
The Power of NAPs:
Compressing OR-Proofs via Collision-Resistant Hashing

Katharina Boudgoust1⋆ ID and Mark Simkin2⋆⋆

1 CNRS, Univ Montpellier, LIRMM
2 Independent Researcher

Abstract. Proofs of partial knowledge, first considered by Cramer, Damg̊ard and Schoenmakers
(CRYPTO’94) and De Santis et al. (FOCS’94), allow for proving the validity of k out of n different
statements without revealing which ones those are. In this work, we present a new approach for
transforming certain proofs system into new ones that allows for proving partial knowledge. The
communication complexity of the resulting proof system only depends logarithmically on the total
number of statements n and its security only relies on the existence of collision-resistant hash
functions. As an example, we show that our transformation is applicable to the proof systems of
Goldreich, Micali, and Wigderson (FOCS’86) for the graph isomorphism and the graph 3-coloring
problem.

Our main technical tool, which we believe to be of independent interest, is a new cryptographic
primitive called non-adaptively programmable functions (NAPs). Those functions can be seen as
pseudorandom functions which allow for re-programming the output at an input point, which must
be fixed during key generation. Even when given the re-programmed key, it remains infeasible to
find out where re-programming happened. Finally, as an additional technical tool, we also build
explainable samplers for any distribution that can be sampled efficiently via rejection sampling and
use them to construct NAPs for various output distributions.

1 Introduction

Proofs of partial knowledge, independently first considered by Cramer, Damg̊ard and Schoen-
makers [CDS94] and De Santis et al. [DDP+94], allow a prover to convince a verifier that k out
of a list of n statements are true, without revealing which ones those are. Such proofs have re-
ceived significant interest over the years, as they turn out to be simple enough to be constructed
efficiently, while at the same time being expressive enough to be applicable to a wide variety
of problems. Both the work of Cramer, Damg̊ard and Schoenmakers and that of De Santis et
al. [DDP+94] show that one can generically and information-theoretically transform certain
separate proof systems for languages L1, . . . ,Ln respectively, into a single new proof system
that allows for proving partial knowledge, i.e. for proving that in a given vector of statements
(x1, . . . , xn), there is a subset of indices I of size k, such that xi ∈ Li for all i ∈ I. The resulting
proof systems are conceptually simple and can allow for concretely efficient instantiations, but
require the prover and verifier to communicate at least Ω(n) bits.

Subsequent works [GK15; AC20; ACF21; ACK21; GGHA+22] have shown how to construct
proofs of partial knowledge (and more) with communication complexities that have sublinear,
even logarithmic, dependencies on n, but rely on number-theoretic hardness assumptions, such as
the discrete logarithm problem. To the best of our knowledge, despite 30 years of research, there
are still no direct analogues of the transformations by Cramer, Damg̊ard and Schoenmakers or
De Santis et al., which have both an o(n) communication complexity and do not require number-
theoretic hardness assumptions. It seems natural to ask, whether such a transformation exists.

⋆ katharina.boudgoust@lirmm.fr
⋆⋆ mark@univariate.org

https://orcid.org/0000-0002-3971-9368

1.1 Our Contribution

In this work, we make progress towards addressing the above question. We present a new
approach for transforming a large class of proof systems for language L into one for the language
LnOR := {(x1, . . . , xn) | ∃i ∈ {1, . . . , n} : xi ∈ L}.3 Our transformation produces a proof system,
whose communication complexity only depends logarithmically on n and that only relies on
the existence of collision-resistant hash functions. As an example, we compile the famous proof
system of Goldreich, Micali, and Wigderson [GMW86] for graph 3-coloring (and thus for all
of NP) into a new one for showing the validity of one out of n NP statements, while only
incurring asymptotically small overheads on the communication complexity and only relying on
unstructured hardness assumptions.

A key technical tool of our work, which we believe to be of independent interest, is what
we call non-adaptively programmable functions (NAPs). These can be seen as pseudorandom
functions, which allow for dynamically re-programming the output at an input point, which
must already be fixed during key generation. Even when given the re-programmed secret key,
it should not be feasible to determine where re-programming happened. We formally define
this primitive and show how to construct it from one-way functions (which are implied by
collision-resistant hashing).

Another technical tool of our work that may also be of independent interest, is the con-
struction of explainable samplers for distribution that can be sampled efficiently via rejection
sampling. An explainable sampler takes random coins r as input and produces a sample x from
a target distribution D. They are equipped with an explanation algorithm that, given a sample
x from D, can compute the matching random coins r. Given (x, r) it should not be possible to
see, whether x was sampled and r was computed from it or vice versa.

1.2 Related Works

A plethora of existing works have studied proof systems from various perspectives. We are
far from the first ones to look at minimizing the communication complexity or the required
hardness assumptions. In the following, let us highlight in what ways our approach differs from
prior ones.

From Number-Theoretic Assumptions. A series of works [BCC+16; BBB+18; AC20; ACK21]
considers the task of designing communication-efficient proof systems from number-theoretic
hardness assumptions. These approaches express the given statements as arithmetic circuit sat-
isfiability instances and then show how any such instance can be proven with a communication
complexity that is logarithmic in the circuit size. These works differ from ours in two aspects.
They all rely on hardness assumptions that imply public-key cryptography, whereas our focus is
on solely relying on collision-resistant hashing. Furthermore, these approaches focus on building
proof systems from scratch, which can be used to generically transform an instance of LnOR into
an arithmetic circuit. While this is in principle possible, it would result in large circuits and also
not make any use of a potentially given proof system for language L. In our work, we focus on
a more direct approach that transforms a given proof system for L into one for LnOR efficiently.

Another line of recent works [GK15; ACF21; GGHA+22; WW22] specifically focuses on
languages of the same form as LnOR. These works either aim for building proof systems for it
from scratch or transforming proof systems for L into ones for LnOR like we do. All of these

3 Throughout this work, we restrict our attention to one language and showing the validity of one out of the
n statements. We note, however, that this is done merely for the sake of simplicity and clarity and that our
approach can easily be generalized to multiple languages and showing the validity of k ≥ 1 statements, as we
discuss in Section 4.2.

2

approaches crucially rely on structured hardness assumptions and it is not clear how one could
modify these results to obtain something from collision-resistant hashing alone.

From One-Way or Collision-Resistant Hash Functions. Several known approaches would allow
for constructing proof systems from the sole existence of one-way functions. Goldreich, Micali,
and Wigderson [GMW86] show how a prover can convince a verifier that a given graph is 3-
colorable. Their construction relies on the existence of commitments, which can be constructed
from one-way functions [Nao90; HIL+99]. Alternatively, it is also possible to use MPC-in-the-
head paradigm of Ishai, Kushilevitz, Ostrovsky, and Sahai [IKO+09], which allows for proving
satisfiability of arbitrary statements, expressed as boolean or arithmetic circuits, while only
relying on one-way functions. These approaches would result in communication complexities
that are at least Ω(

√
n), whereas we aim for a logarithmic dependency on n. Finally, using

probabilistically checkable proofs [AS92; Kil92] or interactive oracle proofs [BCS16; RRR16;
BBH+18], it is possible to construct proof systems from collision-resistant hashing, which have
communication complexities that are poly-logarithmic in the statement size. These approaches
work yet again by generically transforming an arbitrary statement into a computation expressed
in their respective computational model, which depending on the type of statement can result in
concretely very large communication complexities and computational overheads. Furthermore,
these approaches are conceptually rather involved and complex. Contrary to them, we aim for
directly transforming proof systems for L into ones for LnOR via an efficient and conceptually
much simpler transformation.

1.3 Technical Overview

The starting point of our work, is that of Cramer, Damg̊ard and Schoenmakers [CDS94], which
transforms proof systems known as Σ-protocols for language L into ones for LnOR. Before present-
ing our approach, let us recall what Σ-protocols are and how the aforementioned transformation
works.

Languages and Relations. Throughout this work, we consider a prover that aims to convince a
verifier that some statement x is in the language L. The prover holds a witness w, which attests
of x being in L. More formally, we assume there exists an efficiently checkable relation RL, such
that x ∈ L, if and only if there exists a witness w, such that (x,w) ∈ RL.

Σ-Protocols. A three-move public-coin interactive proof system that satisfies completeness,
special soundness, and honest verifier zero-knowledge is known as a Σ-protocol. Here, three-
move public-coin refers to the fixed communication pattern that these protocols have: the prover
sends a message a to the verifier, receives a random challenge e from the verifier back, and sends
a response z to the verifier, who then either accepts or rejects the proof transcript (a, e, z).
Completeness dictates that an honest interaction between the prover and verifier for a statement
x ∈ L, results in the verifier accepting the proof. Special soundness requires that there exists
an efficient extractor Ext, which can extract w with (x,w) ∈ RL from two accepting transcripts
(a, e, z) and (a, e′, z′), where e ̸= e′. Honest verifier zero-knowledge requires that there exists
a simulator Sim, which is given a uniformly random challenge e and outputs a, z, such that
(a, e, z) is indistinguishable from a real interaction for x ∈ L.

The Approach of Cramer, Damg̊ard and Schoenmakers. Now assume we are given a Σ-protocol
for language L that we would like to transform into one for language LnOR. The prover and
verifier are given a vector of statements (x1, . . . , xn) and additionally the prover holds a witness
w, such that (xi, w) ∈ RL for some i ∈ {1, . . . , n}. Their approach proceeds as follows: The

3

prover picks challenges ej uniformly at random and uses the simulator Sim to compute the
corresponding messages (aj , zj) for all j ̸= i. The prover honestly compute ai and sends the
vector (a1, . . . , an) to the verifier, who responds with a uniformly random challenge e. The
prover computes ei, such that

∑n
j=1 ej = e, honestly computes the message zi corresponding to

the partial transcript (ai, ei), and sends both (e1, . . . , en) and (z1, . . . , zn) to the verifier, who
checks that all challenges sum to the right value and that all n received transcripts are accepting.
This approach does not reveal which witness the prover was holding, because all challenges are
uniformly random, conditioned on summing to e, and because honest verifier zero-knowledge
guarantees that the transcripts produced by Sim are indistinguishable from real ones.

Our High-Level Idea. Conceptually, our work closely follows the blueprint of Cramer, Damg̊ard
and Schoenmakers, but modifies it in a way that allows us to compress all three vectors
(a1, . . . , an), (e1, . . . , en), and (z1, . . . , zn), which are sent between the prover and the verifier.
For this, let us make two additional assumptions. First, let us assume that the given Σ-protocol
is not only honest verifier zero-knowledge, but strongly honest verifier zero-knowledge, which
means that the simulator Sim is given a uniformly random challenge e as well as an inde-
pendently chosen, uniformly random response z and is asked to compute the corresponding
first message a deterministically, such that (a, e, z) is indistinguishable from a real transcript.
Secondly, let us assume that we are given a privately programmable pseudorandom function
F : K × {1, . . . , n} → {0, 1}∗, which takes a secret key msk and point x as input and returns
a random looking outputs y. We require F to be programmable in the sense that a key msk
should allow for obtaining a key psk that produces the same evaluations on all inputs, apart
from some chosen point i ∈ {1, . . . , n}, where it returns a re-programmed value y∗. It should be
privately programmable in the sense that psk should not reveal any information about where
the key was re-programmed.

Equipped with these tools, our approach works as follows: The prover picks uniformly ran-
dom keys mske and mskz, computes ej := F (mske, j) and zj := F (mskz, j), and uses simulator
Sim to compute the corresponding messages aj deterministically for all j ̸= i. The prover then
picks the first message ai honestly and sends a = H(a1, . . . , an) to the verifier, where H is a
collision-resistant hash function. The verifier sends a challenge e to the prover, who computes
ei, such that

∑n
j=1 ej = e, then computes zi honestly. Now the prover computes keys pske and

pskz by re-programming keys mske and mskz, such that they return ei and zi on input i re-
spectively. Finally, the prover sends back pske and pskz to the verifier, who expands them to
the corresponding vectors (e1, . . . , en) and (z1, . . . , zn) and then computes (a1, . . . , an) using the
deterministic simulator Sim. The verifier checks that all challenges sum to e, that the hash value
a matches the hash of the computed vector (a1, . . . , an) and that all transcripts are accepting.

