
Evict+Spec+Time: Exploiting Out-of-Order
Execution to Improve Cache-Timing Attacks

Shing Hing William Cheng1, Chitchanok Chuengsatiansup2,
Daniel Genkin3, Dallas McNeil1, Toby Murray2, Yuval Yarom4

and Zhiyuan Zhang2

1 University of Adelaide
2 University of Melbourne

3 Georgia Tech
4 Ruhr University Bochum

Abstract. Speculative out-of-order execution is a strategy of masking execution
latency by allowing younger instructions to execute before older instructions. While
originally considered to be innocuous, speculative out-of-order execution was brought
into the spotlight with the 2018 publication of the Spectre and Meltdown attacks.
These attacks demonstrated that microarchitectural side channels can leak sensitive
data accessed by speculatively executed instructions that are not part of the normal
program execution. Since then, a significant effort has been vested in investigating
how microarchitectural side channels can leak data from speculatively executed
instructions and how to control this leakage. However, much less is known about how
speculative out-of-order execution affects microarchitectural side-channel attacks.
In this paper, we investigate how speculative out-of-order execution affects the Evict+
Time cache attack. Evict+Time is based on the observation that cache misses are
slower than cache hits, hence by measuring the execution time of code, an attacker
can determine if a cache miss occurred during the execution. We demonstrate that,
due to limited resources for tracking out-of-order execution, under certain conditions
an attacker can gain more fine-grained information and determine whether a cache
miss occurred in part of the executed code.
Based on the observation, we design the Evict+Spec+Time attack, a variant of Evict+
Time that can learn not only whether a cache miss occurred, but also in which
part of the victim code it occurred. We demonstrate that Evict+Spec+Time is an
order of magnitude more efficient than Evict+Time when attacking a T-table-based
implementation of AES. We further show an Evict+Spec+Time attack on an S-box-
based implementation of AES, recovering the key with as little as 14 389 decryptions.
To the best of our knowledge, ours is the first successful Evict+Time attack on such a
victim.
Keywords: Cache-timing attacks · out-of-order execution · AES

1 Introduction
Sharing computational resources poses a threat to information confidentiality. Microar-
chitectural side-channel attacks, which exploit contention on the internal components of
the processor, have had an adverse impact on information confidentiality. Since their
introduction in 2002 [TTMM02], a large number of attacks have been published, dis-
mantling the security of symmetric cryptography [Ber05; GMWM16; GPS+20; OST06],
public-key schemes [ABF+16; YF14], post-quantum cryptography [GBHLY16; GLG22;
HSC+23], cryptographic protocols [RGG+19], and non-cryptographic software [GSM15;

2
Evict+Spec+Time: Exploiting Out-of-Order Execution

to Improve Cache-Timing Attacks

OKSK15; SAO+21; YFT20; YPW22]. These attacks target most known components of
the computer, including data caches [OST06; Per05; PTV21], instruction caches [ABG10;
AS08], translation lookaside buffers [GRBG18; TTGB22; ZMFT22], branch prediction
tables [EPA16; ZKE20; ZTO+23], prefetcher [GMF+16; VFP+22], and others [ABH+19;
BSN+19; DHS22; MES18; PSHC21].

Traditionally, microarchitectural side-channel attacks focused on single components,
treating activity of other components as noise [MIE17; YF14]. However, the recent
disclosure of transient-execution attacks [KHF+19; LSG+18; VBMW+18] has demonstrated
that interactions between microarchitectural components can have devastating impact on
system security. In a nutshell, these attacks exploit the observation that an adversary can
use microarchitectural side channels to leak secret information accessed during speculative
and out-of-order execution, bypassing software and hardware security boundaries [BFM+22;
KHF+19; KM21].

Significant effort has been dedicated to investigating microarchitectural side-channel
attacks within the context of transient-execution attacks. Works in this area range from
demonstrating the applicability of multiple channels [AGL19; BSN+19; CY22; TKK+22;
ZBC+23] to proposing countermeasures that aim to block these channels [BBZ+19;
KKS+19; LNM+21; ZBC+23]. However, much less attention has been invested in deter-
mining how out-of-order execution can affect microarchitectural side-channel attacks.

Early works in this area focused on documenting [YF14] and controlling [BP92; Gro00;
TP08] the effects of out-of-order execution. Yet, recently several works have proposed
exploiting speculation for overcoming countermeasures against microarchitectural side-
channel attacks [BSP+21; ZBC+23; ZTO+23]. Moreover, several recent works show how
speculative execution can be exploited for overcoming defenses based on limiting timer
resolution [Kap23; KKC+23; PBPV23]. Finally, Rebeiro and Mukhopadhyay [RM15]
investigate how the effects of pipelining and out-of-order execution can be used to mask
cache-based timing leakage.

Our Contribution
In this work, we investigate another aspect of the complex interaction between out-of-order
execution and microarchitectural side-channel attacks. Specifically, we demonstrate how to
exploit out-of-order execution to improve the fidelity of Evict+Time [OST06], a cache-based
side-channel attack technique.

In the Evict+Time attack, the attacker first evicts some memory from the cache and
then measures the execution time of the victim code. If the victim code uses the evicted
memory, access to that memory will be slow. Thus, observing an increase in the execution
time of the code reveals that the victim has accessed the evicted memory. We present the
Evict+Spec+Time attack, a variant of Evict+Time which exploits out-of-order execution
to identify not only whether the access to the evicted memory occurs, but also when it
occurs during the execution of the victim.

The main purpose of out-of-order execution is to hide the latency of some instructions by
executing subsequent instructions before slow instructions complete. Our main observation
is that this latency-hiding capability of out-of-order execution is restricted due to the limited
resources available for tracking the execution. Consequently, controlling the resources
available for out-of-order execution allows us to selectively hide the latency of accessing
evicted memory and identify when, during the victim execution, the access occurs.

We demonstrate the effectiveness of Evict+Spec+Time in two attack scenarios. The first
scenario targets the T-table implementation of AES, e.g. as provided in OpenSSL-3.0.9. We
show that Evict+Spec+Time is an order of magnitude stronger than Evict+Time, allowing
successful recovery of the four most significant bits of a key byte after observing only 250
decryptions, compared with the required 2 500 decryptions in the case of Evict+Time. This

Cheng, Chuengsatiansup, Genkin, McNeil, Murray, Yarom and Zhang 3

improvement mirrors the results of Purnal et al. [PTV21], who show a similar efficiency
with the Prime+Scope variant of the Prime+Probe attack.

Our second scenario targets S-box-based implementations of AES. Due to the small size
of the S-box table and the number of accesses during the execution, such implementations
are considered less vulnerable to side-channel attacks [ARVM20]. Nonetheless, past works
have demonstrated that under strong attacker assumptions such attacks are possible. Specif-
ically, the attacks assume the ability to interrupt the victim code frequently [ARVM20],
the availability of special hardware features [BBM+21], or a combination of both [MIE17].
In contrast, our Evict+Spec+Time assumes no fine-grained control of victim execution and
only uses generic features of out-of-order execution. However, it does rely on the context
in which the victim’s code executes. Thus, Evict+Spec+Time represents a new design
point in the space of cache-based attacks against such implementations.
In summary, in this paper we make the following contributions.

• We investigate the interaction between out-of-order execution resources and its
latency-hiding capabilities (Section 3).

• We design the Evict+Spec+Time attack, which exploits the limited latency-hiding
capabilities to leak not only the fact that a cache miss occurs, but also when it occurs
(Section 4).

• We show that Evict+Spec+Time allows an order of magnitude improvement in the
efficiency of the T-table-based attack on AES compared to Evict+Time (Section 5).

• We present our Evict+Spec+Time attack, the first Evict+Time attack against an
S-box implementation of AES (Section 6).

2 Background
This section briefly recalls fundamental concepts of out-of-order execution, advanced
encryption standard, and cache-timing attack. We limit the explanation to details that
are relevant to our work.

2.1 Out-of-Order Execution
To exploit instruction-level parallelism, processors do not necessarily execute instructions
in the original program order. Instead, processors try to execute instructions as soon as
all their inputs are ready and a suitable execution unit is available. To ensure that the
results of the reordered instructions remain valid, the processors rely on a data structure
called reorder buffer to keep track of the original program order and employ a variant of
the Tomasulo algorithms [Tom67] to execute instructions in an arbitrary order. To track
the dependencies between instructions, processors use a data structure called reservation
station, which monitors the dependencies waiting for inputs to become available.

