
Password-Protected Threshold Signatures⋆

Stefan Dziembowski12, Stanislaw Jarecki3, Pawel Kedzior1, Hugo Krawczyk4,
Chan Nam Ngo5, and Jiayu Xu6

1 University of Warsaw, Poland, {s.dziembowski, p.kedzior}@mimuw.edu.pl
2 IDEAS NCBR, Poland

3 University of California Irvine, USA, sjarecki@uci.com
4 Amazon Web Services, USA, hugokraw@gmail.com

5 Privacy + Scaling Explorations, Vietnam namncc@pse.dev
6 Oregon State University, USA, xujiay@oregonstate.edu

Abstract. We witness an increase in applications like cryptocurrency
wallets, which involve users issuing signatures using private keys. To pro-
tect these keys from loss or compromise, users commonly outsource them
to a custodial server. This creates a new point of failure, because com-
promise of such a server leaks the user’s key, and if user authentication
is implemented with a password then this password becomes open to
an offline dictionary attack (ODA). A better solution is to secret-share
the key among a set of servers, possibly including user’s own device(s),
and implement password authentication and signature computation us-
ing threshold cryptography.

We propose a notion of augmented password-protected threshold signature
(aptSIG) scheme which captures the best possible security level for this
setting. Using standard threshold cryptography techniques, i.e. thresh-
old password authentication and threshold signatures, one can guarantee
that compromising up to t out of n servers reveals no information on ei-
ther the key or the password. However, we extend this with a novel
property, that compromising even all n servers also does not leak any
information, except via an unavoidable ODA attack, which reveals the
key only if the attacker guesses the password.

We define aptSIG in the Universally Composable (UC) framework and
show that it can be constructed very efficiently, using a black-box compo-
sition of any UC threshold signature [13] and a UC augmented Password-
Protected Secret Sharing (aPPSS), which we define as an extension of
prior notion of PPSS [30]. As concrete instantiations we obtain secure
aptSIG schemes for ECDSA (in the case of t = n−1) and BLS signatures
with very small overhead over the respective threshold signature.

Finally, we note that both the notion and our generic solution for aug-
mented password-protected threshold signatures can be generalized to
password-protecting MPC for any keyed functions.

⋆ This is an extended version of the paper which appeared in [21].



1 Introduction

Threshold signatures have been studied for over 30 years [19]. Recently, their
practical applicability increased significantly due to the use of signatures in
blockchains and cryptocurrencies, especially for transaction authorization on be-
half of users. In particular, multiple schemes have been developed for threshold
ECDSA given the wide use of ECDSA in blockchains, e.g. [14,20,24,34]. Recall
that in a (t, n)-threshold signature the private signing key is shared between a
set of n servers, and t + 1 of them must collaborate to produce a signature;
security requires that breaking into any t servers does not allow an attacker to
forge signatures. Users that utilize a signature to authorize electronic transac-
tions, e.g., the transfer of monies between accounts, but want to protect their
keys from loss or compromise, can outsource signature generation to a trusted
service that implements a threshold signature scheme. Yet, this setting raises
the question of how a user can authorize the servers to sign on her behalf. An
attacker who impersonates the user in this authorization process can request
signatures on messages of its choice. On the other hand, if this authentication
requires a user-held cryptographic key then we have a chicken-and-egg problem:
we outsourced one user’s key but we still require the user to hold another.

We can break this loop if we consider a setting where the authorization
depends on a user’s password. However, this presents another conundrum: Asking
the user to pick an independent password for each server requires too much
memorization (without secure storage), but using the same password with each
server would create n points of failure, because an attacker who manages to
break any one of the n servers would be able to run an offline dictionary attack
against the user’s password, and then use the password to authorize all other
servers to sign any message.

Augmented Password-protected Threshold Signatures. Our goal is a
threshold signature scheme where all the user needs to authorize messages to be
signed is a single password. The break of any t servers should leak no informa-
tion that allows to attack either the signature scheme or the password, and the
security should not rely on any secret or public keys stored or carried by the
user. We refer to this notion as Password-protected Threshold Signature (ptSIG).

But we want more: We want that even after the compromise of more than t
servers (and possibly all n servers), the only information the attacker can gain
requires finding the right password via an exhaustive offline dictionary attack
(ODA). (Note that if a password triggers correct signature generation then an
ODA on all-servers compromise is unavoidable.) In other words, the password
should not only authenticate the user to the servers, but even if all servers are
compromised they cannot produce signatures unless the attacker guesses the
password. In particular, a solution that simply secret-shares the signing key
among the servers would not work. In summary, we seek solutions that offer the
following guarantees:

1. Each protocol execution, either by the user or by the servers, allows the
attacker an online password test for only one password guess.

2



2. Compromising up to t servers results in no security loss, i.e. the attacker
learns no information on either the signature key or the password.

3. Compromising t+ 1 or more servers (even all n) does not give the attacker
any information either, without the attacker first succeeding in an exhaustive
offline dictionary attack (ODA) against the user’s password.

Properties 1 and 2 can be achieved by a composition of threshold Password-
Authenticated Key Exchange (tPAKE) [36] and threshold signature scheme
(tSIG) [18]. However, property 3 is not implied by such composition, and in-
deed does not seem easy to achieve using any tPAKE and tSIG schemes alone.

Support for Server-side Security Mechanisms.We add one further require-
ment, and we refer to a notion which satisfies all requirements 1–4 as Augmented
Password-protected Threshold Signatures (aptSIG):

4. An attacker who knows the password, can sign only one message per each
interaction with t + 1 servers, and only if these servers agree to sign it. In
particular, if the attacker compromised t′ ≤ t servers, it can sign only one
message per each interaction with (t+ 1)− t′ uncompromised servers.

Property 4 implies that the scheme cannot reveal the signing key to the user
even if they hold the right password, as this would allow an attacker who com-
promises the password to sign messages without further server involvement. In
contrast, an aptSIG scheme can limit such attacker by several mechanisms, such
as rate-limiting, i.e. allowing only a limited number of signatures per time inter-
val; implementing multi-factor authentication, which the attacker would need to
bypass even if it learns the password; and signing messages only if they are com-
pliant with an application policy, i.e. only messages with application-compliant
semantics (e.g. including the correct current date). Note that property 4 also
protects the user in case of a break into the client machine: Such break might
leak the password, but it cannot leak the signing key.

Augmented Password-Protected Secret Sharing (aPPSS). We introduce
a protocol tool that plays an essential role in our aptSIG construction. Recall the
notion of Password-Protected Secret Sharing (PPSS) [5]. A (t, n)-PPSS scheme
allows user U to share a secret s among n servers and “protect” this sharing by a
password pw, in the sense that PPSS reconstruction will recover s if and only if
the user interacts with t+1 servers using the same password pw. (No extra user
storage or authentication infrastructure such as PKI is assumed except during
user registration.) PPSS security requires that compromising any t servers leaks
no information on either the secret s or the password pw. However, for the
purpose of building an aptSIG scheme, we need a stronger notion of PPSS with
the following additional property: a compromise of more than t servers (even all
n of them) still does not leak s and pw immediately, but only allows the attacker
to stage an offline dictionary attack on the password, and this offline attack will
leak s only if the attacker finds pw. We formalize this notion in the Universally
Composable (UC) model [11] and refer to it as augmented PPSS (aPPSS), and
we show that an existing PPSS scheme of [30] sufficiently realizes this stronger
notion.

3



From aPPSS to aptSIG. Armed with the aPPSS tool, we build an aptSIG
as follows. We start with a threshold signature scheme (tSIG) which relies on
n servers and an additional entity U, called the user, where breaking the tSIG
scheme requires breaking into t+1 servers plus compromising U. A tSIG scheme
for this “1+threshold” access structure can be obtained from regular (t, n)-
threshold signature by e.g. providing multiple shares to the user, but many
threshold signatures can be adapted to this access structure more efficiently, as
we exemplify by the BLS-based construction of Section 2.1.

At a high level, our aptSIG scheme works as follows:

– At initialization, which we assume runs over authenticated channels, e.g.
using PKI for server authentication1, the tSIG scheme is initialized so that
the servers and the user get the information needed to later run the sign-
ing protocol. Let tsU denote the state that U needs to store to run tSIG
signature protocol (this would include the share of the signature key, but
also possibly the keys needed to authenticate/encrypt tSIG protocol mes-
sages). In addition, servers and U initialize an aPPSS instance under the
user’s password which produces a random secret sk learned by U. The user
authenticates-and-encrypts the state tsU under key sk to obtain an authen-
ticated encryption ciphertext aecU, and sends aecU to all servers who store
it. U then erases all information and only remembers its password.

– To sign message m, party U and the servers run aPPSS reconstruction by
which U, using its password, retrieves sk. The servers send aecU back to
U who authenticates-and-decrypts it under sk to learn its tSIG state tsU.
Finally, now that U holds its tSIG state, U and the servers run the tSIG
scheme to sign m.

Definitions, generic construction, efficient aptSIG instantiations. Re-
garding the security of our construction, all of our constructions are defined in
the UC model, which is essential for security under arbitrary composition: First,
we frame the new notions of aPPSS and aptSIG as UC functionalities; second,
we generalize the UC tSIG notion of Canetti et al. [13], which was defined only
for the n-out-of-n setting, to arbitrary (t, n)-threshold and 1+threshold access
structures.

Next, we show how to efficiently realize our UC aptSIG notion: the schematic
outline above provides a generic design of UC aptSIG scheme from any UC
aPPSS and UC tSIG that supports the 1+threshold access structure. In this
construction, the only overhead incurred while compiling a tSIG to an aptSIG
is the cost of the aPPSS scheme, which can be instantiated efficiently: our UC
aPPSS scheme, which is essentially identical to the PPSS of [30], is a generic
construction from any UC Oblivious PRF (OPRF), and using the 2HashDH
OPRF of [30] it requires only two communication flows and its computational
cost is 1 exponentiation for each server and t+ 2 for the user.

1 Authenticated channels between user and servers are needed at initialization in order
for the user to identify the servers it is communicating with, but such channels, or
PKI, are not needed for later signature generation.

4



At first glance, it seems that this generic construction leads to a UC-secure
aptSIG implementation of ECDSA based on the UC ECDSA scheme of [13]
adapted to the 1+threshold access structure. However, that scheme was shown
secure only for the additive n-out-of-n sharing, so the result in [13] only implies
an aptSIG with t = n − 1. In the general case, one would have to carefully
verify whether the generalization of ECDSA of [13] to the (t, n)-threshold and
1+threshold settings realizes the UC tSIG functionality for these access struc-
tures. Moreover, that scheme requires several rounds of interaction.

For the general case, we instead present a concrete round-minimal and highly
practical aptSIG scheme (see Fig. 8 in Section 5) based on a threshold BLS sig-
nature [8,7]. It requires only 2 communication flows in signing, 3 flows in initial-
ization, uses no server-to-server communication, and takes O(1) exponentiations
per server and O(n) exponentiations and bilinear maps for the user. We prove
that this BLS-based scheme realizes the UC tSIG functionality for the 1+thresh-
old access structure for any t ≤ n s.t.

(
n
t

)
is polynomial in the security parameter;

this probably can be extended to any parameters n, t using the results of Bacho
and Loss [4] and Das and Ren [16] (see Section 2.1).

Extensions to Password-Protected MPC. While this paper develops defini-
tions and mechanisms specific to the case of aptSIG, our approach and techniques
can be generalized to provide “password-protection” of other cryptographic func-
tions. For example, in the case of encryption, a user may want to decrypt en-
crypted data only in collaboration with a threshold of servers conditioned on
knowledge of a password, and with additional assurances similar to those in our
aptSIG treatment (e.g., enforcing a decryption policy by the servers, allowing for
rate limits, etc.). In another example, one can consider a variant of aptSIG where
the keyed function is a blind signature scheme, to keep messages signed hidden
from the servers. In general, one can use this approach to password-protect
multi-party computation of arbitrary functions, with security guarantees as in
items 1–4 above, but with signatures replaced by an arbitrary keyed function.
We leave such extensions and generalizations as subjects for future work.

MPC for Obfuscated Point Function. Finally, observe that aPPSS can be
seen as a distributed computation of the point function

PFpw,s(x) =

{
s if x = pw

⊥ otherwise
.

