
On Schubert cells of Projective Geometry  and quadrat-

ic public keys of Multivariate Cryptography 

Vasyl Ustimenko1,2 
 

1 Royal Holloway University of London, United Kingdom, Egham Hill, Egham TW20 

0EX, United Kingdom. 
2 Institute of telecommunications and global information space, NAS of Ukraine, 

Chokolivsky Boulevard 13, Kyiv, 02000, Ukraine 
E-mail:Vasyl.Ustymenko@rhul.ac.uk 

 

 Abstract. 

 Jordan-Gauss graphs are bipartite graphs given by special quadratic equations over the com-

mutative ring K with unity with partition sets  K n and K m , n≥m such that the neighbour of each 

vertex is defined by the system of linear equation given in its row-echelon form. 

 We use families of this graphs for the construction of new quadratic and cubic surjective mul-

tivariate maps F of  K n onto K m  (or K n onto K n ) with the trapdoor accelerators  T , i. e. pieces 

of information which allows to compute the reimage of the given value of F in polynomial 

time. The technique allows us to use the information on the quadratic map F from Ks  to Kr, s ≥ 

r with the trapdoor accelerator T for the construction of  other  map G from Ks+rs onto Kr+rs with 

trapdoor accelerator. In the case of finite field it can be used for construction of new cryptosys-

tems from known pairs (F, T).  

   So we can introduce enveloping trapdoor accelerator for Matsumoto-Imai cryptosystem over 

finite fields of characteristic 2, for the Oil and Vinegar public keys over Fq  (TUOV in particu-

lar), for quadratic multivariate public keys defined over Jordan-Gauss graphs  D(n, K) where K 

is arbitrary finite commutative ring  with the nontrivial multiplicative group. 

.   

Keywords.  Multivariate Cryptography, Jordan – Gauss graphs, Projective Geome-

tries, Largest Schubert Cells,  Symbolic Computations, Noncommutative Cryptog-

raphy, Protocol based cryptosystems  
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1. Introduction 

This paper presents the generalisations of the quadratic multivariate public key 

given in [1] and defined via special walks on projective geometries over finite fields 

and their natural analogues defined over general commutative rings. Multivariate 

cryptography is one of the five main directions of Post-Quantum Cryptography. 

The progress in the design of experimental quantum computers is speeding up late-

ly. Expecting such development the National Institute of Standardisation Technolo-

gies of USA announced in 2017 the tender on the standardisation best known quan-

tum resistant algorithms of asymmetrical cryptography. The first round was finished 

in March 2019, essential part of presented algorithms were rejected. In the same time 

the development of new algorithms with postquantum perspective was continued. 

Similar process took place during the  2, 3 and 4th rounds. 

The last algebraic public key «Unbalanced Oil and Vinegar  on Rainbow like digi-

tal signatures» (ROUV) constructed in terms of Multivariate Cryptography was re-

jected in 2021  (see [2], [3]). ` The first 4  winners of this competition was announced 

in 1922, they are developed in terms of Lattice Theory. 

Noteworthy that NIST tender was designed for the selection and investigation of 

public key algorithms and  in the area of Multivariate Cryptography only quadratic 

multivariate maps were investigated. We have to admit that general interest to various 

aspects of Multivariate Cryptography  was connected with the search for secure and 

effective procedures of digital signature where mentioned above ROUV cryptosystem 

was taken as a serious candidate to make the shortest signature.  

Let us summarize the outcomes of mentioned above NIST tender.  

There are 5 categories that were considered by NIST in the PQC standardization 

(the submission date was 2017; in July 2022, the 4 winners and the 4 final candidates 

were proposed for the 4th round -- this is the current official status. However, the 

current 8 final winners and candidates only belong to the following 4 different math-

ematical problems (not the 5 announced at the beginning):- lattice-based,- hash-

based,- code-based, - supersingular elliptic curve isogeny based. 

The standards are partially published in 2024.  

Its interesting that new obfuscation ‘’TUOV: Triangular Unbalanced Oil and Vine-

gar’’ were presented to NIST (see https://csrc.nist.gov/csrc/media/Projects/pqc-dig-

sig/documents/round-1/spec-files/TUOV-spec-web.pdf) by principal submitter Jintaj 

Ding.  

Further development of Classical Multivariate Cryptography which study  quadrat-

ic and cubic endomorphisms of Fq[x1, x2,…, xn] see [14]. Current research in 

Postquantum Cryptography can be found in  [4]-[21]. 

Each of mentioned above five directions is based on the complexity of selected 

NP-hard problem. 

Multivariate cryptography uses the gap between linearity and nonlinearity. We 

know that the system of linear equations written over the field F  can be solved in 

time O(n3) via Jordan-Gauss elimination method.  The complexity of solving nonline-

ar system of constant degree d, d>1 is  subexponential 
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(see [22], [23]). Despite the convenience of Groebner-Shirshov basis method [24] 

for the implementation the complexity of this algorithm is equivalent to old Gauss 

elimination method for solution of the system of nonlinear equation.   There is stand-

ard way to transform of nonlinear system of  

equation of degree d, d>2 to equivalent quadratic system via introduction of addi-

tional variables and substitutions (see [14]. 

   So if we have a nonlinear map F of bounded degree d in ‘’ general position’’ 

which has a trapdoor accelerator T then corresponding cryptosystem is secure.  This 

status is insure the fact that F is given as one way function i. e reimage of F is impos-

sible to compute in a polynomial time without knowledge  of  the secret T. 

   The map F is not in ‘’ general position’’ if some additional specific information 

is known. For instance, if F is bijective cubic map and F-1 is also cubic. Then public 

user can generate O(n3) pairs of kind plaintext p/corresponding ciphertext c and ap-

proximate inverse map in time O(n10). 

  Known computer tests and cryptanalytic methods insures that the map F is ‘’in 

general position’’. Noteworthy  that the existence of one way function is not proven 

yet even under the main  complexity conjecture  that P≠NP. 

    It is well known that the investigation of nonlinear systems of equations over the 

commutative ring K with zero divisors is essentially harder case in comparison the 

case of a field.  

Multivariate Cryptography over rings with zero divisors is a brand new area of re-

search. 

We use the concept of quadratic accelerator of the endomorphism σ of K[x1, x2,…, 

xn]  which is the piece of information T such that its knowledge allows us to compute 

the reimage of (σ, Kn)  in polynomial time O(n a). Symbol K stands here for an arbi-

trary commutative ring with unity.  Our suggestion is to use for public key the pairs  

(σ, T) such that σ has a polynomial density, i. e. number of monomial terms of σ(xi), 

i=1,2,…,n.  Some examples of such public keys the reader can find in [21] ,[25], [26]. 

In [26]  pairs ( σ , T) of quadratic  automorphisms   σ of K[x1, x2,…, xn] and the 

trapdoor accelerator T where presented  for each case (K, n).  These trapdoor accelera-

tor T were  defined via totality of special bipartite Jordan-Gauss graphs D(n, K) with 

the partition sets isomorphic to Kn. We discussed the possible use of these transfor-

mation in the case of finite fields and arithmetical rings Zq where q is a prime power. 