2.2 AES
The Advanced Encryption Standard (AES) is a symmetric block cipher that is based
on a substitution-permutation network design. AES operates on a 128-bit block size,
represented as a four-by-four state matrix in a column-major order (see Figure 1). During
the encryption process, this matrix goes through multiple rounds of transformation where
each round consists of the folowing four operations:

• SubBytes (SB) is a non-linear substitution where each byte of the state is replaced by
another byte according to a predefined lookup table. Two common implementations
of the lookup tables are S-box and T-table.1

• ShiftRows (SR) performs a circular rotate of row i to the left by i positions.
1T-table implementations combine SubBytes, ShiftRows, and MixColumns in a single lookup.

4
Evict+Spec+Time: Exploiting Out-of-Order Execution

to Improve Cache-Timing Attacks

• MixColumns (MC) computes a linear function to combine the values along the column
by multiplying the state matrix with a predefined four-by-four matrix.

• AddRoundKey (ARK) mixes round key k into the state matrix through an exclusive-or
operation, denoted by ⊕.

We denote the inverse of these operations by InvSubBytes, InvShiftRows, InvMixColumns,
and InvAddRoundKey respectively. Figure 2 shows the predefined matrix of InvMixColumns.

To decrypt, the inverse operations are performed in the reversed order of the encryption.
However, many implementations of AES decryption, including both implementations we
target, apply InvMixColumns to each of the round keys, allowing them to reorder the inverse
operations so they follow the same order as in the encryption process. As we only focus on
decryption, we use ki to denote the round key used in the ith decryption round.

b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15

Figure 1: Column-major order

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

Figure 2: InvMixColumns Matrix

2.3 Cache-Timing Attacks

Cache. The cache is a small, fast bank of memory. It stores recently accessed data and
exploits both the temporal and the spatial locality that a program exhibits to bridge the
speed gap between the fast processor and the slow memory. Specifically, the memory space
is divided into fixed-size lines, typically of size 64 bytes. When the processor accesses
memory, it first checks if the requested memory line resides in the cache. In the case of
a cache hit, when the line is found in the cache, the memory line can be served quickly.
On the other hand, in case of a cache miss, when the requested memory line is not in the
cache, the processor needs to bring it from the main memory, resulting in a longer retrieval
time. In a cache miss, the processor typically stores the retrieved line in the cache for a
potential future use. Since the cache is small and has a limited capacity, the processor
may need to evict some lines out of the cache to make room for storing recently fetched
memory lines.
Evict+Time. The Evict+Time attack [OST06] is a cache-based side-channel attack that
observes timing behavior to determine cache states and infer victim’s activity. The attack
consists of two steps. In the first, evict, step, an attacker prepares the cache into a known
state by evicting targeted memory addresses. In the second, time, step, the attacker
measures the time it takes for the victim to execute an operation. A slow execution time
indicates that the victim has accessed the evicted memory.

3 Out-of-Order Execution and Latency Hiding
The aim of out-of-order execution is to improve the performance and hide latency by
exploiting parallelism. In this section, we investigate the interaction between out-of-order
execution and cache-miss latency hiding. We first demonstrate that execution-time overlap
can hide the latency of a cache miss. Then we explore the limitations of cache-miss latency
hiding.

3.1 (In)distinguishable Cache Hit and Miss
The conventional wisdom is that a cache miss results in a much longer execution time
compared to a cache hit. This is generally true if instructions are executed in-order, and
subsequent instructions after a cache miss may not start until the cache miss is resolved.

Cheng, Chuengsatiansup, Genkin, McNeil, Murray, Yarom and Zhang 5

However, in the case of out-of-order execution, processors try to reduce the latency by
reordering the instructions while maintaining their dependency.

This observation implies that if (1) there are sufficient instructions that can be brought
forward and executed while a cache miss occurs and (2) the total latency of those instruc-
tions is at least as large as the penalty of a cache miss, the overall execution time will be
similar in both cases of cache hit and cache miss. In other words, cache misses may not
necessarily lead to a longer execution time, which contrasts with the general belief.

In addition to the possibility of no distinction in timing between a cache hit and a
cache miss, the length of cache-miss penalty, when it is observable, is not constant but
depends on the level of possible execution overlap between the cache miss and subsequent
instructions. This also implies that if a cache miss occurs early in the execution, there
is a higher probability that the length of cache-miss penalty will be reduced. This is an
important ingredient for our Evict+Spec+Time attack, which we introduce in Section 4.

Based on these observations, we design an experiment to demonstrate the impact
of out-of-order execution on cache-miss latency hiding. In a nutshell, we perform two
independent load operations, while controlling whether the data are cached, and show
timing variations in different scenarios. Below we describe our experiment design and
results.
Experiment Design. To investigate the timing behavior due to the effect of out-of-order
execution and cache states, we consider a program with two independent memory access
operations as shown in Listing 1. Specifically, one operation follows a linked list (Line 1).
This operation serves the purpose of controlling the execution-time overlap. The other
operation is a pointer dereference (Line 2), whose latency we wish to measure in the cases
that the memory it points to is cached or not.

Listing 1: Execution-time overlap between independent memory access
1 a = listhead ->nextnode -> nextnode ;
2 b = *ptr;

Experiment Results. We conduct our experiments on an Intel Core i7-1165G7 pro-
cessor, which supports out-of-order execution. To reduce the noise and effects of data
prefetching [SKK+18; WQAK19], we randomize the memory locations in each experiment.

For each combination of cache states, we collect 100 000 samples. Figure 3 plots the
distribution of execution time where the orange and blue lines indicate the execution time
of when Line 2 in Listing 1 is a cache hit and a cache miss respectively.

0 200 400 600 800 1000
Execution Time (Cycles)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

De
ns

ity

cache miss
cache hit

(a) Linked list is cached: Distinguishable cache
hit and cache miss

200 300 400 500 600 700 800 900 1000
Execution Time (Cycles)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

De
ns

ity

cache miss
cache hit

(b) Linked list is not cached: Indistinguishable
cache hit and cache miss

Figure 3: Impact of out-of-order execution on cache-miss latency hiding

On the left-hand side, Figure 3a illustrates the situation where the linked-list memory
locations are cached, i.e. this load operation can be done very quickly. In this situation, the
execution-time overlap between traversing the linked list (Line 1) and pointer dereferencing

6
Evict+Spec+Time: Exploiting Out-of-Order Execution

to Improve Cache-Timing Attacks

(Line 2) is very small. Consequently, out-of-order execution has a very limited opportunity
to hide the cache-miss penalty. Therefore, we can clearly see from the figure that, as
expected, a cache miss results in a longer execution time compared to a cache hit.

On the right-hand side, Figure 3b illustrates the situation where the memory locations
that store the nodes of the linked list are not cached. In this situation, traversing the
linked list takes a long time. Consequently, the execution-time overlap between traversing
the linked list (Line 1) and dereferencing the pointer (Line 2) is large. Hence, out-of-order
execution can hide the cache-miss penalty incurred in Line 2. Since Line 1 takes a long
time to execute, Line 2 can finish its memory access within that time frame, In other words,
the execution time of Line 2 fully overlaps with that of Line 1, and there is no additional
cache-miss penalty caused by the memory access in Line 2. Therefore, and contrary to the
naive expectations, we can no longer distinguish a cache hit from a cache miss.

3.2 Latency-Hiding Capability
We have seen that cache-miss latency can be hidden by execution-time overlap. This is
because out-of-order execution allows reordering instructions and executing them according
to the availability of the input data and execution units. While instructions can be executed
out-of-order, the processor still needs to commit them in the order they appear in the
program to ensure the correctness of the execution. For this reason, modern processors
have integrated additional structures to enable such features.

We identify two structures that are relevant to out-of-order execution. The first is
the reorder buffer, which keeps track of the original program order. The second is the
reservation station, which keeps track of the operands of instructions and releases the
instructions for execution when all operands are available. Since the sizes of the reorder
buffer and reservation station are limited, once either is used up, out-of-order execution
reaches its limit and younger instructions can no longer be reordered.

