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Abstract

Attribute-based encryption (ABE) enables fine-grained control over which ciphertexts various
users can decrypt. A master authority can create secret keys skf with different functions (cir-
cuits) f for different users. Anybody can encrypt a message under some attribute x so that
only recipients with a key skf for a function such that f(x) = 1 will be able to decrypt. There
are a number of different approaches toward achieving selectively secure ABE, where the adver-
sary has to decide on the challenge attribute x ahead of time before seeing any keys, including
constructions via bilinear maps (for NC1 circuits), learning with errors, or witness encryption.
However, when it comes adaptively secure ABE, the problem seems to be much more challeng-
ing and we only know of two potential approaches: via the “dual systems” methodology from
bilinear maps, or via indistinguishability obfuscation. In this work, we give a new approach
that constructs adaptively secure ABE from witness encryption (along with statistically sound
NIZKs and one-way functions). While witness encryption is a strong assumption, it appears to
be fundamentally weaker than indistinguishability obfuscation. Moreover, we have candidate
constructions of witness encryption from some assumptions (e.g., evasive LWE) from which
we do not know how to construct indistinguishability obfuscation, giving us adaptive ABE
from these assumptions as a corollary of our work.

1 Introduction

Attribute-Based Encryption (ABE) [SW05] is an advanced form of encryption where the user’s
ability to decrypt ciphertexts is governed by a policy attached to their key. In such a system a
ciphertext encrypting a message m is associated with a attribute string x. A secret key in turn
will be issued by some authority which associates it with some predicate function f to generate
skf . Decryption semantics dictate that skf will be able to decrypt a ciphertext associated with
attribute x if f(x) = 1. A system is informally said to be secure if no attacker can distinguish
between an encryption of message m0 from m1 under attribute x∗ so long as it only obtains secret
keys for functions f1, . . . , fq where fi(x

∗) = 0. Over the past two decades ABE has emerged
as an important construct for both encrypted access control as well as at tool for building other
cryptographic primitives (e.g., [PRV12, GKP+13]).

The first constructions of Attribute-Based Encryption [SW05, GPSW06] utilized groups with
efficiently computable bilinear maps and supported functions that could be expressed as boolean
formulas or circuits of logarithmic depth in the security parameter. Several years later construction
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based on lattices [GVW13, BGG+14] emerged that were provably secure from the learning with
errors (LWE) [Reg05] assumption. Remarkably, these construction supported policies that could
be expressed as any circuit of a priori bounded depth and thus in principle of any function of fixed
runtime. Around the same time a third avenue for realizing ABE systems manifested when Garg,
Gentry, Sahai and Waters [GGSW13] proposed the concept of witness encryption and showed
how to build ABE from it. Witness is encryption is a powerful, yet general primitive where one
encrypts a message m to a statement z and decryption is achievable for any decryptor which
knows a witness w such that R(z, w) = 1 for some family of relations indexed by the security
parameter.

Proving security is a central and involved part of building ABE systems. All three (bilinear
map, LWE and witness encryption) paths for realizing Attribute-Based Encryption first estab-
lished solutions in the selective model of security where an attacker declares an attribute string
x∗ before seeing either the public parameters of the system or receiving any private keys. This
notion is meaningful; however, if fails to capture many “real life” attacks where an attacker might
somehow influence the attribute string of a ciphertext in a way that depends on such information.
While we can bridge the gap from selective to adaptive security using a complexity leveraging
guessing strategy in conjunction with subexponential hardness assumptions, this is somewhat
unsatisfactory both from the stronger assumption requirement and from an intellectual under-
standing standpoint.

Over the years achieving adaptive security has borne out to be quite challenging. Unlike
Identity-Based Encryption (IBE) [Sha84] which admits a varied number of approaches [BF01,
BB04, Wat05, Gen06, Wat09, DG17, Tsa19], ABE systems must maintain the “structure” and seman-
tics of the attribute string which rule out many hashing techniques. Going further it was formally
shown [LW14] that one cannot prove adaptive security using “partitioning” reductions which
were integral to proving security for many IBE schemes.1

The first solutions [LOS+10] for adaptively secure Attribute-Based Encryption applied the dual
system encryption methodology of Waters [Wat09] using bilinear groups. In a dual system encryp-
tion proof, the challenge ciphertext is first changed to a semi-functional form. Following this each
secret key issued will be changed one at a time to a semi-functional form which is inherently in-
compatible with the challenge ciphertext, but still compatible with all other normally generated
ciphertexts. Unfortunately, to this point it has proven difficult to find adaptations of these ideas
to either the LWE or witness encryption avenues described above. (One exception is the work
of [Tsa19] that gives an ABE system for a subset functionality which is more expressive than IBE
string matching, but well short of ABE for boolean formulas or circuits.) From the learning with
errors side, the algebraic analogs of bilinear map tools have not come fully to fruition. While wit-
ness encryption is a powerful primitive in some ways, it is arguably quite limited in others. In
particular, it lacks the “hidden computation” aspect that is present in the more powerful concept
of indistinguishability obfuscation. As such the only solutions for achieving adaptively secure
ABE beyond bilinear maps have required indistinguishability obfuscation or functional encryp-
tion [Wat15, ABSV15] which precisely rely on such hidden computation properties.

Our Results: Adaptive ABE from Witness Encryption. In this work, we construct adaptively
secure attribute-based encryption from witness encryption along with statistically sound NIZKs

1A weaker notion called semi-adaptive security [BV16, GKW16] is known to be significantly easier to achieve, but
appears to still be far from fully adaptive security.
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and one-way functions. At a high level, we do so by showing how to employ dual system encryp-
tion techniques using witness encryption.

This is both an important and technically challenging endeavor. While we already had adap-
tive ABE from indistinguishability obfuscation (iO) [Wat15,ABSV15] have recently seen iO proven
from “well founded” assumptions [JLS21], witness encryption appears to be a fundamentally
weaker primitive than iO. For example, we have black-box separations showing that witness en-
cryption does not generically imply iO [GMM17]. Furthermore, witness encryption may admit
solutions from a broader set of cryptographic assumptions. Two recent examples include the wit-
ness encryption built from variants of the evasive LWE assumption [Tsa22, VWW22] as well as a
direction towards achieving witness encryption from pairing free groups [BIOW20]. Therefore,
we get adaptively secure ABE from (e.g.,) evasive LWE as a corollary of our work. Overall, simi-
larly to the recent work of [FWW23], we view the construction of advanced cryptosystems from
plain witness encryption rather than iO as a well motivated and worthwhile endeavour.

Technically, witness encryption does not seem to support any form of hidden computation and
thus appears to be incompatible with developing dual system encryption type proofs where we
want to incrementally and undetectably change the form of the challenge ciphertext and private
keys to make them mutually exclusive in a working decryption operation. We surmount this chal-
lenge by developing new tools and techniques for bringing in “outside” cryptography primitives
to augment witness encryption to allow for such an argument.

1.1 Technical Overview

Selective ABE from WE. The prior work of [GGSW13] constructed selectively secure ABE from
witness encryption. The main idea behind their solution is to set the master public/secret key
to be a the verification/signing key for a special type of signature scheme. The secret keys skf
are signature of the functions f , and an encryption under an attribute x is a witness encryption
that there exists some signature for some function f such that f(x) = 1. In the proof of security,
we can indistinguishably “constrain” the special signature scheme on the challenge attribute x∗

so that there only exist valid signatures π for functions f for which f(x∗) = 0. Then the security
of witness encryption ensures that the message is hidden. The signature itself is implemented
using statistically binding commitments and statistically sound NIZKs. Unfortunately, this proof
strategy inherently only achieves selective security since we need to know the challenge attribute
x∗ when creating the master public key of the ABE.