         In this paper we suggest new surjective  quadratic and cubic multivariate 

public rules defined in terms of other Jordan-Gauss graphs defined in terms of Projec-

tive Geometry and its generalisation on the case of commutative rings K. Many of 

these public rules  are nonbijective maps.  Recall that multivariate public rule G has to 

be given in its standard form  (x1, x2, … , xn )→(gi(x1, x2, … , xn), g2(x1, x2, … , xn), .... , 

gm(x1, x2, … , xn)),n ≥m where polynomials gi are given via the lists of monomial 

terms in the lexicographical order. 

The interest to surjective pairs (G, T) is justified by the fact that they can provide 

the shortest known  digital signatures. The scheme is the following one. 

Let us assume that Alice and Bob  use some cipher for the communication. Alice 

use this cipher to send the ciphertext c which Bob is able to decrypt and get the corre-

sponding plaintext p. 
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Alice and Bob share some hash function h. So they have common value h(p). Size 

of h(p)=d=(d1, d2 , ..., dm)  is m. It  is essentially smaller than the size of the plaintext. 

Bob has the system of equations gi(z1, z2 , ..., zn) = di, i=1, 2,…, m . To sign the  

plaintext Alice has to send via open channel the solution of this system to Bob. She 

uses her knowledge on the trapdoor accelerator T to compute the solution v=(v1, v2,  

..., vn). Alice sends it via the open channel to Bob. He checks that G(v)=d. 

    In Section 2 we introduce the concept of linguistic graphs defined over commu-

tative ring K together with the algorithm of generation of graph based polynomial 

map F and corresponding trapdoor accelerator T. Multivariate Cryptography requires 

polynomial maps which can be considered as good approximation of  ‘’map in gen-

eral position’’. So instead of graphs given by equations we consider their temporal 

analogue  for which there is an option to change the coefficients of equations in se-

lected moment of time. For this selections some pseudorandom or genuinely random 

sequences can be used. We hope that special walks in temporal linguistic graphs can 

be used for the construction of (F, T) for which adversary is practically unable to 

compute the reimage of F without the knowledge of T which contains the sequence of 

‘’static’’ graphs given by the numerical values of coefficients. 

 In the case of special  linguistic graphs of Jordan-Gauss type we can construct of 

corresponding to them maps of selected degree (2 or 3). In Section 2 these ideas are 

illustrated in the case of Jordan graphs Xs,r(K) and Xs.r,k(K). 

In Section 3 construction of pairs (F, T) is illustrated in the case K=Fq and graphs 

Xs,r,k(K). Our Algorithm 1 or Algorithm 2 allows us to expand selected pair G, T 

where G is the polynomial map of Kn onto Km and T and get the new pair F, T’ such 

that F maps Kn+k onto Km+ k and T’ is an expansion of T. 

As example of known (G,T) one can take the cryptosystem TOUV. 

   This expansion operations on trapdoor accelerators can be used iteratively (see 

Algorithm 3 with the output defined over arbitrary commutative rings). 

 Section 4 is dedicated to description of Cellular Schubert Schubert graphs and cor-

responding digital signatures algorithms. This  class of Jordan-Gauss graphs contains 

graphs Xs,r(K). Algorithms 4 is able to produce interesting maps with trapdoor accel-

erators defined over general commutative ring K.  

In Section 4 we describe some protocols of Noncommutative Cryptography based 

on the semigroup platform of polynomial  transformations and discuss the idea of 

secure delivery of quadratic multivariate rule from one user to other one. 

Section 5 contains conclusive remarks. We discuss heuristic arguments on security 

of suggested cryptosystems. 

 

 2. Linguistic and Jordan graphs, their temporal analogs and 

trapdoor accelerators. 

Another The missing definitions of graph-theoretical concepts and incidence sys-

tems theory which appear in this paper can be found in [27], [28], [29] and [30]. 

 All graphs we consider are simple graphs, i.e. undirected without loops and multi-

ple edges. Let V(G) and E(G) denote the set of vertexes and the set of edges of G 

respectively. When it is convenient, we shall identify G with the corresponding anti-
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reflexive binary relation on V(G), i.e. E(G) is a subset of Cartesian product  

V(G)∙V(G) and write v G u for the adjacent vertexes u and v (or neighbours). We refer 

to |{ x ϵ V(G)| xGv }| as degree of the vertex v. The incidence structure is the set V 

with partition sets P (points) and L (lines) and symmetric binary relation I such that 

the incidence of two elements implies that one of them is a point and another one is a 

line. We shall identify I with the simple graph of this incidence relation or bipartite 

graph. 

We define linguistic graphs of type (𝑠, 𝑟, 𝑚) where 𝑠 > 0, 𝑟 > 0, 𝑚 > 0 over the 

commutative ring 𝐾 with unity as bipartite graphs with the partition sets 𝑃 = 𝐾s+m and 

 𝐿 = 𝐾r+m such that the point (𝑥1, 𝑥2, … , 𝑥s, 𝑥s+1, 𝑥s+2, … , 𝑥s+m) from 𝑃 is incident 

to the line [𝑦1, 𝑦2, … , 𝑦r, 𝑦r+1, 𝑦r+2, … , 𝑦r+m] from 𝐿 if and only if the following 

equations are satisfied: 

𝑎j𝑥s+j− 𝑏j𝑦s+j =𝑓j(𝑥1, 𝑥2, … , 𝑥s+j-1, 𝑦1, 𝑦2, … , 𝑦t+j-1)  (1)  

where 𝑎j and 𝑏j are elements of the multiplicative group of 𝐾 and 𝑓j are polynomi-

als from 𝐾[𝑥1, 𝑥2, … , 𝑥s+j-1, 𝑦1, 𝑦2, … , 𝑦r+j-1] (see [31]) . 

We say that linguistic graph is Jordan-Gauss graph if polynomials 𝑓j  have degree 2 

degree 2 and consist of  monomial terms of the kind 𝑥i𝑦k  for 𝑗 = 1, 2, … , 𝑚. 

 The neighbourhood of each vertex of a general Jordan-Gauss graph is given by the 

system of linear equations in its row-echelon form. 

Let 𝑋n(𝐹) be one of the Chevalley groups over the Coxeter -Dynkin diagram 𝑋n 

which coincides with 𝐴n, 𝐵n, 𝐶n, 𝐷n, 𝐸6, 𝐸7, 𝐸8, 𝐹4, 𝐺2; 𝐹 is the field; and 𝐵 is the 

Borel subgroup of this group (see [28], [32]). Assume that 𝐺n=𝐺(𝑋n(𝐹)) stands for the 

geometry of 𝑋n(𝐹), which is the disjoint union of the totalities iG of left cosets of the 

standard maximal parabolic subgroups Pi, 𝑖 = 1, 2, … , 𝑛 of this group with the natu-

ral incidence relations 𝐼 = 𝐼n(𝐹) (see [28], [31]). The type 𝑡(𝑣) of kind 𝑣 = 𝑔Pi  is 𝑖. It 
follows immediately from the results in [33], [34],  [35] that the nonempty restriction 

of the binary relations 𝐼 on the disjoint union of two largest orbits iC and  jC , i ≠j of 

the Borel subgroup 𝐵 on iG and  jG respectively  is isomorphic to some Jordan-Gauss 

graph i,j𝐶n(𝐹).  We refer to this graph as a cellular Schubert graph over 𝐹. Applica-

tions of some special cellular Schubert graphs to constructions of multivariate public 

keys and cryptosystems of Noncommutative Cryptography can be found in [36], [37], 

[38], [21].   