To analyze the threshold of latency hiding and out-of-order resource contention, we
design experiments that exhaust the reorder buffer and the reservation station. In brief,
we vary the number of instructions and create the dependency on input data in a program.
We note that the similar technique has also been used to reverse engineer the size of
backend buffers [TRVT22].
Experiment Design. Our new set of experiments follows a similar concept as the one
in Section 3.1 where we study the (in)distinguishability in timing between cache hits and
misses (see also Listing 1). That is, we consider a program with two independent memory
access operations, which can be executed in parallel, and measure the overall execution
time. However, in this experiment, we focus on the situation where the overall execution
time is maximal, i.e. all linked-list memory locations are not cached. Hence, based on the
experiments in Section 3.1, we expect that the latency of the pointer dereference will be
masked.

Contrary to the prior experiments, in the current experiments, the program includes
more operations between the two independent memory accesses. This enables the investi-
gation of the latency-hiding capability in that long execution time.

Specifically, we use nop instruction to study the threshold of the reorder buffer. As
illustrated in Listing 2, we insert nop instructions (Lines 3–5) between the two independent
memory access instructions (linked list and pointer dereference). These nop instructions
consume entries in the reorder buffer. We control the number of reorder buffer entries that
the code uses by varying the number of nop instructions. Note that we could use different
instructions other than nop. Our reason for choosing nop is that it consumes almost no
computational resources but occupies the reorder buffer slot.

To study the threshold of the reservation station, we use mov and cmp instructions as
shown in Listing 3. The purpose of the mov instruction (Line 2) is to create a dependency
on the availability of the input data, which needs to wait for the linked list to complete

Cheng, Chuengsatiansup, Genkin, McNeil, Murray, Yarom and Zhang 7

its traversal in order to obtain the loaded value. While the processor waits for the data,
each of the cmp instructions (Lines 3–5) consumes a reservation station entry. Thus, the
number of cmp instructions controls the number of reservation station entries used.

Listing 2: Exhausting reorder buffer
1 a = listhead ->nextnode -> nextnode ;
2

3 NOP
4 ...
5 NOP
6 b = *ptr
7

Listing 3: Exhausting reservation station
1 a = listhead ->nextnode -> nextnode ;
2 mov r11 , [a]
3 cmp r11 , rdx
4 ...
5 cmp r11 , rdx
6 b = *ptr
7

Experiment Results. We perform our experiments on the same Intel Core i7-1165G7
processor, using the same setup as in Section 3.1. That is, we randomize the memory
locations each time to reduce the noise. We repeat each measurement 100 000 times and
report the average. The results are shown in Figure 4 where the orange and blue lines
correspond to the execution time for a cache hit and a cache miss of the load instruction
in Line 6 for both Listing 2 and Listing 3.

0 100 200 300 400 500
Number of NOP

500

550

600

650

700

750

800

850

Ex
ec

ut
io

n
Ti

m
e

(C
yc

le
s)

cache miss
cache hit

(a) Reorder buffer threshold

0 100 200 300 400 500
Number of CMP

500

550

600

650

700

750

800

850

Ex
ec

ut
io

n
Ti

m
e

(C
yc

le
s)

cache miss
cache hit

(b) Reservation station threshold

Figure 4: Impact of resources availability on cache-miss latency hiding

On the left-hand side, Figure 4a shows the results of exhausting the reorder buffer
entries by varying the number of nop instructions. We observe that up to around 350
nop instructions, the execution time grows linearly with the number of nop instructions,
and the cache hit and cache miss cases are indistinguishable. However, at around 350 nop
instructions, we observe a sharp increase in the execution time for the case of a cache
miss, whereas the execution time for cache hit continues the same linear growth. That is,
we see that once we reach around 350 nop instructions, out-of-order execution no longer
hides the cache-miss latency. This agrees with the explanation that the nop instructions
consume all of the entries in the reorder buffer, preventing out-of-order execution of
subsequent instructions. We do not have authoritative information on the size of the
reorder buffer in our processor. However, the reported number of entries in the Sunny Cove
microarchitecture, the predecessor of the Willow Cove that we use in our experiments, is
352.2 This number agrees with our observation.

On the right-hand side, Figure 4b shows the results of exhausting the reservation
station by varying the number of cmp instructions. Similarly, the execution time increases
linearly as the number of cmp instructions increases. In this experiment, however, the
increase in the execution time of the cache miss case occurs much earlier, at around 100 cmp
instructions. At this point, the reservation station is fully exhausted, and out-of-order
execution is at the limit of hiding the cache-miss penalty. Thus, we can clearly distinguish
the cases of cache hit and cache miss.

2https://en.wikipedia.org/wiki/Sunny_Cove_(microarchitecture)

https://en.wikipedia.org/wiki/Sunny_Cove_(microarchitecture)

8
Evict+Spec+Time: Exploiting Out-of-Order Execution

to Improve Cache-Timing Attacks

4 The Evict+Spec+Time Attack
Typical cache-timing attacks rely on the difference in the execution time between cache
hit and cache miss to determine whether a victim has accessed a monitored cache line.
In this section, we introduce a new attack called Evict+Spec+Time, which, in addition
to determining whether, can also determine when the victim has accessed the monitored
cache line.

4.1 Attack Overview
The Evict+Spec+Time attack combines eviction- and contention-based attacks. On the
eviction-based side, Evict+Spec+Time follows a similar structure as the Evict+Time
attack [OST06]. That is, it prepares the cache by evicting a certain line from it, and then
infer the victim’s behavior, i.e. whether the cache line has been accessed, by measuring
the victim execution time.

On the contention-based side, Evict+Spec+Time considers the impact of speculation
due to out-of-order execution. We create resource contention in, for example, the reorder
buffer or the reservation station, and monitor the access to the targeted resource by
measuring the latency of cache-miss penalty hiding to infer victim’s behavior, i.e. when,
during its execution, the victim accesses the cache line. Specifically, during the period of
the victim’s execution, the speculation naturally occurs. The variation in the execution
time reveals how far the speculation proceeds, implying when the cache miss has been
taken place.

The Evict+Spec+Time attack consists of two steps. In the first or the evict step, we
evict the content from the monitored cache lines. This can be done by, for example,
accessing a block of memory that maps to the targeted cache sets. In the second or the
spec+time step, we let the victim execute then we measure the execution time, which
is influenced by the speculation. Slow execution time indicates a cache miss while fast
execution time indicates either no cache miss or a cache miss occurs early in the execution.

Thus, like Evict+Time, each instance of the Evict+Spec+Time attack is binary—it
distinguishes between two conditions. However, there is a fundamental difference between
the attacks. Whereas Evict+Time distinguishes whether the victim has accessed a cache
line or not, Evict+Spec+Time identifies whether the victim has first accessed the cache
line within a certain part of its execution. As we show in Section 6, this difference allows
attacking implementations that were hitherto considered resilient to the Evict+Time attack.
Moreover, with Evict+Spec+Time, the attacker can have a finer control over which part of
the victim execution is targeted. Hence, while each instance of the attack only provides a
binary result, multiple executions may provide more nuanced results.

4.2 Controlling Execution Timing Overlap
The heart of our attack is the Spec+Time part. Determining when a cache miss happens
during the program execution requires an ability to manipulate the underlying structure
that is relevant to latency hiding in out-of-order execution. Two approaches for controlling
the execution-time overlap, namely, exhausting the reorder buffer and the reservation
station, are discussed in Section 3.2.

The aim of controlling the execution-time overlap is to influence the latency of cache-
miss penalty. If the execution-time overlap is short, the cache-miss penalty is large
regardless of whether the cache miss happens sooner or later. In this situation, we can
distinguish between a cache hit and a cache miss, hence detecting whether a cache miss
occurs. On the other hand, if the execution-time overlap is long, a cache miss that occurs
sooner will result in a smaller penalty overall, whereas a later cache miss will result in a
larger penalty. Therefore, we can detect when the cache miss occurs.

Cheng, Chuengsatiansup, Genkin, McNeil, Murray, Yarom and Zhang 9

4.3 Threat Model
As in most microarchitectural attacks, we assume that the attacker can execute the spy
code on the same machine as the victim. We do not assume that the attacker has any
special system privileges. In particular, the attacker cannot interleave its execution with
that of the victim. However, as in other Evict+Time attacks, we assume that the attacker
can execute victim code and measure its execution time.
Hyperthreading. For the attack, we assume that simultaneous multithreading (SMT) is
either disabled or not used on the core that carries the attack out. In all of the experiments
described in this work, SMT is enabled, but when running the attack code, we keep the
sibling hyperthread of the same physical core idle. When disabling SMT, we achieve similar
results.

