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Abstract. We present a tweakable wide block cipher called Mystrium
and show it as the fastest such primitive on low-end processors that lack
dedicated AES or other cryptographic instructions, such as ARM Cortex-
A7. Mystrium is based on the provably secure double-decker mode, that
requires a doubly extendable cryptographic keyed (deck) function and a
universal hash function. We build a new deck function called Xymmer
that for its compression part uses Multimixer-128, the fastest universal
hash for such processors, and for its expansion part uses a newly designed
permutation, G512. Deck functions can also be used in modes to build
encryption, authenticated encryption, and authentication schemes, and
hence, Xymmer is of independent interest. The current state-of-the-art
wide tweakable block cipher Adiantum-XChaCha12-AES encrypts 4096-
byte messages at 11.5 cycles per byte on ARM Cortex-A7, while for
Mystrium it is 6.8 cycles per byte while having a higher claimed security.

Keywords: tweakable wide block cipher · deck function · permutation-
based cryptography · disk encryption.

1 Introduction

Historically block ciphers have been the main building block in symmetric key
cryptography. Since block ciphers can only operate on inputs of �xed length,
they are used in conjunction with a mode of operation to deal with inputs of
variable length. In many modes of operation, security relies on the uniqueness
of a data element called a nonce, typically instantiated by a counter or a freshly
generated random value.

However, some practical scenarios necessitate achieving security even in the
absence or misuse of a nonce. Notable examples include disk encryption, encryp-
tion in the Tor anonymity network [1], or in TLS and VPN communications.
Moreover, cloud storage services, relying on nonces for data-at-rest encryption,
face similar threats, potentially leading to unauthorized data exposure.

In disk encryption, additional computational demands can signi�cantly de-
grade user experience and deplete battery life on mobile devices. But, achieving
good performance along with security in case of nonce absence or misuse is hard
to reach by leveraging traditional block ciphers and their modes. In this paper,
we propose a tweakable wide block cipher [24] aimed at such use cases.
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Related Works Some of the earliest examples of variable input-length support-
ing and length-preserving cryptographic primitives include the Hasty Pudding
cipher [29] and the Mercy cipher [9]. In these designs a key innovation was the
idea of spice, which later came to be known as tweak, and such ciphers are known
as tweakable wide block ciphers. Following the results of [25], a very common ap-
proach to build a tweakable wide block cipher is to make use of an unbalanced
Feistel network. Some notable examples of such wide block cipher modes in-
clude XCB [26], HEH [28], EME [20], HCTR [30], HCH [8], HSE [27], AEZ [21],
FAST [7] and tweakable HCTR [14].

One recent proposal for such a tweakable wide block cipher is Adiantum [10].
Adiantum is meant for disk encryption on devices with a CPU that does not
have dedicated AES instruction, such as those used in low-end smartphones.

Adiantum achieves high speed and security by using a mode HBSH (Hash,
Block cipher, Stream cipher, Hash) that the authors proposed in the same paper.
The HBSH mode is an unbalanced Feistel with two branches: an arbitrary length
branch and a �xed length branch. It requires two calls to a universal hash func-
tion, one call to a stream cipher, and one call to a block cipher on the narrow part
of the Feistel. In this mode, the bulk of the workload is processed by the universal
hash functions and the underlying stream cipher. Adiantum is an instantiation
of this mode where the designers use a combination of NHT [6], Poly-1305 [2]
for universal hashing, XChaCha12 [3] for the stream cipher, and AES [13] for
the single block cipher application. This makes Adiantum as far as we know the
most e�cient tweakable wide block cipher on its target platform [10].

However, HBSH comes with a drawback: It requires three di�erent types
of cryptographic primitives. The requirement for a block cipher, even though
it is only invoked once, is specially undesirable since the target platforms for
Adiantum do not have any cryptographic instructions and decryption in this
mode also requires the computation of the inverse of the block cipher.

Double-decker [19] is a tweakable wide block cipher mode that also make use
of unbalanced Feistel network, but does not require any block ciphers. This mode
is instead based on doubly extendable cryptographic keyed (deck) functions [11].
These functions take a sequence of arbitrary length strings as input and output
a string of variable length. The double-decker mode has two arbitrary length
branches and this mode consists of two Feistel rounds with the deck functions
surrounded by two Feistel rounds of a universal hash function. The processing
time in this mode is dominated by one call to the keyed hash function and two
calls to the underlying deck function. Since deck functions take a sequence of
arbitrary length strings, a tweak can naturally be fed to the inner rounds in
these modes as can be seen in Appendix E, Fig. 8.

Our contribution and paper organization In this paper we propose a new tweak-
able wide block cipher named Mystrium based on the double-decker mode as an
alternative to Adiantum. Mystrium o�ers better e�ciency while o�ering more
security than Adiantum (see Sections 8.1 and 9). The bound on the advantage
of distinguishing Adiantum from a random tweakable length-preserving permu-
tation is dominated by 2−104 [10, Theorem 1, Section 6.4], while for Mystrium
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it is 2−126. Mystrium uses Multimix, a keyed hash function de�ned on top of
Multimixer-128 [17] as universal hash and a new deck function that we propose,
named Xymmer, as the deck function. The paper is organized as follows.

In Section 2 we describe the notations used throughout the paper. We intro-
duce G512, a 512-bit public permutation that is the building block for our designs
in Section 3, and report on its avalanche behavior in Section 4. We then specify
Multimix, a universal hash based on Multimixer-128 that takes a short key and
can process any sequence of arbitrary length byte-strings in Section 5. We then
introduce the deck function Xymmer in Section 6, and discuss its security in
Section 7. Finally, we introduce the tweakable wide block cipher Mystrium in
Section 8, and analyze the performance of both Mystrium and Xymmer imple-
mented on a 32-bit Armv7 Cortex-A processor in Section 9.

2 Notations and preliminaries

In this paper, we use operations on bit-strings and their integer counterpart
interchangeably. To that end, we use di�erent fonts to denote bit-strings, like x,
and integers, like x.

Given x ∈ {0, 1}∗, the i-th bit in x is denoted by xi, where indexing starts
from 0. |x| will denote the length of x in bits. ε denotes the empty string with
|ε| = 0. x || y will be used to denote concatenation of bit-strings x and y. For x, y
with |x| = |y| , x ⊕ y denotes the bitwise XOR between x and y. Messages and
keys in this paper are limited to byte-strings and for a byte-string x, Bytelen(x)
will denote its length in bytes.

For x ∈ {0, 1}w, where w > 0 and 0 ≤ i < j < w, we denote: x[i:j] =
xixi+1 . . . xj−1, x[i:] = xixi+1 . . . xw−1 and x[:i] = x0x1 . . . xi−1.