We refer to the list 𝑆 of all nonzero monomial terms of 𝑓j taken with coefficient 1, 

together with the parameters 𝑠, 𝑟, m as the symbolic type of the Jordan-Gauss graph 

Г(𝐾). It is convenient that the symbolic type of a Jordan-Gauss graph Г (𝐾)  over 𝐾 is 

independent of the choice of 𝐾. We say that two Jordan-Gauss graphs defined 

overommutative rings 𝐾 and 𝐾’ are symbolically equivalent if they have the same 

symbolic type. Let  i,j𝐶0
n(K)  stand for the Jordan-Gauss graph defined over 𝐾 which is 

equivalent to i,j𝐶n(𝐹)  for which 𝑎i = 𝑏i= 1 and each monomial term of 𝑓i, 𝑖 = 1, 2, … , 

𝑚  has coefficient 1. 

We define a temporal (depending on time) Jordan-Gauss graph Г(𝐾) t of symbolic 

type 𝑆 as the family of equivalent Jordan-Gauss graphs Г(𝐾) t, 𝑡 = 1, 2, … defined by 

equations (1) with the same constant symbolic type 𝑆  depending on time 𝑡 coeffi-

cients 𝑎i=a i(t), 𝑏i=b i(t) and nonzero monomial terms of 𝑓j  of the form j𝑎(𝑖, 𝑘)𝑥i 𝑦k,  
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𝑥i 𝑦k ∈𝑆,    j𝑎(𝑖, 𝑘) = ja(i, k)(t)≠ 0. Some examples of temporal Jordan-Gauss 

graphs can be found in [39]. In contrast to the definition of time dependent graphs of 

[40], we introduce Jordan-Gauss temporal graphs via time dependent equations.  

We define walks on the temporal Jordan-Gauss graph and use them for the con-

struction of multivariate public keys, protocols and cryptosystems. In this paper we  

will concentrate on the case 𝑋n = 𝐴n  where the cellular Schubert graphs  i,j𝐶n(𝐹)   

introduced above are symbolically equivalent to the induced subgraphs of the geome-

try 𝐺(𝐴 n(𝐹)) over the field 𝐹, i.e. the 𝑛-dimensional projective geometry of all 

nonempty subspaces of 𝐹n+1. 

Finite projective geometries  were traditionally used for the construction of algo-

rithms of Coding Theory [41]. Their applications  to other areas of Information Secu-

rity have been published (see [42], [43] devoted to Network Coding). In particular, it 

was used in Cryptography ( see [44], where projective geometry were used for au-

thentication protocols). Nowadays finite geometries are widely used as tools for secret 

sharing. 

      Additionally they can be used for the design of some stream ciphers of multi-

variate nature and protocols of Noncommutative Cryptography (see [21] and further 

references). 

In this case the graph 1, n𝐶0
n(𝐾) is a bipartite graph of points (𝑥1, 𝑥2, … , 𝑥n) and 

lines [𝑦1, 𝑦2, … , 𝑦 n] with incidences given by equations: 𝑥n − 𝑦n= 𝑥1𝑦1 + 𝑥2𝑦2 + ⋯ + 

𝑥n-1𝑦n-1. 

This is symbolically equivalent to the 1, n𝐶n(𝐾’)  Jordan-Gauss graph over the ring 

𝐾’ with unity, having partition sets isomorphic to (𝐾’)n and with incidences given by 

equations of the form: 𝑎𝑥n− 𝑏𝑦n= 𝑎1𝑥1𝑦1 + 𝑎2𝑥2𝑦2 + ⋯ + 𝑎n-1𝑦n-1, where 𝑎 and 𝑏 are 

elements of the multiplicative group of 𝐾’ and 𝑎i ≠ 0, 𝑖 = 1, 2, … , 𝑛 − 1. 

In another example, the graph s, s+1𝐶0
s+r+1(𝐾)   can be interpreted as a bipartite 

graph consisting of points of the form (𝑥1, 𝑥2, … . , 𝑥s, 𝑥1,1, 𝑥1,2, … , 𝑥s,r) and lines [𝑦1, 

𝑦2, … , 𝑦r, 𝑦1,1, 𝑦1,2, … , 𝑦s,r], with the incidence condition given by the equations: 

𝑥i,j − 𝑦i,j= 𝑥iyj, 𝑖 = 1,2, … , s, 𝑗 = 1,2, … , r. 

This is symbolically equivalent to the graph s, s+1𝐶s+r+1(𝐾), defined over the same 

commutative ring 𝐾 and with an incidence relation given by the system of equations: 

𝑎 i,j𝑥i,j – 𝑏 i,jyi,j =d i,j𝑥iyj, where elements 𝑎i,j and bi,j belong to 𝐾* and di,j are ele-

ments from 𝐾∖{0}. 

These two families of graphs give us extremal cases: the incidence of points and 

hyperplanes from 1, n𝐶n(𝐾)   is the case of the single equation, while the case of sub-

spaces of dimension s and s +1 of s, s+1𝐶s+r+1(𝐾)   is the case when polynomials of the 

right hand side have a single monomial. 

We will use walks on graphs i, k𝐶n(𝐾) in the general case of parameters 𝑖 and 𝑘, and 

walks on their temporal analogues i, k𝐶n(𝐾)t for the creation of quadratic and cubic 

transformations of affine spaces over 𝐾 and 

studies of their cryptographic applications. For practical implementation, we will 

use cases when 𝐾 is a finite field of characteristic 2 or arithmetical rings of order 2t , 𝑡 
> 2. 

Let us consider basic operators on the set of vertexes of  Jordan-Gauss graph    of 

type (s, r, m). 



7 

We refer to ρ((x))=(x1, x2, …, xs) for  (x)=(x1, x2, …, xs+m) and  ρ([y])=(y1, y2, …, yr) 

for  [y]=[y1, y2, … , yr+m] as the colour of the point and the colour of the line respec-

tively.  

     For each bϵ Kr and p=(p1, p2, …, ps+m)  there is the unique neighbour of the 

point [l]=Nb(p) with the colour b. Similarly, for each c ϵ Ks and line l=[l1, l2, …, lr+m] 

there is the unique neighbour of the line (p)= Nc([l]) with the colour c.  We refer to 

operator of taking the neighbour of vertex accordingly  chosen colour as neighbour-

hood operator.  

    On the sets P and L of points and lines of linguistic graph we define colour jump 

operators  J=Jb(p)=(b1, b2, …, bs, p1, p2, …, ps+m), where (b1, b2, …, bs)ϵKs  and 

J=Jb([l])=[b1, b2, …, br, l1, l2, …, lr+m], where (b1, b2, …, br)ϵKr.  