Overview of Our Approach. While our approach can also be seen relying on a special form
of constrained signatures instantiated from commitments and NIZKs, the way we use these to
achieve adaptive security is more sophisticated and is inspired by dual-system techniques [Wat09,
LOS+10]. There are three main elements of our construction: (a) we introduce a new notion called
a functional tag system, (b) we use a functional tag system to construct adaptive ABE from witness
encryption (together with statistically binding commitments and statistically sound NIZKs), (c)
we show how to construct a functional tag system from one-way functions. We now elaborate on
each of these elements one by one.2

2In the main body, we reverse the order and present (c) before (b), but for the introduction we prefer this ordering.
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Functional Tag System. A functional tag system allows us to generate “input tags” tagx for in-
puts x and “function tags” tagf for functions (i.e., circuits) f . There is a dummy (D) way to
generate such tags tagx ← DInputTag(x), tagf ← DFunctionTag(f) randomly and independently
of each other. There is also a smart (S) way to generate these using some common secret key
tsk with tagx ← SInputTag(tsk, x), tagf ← SFunctionTag(tsk, f). There is an efficient predicate
Trigger(tagf , tagx) that checks if some pair of function/input tag “trigger”. Dummy pairs of tags
trigger with only negligible probability. Smart pairs of tags generated using a common key tsk
always trigger if f(x) = 1. A fully adaptive adversary who gets to see a single input tag tagx for
an input x and many function tags tagfi for functions fi cannot tell the difference between seeing
all dummy tags versus all smart tags generated using a common key tsk as long as fi(x) = 0 for
all i.

ABE from WE via a Functional Tag System. We set the master public/secret key of the ABE to
be the verification/signing key for a special type of “constrained” signature scheme, described
later on. Each function secret key skf = (f, tagf , π) consists of a randomly generated “dummy
function tag” tagf ← DFunctionTag(f) along with a signature π of the pair (f, tagf ). To encrypt a
message under an attribute x, we generate a “dummy input tag” tagx ← DInputTag(x) and send
it along with a witness encryption of the message under the NP statement “there exists some pair
(f, tagf ) that has a valid signature π such that f(x) = 1 and Trigger(tagf , tagx) = 0”.3

In the proof of security, we first switch to using “smart function tags” tagf ← SFunctionTag(tsk, f)
in the secret keys skf and a “smart input tag” tagx ← SInputTag(tsk, x) in the challenge ciphertext,
all generated using a common key tsk. By the adaptive security of the functional tag system, this
is indistinguishable. We then indistinguishably “constrain” the special signature scheme so that
valid signatures π only exist for pairs (f, tagf ) where tagf ← SFunctionTag(tsk, f). Finally, we
argue that the NP statement used for the witness encryption is false, and therefore witness en-
cryption security ensures that the encrypted message is hidden. This holds because whenever π
is a valid signature of (f, tagf ) then it must be the case that tagf ← SFunctionTag(tsk, f), and if
f(x) = 1, then it must also be the case that Trigger(tagf , tagx) = 1.

The special constrained signature scheme is constructed from statistically binding commit-
ments and statistically sound NIZKs as follows. The verification key consist of two commitments
com0, com1 to 0, along with the CRS of the NIZK; the signing key is a decommitment of com0. The
signature π for a pair (f, tagf ) is a NIZK proof that “either com0 is a commitment to 0 or com1 is a
commitment to tsk and there is some randomness r such that tagf = SFunctionTag(tsk, f ; r)”. The
NIZK proof is generated using the decomitment of com0 as the witness. To constrain the signature,
we set com0 to be a commitment to 1, com1 to be a commitment to tsk and we generate the NIZKs
using the the decomitment to com1 and the randomness used to generate tagf as the witness. The
corresponding constrained verification key and signatures are indistinguishable.

Functional Tag System from One-Way Functions. Finally, we construct a functional tag system
from one-way functions using “blind garbled circuits” [BLSV18]. In blind garbled circuits, for any
distribution over input x and circuit C for which C(x) is uniformly random, the corresponding

3We note that, in contrast to the selectively secure ABE schemes from LWE of [GVW13, BGG+14], our ABE is
not succinct and the encryption run-time and ciphertext size scales with the circuit size of the supported functions f .
Constructing even selectively secure succinct ABE from Witness Encryption is an intriguing open problem.
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garbled input/circuit pair x̃, C̃ look like uniformly random bits. We rely on a slightly more com-
plex version of blind garbled circuits where the adversary can see many different garbled circuits
C̃i but only one garbled input x̃; furthermore we allow semi-adaptive security where the circuits and
the input can be chosen adaptively, but the challenge circuit must be chosen after the input. The
detailed definition is somewhat cumbersome and we defer it to the main body, but we show that
the basic “point and permute” construction of garbled circuits from one-way functions achieves
this notion similarly to [BLSV18].

To construct a functional tag system from blind garbled circuits, we set dummy input tags tagx
and dummy function tags tagf to be uniformly random values of appropriate size. To determine
if a input/function tag pair (tagf , tagx) “triggers” we interpret tagx = x̃ as a garbled input and
tagf = (C̃, t) as a garbled circuit together with a target value t of length security parameter, and
output 1 if the evaluation of the garbled circuit C̃ on the garbled input x̃ produces the target
value t. In the dummy case, this only happens with negligible probability, ensuring “dummy
correctness”. A smart input tag for x consists of a correctly garbled input tagx = x̃, and a smart
function tag for f consists of tagf = (C̃, t) where t is a random target value and C̃ is a garbling of
the circuit C that evaluates f(x) and if the output is 1 it outputs the target value t else it outputs
a random independent value u. This ensures that a smart input/function tag pair tagx, tagf does
trigger when f(x) = 1.

For security, we intuitively want to rely on blind garbled circuits to ensure that we can replace
dummy function tags with smart ones in the case where f(x) = 0, by relying on the fact that the
circuit C(x) outputs a random independent value u in this case. However, there is an issue with
adaptivity. Blind garbled circuits only provide semi-adaptive security, where the challenge circuit C
must be chosen after the input x, while functional tag systems require fully adaptive security where
the challenge functions f can be chosen before or after the input x. We resolve this issue using
techniques developed in the study of adaptively secure garbled circuits [HJO+16]. In particular,
we encrypt the garbled circuit with a “somewhere equivocal PRF” whose key is part of the input
tag. For any circuit C chosen before the input x, this allows us to give a fake ciphertext inside tagf
and only later equivocate the garbled circuit C̃ inside the ciphertext after the input x is chosen,
in affect allowing C̃ to depend on x inside the security proof. Therefore, we can rely on semi-
adaptive security of the blind garbled circuits to achieve fully adaptive security of the functional
tag system.

2 Preliminaries

For any integer n ≥ 1, define [n] = {1, . . . , n}. A function ν : N → N is said to be negligible,
denoted ν(n) = negl(n), if for every positive polynomial p(·) and all sufficiently large n it holds
that ν(n) < 1/p(n). We use the abbreviation PPT for probabilistic polynomial time. For a finite
set S, we write a ← S to mean a is sampled uniformly randomly from S. For a randomized
algorithm A, we let a ← A(·) denote the process of running A(·) and assigning the outcome to a;
when A is deterministic, we write a := A(·) instead. For a randomized algorithm A we use the
notation a := A(·; r) to denote the process of running the randomized algorithm A with some fixed
randomness r. We denote the security parameter by λ. For two distributions X,Y parameterized
by λ we say that they are computationally indistinguishable, denoted by X ≈c Y if for every PPT
distinguisher D we have |Pr[D(X) = 1]− Pr[D(Y ) = 1]| = negl(λ).
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2.1 Attribute Based Encryption (ABE)

We define an ABE scheme with adaptive security.

Definition 2.1 (Attribute-Based Encryption (ABE).). An ABE scheme a function classFλ ⊆ {f : {0, 1}n(λ) →
{0, 1}} consists of PPT procedures (Setup,KeyGen,Enc,Dec) with the following syntax:

• (mpk,msk)← Setup(1λ): Generates a master public key mpk and master secret key msk.

• skf ← KeyGen(msk, f): Generates a function key skf for a function f ∈ Fλ.

• ct← Enc(mpk, x, b): Given an attribute x ∈ {0, 1}n(λ) and a bit b ∈ {0, 1} outputs a ciphertext ct.

• b := Dec(skf , ct): Decrypts ct usng skf .

We require correctness and adaptive security defined as follows:

• Correctness: There is some negligible function µ such that for all λ ∈ N all f ∈ Fλ all x ∈ {0, 1}n(λ)
such that f(x) = 1 all b ∈ {0, 1} we have:

Pr

Dec(skf , ct) = b :
(mpk,msk)← Setup(1λ)
skf ← KeyGen(msk, f)
ct← Enc(mpk, x, b)

 ≤ µ(λ).

