

where OWK is never queried on i∗, and all t1, t2, · · · (denoting the watermarked texts

that A receives when querying OW on (i∗, S∗, ∗)) satisfy NOLapk(t
∗, t1, t2, · · ·) = 1

If ∃ j′ ∈ S∗, such that Detect(pp,wpki∗ , dskj′ , {dpkj}j∈S∗ , t∗) = 1

where all keys are the honestly generated outputs of the key generation oracles, and

ODK is never queried on j′,
then return 1

Return 0

Gdist-fr
MDDW,A(λ):

pp← Setup(1λ), b← {0, 1}

b′ ← AOWK ,ODK ,OWPK ,ODPK ,OModel,O
(b)
M-chl

,OD (pp)

where OModel(p) outputs Model(p), O(0)
M-chl(i, S,p) outputs OW (i, S,p), O(1)

M-chl(i, S,p)

outputs GenModel(p), let Q denote the set of query-response of O(b)
M-chl ,

all queries (i, S,p) to O(b)
M-chl satisfy that “i has never been queried to OSK , and

∀ j ∈ S, j has never been queried to ODK”,

all queries j to ODK satisfy that “ ̸ ∃ (i, S, ∗, t) ∈ Q s.t. j ∈ S”,

and all queries (i′, j′, t′) to OD satisfy “∀ (i′, S, ∗, t) ∈ Q s.t. j′ ∈ S, NOLapk(t
′, t) = 1”

If b′ = b, then return 1
Return 0

Fig. 5 Games Gcons
MDDW,A(λ), Gsound

MDDW,A(λ) and Gdist-fr
MDDW,A(λ) for MDDW, and the

oracles are given in Fig. 6

Definition 7 (Completeness). We say that MDDW is δ-complete, if for any
i, any prompt p ∈ T , any detector identity set S and any j′ ∈ S, it holds that

Pr

pp← Setup(1λ),

(wpki,wski)←WatKG(pp),

{(dpkj , dskj)← DetKG(pp)}j∈S ,

t←WatMar(pp,wski, {dpkj}j∈S ,p)

s.t. |t| ≥ δ

:
Detect(pp,wpki, dskj′ ,

{dpkj}j∈S , t) ̸= 1

 ≤ negl(λ).

16

Watermarking Key Generation Oracle: OWK (i)
1. On the first call to OWK on i, compute (wpki,wski) ← WatKG(pp), output and

store (wpki,wski).

2. On subsequent calls, simply output (wpki,wski).

Detecting Key Generation Oracle: ODK (j)
1. On the first call to ODK on j, compute (dpkj , dskj) ← DetKG(pp), output and

store (dpkj , dskj).

2. On subsequent calls, simply output (dpkj , dskj).

Public Watermarking Key Generation Oracle: OWPK (i)
1. (wpki,wski)← OWK (i); output wpki.

Public Detecting Key Generation Oracle: ODPK (j)
1. (dpkj , dskj)← ODK (j); output dpkj .

Watermarking Oracle: OW (i, S,p)
1. (wpki,wski)← OWK (i), {dpkj ← ODPK (j)}j∈S .

2. Output t←WatMar(pp,wski, {dpkj}j∈S ,p).

Detecting Oracle: OD(i, j
′ ∈ S, S, t)

1. wpki ← OWPK (i), (dpkj′ , dskj′)← ODK (j′).

2. {dpkj ← ODPK (j)}j∈S .

3. Output b← Detect(pp,wpki, dskj′ , {dpkj}j∈S , t).

Fig. 6 The oracles for defining security notions of MDDW

Definition 8 (Consistency). We say that MDDW is consistent, if for any
PPT adversary A,

Advcons
MDDW,A(λ) = Pr[Gcons

MDDW,A(λ) = 1] ≤ negl(λ)

where Gcons
MDDW,A(λ) is shown in Fig. 5.

Definition 9 (Soundness). We say that MDDW is k-sound, if for any PPT
adversary A and any prompt p ∈ T ,

Advsound
MDDW,A(λ) = Pr[Gsound

MDDW,A(λ) = 1] ≤ negl(λ)

where Gsound
MDDW,A(λ) is shown in Fig. 5, and the predicate NOLapk(t

∗, t1, t2, · · ·)
in Fig. 5 outputs 1 if t∗ does not share a k-length window of tokens with any of
the genuinely-watermarked texts t1, t2, · · · , and outputs 0 otherwise.

Definition 10 (Distortion-freeness). We say that MDDW is k-distortion-
free, if for any PPT adversary A,

Advdist-fr
MDDW,A(λ) = |Pr[Gdist-fr

MDDW,A(λ) = 1]− 1

2
| ≤ negl(λ)

where Gdist-fr
MDDW,A(λ) is shown in Fig. 5, and the predicate NOLapk(t

′, t) in Fig.
5 outputs 1 if t′ does not share a k-length window of tokens with t, and outputs
0 otherwise.

17

Remark 1. Given that MDDW is established in the public-key framework, we
adopt the term “distortion-freeness” as used in [FGJ+23]. We stress that our
definition of distortion-freeness, like that in [FGJ+23], is formalized in the multi-
query setting, allowing the distinguisher to make multiple oracle queries adap-
tively. This aligns with the undetectability definition in [CGZ24]. In other words,
our distortion-freeness can also be viewed as the undetectability definition from
[CGZ24] in the MDDW context.

Definition 11 (Robustness). We say that MDDW is k-robust, if for any PPT
adversary A,

Advrob
MDDW,A(λ) = Pr[Grob

MDDW,A(λ) = 1] ≤ negl(λ)

where Grob
MDDW,A(λ) is shown in Fig. 7, and the predicate NOLapk(t, t

∗) in Fig.
7 outputs 1 if t does not share a k-length window of tokens with t∗, and outputs
0 otherwise.

Definition 12 (Off-the-record for designated set). We say that MDDW
is off-the-record for designated set, if there is a PPT algorithm FgeDS, tak-
ing (pp,wpki, {dskj}j∈S ,p) as input and outputting t, such that for any PPT
adversary A,

Advotr-ds
MDDW,A,FgeDS(λ) = |Pr[Gotr-ds

MDDW,A,FgeDS(λ) = 1]− 1

2
| ≤ negl(λ)

where Gotr-ds
MDDW,A,FgeDS(λ) is shown in Fig. 7.

Now, we introduce two optional security notions for MDDW: off-the-record
property for any subset and claimability. It’s important to note that adherence
to these two securities is not mandatory for every MDDW scheme.

Definition 13 (Off-the-record for any subset). We say that MDDW is off-
the-record for any subset, if there is a PPT algorithm FgeAS, taking (pp,wpki,
{dpkj}j∈S , {dskj}j∈Scor

,p) (where Scor ⊂ S) as input and outputting t, such that
for any PPT adversary A,

Advotr-as
MDDW,A,FgeAS(λ) = |Pr[Gotr-as

MDDW,A,FgeAS(λ) = 1]− 1

2
| ≤ negl(λ)

where Gotr-as
MDDW,A,FgeAS(λ) is shown in Fig. 7.

Definition 14 (Claimability). We say that MDDW is k-claimable, if there are
two PPT algorithms Claim and ClmVer (where Claim takes (pp,wski, {dpkj}j∈S , t)
as input and outputs a claim π, and ClmVer takes (pp,wpki, {dpkj}j∈S , t, π) as
input and outputs a bit), such that

18

Grob
MDDW,A(λ):

pp← Setup(1λ)

(i∗, S∗,p∗, st)← AOWK ,ODK ,OWPK ,ODPK ,OW ,OD
1 (pp)

where OWK is never queried on i∗

t∗ ←WatMar(pp,wski∗ , {dpkj}j∈S∗ ,p∗)

where all keys are the honestly generated outputs of the key generation oracles

t← AOWK ,ODK ,OWPK ,ODPK ,OW ,OD
2 (t∗, st)

where NOLapk(t, t
∗) = 0, and all queries i to OWK satisfy i ̸= i∗

If ∃ j ∈ S∗ s.t. Detect(pp,wpki∗ , dskj , t) = 0, then return 1

Return 0

Gotr-ds
MDDW,A,FgeDS(λ):

pp← Setup(1λ), b← {0, 1}

b′ ← AOWK ,ODK ,OWPK ,ODPK ,O(b)
otr-chl

,OD (pp)

where O(0)
otr-chl(i, S,p) outputs OW (i, S,p), O(1)

otr-chl(i, S,p) outputs t← FgeDS(pp,

wpki, {dskj}j∈S ,p) (where all keys are the honestly generated outputs of the key

generation oracles),

let Q denote the set of query-response of O(b)
otr-chl ,

all queries (i, S,p) to O(b)
otr-chl satisfy that OWK is never queried on i,

and all queries (i′, j′, S′, t′) to OD satisfy “̸ ∃ (∗, ∗, ∗, t) ∈ Q s.t. t = t′”

If b′ = b, then return 1
Return 0

Gotr-as
MDDW,A,FgeAS(λ):

pp← Setup(1λ), b← {0, 1}

b′ ← AOWK ,ODK ,OWPK ,ODPK ,O(b)
otr-chl

,OD (pp)

where O(0)
otr-chl(i, S, Scor,p) outputs OW (i, S,p), O(1)

otr-chl(i, S, Scor,p) outputs

t← FgeAS(pp,wpki, {dpkj}j∈S , {dskj}j∈Scor ,p) (where all keys are the honestly

generated outputs of the key generation oracles),

let Q denote the set of query-response of O(b)
otr-chl ,

all queries (i, S, Scor,p) to O(b)
otr-chl satisfy that (1) Scor ⊂ S, (2) OWK is never

queried on i, and (3) for all j ∈ S \ Scor, ODK is never queried on j,

all queries j to ODK satisfy “̸ ∃ (∗, S, Scor, ∗, ∗) ∈ Q s.t. j ∈ S \ Scor”,

and all queries (i′, j′, S′, t′) to OD satisfy “̸ ∃ (∗, ∗, ∗, ∗, t) ∈ Q s.t. t = t′”

If b′ = b, then return 1
Return 0

Fig. 7 Games Grob
MDDW,A(λ), Gotr-ds

MDDW,A,FgeDS(λ) and Gotr-as
MDDW,A,FgeAS(λ) for MDDW, and

the oracles are given in Fig. 6

19

1. for any i and any detector identity set S,

Pr

pp← Setup(1λ)

(wpki,wski)←WatKG(pp)

((dpkj , dskj)← DetKG(pp))j∈S

t←WatMar(pp,wski, {dpkj}j∈S ,p)

π ← Claim(pp,wski, {dpkj}j∈S , t)

:
ClmVer(pp,wpki, {dpkj}j∈S ,

t, π) ̸= 1

 = 0.

2. for any PPT adversary A,

Advclm-unf
MDDW,A(λ) = Pr[Gclm-unf

MDDW,A(λ) = 1] ≤ negl(λ)

where Gclm-unf
MDDW,A(λ) is shown in Fig. 8, and the predicate NOLapk(t, t

∗) in
Fig. 8 outputs 1 if t does not share a k-length window of tokens with t∗, and
outputs 0 otherwise.

3. for any PPT adversary A,

Advnon-fram
MDDW,A(λ) = Pr[Gnon-fram

MDDW,A(λ) = 1] ≤ negl(λ)

where Gnon-fram
MDDW,A(λ) is shown in Fig. 8.

Here, we provide further explanations. When a model provider intends to
claim that certain watermarked texts are generated by their LLM (e.g., to es-
tablish copyright), they run Claim with their watermarking secret key to generate
a claim π. Any one can use ClmVer to verify the claim.

The notion of claimability for MDDW is inspired by the claimability concepts
in ring signature [PS19] and designated-verifier signature [YHW+23]. Generally
speaking, the first requirement in the claimability definition is correctness. The
second requirement is that even an adversarial model provider cannot success-
fully claim a watermarked text they did not produce. The third requirement is
that no one can falsely accuse another provider of generating watermarked texts.

4 MDDW construction

In this section, we present a framework for building MDDW from MDVS and
demonstrate its fulfillment of the required security properties. Additionally, we
show that if the underlying MDVS scheme is off-the-record for any subset, the
constructed MDDW also achieves the off-the-record property for any subset.
Furthermore, by introducing the notion of claimability for MDVS, we demon-
strate that our generic MDDW scheme achieves claimability when the underlying
MDVS scheme possesses this property. Finally, we provide a generic method for
constructing claimable MDVS by showing a transformation that converts any
MDVS scheme into one that is claimable.

20

Gclm-unf
MDDW,A(λ):

pp← Setup(1λ)

(i∗, S∗,p∗, st)← AOWK ,ODK ,OWPK ,ODPK ,OW ,OD ,OClm
1 (pp)

where OWK is never queried on i∗

t∗ ←WatMar(pp,wski∗ , {dpkj}j∈S∗ ,p∗)

where all keys are the honestly generated outputs of the key generation oracles

(π∗, i′)← AOWK ,ODK ,OWPK ,ODPK ,OW ,OD ,OClm
2 (t∗, st)

where all queries i to OWK satisfy i ̸= i∗, and all queries (∗, ∗, t) to OClm satisfy

NOLapk(t, t
∗) = 1

If (ClmVer(pp,wpki′ , {dpkj}j∈S∗ , t∗, π∗) = 1) ∧ (i′ ̸= i∗), then return 1

Return 0

Gnon-fram
MDDW,A(λ):

pp← Setup(1λ)

(i∗, S∗, t∗, π∗)← AOWK ,ODK ,OWPK ,ODPK ,OW ,OD ,OClm (pp)

where OWK is never queried on i∗, and OClm is never queried on (i∗, S∗, t)

satisfying NOLapk(t, t
∗) = 1

If ClmVer(pp,wpki∗ , {dpkj}j∈S∗ , t∗, π∗) = 1 and

∃ µ ∈ S∗, Detect(pp,wpki∗ , dskµ, {dpkj}j∈S∗ , t∗)=1, then return 1

Return 0

Claiming Oracle OClm(i, S, t):

(1) (wpki,wski)← OWK (i), {dpkj ← ODPK (j)}j∈S .

(2) Output π ← Claim(pp,wski, {dpkj}j∈S , t).

Fig. 8 Games Gclm-unf
MDDW,A(λ) and Gnon-fram

MDDW,A(λ) for MDDW, and some oracles are given
in Fig. 6

4.1 Generic construction of MDDW

Let MDVS = (MDVS.Setup,SignKG,VerKG,Sign,Verify) be an MDVS scheme
with signature length lensig. LetM denote the message space of MDVS, and SG
denote the signature space of MDVS. Let H1 : {0, 1}∗ →M, H2 : {0, 1}∗ → SG
and H3 : {0, 1}∗ → {0, 1} be hash functions, which will all be modeled as random
oracles in the security proof.

Our MDDW schemeMDDWn,ℓ,lensig = (Setup,WatKG,DetKG,WatMar,Detect),
for some predefined parameters n and ℓ, is as follows.⋆ ⋆ ⋆

• Setup(1λ): Compute pp ← MDVS.Setup(1λ), and return pp as the public pa-
rameter of MDDW.

• WatKG(pp): Generate (spk, ssk)← SignKG(pp), and set wpk = spk and wsk =
ssk. Return (wpk,wsk).

• DetKG(pp): Generate (vpk, vsk) ← VerKG(pp), and set dpk = vpk and dsk =
vsk. Return (dpk, dsk).

⋆ ⋆ ⋆ Note that according to Assumption 1, any contiguous block of ℓ tokens contains at
least α bits of min-entropy.

21

• WatMar(pp,wski, {dpkj}j∈S ,p): Its description is shown in Algorithm 2.
• Detect(pp,wpki, dskj′ , {dpkj}j∈S , t): Its description is shown in Algorithm 3.