Running code on a sibling thread is likely to affect the attack. When targeted resources
are partitioned statically, as is the reorder buffer on Intel processors [TRVT22], the attack
is likely to work, albeit it will affect fewer instructions. Conversely, when resources are
shared dynamically, for example the reorder buffer on AMD processors [TRVT22], the
behavior is likely to depend on the nature of the code running on the sibling thread and its
resource usage. In particular, this opens the possibility of instantiating cross-hyperthread
attacks, where the attack code runs on one hyperthread, and forces contention on the
shared resource to affect the behavior of the victim on the sibling hyperthread. We leave
experimenting with hyperthreading to future work.
Attack Gadget. Similar to Spectre-type attacks [ASBB+23; BSN+19; KHF+19;
KKSA18], we assume that the victim code contains a gadget that allows an attacker
to manipulate the execution-time overlap. The gadget we use in this work is a secret-
independent memory access that enables the attacker to cause eviction and control resource
contention.

5 Evict+Spec+Time on AES with T-Table
In this section, we demonstrate the efficiency of our Evict+Spec+Time attack through
recovering a secret key of an AES implementation with T-table. Specifically, we perform a
first-round attack targeting a decryption process. Since T-table-based implementations of
AES are known to be vulnerable to cache-timing attack [AES15; PTV21; TANA07], we
only perform a proof-of-concept attack to recover half of the key.

5.1 Attack Procedure
In T-table-based implementations of AES, an index to a lookup table can be calculated
from a ciphertext and a secret key. Conversely, knowing the index together with the
ciphertext allows us to derive the key. We apply our Evict+Spec+Time attack to determine
the index of the T-table by monitoring which cache line is accessed during the decryption.

Recall that there are four T-tables, each having 256 entries. Since a single cache
line holds 16 entries, a total of 16 cache lines are required to hold all the entries for one
T-table. Identifying which cache line has been accessed provides us with log2(16) = 4 bits
of information. In our experiment, we choose to monitor accesses to cache line 0 of the
T-table during the first-round of the decryption. This provides us with the information
that the four most significant bits (MSBs) of the key byte must be identical to those of
the corresponding ciphertext byte. Note that while we use cache line 0 in our experiments,
our attack only requires minor adaptations to work with the other cache lines. Specifically,
when monitoring cache line c, the four MSBs of the key can be determined by XORing the
four MSBs of the ciphertext with c.

Our attack begins with evicting cache line 0 of the targeted T-table. We also create a
long execution-time overlap using a pointer dereferencing operation (Line 1 of Listing 4)

10
Evict+Spec+Time: Exploiting Out-of-Order Execution

to Improve Cache-Timing Attacks

and control it by exhausting the reservation station. We note that the AES code itself
appears to exhaust the reservation station (no additional instructions needed). Since the
size of the reservation station is relatively small compared to the number of instructions in
the AES code, the reservation station is mainly occupied by the first-round instructions.
This is essential for cache-miss latency hiding which enables us to distinguish if a cache
miss happens in the first round or later.

Listing 4: T-table based AES decryption API
1 a = *ptr
2 AES_decrypt (pt , ct , & aeskey);

Once we have prepared the cache and set up a long execution time, we trigger the
decryption process with random ciphertexts and measure the execution time. Recall that
our aim is to determine if a cache miss occurs at cache line 0 in the first round of the
decryption. Fast overall execution time implies that a cache miss either happens in the
first round or does not happen at all. The probability that the monitored cache line has
not been accessed is (15

16)40 ≈ 7.6%. (We target AES-128 whose decryption consists of ten
rounds, each having four accesses.) For simplicity, we assume that fast execution time
means a cache miss, indeed, occurs in the first round. Even though this introduces some
noise to our results, we show that our attack can still successfully recover half of the key
with fewer ciphertexts than previous techniques.

To recover the key, we enumerate guesses for the four MSBs of each key byte for each of
the random ciphertexts and calculate the Pearson correlation. We expect that the correct
key guess will result in a high correlation score. Targeting a single T-table can recover the
MSBs of the four key bytes that use the table in the first round. To recover the MSBs of
all key bytes, we repeat the attack on all four T-tables.

5.2 Experiment Results
We perform our experiments on various processors. Specifically, we verify that our
attack works on four Intel (Core i7-10710U, i7-1165G7, i9-11900K, i7-1255U) and three
AMD (Ryzen 5600X, 5800X, 7950X) machines, all running Ubuntu 20.04 with default
operating system configurations. As an example, we present the Pearson correlation of our
experiment on i7-1165G7 in Figure 5a (for the first key byte). The figure clearly shows
that the correlation of incorrect key guesses approaches zero as the number of ciphertexts
increases. The correct key (0x3 in this case), however, has a significantly higher score.
With approximately 250 ciphertexts, our Evict+Spec+Time can determine the correct key.

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
55

00
60

00
65

00
70

00
75

00
80

00
85

00
90

00
95

00
10

00
0

Number of Ciphertexts

−0.1

0.0

0.1

0.2

0.3

Pe
ar

so
n

Co
rre

la
tio

n

Correct Guess: 0x3

(a) Evict+Spec+Time Result

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
55

00
60

00
65

00
70

00
75

00
80

00
85

00
90

00
95

00
10

00
0

Number of Ciphertexts

−0.1

0.0

0.1

0.2

0.3

Pe
ar

so
n

Co
rre

la
tio

n

Correct Guess: 0x3

(b) Evict+Time Result

Figure 5: Pearson correlation to recover 4 MSBs of an AES key byte

For comparison, we repeat our experiments but using Evict+Time attack [OST06]. The
Pearson correlation of these experiments is shown in Figure 5b. The figure displays a
similar trend where the Pearson correlation of incorrect key guesses approaches zero while

Cheng, Chuengsatiansup, Genkin, McNeil, Murray, Yarom and Zhang 11

that of the correct one has a higher score. However, Evict+Time requires as many as 2 500
ciphertexts to identify the correct key, i.e. approximate ten times those of required by our
Evict+Spec+Time.

While both attacks allow us to detect if a monitored cache line has been accessed by
observing a cache miss, the Evict+Time attack only tells us if there is a cache miss in the
entire decryption process. The probability of having a ciphertext that accesses a monitored
cache line in any rounds is (15

16)39 ≈ 8%. On the other hand, our Evict+Spec+Time attack
can precisely focus on a cache miss at the first round. The probability of having a ciphertext
that accesses a monitored cache line in the first round is (1 − (15

16)36) × (15
16)3 ≈ 74%. Since

our Evict+Spec+Time attack has approximately ten time higher probability to obtain
those ciphertexts, it does not come as a surprise that our Evict+Spec+Time attack requires
approximately ten times fewer ciphertexts to identify the correct key.

6 Evict+Spec+Time on AES with S-Box
So far, we have shown that Evict+Spec+Time requires much fewer ciphertexts to perform a
first-round attack on T-table-based AES implementations. We now show that Evict+Spec+
Time is also efficient in breaking the S-box implementation of AES, which is considered
to be less vulnerable to cache-timing attacks. Previous cache attacks on the S-box
implementation of AES usually assume a strong attacker that has non-trivial control of
the operating system [ARVM20; MIE17], allowing fine-grain interleaving of attack code
within the victim execution. In contrast, our Evict+Spec+Time attack does not require
such privileges. In this section, we show that Evict+Spec+Time allows enough fidelity for
mounting an attack that does not interrupt the victim execution on this implementation.

We first describe a theoretical attack that shows how we perform the cryptanalysis
under the assumption of a perfect oracle that precisely reveals which cache lines are
accessed in each round. We then show how we use Evict+Spec+Time to realize such an
oracle and explain how we deal with the noise that affects the realized oracle. Finally, we
describe the results, demonstrating that our attack can recover the full key with 14 389
decryptions on average.