• Adaptive Security: We define the game ABEGamebA(1
λ) between a challenger and an stateful ad-

versary A(1λ) as follows:

– The challenger chooses (mpk,msk)← Setup(1λ) and gives mpk to A.

– Pre-challenge key queries: The adversary can make arbitrarily many queries fi ∈ Fλ and the
challenger responds with skfi ← KeyGen(msk, fi).

– Challenge ciphertext: The adversary chooses an attribute x ∈ {0, 1}n(λ) such that fi(x) = 0
for all pre-challenge key queries fi, and the challenger responds with the challenge ciphertext
ct← Enc(mpk, x, b).

– Post-challenge key queries: The adversary can make arbitrarily many additional queries fi ∈
Fλ such that fi(x) = 0 and the challenger responds with skfi ← KeyGen(msk, fi).

– The adversary output a bit b′ which is the output of the game.

We require that for all PPT A we have∣∣∣Pr[ABEGame0A(1
λ) = 1]− Pr[ABEGame1A(1

λ) = 1
∣∣∣ ≤ negl(λ).

An ABE for circuits allows us to instantiate an ABE scheme for the function class Cs,nλ consisting of boolean
circuits of size s(λ) with n(λ)-bit input, for any polynomials s(λ), n(λ).
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2.2 Commitments

We define statistically binding commitments in the Common Reference String (CRS) model.

Definition 2.2 (Statistically Binding Commitments). A commitment scheme consists of PPT algorithms
(Setup,Commit) with the following syntax:

• crs← Setup(1λ): generates a common reference string crs.

• com := Commitcrs(b; r): generates a commitment com to a bit b ∈ {0, 1} using randomness r ∈
{0, 1}λ.

We require hiding and statistical binding:

• Hiding: We have (crs, com0) ≈c (crs, com1) where crs← Setup(1λ), comb ← Commitcrs(b).

• Statistical Binding: We say that a crs is binding if there do not exist any r0, r1 such that Commitcrs(0; r0) =
Commitcrs(1; r1). We require that: Pr[crs is binding : crs← Setup(1λ)] = 1− negl(λ).

We abuse notation and write Commitcrs(x) for a string x ∈ {0, 1}ℓ to denote the process of committing to
each bit of x separately.

Naor’s commitment scheme [Nao91] gives statistically binding commitments assuming only
one-way functions. In particular, it constructs commitments from a pseudorandom generator
PRG : {0, 1}λ → {0, 1}3λ, where Setup(1λ) outputs a uniformly random crs ← {0, 1}3λ and
Commitcrs(b; r) = PRG(r)⊕ (b · crs). Hiding follows from PRG security and binding follows since

Pr
crs
[∃r0, r1 : PRG(r0) = PRG(r1)⊕ crs] ≤

∑
r0,r1

Pr[crs = PRG(r0)⊕ PRG(r1)] ≤ 22λ/23λ ≤ 2−λ.

Theorem 2.3 ( [Nao91]). Assuming one-way functions, there exist statistically binding commitments.

2.3 NIZKs

We define statistically sound NIZKs in the CRS model with witness indistinguishability.

Definition 2.4 (Statistically Sound Non-Interactive Zero-Knowledge (NIZK)). A NIZK proof system
for an NP relation Rλ ⊆ {0, 1}n(λ)×{0, 1}m(λ) with a corresponding NP language Lλ = {x : ∃w (x,w) ∈
Rλ} consists of PPT algorithms (Setup,Prove,Verify) with the following syntax:

• crs← Setup(1λ): generates a common reference string crs.

• π ← Provecrs(x,w): generates a proof π for the statement x using witness w.

• b = Verifycrs(x, π): verifies the proof π for a given statement x and outputs a decision bit 0 (reject) or
1 (accept).

We require the following properties:

• Completeness: There exists a negligible function µ such that for all λ ∈ N, all (x,w) ∈ Rλ we have:

Pr
[
Verifycrs(x, π) = 1 : crs← Setup(1λ), π ← Provecrs(x,w)

]
≥ 1− µ(λ).
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• Statistical Soundness: We say that a crs is sound if for all x ̸∈ Lλ and all π we have Verifycrs(x, π) =
0. We require that Pr[crs is sound : crs← Setup(1λ)] = 1− negl(λ).

• Witness Indistinguishability: For any ensemble xλ, w0
λ, w

1
λ such that (xλ, wb

λ) ∈ Rλ for b ∈ {0, 1}
we have (crs, π0) ≈c (crs, π1) where crs← Setup(1λ) and πb ← Provecrs(xλ, w

b
λ) for b ∈ {0, 1}.

A NIZKs for NP allows us to instantiate NIZK for any polynomial-time NP relation Rλ. We remark
that the property of witness indistinguishability is weaker than an implied by the zero knowledge property
typically associated with NIZKs.

Theorem 2.5 ( [FLS90, CHK03, GOS06, CCH+19, PS19]). Statistically sound NIZKs in the CRS model
exist assuming any one of: (1) hardness of factoring, or (2) the decisional linear assumption in bilinear
groups, or (3) the learning with errors assumption.

2.4 Witness Encryption

We define a witness encryption scheme.

Definition 2.6 (Witness Encryption). A witness encryption scheme for an NP relation Rλ ⊆ {0, 1}n(λ)×
{0, 1}m(λ) with a corresponding NP language Lλ = {x : ∃w (x,w) ∈ Rλ} consists of PPT algorithms
(Enc,Dec) with the following syntax:

• ct← Enc(1λ, x, b): Encrypts a bit b ∈ {0, 1} under the NP statement x ∈ {0, 1}n(λ).

• b = Dec(ct, w): Decrypts the ciphertexts using a witness w.

We require the following properties:

• Correctness: There exists a negligible function µ such that for all λ ∈ N, all (x,w) ∈ Rλ we have:

Pr
[
Dec(Enc(1λ, x, b), w) = b

]
≥ 1− µ(λ).

• Security : For any ensemble {xλ}λ∈N such that xλ ̸∈ Lλ for all λ, we have

Enc(1λ, xλ, 0) ≈c Enc(1
λ, xλ, 1).

A WE for NP allows us to instantiate WE for any polynomial-time NP relation Rλ.

We abuse notation and write Enc(1λ, x,m) for a long message m ∈ {0, 1}ℓ to denote the process
of encrypting the message bit-wise Enc(1λ, x,m1), . . . ,Enc(1

λ, x,mℓ).

2.5 Somewhere equivocal PRF

We define the notion of a somewhere equivocal PRF (SEPRF) from [HJO+16, Definition 7] (also
refereed to as a 1-SEPRF there). Intuitively, an SEPRF consists of a pseudorandom function y =
PRF(key, x) that maps inputs x to outputs y using a secret key. For any input x∗, there is a way to
generate an equivocal key eqKey that leaves the output of the PRF unspecified at x∗, but allows
us to evaluate it at all input x ̸= x∗ by computing PRF(eqKey, x). Later for any output y∗ we can
fix the output of the PRF at x∗ to y∗ by generating a key key such that PRF(key, x∗) = y∗, while
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ensuring PRF(key, x) = PRF(eqKey, x) for all x ̸= x∗. Moreover, for any x∗, one cannot distinguish
between an honestly generated key versus first generating eqKey that is equivocal at x∗ and later
fixing the output of the PRF at x∗ to a uniformly random y∗ by generating the corresponding key.4

Definition 2.7 (SEPRF). An SEPRF with input length n(λ) and output length m(λ) consists of the PPT
algorithms (KeyGen,PRF,Sim1, Sim2) with the following syntax:

• key← KeyGen(1λ): generates a PRF key.

• y = PRF(key, x): A deterministic algorithm that takes as input x ∈ {0, 1}n(λ) and outputs y ∈
{0, 1}m(λ).

• eqKey← Sim1(1
λ, x∗): Given x∗ ∈ {0, 1}n(λ) outputs a key eqKey that is equivocal on x∗.

• key← Sim2(eqKey, y
∗): Given an output y∗ ∈ {0, 1}m(λ) creates an equivocated key key.

We require two properties:

• Correctness: For all x∗ ∈ {0, 1}n(λ), y∗ ∈ {0, 1}m(λ) we have

Pr

[
PRF(key, x∗) = y∗

∧ ∀x ̸= x∗ : PRF(key, x) = PRF(eqKey, x)
:

eqKey← Sim1(1
λ, x∗)

key← Sim2(eqKey, y
∗)

]
= 1.