Algorithm 2 WatMar(pp,wski, {dpkj}j∈S ,p)
1: sski ← wski, {vpkj}j∈S ← {dpkj}j∈S , t← ϵ
2: while |t|+ ℓ+ ℓ · lensig < n do
3: t← t||GenModelℓ(p, t)
4: σ̂ ← Sign(pp, sski, {vpkj}j∈S , H1(t[−ℓ :]))
5: σ ← σ̂ ⊕H2(t[−ℓ :])
6: σprev ← ϵ, m← ϵ
7: while σ ̸= ϵ do
8: σbit ← σ[1], σ ← σ[2 :]
9: x← GenModelℓ(p, t)
10: while H3(m||x||σprev) ̸= σbit do
11: x← GenModelℓ(p, t)

12: m←m||x, t← t||x, σprev ← σprev||σbit

13: if |t| < n then
14: t← t||GenModeln−|t|(p, t)

15: return t

Algorithm 3 Detect(pp,wpki, dskj′ , {dpkj}j∈S , t)
1: spki ← wpki, vskj′ ← dskj′ , {vpkj}j∈S ← {dpkj}j∈S

2: for µ = 1, 2, · · · , n− (ℓ+ ℓ · lensig) do
3: m̃← H1(t[µ : µ+ ℓ− 1]), σ ← ϵ, m← ϵ
4: for φ = 1, 2, · · · , lensig do
5: m←m||t[µ+ φ · ℓ : µ+ φ · ℓ+ ℓ− 1]
6: σ ← σ||H3(m||σ)
7: σ̂ ← σ ⊕H2(t[µ : µ+ ℓ− 1])
8: if Verify(pp, spki, vskj′ , {vpkj}j∈S , m̃, σ̂) = 1 then
9: return 1
10: return 0

Now, we show that our proposed MDDW satisfies the required security prop-
erties defined in Sec. 3. Formally, we have the following theorem.

Theorem 2. The constructed MDDW scheme MDDW possesses the following
properties:

– (Completeness). If Assumption 1 holds and MDVS satisfies correctness, then
MDDW is ℓ-complete.

– (Consistency). If the underlying MDVS is consistent, then MDDW is also
consistent.

22

– (Soundness). If the underlying MDVS is unforgeable, then MDDW is ℓ-sound.

– (Distortion-freeness). If Assumption 1 holds, then MDDW is ℓ-distortion-
free.

– (Robustness). MDDW is (2lensig + 2)ℓ-robust.

– (Off-the-record for designated set). If the underlying MDVS is off-the-record
for designated set, then MDDW is also off-the-record for designated set.

Remark 2. If the underlying MDVS scheme MDVS meets strong unforgeability,
MDDW might achieve (lensig + 1)ℓ-soundness.

For the optional off-the-record property for any subset, we have the following
theorem.

Theorem 3 (Off-the-record for any subset). If MDVS is off-the-record for
any subset, then MDDW is also off-the-record for any subset.

The proofs of Theorem 2 and Theorem 3 are placed in Appendix D and
Appendix E, respectively.

4.2 MDDW construction with claimability

To make the above generic MDDW scheme achieve claimability, the underlying
MDVS scheme needs to meet some corresponding security property. However, to
the best of our knowledge, no claimability notion for MDVS has been introduced
before. Here, we firstly introduce the notion of claimability for MDVS, and then
formally prove that if the underlying MDVS scheme meets claimability, the above
generic MDDW scheme is claimable.

Claimability for MDVS. The notion of claimability for MDVS extends from
the established claimability concepts for ring signature [PS19] and designated-
verifier signature [YHW+23]. It is crucial to emphasize that in this paper, claima-
bility is defined as an optional requirement for MDVS.

Definition 15 (Claimability for MDVS). We say that MDVS = (Setup,SignKG,
VerKG,Sign,Verify) is claimable, if there are two PPT algorithms Claim and
ClmVer (where Claim takes (pp, sski, {vpkj}j∈S , σ) as input and outputs a claim
π, and ClmVer takes (pp, spki, {vpkj}j∈S , σ, π) as input and outputs a bit), such
that

1. for any signer i, any message m ∈M, and any verifier identity set S,

Pr

pp← Setup(1λ)

(spki, sski)← SignKG(pp)

{(vpkj , vskj)← VerKG(pp)}j∈S

σ ← Sign(pp, sski, {vpkj}j∈S ,m)

π ← Claim(pp, sski, {vpkj}j∈S , σ)

: ClmVer(pp, spki, {vpkj}j∈S , σ, π) ̸= 1

 = 0.

23

Gclm-unf
MDVS,A(λ):

pp← Setup(1λ)

(i∗, S∗,m∗, st)← AOSK ,OVK ,OSPK ,OVPK ,OS ,OV ,OClm
1 (pp)

where OSK is never queried on i∗

σ∗ ← Sign(pp, sski∗ , {vpkj}j∈S∗ ,m∗)

where all keys are the honestly generated outputs of the key generation oracles

(π∗, i′)← AOSK ,OVK ,OSPK ,OVPK ,OS ,OV ,OClm
2 (σ∗, st)

where all queries i to OSK satisfy i ̸= i∗, and all queries (∗, ∗, σ) to OClm satisfy

σ ̸= σ∗

If (ClmVer(pp, spki′ , {vpkj}j∈S∗ , σ∗, π∗) = 1) ∧ (i′ ̸= i∗), then return 1

Return 0

Gnon-fram
MDVS,A (λ):

pp← Setup(1λ)

(i∗, S∗,m∗, σ∗, π∗)← AOSK ,OVK ,OSPK ,OVPK ,OS ,OV ,OClm (pp)

where OSK is never queried on i∗, and OClm is never queried on (i∗, S∗, σ∗)

If ClmVer(pp, spki∗ , {vpkj}j∈S∗ , σ∗, π∗) = 1, then return 1

Return 0

Claiming Oracle OClm(i, S, σ):

(1) (spki, sski)← OSK (i), {vpkj ← OVPK (j)}j∈S .

(2) Output π ← Claim(pp, sski, {vpkj}j∈S , σ).

Fig. 9 Games Gclm-unf
MDVS,A(λ) and Gnon-fram

MDVS,A (λ) for MDVS

2. for any PPT adversary A = (A1,A2),

Advclm-unf
MDVS,A(λ) = Pr[Gclm-unf

MDVS,A(λ) = 1] ≤ negl(λ)

where Gclm-unf
MDVS,A(λ) is shown in Fig. 9.

3. for any PPT adversary A,

Advnon-fram
MDVS,A (λ) = Pr[Gnon-fram

MDVS,A (λ) = 1] ≤ negl(λ)

where Gnon-fram
MDVS,A (λ) is shown in Fig. 9.

Remark 3. In the above definition, the adversaryA succeeds in gameGnon-fram
MDVS,A (λ)

if its output tuple (i∗, S∗,m∗, σ∗, π∗) satisfies ClmVer(pp, spki∗ , {vpkj}j∈S∗ , σ∗, π∗)
= 1. It’s worth noting that unlike the prerequisites in the definition of claimabil-
ity for ring signatures [PS19] and designated-verifier signatures [YHW+23], our
third condition doesn’t mandate that “σ∗ is accepted by some designated verifier
in S∗”. Thus, the security requirement in our claimability for MDVS appears to
be more stringent.

Generic MDDW scheme with claimability. For the claimability of our generic
MDDW scheme, we have the following theorem.

24

Theorem 4 (Claimability). If the underlying MDVS scheme MDVS is claimable,
then the generic MDDW scheme MDDW in Sec. 4.1 is (lensig + 1)ℓ-claimable.

The proof of Theorem 4 is placed in Appendix F.

4.3 Instantiation of claimable MDVS

To instantiate claimable MDVS (CMDVS), we show a transformation that con-
verts any MDVS into a CMDVS, with the help of a standard digital signature, a
pseudorandom function and a commitment scheme. Our method is inspired by
[PS19,YHW+23], where [PS19] shows how to construct claimable ring signature
and [YHW+23] shows how to construct claimable DVS from ring signature.

The intuition of our method is as follows. To generate a CMDVS signature,
the signer firstly generates an MDVS signature σMDVS with the signing algorithm
of the underlying MDVS, signs σMDVS with the the standard signature scheme
to obtain a standard signature σSig, and then takes the commitment scheme to
commit σSig, obtaining a commitment com. The generated CMDVS signature
consists of (σMDVS, com). When making a claim, the signer just opens the com-
mitment com, outputting σSig and the randomness used to generate com. To
verify the claim, one firstly checks if the opening is correct, and then checks
if the standard signature is valid. The unforgeability of the standard signature
scheme guarantees that the claim is indeed generated by the signer.

The detailed construction of CMDVS is as follows.
Let MDVS = (Setup,SignKG,VerKG,Sign,Verify) be an MDVS scheme. Let

Sig = (Setup,KG,Sign,Verify) be a signature scheme, PRF = (KG,Eval) be a
pseudorandom function, and Commit = (Setup,Com,Decom) be a commitment
scheme. The definitions of signature, pseudorandom function and commitment
are given in Appendix B for completeness.

Our CMDVS scheme CMDVS = (Setup,SignKG,VerKG,Sign,Verify,Claim,
ClmVer) is shown in Fig. 10.

For security, we present the following theorem, the proof of which is given in
Appendix G.

Theorem 5. If MDVS satisfies correctness, consistency, unforgeability, and off-
the-record property for designated set (resp., for any subset), Sig satisfies un-
forgeability, and Commit is hiding and binding, then CMDVS is an MDVS scheme
achieving correctness, consistency, unforgeability, off-the-record property for des-
ignated set (resp., for any subset), and claimability.

5 Evaluation

In this experiment section, we evaluate our proposed scheme from the perspective
of computational overhead. Specifically, we analyze the time required for text
generation and watermark detection using three different LLMs. The details are
as follows:

Schemes. To highlight the performance of our scheme, we will implement the
following schemes.

25

Setup(1λ):

ppMDVS ← MDVS.Setup(1λ), ppSig ← Sig.Setup(1λ), ppCommit ← Commit.Setup(1λ)
Return pp = (ppMDVS, ppSig, ppCommit)

SignKG(pp):

k ← PRF.KG(1λ), (sskSig, spkSig)← Sig.KG(ppSig)
(sskMDVS, spkMDVS)← MDVS.SignKG(ppMDVS)
Return spk = (spkSig, spkMDVS), ssk = (k, sskSig, sskMDVS)

VerKG(pp):
Return (vskMDVS, vpkMDVS)← MDVS.VerKG(ppMDVS)

Sign(pp, sski, {vpkj}j∈S ,m):

σMDVS ← MDVS.Sign(ppMDVS, sskMDVS,i, {vpkj}j∈S ,m)
rSig ← PRF.Eval(ki, (spki, σMDVS, 0)), σSig ← Sig.Sign(ppSig, sskSig,i, (spki, σMDVS); rSig)
rCommit ← PRF.Eval(ki, (spki, σMDVS, 1))
com← Commit.Com(ppCommit, (spki, {vpkj}j∈S , σSig); rCommit)
Return σ = (σMDVS, com)

Verify(pp, spki, vskj′ , {vpkj}j∈S , σ,m):

Return b← MDVS.Verify(ppMDVS, spkMDVS,i, vskMDVS,j′ , {vpkMDVS,j}j∈S ,m, σMDVS)

Claim(pp, sski, {vpkj}j∈S , σ):

rSig ← PRF.Eval(ki, (spki, σMDVS, 0)), rCommit ← PRF.Eval(ki, (spki, σMDVS, 1))
σSig ← Sig.Sign(ppSig, sskSig,i, (spki, σMDVS); rSig)
If Commit.Decom(ppCommit, com, rCommit, (spki, {vpkj}j∈S , σSig)) = 0: Return ⊥
Return π = (rCommit, σSig)

ClmVer(pp, spki, {vpkj}j∈S , σ, π):

If com ̸= Commit.Com(ppCommit, (spki, {vpkj}j∈S , σSig); rCommit): Return 0
Return b = Sig.Verify(ppSig, spkSig,i, (spki, σMDVS), σSig)

Fig. 10 Construction of CMDVS

1. Original LLMs. The first scheme is the original LLM scheme without any
watermarking solutions. We set the performance of this scheme as the base-
line for our experiments.

2. PDW. This is the publicly detectable watermarking scheme [FGJ+23] based
on the BLS signature [BLS04], which is recalled in Appendix C for complete-
ness. Although this scheme [FGJ+23] does not actually achieve distortion-
freeness (when the public keys are known, as discussed in the Introduction),
it is more relevant to compare our scheme with an asymmetric solution in
our experiments. For those interested in the performance of a symmetric
solution (e.g., [CGZ24]), [FGJ+23] shows that its performance exceeds that
of [CGZ24] in both text generation and watermark detection. The BLS sig-
nature is recalled in Appendix C for completeness.

26

3. DDW. This is the designated-detector watermarking scheme built within
the MDDW framework (in Sec. 4) when |S| = 1, using a concrete designated-
verifier signature [LV05,SBWP03]. The details of DDW are given in Ap-
pendix H.

4. MDDW. This is the MDDW scheme based on the framework in Sec. 4 with
the underlying MDVS proposed in [AYSZ14], which is recalled in Appendix
C.

Metrics. In this paper, we evaluate our scheme from the perspective of compu-
tational overhead. We measure the computational overhead by the time of text
generation and the time of watermark detection. More exactly,

– Time of text generation. It measures the time required to generate the text
of a pre-defined length (e.g., 50, 100, etc.).

– Time of watermark detection. It measures the time required to successfully
detect a watermark in a given watermarked text.

Implementation. We implement our experiments in Python language (version
3.8.10) based on elliptic curve groups with key size of 128 bits. The experi-
ments are conducted on a PC, running Ubuntu 20.04 on one Intel® CoreTM

i9-10900K CPU@3.70 GHz and NVIDIA GeForce RTX 3080, and using 64 GB
memory. We employ three LLMs to evaluate our different schemes, including
BLOOMZ 3B model [MWS+22], OPT 1.3B model [ZRG+22] and Gemma
2B model [TMH+24].

Aligned with prior works, we embed our watermarks in tokens, (each contains
3 to 5 words), to ensure sufficient entropy. Aligned with prior works, we embed
watermarks in tokens of 3 to 5 words for sufficient entropy. The parameters are
set empirically (e.g., when a token contains 5 words in BLOOMZ, the outputs
of the watermarking schemes contain no odd text), rather than from rigorous
theoretical analysis.

Experimental results. Here, we present the experimental results. These are
illustrated in Fig. 11. Specifically, Fig. 11a shows the generation time when
using the BLOOMZ model. Fig. 11b displays the generation time when using
the OPT model. Fig. 11c illustrates the generation time when using the Gemma
model. Fig. 11d depicts the time required for watermark detection when using the
BLOOMZmodel. Note that the computation of watermark detection is unrelated
to the LLMs, hence we present only the results for the BLOOMZ model.

Time of text generation. From Fig. 11a to Fig. 11c, we observe that the text
generation time for our schemes (DDW and MDDW) is nearly identical to that
of PDW. However, it is important to note that PDW cannot support distortion-
freeness, while ours not only satisfies distortion-freeness, but also satisfies other
advanced security properties (e.g., off-the-record property).

The dashed lines in Fig. 11a to Fig. 11c indicate twice the text generation
times of the original LLMs. It is evident that the watermarking schemes, includ-
ing PDW and our proposed methods, exhibit approximately the same time shown

27

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0

Tim
e (

s)

L e n g t h o f t o k e n s

 P D W
 D D W
 M D D W
 B L O O M Z
 2 * B L O O M Z

(a) Generation time for BLOOMZ

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0

Tim
e (

s)

L e n g t h o f t o k e n s

 P D W
 D D W
 M D D W
 O P T
 2 * O P T

(b) Generation time for OPT

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0

Tim
e (

s)

L e n g t h o f t o k e n s

 P D W
 D D W
 M D D W
 G e m m a
 2 * G e m m a

(c) Generation time for Gemma

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 00
2
4
6
8

1 0

Tim
e (

ms
)

L e n g t h o f t o k e n s

 P D W
 D D W
 M D D W

(d) Watermark detection time

Fig. 11 Figures for time of text generation and watermark detection (the dashed
lines are twice of the generation time of the corresponding LLMs)

by the dashed line. Since both the scheme in PDW and our schemes employ re-
jection sampling, there is only approximately 1/2 probability that a randomly
sampled token meets the requirement. Theoretically, the expected time to sam-
ple a token is about 1.5 times that of the original LLM. The remaining time is
dedicated to additional computations, such as generating signatures, hash com-
putation, etc.