Why should this be a sensible protocol on an intuitively level? The private programmability
of F ensures that the verifier cannot see which location i was re-programmed. The collision-
resistant hash ensures that without explicitly sending the vector (a1, . . . , an), the prover is
committing themselves to a fixed first message before seeing the challenge. The simulator Sim
computing the first messages deterministically and the fact that simulated and real transcripts
are indistinguishable, ensures that the verifier computes the correct values a1, . . . , an, without
the prover ever having sent them explicitly.

The communication between prover and verifier is comprised of sending one hash value,
one challenge, and two programmed keys. If the key sizes are logarithmic in n, then so is the
communication complexity of the resulting Σ-protocol.

The Difficulty with Privately Programmable Pseudorandom Functions. To realize the above
idea, we need to construct the privately programmable functions we need. Since our goal is a
Σ-protocol from collision-resistant hashing, the privately programmable functions also better

4

be based on a similar assumption. Unfortunately, such constructions currently seem to be out of
reach. The only known constructions either rely on indistinguishability obfuscation [BLW17] or
lattice-based cryptography [PS18; PS20]. Luckily, we observe that we do not actually need the
full power of these programmable functions. In our case, we already know during key generation
at which point we would like to program the keys later on, namely at the index for which we
have the witness. As it turns out, this makes constructing such functions much simpler, in fact
so simple that we can construct them from just one-way functions. We call these functions
non-adaptively (privately) programmable functions or NAPs and we believe that they may be
of independent interest.

Constructing NAPs. To construct our new primitive, we make use of distributed point functions,
originally introduced by Gilboa and Ishai [GI14]. A point function fx∗ : X → {0, 1} evaluates to
zero on all points from domain X , apart from a single point x∗ ∈ X , where it evaluates to one.
A distributed point function is a pair of functions f0, f1 that satisfies correctness and privacy.
Correctness requires that for any x ∈ X , it holds that f(x) = f0(x)⊕f1(x). Privacy requires that
f0 and f1 constitute an additive secret sharing of f , i.e. that neither share in isolation provides
any information about which point function was secret shared. It was shown by Boyle, Gilboa,
and Ishai [BGI15] that distributed point functions, where each share is of size O(λ · log|X |), can
be constructed from one-way functions, where λ is the computational security parameter.

Towards constructing NAPs, we make a simple, but important observation. For any x ̸= x∗,
we have that f0(x) ⊕ f1(x) = 0 and thus f0(x) = f1(x). For x∗ on the other hand, we have
that f0(x

∗) ⊕ f1(x
∗) = 1 and thus (f0(x

∗), f1(x
∗)) ∈ {(0, 1), (1, 0)}. Now we can simply view

f0 as the key of our NAP (with one bit outputs) and evaluating it at point j can be done by
returning f0(j). Furthermore, programming a key at x∗ to value y∗ ∈ {0, 1}, can be done by
returning fb with fb(x

∗) = y∗ as the programmed key. Note that seeing the programmed key, is
the same as seeing a single share of a 2-out-of-2 secret sharing of f and thus it does not reveal
anything about the point x∗. Also, note that this approach crucially relies on the fact that the
point at which programming will happen is known during key generation, as it defines the point
function that will be shared. To obtain a NAP with t bits of output, we can simply append t
many NAPs with single bit outputs. The resulting key size is O(t · λ · log|X |).

We note that the same insights we use here to construct NAPs from distributed point
functions, have previously been used Hemenway et al. [HJO+16] to construct a notion they call
somewhere equivocal encryption. There, the authors use their notion of an encryption scheme
to allow programming the plaintext within the security proof. In our work on the other hand,
we use NAPs and the ability to program them as part of the proof systems we construct.

Constructing NAPs for the Correct Distributions. In the discussion above, we have made an
implicit assumption that is not actually valid. The NAPs we have so far constructed, return bit
strings, but the second and third round messages of a given Σ-protocol may be completely differ-
ent objects. As an example, in the proof system of Goldreich, Micali, and Wigderson [GMW86]
for the graph isomorphism problem, the challenge e is a bit, but the prover’s response z is
a permutation. More generally, it may not even be the case that the response is a uniformly
random element from the set of all responses.

To overcome this issue, we make use of explainable samplers, which were formally defined
by Lu and Waters [LW22]. Such samplers take random coins r as input and produce outputs x
that are sampled accordingly to some target distribution D. The samplers have an associated
explanation algorithm that first takes sample x from the target distribution and then finds
appropriate random coins r for the sampling algorithm, i.e. coins that would produce that
sample. Explainable sampler guarantee that, given (x, r), one cannot distinguish whether r was
sampled and x was computed or vice versa. Given an explainable sampler for a desired target

5

distribution, we can combine it with our NAP that produces uniformly random looking bits, to
obtain a NAP that produces pseudorandom samples from the desired target distribution.

What remains to show is that we can construct efficient explainable samplers for the dis-
tributions we care about. Lu and Waters construct explainable samplers for several classes of
distribution. We extend their results and show that anything that can be sampled efficiently via
a method known as rejection sampling, can also be explained. Using this result, we construct
NAPs that output third round messages of well-known Σ-protocols, such as the graph 3-coloring
or the graph isomorphism protocols of Goldreich, Micali, and Wigderson.

On the Strong Honest Verifier Zero-Knowledge Requirement. We note that our construction
starts with aΣ-protocol that satisfies strong honest verifier zero-knowledge. Many of the existing
Σ-protocols either already satisfy this property or can be made to have it via minimal changes.
More generally, it was shown by Goel, Green, Hall-Andersen, and Kaptchuk [GGHA+22] that
any Σ-protocol with honest verifier zero-knowledge can be transformed into one that satisfies
the strong version of this property.4 Thus our approach is in principle applicable to any Σ-
protocol for which we can construct NAPs for the appropriate distributions of the second and
third round messages.

Proofs vs. Arguments. Throughout the introduction and throughout the rest of this paper,
we are not making an explicit distinction between proofs and arguments. Commonly, proofs
provide soundness against an unbounded adversary, whereas arguments only provide soundness
against a computationally bounded adversary. We note that the soundness of the Σ-protocols we
construct in this work, relies on collision-resistant hash functions and thus these are arguments,
not proofs. For the remainder of the paper, we use these terms interchangeably.

2 Preliminaries

Notation. We write y ← A(x) to denote the output y of algorithm A, when run on input x.
If A is randomized, we assume that uniformly random coins are chosen implicitly, unless stated
otherwise. If we want to make random coins r explicit, we write A(x; r).

For a distribution D, we write x ← D to denote sampling a value from D and assigning
the value to x. We implicitly assume that all distribution of interest in this work are efficiently
samplable. We write Supp(D) to denote the set of elements that are sampled with a non-
zero probability. For a, b ∈ R with a ≤ b, we write U [a, b] to denote the continuous uniform
distribution over the range [a, b]. For a set S = {s1, . . . , sn}, we write U{s1, . . . , sn} or US to
denote the discrete uniform distribution over the set S. For a set S, we write x← S to denote
sampling from the uniform distribution over S. By (Sn, ◦) we denote the group of permutations
π : [n] → [n] with ◦ the composition of permutations as group operation. We use λ to denote
the security parameter. For a language L ⊆ {0, 1}∗ we let RL be the corresponding relation.
That is, x ∈ L if and only if there exists a witness w such that (x,w) ∈ RL.

We call two distributions P and Q statistically close, if for any adversary A, it holds that
|Pr [1← A(x) : x← P]− [1← A(x) : x← Q]| ≤ negl(λ), and computationally close if the same
holds for any PPT adversary A.

2.1 Σ-Protocols

We recall the definition of Σ-protocols and some of their properties.

4 In the work of Goel, Green, Hall-Andersen, and Kaptchuk [GGHA+22], the terminology challenge-independent
extended honest verifier zero-knowledge was used, but their notion is identical to the notion of strong honest
verifier zero-knowledge of Bellare and Ristov [BR08].

6

Definition 1 (Σ-Protocols). A Σ-protocol is a three-move protocol with challenge space E
and response distribution Z for a language L, given by a tuple of PPT algorithms (P1,P2,V),
which are defined as follows:

(a, aux)← P1(x,w): The commitment algorithm takes statement x ∈ L and a witness w as
input and produces message a and auxiliary output aux.

z ← P2(aux, e): The response algorithm takes challenge e ∈ E and auxiliary input aux as input
and returns response z ∈ Supp(Z).

b← V(x, a, e, z): The verification algorithm takes statement x and transcript (a, e, z) as input
and outputs bit b.

Correctness states that during an honest execution, the verifier all but a negligible fraction
of times.

Definition 2 (Correctness). We say Σ-protocol (P1,P2,V) with challenge space E and re-
sponse distribution Z for language L is correct, if for any λ ∈ N, and any (x,w) with RL(x,w) =
1, it holds that

Pr

V(x, a, e, z) = 1:

(a, aux)← P1(x,w)

e← E
z ← P2(aux, e)

 ≥ 1− negl(λ),

where the probability is taken over the random coins of the algorithms.

Special soundness guarantees for statements outside the language, no two valid transcripts
with the same first message but different challenges exist.

Definition 3 (Special Soundness). We say Σ-protocol (P1,P2,V) with challenge space E and
response distribution Z for language L is special sound, if there exists a PPT extractor Ext,
such that for any x ∈ {0, 1}∗, any two transcripts (a, e, z) and (a, e′, z′) with V(x, a, e, z) = 1
and V(x, a, e′, z′) = 1 and with e ̸= e′, it holds that

Pr
[
RL(x,w) = 1: w ← Ext(x, a, e, z, e′, z′)

]
= 1,

where the probability is taken over the random coins of the extractor.

Computational special soundness allows such pairs of transcripts to exist, but requires them
to be computationally hard to find.

Definition 4 (Computational Special Soundness). We say Σ-protocol (P1,P2,V) with
challenge space E and response distribution Z for language L is computationally special sound,
if for any λ ∈ N and any PPT adversary A, it holds that

Pr[ExptsoundA,L (1λ) = 1] := Pr

 e ̸= e′ ∧ x ̸∈ L
V(x, a, e′, z′) = 1

V(x, a, e, z) = 1

: (x, a, e, z, e′, z′)← A(1λ)

 ≤ negl(λ),

where the probability is taken over the random coins of the experiment.

Honest verifier zero-knowledge guarantees a simulator which, on input a random challenge,
can simulate valid transcripts.

7

Definition 5 (Honest Verifier Zero-Knowledge). We say Σ-protocol (P1,P2,V) with chal-
lenge space E and response distribution Z for language L is honest verifier zero-knowledge, if
there exists a PPT simulator Sim, such that for all λ ∈ N, all PPT adversaries A, all x ∈ L
and all witnesses w with RL(x,w) = 1, it holds that∣∣∣Pr [ExptRealΣA (1λ, x, w) = 1

]
− Pr

[
ExptSimΣ

A,Sim(1
λ, x) = 1

]∣∣∣ ≤ negl(λ),

where the probability is taken over the random coins of the adversary and the experiments defined
in Figure 1.

Remark 1. We remark that our definition of honest verifier zero-knowledge is sometimes also
called special honest verifier zero-knowledge.

The property below strengthens honest verifier zero-knowledge in the sense that the sim-
ulator now gets as input a random challenge and a random response and is required to be
deterministic.

Definition 6 (Strong Honest Verifier Zero-Knowledge [BR08]). We say Σ-protocol
(P1,P2,V) with challenge space E and response distribution Z for language L is strong honest
verifier zero-knowledge, if there exists a deterministic polynomial time simulator Sim, such that
for all λ ∈ N, all PPT adversaries A, all x ∈ L and all witnesses w with RL(x,w) = 1, it holds
that ∣∣∣Pr [ExptstRealΣA (1λ, x, w) = 1

]
− Pr

[
ExptstSimΣ

A,Sim (1λ, x) = 1
]∣∣∣ ≤ negl(λ),

where the probability is taken over the random coins of the adversary and the experiments defined
in Figure 2.