Vectors are denoted in boldface, like x and () will denote the empty vector.
The i-th component of a vector x of integers is denoted as xi. For such an n-
component vector x and 0 ≤ i < j ≤ n−1, we also denote x[i:j] = (xi, . . . , xj−1).

De�nition 1 (integer counterpart). Let x ∈ {0, 1}w for some w > 0. We

denote its integer counterpart as int(x) de�ned as int(x) =
∑w−1
i=0 xw−i−12

i.

De�nition 2 (binary representation). Let w > 0 be an integer. For any

non-negative x < 2w, we denote its w-bit binary representation as binw(x) =
x0x1 . . . , xw−1 such that int(x) = x, i.e., for 0 ≤ i ≤ w−1, xi =

⌊
x

2w−i−1

⌋
mod 2.

bin(x) with w omitted denotes the binary representation of x. So, |bin(x)| =
blog2(x)c+ 1 if x 6= 0, and |bin(0)| = 1.

The integers in this paper are treated as elements of Z/2wZ with w = 32 or 64.
For two elements x, y ∈ Z/232Z, x� y, x� y, and x · y denote (x+ y) mod 232,
(x− y) mod 232, and (x · y) mod 232 respectively. Integer multiplication between
two 32-bit integers, referred to as 32-bit multiplication, plays an important role in
our design. The 32-bit multiplication of x, y ∈ Z/232Z denoted as x× y returns
their product in Z/264Z without any modular reduction. When operating on
elements of

(
Z/232Z

)n
for n > 1, binary operations like �, �, ·, and × are
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de�ned naturally component-wise. In case of �, �, ·, the output is again an
element of

(
Z/232Z

)n
, and in case of ×, the output is an element of

(
Z/264Z

)n
.

Addition in the group Z/264Z will be denoted as .
On platforms with processors having the Advanced Single Instruction and

Multiple Data Stream (ASIMD) instruction sets, dedicated instructions are avail-
able for operations such as addition modulo 232 and 32-bit multiplication. In such
platforms, bit-strings are typically stored in 128-bit registers, which can be ad-
dressed as 2 64-bit or 4 32-bit words. Such 32 or 64-bit-strings can be interpreted
as their integer counterpart determined by the so-called arrangement speci�er.
Thus, a 128-bit vector register can interchangeably be treated as a member of(
Z/232Z

)4
or
(
Z/264Z

)2
. We can perform operations like modular addition, 32-

bit multiplication, etc., e�ciently on elements of these sets.
We describe the operation of splitting a nw-bit string into n w-bit substrings

denoted as sbinn,w() in Algorithm 1. Alternatively the operation of treating a
nw-bit string as an element of (Z/2wZ)n and vice-versa, which we denote as
sintn,w() and sint_invn,w() respectively are described in Algorithms 3 and 4.

We also interpret a 64-bit integer as a pair of 32-bit integers determined by
its most and least signi�cant 32-bits respectively. We denote the operation of
interpreting an n-component vector of 64-bit integers as a 2n-component vector
of 32-bit integers as 64to32n(), and describe this operation in Algorithm 2. For
all the use cases, these operations are implicit with no implementation cost.

Algorithm 1: Splitting an nw-bit string in
n w-bit strings sbinn,w(x)

Inputs : x ∈ {0, 1}nw
Output: (x0, x1, . . . xn−1) ∈ ({0, 1}w)n

for i← 0 to n− 1 do xi ← x[iw:(i+ 1)w]
return (x0, x1, . . . xn−1)

Algorithm 2: Converting a string of n ele-
ments of Z/264Z to a string of 2n elements
of Z/232Z 64to32n(x)

Inputs : (x0, x1, . . . xn−1) ∈
(
Z/264Z

)n
Output: (y0, y1, . . . y2n−1) ∈

(
Z/232Z

)2n
for i← 0 to n− 1 do
y2i ←

⌊
xi
232

⌋
, y2i+1 ← xi mod 232

return (y0, y1, . . . , y2n−1)

Algorithm 3: Splitting nw-bit string in a
string of n elements of Z/2wZ sintn,w(x)

Inputs : x ∈ {0, 1}nw
Output: (x0, x1, . . . xn−1) ∈ (Z/2wZ)n

(x0, x1, . . . xn−1)← sbinn,w(x)
for i← 0 to n− 1 do xi ← int(xi)
return (x0, x1, . . . xn−1)

Algorithm 4: Converting a string of n
elements of Z/2wZ in a nw-bit string
sint_invn,w(x)

Inputs : (x0, x1, . . . xn−1) ∈ (Z/2wZ)n

Output: x ∈ {0, 1}nw

for i← 0 to n− 1 do xi ← binw(xi)
return x0 || x1 || . . . || xn−1

3 The public permutation G512[r]

We present a public permutation G512[r] :
(
Z/232Z

)16 → (
Z/232Z

)16
with r

Feistel rounds. We refer to the round function of G512[r] simply as G512, i.e.,
G512[r] = (G512)r and specify it in Algorithm 5. We also provide an informal
description of G512. The input q can be seen as a 4 × 4 matrix Q with i-th
column qi. The e�ect of G512 on Q is shown in Eq. 1 and Fig. 1.
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Algorithm 5: The public permutation G512
Inputs : A vector q = (q0, q1, . . . , q15) ∈

(
Z/232Z

)16
Output : A vector z = (z0, z1, . . . , z15) ∈

(
Z/232Z

)16
for i← 0 to 3 do qi ← q[4i : 4i+ 4]
d← 64to324(q0 × q1)
for i← 0 to 7 do xi ← di � q8+i
for i← 0 to 3 do

z2i ← x2i � x(2i+4) mod 8 � x(2i+5) mod 8

z2i+1 ← x2i+1 � x(2i+4) mod 8 � x(2i+5) mod 8

end

for i← 0 to 7 do zi+8 ← qi
return z


q0 q4 q8 q12
q1 q5 q9 q13
q2 q6 q10 q14
q3 q7 q11 q15

 G512−→


z0 z4 q0 q4
z1 z5 q1 q5
z2 z6 q2 q6
z3 z7 q3 q7

 .

(1)

� 64to324() ��
L

x1
x0

q0 q1 q2 q3

z0 z1 q0 q1

Fig. 1: G512, one round of G512[r]

We use 32-bit multiplication as the source of non-linearity in G512 and �rst
compute 32-bit multiplication between elements of q0 and q1 component wise.
Each of these products is a 64-bit integer, that we interpret as a pair of 32-
bit integers: d = 64to324(q0 × q1). We then compute x0 = q2 � d[0 : 4] =
(x0, x1, x2, x3) and x1 = q3 � d[4 : 8] = (x4, x5, x6, x7).