For the point (p) and odd parameter l sequence of the colours a(1)ϵKs, b(1) ϵKr, 

a(2)ϵKr , b(2) ϵKs, ...., a(l)ϵKs, b(l) ϵKr, a(1+1) ϵKr    which allows us to define the map    

H: Km+s  →K m+r moving arbitrary point (v) to the line h= h(a(1), b(1), a(2), b(2), .., 

a(l), b(l), a(l+1))(v)=vl+1 defined via the following sequence of vertexes. 

 v1=Ja(1)(v), u1=Nb(1)(v1), 

v2=Ja(2)(v1), u2=Nb(2)(v2), 

...,  

vl=Ja(l)(vl-1), ul=Nb(l)(vl), vl+1=Ja(l+1)(ul). We refer to map H as the transition in the 

direction (a(1), b(1), a(2), b(2), .., a(l), b(l), a(l+1)). 

We can define the transition H(a(1), b(1), a(2), b(2), .., a(l), b(l), a(l+1)) in the 

case of even l in which v→h(v) will be a transformation acting on Ks+m=P. 

For each Jordan-Gauss graph Г(K) we consider 

 Г’=Г(K[z1, z2,..., zm+s]) given by the same equation but with the partition sets K[z1, 

z2,..., zm+s]) m+s and K[z1, z2,..., zm+s]) m+r . 

We take an odd parameter l, l>2, special point z=(z1, z2,..., zm+s) and apply the tran-

sition  H(a(1), b(1), a(2), b(2). ..., a(l), a(l+1)) to the vertex z of the graph Г’ such that 

coordinates of a(i), b(i) are elements of K[[z1, z2,..., zs]. The image of z will be the 

tuple u=(a(l+1)1(z1, z2,..., zs), a(l+1)2(z1, z2,..., zs),..., a(l+1 )r(z1, z2,..., zs), f1(z1, z2,..., 

zm+s), ), f2(z1, z2,..., zm+s), …, fm(z1, z2,..., zm+s)). Let F be a polynomial map of K m+s   to 

K m+r  sending (z1, z2,..., zm+s) to (u1, u2,..., um+s])=u. 

  We take two affine transformations L1 and L2 and consider the composition  

G=L1FL2 sending (z1, z2,..., zm+s) to (g1(z1, z2,..., zm+s), g2(z1, z2,..., zm+s),…,gm+r(z1, 

z2,..., zm+s)). 

 Additionally  we consider the above presented construction in the case of even pa-

rameter l Then a(l+1) is an element of K[x1, x2,..., xs] s , ul+1 and vl+1 are points.  We 

have to take  L1 and L2 from AGLm+s(K) and construct the transformation G=L1FL2 of 

the affine space K m+s . 

Proposition  1 [21]. Let us assume that the surjective map  (z1, z2,..., zs) to (a(l+1)1, 

a(l+1)2, ..., a(l+1)t) where t=r or t=s has a trapdoor accelerator T. 

Then the knowledge on Г(K) and tuples  a(1), b(1), a(2), b(2). ..., a(l), b(l) , trans-

formations L1, L2 and T is a trapdoor accelerator of the standard form of G mapping 

 K m+s on K m+t. 

Proposition 2 [21]. Let us assume that condition of the Proposition 1 hold and  

Г(K) coincides with the Jordan-Gauss graph i,j𝐶n(K), deg (a(i))+deg(b(i))=d, d>1 for 
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i=1,2,..., l and 1≤deg( a(l+1))≤d. Then map G is a surjective  transformation of K m+s    

onto  K m+t  of degree d . 

REMARK 2. 1.  We can change graphs Г(K) and i,j𝐶n(K)  for their temporal ana-

logues  Г(K)t ,  i,j𝐶n(K)t   and think that operators Nb(i) in the procedure executes in the 

static graph corresponding time parameter i, i=1, 2,...,l. Then conclusions of Proposi-

tion 1 and Proposition 2 will hold.  

Let Propositions 1’ and 2’ be analogues of  two written above statements for the 

case of temporal graphs. 

REMARK 2. 2. The case d=2, 3 of Proposition 2 and 2’ will be used further for 

the construction of quadratic public keys.  

Justification of Proposition 1’. 

Let us assume that Г(K) is temporal graph and its static graphs Гi in time i=1, 2, ..., 

l are known  as well as a(1), b(1), a(2), b(2),..., a(l), b(l), a(l+1), T and L1 , L2 of the 

Proposition 1.  Let us consider the equation G(z)=b for the given value of the tuple b. 

We compute (L2) -1 (b)=c and introduce intermediate vector p=(p1, p2,...., ps, ps+1, 

ps+2,..., ps+m) of variables pi and consider the equation H(p)=c where H=H(a(1), b(1), 

a(2), b(2). ..., a(l), a(l+1))= (a(l+1)1, a(l+1)2, ...a(l+1)t, h1, h2,..., hm), where hiϵK[x1, 

x2,..., xs+m]. 

       We use our knowledge on the trapdoor accelerator T to get solution p1=d1, 

p2=d2,...., ps=ds. Let d =(d1, d2,...,ds). It gives us the opportunities to compute 

a*(1)=a(1)( d1, d2,...., ds), b*(1)=b(1)( d1, d2,...., ds),   a*(2)=a(2)(d1, d2,...., ds), 

b*(2)=b(2)(d1, d2,...., ds),..., a*(l)=a(l)(d1, d2,...., ds), b*(l)=b(l)(d1, d2,...., ds), 

a*(1)=a(1)(d1, d2,...., ds). 

 So, we compute H(b*(l), a*(l), b*(l-1), a*(l-1), b*(1), a*(1), d)= (w1, w2, ...,  ws, 

ws+1, ws+2, ..., ws+m)=w.  

  Thus we got a solution for H(p)=c. We compute the solution  z* of G(z)=c as 

z*=(L1) -1(w)). 

If l is even or r=1 then the reimage  reimage z* is uniquely defined. 

 

3. Examples of multivariate cryptosystem. 
   

 Algorithm 1. 

Let K=Fq. We takes temporal analogue Xs,r(K) of Jordan-Gauss graph 

 s, s+1𝐶’s+r+1(𝐾) with points (𝑥1, 𝑥2, … . , 𝑥s, 𝑥1,1, 𝑥1,2, … , 𝑥s,r) and lines [𝑦1, 𝑦2, … , 

𝑦r, 𝑦1,1, 𝑦1,2, … , 𝑦s,r], with the incidence condition given in the time interval t=1, 2,..., 

l by the equations: t𝑎 i,j𝑥i,j –t𝑏 i,jyi,j =td i,j𝑥i𝑥j, where elements t𝑎i,j , tbi,j  and tdi,j are ele-

ments from Fq∖{0}. 

She uses the pseudorandom sequence to generate 3l(rs)2 nonzero coefficients of the 

equations. So, Alice is able to compute the neighbour t*Nb(v) of the  selected color b 

from KsUKr of the vertex v of static graph  t*Xs,r(K)  in given time t=t*ϵ{1, 2,...,l}. 

Let us assume that l is odd.  In the simplest case she selects linear  tuples a(1), 

b(1), a(2), b(2), ..., a(l), b(l) of kind  

a(i)=(ia11z1+ia12z2 +...+ia1szs, ia21z1+ia22z2 +...+ia2szs,…, 
ias1z1+ias2z2 +...+iasszs), i=1, 3,…, l, 

a(i)=(ia11z1+ia12z2 +...+ia1szs, ia21z1+ia22z2 +...+ia2szs,…, 



9 

iar1z1+iar2z2 +...+iarszs), i=2, 4,…, l-1, 

b(i)=(ib11z1+ib12z2 +...+ib1szs, ib21z1+ib22z2 +...+ib2szs,…, 
iar1z1+iar2z2 +...+iarszs), i=1, 3,…, l, 

b(i)=(ib11z1+ib12z2 +...+ib1szs, ib1z1+ib22z2 +...+ib2szs,…, 
ibs1z1+ibs2z2 +...+ibsszs), i=2, 4,…, l-1. 