From Fig. 11a to Fig. 11c, it appears that DDW does not offer advantages over
MDDW. In fact, these figures show the time of text generation when the output
lengths are the same. Given the same output length, the number of watermarks
in MDDW is only one-fourth of that in DDW in our experiments. Furthermore,
from the perspective of generating a watermark (excluding the embedding time),
the generation time for four watermarks in DDW is almost the same as that for
one watermark in MDDW. Thus, the DDW in Appendix H is more efficient when
considering only one designated verifier.

Time of watermark detection. Fig. 11d shows the time required for watermark
detection. From the figure, it is evident that the detection time for DDW is
comparable to that of PDW and significantly shorter than that of MDDW. A
detailed theoretical analysis in Appendix H reveals that MDDW demands more
exponential computations, while DDW relies on one bilinear map computation
(so does PDW using the BLS signature with minor modifications in Appendix
C). Although it is challenging to determine which type of computation is more

28

time-consuming purely from a theoretical standpoint, the experimental results
clearly indicate that DDW is more efficient when considering only one designated
verifier. Additionally, its performance is very close to that of PDW.

Overall, our scheme offers more advanced functionalities and greater flexibil-
ity than existing schemes (e.g., PDW), and the performance of our solutions is
also acceptable.

Acknowledgements. We thank Sam Gunn and Miranda Christ for their valu-
able feedback on the initial version of this paper.

References

AYSZ14. Man Ho Au, Guomin Yang, Willy Susilo, and Yunmei Zhang. (strong) mul-
tidesignated verifiers signatures secure against rogue key attack. Concur-
rency and Computation: Practice and Experience, 26(8):1574–1592, 2014.

BLS04. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. Journal of cryptology, 17:297–319, 2004.

CG24. Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes.
arXiv preprint arXiv:2402.09370, 2024.

CGZ24. Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for
language models. In The Thirty Seventh Annual Conference on Learning
Theory, pages 1125–1139. PMLR, 2024.

CHS24. Aloni Cohen, Alexander Hoover, and Gabe Schoenbach. Enhancing wa-
termarked language models to identify users. Cryptology ePrint Archive,
Paper 2024/759, 2024. https://eprint.iacr.org/2024/759.

DHM+20. Ivan Damg̊ard, Helene Haagh, Rebekah Mercer, Anca Nitulescu, Claudio
Orlandi, and Sophia Yakoubov. Stronger security and constructions of
multi-designated verifier signatures. In TCC 2020, pages 229–260. Springer,
2020.

DORS08. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy
data. SIAM Journal on Computing, 38(1):97–139, 2008.

FGJ+23. Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Moham-
mad Mahmoody, and Mingyuan Wang. Publicly detectable watermarking
for language models. Cryptology ePrint Archive, Paper 2023/1661, 2023.
https://eprint.iacr.org/2023/1661.

Fow23. Geoffrey A Fowler. We tested a new chatgpt-detector for teachers. it flagged
an innocent student. Washington Post, 2023.

HAS+23. Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mo-
hamed Gabr, Hitokazu Matsushita, Young Jin Kim, Mohamed Afify, and
Hany Hassan Awadalla. How good are gpt models at machine translation?
a comprehensive evaluation. arXiv preprint arXiv:2302.09210, 2023.

HD23. Vojtěch Hudeček and Ondřej Dušek. Are llms all you need for task-oriented
dialogue? arXiv preprint arXiv:2304.06556, 2023.

HS24. Yue Huang and Lichao Sun. Fakegpt: Fake news generation, explanation
and detection of large language models, 2024.

Jim23. Kayla Jimenez. Professors are using chatgpt detector tools to accuse stu-
dents of cheating. but what if the software is wrong. USA Today, 2023.

29

https://eprint.iacr.org/2024/759
https://eprint.iacr.org/2023/1661

KGW+23. John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers,
and Tom Goldstein. A watermark for large language models. In ICML
2023, volume 202. PMLR, 2023.

LV05. Fabien Laguillaumie and Damien Vergnaud. Designated verifier signatures:
Anonymity and efficient construction from any bilinear map. In SCN 2004,
pages 105–119. Springer, 2005.

MLK+23. Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning,
and Chelsea Finn. Detectgpt: Zero-shot machine-generated text detection
using probability curvature. In International Conference on Machine Learn-
ing, pages 24950–24962. PMLR, 2023.

MPR22. Ueli Maurer, Christopher Portmann, and Guilherme Rito. Multi-designated
receiver signed public key encryption. In EUROCRYPT 2022, pages 644–
673. Springer, 2022.

MWS+22. Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts,
Stella Biderman, Teven Le Scao, M Saiful Bari, Sheng Shen, Zheng-Xin
Yong, Hailey Schoelkopf, et al. Crosslingual generalization through multi-
task finetuning. arXiv preprint arXiv:2211.01786, 2022.

NIR+23. Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih,
Sida Wang, and Xi Victoria Lin. Lever: Learning to verify language-to-
code generation with execution. In ICML 2023, pages 26106–26128. PMLR,
2023.

PS19. Sunoo Park and Adam Sealfon. It wasn’t me! Repudiability and claimability
of ring signatures. In CRYPTO 2019, pages 159–190. Springer, 2019.

PSF+23. Julien Piet, Chawin Sitawarin, Vivian Fang, Norman Mu, and David A.
Wagner. Mark my words: Analyzing and evaluating language model water-
marks. CoRR, abs/2312.00273, 2023.

QYH+24. Wenjie Qu, Dong Yin, Zixin He, Wei Zou, Tianyang Tao, Jinyuan Jia, and
Jiaheng Zhang. Provably robust multi-bit watermarking for ai-generated
text via error correction code. arXiv preprint arXiv:2401.16820, 2024.

RKX+23. Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale
weak supervision. In ICML 2023, pages 28492–28518. PMLR, 2023.

SBWP03. Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Uni-
versal designated-verifier signatures. In ASIACRYPT 2003, pages 523–542.
Springer, 2003.

Shi08. Kyung-Ah Shim. Rogue-key attacks on the multi-designated verifiers sig-
nature scheme. Information processing letters, 107(2):83–86, 2008.

TMH+24. Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya
Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay
Kale, Juliette Love, et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

TMS+23. Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhar-
gava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288, 2023.

TTE+23. Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan,
Laura Gutierrez, Ting Fang Tan, and Daniel Shu Wei Ting. Large language
models in medicine. Nature medicine, 29(8):1930–1940, 2023.

YHW+23. Kyosuke Yamashita, Keisuke Hara, Yohei Watanabe, Naoto Yanai, and
Junji Shikata. Designated verifier signature with claimability. In Pro-

30

ceedings of the 10th ACM Asia Public-Key Cryptography Workshop, pages
21–32, 2023.

ZEF+23. Hanlin Zhang, Benjamin L Edelman, Danilo Francati, Daniele Venturi,
Giuseppe Ateniese, and Boaz Barak. Watermarks in the sand: Impos-
sibility of strong watermarking for generative models. arXiv preprint
arXiv:2311.04378, 2023.

ZRG+22. Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin,
et al. Opt: Open pre-trained transformer language models. arXiv preprint
arXiv:2205.01068, 2022.

A Preliminaries: cryptographic assumptions and lemmas

Let GenG(1λ) be a bilinear map setup algorithm, which takes the security param-
eter λ as input and outputs pp = (e,G,GT , g, p), where p is a prime of Θ(λ) bits,
G and GT are cyclic groups of order p, g is a generator of G, and e : G×G→ GT

is a nondegenerate and efficiently computable bilinear map.

Definition 16 (The DBDH assumption). We say that the decisional bilin-
ear Diffie-Hellman (DBDH) assumption holds with respect to GenG, if for any
PPT adversary D,

Advdbdh
GenG,D(λ) := |Pr[Gdbdh

GenG,D(λ) = 1]− 1

2
| ≤ negl(λ),

where Gdbdh
GenG,D(λ) is in Fig. 12.

Definition 17 (The CBDH assumption). We say that the computational
bilinear Diffie-Hellman (CBDH) assumption holds with respect to GenG, if for
any PPT adversary A,

Advcbdh
GenG,A(λ) := Pr[Gcbdh

GenG,A(λ) = 1] ≤ negl(λ),

where Gcbdh
GenG,A(λ) is in Fig. 12.

Definition 18 (The GBDH assumption). We say that the gap bilinear
Diffie-Hellman (GBDH) assumption holds with respect to GenG, if for any PPT
adversary A,

Advgbdh
GenG,A(λ) := Pr[Ggbdh

GenG,A(λ) = 1] ≤ negl(λ),

where Ggbdh
GenG,A(λ) is in Fig. 12.

For two random variables X1 and X2 over a set S, their statistical distance
is denoted as SD(X1, X2) =

1
2

∑
x∈S |Pr[X1 = x]− Pr[X2 = x]|.

Lemma 1 ([DORS08]). Assume that a family of hash functions {Hx : {0, 1}n →
{0, 1}ℓ}x∈X is universal (i.e., for all a ̸= b ∈ {0, 1}n, Prx←X [Hx(a) = Hx(b)] =

2ℓ). Then, for any random variable W , SD((HX(W), X), (Uℓ, X)) ≤ 1
2

√
2−H∞(W)2ℓ,

where Uℓ denotes the uniform distribution over {0, 1}ℓ.

31

Gdbdh
GenG,D(λ):

b← {0, 1}
pp← GenG(λ)
(x, y, z)← (Z∗

p)
3

X := gx, Y = gy, Z = gz

If b = 1: R = e(g, g)xyz

Else: R← GT

b′ ← D(pp, X, Y, Z,R)
If b′ = b, Return 1
Else Return 0

Gcbdh
GenG,A(λ):

b← {0, 1}, pp← GenG(λ)
(x, y, z)← (Z∗

p)
3

X := gx, Y = gy, Z = gz

R← A(pp, X, Y, Z)
If R = e(g, g)xyz , Return 1
Else Return 0

Ggbdh
GenG,A(λ):

b← {0, 1}, pp← GenG(λ)
(x, y, z)← (Z∗

p)
3

X := gx, Y = gy, Z = gz

R← AOdbdh (pp, X, Y, Z)
If R = e(g, g)xyz , Return 1
Else Return 0

Odbdh(X
′, Y ′, Z′, R′)

�Z′ = gz′

If R = e(X′, Y ′)z
′
, Return 1

Else Return 0

Fig. 12 Games Gdbdh
GenG,D(λ), Gcbdh

GenG,A(λ) and Ggbdh
GenG,A(λ)

B Preliminaries: pseudorandom function, commitment,
and signature

Definition 19 (Pseudorandom function). A pseudorandom function (PRF)
PRF is a pair of polynomial time algorithms (KG,Eval) that works as follows:

– KG(1λ)→ k: On inputting a security parameter 1λ, it outputs a key k.
– Eval(k, x) → r: On inputting a key k and a string x ∈ {0, 1}∗, it outputs a

string r ∈ {0, 1}λ.

A PRF should satisfy the following condition. For any sufficiently large security
parameter 1λ, and k ← KG(1λ), any truly random function F whose range is the
same as Eval(k, ·), and any PPT distinguisher D, it holds that

|Pr[DEval(k,·)(1λ) = 1]− Pr[DF (·)(1λ) = 1]| ≤ negl(λ).

Definition 20 (Commitment). A commitment scheme with message space
M contains three PPT algorithms Commit = (Setup,Com,Decom):

• Setup(1λ) → pp: The setup algorithm takes the security parameter 1λ as
input and output a public parameter pp.
• Com(pp,m; rcom)→ com: The commitment algorithm takes as input the pub-
lic parameter pp and m ∈ M, with an inner randomized input rcom, and
outputs a commitment com.
• Decom(pp, com, rcom,m) → b: The decommitment algorithm takes as input
the public parameter pp, a commitment com, a decommitment rcom and a
message m ∈ M, and outputs a bit b ∈ {0, 1} depending on whether m
is the committed message of com. One simple method is to re-generate the
commitment via Com algorithm with input (pp,m, rcom) and check if the
output equals to com.

A commitment scheme enjoys the following properties:

32

– Correctness. For all m ∈M and all rcom ∈ RSCom, it holds that

Pr[pp← Setup(1λ), com← Com(pp,m; rcom) : Decom(pp, com, rcom,m) = 1] = 1.

– Binding. For any PPT adversary A,

Pr

pp← Setup(1λ)
(com,m, rcom,m

′, r′com)← A(pp)
:

m ̸= m′

∧ Decom(pp, com, rcom,m) = 1
∧ Decom(pp, com, r′com,m

′) = 1

 ≤ negl(λ).

– Hiding. For any PPT adversary A = (A1,A2),∣∣∣∣∣∣∣∣Pr

pp← Setup(1λ), b← {0, 1}
(m0,m1, st)← A1(pp)
com← Com(pp,mb)
b′ ← A2(com, st)

: b′ = b

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

If A is unbounded and negl(λ) is fixed to be 0, we say that the scheme Commit
is perfect hiding.

Definition 21 (Signature). A signature scheme for a message space M con-
sists of four algorithms Sig = (Setup, KG,Sign,Verify).

• Setup(1λ) → pp: On input the security parameter 1λ, the setup algorithm
outputs a public parameter pp.

• KG(pp)→ (pk, sk): On input pp, the key generation algorithm outputs a key
pair (pk, sk).

• Sign(pp, sk,m) → σ: On input pp, sk and a message m ∈ M, the signing
algorithm outputs a signature σ.

• Verify(pp, pk,m, σ)→ b: On input pp, pk, m and a signature σ, the verifica-
tion algorithm outputs a bit b.

Correctness requires that for all m ∈M, it holds that:

Pr

[
pp← Setup(1λ)
(pk, sk)← KG(pp)

: Verify(pp, pk,m,Sign(pp, sk,m)) = 1

]
= 1.

The signature should satisfy existential unforgeability. In other words, we say
Sig is existentially unforgeable, if the following probability is negligible,

Advunforg
Sig,A (λ) = Pr

Q← ∅, pp← Setup(1λ)
(pk, sk)← KG(pp)
(m∗, σ∗)← AOS (pp, pk)

: (m∗, ∗) /∈ Q
Verify(pp, pk,m∗, σ∗) = 1

 ≤ negl(λ),

where the oracle OS is defined as follows:

– OS (m
′): On receiving m′, find (m′, ∗) in Q. If some entry (m′, σ′) ∈ Q is

found, then output the corresponding σ′. Otherwise, compute σ′ ← Sign(pp, sk,m′),
set Q← Q ∪ {(m′, σ′)}, and output σ′.

33

C Preliminaries: A MDVS scheme in [AYSZ14] and BLS
signature [BLS04]

MDVS. Here, we recall a MDVS scheme [AYSZ14] in Fig. 13.
It is based on discrete logarithm setting. Essentially, the signature is a ring

signature with only two party. One party is the signer and the other one is
all the designated verifiers. Since it is based on discrete logarithm and the key
pairs of the verifiers are in the form of (sk = x, pk = gx), we can compute a
public key for a “virtual” role representing all the designated verifiers in this
way: pk =

∏
i∈S pki. Finally, adopting ring signatures to generate a signature

for the signer and the virtual role. There are some improvements against rogue
key attack [Shi08,AYSZ14]. Here we omit the details.

The existential unforgeability of the ring signature guarantees the existential
unforgeability of the scheme [AYSZ14]. Off-the-record property for designated
set lies in that all designated verifiers can together generate such a ring signature,
and the security of anonymity of ring signature guarantees the indistinguishabil-
ity from a real signature output by the signer in [AYSZ14]. Although consistency
is not defined in [AYSZ14], the scheme is consistent, since the verification of the
ring signature is public.

One of the advantages of the scheme [AYSZ14] is that the size of the MDVS
signature is constant, no matter how many designated verifiers there are.
BLS signature. BLS signature [BLS04] is recalled in Fig. 14. Here, we make

a bit modification. More exactly, the original signature is σ := hsk and the
verification is to check whether e(σ, g) = e(h, pks) or not. Here the signature
would be a hash value, i.e., σ := H′(e(hsk, g)), and then the verification is to
check whether σ = H′(e(h, pks)).