ExptRealΣA (1λ, x, w)

1 : (a, aux)← P1(x,w)

2 : e← E
3 : z ← P2(aux, e)

4 : b← A(a, e, z)
5 : return b

ExptSimΣ
A,Sim(1

λ, x)

1 : e← E
2 : (a, z)← Sim(e)

3 : b← A(a, e, z)
4 : return b

Fig. 1. Honest verifier zero-knowledge.

ExptstRealΣA (1λ, x, w)

1 : (a, aux)← P1(x,w)

2 : e← E
3 : z ← P2(aux, e)

4 : b← A(a, e, z)
5 : return b

ExptstSimΣ
A,Sim (1λ, x)

1 : e← E
2 : z ← Z
3 : a← Sim(e, z)

4 : b← A(a, e, z)
5 : return b

Fig. 2. Strong honest verifier zero-knowledge.

Remark 2. In some cases, we will assume that our Σ-protocols run in the presence of a honestly
sampled common reference string. This string will, for instance, contain the description of a
hash function or a commitment scheme. If a Σ-protocol requires such a string, then throughout
the paper, we will assume that this string is sampled honestly at the start of any experiment
and all probabilities are taken over the random coins that were used to sampled this string as
well.

2.2 Distributed Point Functions [GI14]

We recall the definition of (distributed) point functions.

8

Definition 7 (Point Functions). For x ∈ X and y ∈ Y, a point function fx,y with domain
X and range Y is defined as

fx,y(z) =

{
y if z = x

0 else
.

Let F(X ,Y) be the set of point functions with domain X and range Y.

Definition 8 (Distributed Point Functions). A distributed point function for domain X
and range Y is a pair of PPT algorithms DPF = (Share,Eval) that are defined as follows:

(f0, f1)← Share(1λ, f): The share generation algorithm takes the security parameter λ and point
function f ∈ F(X ,Y) as input and returns function shares f0 and f1.

y ← Eval(fb, x): The evaluation algorithm takes function share fb for b ∈ {0, 1} and x ∈ X as
input and returns evaluation y ∈ Y.

Correctness states that combining the evaluations of both shares gives the original value.

Definition 9 (Correctness). We say a DPF = (Share,Eval) for domain X and range Y, where
Y is an abelian group with addition, is correct, if for any λ ∈ N, any function f ∈ F(X ,Y) and
any z ∈ X , it holds that

Pr
[
Eval(f0, z) + Eval(f1, z) = f(z) : (f0, f1)← Gen(1λ, f)

]
= 1.

Privacy guarantees that shares do not leak any information about the function they are
derived from.

Definition 10 (Privacy). We say a DPF = (Share,Eval) for domain X and range Y, is pri-
vate, if for any λ ∈ N, any PPT adversary A, it holds that

Advpriv(A) :=
∣∣∣∣Pr [ExptprivA (1λ) = 1

]
− 1

2

∣∣∣∣ ≤ negl(λ),

where ExptprivA is the experiment in Fig. 3.

ExptprivA (1λ)

1 : f0, f1 ← A(1λ)

2 : b, b̃← {0, 1}

3 : (fb
0 , f

b
1)← Share(1λ, fb)

4 : b′ ← A(fb
b̃)

5 : return b = b′

Fig. 3. The privacy experiment for DPFs.

ExptRealSA (1λ)

1 : r ←R

2 : x← Sample(1λ; r)

3 : b← A(r, x)
4 : return b

ExptExplainSA (1λ)

1 : r′ ←R

2 : x← Sample(1λ; r′)

3 : r ← Explain(1λ, x)

4 : b← A(r, x)
5 : return b

Fig. 4. The explainability experiments for samplers.

We use the following result which shows that one can obtain DPFs from pseudorandom
generators, which can themselves be obtained from one-way functions [HIL+99].

Theorem 1 ([BGI15]). Let λ, ℓ ∈ N. Assuming the existence of a pseudorandom generators,
there exists a correct and private DPF for domain X = {0, 1}ℓ and range Y = {0, 1} with shares
of bit size O(λ log|X |).

9

2.3 Explainable Samplers [LW22]

Our definition of explainable samplers slightly differs from that of Lu and Waters [LW22].
Their definition assumes that the random coins provided to the sampling algorithm come from
a uniformly random distribution. In our definition, we allow the coins to come from other
distributions. In their definition, a separate precision parameter specifies how “well” the explain
algorithm works. In our definition, we will not have a separate precision parameter, but instead
assume that the advantage of the adversary in each security experiment will be negligible in the
same security parameter λ.

Definition 11 (Samplers). Let λ ∈ N. A sampler for distribution D = D(λ) with randomness
distribution R = R(λ) is a pair of PPT algorithms ES = (Sample,Explain) that are defined as
follows:

x← Sample(1λ): The sampling algorithm takes the security parameter λ as input and returns
a sample x.

r ← Explain(1λ, x): The explaining algorithm takes security parameter λ and sample x ∈ Supp(D)
as input and returns random coins r.

An explainable sampler should be correct in the sense that the samples returned by Sample
should be statistically close to samples from the real distribution.

Definition 12 (Correctness). Let λ ∈ N. A sampler for distribution D = D(λ) with random-
ness distribution R = R(λ) is correct, if for any λ and any adversary A, it holds that∣∣∣Pr [A(x) = 1 : x← Sample(1λ; r); r ← R

]
− Pr [A(x) = 1 : x← D]

∣∣∣ ≤ negl(λ),

where the probability is taken over the random coins of all algorithms.

An explainable sampler should be explainable in the sense that first sampling an element
x ∈ Supp(D) and then finding random coins r ∈ Supp(R), such that Sample(1λ; r) = x, should be
statistically indistinguishable from first sampling r ← R and then computing x← Sample(1λ; r).

Definition 13 (Explainability). Let λ ∈ N. A sampler for distribution D = D(λ) with ran-
domness distribution R = R(λ) is explainable, if for any λ and adversary A, it holds that∣∣∣Pr [ExptRealSA (1λ) = 1

]
− Pr

[
ExptExplainSA (1λ) = 1

]∣∣∣ ≤ negl(λ),

where ExptRealSA and ExptExplainSA are the experiments defined in Figure 4 and the probability is
taken over the random coins of all algorithms.

3 Non-Adaptively Privately Programmable Functions (NAPs)

This section introduces our new cryptographic primitive, which we call non-adaptive pro-
grammable functions (NAPs). These NAPs will be the main tool that allows us to construct
our compressed OR-proofs in the next section.

10

3.1 Definitions

We start by introducing the syntax of NAPs. On a high level, they can be seen as keyed
pseudorandom functions, which allow for programming the secret key.

Definition 14 (Non-Adaptively Programmable Functions). A non-adaptively programmable
function with domain X and range Y with output distribution DY is a tuple of PPT algo-
rithms NAP = (Gen,Eval,Prog,PEval) that are defined as follows:

msk← Gen(1λ, x∗): They key generation algorithm takes the security parameter 1λ and evalua-
tion point x∗ ∈ X as input and returns a master secret key msk.

y ← Eval(msk, x): The evaluation algorithm takes the master secret key msk and an evaluation
point x ∈ X and returns an evaluation y ∈ Y.

psk← Prog(msk, y∗): The programming algorithm takes as input the master secret key msk and
an evaluation y∗ ∈ Y, and returns a programmed secret key psk.

y ← PEval(psk, x): The evaluation algorithm for programmed keys takes the programmed secret
key psk and an evaluation point x ∈ X as input and returns the evaluation y ∈ Y.

We now define two properties that we would like our NAPs to satisfy. The first one is
correctness, which requires that programming works as one would expect. At the programmed
location, the programmed key should return the programmed output value and on all other
inputs, it should return the same values as the original master secret key.

Definition 15 (Correctness). We say NAP for domain X and output distribution DY is
correct, if for all λ ∈ N, all x∗ ∈ X we have

Pr

PEval(psk, x
∗) = y∗

∧ ∀x ∈ X \ {x∗}
PEval(psk, x) = Eval(msk, x)

:

msk← Gen(1λ, x∗)

y∗ ← DY

psk← Prog(msk, y∗)

 ≥ 1− negl(λ),

where the probability is taken over the random coins of all algorithms and the choice of y∗.

The second property is private programmability, which requires the programmed key to
hide the location at which it was programmed. This should hold in a strong sense, where the
adversary is allowed to choose location x∗, is then either given a key programmed at that
location or a simulated key, and should not be able to tell in which of those two cases they are.

Definition 16 (Private Programmability). We say NAP for domain X and output distri-
bution DY is privately programmable, if there is a PPT simulator Sim such that for all λ ∈ N
and every PPT adversary A, it holds that∣∣∣Pr [ExptRealPPA (1λ) = 1

]
− Pr

[
ExptIdealPPA (1λ) = 1

]∣∣∣ ≤ negl(λ),

where RealPP and IdealPP are the experiments defined in Figure 5.

3.2 Constructions

We start with building our first NAP whose output are uniformly random bits, from distributed
point functions.

Theorem 2. Let DPF = (Share,Eval) be a correct and private distributed point function for
domain X and range Y := {0, 1}. Then the construction NAP = (Gen,Prog,Eval,PEval) in Fig-
ure 6 is a correct and privately programmable NAP for domain X and output distribution UY .

Proof. To prove the theorem statement, let us consider each property of a NAP separately:

11

ExptRealPPA (1λ)

1 : x∗ ← A(1λ)
2 : y∗ ← DY

3 : msk← Gen(1λ, x∗)

4 : psk← Prog(msk, y∗)

5 : b← A(psk)
6 : return b

ExptIdealPPA (1λ)

1 : x∗ ← A(1λ)

2 : psk← Sim(1λ)

3 : b← A(psk)
4 : return b

Fig. 5. The private programmability experiment for NAPs.

Correctness. Note that Y with the xor-operation ⊕ defines an abelian group. We observe that
for any u, v ∈ {0, 1} the two simple implications hold. If u⊕ v = 0, then u = v and if u⊕ v = 1,
then u ̸= v and thus in this case (u, v) ∈ {(1, 0), (0, 1)}. Now for any x∗ ∈ X , let

f(x) :=

{
1 if x = x∗

0 else

and let (f0, f1) ← DPF.Share(1λ, f). Correctness of the distributed point function tells us that
for any x ∈ X with x ̸= x∗, it holds that DPF.Eval(f0, x) ⊕ DPF.Eval(f1, x) = 0 and thus
DPF.Eval(f0, x) = DPF.Eval(f1, x), whereas for x

∗ we have that DPF.Eval(f0, x
∗)⊕ DPF.Eval(f1, x

∗) =
1 and thus (DPF.Eval(f0, x

∗),DPF.Eval(f1, x
∗)) ∈ {(0, 1), (1, 0)}. Since for any y∗ ∈ {0, 1}, there

exists a b ∈ {0, 1} with DPF.Eval(fb, x
∗) = y∗, the correctness of our NAP construction follows.

Private Programmability. Fix an arbitrary x̃ ∈ X and let f be the point function that evaluates
to one at x̃. We define Sim(1λ) to be the algorithm that generates (f0, f1) ← Share(1λ, f) and
then returns fb′ for a uniformly random b′. Note that returning a uniformly random share is
the same as programming the output at x̃ to a uniformly random value. Let A be an arbitrary
PPT adversary with

ϵ :=
∣∣∣Pr [ExptIdealPPA (1λ) = 1

]
− Pr

[
ExptRealPPA (1λ) = 1

]∣∣∣.
We construct a PPT adversary B against the privacy property of the distributed point function,
i.e., an adversary that has advantage ϵ/2 in the experiment ExptprivB (1λ). The reduction B works
as follows: They initialize A with fresh random coins, provide them with the security parameter
and obtain x∗. They then define

f0(x) :=

{
1 if x = x∗

0 else
and f1(x) :=

{
1 if x = x̃

0 else

and provide f0 and f1 to their challenger, who returns f b
0 . Adversary B forwards f b

0 to A and
then returns whatever bit A returns.