Alice may use selected pseudorandom sequence to generate 

Written above coefficients  iakm or ibkm from the field Fq. 

She may take the public key of TUOV system of kind 

(z1, z2,..., zs)→(a1, a2,...., ar) where ai  are quadratic polynomials from K[z1, z2,...., 

zs] and set a(l+1)=(a1, a2,...., ar).  Alice takes this map together with corresponding 

trapdoor accelerator T. 

Alice forms map H=H(a(1), b(1), a(2), b(2), ...., a(l), b(l), a(l+1)) from Ksr+s onto 

Ksr+r. 

She selects L1 from AGLrs+s(Fq) and L2 from  AGLrs+r(Fq) and computes the stand-

ard form G= L1HL2 given by polynomials gi , i=1,2,..., rs+r  written in their standard 

forms. Alice  announces 

(z1, z2 , ..., zrs+s)→(g1(z1, z2 , ..., zrs+s), g2(z1, z2 , ..., zrs+s),...., grs+r(z1, z2 , ..., zrs+s)) as 

the public rule. 

Let us consider the complexity estimates of the described procedures. We assume 

that r=n, s=O(n), s>r and l=O(ne), 0<e≤2. Then the dimension m of the space  Kr+ms 

is O(n2).  

Recall that Alice and Bob  use some cipher for the communication. Alice  sends 

the ciphertext c and  Bob decrypts it. So both of them have the plaintext p. 

Alice and Bob share some hash function h and h(p). Size of h(p)=d=(d1, d2 , ..., 

dsr+r)  is r+m=O(n2) . It  is essentially smaller than the size of the plaintext p. Bob has 

the system of equations gi(z1, z2 , ..., zsr+s) = di, i=1, 2,…, sr+r . To sign the corre-

sponding to c  plaintext Alice has to send via open channel the solution of this system 

to Bob. 

She uses the procedure in the justification of the Proposition 1. 

Alice computes  (L2)-1  in time O(m2)= O(n4). 

She uses the trapdoor T for TUOV  to solve  

ai(z1, z2,..., zs)=di, i=1,2,…, r  in time O(n2). 

The computation of parameters a*(j), b*(l), l=1, 2,..., l-1 takes 

O(n2+e). 

   Note that the application of jump operator Ja where aϵK costs O(n). The compu-

tation of the neighbour of the vertex of  the static Jordan-Gauss graph t*Xs,r(K)  costs 

O(m)=O(n2). So Alice computes the value of  H(b*(l), a*(l), b*(l-1), a*(l-1), b*(1), 

a*(1), d) in time O(n2+e). 

Computation  of the value of (L1)-1 costs O(m2). 

It means that for e≤2 the computation of the signature Alice need O(m2)=O(n4) el-

ementary operations.  

Bob verifies the signature of Alice in time O(m3) via substitution of the coordinates 

of the message  into m multivariate equations from O(m) variables.  
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REMARK 3.1. Alice can take some pairs of (a(i), b(i)) , i=1,2,..., l such that min-

imal degree of    is 0 and maximal degree of elements of the pair is 2. This modifica-

tion does not affect the complexity of the execution. 

      Noteworthy that instead of the chosen above  map a(l+1) one can take other 

known trapdoor accelerators for which the cryptanalysis is already known.  For in-

stance in the paper [36] the case of finite fields of characteristic 2 the Imai-

Matsumoto encryption scheme were selected (see [45]). The case s=r was implement-

ed in the of  static Jordan-Gauss graphs   Xs,s(Fq) known as double Schubert graphs 

and b(i)=a(i+1), i=1, 2,..., l-1. 

The computer experiment justify that the density of the quadratic map, i.e. number 

of nonzero coefficients in the standard form with m variables  is O(m 3). So it is close  

to the case of the map in general form when we have the density of  kind 1/2m 2(m-

1)+O(v 2). The cryptanalysis of the implemented case is still unknown. 

 

REMARK 3. 2. Instead of trapdoor accelerators one can take a quadratic map for 

which the procedure of reimage is obvious. For example in the case of Fq, q>2 of 

characteristic 2 one can take the map (z1, z2,..., zs)→(l1(z1, z2,..., zs) 2, l2(z1, z2,..., zs) 2, 

…, lr(z1, z2,..., zs) 2) where linear forms  li_define linear map of rank r. Elements L1 and 

L2  of general form will hide the selected quadratic map. Other example can be found 

in [25]. 

The modification of the cryptosystem. 

Let us consider some subset J of the  Cartesian product C of {1,2,..., s} times 

{1,2,...,r}  such that C-J contains at least s elements. 

Let us consider  the  deletion ∆(J) of coordinates  of points  

(𝑥1, 𝑥2, … . , 𝑥s, 𝑥1,1, 𝑥1,2, … , 𝑥s,r) and lines [𝑦1, 𝑦2, … , 𝑦r, 𝑦1,1, 𝑦1,2, … , 𝑦s,r]  of 

Xs,r(K)  with the indexes from J  

together with corresponding equations.  

If the cardinality of S-J is k then  ∆(J) defines the homomorphism  of Xs,r(K)  onto 

Jordan-Gauss graph Xs,r,k(K) of type (s,r, k). 

Algorithm 2. We can consider the modification of Algorithm 1 via the use of 

Xs,r,k(K) instead of Xs,r(K). 

The output will be the  map G of kind  (z1, z2,..., zs+k)→(g1(z1, z2,..., zs+k), g2(z1, 

z2,..., zs+k),…, gr+k(z1, z2,..., zs+k)). 

If k  is O(n2) then the complexity of the procedures for Alice to make the digital 

signature will be the same with the case of Algorithm 1.  

When the size of k is O(n) then the choice e=1 leads to the complexity O(n 2).  

REMARK 3. 3. We can used the Proposition 2 and 2’ in the case of d=3 for crea-

tion of the cubical multivariate public rules instead of quadratic maps of Algorithm 1 

and 2. Another option is the substitution of graphs i,j𝐶n(K) instead of Xs,r(K)  in the 

case of Algorithm 1. 

  Linear algebra over the commutative rings K with zero divisors is heavily depend-

ing on the choice of K. So quadratic multivariate public keys over the general commu-

tative rings are interesting. 