6.1 Theoretical Attack
Our theoretical attack assumes the availability of an oracle Ocl

r (c), which returns true if
cache line cl of the S-box is not accessed during round r or any of the earlier rounds of the
decryption of the ciphertext c. As our attack only queries the oracle about cache line 0,
we simplify the notation by omitting cl.

Our attack consists of two main steps. In the first step, we recover the two most
significant bits (MSBs) of each of the bytes of the first round key (k0), which is used in
the first decryption round. In the next step, we find a ciphertext that does not access the
first cache line of the S-box (cache line 0) during the first two rounds of the decryption,
and use this ciphertext to recover the remaining six least significant bits (LSBs) of each of
the bytes of k0. Below we describe these steps in further details.

6.1.1 First-Round Attack

Recall that given a ciphertext c, the AES decryption first performs the InvAddRoundKey
operation, computing c ⊕ k0, before using the resulting bytes as indices to the S-box. (We
ignore the InvShiftRows operation that just changes the bytes order but not their values.)

The S-box access of ith byte will hit cache line 0 of the S-box only if the two MSBs
of c[i], the ith byte of the ciphertext c, are the same as those of k0[i]. Thus, the probability
that decryption of a random ciphertext c will not hit cache line 0 when processing byte i

12
Evict+Spec+Time: Exploiting Out-of-Order Execution

to Improve Cache-Timing Attacks

in the first round is 3
4 , and the probability that O1(c) returns true is (3

4)16 ≈ 1%. We use
the term witness to refer to a ciphertext c for which O1(c) returns true.

Note that for each 0 ≤ i < 16, a witness c witnesses that the two MSBs of key byte k0[i]
are not the same as the two MSBs of ciphertext c[i]. Hence, to recover the two MSBs of
each key byte, we repeatedly select random ciphertexts and use the oracle O1 to search for
a witness. We then use the witness to rule out a possible value of the two MSBs of each
key byte. We repeat the process until we find enough witnesses to rule out three possible
values for the two MSBs of each key byte. The remaining value is the correct two MSBs.

We note that once we find the first witness, we can use an adaptive technique to
optimize the search for the key bits much more efficiently. Specifically, we can change
the two MSBs of a single ciphertext byte until we get a ciphertext that is not a witness,
revealing the two MSBs of the relevant key byte. While efficient, this technique does not
lend itself well to a noisy oracle. A noisy oracle, might result in false positives, where the
oracle incorrectly identifies a non-witness as a witness, necessitating the use of statistical
approaches for removing noise. Since our realization of the oracle is noisy, we elected not
to use this adaptive approach.

6.1.2 Second-Round Attack

For the second round attack, we first search for a ciphertext c for which both O1(c)
and O2(c) return true. Considering that the first-round attack recovered the two MSBs
of k0, we can easily choose a random c for which O1(c) returns true. By the same argument
in Section 6.1.1, the probability that O2(c) return true is approximately 1%. Hence, the
expected number of ciphertexts we need to generate to find a suitable c is 100.

Once we find c, we target each byte of k0 to recover the missing six LSBs. In the
description below, we explain how we target the first byte of the key, i.e. k0[0]. Adapting
the description to other bytes is straightforward.

At a high level, for the attack we query O2 with the 64 ciphertexts that match all the
bits of c, except for the six LSBs of the targeted byte c[0]. We then compare the oracle
queries with the results of guessing the missing bits of the key byte to recover the full key.
However, because each second-round S-box access depends on more than one key byte, we
need to guess more key bits. We now describe the process.

Let cj be the jth ciphertext for 0 ≤ j < 64, i.e. cj [0] = c[0] ⊕ j and cj [i] = c[i]
for i ̸= 0. (Note that c0 = c.) Furthermore, let sj be the state of the decryption
of cj just before the InvSubBytes step in the second decryption round. That is, sj =
k1 ⊕ MC −1(SR−1(SB−1(k0 ⊕ cj))). We note that, due to the choice of cj , for all i > 3 we
have sj [i] = s0[i]. Consequently the S-box access for these bytes of the state miss cache
line 0 of the S-box. Thus, O2(cj) is true if the two MSBs of sj [0], sj [7], sj [10], and sj [13]
are non-zero, which happens with a probability of (3

4)4 ≈ 32%.
We now need to guess enough key bits to allow us to match the oracle queries to

determine the correct key. Following the steps of the decryption, we can compute sj [0] as:

sj [0] = 14 · SB−1(cj [0] ⊕ k0[0]) ⊕ 11 · SB−1(cj [13] ⊕ k0[13]) ⊕
13 · SB−1(cj [10] ⊕ k0[10]) ⊕ 9 · SB−1(cj [7] ⊕ k0[7]) ⊕ k1[0]

Repeating the calculation for sj [1], sj [2], and sj [3] reveals that their values depend on the
eight key bytes, namely, four from k0 and four from k1. The first-round attack has already
recovered two of the bits of each of the first round key bytes. Hence, with a naive approach
of guessing the missing key bits, we need to guess a total of 4 × 6 = 24 first round key bits.
Moreover, the cache line accessed also depends on the two MSBs of each of the second
round bytes involved. Hence, a naive approach will require guessing a total of 32 key bits.

Cheng, Chuengsatiansup, Genkin, McNeil, Murray, Yarom and Zhang 13

We can reduce the search space significantly by observing that for s′
0 defined as

s′
0 = 11 · SB−1(c0[13] ⊕ k0[13]) ⊕ 13 · SB−1(c0[10] ⊕ k0[10]) ⊕

9 · SB−1(c0[7] ⊕ k0[7]) ⊕ k1[0]

we have sj [0] = s′
0 ⊕ 14 · SB−1(cj [0] ⊕ k0[0]). Similarly, we can find s′

1, s′
2, and s′

3 such that
for 0 ≤ i < 4 we have sj [i] = s′

i ⊕ Ci · SB−1(cj [0] ⊕ k0[0]), where Ci is the corresponding
entry in the InvMixColumns matrix (see Figure 2).

Based on this calculation, we can determine whether decrypting cj accesses cache line 0
in the second round of the decryption by guessing a total of 14 bits, i.e. two MSBs of each
of s′

0, s′
1, s′

2, and s′
3, as well as the six LSBs of k0[0]. Testing in practice shows that given

the 64 oracle queries, we can correctly recover the key byte.

6.2 Realizing the Oracles
In Section 6.1 we assume oracles Or that return true if decrypting a ciphertext does not
access a specific cache line of the S-box during round r or any of the earlier rounds. In
this section, we focus on using the Evict+Spec+Time technique to realize such oracles.

Recall that in both the Evict+Time and our Evict+Spec+Time attacks, the attacker
evicts a cache line that the victim may use and then times the execution of the victim
code to determine whether the monitored cache line has been accessed. However, unlike
Evict+Time, our Evict+Spec+Time also exploits the interaction between execution-time
overlap and cache-miss latency hiding to determine if the monitored cache line has been
accessed earlier in the victim execution.

To use Evict+Spec+Time for realizing the oracles we need for our attack on S-box AES,
we exploit the limited number of entries in the reorder buffer. A typical scenario that
realizes the O1 oracle is depicted in Figure 6. In this scenario, an instruction that causes
delay, e.g. a cache miss, appears several hundreds of instructions before the decryption
code. While this instruction executes, the processor fills the reorder buffer with younger
instructions from the program code. Due to the limited space in the reorder buffer, only
the code of the first round of the decryption fits in the reorder buffer and gets executed
out-of-order. Eventually, the delay-causing instruction completes its execution, at which
time it is retired, allowing the processor to proceed and execute instructions beyond the
first round of the decryption. Thus, this scenario masks the latency of the execution of
the first round of the decryption, but not of any subsequent rounds. A similar scenario
can be used to realize O2.

As a proof-of-concept, we use the code in Listing 5. The code consists of two memory
accesses (Lines 1 and 3) and an invocation of the decryption code (Line 5). Sequences
of 100 nop instructions separate the two memory accesses, as well as between the accesses
and the decryption code. By evicting a memory location accessed in Lines 1 or 3, the
attacker can cause delays that fill the reorder buffer. On our machine, evicting the earlier
location (Line 1) allows only the first round of encryption to fit in the reorder buffer
during the delay, thus realizing O1. Conversely, evicting the location accessed in Line 3
leaves more space in the reorder buffer, allowing the code of the second round to execute
concurrently with the delay-causing instruction, realizing O2.