D Proof of Theorem 2

We provide the proofs of completeness, consistency, soundness, distortion-freeness,
robustness, and off-the-record property for designated set of MDDW here.

D.1 Proof of completeness (in Theorem 2)

Proof. For any i, any prompt p ∈ T ∗, any detector set S, any j′ ∈ S, any
normally generated pp, (wpki,wski) and {dpkj , dskj}j∈S , and for any token t̂←
WatMar(pp,wski, {dpkj}j∈S ,p), ifWatMar successfully embeds a message/signature

pair in t̂, obviously the correctness of the underlying MDVS scheme guarantees
Detect(pp, wpki, dskj′ , {dpkj}j∈S , t̂) = 1. The only possibility that WatMar fails
in embedding is that the rejection sampling algorithm fails to find the next batch
of tokens whose hash is consistent with the target bit (i.e., line 10-11 in Algo-
rithm 2). Note that by Assumption 1, any ℓ consecutive tokens generated by
GenModelℓ contains α bits of entropy. So no one can predict the input to the
random oracle in line 10 of Algorithm 2 except with probability 2−α, which is
negligible. In other words, with overwhelming probability, the random oracle in

34

Setup(1λ):

(G, g, p)← GenG(1λ) �g is a generator of G with prime order p
Choose a hash function H: {0, 1}∗ → Z∗

p

Return pp = (G, g, p,H)

KG(pp):

Return (sk ← Z∗
p, pk := gsk)

Sign(pp,m, sks, S = (pkvi)i∈[n]):
Y := 1
For i ∈ [n]: hi := H(pks, (pkvi)i∈[n],m, i), Y = Y · pkhi

vi

(r, c2, z2)← (Z∗
p)

3, T1 := gr, T2 := Y c2gz2

c := H(T1, T2, pks, (pkvi , hi)i∈[n],m, Y)
c1 := c− c2, z1 := r − c1 · sks
Return σ = (c1, c2, z1, z2)

Verify(pp,m, pks, σ, S):
Y := 1
For i ∈ [n]: hi := H(pks, (pkvi)i∈[n],m, i), Y = Y · pkhi

vi

T ′
1 := pkc1

s gz1 , T ′
2 := Y c2gz2

c′ := H(T ′
1, T

′
2, pks, (pkvi , hi)i∈[n],m, Y)

If (c′ = c1 + c2): Return b = 1
Else Return b = 0

Fig. 13 Algorithms for multi-designated verifiers signature MDVS in [AYSZ14]

Setup(1λ):

(G,GT , e, g, p)← GenG(1λ)
Choose a hash function H : {0, 1}∗ → G
Choose a hash function H′ : GT → {0, 1}l
Return pp = (G,GT , e, g, p,H,H

′)

KG(pp):

sk ← Z∗
p, pk := gsk

Return (sk, pk)

Sign(pp,m, sks):
h← H(m)
Return σ := H′(e(hsk, g))

Verify(pp,m, pks, σ):

If (σ = H′(e(h, pks))): Return 1
Return 0

Fig. 14 BLS signature

line 10 of Algorithm 2 will return a uniformly and independently sampled bit.
Hence, with overwhelming probability, we derive that for each sampling attempt
of the next batch of tokens, it will succeed in finding a consistent hash value with
probability 1

2 . After poly(λ) attempts, the rejection sampling will find the next

batch of tokens with probability 1− 2−poly(λ), i.e., the probability that WatMar
fails is negligible. ⊓⊔

35

D.2 Proof of consistency (in Theorem 2)

Proof. For any PPT adversary A attacking the consistency of MDDW, we show
a PPT adversary B attacking the consistency of the underlying MDVS as follows.

Upon receiving pp (note that the pp generated by Setup of MDDW is the
same as that generated by the underlying MDVS.Setup), B sends pp to A. B
maintains three local arrays, Lro,1, Lro,2 and Lro,3, to keep track of A’s random
oracle queries. Then, B answers A’s oracle queries as below:
• ORO,κ(str) (κ ∈ {1, 2, 3}): If there is some (str, y) ∈ Lro,κ, B returns y; oth-

erwise, B samples y ←M, adds (str, y) to Lro,κ, and returns y.
• OWK(i): B queries its own oracle OSK(i) to obtain (spki, sski), and returns
(wpki,wski) = (spki, sski) to A.
• ODK(j): B queries its own oracle OV K(j) to obtain (vpkj , vskj), and returns
(dpkj , dskj) = (vpkj , vskj) to A.
• OWPK(i): B queries its own oracle OSPK(i) to obtain spki, and returns
wpki = spki to A.
• ODPK(j): B queries its own oracle OV PK(j) to obtain vpkj , and returns
dpkj = vpkj to A.
• OW (i, S,p): B runs SimWatMar (with the help of its signing oracle OS) as
shown in Algorithm 4. More specifically, Algorithm 4 is the same as Algorithm
2, except that the original hash functions H1, H2 and H3 (in line 4, line 5 and
line 10, respectively) in Algorithm 2 are replaced with random oracles, and the
original Sign algorithm (in line 4) in Algorithm 2 is replaced with B’s signing
oracle OS . Finally, B returns the output t of SimWatMar to A.
• OD(i, j′, S, t): B runs SimDetect (with the help of its verification oracle OV)
as shown in Algorithm 5. More specifically, Algorithm 5 is the same as Algo-
rithm 3, except that the original hash functions H1, H2 and H3 (in line 3, line
7 and line 6, respectively) in Algorithm 3 are replaced with random oracles,
and the original Verify algorithm (in line 8) in Algorithm 3 is replaced with
B’s verification oracle OV . Finally, B returns the output of SimDetect to A.
Upon receiving (i∗, S∗, t∗) from A, B checks whether there are j∗0 , j

∗
1 ∈ S∗

such that SimDetectOV ,{ORO,κ}κ∈{1,2,3}(pp, i∗, j∗β , {dpkj}j∈S∗ , t∗) = β for all β ∈
{0, 1}.
– If not, B returns a random tuple (i∗rand, S

∗
rand,m

∗
rand, σ

∗
rand) as its final output.

– Otherwise, B runs the algorithm SimDetect to find the tuple (m̃, σ̂) such that

SimDetectOV ,{ORO,κ}κ∈{1,2,3}(pp, i∗, j∗1 , {dpkj}j∈S∗ , t∗) = 1,

(i.e., OV (i
∗, j∗1 , S

∗, m̃, σ̂) = 1 in line 8 of Algorithm 5). Then, B returns a
random tuple (i∗, S∗, m̃, σ̂ as its final output.

That is the construction of adversary B.
It is easy to see that B perfectly simulates game Gcons

MDDW,A(λ) for A, and if
A wins Gcons

MDDW,A(λ), then B also wins Gcons
MDVS,B(λ). So we obtain

Advcons
MDVS,B(λ) ≥ Advcons

MDDW,A(λ).

⊓⊔

36

Algorithm 4 SimWatMarOS ,{ORO,κ}κ∈{1,2,3}(pp, i, S,p)

1: t← ϵ
2: while |t|+ ℓ+ ℓ · lensig < n do
3: t← t||GenModelℓ(p, t)
4: σ̂ ← OS(i, S,ORO,1(t[−ℓ :]))
5: σ ← σ̂ ⊕ORO,2(t[−ℓ :])
6: σprev ← ϵ, m← ϵ
7: while σ ̸= ϵ do
8: σbit ← σ[1], σ ← σ[2 :]
9: x← GenModelℓ(p, t)
10: while ORO,3(m||x||σprev) ̸= σbit do
11: x← GenModelℓ(p, t)

12: m←m||x
13: t← t||x
14: σprev ← σprev||σbit

15: if |t| < n then
16: t← t||GenModeln−|t|(p, t)

17: return t

Algorithm 5 SimDetectOV ,{ORO,κ}κ∈{1,2,3}(pp, i, j′, S, t)

1: for µ = 1, 2, · · · , n− (ℓ+ ℓ · lensig) do
2: m̃← ORO,1(t[µ : µ+ ℓ− 1])
3: σ ← ϵ, m← ϵ
4: for φ ∈ [lensig] do
5: m←m||t[µ+ φ · ℓ : µ+ φ · ℓ+ ℓ− 1]
6: σ ← σ||ORO,3(m||σ)
7: σ̂ ← σ ⊕ORO,2(t[µ : µ+ ℓ− 1])

8: if OV (i, j′, S, m̃, σ̂) = 1 then
9: return 1
10: return 0

D.3 Proof of soundness (in Theorem 2)

Proof. For any PPT adversary A attacking the soundness of MDDW, we show
a PPT adversary B attacking the existential unforgeability of the underlying
MDVS as follows.

Upon receiving pp (note that the pp generated by Setup of MDDW is the
same as that generated by the underlying MDVS.Setup), B sends pp to A. B
maintains three local arrays, Lro,1, Lro,2 and Lro,3, to keep track of A’s random
oracle queries. Then, B answers A’s oracle queries as below:
• ORO,κ(str) (κ ∈ {1, 2, 3}): If there is some (str, y) ∈ Lro,κ, B returns y; oth-

erwise, B samples y ←M, adds (str, y) to Lro,κ, and returns y.
• OWK(i): B queries its own oracle OSK(i) to obtain (spki, sski), and returns
(wpki,wski) = (spki, sski) to A.

37

• ODK(j): B queries its own oracle OV K(j) to obtain (vpkj , vskj), and returns
(dpkj , dskj) = (vpkj , vskj) to A.
• OWPK(i): B queries its own oracle OSPK(i) to obtain spki, and returns
wpki = spki to A.
• ODPK(j): B queries its own oracle OV PK(j) to obtain vpkj , and returns
dpkj = vpkj to A.
• OW (i, S,p): B runs SimWatMar (with the help of its signing oracle OS) as
shown in Algorithm 4. More specifically, Algorithm 4 is the same as Algorithm
2, except that the original hash functions H1, H2 and H3 (in line 4, line 5 and
line 10, respectively) in Algorithm 2 are replaced with random oracles, and the
original Sign algorithm (in line 4) in Algorithm 2 is replaced with B’s signing
oracle OS . Finally, B returns the output t of SimWatMar to A.
• OD(i, j′, S, t): B runs SimDetect (with the help of its verification oracle OV)
as shown in Algorithm 5. More specifically, Algorithm 5 is the same as Algo-
rithm 3, except that the original hash functions H1, H2 and H3 (in line 3, line
7 and line 6, respectively) in Algorithm 3 are replaced with random oracles,
and the original Verify algorithm (in line 8) in Algorithm 3 is replaced with
B’s verification oracle OV . Finally, B returns the output of SimDetect to A.
Receiving (i∗, S∗, t∗) from A, B firstly sets î∗ = i∗ and Ŝ∗ = S∗. Then, B

checks whether there is some j′ ∈ S∗ such that (i) SimDetectOV ,{ORO,κ}κ∈{1,2,3}(pp,
i∗, j′, (dpkj)i∈S∗ , t∗) = 1, and (ii) j′ has never been queried to ODK by A.
- If so, B extracts (m̃, σ̂) according to the steps in Algorithm 5 (from line 1 to
line 7), and sets (m̂∗, σ̂∗) = (m̃, σ̂).
- Otherwise, B uniformly samples (m̂∗, σ̂∗) from the message space and the
signature space.

Finally, B returns (î∗, Ŝ∗, m̂∗, σ̂∗) as its final output.
That is the construction of adversary B. Now we analyze its advantage.

It is easy to see that B perfectly simulates game Gsound
MDDW,A(λ) for A. Note

that when A wins Gsound
MDDW,A(λ), A’s final output (i∗, S∗, t∗) satisfies that there

is some j′ ∈ S∗, such that (i) A has never queried the oracle OWK (resp.,
ODK) on i∗ (resp., j′); (ii) Detect(pp,wpki∗ , dskj′ , {dpkj}j∈S∗ , t∗) = 1; (iii)
NOLapℓ(t

∗, t1, t2, · · ·) = 1, where t1, t2, · · · are the watermarked texts that
A receives via querying OW . The fact (ii) implies that there must be some
µ′ ∈ {0, 1, · · · , n − (ℓ + lensig)}, such that for m̃ = ORO,1(t

∗[µ′ : µ′ + ℓ − 1])
and for σ̂ generated according to line 2-7 in Algorithm 3 (when µ = µ′),
Verify(pp, spki∗ , vskj′ , {vpkj}j∈S∗ , m̃, σ̂) = 1. Moreover, the fact (iii) guarantees
that during the process of answering A’s OW -oracle queries, the random oracle
ORO,1 has never been programmed on t∗[µ′ : µ′ + ℓ − 1]. So the property of
random oracle guarantees that m̃ = ORO,1(t

∗[µ′ : µ′ + ℓ − 1]) has never been
submitted as a signing query by B.

Hence, B wins Gunforg
MDVS,B(λ) if A wins Gsound

MDDW,A(λ), i.e.,

Advunforg
MDVS,B(λ) ≥ Advsound

MDDW,A(λ).

⊓⊔

38

D.4 Proof of distortion-freeness (in Theorem 2)

Proof. We show the proof with a sequence of games.
Game G0: This game is the original Gdist-fr

MDDW,A(λ) when b is fixed to be 0. Note

that in this game, when A queries the oracle O(0)
M-chl on (i, S,p), the challenger

runs Algorithm 2 with input (pp,wski, {dpkj}j∈S ,p) and returns the output to
A.
Game G1: This game is the same as G0, except that when A queries the

oracle O(0)
M-chl on (i, S,p), the challenger runs Algorithm 2 with the following

modifications: for any t← t||GenModelℓ(p, t) in line 3 of Algorithm 2, if t[−ℓ :]
has been queried to the random oracle ORO,2 by A, then the challenger aborts
the game and returns 0 as the final output.
Game G2: This game is the original Gdist-fr

MDDW,A(λ) when b is fixed to be 1.
We present the following two lemmas with postponed proofs.

Lemma 2. |Pr[G1 = 1]− Pr[G0 = 1]| ≤ negl(λ).

Lemma 3. |Pr[G2 = 1]− Pr[G1 = 1]| ≤ negl(λ).

Combining these two lemmas, we derive that for any PPT adversary A,
Advdist-fr

MDDW,A(λ) ≤ negl(λ).

Hence, what remains is to prove the above two lemmas.

Proof (of Lemma 2). Note that GenModelℓ generates tokens with min-entropy
at least α. So for each t ← t||GenModelℓ(p, t) in line 3 of Algorithm 2, the
probability that A has queried the random oracle ORO,2 on t[−ℓ :] is at most
2−α. Within Algorithm 2, the loop spanning from line 2 to line 12 will iterate
at most n

ℓ times. Hence,

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ n

ℓ
· 2−α ≤ negl(λ).

⊓⊔
Proof (of Lemma 3). Compared with the oracle O(0)

M-chl in G1, the oracle O(1)
M-chl

inG2 can be seen as that ignoring the process of checking whetherH3(m||x||σprev) =

σbit (i.e., line 10 in Algorithm 2) in the oracle O(0)
M-chl inG1, whereH3 is modeled

as the random oracle ORO,3.

Note that in G1, to answer A’s query (i, S,p) (to O(0)
M-chl), while |t|+ℓ+ lensig

(i.e., lines 2-12 in Algorithm 2), the challenger firstly generates ℓ tokens with
GenModelℓ (i.e., line 3); then, it samples the next lensig · ℓ tokens satisfying that
for each i ∈ [lensig], the next i-th tuple of tokens (with length ℓ) are generated
with GenModelℓ (i.e., line 9) conditioned on the hash to be the i-th bit of σ.
Since each bit of σ is uniformly and independently distributed over {0, 1}, and
GenModelℓ generate tokens with min-entropy at least α, according to Lemma 1,

for each of A’s query (i, S,p), the statistical distance of the answer from O(0)
M-chl

in G1 and that from O(1)
M-chl in G2 is lensig · 2−

α+1
2 , which is negligible.