• Security: We define the game SEPRFGamebA(1
λ) between a challenger and an stateful adversary

A(1λ) as follows:

– The adversary chooses x∗ ∈ {0, 1}n(λ).
– If b = 0 the challenger chooses key← KeyGen(1λ) and gives key to the adversary.

If b = 1 the challenger chooses eqKey← Sim1(1
λ, x∗), y∗ ← {0, 1}m(λ), key← Sim2(eqKey, y

∗)
and gives key to the adversary.

– The adversary outputs a bit b′ which is the output of the game.

We require that for all PPT A we have∣∣∣Pr[SEPRFGame0A(1
λ) = 1]− Pr[SEPRFGame1A(1

λ) = 1
∣∣∣ ≤ negl(λ).

Theorem 2.8 ( [HJO+16]). Assuming the existence of one-way functions, for any polynomials n =
n(λ),m = m(λ) there exists an SEPRF with input length n and output length m.

4Our definition below is slightly syntactically simplified from the one in [HJO+16] since we have Sim1 output a
single value eqKey while the one in [HJO+16] outputs a pair key′, state where the former is used to evaluate the PRF
and the latter is used by Sim2. However, we can always set eqKey = (key′, state) and have the PRF evaluation ignore
the second component to derive a scheme matching our syntax. Note that there is no requirement that eqKey looks like
key.
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3 Functional Tag System

Our paper consists of three main components: (1) introducing a new notion of functional tag systems
in this section, (2) constructing a functional tag system from one-way functions via garbled circuits
in Section 4, and (3) constructing adaptively secure ABE from WE via a functional tag system in
Section 5.

A functional tag system allows us to generate “input tags” tagx for inputs x and “function tags”
tagf for functions f . There is a dummy (D) way to generate these randomly/independently and
a smart (S) way to generate these in a coordinated way using some common secret key tsk. There
is an efficient procedure that checks if some combinations of (tagf , tagx) “trigger”. Dummy ones
trigger with negligible probability. Smart ones always trigger if f(x) = 1. A fully adaptive ad-
versary who gets to see a single input tag for an input x and many function tags for functions fi
cannot tell the difference between dummy and smart as long as fi(x) = 0 for all i.

Definition 3.1 (Functional Tag System). A functional tag system for a function classFλ ⊆ {f : {0, 1}n(λ) →
{0, 1}} consists of PPT procedures

(DInputTag,DFunctionTag,SGen,SInputTag, SFunctionTag,Trigger)

with the following syntax:

• tagx ← DInputTag(1λ, x) takes as input x ∈ {0, 1}n(λ) and generates a “dummy input tag”.

• tagf ← DFunctionTag(1λ, f) takes as input f ∈ Fλ and generates a “dummy function tag”.

• tsk← SGen(1λ) generates a tag key tsk.

• tagx ← SInputTag(tsk, x) takes as input x ∈ {0, 1}n(λ) and generates a “smart input tag”.

• tagf ← SFunctionTag(tsk, f) takes as input f ∈ Fλ and generates a “smart function tag”.

• b = Trigger(tagf , tagx) a deterministic procedure that outputs 0 (not triggered) or 1 (triggered).

The scheme has the following properties:

1. Dummy Correctness: There exists some negligible µ such that for all λ ∈ N, f ∈ Fλ, x ∈ {0, 1}n(λ):

Pr

[
Trigger(tagf , tagx) = 1 :

tagx ← DInputTag(x)
tagf ← DFunctionTag(f)

]
≤ µ(λ).

2. Smart Correctness: For all λ ∈ N, f ∈ Fλ, x ∈ {0, 1}n(λ) such that f(x) = 1:

Pr

Trigger(tagf , tagx) = 1 :
tsk← SGen(1λ)
tagx ← SInputTag(tsk, x)
tagf ← SFunctionTag(tsk, f)

 = 1.

3. Security: We define the game FunTagGamebA(1
λ) between a challenger with a bit b and an stateful

adversary A(1λ) as follows:

• If b = 1, the challenger samples a random tsk← SGen(1λ).

10



• Pre-challenge function tag queries: The adversary can make arbitrarily many queries fi ∈
Fλ. If b = 0 the challenger responds with tagfi ← DFunctionTag(1λ, fi) and if b = 1 the
challenger responds with tagfi ← SFunctionTag(tsk, fi).

• Challenge input tag: The adversary chooses an input x ∈ {0, 1}n(λ) such that fi(x) = 0 for all
prior function tag queries fi. If b = 0 the challenger responds with tagx ← DInputTag(1λ, x)
and if b = 1 the challenger responds with tagx ← SInputTag(tsk, x).

• Post-challenge function tag queries: The adversary can make arbitrarily many additional
queries fi ∈ Fλ such that fi(x) = 0. If b = 0 the challenger responds with tagfi ←
DFunctionTag(1λ, fi) and if b = 1 the challenger responds with tagfi ← SFunctionTag(tsk, fi).

• The adversary output a bit b′ which is the output of the game.

We require that for all PPT A we have∣∣∣Pr[FunTagGame0A(1
λ) = 1]− Pr[FunTagGame1A(1

λ) = 1]
∣∣∣ ≤ negl(λ).

A functional tag system for circuits allows us to instantiate a functional tag system for the class Cs,nλ

consisting of boolean circuits of size s(λ) with n(λ)-bit input, for any polynomials s(λ), n(λ).

4 A Functional Tag System from One-Way Functions

We construct a functional tag system for circuits from one-way functions. Our main tool is a
special form of blind garbled circuits. We first define and construct this form of blind garbled
circuits and then proceed to use them to construct a functional tag system.

4.1 Blind Garbled Circuits

We rely on blind garbled circuits, originally defined in [BLSV18]. In a blind garbled circuits, if
one gets a garbled input together with a garbled circuit that outputs a uniformly random value
on that input, the pair looks like completely random bits. We rely on a variant of blind garbled
circuit security that we call semi-adaptive blind garbled circuits, defined formally below. Informally,
we consider a game where the adversary can get arbitrarily many garbled circuits and a single
garbled input x̃ of a value x, all chosen adaptively. In addition the adversary chooses a challenge
circuit C after it gets the garbled input x̃ and should not be able to distinguish between a real
garbling C̃ of the challenge circuit C versus a simulated one. Note that the input x cannot depend
on the garbled circuit C̃, which avoids the main difficulty in adaptively secure garbled circuits.
The simulator needs to simulate the garbled circuit C̃ given x,C(x), but without knowing the
circuit C. For blindness, we require that, for a uniformly random output C(x), the corresponding
simulated garbled circuit C̃ is uniformly random. While the definition is incomparable to the one
in [BLSV18], we show that the same “point-and-permute” construction used in [BLSV18] satisfies
our definition as well.

Definition 4.1 (Semi-adaptive Blind Garbled Circuit). Let Cs,n,mλ be a class of circuits of size s = s(λ)
with n = n(λ)-bit input and m = m(λ)-bit output. A semi-adaptive blind garbled circuit scheme for
Cs,n,mλ consist of PPT algorithms: (GarbleGen,GInput,GCircuit, SimCircuit,Eval) and garbled circuit size
parameter ℓ = ℓ(λ) with the following syntax.
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• sk← GarbleGen(1λ): generates a garbling secret key sk.

• x̃← GInput(sk, x): garbles an input x ∈ {0, 1}n.

• C̃ ← GCircuit(sk, C): garbles a circuit C ∈ Cs,n,mλ with C̃ ∈ {0, 1}ℓ.

• y := Eval(C̃, x̃): a deterministic algorithm that evaluates the garbled circuit on the garbled input and
yields output y ∈ {0, 1}m.

• C̃ ← SimCircuit(sk, x, y): produces a simulated circuit C̃ ∈ {0, 1}ℓ for a given output y = C(x)
without knowing C.

We require the following properties:

Correctness: For all λ,C ∈ Cs,n,mλ x ∈ {0, 1}n we have

Pr[Eval(C̃, x̃) = C(x) : sk← GarbleGen(1λ), x̃← GInput(sk, x), C̃ ← GCircuit(sk, C)] = 1.