We now observe that when b = 0 in the privacy experiment of the distributed point function,
then B perfectly simulates ExptRealPPA (1λ) towards A, as they are receiving f0

b̃
for a uniformly

random b̃ ∈ {0, 1} as expected. When b = 1, then B perfectly simulates ExptIdealPPA (1λ) towards

A, they obtain the expected f1
b̃
for uniformly random b̃. Let Exptpriv,bA (1λ) be the privacy ex-

periment for the distributed point function, where the challenger chooses bit b. From the above
observations, we can conclude that

2 · Advpriv(B) =
∣∣∣∣Pr [ExptprivB (1λ) = 1

]
− 1

2

∣∣∣∣ · 2
12

=

∣∣∣∣12 · Pr [Exptpriv,0B (1λ) = 1
]
+

1

2
· Pr

[
Exptpriv,1B (1λ) = 1

]
− 1

2

∣∣∣∣ · 2
=
∣∣∣Pr [Exptpriv,1B (1λ) = 1

]
− Pr

[
Exptpriv,0B (1λ) = 0

]∣∣∣
=
∣∣∣Pr [ExptIdealPPA (1λ) = 1

]
− Pr

[
ExptRealPPA (1λ) = 1

]∣∣∣ = ϵ.

Since the distributed point function is private, it means that 2 ·Advpriv(B) is negligible in λ and
thus so is ϵ. ⊓⊔

Concatenating the outputs of several NAPs with one bit outputs, we can obtain a NAP with
multiple output bits. This is captured formally in the next theorem statement, whose proof uses
a standard hybrid argument and we thus defer to Section A.2.

Theorem 3. Let λ, t ∈ N with t ∈ poly(λ). Let NAP′ be a correct and privately programmable
NAP for domain X and output distribution U{0, 1}. Then there exists a correct and privately
programmable NAP for domain X and output distribution U{0, 1}t.

Gen(1λ, x∗)

1 : f(x) :=

{
1 if x = x∗

0 else

2 : (f0, f1)← DPF.Share(1λ, f)

3 : msk := (f0, f1, x
∗)

4 : return msk

Eval(msk, x)

1 : parse msk as (f0, f1, x
∗)

2 : return DPF.Eval(f0, x)

Prog(msk, y∗)

1 : parse msk as (f0, f1, x
∗)

2 : if DPF.Eval(f0, x
∗) = y∗ :

3 : psk := f0

4 : else

5 : psk := f1

6 : return psk

PEval(psk, x)

1 : parse psk as fb

2 : return DPF.Eval(fb, x)

Fig. 6. NAP for uniform single bit outputs.

Gen(1λ, x∗)

1 : msk← NAP′.Gen(1λ, x∗)

2 : return msk

Eval(msk, x)

1 : r ← NAP′.Eval(msk, x)

2 : return ES.Sample(1λ; r)

Prog(msk, y∗)

1 : r∗ ← ES.Explain(1λ, y∗)

2 : psk← NAP′.Prog(msk, r∗)

3 : return psk

PEval(psk, x)

1 : r ← NAP′.PEval(psk, x)

2 : return ES.Sample(1λ; r)

Fig. 7. NAP for explainable output distributions.

Next, we show that a NAP for one output distribution can be transformed into a NAP for a
different distribution by using an appropriate explainable sampler. A bit more concretely, given
a NAP with output distribution R and an explainable sampler with randomness distribution
R and output distribution X , we obtain a NAP with output distribution X . Towards this goal,
we use the NAP’s output be the input random coins of the sampling algorithm and the output
of the sampling algorithm is then defined to be the output of our newly constructed NAP.
Programmability of the new NAP will follow from the programmability of the underlying NAP

13

and the explainability of the used sampler. We defer the proof of the following theorem to
Section A.3.

Theorem 4. Let λ ∈ N. Let NAP′ be a correct and privately programmable NAP for do-
main X and output distribution R. Let ES = (Sample,Explain) be a correct and explainable
sampler with randomness distribution R and output distribution D. Then the construction
NAP = (Gen,Eval,Prog,PEval) in Figure 7 is a correct and privately programmable NAP for
domain X and output distribution D.

3.3 The Sizes of NAP Keys

At this point, let us take a moment to reflect on the sizes of our NAP keys. In the construction
from Theorem 2, both master secret and programmed keys are composed of distributed point
function shares. Using the construction from Theorem 1, this would result in a NAP key size of
O(λ log|X |). Plugging this construction into the multiple bit construction from Theorem 3, we
get a NAP for uniformly random t-bit outputs and a key size ofO(tλ log|X |). Alternatively, using
this construction in combination with Theorem 4 and an explainable sampler with a randomness
distribution that is the uniform distribution over t-bit strings and output distribution D, we get
a NAP with key size O(tλ log|X |) and output distribution D.

4 Compressing OR-Proofs from NAPs

We now present our main contribution: compressed OR-proofs for Σ-protocols using NAPs. We
start by recalling the definition of OR languages, then present our construction with security
proofs in Section 4.1, sketch how to extend the OR-proof to the more general k-out-of-n setting
in Section 4.2 and conclude with providing two concrete instantiations in Section 4.3.

Definition 17 (OR Languages LOR). Let n ∈ N and let L be a language. We define

LnOR := {(x1, . . . , xn) ⊂ {0, 1}∗ | ∃i ∈ [n] : xi ∈ L}

to be the vector of statements of length n, where at least one entry is in the language L.

4.1 Construction

Theorem 5. Let λ, n ∈ N. Let H = H(λ) be a family of collision-resistant hash functions, map-
ping from {0, 1}∗ to {0, 1}Θ(λ). Let Σ-protocol (P′

1,P
′
2,V

′) with challenge space E, which is an
abelian group equipped with addition, and response distribution Z for language L be correct, spe-
cial sound, and strong honest verifier zero-knowledge. Let Sim′ be the corresponding strong honest
verifier zero-knowledge simulator. Let NAPE be a correct and privately programmable NAP for
domain [n] and output distribution UE . Let NAPZ be a correct and privately programmable NAP
for domain [n] and output distribution Z. Then the construction from Figure 8 is a correct,
computationally special sound, honest verifier zero-knowledge sigma protocol for the language
LnOR in the common reference string model.

Proof. To prove the theorem statement, we need to show correctness, computational special-
soundness, and honest verifier zero-knowledge. In the following, let us look at each of these
separately.

Correctness. The fact that our protocol is correct (with overwhelming probability), follows by
inspection.

14

P1 ((x1, . . . , xn) , (i, w))

1 : mske ← NAPE .Gen(1
λ, i)

2 : mskz ← NAPZ .Gen(1
λ, i)

3 : for j ∈ [n] \ {i} :
4 : ej ← NAPE .Eval(mske, j)

5 : zj ← NAPZ .Eval(mskz, j)

6 : aj ← Sim′(ej , zj)

7 : (ai, auxi)← P′
1(xi, w)

8 : a← H(a1, . . . , an)

9 : aux = (mske,mskz, auxi)

10 : return (a, aux)

P2(aux, e)

1 : parse aux as (mske,mskz, auxi)

2 : for j ∈ [n] \ {i} :
3 : ej ← NAPE .Eval(mske, j)

4 : ei := e−
∑
j ̸=i

ej

5 : zi ← P′
2(auxi, ei)

6 : pske ← NAPE .Prog(mske, ei)

7 : pskz ← NAPZ .Prog(mskz, zi)

8 : return (pske, pskz)

V(a, e, z)

1 : parse z as (pske, pskz)

2 : for j ∈ [n] :

3 : ej ← NAPE .PEval(pske, j)

4 : zj ← NAPZ .PEval(pskz, j)

5 : aj ← Sim′(ej , zj)

6 : if

(
n∑

j=1

ej ̸= e

)
∨ (H(a1, . . . , an) ̸= a) :

7 : return 0

8 : if ∃j ∈ [n] s.t. V′(xj , aj , ej , zj) = 0 :

9 : return 0

10 : return 1

Setup(1λ)

1 : H ← H
2 : return crs := H

Fig. 8. OR-proof from NAPs.

15

Computational Special Soundness. Let A be a PPT adversary, such that

Pr[ExptsoundA,Ln
OR
(1λ) = 1] = ϵ.

Recall that the winning condition of the experiment requiresA to return a vector (x, a, e, z, e′, z′),
such that both V(x, a, e, z) = 1 and V(x, a, e′, z′) = 1, while at the same time e ̸= e′ and x ̸∈ LnOR.

During the verification of (x, a, e, z) and (x, a, e′, z′), at step 2 of V in Figure 8, for each
j ∈ [n], the verifier computes transcripts (aj , ej , zj) and (a′j , e

′
j , z

′
j) respectively. Let COLL be

the event that H(a1, . . . , an) = H(a′1, . . . , a
′
n), but (a1, . . . , an) ̸= (a′1, . . . , a

′
n). We observe that

Pr[ExptsoundA,Ln
OR
(1λ) = 1]

=Pr[ExptsoundA,Ln
OR
(1λ) = 1 | COLL] · Pr[COLL] + Pr[ExptsoundA,Ln

OR
(1λ) = 1 | ¬COLL] · Pr[¬COLL]

≤Pr[COLL] + Pr[ExptsoundA,Ln
OR
(1λ) = 1 | ¬COLL].

From the collision-resistance of H, it follows that Pr[COLL] ≤ negl(λ). More precisely, let B
be an adversary against the collision-resistance ofH. GivenH, the adversary B sets crs := H and
honestly simulates the computational special soundness experiment towards A. When A outputs
(x, a, e, z, e′, z′), we let B compute the corresponding vectors (a1, . . . , an) and (a′1, . . . , a

′
n) and

return them in their experiment. It is easy to see that B wins, whenever COLL happens and
thus Pr[COLL] ≤ negl(λ).

Now let us assume that COLL did not happen. Then, since the verifier checks a = H(a1, . . . , an)
and a = H(a′1, . . . , a

′
n) respectively in step 6 of V, and since both verifications are successful,

it follows that (a1, . . . , an) = (a′1, . . . , a
′
n). However, note that e ̸= e′ and that the verifier also

checks that
∑n

j=1 ej = e and
∑n

j=1 e
′
j = e′ respectively. It must therefore exist an index j∗ ∈ [n],

such that ej∗ ̸= e′j∗ . Since all transcripts are accepting in step 8 of V, it follows that there exists
an xj∗ and two accepting transcripts (aj∗ , ej∗ , zj∗) and (aj∗ , e

′
j∗ , z

′
j∗), which agree in their first

messages, but have different second messages. By assumption, the Σ-protocol (P′
1,P

′
2,V

′) is spe-
cial sound and thus it must either hold that xj∗ ∈ L (as the extractor from special soundness
successfully extracts a witness for xj∗) and thus x ∈ LnOR or

Pr[ExptsoundA,Ln
OR
(1λ) = 1 | ¬COLL] = 0.

We can conclude that the adversary’s success probability ϵ is negligible in λ.

Honest Verifier Zero-Knowledge. To show honest verifier zero-knowledge, we need to provide a
simulator Sim, such that for all λ ∈ N, all PPT adversaries A, all x ∈ LnOR and its witnesses w,
it holds that ∣∣∣Pr [ExptRealΣA (1λ, x, w) = 1

]
− Pr

[
ExptSimΣ

A,Sim(1
λ, x) = 1

]∣∣∣ ≤ negl(λ).

Our simulator is depicted in Figure 9.
What remains to do is to argue that our constructed simulator produces transcripts that

are indistinguishable from real ones. Since both NAPE and NAPZ are privately programmable,
there exist simulators SimE and SimZ respectively. Since honest verifier zero-knowledge only
has to hold for x ∈ LnOR, there exists an index i ∈ [n] with xi ∈ L. We consider the following
sequence of hybrids.