The total number of A’s oracle queries is polynomial. So we actually derive
SD(G2,G1) ≤ negl(λ). ⊓⊔

39

⊓⊔

D.5 Proof of robustness (in Theorem 2)

Proof. According to the descriptions of Algorithm 2 and Algorithm 3, it is easy
to see that for every (2lensig+2)ℓ consecutive tokens t generated from Algorithm
2, at least a pair of message and signature is embedded in t. Hence, Algorithm 3
will extract the message/signature pair from t, leading to a successful detection
output. ⊓⊔

D.6 Proof of off-the-record property for designated set (in Theorem
2)

Proof. Since MDVS is off-the-record for designated set, there is a PPT algorithm
FgeDSMDVS, taking (pp, spki, {vskj}j∈S ,m) as input and outputting σ, such that
for all PPT adversary A′,

Advotr-ds
MDVS,A′,FgeDSMDVS

(λ) = |Pr[Gotr-ds
MDVS,A′,FgeDSMDVS

(λ) = 1]− 1

2
| ≤ negl(λ).

Now we construct a PPT algorithm FgeDS for MDDW as shown in Fig. 6.

Algorithm 6 FgeDS(pp,wpki, {dskj}j∈S ,p)
1: spki ← wpki
2: {vskj}j∈S ← {dskj}j∈S

3: t← ϵ
4: while |t|+ ℓ+ ℓ · lensig < n do
5: t← t||GenModelℓ(p, t)
6: σ̂ ← FgeDSMDVS(pp, spki, {vskj}j∈S , H1(t[−ℓ :]))
7: σ ← σ̂ ⊕H2(t[−ℓ :])
8: σprev ← ϵ, m← ϵ
9: while σ ̸= ϵ do
10: σbit ← σ[1], σ ← σ[2 :]
11: x← GenModelℓ(p, t)
12: while H3(m||x||σprev) ̸= σbit do
13: x← GenModelℓ(p, t)

14: m←m||x, t← t||x
15: σprev ← σprev||σbit

16: if |t| < n then
17: t← t||GenModeln−|t|(p, t)

18: return t

For any PPT adversary A attacking the off-the-record property (for desig-
nated set) of MDDW, we show a PPT adversary A′ attacking the off-the-record
property (for designated set) of MDVS as follows.

40

Receiving pp (note that the pp generated by Setup of MDDW is the same as
that generated by the underlying MDVS.Setup), A′ sends pp to A. A′ maintains
three local arrays, Lro,1, Lro,2 and Lro,3, to keep track of A’s random oracle
queries. Then, A′ answers A’s oracle queries as below:
• ORO,κ(str) (κ ∈ {1, 2, 3}): If there is some (str, y) ∈ Lro,κ, A′ returns y;

otherwise, A′ samples y ←M, adds (str, y) to Lro,κ, and returns y.
• OWK (i): A′ queries its own oracle OSK (i) to obtain (spki, sski), and returns
(wpki,wski) = (spki, sski) to A.
• ODK (j): A′ queries its own oracle OVK (j) to obtain (vpkj , vskj), and returns
(dpkj , dskj) = (vpkj , vskj) to A.
• OWPK (i): A′ queries its own oracle OSPK (i) to obtain spki, and returns
wpki = spki to A.
• ODPK (j): A′ queries its own oracle OVPK (j) to obtain vpkj , and returns
dpkj = vpkj to A.
• O(b)

otr-chl(i, S,p): A′ runs SimOtr-ChlDS (with the help of its challenge oracle

O(b)
otr-chl for MDVS, denoted as O(b),MDVS

otr-chl) as shown in Algorithm 7. In partic-
ular, Algorithm 7 is the same as Algorithm 4, except that the signing oracle

OS (in line 4) in Algorithm 4 is replaced with A′’s challenge oracle O(b),MDVS
otr-chl .

Finally, A′ returns the output t of SimOtr-ChlDS to A.
• OD(i, j′, S, t): A′ runs SimDetect (with the help of its verification oracle OV)
as shown in Algorithm 5. More specifically, Algorithm 5 is the same as Algo-
rithm 3, except that the original hash functions H1, H2 and H3 (in line 3, line
7 and line 6, respectively) in Algorithm 3 are replaced with random oracles,
and the original Verify algorithm (in line 8) in Algorithm 3 is replaced with
A′’s verification oracle OV . Finally, A′ returns the output of SimDetect to A.
Finally, A′ returns A’s output b′ as its own final output.

That is the construction of A′.
It is obvious that A′ perfectly simulates game Gotr-ds

MDDW,A,FgeDS(λ) for A, and if

A wins Gotr-ds
MDDW,A,FgeDS(λ), then A′ also wins Gotr-ds

MDVS,A′,FgeDSMDVS
(λ). So we derive

Advotr-ds
MDVS,A′,FgeDSMDVS

(λ) ≥ Advotr-ds
MDDW,A,FgeDS(λ).

⊓⊔

E Proof of Theorem 3

Proof. Since MDVS is off-the-record for any subset, there is a PPT algorithm
FgeASMDVS, taking (pp, spki, {vpkj}j∈S , {vskj}j∈Scor

,m) (where Scor ⊂ S) as in-
put and outputting σ, such that for all PPT adversary A′,

Advotr-as
MDVS,A′,FgeASMDVS

(λ) = |Pr[Gotr-as
MDVS,A′,FgeASMDVS

(λ) = 1]− 1

2
| ≤ negl(λ).

Now we construct a PPT algorithm FgeAS for MDDW as shown in Fig. 8.

41

Algorithm 7 SimOtr-Chl
O(b),MDVS

otr-chl ,{ORO,κ}κ∈{1,2,3}
DS (pp, i, S,p)

1: t← ϵ
2: while |t|+ ℓ+ ℓ · lensig < n do
3: t← t||GenModelℓ(p, t)

4: σ̂ ← O(b),MDVS
otr-chl (i, S,ORO,1(t[−ℓ :]))

5: σ ← σ̂ ⊕ORO,2(t[−ℓ :])
6: σprev ← ϵ, m← ϵ
7: while σ ̸= ϵ do
8: σbit ← σ[1], σ ← σ[2 :]
9: x← GenModelℓ(p, t)
10: while ORO,3(m||x||σprev) ̸= σbit do
11: x← GenModelℓ(p, t)

12: m←m||x
13: t← t||x
14: σprev ← σprev||σbit

15: if |t| < n then
16: t← t||GenModeln−|t|(p, t)

17: return t

Algorithm 8 FgeAS(pp,wpki, {dpkj}j∈S , {dskj}j∈Scor
,p)

1: spki ← wpki
2: {vpkj}j∈S ← {dpkj}j∈S

3: {vskj}j∈Scor ← {dskj}j∈Scor

4: t← ϵ
5: while |t|+ ℓ+ ℓ · lensig < n do
6: t← t||GenModelℓ(p, t)
7: σ̂ ← FgeASMDVS(pp, spki, {vpkj}j∈S , {vskj}j∈Scor , H1(t[−ℓ :]))
8: σ ← σ̂ ⊕H2(t[−ℓ :])
9: σprev ← ϵ, m← ϵ
10: while σ ̸= ϵ do
11: σbit ← σ[1], σ ← σ[2 :]
12: x← GenModelℓ(p, t)
13: while H3(m||x||σprev) ̸= σbit do
14: x← GenModelℓ(p, t)

15: m←m||x, t← t||x
16: σprev ← σprev||σbit

17: if |t| < n then
18: t← t||GenModeln−|t|(p, t)

19: return t

42

For any PPT adversary A attacking the off-the-record property (for any
subset) of MDDW, we show a PPT adversary A′ attacking the off-the-record
property (for any subset) of MDVS as follows.

Receiving pp (note that the pp generated by Setup of MDDW is the same as
that generated by the underlying MDVS.Setup), A′ sends pp to A. A′ maintains
three local arrays, Lro,1, Lro,2 and Lro,3, to keep track of A’s random oracle
queries. Then, A′ answers A’s oracle queries as below:
• ORO,κ(str) (κ ∈ {1, 2, 3}): If there is some (str, y) ∈ Lro,κ, A′ returns y;

otherwise, A′ samples y ←M, adds (str, y) to Lro,κ, and returns y.
• OWK (i): A′ queries its own oracle OSK (i) to obtain (spki, sski), and returns
(wpki,wski) = (spki, sski) to A.
• ODK (j): A′ queries its own oracle OVK (j) to obtain (vpkj , vskj), and returns
(dpkj , dskj) = (vpkj , vskj) to A.
• OWPK (i): A′ queries its own oracle OSPK (i) to obtain spki, and returns
wpki = spki to A.
• ODPK (j): A′ queries its own oracle OVPK (j) to obtain vpkj , and returns
dpkj = vpkj to A.
• O(b)

otr-chl(i, S, Scor,p): A′ runs SimOtr-ChlAS (with the help of its challenge

oracle O(b)
otr-chl for MDVS, denoted as O(b),MDVS

otr-chl) as shown in Algorithm 9. In
particular, Algorithm 9 is the same as Algorithm 4, except that the signing
oracle OS (in line 4) in Algorithm 4 is replaced with A′’s challenge oracle

O(b),MDVS
otr-chl . Finally, A′ returns the output t of SimOtr-ChlAS to A.

• OD(i, j′, S, t): A′ runs SimDetect (with the help of its verification oracle OV)
as shown in Algorithm 5. More specifically, Algorithm 5 is the same as Algo-
rithm 3, except that the original hash functions H1, H2 and H3 (in line 3, line
7 and line 6, respectively) in Algorithm 3 are replaced with random oracles,
and the original Verify algorithm (in line 8) in Algorithm 3 is replaced with
A′’s verification oracle OV . Finally, A′ returns the output of SimDetect to A.
Finally, A′ returns A’s output b′ as its own final output.
That is the construction of A′.
It is obvious that A′ perfectly simulates game Gotr-as

MDDW,A,FgeAS(λ) for A, and if

A wins Gotr-as
MDDW,A,FgeAS(λ), then A′ also wins Gotr-as

MDVS,A′,FgeASMDVS
(λ). So we derive

Advotr-as
MDVS,A′,FgeASMDVS

(λ) ≥ Advotr-as
MDDW,A,FgeAS(λ).

⊓⊔

F Proof of Theorem 4

Proof. Since MDVS is claimable, there are two PPT algorithms ClaimMDVS and
ClmVerMDVS.

We construct two PPT algorithms Claim and ClmVer for MDDW as shown in
Algorithm 10 and Algorithm 11, respectively.

Now, we show that MDDW with the two algorithms, Claim and ClmVer,
satisfies each of the three conditions of Definition 14.

43

Algorithm 9 SimOtr-Chl
O(b),MDVS

otr-chl ,{ORO,κ}κ∈{1,2,3}
AS (pp, i, S, Scor,p)

1: t← ϵ
2: while |t|+ ℓ+ ℓ · lensig < n do
3: t← t||GenModelℓ(p, t)

4: σ̂ ← O(b),MDVS
otr-chl (i, S, Scor,ORO,1(t[−ℓ :]))

5: σ ← σ̂ ⊕ORO,2(t[−ℓ :])
6: σprev ← ϵ, m← ϵ
7: while σ ̸= ϵ do
8: σbit ← σ[1], σ ← σ[2 :]
9: x← GenModelℓ(p, t)
10: while ORO,3(m||x||σprev) ̸= σbit do
11: x← GenModelℓ(p, t)

12: m←m||x
13: t← t||x
14: σprev ← σprev||σbit

15: if |t| < n then
16: t← t||GenModeln−|t|(p, t)

17: return t

Algorithm 10 Claim(pp,wski, {dpkj}j∈S , t)
1: sski ← wski
2: {vpkj}j∈S ← {dpkj}j∈S

3: µ← 0
4: Count← 0
5: while µ < n− (ℓ+ ℓ · lensig) do
6: m̃← H1(t[µ : µ+ ℓ− 1]), σ ← ϵ, m← ϵ
7: for φ ∈ [lensig] do
8: m←m||t[µ+ φ · ℓ : µ+ φ · ℓ+ ℓ− 1]
9: σ ← σ||H3(m||σ)
10: σ̂ ← σ ⊕H2(t[µ : µ+ ℓ− 1])
11: Count← Count+ 1
12: πCount ← ClaimMDVS(pp, sski, {vpkj}j∈S , σ̂)
13: µ← µ+ (ℓ+ lensig · ℓ) · Count
14: π ← (π1, · · · , π⌊

n−lensig−ℓ

(lensig+1)·ℓ ⌋
)

15: return π

44

Algorithm 11 ClmVer(pp,wpki, {dpkj}j∈S , t, π)
1: spki ← wpki
2: {vpkj}j∈S ← {dpkj}j∈S

3: (π1, · · · , π⌊
n−ℓ·lensig−ℓ

(lensig+1)·ℓ ⌋
)← π

4: µ← 0
5: Count← 0
6: while µ < n− (ℓ+ lensig) do
7: m̃← H1(t[µ : µ+ ℓ− 1]), σ ← ϵ, m← ϵ
8: for φ ∈ [lensig] do
9: m←m||t[µ+ φ · ℓ : µ+ φ · ℓ+ ℓ− 1]
10: σ ← σ||H3(m||σ)
11: σ̂ ← σ ⊕H2(t[µ : µ+ ℓ− 1])
12: Count← Count+ 1
13: if ClmVerMDVS(pp, spki, {vpkj}j∈S , σ̂, πCount) = 1 then
14: return 1
15: µ← µ+ (ℓ+ lensig · ℓ) · Count
16: return 0

(1) For the first condition of Definition 14

The first condition of Definition 14 for MDDW is immediately fulfilled by
the first condition of Definition 15 for the underlying MDVS (encompassing
ClaimMDVS and ClmVerMDVS).

(2) For the second condition of Definition 14

We turn to the second condition of Definition 14 for MDDW.

For any PPT adversary A = (A1,A2) attacking the second condition of
Definition 14 for MDDW, we show a PPT adversary B = (B1,B2) attacking the
second condition of Definition 15 for MDVS as follows.

Upon receiving pp (note that the pp generated by Setup of MDDW is the
same as that generated by the underlying MDVS.Setup), B1 sends pp to A1. B
maintains three local arrays, Lro,1, Lro,2 and Lro,3, to keep track of A’s random
oracle queries. Then, B1 answers A1’s oracle queries as below:
• ORO,κ(str) (κ ∈ {1, 2, 3}): If there is some (str, y) ∈ Lro,κ, B1 returns y;

otherwise, B1 samples y ←M, adds (str, y) to Lro,κ, and returns y.
• OWK (i): B1 queries its own oracle OSK (i) to obtain (spki, sski), and returns
(wpki,wski) = (spki, sski) to A1.
• ODK (j): B1 queries its own oracle OVK (j) to obtain (vpkj , vskj), and returns
(dpkj , dskj) = (vpkj , vskj) to A1.
• OWPK (i): B1 queries its own oracle OSPK (i) to obtain spki, and returns
wpki = spki to A1.
• ODPK (j): B1 queries its own oracle OVPK (j) to obtain vpkj , and returns
dpkj = vpkj to A1.
• OW (i, S,p): B1 runs SimWatMar (with the help of its signing oracle OS) as
shown in Algorithm 4. More specifically, Algorithm 4 is the same as Algorithm
2, except that the original hash functions H1, H2 and H3 (in line 4, line 5 and

45

line 10, respectively) in Algorithm 2 are replaced with random oracles, and
the original Sign algorithm (in line 4) in Algorithm 2 is replaced with B1’s
signing oracle OS . Finally, B1 returns the output t of SimWatMar to A1.
• OD(i, j′, S, t): B1 runs SimDetect (with the help of its verification oracle
OV) as shown in Algorithm 5. More specifically, Algorithm 5 is the same as
Algorithm 3, except that the original hash functions H1, H2 and H3 (in line
3, line 7 and line 6, respectively) in Algorithm 3 are replaced with random
oracles, and the original Verify algorithm (in line 8) in Algorithm 3 is replaced
with B1’s verification oracle OV . Finally, B1 returns the output of SimDetect
to A1.
• OClm(i, S, t): B1 runs SimClaim (with the help of its own claiming oracle

OMDVS
Clm , which denotes the claiming oralce for B in gameGclm-unf

MDVS,B(λ)) as shown
in Algorithm 12. More specifically, Algorithm 12 is the same as Algorithm 10,
except that the original hash functions H1, H2 and H3 (in line 4, line 8 and
line 7, respectively) in Algorithm 10 are replaced with random oracles, and
the original Claim algorithm (in line 10) in Algorithm 10 is replaced with B1’s
claiming oracle OMDVS

Clm . Finally, B1 returns the output of SimClaim to A1.