Semi-Adaptive Simulation Security: We define the game GCGamebA(1
λ) between a challenger with a

bit b and an stateful adversary A(1λ) as follows:

• Challenger picks sk← GarbleGen(1λ).
• Adversary AGCircuit(sk,·) picks x ∈ {0, 1}n and gets back x̃← GInput(sk, x).
• Adversary AGCircuit(sk,·) picks a boolean circuit C ∈ Cn,mλ . The adversary gets back either

C̃ ← GCircuit(sk, C) if b = 0 or C̃ ← SimCircuit(sk, x, C(x)) if b = 1.
• Adversary AGCircuit(sk,·) outputs a bit b′ which is the output of the game.

We require that for all PPT A we have∣∣∣Pr[GCGame0A(1
λ) = 1]− Pr[GCGame1A(1

λ) = 1]
∣∣∣ ≤ negl(λ).

Blindness: For every fixed choice of sk in the support of GarbleGen(1λ) every x ∈ {0, 1}n we have:

SimCircuit(sk, x, Um) ≡ Uℓ,

where Ui denotes the uniform distribution over {0, 1}i and “≡” denotes distributional equivalence.

Construction. Let s(λ), n(λ),m(λ) be arbitrary polynomials. We assume that circuits in Cs,n,mλ

have some fixed topology. In particular, each circuit C ∈ Cs,n,mλ consists of s gates and s + n + m
wires, with n input wires denoted in1, . . . inn, m output wires denoted out1, . . . , outm and s internal
wires. Each gate g ∈ [s] gets 2 input wires and 1 output wire; we allow arbitrary fan-out since each
output wire can be an input to arbitrarily many other gates. Each gate g computes some function
fg : {0, 1}2 → {0, 1}. The gates are connected via some fixed topology that is the same for all
circuits in the class: that is, any gate g ∈ [s] has some fixed input writes wg,1, wg,2 and output wire
wg,w for all C ∈ Cs,n,mλ . The only distinction between different circuits C ∈ Cs,n,mλ are the functions
fg computed by each gate. Note that we can convert general circuits into ones having a fixed
topology with only a polylogarithmic blowup in circuit size via universal circuits, and therefore
the above assumption is without loss of generality. Let PRF : {0, 1}λ × {0, 1}∗ → {0, 1}λ+1 be a
pseudorandom function. The “point-and-permute” construction of blind garbled circuits for the
class Cs,n,mλ works as follows:
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• sk ← GarbleGen(1λ): For each of the n input wires ini, sample PRF keys sini,b ← {0, 1}λ and
random bits αini ← {0, 1} for i ∈ [n], b ∈ {0, 1}. Let sk = (sini,b, αini)i∈[n],b∈{0,1}.

• x̃← GInput(sk, x): For x = (x1, . . . , xn) ∈ {0, 1}n output x̃ = (sini,xi , αini ⊕ xi)i∈[n].

• C̃ ← GCircuit(sk, C): Sample a random circuit nonce c← {0, 1}λ. For each wire w that is not
an input wire sample fresh PRF keys sw,b ← {0, 1}λ for b ∈ {0, 1} along with a random bit
αw ← {0, 1}. The corresponding values sini,b, αini for the input wires ini are contained in sk.
For each gate g, let fg : {0, 1}2 → {0, 1} be the Boolean function computed by the gate. For
every gate g ∈ [s] with input wires w1, w2 and output wire w3, and for all β1, β2 ∈ {0, 1}, set
β3 := fg(αw1 ⊕ β1, αw2 ⊕ β2)⊕ αw3 , and compute the table entry:

T β1,β2
g := (sw3,αw3⊕β3 ∥ β3)⊕PRF(sw1,αw1⊕β1 , c ∥ g ∥ β1 ∥ β2)⊕PRF(sw2,αw2⊕β2 , c ∥ g ∥ β1 ∥ β2).

(1)
Define the table for gate g as Tg := (T β1,β2

g )β1,β2∈{0,1}. Then, output the garbled circuit con-
sisting of:

C̃ =
(
c , (Tg)g∈[s] , (αoutj )j∈[m]

)
,

with C̃ ∈ {0, 1}ℓ for ℓ = λ+ 4(λ+ 1)s+m.

• y := Eval(C̃, x̃): Parse x̃ = (sini , βini)i∈[n]. For every gate g ∈ [s] in topological order, let
w1, w2 be its input wires and let w3 be its output wire. Then, given (sw1 ∥ βw1), (sw2 ∥ βw2),
compute

(sw3 ∥ βw3) = T
βw1 ,βw2
g ⊕ PRF(sw1 , c ∥ g ∥ βw1 ∥ βw2)⊕ PRF(sw2 , c ∥ g ∥ βw1 ∥ βw2).

Finally, upon obtaining βoutj , set yj := βoutj⊕αoutj for j ∈ [m] and output y := (y1, . . . , ym) ∈
{0, 1}m.

• C̃ ← SimCircuit(sk, x, y): Sample a random circuit nonce c← {0, 1}λ. For each wire w that is
not an input wire sample a fresh PRF key sw ← {0, 1}λ along with a random bit βw ← {0, 1}.
For each input wire ini, set sini := sini,xi βini := xi ⊕ αini using the values from sk. For each
gate g with input wires w1, w2 and output wire w3, compute

T
βw1 ,βw2
g := (sw3 ∥ βw3)⊕ PRF(sw1 , c ∥ g ∥ βw1 ∥ βw2)⊕ PRF(sw2 , c ∥ g ∥ βw1 ∥ βw2), (2)

and choose T β0,β1
g ← {0, 1}λ+1 uniformly at random for all (β0, β1) ̸= (βw1 , βw2). Define the

table for gate g as Tg := (T β1,β2
g )β1,β2∈{0,1}. Output

C̃ =
(
c , (Tg)g∈[s] , (βoutj ⊕ yj)j∈[m]

)
.

Theorem 4.2. Assuming one-way functions, there exist semi-adaptive blind garbled circuits for the class
Cs,n,mλ for any polynomials s, n,m.

Proof. We show that the “point-and-permute” construction from pseudorandom functions de-
scribed above is a semi-adaptive garbled circuit. The theorem then follows using the fact that
pseudorandom functions can be constructed from one-way functions.
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Perfect Correctness. For the perfect correctness of the construction, note that during evaluation
it holds that each computed value (sw, βw) = (sw,val(w), val(w) ⊕ αw), where val(w) is the value
on the wire w during the computation C(x), and sw,b, αw are the values chosen during garbling.
This is true for the input wires, and is easily seen to be true for all subsequent wires by induction.
Therefore it holds that for the output wires βoutj = yj ⊕ αoutj and therefore evaluation computes
the correct outputs yj .

Semi-Adaptive Simulation Security. To prove semi-adaptive simulation security, we do a se-
quence of hybrids where we change the challenge garbled circuit C̃ from real to simulated. Firstly,

we define the games ̂GCGame
b

identically to GCGameb, except that the game outputs 0 if the circuit
nonce c used in the challenge garbled circuit C̃ is ever used in any other garbled circuit created

by the GCircuit(sk, ·) oracle. For b ∈ {0, 1}, the games GCGameb and ̂GCGame
b

are statisitically

indistinguishable. Therefore it suffices to show that ̂GCGame
0

and ̂GCGame
1

are computationally
indistinguishable.

To do so, we iterate over all gates g ∈ [s] in topological order starting with the input layer. For
i ∈ [s+ 1], define hybrids Gamei where the challenge garbled circuit

C̃ =
(
c , (Tg)g∈[s] , (αoutj )j∈[m]

)
is sampled as follows. We sample the values c, sw,b, αw as specified by GCircuit. Define sw :=
sw,val(w), βw := αw ⊕ val(w) where val(w) is the value on the wire w during the computation C(x),
which is well defined since the input x is chosen before the challenge circuit C̃ is created. For the
gates g ≥ i the tables Tg := (T β1,β2

g )β1,β2∈{0,1} are created as in GCircuit following equation 1. For
gates g < i, the tables Tg := (T β1,β2

g )β1,β2∈{0,1} are instead created as in SimCircuit; namely if the

gate g has input wires w1, w2 and output wire w3, then the table entry T
βw1 ,βw2
g is created as in

equation 2 and the other entries are sampled randomly with T β0,β1
g ← {0, 1}λ+1 for all (β0, β1) ̸=

(βw1 , βw2). It is easy to see that Game1 is identical to ̂GCGame
0
. Furthermore, for all g ∈ [s], Gameg

is computationally indistinguishable from Gameg+1. The only difference between the games is
how the entries T β0,β1

g for (β0, β1) ̸= (βw1 , βw2) are sampled. However, it is easy to show that the
games are indistinguishable by PRF security. In particular, for these entries, at least one of the two
PRF outputs in equation 1 involves a PRF key sw,b that is not used in the game in any other way
beyond black-box PRF evaluation PRF(sw,b, ·) and the input c ∥ g ∥ β1 ∥ β2 on which the PRF
is evaluated is not used anywhere else. Therefore, we can replace this PRF output by uniform.