Algorithm 3. Alice takes the temporal graph Г(0)=i,j𝐶n(K) of type (s, r, m) and  

0a(1),  0b(1), 0a(2), 0b(2), ..., 0a(l(0)), 0b(l(0)) from   K[z1, z2, ...., zs] sUK[z1, z2,...,  zs] r 
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satisfying conditions of Proposition 2’ for d=2. She  selects surjective map 0a(l+1) 

of K s  onto K r  of degree 1 and form map  HГ(0)( 0a(1),0b(1), 0a(2), 0b(2), ..., 0a(l(0)), 
0b(l), 0a(l(0)+1)) together with  0G= 0L1HГ(0) 0L2 where 0L1ϵAGLs+m(K) and 
0L2ϵAGLr+m(K)) . So, Alice  computes the standard form of  the map 0G of Ks+m onto 

 K r+m. She  identifies  0G with the corresponding tuple (g1, g2,..., gr+m) from K[z1, 

z2,...,  zs] r 

 Alice takes temporal   graphs Г(1)= Xs+m,r+m, m(1)(K), m(1) ≥s+m,  

  Г(2)= Xs+m+m(1),r+m+ m(1), m(2)(K), m(2) ≥s+m+m(1),...,  Г(n)= Xs+m+m(1)+m(2)+...m(n-

1),r+m+ m(1)+m(2)+...m(n-1), m(n)(K), m(n) ≥s+m+m(1)+...+m(n-1). 

 She  selects odd parameter l(1), l(2),..., l(n)  together with 

 iL1  from AGLs+m+m(1)+...m(i)(K) and  iL2 from AGLr+m+m(1)+...+m(i)(K). 

Alice forms 1G= 1L1HГ(1)
1L2 where HГ(1)= HГ(1)(1a(1),1b(1), 1a(2), 1b(2), ..., 1a(l), 

1b(l), 0G)  for  1a(1),1b(1), 1a(2), 1b(2), ..., 1a(l), 1b(l) satisfying conditions of Proposi-

tion 2. 

She computes   2G= 2L1HГ(2)
2L2 where HГ(2)= HГ(2)(2a(1),2b(1), 2a(2), 2b(2), ..., 2a(l), 

2b(l), 1G)  for  1a(1),1b(1), 1a(2), 1b(2), ..., 1a(l), 1b(l) satisfying conditions of Proposi-

tion 2. 

Alice continues this recurrent process and constructs 
nG= nL1HГ(n)

nL2 where HГ(n)= HГ(n)(2a(1),2b(1), 2a(2), 2b(2), ..., 2a(l), 2b(l),n-1G)  for  
1a(1),1b(1), 1a(2), 1b(2), ..., 1a(l), 1b(l) satisfying conditions of Proposition 2. 

So she uses standard form of  nG   and the trapdoor accelerator T  which is the in-

formation on  static graphs of  temporal graphs Г(j), j=0, 1, 2, .., n on time intervals 1, 

2,..., l(j) together with  sequences 0a(1),0b(1), 0a(2), 0b(2), ..., 0a(l(0)), 0b(l(0)), 
0a(l(0)+1),  ia(1),ib(1), ia(2), ib(2), ..., ia(l), ib(l(i)), i=1,2,....,n and affine transfor-

mations iL1, 
iL2 for i=1,2,..., n. 

REMARK 3. 4.. The construction of  trapdoor accelerator for some bijective quad-

ratic transformation G of affine space  Kn is presented in [46]. It  is based on well 

known Jordan-Gauss graph D(n, K) of type (1, 1, n-1). This cryptosystem is imple-

mented in the cases K=Zq and K=Fq , q=2i, l= 7, 8, 16. 

The map G together with the corresponding trapdoor accelerator T can be used as 

Г(0) of presented above  iterative construction.     

The detailed description of graphs i,j𝐶n(K) is given in the next section. 

 

 4. Schubert cellular graphs over the fields and commutative 

rings and their applications. 
 

    Projective geometry  n-1PG(Fq) of dimension n-1 over the finite field Fq, where q 

is a prime power, is a totality of proper subspaces of the vector space   V=(Fq) n of 

nonzero dimension. 

This is the incidence system with type function t(W)=dim(W), W ϵ  n-1 PG(Fq) and 

incidence relation I defined by the condition W1IW2 if and only if one of these sub-

spaces is embedded in another one. We can select standard base e1, e2,…, en of V and 

identify n-1PG(Fq) with the totality of linear codes in (Fq)n.The geometry   n-1ℾ(q)= n-

1PG(Fq)  is a partition of subsets  n-1ℾ(q) i  consisting of elements of selected type i, 

i=1,2, …, n-1. We assume that each element of V is presented in the chosen base as 
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column vector (x1, x1, … , xn). Let U stands for the unipotent  subgroup of automor-

phism group PGLn(Fq)  consisting of lower unitriangular matrices.  

Let us consider orbits of the natural action of U  on the projective geometry  n-

1PG(Fq). They are known as large Schubert cells. Each of  orbits on the set ℾm(Fq) 

contains exactly one symplectic element spanned by elements ei(1), ei(2), ..., ei(m).  So 

the number of orbits of (U, ℾm(Fq)) equals to binomial coefficient Cm
n . Noteworthy 

that the cardinality of  n-1 ℾm(Fq) is expressed by Gaussian binomial coefficient.  

Unipotent subgroup U is generated by elementary transvections xi,j(t), i<j, tϵFq.  If we 

select i and j then  elements of kind  xi,j(t)  form root subgroup Ui,j, corresponding to 

the positive root ei-ej  of root system An-1.  

Let J be a proper subset of  {1, 2, …, n}=N, JS be Schubert cell containing 

symplectic subspace WJ spanned by ej  ϵ J, ∆(J)= { (i,j) | iϵ J, jϵN-J, i<j }. Then a 

subgroup U(J) generated by root subgroups Ui,j, (i, j) ϵ  ∆(J)  of order qk, k= |∆(J)| 

acts regularly on JS. It means that we can identify JS  and U(J). Noteworthy that each 

ℾm(Fq) has a unique largest Schubert cell of size q m(n-m), it is JS for J={n, n-1, n-2, … , 

n-m+1}. We denote this cell as mLS(q).   We consider the bipartite graph m,kIn(Fq) of 

the restriction  of I onto disjoint union mLS(Fq) and kLS(Fq). It is bipartite graph with 

bidegrees  qr and qs  of type (r,  s, p) where r=|∆({n, n-1, n-2, …, n-m+1})- ∆({n, n-1, 

n-2, … , n-m+1}) ∩∆({n, n-1, n-2, … , n-k+1}) |  and s=|∆({n, n-1, n-2, … , n-k+1}) - 

∆({n, n-1, n-2, …, n-m+1})∩ ∆({n, n-1, n-2, …, n-k+1})|, p=|∆({n, n-1, n-2,…,n-m+1) 

∩∆({n, n-1, n-2, …, n-k+1}) | . We refer to the graph of binary relation  m,kIn(Fq) as 

Cellular Schubert graph and denote it as m,kCn(Fq) graph. In particular case n=2m+1, 

k=m these graphs are known as Double Schubert graphs [38]. 