Algorithm 12 SimClaim(pp, i, S, t)

1: µ← 0
2: Count← 0
3: while µ < n− (ℓ+ ℓ · lensig) do
4: m̃← ORO,1(t[µ : µ+ ℓ− 1]), σ ← ϵ, m← ϵ
5: for φ ∈ [lensig] do
6: m←m||t[µ+ φ · ℓ : µ+ φ · ℓ+ ℓ− 1]
7: σ ← σ||ORO,3(m||σ)
8: σ̂ ← σ ⊕ORO,2(t[µ : µ+ ℓ− 1])
9: Count← Count+ 1
10: πCount ← OMDVS

Clm (i, S, σ̂)
11: µ← µ+ (ℓ+ lensig · ℓ) · Count
12: π ← (π1, · · · , π⌊

n−lensig−ℓ

(lensig+1)·ℓ ⌋
)

13: return π

Receiving (i∗, S∗,p∗) fromA1, B1 uniformly samples θ ← {1, · · · , ⌊n−ℓ·lensig−ℓ(lensig+1)·ℓ ⌋},
and generates t∗ via running SimWatMarθ(pp, i

∗, S∗,p∗) (as shown in Algorithm
13). In particular, Algorithm 13 is the same as Algorithm 4 except that when
the while loop (spanning from line 2 to line 14 in Algorithm 4) enters its θ-th
cycle, B1 outputs (i∗, S∗,m∗ = ORO,1(t[−ℓ :])), and after receiving σ∗ from the
challenger, B2 sets σ̂ = σ∗ and then continues the procedure of Algorithm 4.

B2 sends t∗ to A2, and then answers A2’s oracle queries in the same manner
as B1 does.

46

Algorithm 13 SimWatMar
OS ,{ORO,κ}κ∈{1,2,3}
θ (pp, i, S,p)

1: t← ϵ
2: Count← 0
3: while |t|+ ℓ+ ℓ · lensig < n do
4: Count← Count+ 1
5: t← t||GenModelℓ(p, t)
6: if Count ̸= θ then
7: σ̂ ← OS(i, S,ORO,1(t[−ℓ :]))
8: else
9: B1 outputs (i∗, S∗,m∗ = ORO,1(t[−ℓ :])), and then B2 receives σ∗ as input.
10: σ̂ ← σ∗

11: σ ← σ̂ ⊕ORO,2(t[−ℓ :])
12: σprev ← ϵ, m← ϵ
13: while σ ̸= ϵ do
14: σbit ← σ[1], σ ← σ[2 :]
15: x← GenModelℓ(p, t)
16: while ORO,3(m||x||σprev) ̸= σbit do
17: x← GenModelℓ(p, t)

18: m←m||x
19: t← t||x
20: σprev ← σprev||σbit

21: if |t| < n then
22: t← t||GenModeln−|t|(p, t)

23: return t

Finally, receivingA2’s final output (π̂, î′), B2 parses π̂ = (π1, · · · , π⌊n−ℓ·lensig−ℓ

(lensig+1)·ℓ ⌋
),

and then returns (π∗, i′) = (πθ, î′) as its final output.
That is the construction of B. Now we turn to analyze B’s advantage.
It is easy to see that B perfectly simulates game Gclm-unf

MDDW,A(λ) for A. Since
θ is uniformly sampled from {1, · · · , ⌊n−ℓ·lensig−ℓ(lensig+1)·ℓ ⌋}, according to the description

of ClmVer (in Algorithm 11), we derive

Advclm-unf
MDVS,B(λ) ≥

1

⌊n−ℓ·lensig−ℓ(lensig+1)·ℓ ⌋
Advclm-unf

MDDW,A(λ).

(3) For the third condition of Definition 14

For any PPT adversary A attacking the third condition of Definition 14 for
MDDW, we show a PPT adversary A′ attacking the third condition of Definition
15 for MDVS as follows.

Receiving pp (note that the pp generated by Setup of MDDW is the same as
that generated by the underlying MDVS.Setup), A′ sends pp to A. A′ maintains
three local arrays, Lro,1, Lro,2 and Lro,3, to keep track of A’s random oracle
queries. Then, A′ answers A’s oracle queries as below:

47

• ORO,κ(str) (κ ∈ {1, 2, 3}): If there is some (str, y) ∈ Lro,κ, A′ returns y;

otherwise, A′ samples y ←M, adds (str, y) to Lro,κ, and returns y.
• OWK (i): A′ queries its own oracle OSK (i) to obtain (spki, sski), and returns
(wpki,wski) = (spki, sski) to A.
• ODK (j): A′ queries its own oracle OVK (j) to obtain (vpkj , vskj), and returns
(dpkj , dskj) = (vpkj , vskj) to A.
• OWPK (i): A′ queries its own oracle OSPK (i) to obtain spki, and returns
wpki = spki to A.
• ODPK (j): A′ queries its own oracle OVPK (j) to obtain vpkj , and returns
dpkj = vpkj to A.
• OW (i, S,p): A′ runs SimWatMar (with the help of its signing oracle OS) as
shown in Algorithm 4. More specifically, Algorithm 4 is the same as Algorithm
2, except that the original hash functions H1, H2 and H3 (in line 4, line 5 and
line 10, respectively) in Algorithm 2 are replaced with random oracles, and
the original Sign algorithm (in line 4) in Algorithm 2 is replaced with A′ ’s
signing oracle OS . Finally, A′ returns the output t of SimWatMar to A.
• OD(i, j′, S, t): A′ runs SimDetect (with the help of its verification oracle OV)
as shown in Algorithm 5. More specifically, Algorithm 5 is the same as Algo-
rithm 3, except that the original hash functions H1, H2 and H3 (in line 3, line
7 and line 6, respectively) in Algorithm 3 are replaced with random oracles,
and the original Verify algorithm (in line 8) in Algorithm 3 is replaced with
A′’s verification oracle OV . Finally, A′ returns the output of SimDetect to A.
• OClm(i, S, t): A′ runs SimClaim (with the help of its own claiming oracle

OMDVS
Clm , which denotes the claiming oralce for A′ in game Gnon-fram

MDVS,A′(λ)) as
shown in Algorithm 12. More specifically, Algorithm 12 is the same as Algo-
rithm 10, except that the original hash functions H1, H2 and H3 (in line 4, line
8 and line 7, respectively) in Algorithm 10 are replaced with random oracles,
and the original Claim algorithm (in line 10) in Algorithm 10 is replaced with
A′’s claiming oracle OMDVS

Clm . Finally, A′ returns the output of SimClaim to A.
ReceivingA’s final output (i∗, S∗, t∗, π∗),A′ firstlys checks whether ClmVer(pp,

wpki∗ , {dpkj}j∈S∗ , t∗, π∗) = 1. If not, A′ returns (i∗, S∗,m∗rand, σ
∗
rand, π

∗
rand) as

its own final output, where (m∗rand, σ
∗
rand, π

∗
rand) are uniformly sampled. Other-

wise, there must be some Count ∈ [⌊n−ℓ·lensig−ℓ(lensig+1)·ℓ ⌋] satisfying ClmVerMDVS(pp, spki,

{vpkj}j∈S , σ̂, πCount) = 1, where σ̂ is generated according to lines 4-11 in Algo-
rithm 11. In this case, A′ extracts σ̂, πCount and the corresponding m̃ (for σ̂).
Then, A′ returns (i∗, S∗, m̃, σ̂, πCount, π

∗) as its final output.

That is the construction of A′. Now we turn to analyze A′’s advantage.
It is easy to see that A′ perfectly simulates game Gnon-fram

MDDW,A(λ) for A, and A′
wins Gclm-fram

MDVS,A′(λ) if A wins Gnon-fram
MDDW,A(λ). So we derive

Advnon-fram
MDVS,A′(λ) ≥ Advnon-fram

MDDW,A(λ).

⊓⊔

48

G Proof of Theorem 5

Proof. Since the proofs that CMDVS satisfies correctness, consistency and exis-
tential unforgeability are straightforward, we will only focus on proving off-the-
record property and claimability.

Off-the-record. Now, we prove that CMDVS is off-the-record for any subset
if the underlying MDVS is off-the-record for any subset. The proof for CMDVS
being off-the-record for designated set, assuming the underlying MDVS is off-
the-record for designated set, is nearly identical and is thus omitted here.

SinceMDVS is off-the-record for any subset, there is a PPT algorithmMDVS.FgeAS.
We provide a forging algorithm FgeAS, based on MDVS.FgeAS, for CMDVS as
shown in Fig. 15, where COM is the commitment space of Commit.

FgeAS(pp, spki, {vpkj}j∈S , {spkj}j∈Scor ,m):

σMDVS ← MDVS.FgeAS(ppMDVS, spkMDVS,i, {vpkj}j∈S , {vskj}j∈Scor ,m)
com← COM
Return σ = (σMDVS, com)

Fig. 15 Forging algorithm FgeAS for CMDVS

For any PPT adversary A, we consider the following sequence of games.

– Game0: Game0 is Gotr-as
CMDVS,A,FgeAS(λ) when b = 0. Thus, we have

Pr[Game0 = 1] = Pr[Gotr-as
CMDVS,A,FgeAS(λ) = 1|b = 0].

– Game1: Game1 is the same as Game0, except that when the adversary A
queries to the signing oracle O(b)

otr-chl on (i, S, Scor,m), the challenger gen-
erates the MDVS signature σMDVS via the forging algorithm MDVS.FgeAS
of the underlying MDVS. By the off-the-record property for any subset of
MDVS, we derive

|Pr[Game1 = 1]− Pr[Game0 = 1]| ≤ negl(λ).

– Game2: Game2 is the same as Game1, except that when the adversary A
queries to the signing oracle O(b)

otr-chl on (i, S, Scor,m), the challenger chooses
a random commitment com over the commitment space COM. By the hiding
property of Commit, we have

|Pr[Game2 = 1]− Pr[Game1 = 1]| ≤ negl(λ).

Note that Game2 is equivalent to Gotr-as
CMDVS,A,FgeAS(λ) when b = 1. Thus,

Pr[Game2 = 1] = Pr[Gotr-as
CMDVS,A,FgeAS(λ) = 1|b = 1].

Therefore, it holds that

Advotr-as
CMDVS,A,FgeAS(λ)

49

=|Pr[Gotr-as
CMDVS,A,FgeAS(λ) = 1]− 1

2
|

=
1

2
|Pr[Gotr-as

CMDVS,A,FgeAS(λ) = 1|b = 0]− Pr[Gotr-as
CMDVS,A,FgeAS(λ) = 1|b = 1]|

=
1

2
|Pr[Game0 = 1]− Pr[Game2 = 1]| ≤ negl(λ).

Claimability. Now, we show that CMDVS satisfies each of the three conditions
of Definition 15.

(1) For the first condition of Definition 15

For any signer i, any message m ∈ M and any verifier identity set S, given
pp ← Setup(1λ), (spki, sski) ← SignKG(pp), {(vpkj , vskj) ← VerKG(pp)}j∈S ,
σ ← Sign(pp, sski, {vpkj}j∈S ,m) and π ← Claim(pp, sski, {vpkj}j∈S , σ), we have
sski = (ki, sskSig,i, sskMDVS,i), σ = (σMDVS, com) and π = (rCommit, σSig). Ac-
cording to the descriptions of Sign and Claim in Fig. 10, we derive rSig =
PRF.Eval(ki, (spki, σMDVS, 0)), σSig = Sig.Sign(ppSig, sskSig,i, (spki, σMDVS); rSig),
and rCommit = PRF.Eval(ki, (spki, σMDVS, 1)). The correctness of Commit implies
Commit.Com(ppCommit, (spki, {vpkj}j∈S , σSig); rCommit) = com, and the correct-
ness of Sig implies that Sig.Verify(ppSig, spkSig,i, (spki, σMDVS), σSig) = 1. Hence,
ClmVer would output 1, which implies that the scheme CMDVS is correct.

(2) For the second condition of Definition 15

Assume that there exits a PPT adversary A = (A1,A2) that successfully
attacks the second condition of Definition 15 with non-negligible advantage .
We construct a PPT adversary B to break the binding property of Commit with
non-negligible advantage as follows.

On receiving the public parameter ppCommit, the adversary B generates ppMDVS

and ppSig via invoking MDVS.Setup and Sig.Setup, respectively. Subsequently, B
sends pp = (ppMDVS, ppSig, ppCommit) to A1, and then answers A1’s oracle queries
by itself.

After receiving (i∗, S∗,m∗) from A1, where i∗ is never queried to the oracle
OSK by A1, B proceeds as follows:

(1) (spki∗ , sski∗) ← OSK (i∗), and {vpkj ← OVPK (j)}j∈S∗ , where the oracles
OSK and OVPK are described in Fig. 3.

(2) σ∗ ← Sign(pp, sski∗ , {vpkj}j∈S∗ ,m∗).

B sends σ∗ to A2, and then answers A2’s oracle queries, with the condition that
queries of i∗ to OSK and (∗, ∗, σ∗) to OClm are not permitted. It is important
to note that sski∗ can be parsed as sski∗ = (ki∗ , sskSig,i∗ , sskMDVS,i∗), and σ∗ can
be parsed as σ∗ = (σ∗MDVS, com

∗).
Upon receiving (π∗, i′) fromA, B firstly checks if (ClmVer(pp, spki′ , {vpkj}j∈S∗ ,

σ∗, π∗) = 1)∧(i′ ̸= i∗). If not, B returns uniformly sampled (comrand,mrand, rrand,
m′rand, r

′
rand) as its final output. Otherwise, B parses π∗ = (r′Commit, σ

′
Sig), and re-

turns

(com∗,m = (spki∗ , {vpkj}j∈S∗ , σ∗Sig), r
∗
Commit,m

′ = (spki′ , σ
′
Sig), r

′
Commit)

50

as its final output, where σ∗Sig is generated via “rSig ← PRF.Eval(ki∗ , (spki∗ , σ
∗
MDVS,

0)), σ∗Sig ← Sig.Sign(ppSig, sskSig,i∗ , (spki∗ , σ
∗
MDVS); rSig)”, and r∗Commit is generated

via “r∗Commit ← PRF.Eval(ki∗ , (spki∗ , σ
∗
MDVS, 1))”.

Given that i′ ̸= i∗, it follows that spki′ ̸= spki∗ , which in turn means thatm ̸=
m′. Moreover, the correctness of Commit guarantees that Commit.Decom(ppCommit,
com∗, r∗Commit,m) = 1. The fact that ClmVer(pp, spki′ , {vpkj}j∈S∗ , σ∗, π∗) = 1
implies that Commit.Decom(ppCommit, com

∗, r′Commit,m
′) = 1.

Hence, if A successfully attacks the second condition of Definition 15 with
non-negligible advantage, B will also successfully breaks the binding property of
the Commit with non-negligible advantage.

(3) For the third condition of Definition 15
For any PPT adversary A attacking the third condition of Definition 15 (of

CMDVS), its advantage is

Advnon-fram
CMDVS,A(λ) = Pr[Gnon-fram

CMDVS,A(λ) = 1]. (1)

Assume that A makes at most poly(λ) oracle queries.
Now, we consider the following sequence of games.

Game0: Game0 is the same as Gnon-fram
CMDVS,A(λ). Thus, we have

Pr[Game0 = 1] = Pr[Gnon-fram
CMDVS,A(λ) = 1]. (2)

Game1: Game1 is the same as Game0, except that at the beginning of this game,

the challenger uniformly samples î ← [poly(λ)], and then if A’s final output

(i∗, ∗, ∗, ∗, ∗) satisfies i∗ ̸= î, the challenger returns 0 directly.
Clearly, we derive

Pr[Game1 = 1] =
1

poly(λ)
Pr[Game0 = 1]. (3)

Game2: Game2 is the same as Game1, except that when A makes a query
(i′, S′, σ′) (to OClm) satisfying that

(i) i′ = î, and
(ii) σ′ is not output by OS on any query (i′, S′, ∗),
the challenger returns ⊥ to A as a response directly.