The aPPSS protocol computes PFpw,s(·) in a distributed setting, by user U hold-
ing input x and the servers holding the secret-sharing of the function description
⟨pw, s⟩, with U computing the output y = PFpw,s(x). Moreover, the aPPSS prop-
erty that even a compromise of all servers allows for recovery of s (and pw) only
via an offline dictionary attack, implies that the server-held shares reconstruct
an obfuscated representation of point function PFpw,s, i.e. a software black-box
which allows evaluation of PFpw,s(·) on any input (e.g. password guess), but it
leaks no information on (pw, s) unless one queries it on input x = pw. Thus, an

5



efficient aPPSS scheme implies an efficient evaluation of a secret-shared obfus-
cated point function, and as such it can find other applications.2

Applications to blockchain wallets. Some very attractive applications for
threshold cryptography come from the blockchain domain. Recall that cryp-
tocurrency coins are signature keys, spending a coin is implemented as a signing
operation, and that storage of these signature keys is one of the most sensitive
parts of the entire blockchain ecosystem. This problem is addressed by the use
of so-called hardware wallets (see, e.g., [2]), threshold wallets (see, e.g., [15]),
or MPC wallets (see, e.g., [3]). Our solution provides a stronger, practical, and
flexible alternative to these methods. Our solution implements a threshold wal-
let, enabling storing cryptocurrencies in a threshold way, but it simultaneously
protects them with a password in two ways: One way, which is standard, is that
the user must use a correct password to access their cryptocurrency stored in
a threshold wallet. The second way, which is novel, is that the shares stored
by the threshold wallet parties are effectively encrypted under the password,
so even corruption of all the threshold wallets parties does not leak the cryp-
tocurrency keys in the clear. Instead, a corruption of all threshold wallet parties
reveals an obfuscated “output-a-key-only-if-input-is-a-correct-password” black-
box, which allows only offline dictionary attacks against a password, and leaks
the cryptocurrency keys only if the adversary finds the correct password.

1.1 Further Related Works

Threshold signatures. Threshold signatures were formalized by Desmedt and
Frankel in [19] with precursors including [9,17,18]. Since then countless papers
have studied threshold signatures for a variety of signature schemes. More re-
cent work in the area has been motivated by cryptocurrency applications with
particular focus on Threshold ECDSA, e.g. [14,20,24,34] as a prevalent signature
scheme used in these applications. Among these works, our paper adopts the
UC formalism for threshold signatures from Canetti et al. [13] who present a
threshold ECDSA scheme that realizes this formalism.

Server-aided signatures. Using passwords in the context of threshold signa-
tures has been studied in the setting of server-aided signatures and their variants
[10,23,27,35,40]. These papers address the case of a user with access to a ded-
icated device that stores a strong signing key but requires user’s password to
generate signatures. The password prevents an attacker that gets hold of the
device from producing signatures at will, but an attacker can run an offline
dictionary attack by entering password guesses to the device. To prevent such
dictionary attacks these works add a remote server with whom the device shares
the signing key and whose participation is required for producing signatures.
The user typically enters its password on the device, but the interaction with

2 McQuoid et al. [37] made a related observation, that a (non-threshold) OPRF im-
plements secure 2PC for evaluating (non-secret-shared) obfuscated point functions,
and used it to costruct 2PC on obfuscated inputs for a larger class of functions.

6



the remote server limits the number of password attempts an adversary can try
once it controls the user’s device. Some of the schemes also support hiding the
message being signed from the remote server. Most schemes in the literature
consider a single remote server but e.g. the work of [40] includes distributing the
remote server into a group of servers using a threshold signature scheme.

However, in all these cases, the user depends on its own device for generating
signatures. In particular, the device stores strong cryptographic keys. Our setting
is different. We assume users that carry with them nothing but their memorized
passwords; they do not even carry high-entropy public values (such as servers’
public keys), let alone dedicated devices. In particular, in our solution, a user
can trigger signatures by logging in from an arbitrary device.

Password-authenticated threshold signatures. A different line of work that
shares similarities with our paper, but targets a different application and has dif-
ferent security properties, is [1,6]. These papers deal with a single sign-on setting
where an identity provider (e.g., Google) authenticates users using passwords,
and upon authentication provides users with signed tokens (which authenticates
a user to some 3rd-party service). These works distribute the identity provider
operation over a set of servers and use threshold cryptography in two ways: First,
they use threshold password authentication (tPAKE) to authenticate users to
the servers that implement a distributed identity provider; second, the servers
use a threshold signature (tSIG) to sign the requested token.

However, in this application the signing key is the provider’s key, which is
used to sign messages for all users, and it can be reconstructed if t + 1 servers
are compromised. By contrast, in our case each user shares its own private key
across a set of servers, and neither this key nor the user’s password is leaked,
except via offline dictionary attack, even if all servers collude. Indeed, none of
the above cited works models or claims the “augmented” property we introduce
in the aptSIG notion, namely that the break of the system requires not only
that the attacker breaks into a sufficient threshold of servers, but that it also
succeeds in subsequent exhaustive offline attack against the user’s password.

Augmented threshold PAKE and proactive security. In a concurrent
work, Gu et al. [28] define the notion of augmented threshold PAKE (atPAKE),
where the term “augmented” denotes the same security property as in our aug-
mented PPSS and augmented Password-protected Threshold Signatures. As the
standard notion of tPAKE [36], a (t, n)-threshold atPAKE allows the user to
authenticate using a password to a set of servers who secret-share password-
related information, and the scheme leaks nothing if up to t out of n servers are
compromised. However, if t+1 or more servers are compromised, the password
still doesn’t leak in the clear unless the attacker succeeds in an offline dictionary
attack (ODA). Intuitively, in atPAKE servers must secret-share a (salted) hash
of the user’s password, rather than the password itself.

Apart from the fact that the work of [28] tackles a similar augmented property
in the context of a different threshold cryptosystem (threshold PAKE rather than
threshold password-protected signatures), their work also defines and constructs
a UC threshold OPRF (tOPRF), and we believe that the tOPRF-to-PPSS com-

7



piler of [32] offers an alternative implementation of UC aPPSS. One reason this
alternative aPPSS implementation is interesting is that all building blocks here
can be made proactively secure: the tOPRF of [28] can be proactively secure,
which leads to a proactively secure aPPSS, which (combined with a practively
secure threshold signature) in turn would result in a proactively secure aptSIG.

Paper organization. Section 2 defines UC threshold signature (tSIG) for arbi-
trary access structures, and exemplifies it with a threshold BLS signature scheme.
Section 3 defines Augmented Password-Protected Secret Sharing (aPPSS) and
shows that the PPSS scheme of [30] realizes this notion. Section 4 defines Aug-
mented Password-protected Threshold Signature (aptSIG), and shows a generic
construction of secure aptSIG from aPPSS and tSIG schemes. Finally, in Sec-
tion 5 we exemplify this generic compiler with an efficient and practical scheme
based on threshold BLS.

We defer some material to the appendices. Specifically, in the appendices we
include the proof of security for the threshold BLS scheme (Appendix B), we
define the adaptive UC OPRF functionality FOPRF and the 2HashDH proto-
col that realizes it (Appendix C), we include the security proof for our aPPSS
scheme (Appendix D), we compare our UC aPPSS model with prior PPSS defi-
nitions (Appendix E), we include the security proof for our aptSIG scheme (Ap-
pendix F), we introduce versions of our aptSIG model and the aptSIG protocol
that add the property of Perfect Forward Security (PFS) to the basic model (Ap-
pendix G), and we show a concrete BLS-based instantiation of the PFS-aptSIG
scheme (Appendix H).

Acknowledgments. Stefan Dziembowski, Pawel Kedzior, Chan Nam Ngo: This
work is part of a project that received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation program (grants PROCONTRA-885666). Stefan Dziembowski was also
partly supported by the Polish NCN Grant 2019/35/B/ST6/04138 and the Nico-
laus Copernicus Polish-German Research Award 2020 COP/01/2020. Stanislaw
Jarecki: This work was supported by NSF SaTC TTP award 2030575. Hugo
Krawczyk: This work was done while the author was at the Algorand Founda-
tion. Chan Nam Ngo: The majority of this work was done while the author was
with the University of Warsaw, Poland.

2 Threshold Signatures

Figure 1 shows a generalization of the ideal functionality for threshold signature
FtSIG of Canetti et al. [13] to an arbitrary access structure S. The UC threshold
signature model of [13] extends the formalization of standard (i.e. non-threshold)
signatures as a UC functionality [12] (for prior and related work on UC signatures
see references therein) to the distributed setting where the signing key is secret-
shared among n servers. However, the UC formalization of [13] defined it solely
for the case of an n-out-of-n secret-sharing, where the signature is unforgeable
if the adversary corrupts up to n−1 servers, but all servers have to participate

8



Notation: We assume sid = (. . . ,P) where P is a list of parties, and we let Psid

denote set P specified by string sid. Ssid denotes an access structure S applied
to set Psid, i.e. signatures for sid can be created only by a set A of parties s.t.
A ∈ Ssid. The functionality interacts with a set of parties P and an adversary A∗.
Corr is initialized to the initial set of corrupted parties.

Key Generation:

[K.P] On (tsig.keygen, sid) from party P (or (tsig.keygen, sid,P) from A∗ if P ∈
Corr), record and send to A∗ tuple (tsig.keygen, sid,P).

[K.V] On (tsig.publickey, sid,V) from A∗, if (tsig.keygen, sid,P) is recorded for all
P ∈ Psid then record (sid,V).

[K.F] On (tsig.keygencomplete, sid,P) from A∗, if ∃ record (sid,V) then send
(tsig.publickey, sid,V) to P.

Signing:

[S.P] On (tsig.sign, sid,m) from P (or (tsig.sign, sid,P,m) from A∗ if P ∈ Corr), if
∃ record (sid,V) then record and send to A∗ tuple (tsig.sign, sid,m,P).

[S.S] On (tsig.signature, sid,m, S, σ) from A∗, if S ∈ Ssid and tuple (tsig.sign, sid,
m,P) is recorded for all P ∈ S then do the following:

[S.S.1] If ∃ record (sid,m, σ, 0) then ignore this message;
[S.S.2] Else, if V(m, σ) = 1 then record tuple (sid,m, σ, 1);
[S.S.3] If V(m, σ) = 0 then ignore this message.

[S.F] On (tsig.signcomplete, sid,m,P) from A∗, if ∃ record (sid,m, σ, 1) then send
(tsig.signature, sid,m, σ) to P.

Verification:

[V.V] On (tsig.verify, sid,m, σ,V) from P, send (tsig.verify, sid,m, σ,V) to A∗ and:

[V.1] If ∃ records (sid,V) and (sid,m, σ, β′) then set β := β′;
[V.2] Else, if ∃ record (sid,V) but no record (sid,m, σ′, 1) for any σ′ then set

β := 0;
[V.3] Else set β := V(m, σ).

[V.F] Record (sid,m, σ, β) and send (tsig.verified, sid,m, σ, β) to P.

Party Compromise: (This query requires permission from the environment.)

[PC] On (tsig.compromise, sid,P) from A∗, set Corr := Corr ∪ {P}.

Fig. 1: Threshold signature functionality FtSIG for arbitrary access structure S

9



to issue a valid signature. Here we extend the definition of [13] to arbitrary
access structures, including the (t, n)-threshold access structure the specialized
“1+threshold” access structure we use in our aptSIG application.

The threshold signature functionality FtSIG consists of three parts, Key Gen-
eration, Signing and Verification. In contrast to [13], our functionality omits Key-
Refresh, but both versions support adaptive party compromise. Following [13],
w.l.o.g. we identify a public key V with an arbitrary deterministic algorithm, i.e.
signature σ on message m is valid iff V(m, σ) = 1. Also following [13], we assume
that if party P participates in key generation, then P runs on an instance iden-
tifier sid of a form σ = (. . . ,P) where P is a set of parties, including P, which P
intends to involve in this instance. We denote the unique set P specified by sid
as Psid.

We use Ssid to denote access structure S instantiated over set Psid. For
example, if Psid = {P1,P2,P3} and S is a 1-out-of-3 threshold access structure
then Ssid = {{P1}, {P2}, {P3}}. Our aptSIG scheme in Section 4 relies on a
threshold signature for a specialized “1+threshold” access structure S, where
Psid is a sequence of n+1 parties (P0,P1, ...,Pn), P0 has a special status, and S
consists of all subsets S ⊆ Psid s.t. (1) P0 ∈ S and (2) |S ∩ {P1, ...,Pn}| ≥ t+1.
In other words, a valid subset S must contain the special party P0 and at least
t+1 of parties P1, ...,Pn. (Looking ahead, in our aptSIG implementation servers
will play the role of parties P1, ...,Pn, and P0 will be the user.)

Threshold Signature Functionality: Discussion. To simplify notation in
the key generation phase we assume that a signature scheme instance invoked
with identifier sid generates a public key V, and a sharing of the correspond-
ing private key, only if all parties in set Psid participate in the key generation
using the same identifier sid. However, once the key generation succeeds, then
a signature valid under the generated public key can be issued as long as it is
requested by any subset S ⊆ Psid of parties s.t. S ∈ Ssid.

Functionality FtSIG of Figure 1 simplifies the one in [13] by omitting the
option that lets all parties agree on a unique misbehaving party in each protocol
phase. Supporting this option seems to require reliable authenticated broadcast,
and since other protocols we use neither support a corresponding feature nor
require reliable broadcast, we omit it here. Following [13], our functionality FtSIG

does not support ssid’s in the signing phase and uses the message as an index
of a signing protocol instance. Functionality FtSIG can be extended so every
signer has additional input ssid, and signature is output only if for some subset
S ∈ Ssid all signers P ∈ S run on the same (ssid,m). However, a cost-minimal
protocol like the Threshold BLS scheme in Fig 2 does not enforce such ssid-
uniformity, so we opt for a simplified version of a signature functionality which,
like the functionality of [13], doesn’t enforce that either.