Let K be a commutative ring. We consider  group U=Un(K) of lower unitriangular 

n times n matrices with the  entries from K. Let ∆ be the totality of all entries of (i, j), 

1 ≤  i<j ≤ n, i. e. totality of positive roots from An-1. We identify element M from 

Un(K) with the function f: ∆→ K such that f(i,j)=mi,j. The restriction M|D of M on 

subset D of ∆ is simply f|D.   For each proper nonempty subset J of {1, 2, …, n } we 

define U(J) as totality of matrices M=(mi,j) from U such that (i, j) ϵ{∆- ∆(J)} implies 

that  mi,j=0.  We  define incidence system  n-1PG(K) as a totality of pairs (J, M), M 

ϵU(J) with type function t(J, M)=|J| and incidence relation given by conditions (1J,  

1M) I (2J, 2M)  if and only if one of subsets 1J and 2J is embedded in another one and  
1M-2M) | ∆(1J )∩∆(2J) =1M ∙ 2M-2M ∙ 1M.  We refer to this incidence system as 

projective geometry scheme over commutative ring K.  If K=F is the field  then n-

1PG(F) coincides with n-1-dimensional projective geometry over F, i. e. totality of 

proper nonzero subspaces of the vector space  

F n(see [21] and further references) where the reader can find similar 

interpretations of  Lie geometries and their Schubert cells, their  generalisations  via 

pairs of type (irreducible root system, commutative ring K). The concept of large and 

small Schubert cell in the classical case of field is presented in [47], [48]. 

We introduce ℾm(K), mLS(K) and graphs m,k C 
n(K) for m=1, 2,  …, n-1 via simple 

substitution of K instead Fq. 

We refer to disjoint union of mLS(K), m=1, 2, …, n-1 with the restriction of inci-

dence relation I and type function t on this set as Schubert geometry scheme of type 

An-1 over commutative ring K.  
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Let Г=Г(K)t  be the temporal linguistic graph of type (s, r, m) and H(a(1), b(1) , 

a(2) , b(2) ,..., a(l), b(l), a(l+1)) is its even transition i. e. parameter l is even.  The 

composition of two even transitions is well defined. They are elements of Cremona 

semigroup s+mCS(K)  of endomorphisms of K[z1. z2,..., zs, zs+1, zs+2,...zs+m]. Each en-

domorphism F can be identified with the tuple of its values on variable (F(z1), 

F(z2),..., F(zs+m). We define deg(F) as maximal of degrees F(zi),  i=1, 2..., m+s. 

Proposition 3 [21].  

Let  Г= m,k𝐶n(K)t and d is some constant >1. Then the totality of even transitions of 

kind H(a(1), b(1) , a(2) , b(2) ,..., a(l), b(l), a(l+1)) such that  deg(a(i))+deg(b(i))=d, 

d>1 for i=1,2,..., l and deg(a(l+1))=1 generates  semigroup dS(Г(K)t)  of nonlinear 

polynomial transformations of mLS(K) of  maximal degree d.  

REMARK 4.1. Elements of kind H(a(1), b(1) , a(2) , b(2) ,..., a(l), b(l), a(l+1))   

satisfying conditions of Proposition 3 with the bijective a(l+1) form a subgroup 
dG(Г(K)t) of dS(Г(K)t). 

REMARK 4.2.  Propositions 3 holds for the case Г= Xs,r,k(K) 

  Subsemigroups   dS(Г(K)t),  Г(K)t = m,k C 
n(K) t  are very special large subgroups of 

the corresponding affine Cremona semigroup pCS(K) ,  p= m(n-m) because of the 

product of two elements from  pCS(K)  of degree d in general position will have de-

gree d2 but the product of two elements of degree 2 from  dS(Г(K)t) will be of degree 

at most  d .  

  It means that the composition of two representatives of 2S(Г(K)t) will be computed 

in time O(p7) and this noncommutative semigroup subsemigroup can be used as plat-

form for the implementation of classical protocols  of Noncommutative Cryptography 

(see [49]. We illustrate this fact in the case of following twisted Diffie-Hellman pro-

tocol.  

Assume that correspondents Alice and Bob agree to use knwn  noncommuta-

tive semigroup S  which has invertible elements.  They  agree on non commuting  

elements h and invertible g from S via the communication through open channel. 

Alice choses positive integers k(A), r(A). Bob selects his k(B), r(B). Alice sends 

gr(A)hk(A)g-r(A)=gA to Bob. He  sends  gr(B))hk(B)g-r(B)=gB to Alice. They compute the 

collision map G as gr(A)(gB)k(A)g-r(A) and  gr(B)(gA)k(B) g-r(B).   

The security of this scheme rests on the complexity of Conjugacy Power 

Problem. Adversary has to solve one of the equations  gyhxg-y=gA or  gyhxg-y=gB.  

In the case when S is subsemigroup of affine Cremona semigroup of endo-

morphisms of K[x1, x2,..., xp], K=Fq or K=Zq where q is prime power >2  and ele-

ments g , h are given in their standard forms the Conjugacy Power Problem is NP -

hard. So Alice can use S=L 2S(Г(K)t)L-1 where LϵAGLp(K). She generates g and h as 

conjugates of elements of kind H(a(1), b(1) , a(2) , b(2) ,..., a(l), b(l), a(l+1)) of Prop-
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osition 3. Alice computes their standard forms and sends them via open channel to 

Bob. 

After the execution of this variant of the protocol Alice and Bob share large 

array of O(p3) coefficients of the standard form of G. 

Alice can create multivariate rule F as output of Algorithm 1 given as tuple of pol-

ynomials (f1 , f 2 ,..., f r+rs) where 

 f i ϵK[x1, x2 ,..., xs+rs] with trapdoor accelerator T . 

Alice and Bob executes the twisted Diffie -Hellman protocol in the case of S= 
2S(Г(K)t),   Г(K)t =Xr,s(K)t and elaborate  

G given by the tuple (g1 , g2,..., g s+rs). Alice can deliver the map F safely via send-

ing (f1 +g1 , f2 +g 2 ,..., fr+rs+gr+rs) to her partner Bob.  

Alice and Bob can use session of the protocol and transmission of multivariate en-

cryption tools periodically.   

We will continue studies of symbiotic combinations of multivariate encryption 

tools with the various protocols of Noncommutative Cryptography with platforms 

which are subsemigroups of affine Cremona semigroups over various finite commuta-

tive rings. Examples of such protocols are given in [50]. 

         In the section 2 we stated that in Algorithm 1 graph X s,r  can be substituted 

by Jordan-Gauss graph m,kCn(K) t of type (s, r, p). 

For simplicity we assume that K=Fq  and the map B given by  

the tuple a(l+1) of quadratic multivariate polynomials has the trapdoor accelerator 

T which allows us to compute the reimage of B in time O((s+p)2
 ). We assume that 

odd parameter l has size O(n) and parameters m and k are in general position and 

consider this obfuscated version of Algorithm 1. 

Algorithm 4. 

Alice selects parameter n, constants ᾳ and β from open interval (0, 1) together with 

constants a and b from 

Z. For the simplicity we assume that 0<ᾳ < β. 

She sets parameters m=[ᾳn+a] and k=[βn+b] where parenthesis denote the flow 

function and a and b are 

selected constants.  Alice computes parameter s, r and p of the 

linguistic graph m,kCn(K) t. Without loss of generality we assume that s>r. She choses 

data to define static graphs of  for t=1, 2,..., l. Alice can form these field elements via 

selection of them as members of  pseudorandom or genuinely random sequences. The 

number of all coefficients is 0(n3). 

       She  will  generate the tuple H(a(1), b(1) , a(2) , b(2) ,..., a(l), b(l), a(l+1)) with 

a(i) and b(i) from F q[x 1, x2 ,..., x s+p]s+pU F q[x1, x2 ,..., x s+p] r+p. 