Listing 5: S-box based AES decryption API
1 a = *ptr
2 NOP x 100
3 a = *a
4 NOP x 100
5 AES_decrypt (pt , ct , & aeskey);

It should be noted that the salient feature of the code in Listing 5 is having the two
delay-causing instructions separated by some other instructions. That is, the separating

14
Evict+Spec+Time: Exploiting Out-of-Order Execution

to Improve Cache-Timing Attacks

......

......
......

......
......

......

Cache miss

Instructions before
 the decryption

First round operations
 of the decryption

Second round operations
 of the decryption

(a)

While handling a cache miss,
young instructions are

being sent to the reorder buffer

(b)
While handling a cache miss,

only the first round
operations get the

reorder buffer slots.

(c)
After handling a cache miss,

second round operations
are sent to the reorder buffer

Figure 6: State of the reorder buffer while using Evict+Spec+Time to realize O1.

instructions need not be nops, and we could use other instructions. Moreover, the exact
number of separating instructions is not too critical. Adding or removing some instructions
may create measurement noise due to inclusion of some instructions from subsequent
rounds or omission of some instructions from the targeted round. Thus, we believe that
while the exact implementation of our proof-of-concept code is unlikely to be found in real
code, vulnerable code is likely to exist in practice. We leave the task of searching for such
code to future work.

6.3 Recovering the Two MSBs of Key Bytes
We proceed to adapting the theoretical attack (Section 6.1) to use the realized oracles
(Section 6.2) and evaluate the results. In this section, we investigate the first-round
attack. In the next section, we demonstrate the second-round attack. Experiments in
this section use the same machines and configurations as Section 5.2, namely, four Intel
(Core i7-10710U, i7-1165G7, i9-11900K, i7-1255U) and three AMD (Ryzen 5600X, 5800X,
7950X) machines, all running Ubuntu 20.04 with default operating system configurations.

Recall that the theoretical attack repeatedly generates random ciphertexts and uses
the oracle O1 to identify witnesses. It then uses the witnesses to reject impossible values
of the two MSBs of each key bytes until only one possibility remains for each key byte.

The main problem with carrying this approach over to the concrete oracle, which we
realize through Evict+Spec+Time, is that the measurements are noisy. Specifically, while
witnesses do incur a longer measurement time, some non-witness ciphertexts may also
execute longer. This is evident in Figure 7, where we show the execution time of 10 000
random ciphertexts, collected on the i7-1165G7 machine. The figure groups the ciphertexts
by the MSBs of the first byte and uses green triangles to mark real witnesses. We note
that we first remove 332 outliers that execute for longer than 1 200 cycles. These are not
shown in the figure and are ignored in the analysis.

As Figure 7 shows, the vast majority of ciphertexts executing the realized oracle take
between 720 and 790 cycles. However, there is a non-negligible number of ciphertexts
that take longer. Many of those longer measurements are witnesses, where the speculative
execution does not overlap with the access to the evicted cache line. There is also a large
number of non-witnesses that take longer due to measurement noise.

Excluding outliers, the total number of longer measurements is relatively small (584
out of the total of 10 000 ciphertexts), and the non-witness measurements are concentrated
in a very narrow band. We now need to distinguish the witnesses from the non-witnesses.

Cheng, Chuengsatiansup, Genkin, McNeil, Murray, Yarom and Zhang 15

0x0 0x1 0x2 0x3
Corresponding Cyphertext Byte Value

700

800

900

1000

1100

1200
Ti

m
in

g
Re

su
lt

(C
yc

le
s)

witness false positive

Figure 7: Execution time of the realized oracle with 10 000 random ciphertexts

We observe that the timing difference between a witness and a non-witness is caused by the
latency of a single cache miss that is not masked in the case of witnesses. Experimentally,
we determine that on the i7-1165G7 machine this timing difference is approximately 175
cycles. We further find that by focusing on the band between 150 and 200 cycles above
the sample median, we can capture most of the witnesses. Figure 7 highlights this band in
light blue.

Recall that the two MSBs of the target byte in a witness are never the same as the two
MSBs of the corresponding key bytes. This is clearly evident in Figure 7, where no witness
has MSBs 0x1. However, some noisy measurements that fall in the witness band do have
the MSBs 0x1. Because we cannot distinguish true witnesses from noisy samples that fall
in the witness band, we cannot use any single ciphertext to rule out a key value. However,
within the witness band, noisy measurements are expected to be distributed uniformly
across MSBs, whereas witnesses do not have the MSBs of the key. Thus, if we group the
ciphertexts that are in the witness band by the MSBs of the target byte, we can expect
that the number of samples in the group of the key MSBs will be the smallest.

To determine the number of ciphertexts required, we generate 10 000 random keys and
measure the success rate of recovering the two MSBs of all key bytes for different ciphertext
counts. As Figure 8 shows, the success rate increases with the increase of ciphertexts and
it varies between machines. We explicitly present the success rate with 5 000 and 10 000
ciphertexts in Table 1.

Table 1: Success rate (in percentage) with 5 000 and 10 000 ciphertexts
i7-10710U i7-1165G7 i9-11900K i7-1255U 5600X 5800X 7950X

5 000 52.65 87.92 87.08 19.58 92.50 98.01 67.03
10 000 91.64 98.57 95.08 65.75 98.65 99.95 97.36

6.4 Recovering the Full Key Bytes
We proceed to adapting the theoretical second-round attack of Section 6.1 to use our
Evict+Spec+Time-based O2 oracle.

Recall that in the theoretical attack, we first find a ciphertext c for which O2 returns

16
Evict+Spec+Time: Exploiting Out-of-Order Execution

to Improve Cache-Timing Attacks

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
55

00
60

00
65

00
70

00
75

00
80

00
85

00
90

00
95

00
10

00
0

Number of Ciphertexts

0%

25%

50%

75%

100%
Su

cc
es

s R
at

e
i7-10710U
i7-1165G7
i9-11900K
i7-1255U
5600X
5800X
7950X

Figure 8: Success rate in determining the two MSBs of key bytes.

true, and then use this c to find the key. Unfortunately, due to measurement noise,
determining whether a ciphertext satisfies O2 is not easy. Instead, the approach we follow
is to select a random c for which O1(c) returns true. (We can do that because in Section 6.3
we recovered the two MSBs of each key byte.) We then assume that this ciphertext
satisfies O2 and proceed to recover the first key byte. If we manage to recover the first
key byte with a high level of confidence, we proceed to recover the rest of the key bytes.
Otherwise, we repeat the process with a new random ciphertext. We now describe these
steps in further details.

To realize the O2 oracle, we use the code in Listing 5, but this time the attacker
evicts the location accessed in Line 3 in addition to cache line 0 of the S-box. Evicting
the location accessed in Line 3 forces a long execution of the memory access, allowing
only instructions that fit in the reorder buffer to execute concurrently. Due to the design
of the code in Listing 5, this allows only the first two rounds of decryption to proceed.
Consequently, if the decryption accesses cache line 0 in the first two rounds, the latency of
the cache miss will be masked and execution will be fast. Conversely, if the decryption
does not access cache line 0 in the first two rounds, i.e. when the ciphertext satisfies O2,
the cache miss will not be masked, and execution will be longer.

To overcome the effects of noise, we combine the oracle query with the recovery of
the first key byte. That is, given a ciphertext c, which satisfies O1 but may or may not
satisfy O2, we generate 64 cj , as described in Section 6.1, and measure the decryption time
with the code in Listing 5. If c satisfies O2, we expect about 32% of the cjs to satisfy O2.

We now guess the six LSBs of the key byte k0[0], and the two MSBs of each of k1[0],
k1[1], k1[2], and k1[3]. If we assume that O2(c) returns true, we can use the guess to
determine O2(cj). We then expect a high correlation between the determined values
of O2(cj) and the measurements of the decryption times.

Figure 9 shows the Pearson correlation between the measurement times and the
determined O2(cj) for all possible key guesses (collected on i7-1165G7). (Key guesses
grouped by the value of the six LSBs of k0[0].) The figure highlights the samples for which
the guess of k0[0] matches the ground truth. It further shows that the correct guess has a
very high correlation (0.87). Overall, we find that the Pearson correlation is typically above
0.7 if O2(c) is true and the guess is correct. Conversely, if either O2(c) is false or the guess
is incorrect, the Pearson correlation tends to be below 0.7. Thus, if the Pearson correlation
for all 214 guesses is below 0.7, we can conclude with a high likelihood that O2(c) is false.