Let Hybrid0 be the experiment ExptSimΣ
A,Sim(1

λ, x). Let Hybrid1 be identical to Hybrid0, apart
from how the challenge e is chosen. Instead of letting the challenger pick e and provide it to the
simulator, we now let the simulator pick e1 uniformly at random and define e =

∑n
j=1 ej . Since

the challenge space E is an abelian group, it follows that it makes no difference, whether we

16

Sim(e)

1 : mske ← NAPE .Gen(1
λ, 1)

2 : mskz ← NAPZ .Gen(1
λ, 1)

3 : for j ∈ [n] \ {1} :
4 : ej ← NAPE .Eval(mske, j)

5 : zj ← NAPZ .Eval(mskz, j)

6 : e1 := e−
n∑

j=2

ej

7 : z1 ← Z
8 : pske ← NAP.Prog(mske, e1)

9 : pskz ← NAP.Prog(mskz, z1)

10 : for j ∈ [n] :

11 : aj ← Sim′(ej , zj)

12 : a := H(a1, . . . , an)

13 : z := (pske, pskz)

14 : return (a, z)

Fig. 9. Honest verifier zero-knowledge simulator for the OR-proof.

first pick e1 or e and thus the two hybrids are perfectly indistinguishable from the adversary’s
perspective.

Let Hybrid2 be identical to Hybrid1, apart from how mske is chosen. Instead of computing
it honestly, we directly compute pske ← SimE(1

λ) and define e1 := NAPE .PEval(pske, 1). In-
distinguishability of the two hybrids follows from the private programmability of NAPE . More
concretely, we use A to construct an adversary B against the private programmability of NAPE
as follows: Initially, B outputs x∗ = 1 and receives psk from the challenger. For j ∈ [n], adversary
B defines ej ← NAPE .PEval(psk, j). Next, B computes the values pskz, z1, e, a the same way as
Hybrid1 would and defines z := (psk, pskz). Finally, B calls A on input (a, e, z). When A returns
bit b, we let B output the same bit. If B was in ExptIdealPPA (1λ), then the view of A is identical to
Hybrid2. If B was in ExptRealPPA (1λ), then the view of A is identical to Hybrid1. Thus by private
programmability, indistinguishability of the two hybrids follows.

Let Hybrid3 be identical to Hybrid2, apart from how mskz is chosen. Instead of computing it
honestly, we directly compute pskz ← SimZ(1

λ) and define z1 := NAPZ .PEval(pskz, 1). Indistin-
guishability of Hybrid2 and Hybrid3 follows from the private programmability of NAPZ , similarly
to the argument made for the previous pair of hybrids.

Let Hybrid4 be identical to Hybrid3, apart from now choosing mskz ← NAPZ .Gen(1
λ, i),

sampling zi ← Z, and computing pskz ← NAPZ .Prog(mskz, zi). Here, i ∈ [n] is the index such
that xi ∈ L. Indistinguishability of Hybrid3 and Hybrid4 follows from the private programmability
of NAPZ .

Let Hybrid5 be identical to Hybrid4, apart from now choosing mske ← NAPE .Gen(1
λ, i),

sampling ei ← E , and computing pske ← NAPE .Prog(mske, ei). Indistinguishability of Hybrid4
and Hybrid5 follows from the private programmability of NAPE .

Let Hybrid6 be identical to Hybrid5, apart from now choosing e ← E and defining ei ←∑
j ̸=i ej . Indistinguishability of Hybrid5 and Hybrid6 follows from the fact that E is an abelian

group. At this point, we arrived at a hybrid that is identical to the original simulator, but using
index i, instead of index 1.

17

Let Hybrid7 now be a real execution of the prover using witness (i, w), where (xi, w) ∈ RL.
Indistinguishability of Hybrid6 and Hybrid7 follows from the strong honest verifier zero-knowledge
property of Σ. More concretely, we use A to construct an adversary B against the strong
honest verifier zero-knowledge property of Σ as follows: Initially, B receives (a′, e′, z′) from
the challenger. They set ai = a′, ei = e′ and zi = z′. Then they compute mske, mskz as
well as (aj , ej , zj) for j ̸= i as specified by Hybrid6 (which is the same in Hybrid7). They set
a = H(a1, . . . , an), program both NAPs at the corresponding entries of ei and zi to derive
programmed keys pske and pskz, defining z = (pske, pskz). Again, this process is the same in
both hybrids. Finally, B sets e =

∑n
j=1 ej and forwards (a, e, z) to A. On output bit b by A,

we let B forward the bit as their output. Note that E is an abelian group, so e again has the
correct distribution. If B was in ExptstSimΣ

B,Sim′ (1λ, xi), then the view of A is identical to Hybrid6.

If B was in ExptstRealΣB,Sim (1λ, xi, w), then the view of A is identical to Hybrid7 (which is identical
to the real experiment of strong honest verifier zero-knowledge). Thus by strong honest verifier
zero-knowledge, the two hybrids are indistinguishable.

Having shown correctness, computational special soundness, and honest verifier zero-knowledge,
concludes the proof. ⊓⊔

4.2 Extensions

Theorem 5 allows for showing that one out of n statements is in the language L. More generally,
it may be desirable to show that there exists a subset I of size k, such that xi ∈ Li for all i ∈ I.
That is, we would like to show that multiple statements are valid in the a setting where we deal
with multiple languages. Let us shortly outline, how our approach can easily be extended to
this setting.

Showing the validity of k out of n statements for one language L. To construct such proofs of
partial knowledge, we can again directly follow the blueprint of Cramer, Damg̊ard and Schoen-
makers [CDS94]. If the prover has witnesses for k statements, then they still need to simulate
n− k many Σ-protocol executions. Rather than requiring that all challenges sum to e, we will
now require that they all lie on the same polynomial of degree n − k. The polynomial will be
uniquely defined by the n − k simulated and the received additional challenge. The challenges
for the honest executions will be interpolated from this polynomial.

This approach requires us to program our NAPs at multiple points, but luckily such NAPs
can easily be constructed from distributed point functions. Rather than viewing the NAP out-
puts as the evaluation of one function share, we can view them as the xor of the evaluation of
multiple shares (for different point functions). The resulting key sizes would all increase by a
multiplicative factor of k.

Dealing with Multiple Languages. When dealing with multiple languages, we may have to handle
multiple response distributions, but we assume that all challenge sets are the same. Assume we
have explainable samplers for all of these response distributions and assume that all of these
samplers have the same randomness distribution R. Then we can use a NAP with output
distribution R to construct a NAP, where the output for each j ∈ [n] comes from a different
distribution.

4.3 Examples

Having established our generic transformation in the previous section, let us now look at two
prominent examples of Σ-protocols that can be compiled with it. Without loss of generality, we

18

assume throughout this section that n and m are powers of two and hence their correspond-
ing logarithm is a positive integer. Moreover, we use every explainable rejection sampler with
precision λ, as detailed in Corollary 10.

P1 ((G0, G1), π)

1 : τ ← Sm
2 : G2 := τ(G0)

3 : a := G2

4 : aux = τ

5 : return (a, aux)

P2(aux, e)

1 : parse aux as τ

2 : z0 := τ

3 : z1 := τ ◦ π−1

4 : return z := ze

V(a, e, z)

1 : if z(Ge) = a :

2 : return 1

3 : else :

4 : return 0

Sim(e, z)

1 : a = z(Ge)

2 : return a

Fig. 10. Σ-Protocol for the graph isomorphism problem by Goldreich, Micali, and Wigderson [GMW86].

Graph Isomorphism. One of the arguably most well-known Σ-protocols is that of Goldreich,
Micali, and Wigderson [GMW86], which allows for showing that two graphs are isomorphic
without revealing the secret isomorphism between them. More precisely, the statement is x =
(G0, G1), where G0 and G1 are two graphs each of which having m nodes, and the witness w is
a permutation π : [m] → [m] which defines the isomorphism. We say x ∈ LGI, if π(G0) = G1,
where applying a permutation to a graph is interpreted as relabeling node i into node π(i). We
recall the protocol of Goldreich, Micali, and Wigderson in Fig. 10.

Besides being correct and special sound, we note that their protocol is also strong honest
verifier zero-knowledge. To see this, we observe that the simulator, receiving a uniformly random
challenge e and a uniformly random permutation z : [m]→ [m], can deterministically compute
a = z(Ge). Furthermore, we observe that the challenge space is E = {0, 1} and the response
distribution is the uniform distribution over the group of permutations Sm. Using Theorem 5 in
combination with our NAPs from Theorem 4, instantiated with the distributed point functions
from Theorem 1, and using the explainable sampler from Corollary 13, we get the following
theorem.

Theorem 6. Let λ, n,m ∈ N. Assuming the existence of collision-resistant hash functions,
there exists a correct, computationally special sound, and honest verifier zero-knowledge Σ-
protocol for the language LGI,nOR . The communication complexity of the protocol is O

(
mλ3 log n

)
,

where m denotes the number of nodes of the graphs in the statement.

Let us explain how we arrive at the stated communication complexity. The transcript (a, e, z) of
the constructed Σ-protocol is comprised of a hash a ∈ {0, 1}Θ(λ), a challenge e ∈ E = {0, 1}, and
a response z = (pske, pskz), which is a pair of programmed NAP keys for input domain X = [n].
To bound the bit length of the NAP keys, we use the bounds from Section 3.3. The bit length
of pske for the output distribution U{0, 1} is in O(λ log n). The bit length of pskz is O(tλ log n),
where t is the number of randomness bits needed for the explainable sampler. To sample a
uniformly random permutation from Sm, we use the procedure described in Corollary 13 which
requires rejection sampling of the uniform distribution over [i] for i ∈ {2, . . . ,m}. We upper
bound this by sampling m times over [m]. With λ bits of precision and constant M , we need
at most λM(logm + λ) ∈ O

(
λ2
)
many randomness bits for sampling over [m]. Here, we used

that the number of nodes m is polynomial in λ. Hence, t ∈ O
(
mλ2

)
and therefore the total bit

length of pskz is in O
(
mλ3 log n

)
, which dominates the overall communication complexity.

19

Our theorem statement shows that one can prove the validity of one out of n instances of
the graph isomorphism problem with a protocol that has a communication complexity that only
depends logarithmically on n and that only relies on the existence of collision-resistant hashing.

P1 (G,ϕ)

1 : τ ← S3
2 : for ℓ ∈ [m] :

3 : rℓ ← {0, 1}λ

4 : cℓ ← Commit(τ(ϕ(ℓ)); rℓ)

5 : a := (c1, . . . , cm)

6 : aux = (τ, r1, . . . , rm)

7 : return (a, aux)

P2(aux, e)

1 : parse aux as (τ, r1, . . . , rm)

2 : parse e as (i, j)

3 : for ℓ ∈ [m] \ {i, j} :
4 : cℓ ← Commit(τ(ϕ(ℓ)); rℓ)

5 : z := (ri, rj , τ(ϕ(i)), τ(ϕ(j)), (cℓ)ℓ∈[m]\{i,j})

6 : return z

V(a, e, z)

1 : parse a as (c1, . . . , cm)

2 : parse e as (i, j)

3 : parse z as (ri, rj , gi, gj , (c
′
ℓ)ℓ∈[m]\{i,j})

4 : c′i ← Commit(gi; ri)

5 : c′j ← Commit(gj ; rj)

6 : if gi = gj ∨ (c1, . . . , cm) ̸= (c′1, . . . , c
′
m) :

7 : return 0

8 : else :

9 : return 1

Sim(e, z)

1 : parse e as (i, j)

2 : parse z as (ri, rj , gi, gj , (cℓ)ℓ∈[n]\{i,j})

3 : ci ← Commit(gi; ri)

4 : cj ← Commit(gj ; rj)

5 : a = (c1, . . . , cm)

6 : return a

Fig. 11. A variant of the Σ-Protocol for graph 3-coloring by Goldreich, Micali, and Wigderson [GMW86].