 Recall that deg(ai) and deg(bi) are selected from the set {0,1, 2} under the condi-

tion that deg(a(i)) + deg (b(i))=2, i=1, 2,..., l. 

The number of all polynomial coefficients is O(n7). 

Alice can form these tuples of polynomials via selection of 

their coefficients as pseudorandom parameters. 

Finally Alice selects bijective affine transformation L1 and L2 and computesstandard 
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form of the map L1HL2=G given by the tuple (g1, g2,..., gr+p). 

She presents multivariate rule G to public users. 

Let us evaluate the time to generate the digital signature. 

Assume that correspondents have hash value 

h=(h1, h 2,..., hr+p). Alice computes (L1)-1(h)=( c1, c2, ...., cr+p) in time O(n4). 

She solves a(l+1)(z1, z2,...., zm+s) =c  in time O(n4) and gets 

Some solution (v1, v2, ..., vm+s)=v. 

Alice computes a(i)(v) and b(i)(v) in time O(n4). 

The operator of taking neighbour of the vertex cost O(n4). 

For the construction of the signature she need O(n) neighbour computations. Jump 

operators application does not affect the complexity. Thus the complexity to sign the 

document is O(n5). 

REMARK 4.3. We can implement Algorithm 4 with the special pair (a(l+1), T) 

constructed as the composition of output of the D(s+p, K) based algorithm [46] of 

kind G, T’. Alice can take linear map L of Ks+p onto Kr+p of the rank r+p take a(l+1) 

as the composition G and L and T as the pair L, T’. 

5 . Conclusion  

 In this paper we present the method of construction of trapdoor accelerators of 

Multivariate Cryptography in terms of Algebraic Graph Theory. It uses bipartite cel-

lular Schubert graphs of geometries of Chevalley groups given by equations  over 

finite field Fq. Temporal analogues of these graphs are  

defined via the option of a momentum change  of the coefficients of monomial 

terms in  these algebraic equation.  

This approach allows  us define cellular Schubert graphs and their temporal ana-

logues over arbitrary commutative ring K with unity.  The partition sets of such graph 

are affine spaces Kn and Km. The special walk on the temporal graph  over , K [x1, x2 

,..., xn] can be used for the construction of multivariate map G from Kn to Km (or Kn to 

Kn. The information on temporal graph and the walk can serve as corresponding 

trapdoor accelerator T of G, i. e. the knowledge on T allows to compute the reimages 

of G.  We presented some of these procedures as Algorithm 1 and 4 in the case of 

graphs s,kCn(K) in terms of Chevalley group over the diagram An (case of general line-

ar group). Some other  maps with trapdoor accelerators are described  in [22 ] the 

cases of diagrams Bn, Cn and Dn . 

Presented in this paper methods has some similarity with the construction of multi-

variate rules with Oil and Vinegar techniques when variables of core quadratic maps 

over finite fields are divided into two groups of variables (oil and vinegar parameters 

and the specialisation of one group of variables converts the transformation into linear 

maps (see the description of RUOV in [2] and further references. The advantage of  
s,kCn(K) based technique is the option to use the commutative ring with zero divisors 

for which corresponding linear algebra and Groebner basis technique are more sophis-

ticated than in the case of  a field. These graphs allow us to construct also  cubic maps 

with the trapdoor accelerators. 
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 Additionally we can present some heuristic arguments supporting the conjecture 

that the complexity to find the reimage of  constructed quadratic or cubic outputs of 

algorithms 1 and 4 without the knowledge of described trapdoor accelerator  has s 

nonpolynomial nature. 

Let us consider the case when Alice does not use endomorphism    and L2 of degree 

1. 

Assume that she use only one cellular Schubert graphs s,kCm(K) with the operator of 

changing colour and the operator to compute the neighbour of chosen vertex. We can 

consider the graph ψ of the binary relation “ colours of vertexes x and y of different 

type can be changed to make recoloured vertexes adjacent in s,kCm(K). Then input x 

and output y vertexes of algorithm 1 or 4 will be connected by the walk in ψ. Dijkstra 

algorithm will allow us to find the walk between x and y and recover the reimage of y 

in time vln (v) where v is the order of graph. 

Let d, d>3 be the order of finite commutative ring K and n be the  maximal dimen-

sion of the space of the partition sets of ψ.  Then v>dn and the  complexity  of Dijkstra 

algorithm of finding the path between the input and the output of the algorithm is 

exponential one. We can expect that with the temporal graph defined via the sequence 

of Jordan-Gauss graphs j Im(K), j=0, 1, 2,…the complexity of finding the path will be 

higher. 

  Section 4 illustrates that temporal Jordan-Gauss graphs can be used for the con-

structions of new platforms of Noncommutative Cryptography which are special 

semigroups of Cremona semigroup of endomorphisms of K[x1, x2,…, xn] with bound-

ed degree. These platforms  are formed  by elements  of degree  bounded by constant 

(2 or 3) over the selected commutative ring K.  Results on the implementation of pro-

tocols based on  such platforms can be found in [37], [38] and [22].   These protocols 

allow safe delivery of multivariate map of bounded degree from one correspondent to 

another one and its further usage for the digital signature procedure.  

Alternatively to the approach of this paper we investigate options to use special  

endomorphisms of K[x1, x2,…, xn]  of unbounded degree for design of protocols and 

cryptosystem on platforms of multivariate nature (see [51] and further references). 

Noteworthy  that Noncommutative Cryptography is another well established and 

promising area ( see [52-58] and recent cryptanalytic results [59-65]). 

 We concentrate on the multivariate algorithms of digital signatures but bijective 

public keys can be used as encryption procedures. 

 Despite the fact currently announced by National Standards of Information Tech-

nology (NIST, USA) standards of postquantum cryptography are constructed in the 

terms of alternative to MC approaches the intensive research on new multivariate 

cryptosystem is continue. When it comes to digital signatures, NIST has already de-

veloped two standards. The first is called Module-Lattice-Based Digital Signature 

Algorithm (ML-DSA for short) and defines a general digital signature algorithm.  

The second one is called Stateless Hash-Based Digital Signature Algorithm (SLH-

DSA for short). It is a digital signature algorithm based on the hash technique.  Essen-

tially shorter signatures can be obtained with the multivariate cryptosystem  ’’TUOV: 

Triangular Unbalanced Oil and Vinegar’’ algorithm were presented to NIST (see 
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https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-

files/TUOV-spec-web.pdf) by principal submitter Jintaj Ding.  

Our paper presents several new multivariate digital signatures  procedures.  Some 

of them are the generalisations  of schemes [36] known  since 2015 for which the 

cryptanalysis is still unknown. Proposed methods allow us to construct obfuscations 

of arbitrary selected multivariate cryptosystem such as mentioned above TUOV, old 

Matsumoto-Imai system, various variants of Oil and Vinegar system and others. Ad-

ditionally new method gives an option to create algebraic cryptosystems over the 

finite commutative rings K different from finite fields such as arithmetical  or Boolean 

rings. We believe that Multivariate K-theory for which  the main instruments are ele-

ments of Cremona semigroups (see endomorphisms of K[x1, x2,…, xn] (see [66], [67]) 

have a capacity to provide efficient digital signatures. Suggested algorithms in case of 

finite fields and arithmetical rings can be already used for the protection of Infor-

mation systems.  
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