Lastly, we observe that Games+1 is identical to ̂GCGame
1
. This simply follows since, for each non-

input wire, the values sw := sw,val(w), βw := αw ⊕ val(w) are uniformly random over the choice of
sw,0, sw,1, αw and for the output wires we have αoutj = βoutj ⊕ val(outj) = βoutj ⊕ yj .

Blindness. Finally, to show blindness, we need to show that the distribution of the simulated
garbled circuit

C̃ =
(
c , (Tg)g∈[s] , (βoutj ⊕ yj)j∈[m]

)
← SimCircuit(sk, x, Um)

satisfies C̃ ≡ {0, 1}ℓ for ℓ = λ + 4(λ + 1)s + m. First, C̃ ≡
(
c , (Tg)g∈[s] , Um

)
since the

y ← Um is uniformly random and independent of c, (Tg)g∈[s] or {βw}. Second, we proceed in
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reverse topological order starting at the output layer and show that each table Tg is uniformly
random over {0, 1}4(λ+1) even given c and all the tables Ti for i < g. This follows from equation 2
and the fact that (sw3 ∥ βw3) is uniformly random and is not used in the construction of tables Ti

for i < g. Therefore C̃ ≡
(
c , (Tg)g∈[s] , Um

)
≡ (c, U4(λ+1)s, Um) ≡ Uℓ.

4.2 Functional Tag System from Blind Garbled Circuits

We construct a functional tag system (Def. 3.1) from one-way functions using blind garbled cir-
cuits (Def. 4.1) and a somewhere equivocal PRF (Def. 2.7). As a starting point of our construction,
we set dummy input tags to be garbled inputs tagx = x̃ using a fresh garbling key sk, and dummy
function tags tagf = (C̃, t) consist of a uniformly random garbled circuit C̃ ← {0, 1}ℓ along with
some target value t. An input/function tag “triggers” if evaluating the garbled circuit C̃ on the
garbled input x̃ produces the target value t. In the dummy case, this only happens with negligible
probability, ensuring “dummy correctness”. A smart input tag is a garbled inputs tagx = x̃ using
a garbling key sk contained in the tag key tsk = sk, and a smart function tag tagf = (C̃, t) consists
of a random target value t along with a correctly garbled circuit C̃ ← GCircuit(tsk, C) of the circuit
C that evaluates f(x) and if the output is 1 it outputs the target value t else it outputs a random
independent value u. This ensures that a smart input/function tag pair tagx, tagf does trigger
when f(x) = 1. For security, we intuitively want to rely on blind garbled circuits to ensure that
we can replace dummy function tags with smart ones in the case where f(x) = 0, by relying on
the fact that the circuit C(x) outputs a random independent value u in this case. However, there
is an issue with adaptivity. Blind garbled circuits only provide semi-adaptive security, where the
challenge circuit C must be chosen after the input x, while functional tag systems require fully
adaptive security where the challenge functions f can be chosen before or after the input x. We
resolve this issue by encrypting the garbled circuit with a somewhere equivocal PRF whose key
is part of the input tag. For any circuit C chosen before the input x, this allows us to give a fake
ciphertext inside tagf and only later equivocate the garbled circuit C̃ inside the ciphertext after
the input x is chosen, in affect allowing C̃ to depend on x inside the security proof. Therefore, we
can rely on semi-adaptive security of the blind garbled circuits to achieve fully adaptive security
of the functional tag system.

Construction. Let n = n(λ), s = s(λ) be any polynomials. We construct a functional tag sys-
tem for the class Fλ = Cs,nλ consisting of circuits of size s with n-bit input and 1-bit output. Let
(GarbleGen,GInput,GCircuit,Eval) be a semi-adaptive blind garbled circuit for the class Cs

′,n,m=sec
λ ,

where s′ = s + O(λ) will be defined later, and let ℓ = ℓ(λ) be the corresponding garbled cir-
cuit size. Let (KeyGen,PRF,Sim1, Sim2) be a somewhere equivocal PRF with input length λ and
output length ℓ. We construct a functional tag system (DInputTag,DFunctionTag,SGen, SInputTag,
SFunctionTag, Trigger) defined as follows:

• tagx ← DInputTag(x): Choose sk ← GarbleGen(1λ), key ← KeyGen(1λ), x̃ ← GInput(sk, x).
Output tagx = (key, x̃).

• tagf ← DFunctionTag(f): Output tagf = (t0, t1, t2)← {0, 1}λ × {0, 1}ℓ × {0, 1}λ.

• tsk← SGen(1λ): Choose sk← GarbleGen(1λ), key← KeyGen(1λ) and set tsk = (sk, key).
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• tagx ← SInputTag(tsk, x): Choose x̃← GInput(sk, x). Output tagx = (key, x̃).

• tagf ← SFunctionTag(tsk, f): Choose t0, t2, u ← {0, 1}λ and let C∗
f,u,t2

be the circuit that
on input x outputs u if f(x) = 0 and outputs t2 if f(x) = 1. We define the parameter
s′ = s + O(λ) be the size of C∗

f,u,t2
for f ∈ Cs,n. Let C̃ ← GCircuit(sk, C∗

f,u,t2
) and set t1 =

PRF(key, t0)⊕ C̃. The output is tagf = (t0, t1, t2).

• Trigger(tagf , tagx): Parse tagx = (key, x̃), tagf = (t0, t1, t2). Let C̃ := PRF(key, t0)⊕t1. Output
1 iff Eval(C̃, x̃) = t2.

Theorem 4.3. Assuming one-way functions, for any polynomials n = n(λ), s = s(λ), there exists a
functional tag system for the class Fλ = Cs,nλ .

Proof. We start by proving dummy correctness. Let f, x be arbitrary and let tagx ← DInputTag(x), tagf ←
DFunctionTag(f) with tagx = (key, x̃), tagf = (t0, t1, t2) and let C̃ = PRF(key, t0) ⊕ t1. Since t2 is
uniformly random and independent of C̃, x̃, we have:

Pr[Trigger(tagf , tagx) = 1] = Pr[Eval(C̃, x̃) = t2] = 2−λ.

Next we prove smart correctness. Let f, x be arbitrary such that f(x) = 1 and let tsk ←
SGen(1λ), tagx ← SInputTag(tsk, x), tagf ← SFunctionTag(tsk, f) with with tagx = (key, x̃), tagf =

(t0, t1 = PRF(key, t0)⊕ C̃, t2). Then

Pr[Trigger(tagf , tagx) = 1] = Pr[Eval(C̃, x̃) = t2] = 1

by the perfect correctness of garbled circuits.
Lastly, we prove the security of the functional tag system via a sequence of hybrid games

where we change how the challenger generates input and function tags.

• Game0: This is the game FunTagGame0 which outputsADInputTag(1λ,·),DFunctionTag(1λ,·)(1λ), where
the adversary A has the restrictions that: (1) it makes a single challenge input tag query x
to the oracle DInputTag(1λ, ·) and (2) all the queries fi made to the DFunctionTag(1λ, ·) oracle
(both pre-challenge and post-challenge) satisfy fi(x) = 0.

• Game1: In this game, if the oracle DFunctionTag(1λ, ·) ever samples a value t0 that was al-
ready used in the response to a previous query, we define the output of the game to be 0.

It is easy to see that Game0 and Game1 are statistically indistinguishable since t0 ← {0, 1}λ is chosen
randomly each time.