Graph 3-Coloring. Another well-known Σ-protocol that was also presented by Goldreich,
Micali, and Wigderson [GMW86] allows for showing that a given graph G is 3-colorable, i.e.
that there exists a function ϕ, which assigns one of three colors to each node in a way that
no two neighbours share a color. Here, x = G is the statement and w = ϕ is the witness.
More formally, let G be a graph with m nodes and E its set of edges. A 3-coloring of G is
a function ϕ : [m] → {0, 1, 2} such that for every edge (i, j) ∈ E with i, j ∈ [m], it yields
ϕ(i) ̸= ϕ(j). We say x ∈ LG3C, if there exists a 3-coloring ϕ of G. A slightly modified version
of the original protocol is recalled in Figure 11. In the original protocol, the response z only
contains the commitment openings of the two nodes specified by the challenge. The modification
appends to the response z the commitments from the other edges (which can be recomputed
with the help of the auxiliary information). This change is important to guarantee strong hon-
est verifier zero-knowledge. The protocol involves a hiding and binding commitment scheme
Commit : {0, 1, 2} × {0, 1}λ → {0, 1}Θ(λ). In the following, we assume that the produced com-
mitments of Commit are pseudorandom bit strings, i.e. computationally indistinguishable from
uniformly random bit strings. Such commitment schemes can be build from one-way functions,
as shown by Naor [Nao90].5

5 The interactive commitment scheme originally presented in [Nao90] can be made non-interactive in the common
reference string model by interpreting the verifier’s (reusable) first message, which is a random bit string, as
a crs.

20

In this setting, the protocol is not only correct and special sound, but also strong honest
verifier zero-knowledge. To see the latter, we observe that the simulator, on input a uniformly
random challenge e and a uniformly random response z, can deterministically compute the
commitments for the i-th and j-th node (using the provided color and randomness in z) and
output the full list of commitments (using the other commitments provided in z). The produced
transcript is indistinguishable from a real one and due to the pseudorandomness of the commit-
ment scheme, we can simulate those commitments by just picking uniformly random bit strings.
The challenge space is given as E = E. The response distribution is a product distribution of
twice the uniform distribution over {0, 1}λ (for the two commitment randomnesses), the uni-
form distribution over [6] (for the two non-equal colors) and n− 2 many uniform distributions
over {0, 1}Θ(λ) (for the commitments). Overall, we obtain the following result.

Theorem 7. Let λ, n,m ∈ N. Assuming the existence of collision-resistant hash functions,
there exists a correct, computationally special sound, and honest verifier zero-knowledge Σ-
protocol for the language LG3C,nOR . The communication complexity of the protocol is O

(
mλ3 log n

)
,

where m denotes the number of nodes of the graphs in the statement.

Let us again look at how we arrive at the stated communication complexity. Let (a, e, z)
again be a transcript of the protocol. As before, the bit length of the hash a is O(λ), the bit
length of e is log|E| ≤ 2 logm. Regarding the bit length of z, we observe that we need t1 =
2λ+ (m− 2)O(λ) ∈ O(mλ) many uniform output bits (covering the commitment randomness
and the other commitments) and t2 = Mλ(3 + λ) many bits for the explainable sampler with
constant M and λ bits of precision (for sampling over [6]). Thus, the total bit size of z is
O
(
mλ3 · log n

)
, dominating the overall communication complexity.

5 Explainable Rejection Sampling

Previous works, such as that of Agrawal, Wichs, and Yamada [AWY20], showed that sam-
pling (truncated) discrete gaussians via rejection sampling, as specified by Gentry, Peikert, and
Vaikuntanathan [GPV08], is explainable6. Lu and Waters [LW22] formalized the concept of
explainable samplers and show that large classes of distributions can be sampled in an ex-
plainable way. Here, we extend upon their result and show that anything that can be sampled
efficiently via rejection sampling, can also be explained. Throughout this section, we assume
that all involved distributions have efficiently computable probability density functions, i.e. that
for any distribution D and any element x in Supp(D), we can compute the probability of x being
sampled.

5.1 Textbook Rejection Sampling

Before presenting our new results, let us first recall textbook rejection sampling, depicted in Fig-
ure 12, along with the corresponding theorem statement in Theorem 8. For the sake of com-
pleteness, we provide a proof of this theorem in Section A.1. We note that this proof is not new
to our work.

Theorem 8 (Rejection Sampling). Let P,Q be two discrete probability distributions such
that Supp(P) ⊆ Supp(Q), where Q is the starting and P the target distribution. Further,
let M ∈ N such that P(x)/Q(x) ≤M for all x ∈ Supp(P). Then, the output of RejSample(P,Q,M)
as defined in Figure 12 is distributed as P. In expectation, the algorithm terminates after M
trails.

6 In the work of Agrawal, Wichs, and Yamada [AWY20], the terminology reversible sampling was used.

21

TextbookRejSample(P,Q,M)

1 : ρ← U [0, 1]
2 : x← Q
3 : if ρ ≤ P(x)/(M · Q(x)) :
4 : return x

5 : else :

6 : go to Step 1

Fig. 12. Textbook rejection sampling.

5.2 From Rejection Sampling to Explainable Samplers

Let us now see how rejection sampling can be used to construct explainable samplers. Recall,
that rejection sampling repeatedly picks pairs (x, ρ), where x ← Q and ρ ← U [0, 1], and then
accepts x, if ρ is in some appropriate interval of [0, 1]. As we have shown in the proof of Theo-
rem 8, during each of these iterations, the algorithm will be terminating with probability 1/M .
Thus, the probability of not having terminated after λ ·M iterations is bounded by(

1− 1

M

)λ·M
=

((
1− 1

M

)M
)λ

≤ e−λ, (1)

which is a negligible function in λ.
The explainable sampler we construct, outputs samples from some target distribution P and

has randomness distribution R := (Q × U [0, 1])λ·M for some starting distribution Q. In other
words, our sampler takes κ := λ ·M pairs as input, which are sufficient for simulating a real
rejection sampling execution with overwhelming probability.

RejSample(1λ, r)

1 : parse r as (xi, ρi)i∈[κ]

2 : for i in {1, . . . , κ} :
3 : if ρi ≤ P(xi)/(M · Q(xi)) :

4 : return xi

5 : return ⊥

RejExplain(1λ, x)

1 : r ← R
2 : parse r as (xi, ρi)i∈[κ]

3 : for i in {1, . . . , κ} :
4 : if ρi ≤ P(xi)/(M · Q(xi)) :

5 : xi := x

6 : ρ← U [0,P(xi)/(M · Q(xi))]

7 : ρi := ρ

8 : return r

9 : return ⊥

Fig. 13. Explainable sampler via rejection sampling.

Theorem 9. Let λ ∈ N. Let P = P(λ) and Q = Q(λ) be two discrete probability distributions
for which Supp(P) ⊆ Supp(Q) and for which there exists an M = M(λ) ∈ poly(λ), such
that P(x)/Q(x) ≤ M for all x ∈ Supp(P). Then, the construction in Figure 13 defines a
correct and explainable sampler for distribution P with randomness distribution R, where R :=
(Q× U [0, 1])λ·M .

Proof. Let κ := λ ·M . Since both M and κ are polynomially bounded in λ, it directly follows
that both RejSample and RejExplain are efficiently computable. Let us proceed to showing that
our sampler is correct and explainable separately.

22

Correctness. To show correctness, we observe that for all λ ∈ N and all adversaries A, it holds
that∣∣∣Pr [A(x) = 1 : r ← R, x← RejSample(1λ; r)

]
− Pr [A(x) = 1 : x← P]

∣∣∣
≤Pr

[
x = ⊥ : r ← R, x← RejSample(1λ; r)

]
+
∣∣∣Pr [A(x) = 1 : r ← R, x← RejSample(1λ; r) | x ̸= ⊥

]
− Pr [A(x) = 1 : x← P]

∣∣∣
= negl(λ) +

∣∣∣Pr [A(x) = 1 : r ← R, x← RejSample(1λ; r) | x ̸= ⊥
]
− Pr [A(x) = 1 : x← P]

∣∣∣,
since RejSample returns ⊥ with negligible probability (cf. Equation 1). By Theorem 8, it holds
that RejSample perfectly simulates sampling from P, whenever it does not output ⊥. Thus, it
holds that∣∣∣Pr [A(x) = 1 : r ← R, x← RejSample(1λ; r) | x ̸= ⊥

]
− Pr [A(x) = 1 : x← P]

∣∣∣ = 0.

Therefore, the sampler is correct.

Explainability. Let R ⊂ Supp(R) be the set of random tapes on which RejSample successfully
produces an output. That is, for all r ∈ R, it holds that RejSample(1λ; r) ̸= ⊥. Since, RejSample
outputs ⊥ with negligible probability, it follows that |R| ≥ (1 − negl(λ)) · |Supp(P)|, meaning
that sampled random tapes from distribution R will be in R with overwhelming probability.
Thus,

∣∣∣∣∣∣∣Pr
[
A(x, r) :

r ← R
x← RejSample(1λ; r)

]
− Pr

A(x, r) : r′ ← R
x← RejSample(1λ; r′)

r ← RejExplain(1λ, x)

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣Pr
[
A(x, r) :

r ← R
x← RejSample(1λ; r)

∣∣∣∣∣ r ∈ R

]
− Pr

A(x, r) : r′ ← R
x← RejSample(1λ; r′)

r ← RejExplain(1λ, x)

∣∣∣∣∣∣∣ r′ ∈ R

∣∣∣∣∣∣∣

+negl(λ)

≤

∣∣∣∣∣Pr
[
A(x, r) :

r ← R
x← RejSample(1λ; r)

∣∣∣∣∣ r ∈ R

]
− Pr

[
A(x, r) :

x← P
r ← RejExplain(1λ, x)

]∣∣∣∣∣
+negl(λ),

where the last inequality follows from the correctness of our sampler.
For r ∈ Supp(R), let Indx(r) ∈ [κ] ∪ {⊥} be the function that either outputs the first index

j ∈ [κ] that is accepted, i.e. such that ρj ≤ P(xj)/(M · Q(xj)), or, if no index is accepted,
outputs ⊥. By the definition of RejExplain, we observe that

Pr

[
A(x, r) :

x← P
r ← RejExplain(1λ, x)

]

=Pr

A(x, r) :
r′ := ((x1, ρ1), . . . , (xκ, ρκ))← R

j = Indx(r′)

x← P
ρ← U [0,P(xj)/(M · Q(xj))]

r := ((x1, ρ1), . . . , (xj−1, ρj−1), (x, ρ), (xj+1, ρj+1), . . . , (xκ, ρκ))

∣∣∣∣∣∣∣∣∣∣∣∣
j ̸= ⊥

± negl(λ).

23

Looking at the experiment in the last equation, we note that R is a product distribution
and from the guarantees of rejection sampling it follows that xj with j = Indx(r′) is a sample
from P. The corresponding ρj is uniform conditioned on ρj ≤ P(xj)/(M · Q(xj)). Now, picking
a fresh element x← P along with ρ← U [P(x∗)/(M · Q(x∗))] is just the process of sampling a
new pair from the same distribution as that of (xj , ρj). Replacing one pair by the other does
not affect the output distribution and therefore∣∣∣∣∣∣∣Pr

[
A(x, r) :

r ← R
x← RejSample(1λ; r)

]
− Pr

A(x, r) : r′ ← R
x← RejSample(1λ; r′)

r ← RejExplain(1λ, x)

∣∣∣∣∣∣∣ ≤ negl(λ),

which shows explainability. ⊓⊔

5.3 Handling Finite Precision

In the above, we assumed that we can sample from the continuous distribution U [0, 1], but
in reality7 we can clearly only sample from a discrete distribution. Let us note that sampling
uniform p-bit integers allows for simulating rejection sampling and our explainable sampler
with an additive error of O(2−p). We will not provide a formal proof here, but still provide an
intuition of how the statement can be proven easily.