It turns out that there exists a scenario where O2(c) is false, yet there is a key guess
that shows a high correlation with the measurement. Specifically, this scenario occurs
if O2(cj) is true for one or more j. Consequently, when finding a high correlation, we
cannot conclude that O2(c) is true, or that the correlating key guess is correct.

Cheng, Chuengsatiansup, Genkin, McNeil, Murray, Yarom and Zhang 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

6 LSBs of the key byte

0.0

0.2

0.4

0.6

0.8
Co

rre
la

tio
n

Sc
or

e

Figure 9: Pearson correlation to determine the value of O2(cj)

To handle this case, once we find a key guess for byte 0 that shows a high correlation,
we attempt to recover byte 1 of the key. If for byte 1 we also find a key guess that has
a high correlation (>0.7) with the observed timing, we conclude that O2(c) is true, and
proceed to recover the remaining 14 bytes. If we do not find a good key guess for byte 1, we
replace the first byte of c, and repeat the process. We find that by following this process,
we eventually arrive at a ciphertext c that satisfies O2, and can recover the key.

To test the attack, we generate 10 000 random keys. For each, we use the ground truth
to simulate the result of a successful first-round attack and perform a second-round attack,
counting the number of oracle queries performed until we recover the key. Figure 10 shows
the cumulative distribution function (CDF) of the number of oracle queries. As the figure
shows, with approximately 5 600 and 6 500 queries we achieve a success probability of
above 80% for i7-1165G7 and i9-11900K respectively. For the i7-1255U, we only achieve
a success probability above 50%, at 6 300 queries, with little improvement beyond that
point. For other CPU models, we find that the attack does not work, presumably because
the reorder buffer is not big enough to store the instructions of the second round.

40
0

14
00

24
00

34
00

44
00

54
00

64
00

74
00

84
00

94
00

10
40

0
11

40
0

12
40

0
13

40
0

14
40

0
15

40
0

16
40

0
17

40
0

18
40

0
19

40
0

20
40

0
21

40
0

22
40

0
23

40
0

Number of Ciphertexts

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

i7-1165G7
i9-11900K
i7-1255U

Figure 10: Success rate of the full-key recovery in relation to the number of ciphertexts.

6.5 Complexity of the Full Attack
With the results in Figures 8 and 10, we can now compute an upper bound of the expected
number of oracle queries required for recovering the full key. Specifically, we assume that
the attacker performs a first-round attack with a fixed number of queries N1, finding the

18
Evict+Spec+Time: Exploiting Out-of-Order Execution

to Improve Cache-Timing Attacks

correct key bits with a probability of S1. The attacker then proceeds to the second round,
performing at most N2 queries, yielding a probability S2 of finding the correct key if the
first round was successful. If the attack fails, the attacker repeats the process.

Under this attack model, the attacker performs at most N1 + N2 queries, achieving a
probability of S1 · S2 of recovering the key. Hence, the expected number of queries the
attacker needs to perform for finding the key is (N1+N2)

(S1·S2) .
We experimentally determine the values of S1 and S2 for different values of N1 and N2

on our processors. We then use those to find the best combination for each processor, i.e.
the combination that minimizes the expected number of queries. We present the expected
number of queries for different processors in Table 2.

Table 2: Expected number of queries for different processors
Processor N1 N2 S1 S2 #queries
i7-1165G7 4 600 4 500 0.85 0.74 14 389
i9–11900K 3 900 4 100 0.80 0.66 15 343
i7-1255U 9 900 5 900 0.65 0.49 49 122

7 Conclusions
In this work we present the Evict+Spec+Time attack, a variant of Evict+Time that can
learn not only that a cache miss occurred while executing victim code, but also where in the
victim code the miss occurred. We show that when attacking the T-table implementation
of AES, our Evict+Spec+Time provides an order of magnitude improvement in attack
efficiency over Evict+Time. We further demonstrate that our Evict+Spec+Time can recover
the key from the S-box implementation of AES, an implementation that was hitherto
thought to be resilient to the Evict+Time attack.

Evict+Spec+Time combines properties of two very different processor optimizations:
caches and speculative out-of-order execution. It demonstrates that interactions between
microarchitectural components can augment attacks. We believe that research into such
interactions is still in its infancy and further work is required to fully understand the
potential implications of such interactions.

Our work demonstrates once again the folly of relying on perceived limitations of
contemporary attacks when assessing the security of implementations. Like all cache-based
attacks, Evict+Spec+Time leaks addresses. Hence, constant-time programming provides
a solid defense against the attack. Considering that most modern processors support
instructions for secure execution of AES, and that efficient constant-time implementations
of AES exist for processors that do not have dedicated instructions, we see no justification
for the use of vulnerable implementations.

Acknowledgements
This work has been supported by the Air Force Office of Scientific Research (AFOSR)
under award number FA9550-20-1-0425; the ARC Discovery Early Career Researcher
Award DE200101577; the ARC Discovery Project number DP210102670; the Defense
Advanced Research Projects Agency (DARPA) under contract W912CG-23-C-0022; the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972. the National Science Foundation
under grant CNS-1954712; and gifts from Qualcomm and Cisco.

Parts of this work were undertaken while Yuval Yarom was affiliated with the University
of Adelaide.

Cheng, Chuengsatiansup, Genkin, McNeil, Murray, Yarom and Zhang 19

References
[ABF+16] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and

Yuval Yarom. Amplifying side channels through performance degradation.
In ACSAC, 2016.

[ABG10] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher. New results on
instruction cache attacks. In CHES, 2010.

[ABH+19] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar
Pereida García, and Nicola Tuveri. Port contention for fun and profit. In
IEEE SP, 2019.

[AES15] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar. S$A: a
shared cache attack that works across cores and defies VM sandboxing -
and its application to AES. In IEEE SP, 2015.

[AGL19] Ben Amos, Niv Gilboa, and Arbel Levy. Spectre without shared memory.
In SAC, 2019.

[ARVM20] C Ashokkumar, Bholanath Roy, M Bhargav Sri Venkatesh, and Bernard L.
Menezes. "S-box" implementation of AES is not side channel resistant.
HASS, 4, 2020.

[AS08] Onur Aciiçmez and Werner Schindler. A vulnerability in RSA implementa-
tions due to instruction cache analysis and its demonstration on OpenSSL.
In CT-RSA, 2008.

[ASBB+23] Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe, Sunjay
Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Sioli O’Connell,
Peter Schwabe, Rui Qi Sim, and Yuval Yarom. Spectre declassified: reading
from the right place at the wrong time. In IEEE SP, 2023.

[BBM+21] Samira Briongos, Ida Bruhns, Pedro Malagón, Thomas Eisenbarth, and José
Manuel Moya. Aim, wait, shoot: how the cachesniper technique improves
unprivileged cache attacks. In EuroS&P, pages 683–700, 2021.

[BBZ+19] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodor-
escu. SpecShield: shielding speculative data from microarchitectural covert
channels. In PACT, 2019.

[Ber05] Daniel J Bernstein. Cache-timing attacks on AES. https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf, 2005.

[BFM+22] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano
Giuffrida. Branch history injection: on the effectiveness of hardware mit-
igations against cross-privilege Spectre-v2 attacks. In USENIX Security,
2022.

[BP92] Michael Butler and Yale N. Patt. An investigation of the performance of
various dynamic scheduling techniques. In MICRO, 1992.

[BSN+19] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus.
SMoTherSpectre: exploiting speculative execution through port contention.
In CCS, 2019.

[BSP+21] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui
Neil Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos V.
Rozas, Adam Morrison, Frank McKeen, Fangfei Liu, Ron Gabor, Christo-
pher W. Fletcher, Abhishek Basak, and Alaa R. Alameldeen. Speculative
interference attacks: breaking invisible speculation schemes. In ASPLOS,
2021.

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

20
Evict+Spec+Time: Exploiting Out-of-Order Execution

to Improve Cache-Timing Attacks

[CY22] Md Hafizul Islam Chowdhuryy and Fan Yao. Leaking secrets through
modern branch predictors in the speculative world. IEEE TC, 71(9), 2022.