2.1 Threshold BLS Signature

The UC threshold signature functionality FtSIG can be implemented for BLS
signature using the well-known protocol of Boldyreva [7]. Recall that a BLS

10



signature [8] assumes a group G of prime order p with a bilinear map e :
G×G→GT , and defines σ as a signature on m under public key V = gs if
e(g, σ) = e(V, H(m)), where g generates G and H is a hash onto G. BLS sig-
nature is CMA-unforgeable in ROM under the Gap DH assumption, i.e. if the
computational Diffie-Hellman is hard in G even on access to a DDH oracle [8].

Notation: G = ⟨g⟩ is a group of prime order p with a bilinear map e : G×G→ GT ;
H : {0, 1}∗ → G is an RO hash; S is a “1+threshold” access structure for any
t < n.

Key Generation: (assuming honest P0 and secure point-to-point channels)

1. Party P0 on input (tsig.keygen, sid) s.t. Psid = (P0,P1, ...Pn), picks s0←$ Zp,
picks random t-degree polynomial f over Zp, sets {si := f(i) mod p}i=1,..,n,

s := s0 + s′ mod p, V := gs, {Vi := gsi}i=0,...,n, and V⃗ := (V0, ...,Vn).

Then, for each i = 1, ..., n, party P0 sends secP0→Pi{(sid||i), si,V, V⃗} to Pi.

Finally, P0 saves (0, s0,V, V⃗) and outputs (tsig.publickey, sid,V).
2. Party Pi on input (tsig.keygen, sid) s.t. Psid = (P0,P1, ...Pn) and i > 0, waits

for message secP0→Pi{(sid||i), si,V, V⃗} from P0, and once such message is re-

ceived then Pi saves (i, si,V, V⃗) and outputs (tsig.publickey, sid,V).

Signing:

1. On input (tsig.sign, sid,m), party Pi retrieves (i, si,V, (V0, ...,Vn)) and sends
(i, σi) for σi := H(m)si to all other parties.
Once Pi receives (j, σj) s.t. e(g, σj) = e(Vj ,H(m)) from a set of parties whose
union with {Pi} is S ∈ Ssid (i.e., Pi can “complete” the set by adding itself
to it), party Pi outputs (tsig.signature, sid,m, σ) for

σ := σ0 ·
∏

Pj∈S−

(σj)
λj

where S− = S \ {P0} and λj ’s are Lagrange interpolation coefficients corre-
sponding to set S−. (Note that if Psid = (P0,P1, ...,Pn) and S ∈ Ssid, then
S = {P0} ∪ S− where S− is some subset of t+ 1 parties in {P1, ...,Pn}.)

Verification:

1. On (tsig.verify, sid,m, σ,V), party Pi sets β := 1 if e(g, σ) = e(V,H(m)) and
β := 0 otherwise, and outputs (tsig.verified, sid,m, σ, β).

Fig. 2: Threshold BLS scheme for the “1+threshold” access structure

Figure 2 shows a threshold BLS signature scheme that realizes functional-
ity FtSIG for the “1+threshold” access structure, for any threshold t < n. We

11



support this access structure by combining a 2-out-of-2 sharing with a stan-
dard threshold sharing. Namely, sharing s⃗ = (s0, s1, ..., sn) is formed by picking
s0←$ Zp, setting (s1, ..., sn) as a (t, n)-threshold secret-sharing of random s′ in
Zp, and setting the shared secret as s = s0 + s′ mod p. This way for any set
S consisting of P0 and some t + 1 parties in {P1, ...,Pn}, secret s can be re-
constructed as s = s0 +

∑
Pi∈S− λi·si mod p where S− = S \ {P0} and λi’s are

Lagrange interpolation coefficients corresponding to set S−.

Standard threshold access structure. Note that setting s0 = 0 and remov-
ing P0 from signing transforms the protocol in Figure 2 to a tSIG scheme which
supports the standard (t, n)-threshold access structure. Moving in the other
direction, we believe that most threshold signature schemes based on Shamir
secret-sharing which realize FtSIG for the (t, n)-threshold access structure, can
be transformed to support the “1+threshold” access structure using the above
approach, but unfortunately it is not a black-box transformation and must be
verified case by case.

Distributed key generation. The protocol in Figure 2 realizes FtSIG in the
presence of secure point-to-point channels in the Key Generation phase, and
assuming that party P0 in list Psid = {P0, ...,Pn} is honest in that phase. The
assumption on authenticated channels in key generation is unavoidable because
FtSIG enforces that a shared key is generated only if all parties in Psid ex-
ecute (tsig.keygen, sid), and using arbitrary key exchange protocol allows the
participants to upgrade authenticated channels to secure point-to-point chan-
nels. As for the assumption on one honest party in key generation, this suffices
for our aptSIG application, but this assumption can be easily eliminated by
using any Distributed Key Generation (DKG) protocol for a discrete-log-based
cryptosystem, e.g. [25,39]. The analysis of the protocol in Figure 2, presented
in Appendix B, can be upgraded to this more general setting, e.g., by modeling
the DKG subprotocol using the UC DKG functionality FDKG of Wikstrom [39],
adapted to the 1+threshold access structure.

Theorem 1 If BLS signature is CMA-unforgeable then the threshold signature
scheme in Fig. 2 realizes functionality FtSIG for the “1+threshold” access struc-
ture for parameters t, n s.t.

(
n
t

)
is polynomial in the security parameter, assuming

secure point-to-point channels and honest party P0 in the Key Generation phase.

We defer the proof of Theorem 1 to Appendix B:

Security for arbitrary t, n parameters. First, as sketched above, the scheme
of Figure 2 can be strengthened by replacing honest P0 with a secure DKG
protocol. Moreover, Theorem 1 can be extended to arbitrary (t, n) values if the
environment is restricted to static corruptions, i.e. all corruptions are made at
the outset. This can be easily verified by inspecting the proof of Theorem 1 in
Appendix B: the current reduction needs to guess a subset of corrupted parties,
causing it to fail except with 1/

(
n
t

)
probability; however, in the static corruption

setting, the reduction no longer has to make such a guess.

12



Furthermore, Theorem 1 can be extended to arbitrary (t, n) values while
allowing adaptive corruptions, following the analysis of threshold BLS by Bacho
and Loss [4] in the Algebraic Group Model (AGM) [22], under the One-More
Discrete Logarithm (OMDL) assumption. The analysis of [4] was done for the
standard (t, n)-threshold BLS but we believe that it can be extended to BLS
which supports the 1+threshold access structure. The result of [4] also applies
to several instantiations of a DKG protocol, including Pedersen’s JF-DKG [38]
and New-DKG by Gennaro et al. [25]. In a recent work Das and Ren [16] showed a
(t, n)-threshold BLS protocol which they show adaptively secure in the standard
model, without AGM, and this protocol can also be extended to the 1+threshold
setting. We note that the analysis of both [4] and [16] was arguing tSIG security
defined via a game-based notion, so one also has to verify that they extend to
the UC notion of tSIG captured by functionality FtSIG.

3 Augmented Password-Protected Secret Sharing

Augmented Password-Protected Secret Sharing (aPPSS) is a main component
in our aptSIG scheme construction. Here we follow the informal description of
aPPSS in the introduction with a formalization of this notion in the UC model.
We then show how to instantiate this primitive with the PPSS construction
of [29]. The latter masks shares of a threshold secret-sharing with outputs of
Oblivious Pseudorandom Functions (OPRF) computed on the password. Since
UC OPRF can be realized very inexpensively with protocol 2HashDH (see Ap-
pendix C.1), this OPRF-based scheme leads to aPPSS with a retrieval cost of
only 1 exponentiation per server and t + 2 exponentiations per user. Concrete
instantiation of aPPSS is shown in Fig. 8 as part of aptSIG protocol.

3.1 Modeling Augmented Password-Protected Secret Sharing

The augmented PPSS functionality FaPPSS presented in Fig. 3 has four phases.
In the initialization phase, user U can use command ppss.uinit on input a pass-
word pw ([I.U]), to initialize a PPSS instance with a set of n servers whose
identities Psid = {P1, . . . ,Pn} are assumed to be encoded in the session iden-
tifier, i.e. sid = (sid′,Psid). The servers in Psid join this initialization using
command ppss.sinit for matching sid and U ([I.S]). Finally, command ppss.fininit
from the ideal adversary A∗ corresponds to successful initialization, which allows
U to output a secret random key sk which will be protected using this aPPSS
instance ([I.F]). (Observe that this random key sk can be used to authenticate-
and-encrypt arbitrary data, and indeed this is how we use it in the aptSIG
protocol of Section 4.)

The reconstruction command ppss.urec represents a user U′ at a potentially
different network entity, attempting to recover the secret key sk using password
pw′, which may or may not be equal to pw used in initialization ([R.U]). The
reconstruction operation is directed to a set of t+1 servers S. We emphasize that

13



Notation: We assume strings sid of form sid = (. . . ,P) where where P =
(P1, . . . ,Pn). Psid denotes set P specified by string sid. The functionality interacts
with a set of parties and an adversary A∗. Let Corr be the initial set of corrupted
parties. Values t, n, λ are parameters. Functionality initializes ppss.pwtested(pw) :=
∅ for all pw, and tx(Pi) := 0 for all Pi.
(The functionality code handles only one instance, tagged by a unique string sid.)

Initialization:

[I.U] On (ppss.uinit, sid, pw, sk∗) from party U s.t. |Psid| = n: Send
(ppss.uinit, sid,U) toA∗. If U is honest then set sk←$ {0, 1}λ, else set sk := sk∗.
Save (ppss.uinit, sid,U, pw, sk). Ignore future ppss.uinit calls for same sid.

[I.S] On (ppss.sinit, sid, i,U) from party S, or (ppss.sinit, sid, i,S,U) from A∗ for
S ∈ Corr, send (ppss.sinit, sid, i,S,U) to A∗, save (ppss.sinit, sid,U, S, i).

[I.A] If ∃ rec. (ppss.uinit, sid,U, pw, sk) and (ppss.sinit, sid,U, S, i) s.t. S=Psid[i],
mark S as ACTIVE.

[I.F] On (ppss.fininit, sid) from A∗, if ∃ rec. (ppss.uinit, sid,U, pw, sk) and all parties
in list Psid are marked ACTIVE, send (ppss.fininit, sid, sk) to U.

Server Compromise: (This query requires permission from the environment.)

[SC] On (ppss.compromise, sid,P) from A∗, set Corr := Corr ∪ {P}.

Reconstruction:

[R.U] On (ppss.urec, sid, ssid,S, pw′) from party U′ or from U′ = A∗, send
(ppss.urec, sid, ssid,U′,S) to A∗. If ∃ record (ppss.uinit, sid,U, pw, sk)
then create record (ppss.urec, sid, ssid,U′, pw, pw′, sk), else create record
(ppss.urec, sid, ssid,U′,⊥, pw′,⊥). Ignore future ppss.urec calls for same ssid.

[R.S] On (ppss.srec, sid, ssid,U′) from party S or (ppss.srec, sid, ssid,S,U′) from A∗

for S ∈ Corr, send (ppss.srec, sid, ssid,S,U′) to A∗. If S is marked ACTIVE
then increment tx(S) by 1.

[R.F] On (ppss.finrec, sid, ssid,C, flag, pw∗, sk∗) from A∗, if ∃ rec. (ppss.urec, sid,
ssid,U′, pw, pw′, sk) then erase it and send (ppss.finrec, sid, ssid, sk′) to U′ s.t.

[R.F.1] if flag = 1, |C| = t+ 1, and ∀S∈C(tx(S) > 0) then set tx(S)– – for all
S ∈ C, and if pw = pw′ then set sk′ := sk else set sk′ := ⊥;

[R.F.2] if flag = 2 and pw∗ = pw′ then set sk′ := sk∗;
[R.F.3] otherwise set sk′ := ⊥.

Password Test:

[PT] On (ppss.testpw, sid, S, pw∗) from A∗, retrieve (ppss.uinit, sid,U, pw, sk).
If tx(S)>0 then add S to set ppss.pwtested(pw∗) and set tx(S)– –. If
|ppss.pwtested(pw∗)| = t+1 then return sk to A∗ if pw∗ = pw, else return ⊥.

Fig. 3: Augmented PPSS functionality FaPPSS

14



the user maintains no state between the initialization and the reconstruction op-
erations except for memorizing password pw and its username sid (although we
also model the user forgetting pw and causing a failure during reconstruction —
see below). In particular, the user might connect to a different set of servers in
initialization and in reconstruction. Hence, for example, if a user executes the re-
construction protocol with a set of corrupted servers S, the FaPPSS functionality
guarantees that even in this case, the adversary can only perform an inevitable
on-line guessing attack — which we explain below.