To see that the above claim is true, note that sampling ρ from U [0, 1] and checking ρ ≤ t
for threshold t ∈ [0, 1], where 1/t divides 2p, can be perfectly simulated by sampling ρ′ from
{0, . . . , 2p− 1} and checking whether ρ′ ≤ t · 2p. Furthermore, note that any arbitrary threshold
t ∈ [0, 1] is at most an additive factor away from a threshold t′ that divides 2p. The outcome
between using the two thresholds only differs for ρ ∈ [t, t′], which happens with probability
O(2−p).

Corollary 10. Let λ, p ∈ N with p = Ω(λ). Let P = P(λ) and Q = Q(λ) be two dis-
crete probability distributions for which Supp(P) ⊆ Supp(Q) and for which there exists an
M = M(λ) ∈ poly(λ), such that P(x)/Q(x) ≤ M for all x ∈ Supp(P). Then, there exists
a correct and explainable sampler for distribution P with randomness distribution R, where
R := (Q× U{0, . . . , 2p − 1})λ·M .

5.4 Uniform Distributions Between Sets of Different Sizes

A simple, but useful case of rejection sampling is to use the uniform distribution Q over random
bit strings to sample from some uniform distribution P, where |Supp(P)| is not a power of two.
Setting M = |Supp(Q)|/|Supp(P)|, we get that P(x)/(M ·Q(x)) is one if x ∈ Supp(P), and zero
otherwise. In simpler words, the rejection sampler outputs the first element sampled from Q,
which also lies in P.

Corollary 11. Let λ, p ∈ N with p = Ω(λ). Let P = P(λ) and Q = Q(λ) be two uniform,
discrete probability distributions with Supp(P) ⊆ Supp(Q) and |Supp(Q)|/|Supp(P)| = poly(λ).
Then there exists a correct and explainable sampler with M = |Supp(Q)|/|Supp(P)| for distri-
bution P and randomness distribution R := (Q× U{0, . . . , 2p − 1})λ·M .

7 In particular, this is the case in our NAP constructions from Section 3.

24

5.5 Explainable Samplers for Product Distributions and Permutations

Given explainable samplers for distributions P1, . . . ,Pm for m ∈ poly(λ) with randomness dis-
tributions R1, . . . ,Rm respectively, one can easily construct an explainable sampler for the
product distribution P1 × · · · × Pm with randomness domain R1 × · · · ×Rm by simply running
all individual explainable samplers in parallel. Correctness and explainability of this sampler
follows via a standard hybrid argument.

Corollary 12. Let λ,m ∈ N with m = poly(λ). For i ∈ [m], let ESi be a correct and explainable
sampler for distribution Pi = Pi(λ) with randomness distribution Ri = Ri(λ). Then there exists
a correct and explainable sampler for distribution P1 × · · · × Pm with randomness distribution
R1 × · · · × Rm.

This corollary is particularly useful, as it allows us to construct an explainable sampler for
the uniform distribution over Sm, i.e., uniformly random permutations over [m]. To see how, let
us first recall the Fisher-Yates shuffle, which takes a list of input values (a1, . . . , am) as input
and returns a uniformly random permutation (b1, . . . , bm) thereof. The shuffle initializes a set
A = {a1, . . . , am} and a counter c = 1. It then repeatedly picks a uniformly random element
a ∈ A, assigns bc := a, removes a from A, and increments c by one until A = ∅. In other
words, in the first step, it selects a uniformly random index i ∈ [m] and assigns b1 := ai, then
it selects a uniformly random index j in [m− 1] and assigns b2 to be the j-th elements among
the remaining ones and so on.

From the above, we can see that any permutation over [m], corresponds to exactly one
element from the set [m]×· · ·×[2]. Thus, the task of sampling a uniformly random permutation is
identical to the task of sampling a uniformly random element in [m]×· · ·×[2]. Using Corollary 12,
we can then obtain an explainable sampler for permutations from explainable samplers for
uniform distributions over the sets [i] for i ∈ [m].

Corollary 13. Let λ,m ∈ N with m = poly(λ). For i ∈ [m] \ {1}, let ESi be a correct and
explainable sampler for the uniform distribution over [i] with randomness distribution Ri =
Ri(λ). Then there exists a correct and explainable sampler for the uniform distribution over the
set Sm of all permutations π : [m]→ [m] with randomness distribution R2 × · · · × Rm.

Acknowledgement

We thank Rafail Ostrovsky for pointing us to the works of De Santis et al. [DDP+94] and
Hemenway et al. [HJO+16], which we had missed.

References

[AC20] Thomas Attema and Ronald Cramer. “Compressed Σ-Protocol Theory and Prac-
tical Application to Plug & Play Secure Algorithmics”. In: CRYPTO 2020,
Part III. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12172. LNCS.
Springer, Heidelberg, Aug. 2020, pp. 513–543. doi: 10.1007/978-3-030-56877-
1_18.

[ACF21] Thomas Attema, Ronald Cramer, and Serge Fehr. “Compressing Proofs of k-
Out-Of-n Partial Knowledge”. In: CRYPTO 2021, Part IV. Ed. by Tal Malkin
and Chris Peikert. Vol. 12828. LNCS. Virtual Event: Springer, Heidelberg, Aug.
2021, pp. 65–91. doi: 10.1007/978-3-030-84259-8_3.

25

https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-84259-8_3

[ACK21] Thomas Attema, Ronald Cramer, and Lisa Kohl. “A Compressed Σ-Protocol
Theory for Lattices”. In: CRYPTO 2021, Part II. Ed. by Tal Malkin and Chris
Peikert. Vol. 12826. LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 549–
579. doi: 10.1007/978-3-030-84245-1_19.

[AS92] Sanjeev Arora and Shmuel Safra. “Probabilistic Checking of Proofs; A New Char-
acterization of NP”. In: 33rd FOCS. IEEE Computer Society Press, Oct. 1992,
pp. 2–13. doi: 10.1109/SFCS.1992.267824.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. “Optimal Broadcast Encryp-
tion from LWE and Pairings in the Standard Model”. In: TCC 2020, Part I. Ed.
by Rafael Pass and Krzysztof Pietrzak. Vol. 12550. LNCS. Springer, Heidelberg,
Nov. 2020, pp. 149–178. doi: 10.1007/978-3-030-64375-1_6.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. “Bulletproofs: Short Proofs for Confidential Transactions and
More”. In: 2018 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2018, pp. 315–334. doi: 10.1109/SP.2018.00020.

[BBH+18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046. https://eprint.iacr.org/2018/046. 2018.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. “Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Dis-
crete Log Setting”. In: EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and
Jean-Sébastien Coron. Vol. 9666. LNCS. Springer, Heidelberg, May 2016, pp. 327–
357. doi: 10.1007/978-3-662-49896-5_12.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle
Proofs”. In: TCC 2016-B, Part II. Ed. by Martin Hirt and Adam D. Smith.
Vol. 9986. LNCS. Springer, Heidelberg, 2016, pp. 31–60. doi: 10.1007/978-3-
662-53644-5_2.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function Secret Sharing”. In: EU-
ROCRYPT 2015, Part II. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057.
LNCS. Springer, Heidelberg, Apr. 2015, pp. 337–367. doi: 10.1007/978-3-662-
46803-6_12.

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. “Constraining Pseudorandom Func-
tions Privately”. In: PKC 2017, Part II. Ed. by Serge Fehr. Vol. 10175. LNCS.
Springer, Heidelberg, Mar. 2017, pp. 494–524. doi: 10.1007/978-3-662-54388-
7_17.

[BR08] Mihir Bellare and Todor Ristov. “Hash Functions from Sigma Protocols and
Improvements to VSH”. In: ASIACRYPT 2008. Ed. by Josef Pieprzyk. Vol. 5350.
LNCS. Springer, Heidelberg, Dec. 2008, pp. 125–142. doi: 10.1007/978-3-540-
89255-7_9.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. “Proofs of Partial
Knowledge and Simplified Design of Witness Hiding Protocols”. In: CRYPTO’94.
Ed. by Yvo Desmedt. Vol. 839. LNCS. Springer, Heidelberg, Aug. 1994, pp. 174–
187. doi: 10.1007/3-540-48658-5_19.

[DDP+94] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung.
“On Monotone Formula Closure of SZK”. In: 35th FOCS. IEEE Computer Soci-
ety Press, Nov. 1994, pp. 454–465. doi: 10.1109/SFCS.1994.365745.

[GGHA+22] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk.
“Stacking Sigmas: A Framework to Compose Σ-Protocols for Disjunctions”. In:
EUROCRYPT 2022, Part II. Ed. by Orr Dunkelman and Stefan Dziembowski.

26

https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1109/SFCS.1992.267824
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-540-89255-7_9
https://doi.org/10.1007/978-3-540-89255-7_9
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1109/SFCS.1994.365745

Vol. 13276. LNCS. Springer, Heidelberg, 2022, pp. 458–487. doi: 10.1007/978-
3-031-07085-3_16.

[GI14] Niv Gilboa and Yuval Ishai. “Distributed Point Functions and Their Applica-
tions”. In: EUROCRYPT 2014. Ed. by Phong Q. Nguyen and Elisabeth Oswald.
Vol. 8441. LNCS. Springer, Heidelberg, May 2014, pp. 640–658. doi: 10.1007/
978-3-642-55220-5_35.

[GK15] Jens Groth and Markulf Kohlweiss. “One-Out-of-Many Proofs: Or How to Leak
a Secret and Spend a Coin”. In: EUROCRYPT 2015, Part II. Ed. by Elisabeth
Oswald and Marc Fischlin. Vol. 9057. LNCS. Springer, Heidelberg, Apr. 2015,
pp. 253–280. doi: 10.1007/978-3-662-46803-6_9.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that Yield Nothing
But their Validity and a Methodology of Cryptographic Protocol Design (Ex-
tended Abstract)”. In: 27th FOCS. IEEE Computer Society Press, Oct. 1986,
pp. 174–187. doi: 10.1109/SFCS.1986.47.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard
lattices and new cryptographic constructions”. In: 40th ACM STOC. Ed. by
Richard E. Ladner and Cynthia Dwork. ACM Press, May 2008, pp. 197–206.
doi: 10.1145/1374376.1374407.

[HIL+99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “A
Pseudorandom Generator from any One-way Function”. In: SIAM Journal on
Computing 28.4 (1999), pp. 1364–1396.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and
Daniel Wichs. “Adaptively Secure Garbled Circuits from One-Way Functions”.
In: CRYPTO 2016, Part III. Ed. by Matthew Robshaw and Jonathan Katz.
Vol. 9816. LNCS. Springer, Heidelberg, Aug. 2016, pp. 149–178. doi: 10.1007/
978-3-662-53015-3_6.

[IKO+09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Zero-Knowledge
Proofs from Secure Multiparty Computation”. In: SIAM J. Comput. 39.3 (2009),
pp. 1121–1152.

[Kil92] Joe Kilian. “A Note on Efficient Zero-Knowledge Proofs and Arguments (Ex-
tended Abstract)”. In: 24th ACM STOC. ACM Press, May 1992, pp. 723–732.
doi: 10.1145/129712.129782.

[LW22] George Lu and Brent Waters. “How to Sample a Discrete Gaussian (and more)
from a Random Oracle”. In: TCC 2022, Part II. LNCS. Springer, Heidelberg,
Nov. 2022, pp. 653–682. doi: 10.1007/978-3-031-22365-5_23.

[Nao90] Moni Naor. “Bit Commitment Using Pseudo-Randomness”. In: CRYPTO’89. Ed.
by Gilles Brassard. Vol. 435. LNCS. Springer, Heidelberg, Aug. 1990, pp. 128–
136. doi: 10.1007/0-387-34805-0_13.