[DHS22] Shuwen Deng, Bowen Huang, and Jakub Szefer. Leaky frontends: security
vulnerabilities in processor frontends. In HPCA, 2022.

[EPA16] Dmitry Evtyushkin, Dmitry V. Ponomarev, and Nael B. Abu-Ghazaleh.
Jump over ASLR: attacking branch predictors to bypass ASLR. In MICRO,
2016.

[GBHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, Gauss, and reload - a cache attack on the BLISS lattice-based
signature scheme. In CHES, 2016.

[GLG22] Guillaume Goy, Antoine Loiseau, and Philippe Gaborit. A new key recovery
side-channel attack on HQC with chosen ciphertext. In PQCrypto, 2022.

[GMF+16] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan
Mangard. Prefetch side-channel attacks: bypassing SMAP and kernel ASLR.
In CCS, 2016.

[GMWM16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+Flush: a fast and stealthy cache attack. In DIMVA, 2016.

[GPS+20] Daniel Genkin, Romain Poussier, Rui Qi Sim, Yuval Yarom, and Yuanjing
Zhao. Cache vs. key-dependency: side channeling an implementation of
Pilsung. CHES, 2020.

[GRBG18] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation
leak-aside buffer: defeating cache side-channel protections with TLB attacks.
In USENIX Security, 2018.

[Gro00] J. P. Grossman. Cheap out-of-order execution using delayed issue. In ICCD,
2000.

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: automating attacks on inclusive last-level caches. In USENIX
Security, 2015.

[HSC+23] Senyang Huang, Rui Qi Sim, Chitchanok Chuengsatiansup, Qian Guo, and
Thomas Johansson. Cache-timing attack against HQC. CHES, (3), 2023.

[Kap23] David A. Kaplan. Optimization and amplification of cache side channel
signals. CoRR, abs/2303.00122, 2023.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre attacks: exploiting speculative
execution. In IEEE SP, 2019.

[KKC+23] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal
Ronen, and Yuval Yarom. The gates of time: improving cache attacks with
transient execution. In USENIX Security, 2023.

[KKSA18] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song,
and Nael B. Abu-Ghazaleh. Spectre returns! speculation attacks using the
return stack buffer. In USENIX Security, 2018.

[KKS+19] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song,
Dmitry Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-Ghazaleh. Safe-
Spec: banishing the Spectre of a Meltdown with leakage-free speculation.
In DAC, 2019.

[KM21] Ofek Kirzner and Adam Morrison. An analysis of speculative type confusion
vulnerabilities in the wild. In USENIX Security, 2021.

Cheng, Chuengsatiansup, Genkin, McNeil, Murray, Yarom and Zhang 21

[LNM+21] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. DOLMA: securing speculation with the
principle of transient non-observability. In USENIX Security, 2021.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: reading kernel mem-
ory from user space. In USENIX Security, 2018.

[MES18] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MemJam: a false
dependency attack against constant-time crypto implementations in SGX.
In CT-RSA, 2018.

[MIE17] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom:
how SGX amplifies the power of cache attacks. In CHES, 2017.

[OKSK15] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. The spy in the sandbox: practical cache attacks in JavaScript
and their implications. In CCS, 2015.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and coun-
termeasures: the case of AES. In CT-RSA, 2006.

[PBPV23] Antoon Purnal, Marton Bognar, Frank Piessens, and Ingrid Verbauwhede.
ShowTime: amplifying arbitrary CPU timing side channels. In AsiaCCS,
2023.

[Per05] Colin Percival. Cache missing for fun and profit. In BSDCon 2005, Ottawa,
CA, 2005.

[PSHC21] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Capkun. Frontal
attack: leaking control-flow in SGX via the CPU frontend. In USENIX
Security, 2021.

[PTV21] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+Scope:
overcoming the observer effect for high-precision cache contention attacks.
In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors, CCS,
2021.

[RGG+19] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong,
and Yuval Yarom. The 9 lives of Bleichenbacher’s CAT: new cache attacks
on TLS implementations. In IEEE SP, 2019.

[RM15] Chester Rebeiro and Debdeep Mukhopadhyay. Micro-architectural analysis
of time-driven cache attacks: quest for the ideal implementation. IEEE TC,
64(3), 2015.

[SAO+21] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi
Oren, and Yuval Yarom. Prime+Probe 1, JavaScript 0: overcoming browser-
based side-channel defenses. In USENIX Security, 2021.

[SKK+18] Young-joo Shin, Hyung Chan Kim, Dokeun Kwon, Ji-Hoon Jeong, and
Junbeom Hur. Unveiling hardware-based data prefetcher, a hidden source
of information leakage. In CCS, 2018.

[TANA07] Kris Tiri, Onur Aciiçmez, Michael Neve, and Flemming Andersen. An
analytical model for time-driven cache attacks. In FSE, 2007.

[TKK+22] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and Kang G.
Shin. SpecHammer: combining Spectre and Rowhammer for new speculative
attacks. In IEEE SP, 2022.

[Tom67] Robert M Tomasulo. An efficient algorithm for exploiting multiple arith-
metic units. IBM Journal of research and Development, 11(1), 1967.

22
Evict+Spec+Time: Exploiting Out-of-Order Execution

to Improve Cache-Timing Attacks

[TP08] Francis Tseng and Yale N. Patt. Achieving out-of-order performance with
almost in-order complexity. In ISCA, 2008.

[TRVT22] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean M. Tullsen.
Secsmt: securing SMT processors against contention-based covert channels.
In USENIX Security, pages 3165–3182, 2022.

[TTGB22] Andrei Tatar, Daniël Trujillo, Cristiano Giuffrida, and Herbert Bos. TLB;DR:
enhancing TLB-based attacks with TLB desynchronized reverse engineering.
In USENIX Security, 2022.

[TTMM02] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi
Miyauchi. Cryptanalysis of block ciphers implemented on computers with
cache. In ISITA, 2002.

[VBMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: extracting the keys to the Intel SGX kingdom
with transient out-of-order execution. In USENIX Security, 2018.

[VFP+22] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella,
Grant Garrett-Grossman, Adam Morrison, Christopher W. Fletcher, and
David Kohlbrenner. Augury: using data memory-dependent prefetchers to
leak data at rest. In IEEE SP, 2022.

[WQAK19] Daimeng Wang, Zhiyun Qian, Nael B. Abu-Ghazaleh, and Srikanth V.
Krishnamurthy. PAPP: prefetcher-aware prime and probe side-channel
attack. In DAC, 2019.

[YF14] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution, low
noise, L3 cache side-channel attack. In USENIX Security, 2014.

[YFT20] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. Cache telepathy:
leveraging shared resource attacks to learn DNN architectures. In USENIX
Security, 2020.

[YPW22] Yuanyuan Yuan, Qi Pang, and Shuai Wang. Automated side channel
analysis of media software with manifold learning. In USENIX Security,
2022.

[ZBC+23] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe,
and Yuval Yarom. Ultimate SLH: taking speculative load hardening to the
next level. In USENIX Security, 2023.

[ZKE20] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Exploring
branch predictors for constructing transient execution Trojans. In AS-
PLOS, 2020.

[ZMFT22] Zirui Neil Zhao, Adam Morrison, Christopher W. Fletcher, and Josep
Torrellas. Binoculars: contention-based side-channel attacks exploiting the
page walker. In USENIX Security, 2022.

[ZTO+23] Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell, Chitchanok Chuengsatian-
sup, Daniel Genkin, and Yuval Yarom and. BunnyHop: exploiting the
instruction prefetcher. In USENIX Security, 2023.

	Introduction
	Background
	Out-of-Order Execution
	AES
	Cache-Timing Attacks

	Out-of-Order Execution and Latency Hiding
	(In)distinguishable Cache Hit and Miss
	Latency-Hiding Capability

	The Evict+Spec+Time Attack
	Attack Overview
	Controlling Execution Timing Overlap
	Threat Model

	Evict+Spec+Time on AES with T-Table
	Attack Procedure
	Experiment Results

	Evict+Spec+Time on AES with S-Box
	Theoretical Attack
	Realizing the Oracles
	Recovering the Two MSBs of Key Bytes
	Recovering the Full Key Bytes
	Complexity of the Full Attack

	Conclusions