We present the following lemma with a postponed proof.

Lemma 4. |Pr[Game2 = 1]− Pr[Game1 = 1]| ≤ negl(λ).

Game3: Game3 is identical to Game2, except that when responding to A’s query
(i′, ∗, ∗) to either OS or OClm where i′ = î, the challenger samples rSig uniformly

at random (instead of using PRF.Eval to compute rSig) during the OS (̂i, ∗, ∗) or
OClm (̂i, ∗, ∗) operations.

Due to the pseudorandomness of PRF, we derive

|Pr[Game3 = 1]− Pr[Game2 = 1]| ≤ negl(λ). (4)

Once more, we introduce the following lemma, with the proof to be addressed
subsequently.

51

Lemma 5. Pr[Game3 = 1] ≤ negl(λ).

Combining Eqs. (1)-(4), Lemma 4 and Lemma 5, we obtain

Advnon-fram
CMDVS,A(λ) ≤ negl(λ).

Therefore, what remains is to prove the above two lemmas.

Proof (of Lemma 4). Let Evt be the event that A makes a query (i′ = î, S′, σ′) to
OClm , where σ′ is not output by OS on any query (̂i, S′, ∗), and OClm (̂i, S′, σ′)
does not return ⊥.

It is straightforward to see that

|Pr[Game2 = 1]− Pr[Game1 = 1]| ≤ Pr[Evt].

Assume that Pr[Evt] is non-negligible.
Note that σ′ can be parsed as σ′ = (σ′MDVS, com

′).
The fact that “OClm (̂i, S′, σ′) does not return ⊥” means that Claim(pp, ssk̂i,

{vpkj}j∈S′ , σ′) returns some π′ = (σ′Sig, r
′
Commit), where (ssk̂i, {vpkj}j∈S′) are the

honestly generated keys. According to the description of the algorithm Claim as
shown in Fig. 10, we obtain Commit.Decom(ppCommit, com

′, r′Commit, (spk̂i, {vpkj}j∈S′ ,
σ′Sig)) = 1.

If σ′MDVS is found in some response, generated by the challenger for A’s OS -

oracle query (i′, S′, ∗) satisfying i′ = î, we claim that in this case Pr[Evt] = 0. The
reason is as follows. Assume that there is such a response σ′′ = (σ′MDVS, com

′′),
returned by the challenger for A’s OS -oracle query (̂i, S′, ∗). It is important to

note that σ′ = (σ′MDVS, com
′) is not output by OS on any query (̂i, S′, ∗), so we

derive com′′ ̸= com′. Since σ′′ = (σ′MDVS, com
′′) is generated via the algorithm

Sign, according to the description of Sign (as shown in Fig. 10), the correctness of
Commit guarantees that Commit.Decom(ppCommit, com

′′, r′Commit, (spk̂i, σ
′
Sig)) = 1,

where σ′Sig = Sig.Sign(ppSig, sskSig,̂i, (spk̂i, σ
′
MDVS);PRF.Eval(k̂i, (spk̂i, σ

′
MDVS, 0)))

and r′Commit = PRF.Eval(k̂i, (spk̂i, σ
′
MDVS, 1)). Thus, the fact that com′′ ̸= com′

implies that Commit.Decom(ppCommit, com
′, r′Commit, (spk̂i, {vpkj}j∈S′ , σ′Sig)) = 0,

which further implies that OClm will return ⊥, i.e., Evt will not occur.
Hence, σ′MDVS is not included in any response generated by the challenger for

A’s OS -oracle query (i′, S′, ∗) satisfying i′ = î. In other words, the challenger
has never computed PRF.Eval(k̂i, (spk̂i, σ

′
MDVS, ∗)).

Note that Pr[Evt] is non-negligible. When Evt occurs, during the computa-

tion of OClm (̂i, S′, σ′) (i.e., Claim(pp, ssk̂i, {vpkj}j∈S′ , σ′)), if we uniformly sam-
ple r′Sig and r′Commit instead of computing them via PRF.Eval, it still holds that
Commit.Decom(ppCommit, com

′, r′Commit, (spk̂i, {vpkj}j∈S′ , σ′Sig)) = 1 with overwhelm-
ing probability, because of the pseudorandomness of PRF. Note that the truly
random r′Sig and the original one generated with PRF.Eval will lead to two dif-
ferent σ′Sig’s, contradicting the binding property of Commit.

Therefore, the assumption that Pr[Evt] is incorrect. We conclude that Pr[Evt] ≤
negl(λ). ⊓⊔

52

Proof (of Lemma 5). Consider the following two events.

– Evt1: Let Evt1 denote the event that A wins Game3, and σ∗ (from A’s final
output) is not included in any response generated by the challenger for A’s
OS -oracle query (i′, ∗, ∗) satisfying i′ = î.

– Evt2: Let Evt2 denote the event that A wins Game3, and σ∗ (from A’s final
output) is included in some response generated by the challenger for A’s
OS -oracle query (i′, ∗, ∗) satisfying i′ = î.

It is straightforward to see that

Pr[Game3 = 1] = Pr[Evt1] + Pr[Evt2].

If both Pr[Evt1] and Pr[Evt2] are negligible, then we can conclude this proof.
So what remains is to prove that both Pr[Evt1] and Pr[Evt2] are negligible
Case 1 : If Pr[Evt1] is non-negligible:

In this case, we construct a PPT adversary B attacking the existential un-
forgeability of Sig as follows.

On receiving (ppSig, pk) from the challenger of the existential unforgeability

game, B firstly samples î← [poly(λ)] uniformly at random, and generates ppMDVS

and ppCommit via invoking MDVS.Setup and Commit.Setup, respectively. B also
runs PRF.KG and MDVS.SignKG to generate k̂i and (sskMDVS,̂i, spkMDVS,̂i). Thus,

the public key of the signer î is spk̂i = (spkSig,̂i = pk, spkMDVS,̂i), and the secret

key of the signer î is ssk̂i = (k̂i, sskSig,̂i = ⊥, sskMDVS,̂i). Then, B initializes an

empty set Q′, sends pp = (ppMDVS, ppSig, ppCommit) to A, and answers A’s oracle
queries as follows:

– OSK , OVK , OSPK , OVPK , OV : B answers these oracle queries as in Game3.
– OS (i

′, S′,m′): When i′ ̸= î, B proceeds as in Game3. When i′ = î, B checks
whether there is some tuple (S′,m′, σ′, π′) ∈ Q′ or not. If so, B return σ′

to A directly. Otherwise, B generates a signature as follows. B firstly ob-
tains the public keys {vpkj ← OVPK (j)}j∈S′ . Then, it computes σ′MDVS ←
MDVS.Sign(ppMDVS, sskMDVS,̂i, {vpkj}j∈S′ ,m′). After that, B queries its own

signing oracle on (spk̂i, σ
′
MDVS), and then obtain a signature σ′Sig as a re-

sponse. Subsequently, B computes r′Commit ← PRF.Eval(k̂i, (spk̂i, σ
′
MDVS), 1)

and com′ ← Commit.com(ppCommit, (spk̂i, {vpkj}j∈S′ , σ′Sig); r
′
Commit). Finally,

B sets σ′ = (σ′MDVS, com
′) and Q′ ← Q′ ∪ {(S′,m′, σ′, π′ = (σ′Sig, r

′
Commit))},

returns σ′ to A.
– OClm(i′, S′, σ′): When i′ ̸= î, B proceeds as in Game3. When i′ = î, B checks

whether there is some tuple (S′,m′, σ′, π′) ∈ Q′ or not. If so (i.e., σ′ is the

response corresponding to the query (̂i, S′,m′) to OS), B return π′ to A
directly. Otherwise, B returns ⊥ to A.
Receiving A’s final output (i∗, S∗,m∗, σ∗, π∗), B checks whether i∗ = î. If

not, B returns uniformly sampled (mrand, σrand) as its final output. Otherwise,
B parses σ∗ = (σ∗MDVS, com

∗) and π∗ = (r∗Commit, σ
∗
Sig), and returns (msig =

(spk̂i, σ
∗
MDVS), σsig = σ∗Sig) as its final output.

53

That is the construction of B.
It is clear that B perfectly simulates Game3 for A. Note that A wins only

when ClmVer(pp, spk̂i, {vpkj}j∈S∗ , σ∗, π∗) = 1, which implies that Sig.Verify(ppSig,
spkSig,̂i, (spk̂i, σ

∗
MDVS), σ

∗
Sig) = 1. On the other hand, Evt1 requires that σ∗ =

(σ∗MDVS, com
∗) is not included in any response generated for A’s OS -oracle query

(̂i, ∗, ∗). In other words, msig = (spk̂i, σ
∗
MDVS) has never been queried to B’s own

signing oracle. Hence, we have

Advunforg
Sig,B (λ) ≥ Pr[Evt1].

Note that we have assumed that Pr[Evt1] is non-negligible, so Advunf
Sig,B(λ) is

also non-negligible, contradicting the existential unforgeability of Sig.

Case 2 : If Pr[Evt2] is non-negligible:

Let q be the number of queries made by A to the oracle OS . For each θ ∈ [q],

let Evt
(θ)
2 denote the event that Evt2 occurs and σ∗ (from A’s final output) is

included in some response generated by the challenger for A’s θth OS -oracle
query.

Since Pr[Evt2] is non-negligible, there must be some θ̂ ∈ [q] such that Pr[Evt
(θ̂)
2]

is non-negligible.

Now, we construct a PPT adversary B′ attacking the existential unforgeabil-
ity of Sig. This adversary B′ is identical to the above adversary B (described in
Case 1), except for the following modifications:

On A’s θ̂th query (i′, S′,m′) to OS , B′ proceeds as the aforementioned B
does, except that when i′ = î, during the generation of σ′, B′ uniformly samples
σ′Sig at random, instead of querying its own signing oracle on (spk̂i, σ

′
MDVS) to

obtain σ′Sig.

That is the construction of B′.
By the hiding property of Commit, as long as the oracle OClm is not queried

on (̂i, S′, σ′) by A, where σ′ is the response of A’s θ̂th query (̂i, S′,m′) to OS , B′’s
simulated game and Game3 are indistinguishable, from A’s point of view. On the

other hand, if this (̂i, S′, σ′) is queried on by A to OClm , Evt
(θ̂)
2 is impossible to

occur. Hence, the probability that Evt
(θ̂)
2 occurs in B′’s simulation is equivalent

to the probability that Evt
(θ̂)
2 occurs in Game3. Note that when Evt

(θ̂)
2 occurs,

B′ successfully finding a valid forgery, i.e., the message msig = (spk̂i, σ
∗
MDVS) has

never been queried to B′’s own signing oracle. So we obtain

Advunforg
Sig,B′ (λ) ≥ Pr[Evt

(θ̂)
2].

Since Pr[Evt
(θ̂)
2] is non-negligible, so Advunforg

Sig,B′ (λ) is also non-negligible, con-
tradicting the existential unforgeability of Sig. ⊓⊔

⊓⊔

54

H A more efficient DDW construction

In this section, we delve into a particular case within the MDDW framework,
namely DDW, characterized by the existence of only one designated verifier (i.e,
|S| = 1). We propose a more efficient construction by leveraging a concrete DVS
scheme.

H.1 DVS construction

The DVS scheme is shown in Fig. 16, which was firstly proposed in [LV05] and
extended from [SBWP03].

Setup(1λ):

(e,G,GT , g, p)← GenG(1λ)
Choose hash functions H0: {0, 1}∗ → G
H1: {0, 1}∗ → {0, 1}l �l = poly(λ)
Return pp = (e,G,GT , g, p,H0,H1)

Sign(pp, ssk, vpk,m):
r ← {0, 1}∗, h← H0(m, r)
s← H1(e(vpk, h

ssk))
Return σ := (r, s)

KG(pp):

sk ← Z∗
p, pk := gsk

Return (pk, sk)

Verify(pp, spk, vsk,m, σ):
(r, s)← σ, h← H0(m, r)
If (s ̸= H1(e(spk, h

vsk))): Return 0
Return 1

Fig. 16 Algorithms for a concrete and efficient pseudorandom designated-verifier
signature DVS

The correctness is trivial, so we omit the analysis of it here. Since there is
only one designated verifier, we do not need to consider consistency and there
is only one kind of off-the-record property. For the analysis of the existential
unforgeability and off-the-record property, please refer to [SBWP03,LV05].

In addition, we will prove that the scheme supports pseudorandomness (please
refer to the definition in Sec. H.3). In other words, without the secret key of the
designated verifier, it is difficult to distinguish the output of the DVS scheme
with a random string.

Then, we have the following theorem.

Theorem 6. If H0 and H1 are collision resistant hash functions, the DVS scheme
DVS above is existentially unforgeable, off-the-record and pseudorandom in the
random oracle model, under the CBDH, DBDH and GBDH assumptions.

We postpone the proof of Theorem 6 to Appendix H.3. In fact, the DVS
scheme in Fig. 16 supports pseudorandomness for free. Then, when constructing
DDW using the framework in Sec. 4, we can eliminate some steps, which we will
elaborate on later.

55

H.2 Some concrete DDWs and their comparison

Schemes. Here we will introduce some concrete DDWs.

Scheme I. In Sec. 4.1, we introduce a framework that shows how to construct a
MDDW from a MDVS. When adopting the MDVS [AYSZ14], which is recalled
in Appendix. C, and letting |S| = 1, we can obtain a DDW.

Scheme II. On the other hands, incorporating the DVS scheme shown in Fig. 16
into the MDDW framework in Sec. 4.1, we can obtain another DDW scheme.

Scheme III. Scheme III can be viewed as an improvement of Scheme II. We could
further reduce the size of the DVS, when plugging it into our MDDW framework
in Sec. 4.1. The details are as follows.

In Fig. 16, the DVS signature contains a random string r and a hash value s.
When plugging the DVS into our framework, we can adopt the hash of previously
signed message (i.e., in DDW, the previously signed message could be the prompt
or the some tokens just output by the model) to generate the random string r
instead. In this way, the signature could only contain a hash value s.

In addition, since the DVS supports pseudorandomness, we do not need to
perform XOR computation of the signature and the tokens before sampling new
tokens. More exactly, codes in Line 7 of Algorithm 14 and codes in Line 8 of
Algorithm 15 are removed. Then, the algorithms use the signature output by
the DVS directly to proceed the computation.

Algorithm 14 WatMar(pp,wski, dpkj ,p)

1: sski ← wski
2: vpkj ← dpkj
3: t← ϵ
4: while |t|+ ℓ+ ℓ · lensig < n do
5: t← t||GenModelℓ(p, t)
6: σ̂ σ ← DVS.Sign(pp, sski, vpkj , H1(t[−ℓ]))
7: σ ← σ̂ ⊕H2(t[−ℓ])
8: σprev ← ϵ, m← ϵ
9: while σ ̸= ϵ do
10: σ ← σ[1], σ ← σ[2 :]
11: x← GenModelℓ(p, t)
12: while H3(m||x||σprev) ̸= σ do
13: x← GenModelℓ(p, t)

14: m←m||x, t← t||x
15: σprev ← σprev||σ
16: if |t| < n then
17: t← t||GenModeln−|t|(p, t)

18: return t

56

Algorithm 15 Detect(pp,wpki, dskj , t)

1: spki ← wpki
2: vskj ← dskj
3: for µ ∈ {1, 2, · · · , n− (ℓ+ ℓ · lensig)} do
4: m̃← H1(t[µ : µ+ ℓ− 1]), σ ← ϵ, m← ϵ
5: for φ ∈ [lensig] do
6: m←m||t[µ+ φ · ℓ : µ+ φ · ℓ+ ℓ− 1]
7: σ ← σ||H3(m||σ)
8: σ̂ ← σ ⊕H2(t[µ : µ+ ℓ− 1])
9: if DVS.Verify(pp, spki, vskj , m̃, σ̂ σ) = 1 then
10: return 1
11: return 0

Security analysis. It is clear that DDW of Scheme I and Scheme II are secure
(i.e., satisfying completeness, consistency, soundness, distortion-freeness, robust-
ness and off-the-record), since the two schemes adopt the framework in Sec. 4.1.