We �nally apply a linear transform L on x = (x0,x1), where L consists of
an application of a 4× 4 circulant matrix to distinct components of x:

1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

 ·

x0
x1
x4
x5

 =


z0
z1
z4
z5

 and


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

 ·

x2
x3
x6
x7

 =


z2
z3
z6
z7

 .

Instead of applying the circulant matrices simply to the columns x0 and x1, our
choice allows more e�cient implementation while resulting in the same di�usion.
These matrices are very similar to the circulant matrix employed in Multimixer-
128 and branch number [13] of these matrices is 4.

4 Avalanche tests of G512[r]

Criteria such as full di�usion, avalanche, and strict avalanche criterion (SAC) [31]
are commonly used by cryptographers to estimate the vulnerability of a reduced-
round cryptographic function to attacks. A function satis�es SAC if whenever
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one of the input bits changes, each bit in the output changes with a probability
close to 1/2, where the probability is taken over a large and random sample.
These criteria are binary, meaning that they are either met or not. Therefore,
one usually reports the number of rounds required to satisfy them. Here we
use the avalanche probability vector de�ned in [11] because we are interested in
�guring out how G512[r] realizes the avalanche criteria through the rounds.

We describe the avalanche test in Appendix A, Algorithm 15. Concretely, for
a cryptographic function F , we calculate a vector PFδ where the ith entry reports
the probability taken over the sample that the i-th output bit �ips under F due
to the input di�erence δ (taken bitwise modulo 2). We then build a matrix VF

with i-th column PFδi , where δi is the binary vector with a 1 in the i-th position
and 0 elsewhere. To detect small biases we take M = 25.000.000 samples.

We depict VG512[r] as a 2-D �gure in Fig. 2. It shows how G512[r] realizes
avalanche through the rounds for r = 1, 2, 3, 4. In this �gure input and output
indices are on the x and y axes respectively. The gray-scale value in pixel (x, y)
shows the probability of changing the output bit at index y when the input bit in
index x is changed, where white color corresponds to probability of zero and black
color represents probability of one. We further explain Fig. 2 in Appendix B.

(a) G512[1] (b) G512[2] (c) G512[3] (d) G512[4]

Fig. 2: The avalanche probability matrix VG512[r]

It can be seen that after 3 rounds, some output bits are still independent
of certain input bits. After 4 rounds, VG512[4] is uniformly gray, suggesting that
if one bit changes in the input, each output bit changes with a probability of
close to one half. To verify the divergence from 1/2 of the entries of VG512[4],
we compute the cumulative distribution function (CDF) of its elements and
compare it with the expected distribution for a random mapping in Fig. 3. With
a sample size of 25.000.000, the latter distribution would have mean 1/2 and
standard deviation 1/2

√
25.000.000 = 1/10.000. These lines overlap and thus,

we cannot distinguish the CDF of VG512[4] from that of a random mapping.

5 Multimix

Multimixer-128 is an example of a parallel keyed hash function [15, 18, 17]. It

is the parallelization of the public function F-128:
(
Z/232Z

)8 → (
Z/264Z

)8
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Fig. 3: Cumulative distribution function of VG512[r]

described in Appendix A, Algorithm 13. Multimixer-128 is a 2−127-∆universal
keyed hash function [17] under the assumption of long independent masks and

is de�ned only over strings of elements of
(
Z/232Z

)8
, that we call block-strings.

Given a block-string M ∈
(
Z/232Z8

)l
, we refer to l as its length in blocks and

denote it as blocklen(M) = l.
We now propose a padding scheme to convert arbitrary-length byte-string

sequences into block-strings and an algorithm to generate secret mask blocks.

5.1 Injective input encoding

We �rst describe the injective encoding function, ValueLengthEncode() that en-
codes a byte-string M into a byte-string with Bytelen a multiple of 32. The function
is inspired by the padding scheme in [23, Section 5.1]. In ValueLengthEncode(M),
we append an encoding of Bytelen(M) followed by a su�cient number of 0 bytes
to M such that 32 divides the Bytelen of the resulting byte-string. The encod-
ing of Bytelen(M) is the byte-string m0m1 . . . mt−1 for some t > 1 such that the
MSB of m0 is 0, and for the remaining mi, it is 1. Bytelen(M) can be recov-

ered from the encoding by Bytelen(M) =
t−1∑
i=0

(int(mi) mod 27)27(t−i−1).We specify

ValueLengthEncode(M) in Algorithm 6.
Since Multimixer-128 takes block-strings as input and Xymmer as a deck

function must be able to process a sequence of byte-strings, we specify the
injective encoding of a sequence of byte-strings into a block-string that we
call SequenceToBlockString() in Algorithm 7. For a sequence of byte-strings
(M0; M1; . . . ; Mn−1), we �rst create a byte-string M by appending the result of
ValueLengthEncode(Mi) to ε for each Mi in the sequence. We then convert each
32-byte chunk of M into elements of (Z/232Z)8. Clearly, the strings can be recov-
ered from the encoding recursively one by one from the back.

5.2 Mask derivation

We proposeMaskgenκ(K) that outputs a string of secret masksK ∈
((

Z/232Z
)8)κ

from a short secret key K with 32 ≤ Bytelen(K) ≤ 63. In Maskgenκ(K), K is
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Algorithm 6: Encoding of a byte-string into a byte-string with Bytelen
a multiple of 32 ValueLengthEncode()

Inputs : A byte-string M

Output : a byte-string M′ where 32 divides Bytelen(M′)

b← bin(Bytelen(M))
m← ε
while |b| > 7 do

x← b[(|b| − 7):]
b← b[:(|b| − 7)]
m← 1 || x || m

end

m← bin8(int(b)) || m
M′ ← M || m
while 32 does not divide Bytelen(M′) do M′ ← M′ || bin8(0)
return M′

Algorithm 7: Encoding a sequence of byte-strings to a block-string
SequenceToBlockString()

Inputs : Sequence of byte-strings (M0; M1; . . . ; Mn−1)

Output : A string M ∈
((

Z/232Z
)8)∗

M← ε
for i← 0 to n− 1 do M← M || ValueLengthEncode(Mi)
`← |M|

256

(M0, M1, . . . , M`−1)← sbin`,256(M)
M← (sint8,32(M0), sint8,32(M1), . . . , sint8,32(M`−1))
return M

�rst padded by ValueLengthEncode(K). It is then interpreted as an element of(
Z/232Z

)16
, and processed by G512[6] to generate the �rst two mask-string blocks.

To generate more mask blocks, we apply G512[4] sequentially each time extracting
two blocks. We describe it in Algorithm 8 and illustrate it in Fig. 4.