Similar to the ppss.uinit and ppss.sinit commands in the initialization phase,
the ppss.urec and ppss.srec queries control resp. user and server entering into
the reconstruction subprotocol. The crucial rule enforced by FaPPSS is that each
server S ∈ Psid which joined the initialization is associated with a ticket counter
tx(S), and this ticket counter is incremented only if S enters into the aPPSS
reconstruction instance. (Which in particular means that corrupt S can increase
these tickets at will, see below.) Since we do not assume authenticated links,
U′ session can be “routed” by the adversary to arbitrary servers; hence in the
ppss.finrec command, A∗ specifies a set C of servers of its choice for participation
in this reconstruction ([R.F]). The protocol finalization command ppss.fininit can
result in three possible outcomes:

– In a successful reconstruction session ([R.F.1]), U′ outputs key sk created in
the initialization, which can happen only if (I) pw′ = pw, i.e., U′ runs on the
correct password, (II) tx(S) > 0 for all S ∈ C, i.e., an adversary connected
U′ to servers who participated in the initialization and these servers en-
gaged in PPSS reconstruction (note that each of these ticket is decremented
at ppss.fininit, hence each PPSS reconstruction can be “used” only once),
and (III) the adversary allowed all these reconstructions to proceed without
interference, which is modeled by setting flag=1.

– The adversary can connect U′ only to corrupt servers ([R.F.2]), which offers
A∗ an ability to perform an on-line guessing attack on the user, because
w.l.o.g. the adversary could execute the reconstruction protocol on behalf of
corrupt servers on password pw∗ and secret sk∗ of its choice, and if pw∗ = pw
this would cause U′ to reconstruct the adversarially chosen value sk∗. An
on-line guessing attack is modeled by A∗ setting flag=2.

– In all other cases the reconstruction fails and U′ outputs ⊥ ([R.F.3]).

Adaptive Compromise and Password Tests. Command ppss.compromise
allows A∗ to adaptively compromise any party P ([SC]). The only effect this
has is if P = S for some S ∈ Psid, i.e. if A∗ compromises one of the servers
participating in the initialization. Moreover, the effect of such compromise is
not a leakage of any data (password pw or secret sk), but an ability for A∗ to
create unlimited “tickets” for A∗, i.e. to increment tx(A∗) at will. Such tickets
can be used in the test password command ppss.testpw ([PT]): This query lets
A∗ specify a password guess pw∗ and a server S, and FaPPSS adds S to the set of
servers for which A∗ tests pw∗, but each such action “costs” one ticket because
FaPPSS decrements tx(S). If the adversary tests the same pw∗ on t + 1 servers

15



then if pw∗ ̸= pw, FaPPSS responds ⊥, but if pw∗ = pw then FaPPSS leaks the
aPPSS-protected secret sk. Note that the ticket-counting mechanism of FaPPSS

enforces that any aPPSS instance completed by a server can be used either for a
single instance of the honest user reconstructing a secret, or for a single instance
of an adversary who uses ppss.testpw to attempt to reconstruct sk using a guessed
password pw∗.

On authenticated channels. Functionality FaPPSS assumes authenticated
channels during initialization: When user U specifies, via command ppss.uinit, a
set Psid of servers to initialize a secret-sharing instance, the adversary can only
decide whether or not to allow this protocol to complete. This means that the
adversary can block any party from communicating with the user, but it can-
not divert this initialization to a different set of parties. In particular, only the
corruption of parties in Psid may have an effect on the security of the protocol
with consequences as described above. To enforce these conditions, U needs the
means to authenticate each P ∈ Psid during initialization which is modeled via
the authenticated channel functionality FAUTH. Importantly, we do not assume
authenticated channels in the reconstruction phase of FaPPSS.

3.2 aPPSS Protocol

In Fig. 4 we show a UC aPPSS scheme, denoted ΠaPPSS, based on the PPSS
scheme of Jarecki et al. [31]. Protocol ΠaPPSS uses UC OPRF, modeled by
functionality FOPRF, and it assumes authenticated channels, modeled by func-
tionality FAUTH, but it uses the latter only in the Initialization phase. At a high
level the protocol proceeds as follows:

Initialization: User U asks for an OPRF evaluation ρ from each server S’s
FOPRF using its password pw, and uses those evaluations as encryption keys
for encrypting the threshold shares {si} generated with the Shamir’s secret
sharing scheme from a random secret s. Together with the user’s password
pw, and the encrypted shares e = {ei}, U creates a cryptographic commit-
ment [C||sk] = H(pw, e, s) and uses sk as the secret key. The ciphertexts
e = {ei} and C are then sent via the authenticated channel (via FAUTH)
and kept at the servers. The user keeps nothing besides remembering the
password pw.

Reconstruction: To reconstruct, user U starts with asking for the OPRF eval-
uation ρ from each server S’s FOPRF using its password pw along with the
ciphertexts e = {ei} and commitment C. The OPRF evaluations {ρi} are
used to decrypt the ciphertexts to Shamir’s shares {si} which can be used
to reconstruct the secret s via interpolation. Finally the user U can recreate
[C||sk] = H(pw, e, s) and obtain sk, after checking that C matches the ones
sent by the servers.

Protocol ΠaPPSS in Fig. 4 is, up to some small differences (e.g., using a global
OPRF functionality) the same as the PPSS of Jarecki et al. [30], except that we
replace generic non-malleable commitment used in [30] with a specific RO-based

16



Public parameters: Security parameter λ, threshold parameters t, n ∈ N with t ≤
n, field F := GF(2λ), hash function H with range {0, 1}2λ.

Initialization for user U:

1. On input (ppss.uinit, sid, pw) s.t. |Psid| = n, send (oprf.eval, [sid||i||0],
pw,Psid[i]) to FOPRF for each i ∈ [n].

2. Wait for messages (oprf.eval, [sid||i||0], ρi, tri) from FOPRF and (sent, [sid||i||0],
Psid[i],U, tr

′
i) from FAUTH, for all i ∈ [n]. Abort if ∃i ∈ [n] s.t. tr′i ̸= tri.

3. Pick s←$ F, set (s1, ..., sn) as a (t, n) Shamir secret sharing of s over F.
4. Set ei := si ⊕ ρi for i ∈ [n], set e := (e1, ..., en), set [C||sk] := H(pw, e, s) s.t.
|C| = |sk| = λ. Set ω := (e, C).

5. Send (send, [sid||i||1],Psid[i], ω) to FAUTH for each i ∈ [n] and output
(ppss.fininit, sid, sk).

Initialization for server S:

1. On input (ppss.sinit, sid, i,U), send (oprf.init, [S||sid]) and
(oprf.sndrcomplete, [S||sid], 0) to FOPRF.

2. Given response (oprf.sndrtrans, [S||sid], 0, trS) from FOPRF, send
(send, [sid||i||0],U, trS) to FAUTH.

3. On (sent, [sid||i||1],U,Pi, ω) from FAUTH, save (sid, i, ω).

Reconstruction for user U:

1. On input (ppss.urec, sid, ssid,S, pw′) s.t. |S| = t+1, send (oprf.eval,
[sid||j||ssid],S[j], pw′) to FOPRF for j ∈ [t+1].

2. Wait for messages (oprf.eval, [sid||j||ssid], ϕj , trj) from FOPRF and messages
(ij , ωj) from S[j], for all j ∈ [t+1]. If ∃ j1 ̸= j2 s.t. ij1 = ij2 or ωj1 ̸= ωj2 or ∃
j s.t. ij ̸∈ [n] (i.e., if ij ’s are not all distinct, or ωj ’s are not all the same, or
some ij is out of range [n]), output (ppss.urec, sid, ssid,⊥) and halt. Otherwise
set ρ′ij := ϕj for j ∈ [t+1] and I := {ij | j ∈ [t+1]}.

3. Parse any ωj as (e′, C′), parse e′ as (e′1, ..., e
′
n), set s

′
i := e′i ⊕ ρ′i for all i ∈ I.

4. Interpolate {(i, s′i)}i∈I to recover secret s′ and shares {s′i}i/∈I .
5. Set [C′′||sk′] := H(pw′, e′, s′). If C′ ̸= C′′ then reset sk′ := ⊥.
6. Output (ppss.finrec, sid, ssid, sk′).

Reconstruction for server S:

1. On input (ppss.srec, sid, ssid,U), retrieve record (sid, i, ω) (if no such record
then abort), send (oprf.sndrcomplete, [S||sid], ssid) to FOPRF and (i, ω) to U.

Fig. 4: Protocol ΠaPPSS which realizes FaPPSS in (FOPRF,FAUTH)-hybrid world

17



implementation H. However, the novelty here with respect to the PPSS protocol
of [30] is its analysis as an augmented PPSS.

Theorem 2 If H is a random oracle, then the protocol in Fig. 4 UC-realizes the
FaPPSS functionality assuming access to the OPRF functionality FOPRF and the
message authentication functionality FAUTH.

Proof of Theorem 2 is deferred to Appendix D.

4 Augmented Password-Protected Threshold Signature

We introduce our model for Augmented Password-protected Threshold Signa-
ture (aptSIG), and we show a secure construction of aptSIG scheme by generic
composition of aPPSS and a Threshold Signature (tSIG).

4.1 Modeling Augmented Password-protected Threshold Signature

We model Augmented Password-protected Threshold Signature (aptSIG) using
an ideal functionality FaptSIG, shown in Figure 5 and Figure 6. A (t, n)-threshold
aptSIG involves n + 1 parties, a user U and n server S1, ...,Sn, and it supports
two distributed protocols, initialization and signing. An initialization protocol
generates a public key for a signature scheme and protects the corresponding
private key by secret-sharing it and protecting this sharing using user’s password
pw s.t. the sharing can be reconstructed only using this password. The signing
protocol allows the user and the servers to sign any message m as long as (a)
the user and at least t + 1 of the servers agree to sign it, and (b) the user
provides a matching password pw′ = pw into the signing protocol. Therefore,
aptSIG scheme functions as an outsourced signature service for party U, where
U’s secret key is distributed and password-protected by the servers, but using the
right password lets U obtain signatures as long as t+ 1 servers agree to sign.

Corruption of up to t out of n servers gives no information to the attacker,
while corruption of t+1 or more servers allows the attacker to reconstruct only
password-protected data. In particular, the data collected from all servers allows
the attacker an offline dictionary attack against the password, but that is all that
it allows. If the attacker finds the password via this offline search then security is
gone, and in our scheme the attacker reconstructs the signature private key, but
if the password is chosen with high-enough entropy and the dictionary attack
fails then the attacker gets no information about the signature key even if it
corrupts all n servers. We stress that in a secure aptSIG scheme the signing
key can never be reconstructed in one place. In particular, if the password leaks
but the adversary compromises fewer than t + 1 servers then signatures can
only be created via the on-line signing protocol. Consequently, servers Si can
function as rate limiters or policy limiters, i.e. they can apply whatever policy
the environment specifies regarding the messages they can sign.

Ideal Functionality FaptSIG. In what follows we explain the security properties
imposed by the ideal functionality FaptSIG of Figure 5 and Figure 6. Since we

18



Notation: (This figure uses the same notation as in FaPPSS, see Figure 3)

Initialization:

[I.U] On (ptsig.uinit, sid, pw) from party U for sid = (...,Psid) s.t. |Psid| = n, send
(ptsig.uinit, sid,U) to A∗, save (sid,U,Psid, pw) and set flag flagsid = 0.
Ignore further ptsig.uinit calls for same sid.

[I.S] On (ptsig.sinit, sid, i,U) from party S, or (ptsig.sinit, sid, i,S,U) from A∗ for
S ∈ Corr, send (ptsig.sinit, sid, i,S,U) to A∗, save (sid,U, S, i).

[I.F] On (ptsig.uinit, sid,V) from A∗, if ∃ record (sid,U,Psid, pw) and records
(sid,U,S, i) for each S ∈ Psid, then create record (sid,Psid, pw,V) and send
(ptsig.verificationkey, sid,V) to U.

Signing:

[S.U] On (ptsig.usign, sid, ssid,S, pw′,m) from party U′ or from U′ = A∗, send
(ptsig.usign, sid, ssid,U′,S,m) to A∗. If ∃ record (sid,Psid, pw,V) then save
(sid, ssid,U′,Psid, pw, pw

′,V,m), else save (sid, ssid,U′,⊥,⊥, pw′,⊥,m).
Ignore further ptsig.usign calls for same ssid.

[S.S] On (ptsig.ssign, sid, ssid,U′,m) from party S or (ptsig.ssign, sid, ssid,S,U′,
m, b) from A∗ for S ∈ Corr, if ∃ record (sid,Psid, pw,V) s.t. S ∈ Psid then
send (ptsig.ssign, sid, ssid,S,U′,m) to A∗, save (sid,m, S), set tx(S)++ if S is
honest or b = 1.