• Game2: In this game, we choose tsk ← SGen(1λ) at the very beginning of the game and
change the first oracle from DInputTag(1λ, ·) to SInputTag(tsk, ·).
Game1 and Game2 are identically distributed by the definition of DInputTag,SInputTag and the fact
that tsk is never used anywhere else.

• Game3: For all pre-challenge function-tag queries, switch to answering them using SFunctionTag(tsk, ·)
instead of DFunctionTag(·). Indistinguishability follows via a sequence of internal hybrids
Gamei2→3 where the first i pre-challenge function-tag queries are answered using SFunctionTag(tsk, ·)
and the rest are answered using DFunctionTag(·). Note that if the adversary makes q such
queries then Game02→3 is identical to Game2 and Gameq2→3 is identical to Game3. To switch
from Gamei2→3 to Gamei+1

2→3 we introduce further sub-hybrids as follows:
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1. Gamei.12→3: At the very beginning of the game, when choosing tsk = (sk, key) change
from choosing the PRF key as key← KeyGen(1λ) to choosing

t0 ← {0, 1}λ, eqKey← Sim1(1
λ, t0), r∗ ← {0, 1}ℓ, key← Sim2(eqKey, r

∗).

Then use the value t0 to generate the i’th function-tag query (t0, t1, t2).

Gamei2→3 is computationally indistinguishable from Gamei.12→3 by SEPRF security.

2. Gamei.22→3: Choose t0, eqKey at the beginning of the game as before, but do not choose
r∗, key yet. For all function-tag queries before the i’th one, use eqKey instead of key to
answer the query. When answering the i’th pre-challenge function-tag query (t0, t1, t2),
use the value t0 sampled previously. When answering the challenge input-tag query
later, choose C̃ ← {0, 1}ℓ, r∗ ← t1 ⊕ C̃, key← Sim2(eqKey, r

∗).

Gamei.12→3 is identically distributed to Gamei.22→3 by the correctness of the SEPRF which says
that PRF(eqKey, t′0) = PRF(key, t′0) for all t′0 ̸= t0, and if t′0 = t0 is ever chosen before the i’th
query then the game outputs 0 in either case. Note that r∗ is still uniform and independent of t1
so defining r∗ = t1 ⊕ C̃ is the same as r∗ ← {0, 1}ℓ.

3. Gamei.32→3: When answering the challenge input-tag query, instead of choosing C̃ ←
{0, 1}ℓ, we now choose u← {0, 1}λ, C̃ ← SimCircuit(sk, x, u).

Gamei.22→3 is identically distributed to Gamei.32→3 by the blindness property of blind garbled cir-
cuits and the fact that u← {0, 1}λ is chosen randomly.

4. Gamei.42→3: When answering the challenge input-tag query, instead of choosing C̃ ←
SimCircuit(sk, x, u), we now choose C̃ ← GCircuit(sk, C∗

fi,u,t2
) where fi is the function

chosen in the i’th function-tag query.

Gamei.32→3 is computationally indistinguishable from Gamei.42→3 by the semi-adaptive simulation
security of the garbled circuit. The reduction does not know the garbling key sk but is responsi-
ble for incorporating the equivocal PRF. It uses its oracle to GCircuit(sk, ·) to answer all calls to
SFunctionTag(tsk, ·). During the challenge input-tag query for input x, the reduction hands x
to its challenger to get x̃. It then hands the challenger the circuit C∗

fi,u,t2
and gets C̃. It uses the

values x̃, C̃ to correctly answer the challenge input-tag query. If C̃ ← SimCircuit(sk, x, u) then
the game is identical to Gamei.32→3 and if C̃ ← GCircuit(sk, C∗

fi,u,t2
) then the game is identical

to Gamei.42→3. Here we rely on the fact that fi(x) = 0 to ensure that C∗
fi,u,t2

(x) = u.

5. Gamei.52→3: Instead of choosing t1 ← {0, 1}λ in the i’th function-tag query and then wait-
ing to choose C̃ ← GCircuit(sk, C∗

fi,u,t2
), r∗ ← t1⊕ C̃, key← Sim2(eqKey, r

∗) in the input-
tag query, we now choose r∗ ← {0, 1}ℓ, key ← Sim2(eqKey, r

∗) at the very beginning of
the game and then during the i’th function-tag query choose C̃ ← GCircuit(sk, C∗

fi,u,t2
)
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and set t1 = C̃ ⊕PRF(key, t0). Furthermore, we now use key instead of eqKey to answer
all function-tag queries before the i’th one.

Gamei.42→3 is identically distributed to Gamei.52→3. The changes before the “furthermore” are just
syntactic. In both cases t1, r

∗ are random subject to t1 ⊕ r∗ = C̃. The “furthermore” part is
identical by the correctness of the SEPRF which says that PRF(eqKey, t′0) = PRF(key, t′0) for
all t′0 ̸= t0, and if t′0 = t0 is ever chosen before the i’th query then the game outputs 0 in ei-
ther case. Recall this rule about outputting 0 when t0 values are repeated was adopted in Game1.

6. Gamei+1
2→3: This is identical to Gamei.52→3, except that, instead of choosing

t0 ← {0, 1}λ, eqKey← Sim1(1
λ, t0), r∗ ← {0, 1}ℓ, key← Sim2(eqKey, r

∗)

at the beginning of the game we now just choose key ← KeyGen(1λ) at the very begin-
ning and wait to choose t0 until the i’th function-tag query.

Gamei.52→3 is computationally indistinguishable from Gamei+1
2→3 by SEPRF security.

Therefore the combination of the above hybrids shows that for each i: Gamei2→3 is compu-
tationally indistinguishable from Gamei+1

2→3 and therefore Game2 is computationally indistin-
guishable from Game3.

• Game4 For all post-challenge function-tag queries, switch to answering them using SFunctionTag(tsk, ·)
instead of DFunctionTag(·). Indistinguishability follows via a sequence of internal hybrids
Gamei3→4 where the first i post-challenge function-tag queries are answered using SFunctionTag(tsk, ·)
and the rest are answered using DFunctionTag(·). Note that if the adversary makes q such
queries then Game03→4 is identical to Game3 and Gameq3→4 is identical to Game4. To switch
from Gamei3→4 to Gamei+1

3→4 we introduce further sub-hybrids as follows (essentially a sim-
pler version of the sub-hybrids needed to go from Game2 to Game3 since we do not need to
equivocate the SEPRF here):

– Gamei.13→4: We change how the i’th post-challenge function-tag query is answered from
choosing t1 ← {0, 1}ℓ to choosing u ← λ, C̃ ← SimCircuit(sk, x, u) and setting t1 :=

C̃ ⊕ PRF(key, t0). We still choose t2 ← {0, 1}λ uniformly at random.

Gamei3→4 is distributed identically to Gamei.13→4 by the blindness property of blind garbled cir-
cuits and the fact that u ← {0, 1}λ is chosen randomly, which ensures that C̃ is uniformly
random over {0, 1}ℓ.

– Gamei+1
3→4: We change how the i’th post-challenge function-tag query with function fi is

answered from C̃ ← SimCircuit(sk, x, u) to choosing C̃ ← GCircuit(sk, C∗
fi,u,t2

).

Gamei.13→4 is computationally indistinguishable from Gamei+1
3→4 by the semi-adaptive simula-

tion security of the garbled circuit. The reduction does not know sk. During the challenge
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input-tag query for input x, the reduction hands x to its challenger to get x̃ and uses it to an-
swer the challenge input-tag query. It uses its oracle to GCircuit(sk, ·) to answer all calls to
SFunctionTag(tsk, ·) aside from the i’th post-challenge function-tag after the input-tag query.
For the i’th post-challenge function-tag query it picks the challenge circuit C∗

f,u,t2
and gets C̃

from its oracle which it uses to answer that call. If C̃ ← SimCircuit(sk, x, u) then the game is
identical to Gamei.13→3 and if C̃ ← GCircuit(sk, C∗

fi,u,t2
) then the game is identical to Gamei+1

3→4.
Here we rely on the fact that fi(x) = 0 to ensure that C∗

fi,u,t2
(x) = u.

Therefore the combination of the above hybrids shows that for each i: Gamei3→4 is compu-
tationally indistinguishable from Gamei+1

3→4 and therefore Game3 is computationally indistin-
guishable from Game4.