G512[6]K′ G512[4] G512[4] G512[4] · · ·

K0 K1 K2 K3 K4 K5 K6 K7

Fig. 4: Description of Maskgenκ(K)

5.3 Speci�cation of Multimix

By generating a sequence of secret masks via Maskgenκ() from a short secret key
K, and by making use of SequenceToBlockString() over a sequence of byte-strings,
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Algorithm 8: Mask generation algorithm Maskgenκ()

Inputs : A byte-string K with 32 ≤ Bytelen(K) ≤ 63, An integer κ ≥ 1

Output : A string K ∈
((

Z/232Z
)8)κ

K′ ← G512[6] (sint16,32(ValueLengthEncode(K)))
K← (K′)
while dκ/2e > 1 do

K′ ← G512[4](K′)
K.append(K′)
dκ/2e ← dκ/2e − 1

end

K←
(
K0[0 : 8],K0[8 : 16], . . . ,Kdκ/2e[0 : 8],Kdκ/2e[8 : 16]

)
K← K[0:κ]
return K

we obtain a keyed hash function on top of Multimixer-128 that takes a short key
and can process any non-empty sequence of arbitrary length byte-strings. We
call this function Multimix and describe it in Algorithm 9.

Algorithm 9: The keyed hash function Multimix()

Inputs : Sequence (M0; M1; . . . , Mn−1)
A secret key K with 32 ≤ Bytelen(K) ≤ 63

Output : A digest h ∈
(
Z/264Z

)8
M← SequenceToBlockString(M0; M1; . . . ; Mn−1)
`← blocklen(M)
K← Maskgen`(K)
h← (0, 0, 0, 0, 0, 0, 0, 0)
for i← 0 to `− 1 do h← h F-128(Mi �Ki)
return h

6 The deck function Xymmer

Xymmer is a deck function and hence must support the corresponding interface.
A deck function F takes as input a secret key K and a sequence of an arbi-
trary number of byte-strings (M0; . . . ; Mn−1), and produces an arbitrary-length
bit-string Z that shall be hard to distinguish from a random string. We write:

Z = 0` ⊕ FK (M0, . . . , Mn−1)� d .

In this notation the output length is determined by the context, i.e., its length
is ` bits as it is added to the all-zero string 0` and the optional expression � d
at the right denotes that these bits are taken from the o�set d ∈ N in its output.
If it is absent, bits are taken from o�set 0.
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A deck function should allow e�cient incremental computing. By keeping
state, appending an extra string to the input sequence costs only the processing
of this extra string. Similarly, like an extendable output function (XOF), asking
for more output bits for a given input should also be e�cient.

6.1 Informal description and design rationale for Xymmer

Xymmer �rst compresses its input to a 512-bit internal state by applying Multimix.
The state is then expanded to an output bit-string of arbitrary length. As
Multimix in the compression phase, we designed the expansion phase to sup-
port parallelism.

The expansion phase takes the state at the output of the compression phase,
denoted as q(0), and generates output blocks in a sequence of stages. In each
stage i ≥ 1 it derives 32 output blocks from the state q(i) and then updates the
state to q(i+1). The derivations of output blocks and state update make use of
the same transformation. This transformation consists of applying G512[6] with
a feed forward, making it infeasible to compute state values q(i) from output
blocks or from q(j) with j > i. The inputs to this transformation are diversi�ed
with encoded indices. The encoding of an index 0 ≤ i ≤ 32 is denoted as Enc(i).

The expansion phase of Xymmer can be seen as an instantiation of the Kirby
construction [23] with the 512-bit permutation P = G512[6]. That construction
has excellent generic security as it provably achieves birthday-bound security in
the ideal permutation model provided its inputs form a pre�x-free set.

Kirby takes as input a key, an ID and a sequence of input blocks. The value
of q(0) � Enc(32) serves as key in our Kirby instance, the ID is empty and the
sequences of encoded indices serve as input block sequences. For any i ≥ 1
and 0 ≤ j ≤ 31, output block z(i,j) can be seen as the output of a Kirby
construction where the input block sequence is Enc(32)Enc(32) . . .Enc(32)Enc(j),
i.e., i−1 times Enc(32) followed by Enc(j). As there clearly is domain separation
between intermediate blocks (= Enc(32)) and �nal blocks (Enc(j) with j < 32)
these sequences form a pre�x-free set. For Enc(i) we use the scheme speci�ed in
De�nition 3, that aims at preventing di�erential attacks discussed in Section 7.3.

6.2 Speci�cation of Xymmer

Before we specify Xymmer, we de�ne the index encoding function Enc(i) and
the transformation FF[6] it uses.

De�nition 3. The index encoding Enc : Z/32Z→
(
Z/232Z

)16
is de�ned as

Enc(i) = (c0, c1, . . . , c15) with cj =


(i+ 1) · 251 , j ∈ {0, 1, 2, 3}
2i , j ∈ {4, 5, 6, 7}
0 , j ∈ {8, . . . , 15} .

Addition with 2i and (i + 1) · A for some A ∈ Z/232Z can be implemented
very e�ciently in software using bitwise left shift by an o�set i on bin32(1) and
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by repeated additions of A respectively. In the ARMv7-A architecture, we can
only store constants smaller than 256 with minimal cost. Our choice of A = 251
is a good choice with respect to the attacks discussed in Section 7.3.

After addition by Enc(i), the internal state is input to a transformation that
we denote as FF[6] and that is speci�ed in Algorithm 10. In short, FF[6] applies
G512[6] to its input and returns the bitwise addition modulo 2 of the binary
representation of its input and the G512[6] output.

Algorithm 10: The transformation FF[6] (q)

Inputs : A vector q ∈
(
Z/232Z

)16
Output : A binary string z ∈ {0, 1}512

q′ ← G512[6](q)
z← sint_inv16,32(q)⊕ sint_inv16,32(q

′)
return z

We describe Xymmer in Algorithm 11 and illustrate it in Fig. 5.
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Fig. 5: Deck function Xymmer

6.3 Security Claim

We make a security claim that expresses an upper bound on the advantage of
distinguishing Xymmer with a secret key from a random oracle. The security of
Xymmer is limited by the ε-universality of Multimix in the compression phase
and by the generic security of Kirby with a 512-bit state in a single-user setting
for the expansion phase.
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Algorithm 11: The deck function Xymmer

Inputs : Sequence of byte-strings (M0; M1; . . . ; Mn−1)
A secret key K with 32 ≤ Bytelen(K) ≤ 63
Requested o�set d ∈ N

Output : An arbitrarily long bit-string z

q(0) ← 64to328(MultimixK(M0; M1; . . . ; Mn−1))
z← ε
for i← 1 to ∞ do

q(i) ← sint16,32
(
FF[6]

(
q(i−1) � Enc(32)

))
for j ← 0 to 31 do z(i,j) ← FF[6]

(
q(i) � Enc(j)

)
end

z← z(1,0) || z(1,1) || z(1,2) . . . [d:]
return z

We quantify the resources of the adversary with the following metrics:

� N : the amount of computation expressed in the number of evaluations of
G512[6] or equivalent,

� M : the total amount of input and output of construction queries expressed
in the number of blocks,

� q: the number of construction queries.