[S.P] On (ptsig.pretest, sid, ssid,C, flag, pw∗) from A∗, if ∃ rec = (sid, ssid,U′,Psid,
pw, pw′, ·, ·) not marked as pretested(c) for any c then:

[S.P.1] if flag = 1, |C| = t+1, and ∀S∈C(tx(S)>0), then set tx(S)– – for all S ∈ C,
set b := (pw′ == pw), send b to A∗ and mark rec as pretested(b);

[S.P.1*] moreover, if b = 1 and U′ ∈ Corr ∪ {A∗} set flagsid = 1;
[S.P.2] if flag = 2 then set b := (pw′ == pw∗), send b to A∗, and if b = 1

then mark rec as pretested(2) else mark rec as pretested(0);
[S.F] On (ptsig.finsign, sid, ssid,C′, flag, σ∗,m∗) from A∗, retrieve rec = (sid, ssid,

U′,Psid, pw, pw
′,V,m) and do:

[S.F.0] if m = ⊥ and U′ ∈ Corr ∪ {A∗} reset m := m∗;
[S.F.1] if flagsid = 1, rec is marked pretested(0), and U′ ∈ Corr ∪ {A∗}, then

change rec mark to pretested(1);
[S.F.F] send (ptsig.finsign, sid, ssid,m, σ) to U′ s.t.

[S.F.F.1] if flag = 1, rec is marked pretested(1), |C′| = t+1, C′ ⊆ Psid, ∃ record
(sid,m,S) for all S ∈ C′, V(m, σ∗) = 1, and there is no saved record
(sid,m, σ∗, 0), then save record (sid,m, σ∗, 1) and set σ := σ∗;

[S.F.F.2] if flag = 2 and rec is marked pretested(2) then set σ := σ∗;
[S.F.F.3] if neither of the above two cases is met set σ := ⊥.

Verification:
On (ptsig.verify, sid,m, σ,V) from Q, send (ptsig.verify, sid,m, σ,V) to A∗ and do:

[V.1] if ∃ records (sid,Psid, pw,V) and (sid,m, σ, β′) then set β := β′;
[V.2] else, if ∃ record (sid,Psid, pw,V) but no (sid,m, σ, 1) for any σ then set β := 0;
[V.3] else set β := V(m, σ).

[V.V] Record (sid,m, σ, β) and send (ptsig.verified, sid,m, σ, β) to Q.

Fig. 5: FaptSIG: Ideal Functionality for Password-Protected Threshold Signature

19



Notation: (This figure uses the same notation as in FaPPSS, see Figure 3)

Server Compromise: (This query requires permission from the environment.)

[SC] On (ptsig.corrupt, sid,P) from A∗, set Corr := Corr ∪ {P}.
Password Test:
[PT] On (ptsig.testpw, sid,S, pw∗) from A∗, retrieve record (sid,Psid, pw,V).
If tx(S) > 0 then add S to set ppss.pwtested(pw∗) and set tx(S)– –. If
|ppss.pwtested(pw∗)| = t + 1 then return bit b = (pw∗ == pw) to A∗. If
b = 1 set flagsid = 1.

Fig. 6: Adversarial Interfaces of FaptSIG

show that our aptSIG protocol of Section 4.2 securely realizes this functionality,
this will in particular imply the security properties of that aptSIG scheme.

(1) FaptSIG: honest party operation. Query (ptsig.uinit, sid, pw) from U mod-
els user U starting initialization on a password pw with n servers specified in
identifier sid. (Using the convention of aPPSS, we assume sid = (sid′,Psid) for
Psid = (S1, ...,Sn).) Query (ptsig.uinit, sid, i,U) from S ∈ Psid models server
S entering into an initialization protocol, as an i-th server in list Psid, with U
as an intended “owner” of this password-protected signature instance. Query
(ptsig.uinit, sid,V) from A∗ models the ideal-world adversary allowing an initial-
ization instance identified by sid to complete, and U to output the public key
V. Note that all parties input the identities of all participants into the protocol,
and FaptSIG reacts to query ptsig.uinit only if all intended parties participate in
the initialization. This is realizable if U and each Si can authenticate each other,
and our aptSIG protocol indeed relies on authenticated channels in initialization.
The public key V is associated with initialization identifier sid in the sense that
sid serves as a handle to the password-protected secret-sharing (ppss) of a private
signing key corresponding to V. (Functionality FaptSIG does not ensure that this
sharing is successfully established when U outputs V, but FaptSIG allows U to
verify it, e.g. if U invokes the signing protocol on a test message.)

Once key V is created, query (ptsig.usign, sid, ssid,S, pw′,m) from U′ models
user U′ (possibly using a different platform than U, hence a different name tag
U′) who holds password pw′ (which might or might not equal to pw) starting
a signing protocol instance on message m and a ppss-protected key identified
by sid. Identifier ssid is a handle of U′ on that instance, and S is a subset of
t + 1 servers with whom U intends to communicate. However, FaptSIG doesn’t
enforce authentication in signing, and the signing instance record it creates,
(sid, ssid,U′,Psid, pw, pw

′,V,m) ignores field S. Query (ptsig.ssign, sid, ssid,U′,m)
from S models S agreeing to sign m using the ppss-protected key identified by
sid. Field U′ is a counterparty address, ssid is S’s local instance handle, but they
play no security roles and FaptSIG ignores them. In particular, FaptSIG does not
enforce equality of ssid or U′ tags used by the participants in signing.

20



(2) FaptSIG: signature completion. Signing protocol output is controlled
by two queries by an ideal-world adversary A∗: ptsig.pretest and ptsig.finsign.
FaptSIG associates servers S ∈ Psid with ticket counters tx(S), as in the aPPSS
functionality FaPPSS of Section 3, and each S can trigger FaptSIG to record
(sid,m,S) which stands for S agreeing to sign m, as in the tSIG functional-
ity FtSIG of Section 2. When S issues a query (ptsig.ssign, ...,m) then FaptSIG

increments tx(S) and records (sid,m,S) at the same time.

Queries ptsig.pretest and ptsig.finsign serve two purposes: The first one, de-
noted by A∗ using flag=1, is a passive completion of the signing instance. First,
A∗ can use ptsig.pretest with flag=1 to “pre-complete” that instance and learn
if party U′ runs the protocol on the correct password pw′ = pw. This is akin to
TestAbort query in the UC aPAKE model [26]: A protocol can make it detectable
whether U′ runs on the correct password, e.g. because otherwise U′ aborts, in
which case the adversary learns if pw′ = pw by observing the protocol. In this
test, A∗ must specify a subset C of t + 1 servers with non-zero ticket counters
(which FaptSIG decrements), which enforces that U′ finalization requires t + 1
participating servers. Note that these servers can run on different messages than
U′, i.e. A∗ can mix and match S sessions in completing ptsig.pretest.

If pw′ = pw thenA∗ can follow up the (ptsig.pretest, ..., flag=1, ...) query with
(ptsig.finsign, ...,C′, flag = 1, σ∗,⊥), which corresponds to finalizing the signing
instance on message m with signature σ∗. Indeed, if U′ runs on the correct
password and the attacker is passive then U′ can output a signature. FaptSIG

processes this query in the same way as the threshold signature functionality
FtSIG of Section 2, i.e. it checks that t+1 servers in subset C′ agreed to sign m,
that σ∗ was not previously recorded as a faulty signature, and that V(m, σ∗) = 1,
and if all conditions are met then it outputs σ∗ to U′ and declares σ∗ as a valid
signature on m by recording a “signature” tuple (sid,m, σ∗, 1). These tuples
control the outputs of a signature verification query ptsig.verify, and FaptSIG

handles that exactly as FtSIG, i.e. if there is no recorded tuple (sid,m, σ∗, 1)
then (ptsig.verify, ...,m, σ∗,V) query should return 0.

We note that FaptSIG does not enforce that C′ = C, i.e. the adversary is
allowed to mix-and-match servers and use a different subset C of server instances
to “pre-complete” a signature session via the ptsig.pretest query, and a different
subsetC′ to complete the session via the ptsig.finsign query. Moreover, the second
set of servers must be signing m, but the first one might not. We allow this
“disconnection” in FaptSIG to enable an efficient aptSIG protocol of Section 4.2,
which does not enforce C′ = C. However, the practical import of adversary
replacing part of m-signing server session with parts taken from some m′-signing
server session seems innocuous, given that in the end a signature on m cannot
be created unless a pw-holding user and t+ 1 servers all agree to it.

(3) FaptSIG: active attacks. The first type of active attack is an on-line pass-
word guessing attack against honest servers, where A∗ poses as a user, or em-
ploys a corrupt user U′, and runs a signing protocol via interface ptsig.usign on
some password pw′ ([S.U]), followed by ptsig.pretest and ptsig.finsign with flag=1
([S.P.1]). The same logic as above will apply to this sequence, except since the ad-

21



versary contributed pw′ in ptsig.usign, the same interface will reveal if pw′ = pw
(in [S.P.1] the functionality sends this bit to the adversary). Moreover, each pt-
SIG instance sid is associated with a flag flagsid which switches from 0 to 1 if
it ever happens that the adversary found password pw′ in this way ([S.P.1*]) (or
via offline attacks, see below). The consequence of flagsid = 1 is that any ad-
versarial signing instance, even one that starts with an incorrect password pw′,
and consequently its reconstruction record rec would be marked pretested(0) in
ptsig.pretest, is effectively treated in ptsig.finsign as if it was marked pretested(1),
which means that the functionality will “sign” message m∗ in this signing ses-
sion (as long as t + 1 servers also agree to sign it) ([S.F.1]). In other words, if
the adversary guesses the right password on some ptSIG session, then we allow
him to “late switch” any incorrect password to the correct one on all his other
signing sessions.

The second type of active attack is an on-line password guessing attack
against an honest user. This is modeled via ptsig.pretest ([S.P.2]) and ptsig.finsign
queries with flag=2 ([S.F.F.2]). Here A∗ can set C = ⊥, but must enter a pass-
word guess pw∗, and in ptsig.pretest it will learn if pw′ = pw∗ where pw′ is a
password used by an honest user U′ ([S.P.2]). If not then U′ can subsequently
only abort, but if so then subsequent ptsig.finsign makes U′ output as signature
an arbitrary value σ∗ chosen by A∗ ([S.F.F.2]). This reflects the fact that the
only security hedge which U′ enters into signing is its password pw′, so if an
online attacker guesses pw′, the attacker can wlog. run aptSIG initialization on
pw′ and then run the aptSIG signing on the resulting values, thus making U′

output e.g. a signature on m but issued by an adversarial key. However, this
attack does not imply signature forgery, because FaptSIG does not add tuple
(sid,m, σ∗, 1) to its records. In particular, a user could run signature verification
(ptsig.verify, sid,m, σ∗,V) on its aptSIG output, and in case of the above attack
she would learn that σ∗ is not a valid signature and that she was subject of an
active attack by someone who learned her password pw′. 3

(4) FaptSIG: adaptive server corruptions and ODA. Adversary A∗ can
adaptively corrupt any server S ([SC]), which allows A∗ to (1) freely issue tickets
for S, using ptsig.ssign with b = 1, and (2) freely issue S’s “partial signatures”
on arbitrary messages m, using ptsig.ssign with m ̸= ⊥ ([S.S]). The latter actions
can result in signatures if U using the correct password pw′ = pw wants to sign
the same m ([S.F.F.1]), or if the attacker learns pw and invokes user-side on that
pw and m. The former actions allow the attacker to test passwords via command
ptsig.testpw, which lets A∗ exchange t+ 1 tickets from some t+ 1 servers for an
off-line test of one password guess pw∗ specified by A∗. Note that corrupt Si’s
these tickets are “free” to A∗ so after corrupting t+1 servers these tests can be
done fully offline, but if A∗ needs to add the tickets from honest servers to this
mix then only one such ticket is created in each signing instance Si runs, i.e. if

3 FaptSIG letsA∗ set the user instance’s messagem to arbitrarym∗ in the finalization of
the signing protocol, but only for adversarial user instances, i.e. we allow adversarial
signing instances to “late-commit” to their messages.

22



adversary corrupts t′ ≤ t+ 1 servers then it can test q passwords only by on-line
interactions with q ∗ (t+ 1− t′) servers ([PT]).

Crucially, even if all servers are corrupted, attacker A∗ has no avenue to forge
message signatures unless A∗ finds out user’s password pw and runs ptsig.usign
(e.g. as corrupt U′) on pw. (Moreover, if fewer than t+1 servers are corrupt than
even knowing pw lets A∗ sign only messages which some uncorrupted servers
agree to sign.) Moreover, the only avenues to finding password pw ([PT]) consist
of (1) online guessing attacks against either the servers or the user as long as
A∗ corrupts fewer than t + 1 servers, and (2) (fully) offline dictionary attacks
(ODA), as explained above, enabled once A∗ corrupts t+ 1 servers.