[PS18] Chris Peikert and Sina Shiehian. “Privately Constraining and Programming PRFs,
the LWE Way”. In: PKC 2018, Part II. Ed. by Michel Abdalla and Ricardo
Dahab. Vol. 10770. LNCS. Springer, Heidelberg, Mar. 2018, pp. 675–701. doi:
10.1007/978-3-319-76581-5_23.

[PS20] Chris Peikert and Sina Shiehian. “Constraining and Watermarking PRFs from
Milder Assumptions”. In: PKC 2020, Part I. Ed. by Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas. Vol. 12110. LNCS. Springer, Hei-
delberg, May 2020, pp. 431–461. doi: 10.1007/978-3-030-45374-9_15.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. “Constant-round
interactive proofs for delegating computation”. In: 48th ACM STOC. Ed. by

27

https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-031-22365-5_23
https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1007/978-3-319-76581-5_23
https://doi.org/10.1007/978-3-030-45374-9_15

Daniel Wichs and Yishay Mansour. ACM Press, June 2016, pp. 49–62. doi:
10.1145/2897518.2897652.

[WW22] Brent Waters and David J. Wu. “Batch Arguments for NP and More from Stan-
dard Bilinear Group Assumptions”. In: CRYPTO 2022, Part II. LNCS. Springer,
Heidelberg, Aug. 2022, pp. 433–463. doi: 10.1007/978-3-031-15979-4_15.

Appendix A Missing Proofs

In this section we provide proofs (or proof sketches) for all theorem statements from the main
body that were missing a proof.

A.1 Rejection Sampling Produces the Correct Distribution (Proof of Theorem 8)

To prove the theorem statement, let us show that.

Pr[x← TextbookRejSample(P,Q,M)] = P(x).

Towards this goal, let us define some events. We will abuse notation and write x ← Q to
denote the event that Q is sampled and the obtained value is x. Let reject(x) be the event
that a fixed x ∈ Supp(Q) is rejected, i.e. that for a uniformly random ρ ∈ U [0, 1], it holds that
ρ > P(x)/(M · Q(x)). Let accept(x) be the event that a fixed x ∈ Supp(Q) is not rejected, i.e.
Pr[reject(x)] = 1−Pr[accept(x)] for all x ∈ Supp(Q). Let reject and accept be the events that a
value x is sampled according to distribution Q and then rejected or accepted respectively. Let
us start by observing that

Pr[x← TextbookRejSample(P,Q,M)] =

∞∑
i=1

Pr[reject happens i− 1 times ∧ x← Q∧ accept(x)]

=

∞∑
i=1

Pr[reject]i−1 · Pr[x← Q∧ accept(x)],

where the last equality follows from the fact that each iteration through steps 1 to step 3 is
independent of each other.

Pr[x← Q∧ accept(x)] = Pr[x← Q] · Pr[accept(x) | x← Q]

= Q(x) · Pr
[
ρ ≤ P(x)

M · Q(x)
: ρ← U [0, 1]

∣∣∣∣ x← Q]
= Q(x) · P(x)

M · Q(x)
=
P(x)
M

.

Furthermore, we also observe that

Pr[reject] =
∑

y∈Supp(Q)

Pr[y ← Q∧ reject(y)]

=
∑

y∈Supp(Q)

Pr[y ← Q] · Pr[reject(y) | y ← Q]

=
∑

y∈Supp(Q)

Q(y) · Pr
[
ρ >

P(y)
M · Q(y)

: ρ← U [0, 1]
∣∣∣∣y ← Q]

=
∑

y∈Supp(Q)

Q(y) ·
(
1− P(y)

M · Q(y)

)

28

https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1007/978-3-031-15979-4_15

=
∑

y∈Supp(Q)

(
Q(y)− P(y)

M

)
= 1− 1

M
,

where in the last equation we used the fact that Supp(P) ⊆ Supp(Q). Putting both terms
together, we obtain

Pr[x← TextbookRejSample(P,Q,M)] =
∞∑
i=1

Pr[reject]i−1 · Pr[x← Q∧ accept(x)]

=

∞∑
i=1

(
1− 1

M

)i−1

· P(x)
M

= P(x)
∞∑
i=1

(
1− 1

M

)i−1

· 1

M

= P(x),

where the last equation is obtained by observing that the last sum is a geometric series.

Lastly, let us argue that the rejection sampling procedure terminates after M trials in
expectations. To see this, we note that by the above calculations, it holds that Pr[accept] = 1/M .
Since the individual iterations of step 1 to step 3 are independent of each other, it follows that
the running time of RejSample(P,Q,M) follows a geometric distribution and thus the theorem
statement follows. ⊓⊔

A.2 From Single Bit NAPs to Multiple Bit NAPs (Proof of Theorem 3)

Gen(1λ, x∗)

1 : for i ∈ [t] :

2 : mski ← NAP′.Gen(1λ, x∗)

3 : return (msk1, . . . ,mskt)

Eval(msk, x)

1 : parse msk as (msk1, . . . ,mskt)

2 : for i ∈ [t] :

3 : yi ← NAP′.Eval(mski, x)

4 : return y1∥ . . . ∥yt

Prog(msk, y∗)

1 : parse y∗ as (y∗
1 , . . . , y

∗
t)

2 : parse msk as (msk1, . . . ,mskt)

3 : for i ∈ [t] :

4 : pski ← NAP′.Prog(mski, y
∗
i)

5 : return (psk1, . . . , pskt)

PEval(psk, x)

1 : parse psk as (psk1, . . . , pskt)

2 : for i ∈ [t] :

3 : yi ← NAP′.PEval(pski, x)

4 : return y1∥ . . . ∥yt

Fig. 14. NAP for uniform output distribution and t-bit outputs.

To prove the theorem statement, we need to provide the desired construction and show that
it is both correct and privately programmable. The construction is depicted in Figure 14. In the
following, let us sketch the proof of each property:

Correctness. Directly follows by inspection of the construction.

29

Private Programmability. Since NAP′ is privately programmable by assumption, there exists a
simulator NAP′.Sim that outputs a simulated psk on input 1λ. We construct a simulator Sim by
calling the simulator NAP′.Sim with fresh random coins t times and concatenating the outputs,
i.e. by computing pski ← NAP′.Sim(1λ) for i ∈ [t] and returning (psk1, . . . , pskt).

For i ∈ [t], let the function Progi(msk, y∗) be the function which takesmsk = (msk1, . . . ,mskt)
and y∗ ∈ {0, 1}t as input and returns a key psk = (psk1, . . . , pskt), where for all j ∈ [t] with
j ≤ i, we compute pskj ← Sim(1λ) and for all j > i, we compute pskj ← NAP′.Prog(mskj , y

∗
j).

Let Hybrid0 be identical to the experiment ExptRealPPA (1λ) and for i ∈ [t], let Hybridi be identical
to Hybrid0 with the difference being that psk is computed via NAP.Progi. We note that Hybridt
is identical to ExptIdealPPA (1λ), when the simulator Sim we described above is used. From here,
private programmability of the construction in Figure 14 follows via a standard hybrid argument
and the private programmability of NAP′. ⊓⊔

A.3 Building NAPs with Different Output Distributions (Proof of Theorem 4)

To prove the theorem statement, we consider each of the properties of a NAP individually:

Correctness. To show correctness, we need to show that for all λ ∈ N and all x∗ ∈ X , there
exists a negligible function negl(λ), such that it simultaneously holds that

Pr

∃x ∈ X \ {x∗}
PEval(psk, x) ̸= Eval(msk, x)

:

msk← Gen(1λ, x∗)

y∗ ← R
psk← Prog(msk, y∗)

 ≤ negl(λ),

and

Pr

PEval(psk, x∗) ̸= y∗ :

msk← Gen(1λ, x∗)

y∗ ← R
psk← Prog(msk, y∗)

 ≤ negl(λ).

We observe that the first of those two inequalities is only concerned with the points that are
not programmed. Since

PEval(psk, x) = ES.Sample(1λ,NAP′.PEval(psk, x)),

and since ES.Sample is just a deterministic function of its given random coins, it directly follows
from the correctness of NAP′ that the first inequality is satisfied.

Regarding the second inequality, let us start by observing that ES is a correct and explainable
sampler. From there it follows that

Pr

[
ES.Sample(1λ, r) ̸= x :

x← D
r ← ES.Explain(1λ, x)

]
≤ negl(λ).

There are exactly two ways in which correctness on the programmed point can fail. Either
because NAP′ or because ES behaved incorrectly. More concretely, by a union bound, we observe
that

Pr

PEval(psk, x∗) ̸= y∗ :

msk← Gen(1λ, x∗)

y∗ ← R
psk← Prog(msk, y∗)

30

=Pr

PEval(psk, x∗) ̸= y∗ :

msk← Gen(1λ, x∗)

y∗ ← R
r∗ ← ES.Explain(1λ, y∗)

psk← NAP′.Prog(msk, r∗)

≤Pr

ES.Sample(1λ, r∗) ̸= y∗ :

msk← Gen(1λ, x∗)

y∗ ← R
r∗ ← ES.Explain(1λ, y∗)

psk← NAP′.Prog(msk, r∗)

+Pr

NAP′.PEval(psk, x∗) ̸= r∗ :

msk← Gen(1λ, x∗)

y∗ ← R
r∗ ← ES.Explain(1λ, y∗)

psk← NAP′.Prog(msk, r∗)

 ≤ negl(λ).

and thus our construction satisfies correctness.

Private Programmability. By assumption, NAP′ is privately programmable and therefore there
exists a PPT simulator Sim for which it holds that no PPT adversary can distinguish the real
and the ideal private programmability experiment with non-negligible advantage. We define Sim
to be the simulator for NAP and claim that the same is true for the private programmability
experiment with respect to NAP.

Let Hybrid0 be the private programmability experiments against NAP. Let Hybrid1 be iden-
tical to Hybrid0, apart from step 2 in ExptRealPPA (1λ), where instead of computing y∗ ← D, we
will now sample r̃ ← R and compute y∗ ← ES.Sample(1λ, r̃). Indistinguishability of hybrids
Hybrid0 and Hybrid1 follows from the correctness of the explainable sampler.

Let Hybrid2 be identical to Hybrid1, apart from step 4 in the modified ExptRealPPA (1λ) from
Hybrid1, where during the computation of psk we will no longer compute r∗ ← Explain(1λ, y∗),
but instead set r∗ := r̃. Note that at this point, the value y∗ is not used anymore in the
experiment. Indistinguishability of hybrids Hybrid1 and Hybrid2 follows from the explainability
of ES.

At this point we observe that the experiments in Hybrid2 are identical to the experiments
against NAP′ with simulator Sim. Since NAP′ is privately programmable, it follows that so is
NAP. ⊓⊔

31

	The Power of NAPs: Compressing OR-Proofs via Collision-Resistant Hashing
	1 Introduction
	1.1 Our Contribution
	1.2 Related Works
	1.3 Technical Overview

	2 Preliminaries
	Notation.
	2.1 -Protocols
	2.2 Distributed Point Functions EC:GilIsh14
	2.3 Explainable Samplers TCC:LuWat22

	3 Non-Adaptively Privately Programmable Functions (NAPs)
	3.1 Definitions
	3.2 Constructions
	3.3 The Sizes of NAP Keys

	4 Compressing OR-Proofs from NAPs
	4.1 Construction
	4.2 Extensions
	4.3 Examples
	Graph Isomorphism.
	Graph 3-Coloring.

	5 Explainable Rejection Sampling
	5.1 Textbook Rejection Sampling
	5.2 From Rejection Sampling to Explainable Samplers
	5.3 Handling Finite Precision
	5.4 Uniform Distributions Between Sets of Different Sizes
	5.5 Explainable Samplers for Product Distributions and Permutations

	Appendix A Missing Proofs
	A.1 Rejection Sampling Produces the Correct Distribution (Proof of Theorem 8)
	A.2 From Single Bit NAPs to Multiple Bit NAPs (Proof of Theorem 3)
	A.3 Building NAPs with Different Output Distributions (Proof of Theorem 4)