Similar to the security bounds in [12, 23], in our claim we require that K be
sampled from a distribution DKey with at least 256 bits of min-entropy, where
min-entropy Hmin(DKey) = max

x∈{0,1}8κ
− log2(Pr(K← DKey) : K = x).

Here K← DKey represents that K is generated using the distribution DKey.

Claim. The advantage of an adversary in distinguishing Xymmer from a random
oracle, where K is sampled from a distribution with min-entropy of 256-bits and
M is limited by M ≤ 2128, is upper bounded by

q2

2128
+

N

2256
. (2)

First term in Eq. 2 expresses the e�ort to �nd collision at the digest of
Multimix and the second term accounts for the e�ort to �nd the key by exhaus-
tive search.

7 Security analysis of Xymmer

In this section, we follow the notations used in Algorithm 11. For i ≥ 0, we refer
to q(i) as the i-th stage. We further denote for i ≥ 1, 0 ≤ j ≤ 31:

q(i,j) = q(i) � Enc(j), w(i,j) = G512[6](q(i,j)), and w(i,j) = sint_inv16,32(w
(i,j)) . (3)
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For any �xed i ≥ 1 and 0 ≤ j 6= k ≤ 31, we refer to q(i,j), q(i,k) or w(i,j), w(i,k)

or z(i,j), z(i,k) as states belonging to the i-th stage.
Xymmer initialized with a secret key K can be distinguished from a random

function in several ways that we describe in the following subsections.

7.1 Guessing q(0), achieving collision at q(0) for independent masks

Multimixer-128 is a 2−127-∆universal hash function under the assumption of
independent masks. So the probability of a collision at its output for a pair of
messages is upper bounded by 2−127 . Moreover, its universality is also valid
over messages of di�erent length. Now, if we choose a pair of messages M0 and
(M0,M1, . . . ,Ml), i.e., a single-block message and an (l+1)-block message whose
�rst block is the same as the �rst message, then the probability of predicting
that their output di�erence under Multimixer-128 is ∆ is given by the number of
pre-images of block length l of ∆ under Multimixer-128. Due to the universality,
this probability is upper bounded by 2−127. Therefore for any l, the probability
of predicting an output of Multimixer-128 is upper bounded by 2−127.

The assumption of independent masks does not hold for the keyed hash
function Multimix. Multimix is 2−127-∆universal provided that an attacker is
unable to exploit the dependencies between the secret masks in the string K =
(K0,K1, . . . ,Kκ−1) resulting fromMaskgenκ() to predict output di�erences with
probability greater than 2−127. By dependency we mean dependency inside some
mask block Ki, or in between di�erent mask blocks Ki and Kj . We now provide
strong heuristic arguments to show that this is indeed the case.

7.2 Exploiting dependency in mask derivation

The universality bound of Multimixer-128 is determined by the maximum dif-
ferential probability across all di�erentials and image probability across all out-
puts to F-128, the public function of Multimixer-128. Here image probability
of an output refers to the fraction of its pre-images. Due to the speci�cation
of Maskgenκ(), attackers targeting single or two-block messages must exploit
dependencies within mask blocks K0 or in K0,K1 respectively. Any such depen-
dencies would stem from lack of entropy in the key x and the failure of G512[6] to
di�use that. According to [17, Lemma 10], the solution set of single-block di�er-

entials with a di�erential probability of 2−128 consists of keys K0 ∈
(
Z/232Z

)8
where 4 of the 8 components are constants. Similar conditions hold for the set
of pre-images of outputs with image probability close to 2−127 [17, Lemma 8].
For two-block messages, the conditions are characterized by linear conditions on
eight out of the sixteen components of the mask blocks K0,K1. Thus, improv-
ing such di�erential attacks would require very strong dependencies between the
mask blocks. Dependencies in K0, K1 or between K0 and K1 are very intricate
since G512[6] signi�cantly scrambles its inputs.

We thoroughly investigated potential attacks for exploiting dependencies, but
found absolutely no feasible means by which an attacker can improve di�eren-
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tial attacks utilizing mask dependencies. In fact, we could not even detect such
dependencies when G512[4] takes as input a key with only 128-bits of entropy.

The di�erential probability of other single or two-block di�erentials is at
most 2−160, signi�cantly smaller than 2−128. Thus improving di�erential attacks
using these di�erentials would require signi�cantly more dependency in the mask
blocks, making it considerably more challenging for attackers to target them.

Over more than 2 blocks, the attacker needs to exploit not only G512[6], but
also at least a single instance of G512[4]. So using more blocks to exploit possible
dependencies is even more challenging. Many cryptographic constructions, e.g.,
Xoo�f [11] only make use of very simple and linear mask generation algorithm.
To the best of our knowledge, there have not been any practical attacks in such
schemes exploiting dependency in the mask bits due to linear mask generation.
Knudsen et al. have also reported in case of iterated ciphers that complex mask
schedules lead to a high chance of attaining uniform distribution [22]. Based on
these arguments, we do not expect dependencies in the mask block sequence
due to Maskgen() to lead to collision-generating attacks with success probability
above 2−127 per pair.

In fact, we think that using only G512[2] instead of G512[4] inside Maskgen()
would also lead to a secure mask generation algorithm. But we are very conser-
vative in our design and for a signi�cant safety margin, we use G512[4] instead.
We welcome further cryptanalysis on our design. Finally, we claim that Multimix
is a 2−127-∆universal hash function.

7.3 Recovering internal state q(i) from output blocks

An attacker may try to recover an internal state q(i) with i ≥ 1 allowing them
to gain full knowledge on the output starting from that stage leading to a dis-
tinguishing attack.

We �rst look at the di�culty of recovering q(i) from a single output block.
This amounts to inverting the transformation FF[6]. To better understand this
attack, we look at the di�culty of inverting FF[1], i.e., the transformation with a
single round of G512, and provide the details of this attack in Appendix C. Even,
our best attack on inverting FF[1] requires 2256 guesses. Over multiple rounds,
this attack becomes even more infeasible. Thus, we claim that an attacker can
not retrieve the internal state from a single output block.