User/message authentication and Perfect Forward Secrecy. In the
aptSIG ideal model FaptSIG, when servers sign they take input m from the envi-
ronment, and they do not know if their counterparty holds the right password,
and even if they do then whether they authorize signing this message. A model
which assures both properties extends the aptSIG model to capture perfect for-
ward security (PFS), because it would imply that if no password-holding entity
wants to sign some message at a given time, then the adversary who might cap-
ture the password in the future, cannot “redo” these signature instances, and
can only use the compromised password on new signature sessions.

The PFS property can be added in black-box way by running two instances
of aptSIG: Consider a modified signing protocol which executes two instances
of aptSIG, first one on the message m concatenated with nonce ssid, and only
if this one creates a valid signature on the m, ssid, then the proper aptSIG
instance would execute on just m. The first aptSIG instance accomplishes the
above requirements, because only a correct password could have caused this
aptSIG instance to issue a valid signature on the m, ssid pair.

In Appendix G we define a PFS version of the aptSIG ideal model, denoted
FaptSIG−PFS, and we show that the efficient aptSIG scheme which we show in the
next subsection, can be adapted more efficiently to implement the PFS property.
The idea is very similar to the one above except that the first instance of aptSIG
is replaced by a standard signature made on pair m, ssid by the user U. Indeed,
efficiency-wise the PFS protocol variant shown in Appendix G adds only the
cost of issuing a single standard signature for user U and a signature verification
for each server S. See Appendix G for more details.

4.2 Generic aptSIG Protocol

In Figure 7 we show a generic construction of an augmented password-protected
threshold signature (aptSIG), using an augmented Password-Protected Secret
Sharing (aPPSS) and a Threshold Signature (tSIG). The protocol in addition
relies on functionality FAUTH but it is used only in initialization. The protocol
also relies on an Equivocable Authenticated Encryption scheme, denoted AE.

Threshold Signature Protocol ΠtSIG. In the description of protocol ΠtSIG

in Figure 7, we don’t use the threshold signature functionality FtSIG, but use
the tSIG protocol directly. We choose this way of describing the aptSIG scheme

23



Public parameters: Security parameter λ, threshold parameters t, n s.t. t ≤ n.
Let AE = (AuthEnc,AuthDec) be an Equivocable Authenticated Encryption, and
let tSIG = (ΠTKeyGen, ΠTSign, ΠTVerify) be a Threshold Signature scheme realizing
functionality FtSIG (see text). add(sid,U) parses sid = (sid′,Psid) and outputs
sid+ = (sid′,P+

sid) s.t. if Psid = (P1, ...,Pn) then P+
sid = (U,P1, ...,Pn).

Initialization for user U:

1. On input (ptsig.uinit, sid, pw), send (ppss.uinit, sid, pw,⊥) to FaPPSS, and let
sk denote FaPPSS’s output.

2. Run tSIG.ΠTKeyGen+ on input sid+ = add(sid,U). Let (tsU, tcsU) and V be resp.
U’s local output and the generated public key.

3. Set aecU := AE.AuthEncsk(U, tsU, tcsU), send (send, sid,Pi, aecU) to FAUTH for
all Pi ∈ Psid, output (ptsig.verificationkey, sid,V).

Initialization for server S:

1. On input (ptsig.sinit, sid, i,U) send (ppss.sinit, sid, i,U) to FaPPSS and run
tSIG.ΠTKeyGen+ on sid+ = add(sid,U). Let (tsi, tcsi) be S’s local output.

2. On message (sent, sid,U, S, aecU) from FAUTH, save (sid, sid+, tsi, tcsi, aecU).

Signing for user U′

1. On input (ptsig.usign, sid, ssid,S, pw′,m) for |S| ≥ t+1 from U′, send
(ppss.urec, sid, ssid,S, pw′) to FaPPSS, and wait to receive (ppss.urec, sid, ssid,
sk) from FaPPSS and message (sid, aecU) from all S ∈ S.

2. Output (ptsig.usign, sid, ssid,m,⊥) and abort if either (1) sk = ⊥, or (2)
it is not the case that all S ∈ S send the same message (sid, aecU), or (3)
AE.AuthDecsk(aecU) returns ⊥.

3. Otherwise, let (U, tsU, tcsU) = AE.AuthDecsk(aecU), set sid+ = add(sid,U),
run protocol tSIG.ΠTSign+ on input (sid+, tsU, tcsU,m), and when this protocol
outputs σ, output (ptsig.finsign, sid, ssid,m, σ).

Signing for server S

1. On input (ptsig.ssign, sid, ssid,U′,m) from S, retrieve stored tuple
(sid, sid+, tsi, tcsi, aecU), send (ppss.srec, sid, ssid,U′) to FaPPSS, send
(sid, aecU) to U′, and run tSIG.ΠTSign+ on input (sid+, tsi, tcsi,m).

Verification for Q

1. On input (ptsig.verify, sid, m, σ, V) from Q, runs β = tSIG.ΠTVerify(V,m, σ),
and output (ptsig.verified, sid,m, σ, β)

Fig. 7: Protocol ΠaptSIG which realizes FaptSIG in (FaPPSS,FAUTH)-hybrid world

24



because whereas the server parties Pi ∈ P can store secret state between tSIG
initialization and signature phases, the user party U is assumed to have no se-
cure storage (except for memorizing the password), hence it is in particular
incapable of locally storing the secret share generated in key generation of tSIG.
Indeed, we use the aPPSS scheme together with the authenticated encryption
AE to “securely transmit” this user’s tSIG state between initialization and sig-
nature phase, but since this secure transmission can fail, i.e., in case of successful
password-guessing attack on aPPSS, an honest user may execute tSIG on adver-
sarially chosen inputs. In essence, our aptSIG protocol runs the real-world tSIG
protocol rather than an ideal functionality FtSIG, because functionality FtSIG

does not support a party running the signing protocol on the inputs which do
not correspond to the state created by the key generation for this party. Note
that this proof technique was used in the analysis of the OPAQUE protocol [33],
for the same reason that a UC-secure protocol tool, UC AKE in OPAQUE and
UC tSIG here, is used within a protocol on keys which might not match the ones
prescribed by the protocol.

tSIG Functionality and Communication Setting.We assume that the tSIG
scheme consists of (1) protocol ΠTKeyGen, which implements FtSIG command
(tsig.keygen, sid′) for sid′ = (sid,P+); (2) protocol ΠTSign, which implements
FtSIG command (tsig.sign, sid,m); and (3) algorithm ΠTVerify(V,m, σ) which im-
plements (tsig.verify, sid,m, σ,V), which simply returns V(m, σ). Note that set
P+ is a list of n + 1 tSIG participants, and we form it by prepending the user
party identifier U to the list of server identifiers P = {P1, . . . ,Pn}.

We use tsi to denote the state created for player Pi by the distributed key
generation protocol ΠTKeyGen, including i = U. (In the following we will use PU

and U interchangeably.) However, many threshold signature schemes assume that
protocol parties have access to some additional secure communication channels,
in the very least secure point-to-point channels and often also a reliable authen-
ticated broadcast channel. (These are the communication assumptions of most
work on threshold cryptosystems, including e.g. the UC threshold ECDSA of
[13] and the threshold BLS scheme in Section 2, albeit the latter only in the ini-
tialization phase.) Whereas aptSIG servers can be connected by such channels,
we cannot assume this for the user. Indeed, in aptSIG initialization we assume
user U has only point-to-point authenticated channels with each server Si, and
in aptSIG signing we assume a plain network. If threshold signature protocols
ΠTKeyGen and/or ΠTSign make such communication assumptions, in the initial-
ization phase our aptSIG prepends protocol ΠTKeyGen with a subprotocol which
adds U to this assumed communication setting.

For the above communication setting, this subprotocol could work as fol-
lows: Since in aptSIG initialization U and each Si have pairwise authenticated
channels, these can be upgraded to secure channels using key exchange, e.g.
Diffie-Hellman, executed between U and each Si. As for authenticated broad-
cast, it is typically implemented using PKI (e.g. assuming partial synchrony and
reliable message delivery between uncorrupted parties), in which case U can gen-
erate a signing key, deliver it over authenticated channels to each Si, and Si’s

25



can agree on it using their authenticated broadcast channels. Likewise, each Si
can send the list of all servers’ public keys to U, and U can reject unless all
the lists are the same. We denote this extended ΠTKeyGen protocol as ΠTKeyGen+ ,
and we use tcsi to denote the secure communication tokens each Pi retains from
it in subsequent ΠTKeyGen and ΠTSign executions. Whereas each server Si can
update its pre-existing communication tokens with tcsi’s output by ΠTKeyGen+ ,
user U cannot retain state between executions. However, we solve this by adding
the communication tokens tcsU to the threshold signature state tsU created by
ΠTKeyGen, and we encrypt both using the aPPSS-protected key.

Equivocable Authenticated Encryption. Protocol ΠaptSIG uses symmetric
Authenticated Encryption scheme AE = (AuthEnc,AuthDec) to encrypt the lo-
cal state of U output by ΠTKeyGen+ . We denote this state as (U, tsU, tcsU), where
tsU, tcsU are explained above, and identity U needs to be retained as well be-
cause tSIG assumes that its identifier sid+ includes the identities of all tSIG
participants, i.e. P+ = (U,P1, ...,Pn), and aptSIG should allow the user to re-
trieve signatures using the password only, i.e. it should not rely on the user
remembering the identifier U used in the initialization.

We need the authenticated encryption to have ciphertext integrity under a
single chosen message attack. This is a relaxation of standard ciphertext in-
tegrity security notion for authenticated encryption, included in Appendix C.
We also require the scheme AE to be equivocable, i.e. in the scenario where the
adversary gets a ciphertext followed by the key, there is a simulator that can
create an indistinguishable ciphertext with no information about the plaintext
except for its length, and then create the key to decrypt this ciphertext to any
given plaintext. Formally, we call an (authenticated) encryption AE equivocable
if there is an efficient simulator SIM s.t. for any efficient algorithm A, the distin-
guishing advantage Adveqv,aeA (λ) = |p0A − p1A| is a negligible function of λ, where

pbA = Pr[1← A(stA, aec, sk) | (stA, aec, sk)← Expb], and

Exp0 : (m, stA)← A(λ), sk←$ {0, 1}λ, aec← AuthEncsk(m)

Exp1 : (m, stA)← A(λ), (aec, stS)← SIM(|m|), sk← SIM(stS,m)

Note that equivocability implies standard semantic security of encryption. In
the following we will use the term Equivocable Authenticated Encryption if en-
cryption is (1) equivocable and (2) has ciphertext integrity. These properties are
easy to achieve in an idealized model like ROM [33], e.g. E(sk,m) = m ⊕ G(sk)
is equivocable if G is a random oracle. If an equivocable encryption is extended
to authenticated encryption, e.g. by computing a MAC on the ciphertext, this
achieves ciphertext integrity but does not effect equivocation because the au-
thentication mechanism is computed over the ciphertext.

4.3 Security of the aptSIG Protocol

Simulation Overview. We construct a simulator SIM which will show that no
environment Z can distinguish the ideal-world and real-world interactions. Since

26



protocol ΠaptSIG relies on the UC security of three components, aPPSS, tSIG,
and AUTH, we first overview how the real world and the ideal world interac-
tions involve the protocols, functionalities, or simulators of these components.
Figure 15 in appendix F captures the top-level view of these interactions in the
real-world and ideal-world executions. Without loss of generality we assume a
“dummy” adversary A∗ that is an adversary who merely passes all its messages
and computations to the environment Z. Our proof assumes that the real ex-
ecution happens in the (FaPPSS,FAUTH)-hybrid world, and below we omit the
details of interactions with the adversary where in the ideal world SIM will em-
ulate FaPPSS and FAUTH, because that part of the simulation is trivial: SIM
gains all the information needed from A∗’s interfaces to these functionalities,
and simply follows the code of FaPPSS and FAUTH.

Simulator SIM interacts with the ideal functionality FaptSIG, which in turn
interacts with the environment Z via “dummy” honest parties playing the role
of either user U and server(s) S. The environment Z can also instruct A∗ to send
malicious inputs to SIM on behalf of corrupt or compromised parties, e.g. com-
promised servers. There are three types of SIM-A∗ interactions, corresponding
to three difference interfaces A∗ has in the real world. First, there is the net-
work interface, i.e. messages which protocol ΠaptSIG sends over plain channels.
This interface is used solely for sending aecU in the signing protocol. Second,
A∗ can communicate with functionalities FAUTH and FaPPSS, which SIM will
emulate in the ideal-world. Third, since protocol ΠaptSIG runs the real-world
protocol ΠtSIG instead of using FtSIG as a black-box (see also the explanation
above), A∗ expects to interact with ΠtSIG instances. In the ideal-world, SIM will
not execute the real-world protocol ΠtSIG, and instead it will delegate this to a
simulator SIMtSIG (the simulator whose existence is implied by the assumption
that protocol ΠtSIG UC-realizes functionality FtSIG), which SIM will execute
as a black-box. Simulator SIMtSIG can emulate execution of ΠtSIG instances to
A∗ if SIMtSIG interacts with the ideal functionality FtSIG. Therefore, SIM will
implement an “FtSIG” interface (just like the “FAUTH” and “FaPPSS” interfaces
described above) on which it will talk not to A∗ but to SIMtSIG. Note that from
SIM’s perspective SIMtSIG can be thought of as an extension of adversary A∗
(indeed SIM treats SIMtSIG as a black box, just like it treats A∗), at which point
SIM’s goals is just to correctly emulate the “FtSIG” interface with SIMtSIG.