As for Scheme III, it is very similar to Scheme II, except that the XOR
computation is removed. The changes on framework would have no influence on
these security properties, except distortion-freeness. In addition, the DVS in Fig.
16 supports pseudorandomness. Since the hash function H1 in the framework of
Sec. 4.1 serves as a random oracle. Thus, the result of XOR computation is
also pseudorandom, which is essentially equivalent to the output of DVS. Thus,
Scheme III also has distortion-freeness.

Comparison. We compare the above three DDWs in terms of the size of a DVS
signature, the time of inserting a DVS signature and the time of verifying a DVS
signature.

Table 1: Comparison of some DDWs (from the view of one DVS signature)

Schemes Scheme I Scheme II Scheme III

Size 4× |Z∗
p| |Z∗

p|+ l l
Insertion 1× Sca+ 3× Exp 1× Exp+ 1× Bil 1× Exp+ 1× Bil
Verification 2× Sca+ 4× Exp 1× Exp+ 1× Bil 1× Exp+ 1× Bil

When considering the same security level, it should hold that l ≈ |Z∗
p|. For simplic-

ity, we assume that Scheme I works over G, and Scheme II and III works over a
bilinear map e : G×G→ GT . Then, Sca means one time of the scalar computation
over G, Exp means one time of the exponential computation over G, and bil means
one time of the bilinear map computation.

In Table 1, it holds that l ≈ |Z∗p| when we consider the same security level.
So, from the view of size of one DVS signature, it is clear that Scheme III
outperforms the others. It means that given a fixed length of the output of the
model, Scheme III can inserts more DVS signatures into the output of the model.
Therefore, it achieves a stronger soundness.

57

Gps-rand
DVS,A (λ):

pp← Setup(1λ), b← {0, 1}

b′ ← AOSK ,OVK ,OSPK ,OVPK ,O(b)
S-chl

,OV (pp)

where OSK ,OVK ,OSPK ,OVPK ,OV are defined as in Fig. 3 with |S| = 1,

O(0)
S-chl(i, j,m) outputs OS (i, j,m) (OS is also defined in Fig. 3 with input S = {j}),
O(1)

S-chl(i, j,m) outputs a uniformly sampled σ ← SG,
let Q denote the set of query-response (i.e., (i, j,m, σ)) of O(b)

S-chl,

all queries j to OVK should satisfy (∗, j, ∗, ∗) /∈ Q,

all queries (i, j,m, σ) to OV should satisfy (i, j,m, σ) /∈ Q,

and all queries (i, j,m) to O(b)
S-chl should satisfy j is not queried to OVK .

If b′ = b, then return 1,
Return 0

Fig. 17 Game for defining pseudorandomness of DVS

Note that Sca means one time of the scalar computation over G, Exp means
one time of the exponential computation over G, and bil means one time of the
bilinear map computation. From Table 1, it is hard to determine which scheme
would run in the least time, since it depends more on the actual implementation
(a empirical comparison can be found in Sec. 5). However, if we only focus on
Scheme II and Scheme III, we can conclude that Scheme III is more efficient
than Scheme II, in terms of inserting one DVS signature and verifying one DVS
signature, since Scheme III does not requires the XOR computation.

H.3 Proof of Theorem 6

As analysis in the aforementioned section, we omit the analysis of the ex-
istential unforgeability and off-the-record property, since you can find it in
[SBWP03,LV05]. Therefore, we only focus on the pseudorandomness here.
Definition of Pseudurandomness. The definition of pseudorandomness is as fol-
lows.

Definition 22. (Pseudorandomness). We say that DVS is pseudorandom, if
for all PPT adversary A,

Advps-rand
DVS,A (λ) = |Pr[Gps-rand

DVS,A (λ) = 1]− 1

2
| ≤ negl(λ)

where Gps-rand
DVS,A (λ) defined in Fig. 17.

Proof for pseudorandomness. We prove the pseudorandomness in the random
oracle model, so we add a random oracle ORO, which inputs a string and outputs
a random string. We assume that every time calling signing algorithm Sign, Sign
would query str = e(vpk, hssk) to the random oracle ORO, where h = H0(m, r).

58

Then, we prove the pseudorandomness of the DVS scheme in Fig. 16 in a sequence
of games.
G0: On receiving the security parameter λ, the game initializes the public pa-
rameter pp← Setup(1λ) and a bit b← {0, 1}.

Then, the challenger answers the queries as follows.

– ORO(str): On receiving a string str, it finds str in its table Lro. If (str, y) in
the table, then it returns y. Otherwise, it samples a random string y, inserts
(str, y) into Lro, and returns y.

– OSK(i): On receiving an index i, it calls SignKG(pp) to generate a key pair
(spki, sski), and store the key pair. Finally, it returns (spki, sski).

– OV K(j): On receiving an index j, it proceeds as follows. If (∗, j, ∗, ∗) ∈ Q,

where Q is the query-response set of O(b)
S−chl, then it aborts. Otherwise, the

oracle would return a key pair in the following way. If j has been queried, then
search (vpkj , vskj). Else, it calls VerKG(pp) to generate a key pair (vpkj , vskj),
and store the key pair. Finally, it returns (vpkj , vskj).

– OSPK(i): On receiving a index i, it calls OSK(i) to obtain the key pair
(spki, sski), and then returns spki.

– OV PK(j): On receiving a index j, it calls OV K(j) to obtain the key pair
(vpkj , vskj), and then returns vpkj .

– O(b)
S−chl(i, j,m): On receiving (i, j,m), it proceeds as follows. If j has been

queried to OV K , then it aborts. Otherwise, it calls Sign(pp, sski, vpkj ,m) to
generate the sigma σ, where sski is output by OSK(i) and vpkj is output by
OV PK(j). Then it sets Q← {(i, j,m, σ)} ∪Q and returns σ.

– OV (i, j,m, σ): On receiving (i, j,m, σ), it proceeds as follows. If (i, j,m, σ) ∈
Q, then it aborts. Otherwise, it outputs b← Verify(pp, spki, vskj ,m, σ), where
spki is output by OSPK(i), vskj is output by OV K(j).

Finally, A outputs a bit b′.
It is clear that G0 is identical to Gps-rand

DVS,A (λ) when b = 0 in Fig. 17. Thus we
have

Pr[Gps-rand
DVS,A (λ) = 1|b = 0] = Pr[G0 = 1].

G1: G1 is similar to G0, except when answering the OV queries on (i, j,m, σ),
G1 proceeds as follows.

– OV (i, j,m, σ): On receiving (i, j,m, σ), it proceeds as follows. If (i, j,m, σ) ∈
Q, then it aborts. Otherwise, the oracle proceeds:
• If i has not been queried to OSK and j has not been queried to OV K ,
then return 0.

• If i has been queried to OSK , then parse (r, s) ← σ, and compute h =
H0(m, r), str = e(vpkj , h

ssk). If str has not been queried to ORO, then
return 0. Otherwise, check if s = L(ro)(str). If equal, return 1, otherwise
0.

• If j has been queried to OV K , then parse (r, s) ← σ, and compute
h = H0(m, r), str = e(spkk, h

vsk). If str has not been queried to ORO,
then return 0. Otherwise, check if s = L(ro)(str). If equal, return 1,
otherwise 0.

59

Let evt denote the event, that for a query (i, j,m, σ) to OV , it holds that
(i, j,m, σ) ̸∈ Q and Verify(pp, spki, vskk,m, σ) = 1, where i has not been queried
to OSK by the adversary and j has not been queried to OV K by the adversary.

Then, we have

|Pr[G1 = 1]− Pr[G0 = 1]| = Pr[evt].

If Pr[evt] ≤ negl(λ), then |Pr[G1 = 1]−Pr[G0 = 1]| ≤ negl(λ). In the following,
we show that Pr[evt] ≤ negl(λ).

Case 1 : If for all (i′, j′,m′) that have been queried to O(b)
S−chl, it holds (i, j,m) ̸=

(i′, j′,m′), then we say it breaks the existential unforgeability game, of which
the successful probability is negligible.

Case 2 : If for all (i′, j′,m′) that have been queried to O(b)
S−chl, there exists one

(denoted as (̃i, j̃, m̃)) such that (i, j,m) = (̃i, j̃, m̃), then it implies that

σ ̸= σ̃, where σ̃ is output by O(b)
S−chl(m̃). We parse σ = (r, s) and σ̃ = (r̃, s̃).

• If r = r̃, then it holds that s ̸= s̃. However, since (̃i, j̃, m̃) is queried to

O(b)
S−chl, which invokes Sign to generate the sigma. It obtains s̃, by query-

ing ˜str = e(vpkj̃ , (h̃)
sskĩ) to random oracle ORO, where h̃ = H0(m̃, r̃) =

H0(m, r) = h. Thus, when the verification algorithm Verify queries str =
e(spki, h

vskj) = e(vpkj , h
sski) = e(vpkj̃ , (h̃)

sskĩ) = ˜str to the random ora-
cle ORO, it would get s = s̃, which is contradictory to s ̸= s̃. Thus, the
assumption is not held.

• If r ̸= r̃, then it with overwhelming probability that h = H0(m, r) is
not equal to any h′ = H0(m

′, r′), where m′ is the any message queried to

O(b)
S−chl and r′ is the corresponding output, since H0 is a collision-resistant

hash function. Thus, (spki, vpkj , h) ̸= (spki′ , vpkj′ , h
′) where (i′, j′,m′) is

queried to O(b)
S−chl. Note that str = e(vpkj , h

sski), so (spki, vpkj , h, str) is
a DBDH tuple. If str has not been queried toORO, then it with negligible
probability that H1(str) = s is held, since the random oracle ORO would
return a random string for str. Then, we analyze the probability that A
succeeds in querying str to ORO, given (spki, vpkj , h). Supposing that A
can succeeds in query str with non-negligible probability, we construct
another adversary B to break the CBDH assumption.
Here is the construction of B. After receiving (X,Y, Z) from the chal-
lenger of CBDH, the adversary B firstly answers the oracle queries from
A, mostly just as the challenger in G1 does. There are some minor dif-
ference

∗ Assuming that A issues at most q0 queries to O(b)
S−chl, B chooses one

of them (̃i, j̃, m̃), and sets spkĩ = X, vpkj̃ = Y . To answer this query,

B randomly chooses a random string r̃ and sets H0(r̃, m̃) = h̃ = gα

(here, H0 also serves as a random oracle). Then, B computes ˜str =
e(spkĩ, vpkj̃)

α and queries ˜str to the oracle ORO, obtaining s̃. Finally,
B returns σ̃ = (r̃, s̃).

60

∗ When A issues queries to ORO for H0, if there are some queries
(assume that they are q1 such queries) in the form of (∗, m̃), then B
chooses one of them (e.g., (r′, m̃)) and sets H0(r

′, m̃) = Z.
After A issues a query (i, j,m, σ) to OV , which makes case 2 happens, if
(i, j,m) = (̃i, j̃, m̃) and H0(r, m̃) = Z where σ = (r, s), then B finds the
query in Lro such that H1(str) = s. Finally, B outputs str as its output.
That is construction of B.
Then, we analyze the probability of B.

Pr[B succeeds] ≥ 1

q0 · q1
Pr[Case 2 happens].

If Pr[Case 2 happens] is non-negligible, then Pr[B succeeds] is also non-
negligible, which is contradictory to that CBDH is thought a hard prob-
lem. Thus, the assumption is not held, so Pr[Case 2 happens] is negligi-
ble.

In all, the probability of Case 2 is negligible.

Therefore, Pr[evt] ≤ negl(λ), which implies that

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ negl(λ).

G2: G2 is similar to G1, except when answering the O(b)
S−chl queries on m, it

proceeds as follows.

– O(b)
S−chl(i, j,m): On receiving (i, j,m), it proceeds as follows. If j has been

queried to OV K , then it aborts. Otherwise, it randomly chooses σ := (r, s)←
{0, 1}∗ × {0, 1}l, sets Q← {(i, j,m, σ)} ∪Q, and returns σ.

Suppose that the adversary makes ℓ queries to oracle O(b)
S−chl. Denote G2,k

(k ∈ {0, 1, · · · , ℓ}) as the game, where for the first k queries to oracle O(b)
S−chl,

the oracle O(b)
S−chl proceeds these queries as it does in G2, and then for the left

(ℓ − k) queries to oracle O(b)
S−chl, the oracle O(b)

S−chl proceeds these queries as it
does in G1. Thus, G2,0 = G1 and G2,ℓ = G2. We have the following lemma.

Lemma 6. For every k ∈ [ℓ], it holds that |Pr[G2,k−1 = 1] − Pr[G2,k = 1]| ≤
negl(λ).

Proof (of Lemma 6). We denote the ℓ queries as ((i1, j1,m1), . . . , (iℓ, jℓ,mℓ)).
Then, we show that distinguishing between G2,k−1 and G2,k is difficult.

InG2,k−1, when querying (ik, jk,mk) to O(b)
S−chl, the oracle samples a random

string rk ← {0, 1}∗, computes hk ← H0(mk, rk) and strk = e(vpkjk , (hk)
sskik),

queries strk to the random oracle ORO, obtaining sk and setting σk = (rk, sk),
sets Q← {(ik, jk,mk, σk)} ∪Q and returns σk.

Then, we define another game G′, which is similar to G2,k−1, except that G
′

queries a random string str′ to the random oracle ORO, obtaining sk (i.e., the
random oracle assigns the same sk to the random oracle query).

61

It is clear the only difference is that strk = e(vpkjk , (hk)
sskik) and str′ ←

{0, 1}|strk|. Given (g, spkik , vpkjk), distinguishing strk and str′ can be reduced to
DBDH problem, which is thought a hard problem. Thus, we have |Pr[G2,k−1 =
1]− Pr[G′ = 1]| ≤ negl(λ).

Note that, the distribution of a string output by the random oracle ORO

on a random query str′, is equivalent to the uniform distribution. Thus, G′ is
identical to G2,k. Therefore, we have Pr[G′ = 1] = Pr[G2,k = 1].

Therefore, it holds that |Pr[G2,k−1 = 1]− Pr[G2,k = 1]| ≤ negl(λ).

Applying Lemma 6, we have |Pr[G1 = 1] − Pr[G2 = 1]| = |Pr[G2,0 =
1]− Pr[Gℓ = 1]| ≤ negl(λ).
G3: G3 is similar to G2, except when answering the queries (i, j,m, σ) to OV ,
it proceeds as follows.

– OV (i, j,m, σ): On receiving (i, j,m, σ), if (i, j,m, σ) ∈ Q, it aborts. Other-
wise, it returns b← Verify(pp, spki, vskj ,m, σ).

Note that the analysis of the indistinguishability between G2 and G3 is
similar to that between G0 and G1. Thus, we have

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ negl(λ).

In fact, G3 is identical to the game Gps-rand
DVS,A (λ) when b = 1.

Therefore, we have |Pr[Gps-rand
DVS,A (λ) = 1|b = 0]−Pr[Gps-rand

DVS,A (λ) = 1|b = 1]| =
|Pr[G0 = 1]− Pr[G3 = 1]| ≤ negl(λ), which implies that the DVS scheme DVS
constructed in Fig. 16 is pseudorandom.

62

	Multi-Designated Detector Watermarking for Language Models
	Introduction
	Preliminaries
	Language models
	Multi-designated verifier signature

	Multi-designated detector watermarking
	MDDW construction
	Generic construction of MDDW
	MDDW construction with claimability
	Instantiation of claimable MDVS

	Evaluation
	Preliminaries: cryptographic assumptions and lemmas
	Preliminaries: pseudorandom function, commitment, and signature
	Preliminaries: A MDVS scheme in au2014strong and BLS signature boneh2004short
	Proof of Theorem 2
	Proof of completeness (in Theorem 2)
	Proof of consistency (in Theorem 2)
	Proof of soundness (in Theorem 2)
	Proof of distortion-freeness (in Theorem 2)
	Proof of robustness (in Theorem 2)
	Proof of off-the-record property for designated set (in Theorem 2)

	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	A more efficient DDW construction
	DVS construction
	Some concrete DDWs and their comparison
	Proof of Theorem 6