The attacker may also combine multiple output blocks in order to recover
the state q(i). We �rst let the attacker try to recover the internal states from two
output blocks. The best strategy for the attacker is to choose the output blocks
from the same stage since in addition to the output blocks and consequently
their bitwise di�erence modulo 2, the attacker also knows the di�erence between
the corresponding internal states modulo 232. More concretely, for i ≥ 1 and
0 ≤ j 6= k ≤ 31 the attacker knows

z(i,j) ⊕ z(i,k) = (w(i,j) ⊕ q(i,j))⊕ (w(i,k) ⊕ q(i,k)) ,

q(i,j) � q(i,k) =
(
q(i) � Enc(j)

)
�
(
q(i) � Enc(k)

)
= Enc(j)� Enc(k) .
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By slightly abusing notation, we denote (a(j,k),b(j,k)) = q(i,j) � q(i,k), where

a(j,k),b(j,k) ∈
(
Z/232Z

)8
. By De�nition 3, this means

b(j,k) = 0 and for n ∈ {0, 1, 2, 3},a(j,k)n = (j � k) · 251 ,a(j,k)n+4 = 2j � 2k .

Since b(j,k) = 0, the attacker knows xor-di�erence between the last 256-bits of
w(i,j) and w(i,k). So, the attacker has full knowledge of input di�erence modulo
232 and 256-bits out of the 512-bit bitwise output di�erence modulo 2 to G512[6].
We �rst show that an attacker cannot exploit knowledge of the input di�erence
modulo 232 to mount di�erential attacks.

In G512 we �rst compute the 4 32-bit multiplications involving q
(i,j)
n and

q
(i,j)
n+4 for n ∈ {0, 1, 2, 3}. This means that we introduce an input di�erence ((j �
k) · 251, 2j � 2k) to each of these 32-bit multiplications at the beginning of the
�rst round of G512[6]. The di�erential properties of 32-bit multiplication have
been studied in [17]. Given any input di�erence to 32-bit multiplication, the
maximum possible value of di�erential probability over all output di�erences for
that particular input di�erence can be computed e�ciently. The input di�erence
((j � k) · 251, 2j � 2k) has been chosen such that for all

(
32
2

)
values of 0 ≤ j 6=

k ≤ 31, maximum di�erential probability of these di�erentials for any output
di�erence is upper bounded by 2−39,97.

This means that for the internal states q(i,j) and q(i,k), the output di�erence
after the �rst round of G512 can only be predicted with a probability at most
2−159. Due to the high nonlinearity of G512, following any plausible di�erential
trail over 5 more rounds is completely infeasible for any practical attacker.

The attacker may try to utilize the knowledge of 256 bits of the di�erence
at the output of G512[6]. But even knowledge of full xor-di�erence at both input
and output to G512[6] leads to no meaningful attacks since their propagation
through G512[6] de�ned over 32-bit integers cannot be exploited feasibly.

On the other hand, we can also make the very strong assumption that the
attacker has knowledge of the di�erence modulo 232 at the output of G512[6]. We
note that this can happen if we replace the bitwise addition inside FF[6] with
addition modulo 232. In our attack, we look at the propagation of the input
di�erence in the forward direction and of the output di�erence in the backward
direction to meet in the middle. We provide details of our attack in Appendix D.
We can only meaningfully attack at most 3 rounds of G512[6]. Our attack is
not scalable over more rounds, and hence we claim that knowledge of di�erence
modulo 232 at input and output of G512[6] does not aid the attacker.

While using internal states belonging to di�erent stages makes any potential
attack much harder, combining multiple blocks belonging to the same stage leads
to an over-de�ned system of equations and we could not �nd any such attack to
improve over the attacks utilizing two output blocks.

7.4 Cryptanalytic attacks involving input and output to Xymmer

The class of attacks that exploit Xymmer output dependencies from its input
include di�erential, linear, and integral attacks. These are unlikely to succeed as
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the data path between input and output takes the composition of F-128 with
at least two iterations of G512[6], with its 512-bit state and powerful avalanche
behavior after only 4 rounds. For di�erential attacks, an attacker can only ob-
tain a collision after the compression phase with a probability upper bounded
by 2−127. Assuming there is no collision, any other di�erential attack is infea-
sible since that requires di�erence propagation over at least 12 rounds of G512.
Moreover, F-128 and G512[6] treat the state as an array of 32-bit integers, and
linear and integral attacks work best at the bit level, but cannot be applied to
arrays of 32-bit integers, which does not even have a �eld structure. We welcome
further cryptanalysis on our design.

8 The tweakable wide block cipher Mystrium

Double-decker is a construction for building a tweakable wide block cipher from
deck functions and universal hash functions [19]. It generalizes the Farfalle-WBC
construction, a wide block cipher construction proposed by Bertoni et al. [5], and
the global construction is an instantiation of the HHFHFH mode [4].

Double-decker, described in Appendix E and illustrated in Fig. 8, operates
as a four-round Feistel network with two arbitrary length branches. It involves
two Feistel rounds of deck functions surrounded by two rounds of a keyed hash
function. It takes as input a key K, a tweak W , and a message P, and transforms
it to a ciphertext C the same length as P. To prove the security bound of a
double-decker construction, the deck functions should have independent keys.
Instead of using two keys, it is also possible to use a single key and apply domain
separation between the inputs to these functions, as that gives deck functions
with two independent inputs.

Mystrium is an instantiation of the double-decker mode, where one of the
arbitrary length branches is empty. It uses Multimix as the keyed hash function
and Xymmer as the deck function. In Mystrium, a plaintext P is split into 3
branches P = T || U || V with |T | = |U | = 512 and |V | > 0. This means that
Mystrium does not require di�erent keys as the deck functions and the keyed hash
functions all have inputs with di�erent length, thus ensuring domain separation.
We specify encryption in Mystrium in Algorithm 12 and illustrate Mystrium
in Fig. 6. Since Mystrium follows the Feistel construction, the decryption is
straightforward and we specify the decryption in Appendix A, Algorithm 14.

8.1 Security claim

Our security claim for Mystrium expresses how hard it is to distinguish it from a
randomly chosen tweakable wide block cipher. We base it on �lling in our claimed
advantage for Xymmer and the ε-∆universality of Multimix in the bound for
double-decker proven in [19]. We quantify the resources of the adversary with
the following metrics:

� N : the amount of computation expressed in the number of evaluations of
G512[6] or equivalent,
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Algorithm 12: Encryption in Mystrium

Inputs : Plaintext P: Bytelen(P) > 128,
Tweak W: 0 < Bytelen(W) ≤ 63,
Key K: 32 ≤ Bytelen(K) ≤ 63

Output: Ciphertext C, same length as P
T← P[0:512]
U← P[512:1024]
V← P[1024:]
L← sint_inv8,64 (sint8,64(T) MultimixK(U))
R← U⊕XymmerK(W; L || V)� 0
X← L⊕XymmerK(W; R)� 0
Z← V⊕XymmerK(W; R)� 512
Y← sint_inv8,64(sint8,64(R) MultimixK(X || Z))
C← X || Y || Z
return C

� M : the total amount of input and output of construction queries expressed
in the number of 256-bit blocks,

� q: the number of construction queries,
� qW: the number of construction queries for a given tweak W.