• Game5: This is the game FunTagGame1 which outputsASInputTag(1λ,·),SFunctionTag(1λ,·)(1λ). This
is the same as Game4 except that we “undo” the change from Game1: if the oracle SFunctionTag(1λ, ·)
ever samples a value t0 that was already used in the response to a previous query, we con-
tinue as usual instead of defining the output of the game to be 0.

It is easy to see that Game4 and Game5 are statistically indistinguishable since t0 ← {0, 1}λ is chosen
randomly each time.

The above sequence of hybrids shows that FunTagGame0 and FunTagGame1 are computationally
indistinguishable, which proves security.

5 Adaptive ABE from WE via a Functional Tag System

We construct an adaptively secure ABE scheme for circuits using:

• a statistically binding commitment scheme (Com.Setup,Commit) per Definition 2.2,

• a statistically sound witness indistinguishable NIZK for NP (NIZK.Setup,Prove,Verify) per
Definition 2.4,

• a witness encryption scheme for NP (WE.Enc,WE.Dec) per Definition 2.6,

• a functional tag system for circuits (DInputTag,DFunctionTag, SGen, SInputTag,SFunctionTag,Trigger)
per Definition 3.1 where the tag key tsk← SGen(1λ) is of length |tsk| = ℓ(λ).

For any polynomials s(λ), n(λ), let us fix the function class Cs,nλ to consist of boolean circuits of
size s(λ) with n(λ)-bit input. We construct an ABE for the function class Cs,nλ using a functional
tag system for Cs,nλ as a building block. We specify the NP relations NIZK.R,WE.R for the NIZK
and WE inside the construction.

Construction. The ABE scheme (Setup,KeyGen,Enc,Dec) is defined as follows:
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• (msk,mpk) ← Setup(1λ): Choose NIZK.crs ← NIZK.Setup(1λ), Com.crs ← Com.Setup(1λ),
r0, r1 ← {0, 1}λ, and set

com0 := CommitCom.crs(0; r0), com1 := CommitCom.crs(0
ℓ(λ); r1).

Output mpk := (Com.crs,NIZK.crs, com0, com1), msk := r0.

• skf ← KeyGen(msk, f): Generate tagf ← DFunctionTag(1λ, f). Give a NIZK proof

π ← ProveNIZK.crs( x̃ = (Com.crs, com0, com1, f, tagf ) , w̃ = r0 )

for the NP relation

NIZK.R =

(x̃, w̃) :

x̃ = (Com.crs, com0, com1, f, tagf )
either w̃ = r0 : com0 = CommitCom.crs(0; r0)
or w̃ = (tsk, r1, r2) : com1 = CommitCom.crs(tsk; r1)

∧tagf = SFunctionTag(tsk, f ; r2)

 .

Output skf = (f, tagf , π)

• ct ← Enc(mpk, x, µ): Generate tagx ← DInputTag(1λ, x) and a witness encryption WE.ct ←
WE.Enc(1λ, x̂ = (Com.crs,NIZK.crs, x, com0, com1, tagx), µ) for the relation

WE.R =

(x̂, ŵ) :

x̂ = (Com.crs,NIZK.crs, com0, com1, x, tagx), ŵ = (f, tagf , π)
VerifyNIZK.crs(x̃ = (Com.crs, com0, com1, f, tagf ), π) = 1

∧f(x) = 1 ∧ Trigger(tagf , tagx) = 0

 .

Output ct = (x, tagx,WE.ct).

• µ := Dec(skf , ct): Output µ := WE.Dec(WE.ct, (f, tagf , π)).

Theorem 5.1. Assuming witness encryption for NP, statistically sound NIZK for NP, statistically binding
commitments and a functional tag system for circuits there exists an adaptively secure ABE for circuits.

In particular, the above holds assuming witness encryption for NP, statistically sound NIZK for NP,
and one-way functions. Alternately, the above holds assuming witness encryption for NP and any one of:
(1) hardness of factoring, or (2) the decisional linear assumption in bilinear groups, or (3) the learning with
errors (LWE) assumption. Lastly, the above holds just assuming evasive LWE.

Proof. We show that the construction given above is an adaptively secure ABE for Cs,nλ assuming
the security of the components. The correctness of the ABE follows from the correctness of the
WE and NIZK along with correctness (property 1) of the functional tag system. To prove adaptive
security, we define a sequence of games:

• Gameb0: This is the ABE game ABEGameb between the adversary and the challenger.

• Gameb1: We modify the game so that the challenger initially chooses a “smart tag system
key” tsk ← SGen(1λ). When answering key queries, the challenger now samples keys
skf = (f, tagf , π) by choosing a “smart function tag” tagf ← SFunctionTag(tsk, f) instead
of a dummy one. For the challenge ciphertext ct = (x, tagx,WE.ct), the challenger now
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chooses a “smart input tag” tagx ← SInputTag(tsk, x) instead of a dummy one. The keys and
the challenge ciphertext are otherwise generated the same way as previously.

Gameb0 and Gameb1 are indistinguishable by the security property (property 3) of the functional tag
system. Note that in the ABE adaptive security game, the adversary can only choose attribute x such
that fi(x) = 0 for all key queries fi, which matches the restriction on the adversarial queries of the
functional tag system.

• Gameb2: We modify the game so that, when choosing mpk = (Com.crs,NIZK.crs, com0, com1),
the challenger sets com1 := CommitCom.crs(tsk; r1) to be a commitment to tsk instead of 0ℓ(λ).

Gameb1 and Gameb2 are indistinguishable by the computational hiding security of the commitment
scheme. Note that the commitment randomness r1 does not appear anywhere else in the game.

• Gameb3: We modify how the challenger answers key queries with keys skf = (f, tagf , π). In
particular, the challenger now generates the proof π as:

π ← ProveNIZK.crs( x̃ = (Com.crs, com0, com1, f, tagf ) , w̃ = (tsk, r1, r2) )

using the witness w̃ = (tsk, r1, r2) where r2 is the randomness used to generate tagf :=
SFunctionTag(tsk, f ; r2), instead of using the witness w̃ = r0.

Gameb2 and Gameb3 are indistinguishable by witness indistinguishability security of the NIZK.

• Gameb4: In this game, when choosing the master public key mpk = (Com.crs,NIZK.crs, com0, com1),
the challenger now sets com0 := CommitCom.crs(1; r1) to be a commitment to 1 instead of 0.

Gameb3 and Gameb4 are indistinguishable by the computational hiding security of the commitment
scheme. Note that the commitment randomness r0 does not appear anywhere else in the game.

• Gameb5: In this game, when choosing the challenge ciphertext ct = (x, tagx,WE.ct), the chal-
lenger samples

WE.ct←WE.Enc(1λ, x̂ = (Com.crs,NIZK.crs, x, com0, com1, tagx), 0)

to be an encryption of 0 rather than the bit b.

Gameb4 and Gameb5 are indistinguishable by WE security. Firstly, note that whenever Com.crs is
binding and NIZK.crs is sound (see Definitions 2.2 and 2.4) then the statement x̂ is false. To see this,
assume otherwise that (x̂, ŵ) ∈ WE.R for some ŵ = (f, tagf , π). Then it must hold that f(x) = 1,
Trigger(tagf , tagx) = 0 and VerifyNIZK.crs(x̃ = (Com.crs, com0, com1, f, tagf ), π) = 1. The latter
implies that there exists some w̃ such that (x̃, w̃) ∈ NIZK.R. Since com0 = CommitCom.crs(1; r0), com1 =
CommitCom.crs(tsk; r1) this in turn implies that tagf = SFunctionTag(tsk, f ; r2) for some r2. But
since tagx ← SInputTag(tsk, x), the above contradicts property 2 of the functional tag system. Sec-
ondly, note that Com.crs is binding and NIZK.crs is sound with overwhelming probability, and there-
fore the statement x̂ is false with overwhelming probability. Given the above, an adversary distin-
guishes Gameb4 and Gameb5 with non-negligible probability must distinguish WE.Enc(1λ, x̂, 0) and
WE.Enc(1λ, x̂, 1) for a false statement x̂ with non-negligible probability.

Note that Game05 ≡ Game15 since the game completely ignores the bit b. Therefore, by the hybrid
argument, we have Game00 is indistinguishable from Game10, which implies ABE seucrity.
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