Claim. The advantage of an adversary in distinguishing Mystrium, where K is
sampled from a distribution with min-entropy 256-bits and M ≤ 2128, from a
randomly chosen wide tweakable block cipher is upper bounded by

q2 +
∑

W q
2
W

2127
+

N

2254
.

Since
∑

W qW = q, it follows that
q2+

∑
W q2W

2127 ≤ q2

2126 . Thus the distinguishing
advantage for Mystrium is dominated by the term q2/2126, a signi�cant im-
provement over the claimed security bound of Adiantum, which is dominated by
q2/2104 [10, Theorem 1, Section 6.4].

9 Implementation and benchmarks

The Cryptography Extensions including dedicated AES instructions were in-
troduced for the �rst time as part of the ARMv8-A architecture. However, a
substantial number of low-end devices, such as smartphones aimed at develop-
ing markets and smartwatches, still have CPUs that lack these extensions. To
address this gap, Adiantum, a wide tweakable block cipher, has been introduced
yielding satisfactory performance on such platforms.

We wrote optimized code for Multimixer-128, G512[r], Xymmer, Mystrium,
and Maskgenκ() on the 32-bit ARMv7 Cortex-A processors. While designing
them we had Advanced SIMD (ASIMD) instruction set in mind to optimize the
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performance and e�ciency of the computations and at the same time minimally
impacting power consumption. Here we used the NEON vector instruction set
that is available on the ARM Cortex-A7 processor in the Broadcom BCM2836
chipset used in the Raspberry Pi 2 model B single-board computer. NEON vec-
tor operations are designed to simultaneously process multiple data elements of
identical size and type within vectors. These data types, which can be signed/un-
signed 8-bit, 16-bit, 32-bit, 64-bit, are determined by what is referred to as the
arrangement speci�er. The NEON vector operations used in the implementations
work on data elements of the size of 32-bit, as our input words in the design are
de�ned with the same length.

Our performance evaluation was primarily focused on 4096-byte messages,
although we also conducted tests on 512-byte messages and other message sizes.
In fact the reason behind selecting these special sizes of message is that that
512-byte disk sectors were standard until the shift to Advanced Format in 2010,
with modern large-capacity hard drives and �ash drives now predominantly using
4096-byte sectors. In Linux systems, the standard page and �le system allocation
unit size is also 4096 bytes.

For comparative analysis, Mystrium was evaluated against Adiantum. Table 1
reports the benchmarking results. Mask derivation in not taken into account
in the benchmarking of Adiantum. Thus we benchmark Mystrium with and
without taking mask derivation into account. We employed the most e�cient
constant-time implementations available1 or developed for the platform, with
performance-critical sections predominantly written in assembly language, often
utilizing NEON instructions.

Algorithm Input length in bytes
512 4096

Mystrium including mask derivation 13.121 9.766

Mystrium 9.969 6.765

Adiantum-XChaCha8-AES (ENC)a 17.032 9.652

Adiantum-XChaCha12-AES (ENC)a 19.401 11.559

Adiantum-XChaCha20-AES (ENC)a 24.862 15.871
a mask derivation is not included in the benchmarking.

Table 1: Performance on ARM Cortex-A7 in cycles per byte.

In Fig. 7 (top), we report on the number of cycles required for computations
in Xymmer with 32 bytes of input and various output sizes. Both axes are
presented on a base-2 logarithmic scale. The blue curve denotes the empirical
benchmark results, exhibiting a linear gradual increase in cycles per number of
output bytes. The red line represents the theoretical model, where the number
of cycles is predicted to increase by a constant, namely base-2 logarithm of 3. It
can be seen that for outputs larger than 210 the empirical benchmarking closely
follows the theoretical model. Fig. 7 (bottom) presents a similar analysis, this

1 https://github.com/google/adiantum/tree/master
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time correlating the number of cycles to the input byte size on a logarithmic
scale when the output of Xymmer is 64 bytes. The slope of the theoretical line
is log2 1.3.

Fig. 7: Benchmarking of Xymmer. Number of cycles plotted against varying out-
put sizes for a single block input (top) and input sizes for a single block output
(bottom) measured in bytes.

Software implementations can be found at https://github.com/parisaeliasi/

Mystrium

10 Conclusion

We propose a tweakable wide block cipher, called Mystrium, that is very e�cient
on software. Mystrium outperforms the state of the art Adiantum, designed for
similar platforms, in both security and e�ciency. In order to build Mystrium,
we design a deck function called Xymmer that is also very fast on software and
is of independent interest. We conduct preliminary cryptanalysis on Xymmer.
As future work, it would be interesting to conduct a more �ne-grained security
analysis of Xymmer.
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A Algorithms

Algorithm 13: F-128(X) [17]

Inputs : X = (x0, x1, x2, x3, y0, y1, y2, y3) ∈
(
Z/232Z

)8
Output : Z = (z0, z1, z2, z3, z4, z5, z6, z7) ∈

(
Z/264Z

)8
for i← 0 to 3 do

ui ← xi � xi+1 � xi+2

vi ← yi+1 � yi+2 � yi+3

end
for i← 0 to 3 do

zi ← xi × yi
zi+4 ← ui × vi

end
Z← (z0, z1, z2, z3, z4, z5, z6, z7)
return Z
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Algorithm 14: Decryption in Mystrium(P, W, K)

Inputs : A ciphertext C
A tweak W with 0 < Bytelen(W) ≤ 63
A secret key K with 32 ≤ Bytelen(K) ≤ 63

Output : A plaintext P such that Mystrium(P, W, K) = C

X← C[0:512]
Y← C[512:1024]
Z← C[1024:]
R← sint_inv8,64 (sint8,64(Y) Multimix(X || Z))
V← Z⊕Xymmer(W, R)� 512
L← X⊕Xymmer(W, R)� 0
U← R⊕Xymmer(W, L || V)� 0
T← sint_inv8,64 (sint8,64(L) Multimix(U))
P← T || U || V
return P

Algorithm 15: Computation of the avalanche matrix VF

Parameters: a transformation F over Zb2, an input di�erence ∆ and
number of samples M .

Output : the avalanche probability matrix VF .

Initialize a b -bit vector p of probabilities pi to all zeroes
Initialize a b× b -bit matrix VF of probabilities vi,j to all zeroes
for M randomly generated states S do

for all bits j in the state A do
Complement bit j of the state A to acquire the new state An
Compute B = F (A)⊕ F (An)
for all state bit positions i do

pi = pi +Bi/M
end
VF [: j] = pi

end

end
return VF

B Explanation of the patterns in Fig. 2

Writing out the output after one round of G512 explicitly we have

z0 = q8 � q12 � q13 � d0 � d4 � d5 ,

z1 = q9 � q12 � q13 � d1 � d4 � d5 ,

z2 = q10 � q14 � q15 � d2 � d6 � d7 ,

z3 = q11 � q14 � q15 � d3 � d6 � d7 ,

z4 = q8 � q9 � q12 � d0 � d1 � d4 ,
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z5 = q8 � q9 � q13 � d0 � d1 � d5 ,

z6 = q10 � q11 � q14 � d2 � d3 � d6 ,

z7 = q10 � q11 � q14 � d2 � d3 � d6 ,

z2 = q0 ,

z3 = q1 .

Changing bits only in the input word q0 propagates to changes in the words
d0, d1 after the 32-bit multiplication. Thus, if the word q0 changes, then only
the output words z0, z1, z4, z5, z8 would change. The words z0 and z1 are solely
dependent on d0 and d1 respectively. As a results, we see only the structures
and corresponding to these output words respectively in Fig. 2a. On the other
hand, z4, z5 are dependent on d0 � d1 and z8 = q0. As a result, for the output
words z4, z5, we see the structure and for the output word z8 we only see the
diagonal structure, .

The changes in other output words after one round can also be explained
similarly. The di�erence propagation through subsequent rounds in Fig. 2 can
be viewed by following the propagation of di�erences through the rounds. Due
to the Feistel structure of G512, we also note that the lower half of VG512[r] is the
same as the upper half of VG512[r−1] for r ≥ 1 as can be seen in Fig. 2. Finally
we see that after 4 rounds the avalanche criterion is satis�ed. This means that
the output bits of G512[6] depend non-trivially on the input bits and this gives
us a lot of con�dence in choosing G512[6] as the permutation in Xymmer.

C Recovering state q(i) from a single output block

First we look at r = 1. For notational simplicity let, FF[1] (q) = z and w =
G512[1] (q). Then we naturally denote q = sint_inv16,32(q) and w = sint_inv16,32(w).
We then have, (q0, q1, q2, q3) = sbin4,128(q) and (w0, w1, w2, w3) = sbin4,128(w).
Since G512[1] is a Feistel, w2 = q0 and w3 = q1. So, FF[1] (q) = w ⊕ q =
(q0 ⊕ w0, q1 ⊕ w1, q0 ⊕ q2, q1 ⊕ q3). The attacker can trivially guess the states
q0 and q1 to recover all the internal states. But this is expected to require 2256

guesses.
Now, let us assume that the attacker only guesses q0. For every guess of q0,

the attacker obtains w0 and q2. But, it is very hard for the attacker to retrieve
any more useful information. Indeed for i ∈ {0, 1, 2, 3}, let sint4,32(wi) = wi =
(w4i, w4i+1, w4i+2, w4i+3) and sint4,32(qi) = qi = (q4i, q4i+1, q4i+2, q4i+3). It can
be easily veri�ed that

d0 � d1 = w0 � q9 � (w1 � q8) , d2 � d3 = w2 � q11 � (w3 � q10) . (4)

Since the entries at the right hand side of Eq. 4 is known to the attacker, the
attacker can learn the di�erence between the integers representing the �rst 32
and the last 32-bits of the product qi × qi+4 for i = 0, 1. But, we could not �nd
any attack that can exploit this information without guessing d2i or d2i+1, while
guessing each of d2i or d2i+1 increases the cost of the attack substantially. The
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attacker can additionally guess part of q1, but that will only lead to information
on more such di�erences and will not help the attacker to �nd the whole internal
state. We could not �nd any attack that allows the user to obtain the internal
state with less than 2256 guesses.

D Propagation of modular di�erence through G512[6]

We denote the modular di�erence at the output of G512[6] as: (x(j,k),y(j,k)) =
w(i,j) �w(i,k).

In our approach, we look at the backward propagation of the di�erence
(x(j,k),y(j,k)) and the forward propagation of the di�erence (a(j,k),0) through
di�erent rounds of G512[r], and we try to meet in the middle to recover the inter-
nal state. 32-bit multiplication followed by 64to324() is the only source of non-
linearity in our functions. While 64to324() is a weakly non-linear function [16,
Section 3.2], we provide further advantage to the attacker by disregarding its
e�ect in the propagation of the di�erences. So, we will look at the di�erence
propagations before and after the application of 32-bit multiplications over dif-
ferent rounds.

We �rst look at G512[1]. It can be easily seen from Fig. 1 that the di�erences
before and after the multiplications are given by a and L−1(x) respectively.
With the knowledge of the input di�erence and output di�erence to the four

32-bit multiplication, the attacker can easily recover the internal states q
(i)
n and

q
(i)
n+4 for n ∈ {0, 1, 2, 3}. They can do this by looking at the solution sets to the

corresponding di�erentials to 32-bit multiplication and for most di�erentials, the
solution set is actually expected to be very small [17, Section 4]. This recovers
the left limb of the Feistel and by looking at the output, the attacker can easily
obtain the right limb to recover the whole internal state.

We now look at G512[2]. The di�erence before the multiplications in the second
round is y and the di�erence after the multiplication is L−1(x) � a. Thus, the
attacker can apply similar strategy to recover the entire internal state.

For G512[3], the only useful information that the attacker can recover is that
the di�erence after the multiplication in second round is L−1(y) � a, but does
not learn both the input and output di�erences between multiplications in any
round. Knowledge of only the output di�erence can still be used to restrict the
set of all possible input di�erences to these multiplication, which can lead to an
attack. But, the complexity of the attack increases substantially.

Over four rounds or more, the attacker cannot even know the output di�er-
ences to any multiplication. Thus we claim that even if the attacker has knowl-
edge of di�erence modulo 232 after G512[6], which is already infeasible to obtain
for the attacker, our construction is still secure.

E Double Decker construction

In this construction, the message P is �rst split into the inputs to the two strings
U and V using a split function. The strings U and V are further split into UL, UR, VL
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and VR with the outside branches length n, so |UL| = |VR| = n. This implies that
the input strings should at least have 2n bits. The operation of this construction
is demonstrated in Fig. 8. For Mystrium, we set VL = ε as demonstrated by the
dashed lines.

VL
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XR

FK1

FK2

HK
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UL
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Fig. 8: The double-decker construction [19]