As discussed above, there is one further unusual aspect of the simulation: In
one special case, which corresponds to an honest party U recovering wrong tSIG
shares because of a successful online active attack against U’s password in the
aPPSS subprotocol, the real-world execution in this case involves U running the
tSIG signing subprotocol on adversarial inputs rather than the inputs prescribed
for U in the tSIG key generation. Such honest party’s execution is not supported
by functionality FtSIG, so the simulator cannot send any messages on the “FtSIG”
interface to SIMtSIG to emulate such tSIG signing protocol instances on behalf
of U. Instead, SIM will simply execute itself the tSIG instance on behalf of U
on such adversarial inputs. (Note that SIM learns from the “FaPPSS” interface
the adversarial inputs which the real-world U would use, because the adversary

27



sends them to the real-world U via functionality FaPPSS) This U instance can be
thought of as another extension of the adversary, and SIM will inform SIMtSIG

(and pass to A∗) whatever this instance sends e.g. to honest tSIG servers, which
are emulated by SIMtSIG.

Theorem 3 If AE = (AuthEnc,AuthDec) is an Equivocable Authenticated En-
cryption, and tSIG = (ΠTKeyGen, ΠTSign, ΠTVerify) is a Threshold Signature scheme
which UC-realizes functionality FtSIG, then protocol ΠaptSIG in Fig. 7 UC-realizes
functionality FaptSIG in Fig. 5 in the (FaPPSS,FAUTH)-hybrid model.

The detailed specification of the simulator SIM, as well as the rest of the
proof of Theorem 3, are presented in Appendix F.

5 Concrete Instantiation of the aptSIG Protocol

In Figure 8 we show a concrete instantiation of the generic ΠaptSIG protocol
from Figure 7, called aptSIG-BLS. This instantiation uses tSIG implemented
using threshold BLS as shown in Figure 2 in Section 2.1, and the aPPSS shown
in Figure 4 in Section 3. Finally, the latter is instantiated with a specific OPRF
protocol, 2HashDH [29], included in Appendix C.1, Figure 11. This concrete apt-
SIG protocol relies on authenticated channels between user U and each server
Si in initialization, an assumption we take throughout the paper. In addition,
the initialization relies on a secure channel for U-to-Si communication, but se-
cure channels can be implemented on top of authenticated channels using key
exchange. Moreover, a typical application would use TLS to implement authen-
ticated channels, which provides secure channels without any additional cost.

Notation and parameters. Figure 8 assumes the following notation for public
parameters: Security parameter l, threshold parameters t, n, t ≤ n, field F =
GF (2l), cyclic group G of prime order p, bilinear map group Ĝ of prime order p̂
and generator ĝ; hash functions H1, H2, H3, H4 with ranges G, {0, 1}l, {0, 1}2l,
Ĝ. Let AE = (AuthEnc,AuthDec) be an Equivocable Authenticated Encryption.
authA→B{m} and secA→B{m} stand for A sending message m to B via resp.
authenticated and secure A→ B channel.

Performance. Our concrete aptSIG protocol is very practical: The initialization
protocol takes 3 flows (after receiving OPRF replies the user can send all the
remaining messages in one flow), and the signing protocol takes only 2 flows.
Each server performs 2 exponentiations in both initialization and signing (one
in a standard group, one in a group with a bilinear map), while the user performs
O(n) exponentiations and one bilinear map. The protocol involves no server-to-
server communication, and the bandwidth between user and each server is O(n),
but the only O(n)-sized message is a ciphertext vector e, which can be stored
more efficiently using error correction instead of replicating it on all servers,
which reduces bandwidth to O(1) for t = O(n). In Appendix A we show a
simplified rendering of this protocol which highlights its simplicity and efficiency.

28



Parameters: The notation and parameters are defined in text, on page 28.

Initialization for user U on input (sid,S1, ..., Sn, pw):

1. Pick α←$ Zp, set a = (H1(pw))
α, and send ((sid||i||0), a) to Si for i ∈ [n].

2. Receive authS→U{ai, bi(= aki)} for each Si, abort if (ai ̸= a) for any i.
3. Pick s←$ F, generate shares (s1, ..., sn) as a (t, n)-secret-sharing of s over F.

Set ρi = H2(pw, b
1/α
i ) and ei = si ⊕ ρi for all i ∈ [n].

4. Set e := (e1, ..., en), (C||sk) := H3(pw, e, s), and ω := (e, C).
5. Send authU→Si{(sid||i||1), ω} for all i ∈ [n].

6. Pick v′, v0←$ Zp̂, set v = v0 + v′ mod p̂, generate shares (v1, ..., vn) as (t, n)-
sharing of v′ over Zp̂. Send secU→Si{(sid||i), vi} for all i ∈ [n].

7. Set V = ĝv and V⃗ = (V1, ...,Vn) where Vi = ĝvi for every i ∈ [n].

Set aecU := AE.AuthEncsk(U,V, V⃗, v0), send authU→Si{(sid, aecU)} for all i ∈
[n]. Output (ptsig.verificationkey, sid,V).

Initialization for server S on input (sid, i,U):

1. Set k←$ Zp, on ((sid||i||0), a) from U, abort if a ̸∈ G, else send
authS→U{a, ak}.

2. On message authU→S{((sid||i||1), ω} from U, store (sid, i, ω, k).

3. Receive secU→S{(sid||i), vi}, abort if vi /∈ Zp̂. Save (sid, vi).
4. On authU→S{sid, aecU} save (sid, aecU).

Signing for user U on input (sid, ssid,S = {S1, ..., St+1}, pw,m):

1. Pick α←$ Zp, set a = (H1(pw))
α, send ((sid, ssid, j), a) to Sj ∈ S.

2. Given ((sid, ssid, j), (bj , ij , ωj)) and (sid, aecUj) from each Sj , set ϕj =

H2(pw, b
1/α
j ) for j ∈ [t+ 1]. Abort if ij1 = ij2 or ωj1 ̸= ωj2 for any j1 ̸= j2.

Otherwise set ρij := ϕj for all j ∈ [t+ 1] and I := {ij |j ∈ [t+ 1]}.
3. Parse any ωj as (e, C) and e as (e1, ..., en). Set si := ei ⊕ ρi for each i ∈ I.
4. Recover s and the shares si for i /∈ I by interpolating points (i, si) for i ∈ I.
5. Parse H3(pw, e, s) as (C

′||sk). Abort if C′ ̸= C.

6. Abort if aecUj1 ̸= aecUj2 for any j1, j2 ∈ [t+1], else set aecU to any aecUj . Abort

if AE.AuthDecsk(aecU) = ⊥, else parse AE.AuthDecsk(aecU) as (U,V, V⃗, v0).
7. On messages (j, σj) from each Sj ∈ S if e(g, σj) ̸= e(Vj ,H4(m)) for any

j ∈ [t+1], output (ptsig.finsign, sid, ssid,m,⊥). Else compute σ := σ0 ·
(
∏

j∈S(σi)
λi), where σ0 = H4(m)v0 and λi’s are Lagrange interpolation co-

efficients corresponding to the set of indexes in S corresponding to S.
8. Output (ptsig.finsign, sid, ssid,m, σ).

Signing for server S on input (sid, ssid,U,m):

1. Given ((sid, ssid, j), a) from U, abort if a /∈ G or S does not hold records
(sid, i, ω, k), (sid, vi) and (sid, aecU) with the matching sid.

2. Otherwise set b := ak and send ((sid, ssid, j), (b, i, ω)), (sid, aecU) to U.

3. Send (i, σ) to U, where σ := H4(m)vi .

Fig. 8: aptSIG-BLS: an aptSIG protocol instantiated with T-BLS and aPPSS of
Fig. 4 with 2HashDH OPRF. The aPPSS sub-protocol is marked in gray .

29



Adding robustness to aptSIG-BLS. In the protocol in Figure 8, user U
chooses t + 1 servers to interact with, and it aborts if any server misbehaves.
Consequently, there is no guarantee that the protocol outputs a correct signature.
To achieve guaranteed output, one needs to enhance the OPRF function with a
verifiable OPRF [29], namely, where each server has a public OPRF verification
key that is provided to the user at initialization and included in the vector ω. In
particular, the OPRF construction from Fig. 11 (Appendix C.1) can be made
verifiable (see [29]) by setting each server’s public key to gk where k is the server’s
OPRF key and where verification is implemented via a non-interactive ZK proof
of equality of dlog. In this case, U can run the aPPSS protocol with any subset of
t+1 or more servers that sent the same ω value. If reconstruction succeeds, the
user has correct keying material, including the public keys to verify individual
BLS signatures by the servers (and discard invalid signatures). If reconstruction
fails, a new (disjoint) set of t + 1 or more servers with same value ω is chosen
by U and the process is repeated. It is guaranteed that if U has undisturbed
connectivity to t + 1 honest servers, the correct signature σ on message m will
be produced. The above process repeats for at most ⌊n/(t+ 1)⌋ times, hence it
is efficient even with dishonest majority.

Adding PFS security to aptSIG-BLS. In the protocol in Figure 8, server
Si in step 3 of the signing phase sends its partial signature σi without a proof
that U knows the correct password pw and wants to sign m. This enables the
adversary to gather partial signatures on a message m without prior knowledge
of pw, and then complete these to the full signature if it compromises password
pw in the future. However, we can prevent this attack and guarantee Perfect
Forward Secrecy (PFS). This extension is sketched at the end of Section 4.1,
and is fully described in Appendix G. The PFS-version of the fully instantiated
protocol aptSIG-BLS is deferred to Figure 8 in Appendix H.

References

1. Agrawal, S., Miao, P., Mohassel, P., Mukherjee, P.: PASTA: PASsword-based
threshold authentication. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.)
ACM CCS 2018. pp. 2042–2059. ACM Press (Oct 2018)

2. Arapinis, M., Gkaniatsou, A., Karakostas, D., Kiayias, A.: A formal treatment of
hardware wallets. In: Goldberg, I., Moore, T. (eds.) Financial Cryptography and
Data Security - 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and
Nevis, February 18-22, 2019, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 11598, pp. 426–445. Springer (2019). https://doi.org/10.1007/978-3-
030-32101-7 26, https://doi.org/10.1007/978-3-030-32101-7_26

3. Aumasson, J., Hamelink, A., Shlomovits, O.: A survey of ECDSA threshold signing.
IACR Cryptol. ePrint Arch. p. 1390 (2020), https://eprint.iacr.org/2020/1390

4. Bacho, R., Loss, J.: On the adaptive security of the threshold BLS signature
scheme. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022.
pp. 193–207. ACM Press (Nov 2022). https://doi.org/10.1145/3548606.3560656

5. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM CCS 2011. pp. 433–444. ACM
Press (Oct 2011)

30

https://doi.org/10.1007/978-3-030-32101-7_26
https://eprint.iacr.org/2020/1390


6. Baum, C., Frederiksen, T., Hesse, J., Lehmann, A., Yanai, A.: Pesto: Proactively
secure distributed single sign-on, or how to trust a hacked server. In: 2020 IEEE
European Symposium on Security and Privacy (EuroSP). pp. 587–606 (2020)

7. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y. (ed.) Pub-
lic Key Cryptography - PKC 2003, 6th International Workshop on Theory
and Practice in Public Key Cryptography, Miami, FL, USA, January 6-8,
2003, Proceedings. Lecture Notes in Computer Science, vol. 2567, pp. 31–46.
Springer (2003). https://doi.org/10.1007/3-540-36288-6 3, https://doi.org/10.
1007/3-540-36288-6_3

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryp-
tol. 17(4), 297–319 (2004). https://doi.org/10.1007/s00145-004-0314-9, https:

//doi.org/10.1007/s00145-004-0314-9

9. Boyd, C.: Digital multisignatures. Cryptography and Coding (1986)
10. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: How

to sign with a password and a server. In: Zikas, V., De Prisco, R. (eds.) SCN 16.
LNCS, vol. 9841, pp. 353–371 (Aug / Sep 2016)

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888, https://

doi.org/10.1109/SFCS.2001.959888

12. Canetti, R.: Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239 (2003), https://eprint.iacr.org/
2003/239

13. Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N., Peled, U.: UC non-
interactive, proactive, threshold ECDSA with identifiable aborts. In: Ligatti, J.,
Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp. 1769–1787. ACM Press
(Nov 2020)

14. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-
efficient threshold EC-DSA. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020, Part II. LNCS, vol. 12111 (May 2020)

15. Das, P., Erwig, A., Faust, S., Loss, J., Riahi, S.: Bip32-compatible threshold wallets.
IACR Cryptol. ePrint Arch. p. 312 (2023), https://eprint.iacr.org/2023/312

16. Das, S., Ren, L.: Adaptively secure BLS threshold signatures from DDH and co-
CDH. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part VII. LNCS, vol. 14926,
pp. 251–284. Springer, Cham (Aug 2024)

17. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomer-
ance, C. (ed.) CRYPTO’87. LNCS, vol. 293 (Aug 1988)

18. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO’89. LNCS, vol. 435 (Aug 1990)

19. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures (ex-
tended abstract). In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576 (Aug
1992)

20. Doerner, J., Kondi, Y., Lee, E., shelat, a.: Threshold ECDSA from ECDSA assump-
tions: The multiparty case. In: 2019 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press (May 2019)

21. Dziembowski, S., Jarecki, S., Kedzior, P., Krawczyk, H., Ngo, C.N., Xu, J.:
Password-protected threshold signatures. In: Advances in Cryptology – ASI-
ACRYPT 2024 (2024)

31

https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2023/312


22. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62 (Aug 2018). https://doi.org/10.1007/978-3-319-96881-0 2

23. Ganesan, R.: Yaksha: augmenting kerberos with public key cryptography. In: Pro-
ceedings of the Symposium on Network and Distributed System Security. pp. 132–
143 (1995)

24. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. ACM
Press (Oct 2018)

25. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key
generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83
(2007). https://doi.org/10.1007/s00145-006-0347-3, https://doi.org/10.1007/

s00145-006-0347-3

26. Gentry, C., MacKenzie, P.D., Ramzan, Z.: A method for making password-
based key exchange resilient to server compromise. In: Dwork, C. (ed.) Ad-
vances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings.
Lecture Notes in Computer Science, vol. 4117, pp. 142–159. Springer (2006).
https://doi.org/10.1007/11818175 9, https://doi.org/10.1007/11818175_9

27. Gjøsteen, K., Thuen, Ø.: Password-based signatures. In: Petkova-Nikova, S., Pasha-
lidis, A., Pernul, G. (eds.) Public Key Infrastructures, Services and Applications.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

28. Gu, Y., Jarecki, S., Kedzior, P., Nazarian, P., Xu, J.: Threshold PAKE with security
against compromise of all servers. In: Advances in Cryptology – ASIACRYPT 2024
(2024)

29. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected
secret sharing and T-PAKE in the password-only model. In: Sarkar, P.,
Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT 2014 - 20th Inter-
national Conference on the Theory and Application of Cryptology and In-
formation Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 8874, pp. 233–
253. Springer (2014). https://doi.org/10.1007/978-3-662-45608-8 13, https://

doi.org/10.1007/978-3-662-45608-8_13

30. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: How to protect your bitcoin wallet online).
In: 2016 IEEE European Symposium on Security and Privacy (EuroSP). pp. 276–
291 (2016). https://doi.org/10.1109/EuroSP.2016.30

31. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: How to protect your bitcoin wallet online).
In: 2016 IEEE European Symposium on Security and Privacy (EuroSP). pp. 276–
291 (2016). https://doi.org/10.1109/EuroSP.2016.30

32. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In: Gollmann, D., Miyaji,
A., Kikuchi, H. (eds.) Applied Cryptography and Network Security - 15th In-
ternational Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10355, pp. 39–58. Springer
(2017). https://doi.org/10.1007/978-3-319-61204-1 3, https://doi.org/10.1007/
978-3-319-61204-1_3

33. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol se-
cure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) Ad-

32

https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3


vances in Cryptology - EUROCRYPT 2018 - 37th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Is-
rael, April 29 - May 3, 2018 Proceedings, Part III. Lecture Notes in Computer
Science, vol. 10822, pp. 456–486. Springer (2018). https://doi.org/10.1007/978-3-
319-78372-7 15, https://doi.org/10.1007/978-3-319-78372-7_15

34. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: Lie, D., Mannan, M.,
Backes, M., Wang, X. (eds.) ACM CCS 2018. ACM Press (Oct 2018)

35. MacKenzie, P.D., Reiter, M.K.: Networked cryptographic devices resilient to cap-
ture. In: 2001 IEEE Symposium on Security and Privacy. pp. 12–25. IEEE Com-
puter Society Press (May 2001)

36. MacKenzie, P.D., Shrimpton, T., Jakobsson, M.: Threshold password-
authenticated key exchange. J. Cryptol. 19(1), 27–66 (2006).
https://doi.org/10.1007/s00145-005-0232-5, https://doi.org/10.1007/

s00145-005-0232-5

37. McQuoid, I., Rosulek, M., Xu, J.: How to obfuscate MPC inputs. In: Kiltz, E.,
Vaikuntanathan, V. (eds.) TCC 2022, Part II. LNCS, vol. 13748, pp. 151–180.
Springer, Cham (Nov 2022)

38. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140 (Aug
1992)

39. Wikström, D.: Universally composable DKG with linear number of exponenti-
ations. In: Blundo, C., Cimato, S. (eds.) Security in Communication Networks,
4th International Conference, SCN 2004, Amalfi, Italy, September 8-10, 2004,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 3352, pp.
263–277. Springer (2004). https://doi.org/10.1007/978-3-540-30598-9 19, https:
//doi.org/10.1007/978-3-540-30598-9_19

40. Xu, S., Sandhu, R.S.: Two efficient and provably secure schemes for server-assisted
threshold signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 355–
372 (Apr 2003)

A Simplified rendering of ΠaptSIG protocol from Section 5

Figure 9 shows a simplified rendering of the signing phase of protocol ΠaptSIG

shown in Figure 8 in Section 5. To increase readability, Figure 9 omits accounting
details like sid’s, message indexing, and details of polynomial interpolation. We
focus on the signing phase to show that it is very efficient and requires only
two flows of communication between U and Si’s. In particular, everything the
user needs to reconstruct a signature is sent by the server in one message. The
initialization phase has similar computational cost and takes only takes three
communication flows, see Section 5.

B Security of threshold BLS: Proof of Theorem 1

Proof. For any adversary A, we construct a simulator SIM. Without loss of
generality, we may assume that A is a “dummy” adversary that merely passes
all its messages and computations to the environment Z. The simulator SIM is

33

https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/s00145-005-0232-5
https://doi.org/10.1007/s00145-005-0232-5
https://doi.org/10.1007/978-3-540-30598-9_19
https://doi.org/10.1007/978-3-540-30598-9_19


Signing phase of aptSIG

User U on input (pw,m) Server Si on input m

α←$ Zp, a = (H1(pw))
α a

retrieve aPPSS share (ki, ω),

tBLS share vi, and envelope aecU

Compute bi = a
ki , σi = H4(m)

vi

bi, ω, aecU, σi

Given t+1 messages (bi, ω, aecU, σi) with same ω’s and aecU’s:

- set ρi := H2(pw, b
1/α
i ) for all i ∈ I (I are received messages indexes)

- parse ω as e = (e1, ..., en), and interpolate s from {si = ei ⊕ ρi}i∈I

- set (C
′||sk) := H3(pw, e, s), abort if C

′ ̸= C

- set (V, V⃗, v0) := AE.AuthDecsk(aecU), abort if decryption returns ⊥

- parse V⃗ = (V0, . . . , Vn), eliminate σj ’s in I s.t. e(ĝ, σj) ̸= e(Vj ,H4(m))

- set σ0 := H4(m)
v0 , interpolate σ

′
from {σi}i∈I , set σ := σ0 · σ′

Fig. 9: Rendering of the signing phase of protocol ΠaptSIG from Section 5

straightforward so we only provide a sketch. On (tsig.keygen, sid,P0) from FtSIG,
SIM runs the Key Generation code of P0 as in the protocol, obtains s, s0, ..., sn
and the corresponding public values V, V⃗, emulates sending si,V, V⃗ to each Pi

over a secure channel secP0→Pi
{·}, and outputs (tsig.publickey, sid,V) followed

by (tsig.keygencomplete, sid,P0) to FtSIG. Likewise, on (tsig.keygen, sid,Pi) from
FtSIG for any i > 0, SIM waits for transmission of the emulated secure chan-
nel message which produced for the secP0→Pi

{·} channel, and if the adversary
delivers this message then SIM sends (tsig.keygencomplete, sid,Pi) to FtSIG.

On (tsig.sign, sid,m,Pi) from FtSIG, SIM runs Pi’s signing code on si created
above, and when Pi outputs σ because it obtains valid partial signatures (in-
cluding its own) from all parties Pj ∈ S for some set S ∈ Ssid, then SIM sends
(tsig.signature, sid,m, S, σ) followed by (tsig.signcomplete, sid,m,Pi) to FtSIG. Fi-
nally, if the environment allows Pi to be compromised, SIM sends si to the
real-world adversary and sends (tsig.compromise, sid,Pi) to FtSIG.

It is not hard to see that Z’s real-world view and ideal-world view (sim-
ulated by SIM) are identical, except if (1) Z sends (tsig.verify, sid,m, σ,V) to
some party P such that e(g, σ) ̸= e(V,H(m)), (2) the set of compromised parties
Corr is not in Ssid (hence the adversary cannot forge messages on its own),
and (3) σ was not created (by SIM) in response to (tsig.sign, sid,m,Pi) mes-
sages sent from FtSIG for some sufficiently large set of honest parties (i.e. any
set S s.t. S ∪ Corr ∈ Ssid). In this case the real-world party P will output
(tsig.verified, sid,m, σ, 1), i.e. signature verification passes, but in the ideal world
P would output (tsig.verified, sid,m, σ, 0), because FtSIG never received message
(tsig.signature, sid,m, ·, σ) from SIM.

34



Call the above event Forge. We construct a reduction RBLS that aims to
break the CMA-unforgability of the BLS signature scheme if Forge occurs. Note
that this event can occur only before Z compromises some set S ∈ Ssid, i.e.
before Z compromises P0 and some subset of t+1 parties in (P1, ...,Pn). RBLS

is given BLS public key V, and runs the environment Z against the threshold
BLS signature scheme. RBLS sets S = S− ∪{0} where S− is a randomly chosen
t-element subset of [n]. Set S will be the RBLS ’s guess of the parties which Z
compromises before event Forge.

In the Key Generation phase, RBLS on input V picks shares {si}i∈S at
random and sets Vi := gsi for each i ∈ S; that in particular contains V0 (since
0 ∈ S), so RBLS can compute V/V0 which is supposed to be gs

′
. Next, RBLS

also knows Vi = gsi for all i ∈ S−, which are t values among V1, ...,Vn, so it can
use “interpolation in exponent” on V/V0 and {Vi}i∈S− to compute all remaining
values Vj for j ∈ [n] \ S. (Recall that in the real world s′ is secret-shared into

(s1, ..., sn), so knowing gs
′
and any t of gs1 , ..., gsn allows for computing the

remaining values.) On Z’s message (tsig.sign, sid,m) to any honest Pi, RBLS

simulates Pi’s signature protocol by computing σi := H(m)si for all i ∈ S, then
querying the signing oracle to obtain σ = H(m)s, and finally using “interpolation
in exponent” to compute the signatures for uncorrupted parties σj for j ∈ [n]\S
(similarly to how Vj ’s for j ∈ [n]\S were computed above, with the base g there
replaced by H(m)). If the adversary delivers sufficient number of valid partial
signatures to Pi, then RBLS sends (tsig.signature, sid,m,P, σ) to Pi.

If Z compromises any party not in set S before event Forge occurs, then
RBLS aborts. When Z compromises any Pi s.t. i ∈ S then SIM sends si to Z.
Finally, on (tsig.verify, sid,m, σ,V) from party P, RBLS checks if Forge happens,
and if so, it outputs (m, σ) as its forgery.

We now analyze the probability that RBLS breaks the CMA-unforgability of
the BLS signature scheme. The probability that RBLS ’s guess is correct is 1/

(
n
t

)
.

However, if RBLS ’s guess of set S is correct then Z’s view of the game simulated
by RBLS is identical to its view of the real-world protocol. We conclude that

AdvblsRBLS
(λ) ≥ 1(

n
t

) · Pr[Forge];
and assuming that the BLS signature scheme is CMA-unforgeable, and

(
n
t

)
is a

polynomial function of λ, it follows that Pr[Forge] must be a negligible function
of λ, which completes the proof.

C Protocol Tools and Building Blocks

We provide definitions of some cryptographic tools used in the paper, including
adaptively secure OPRF, authenticated encryption, signatures, and an authen-
ticated channel functionality.

35



C.1 Adaptive Oblivious Pseudorandom Function (OPRF)

For reference we include in Figure 10 the UC OPRF functionality modeled on
[33]. However, we make two cosmetic changes: (1) we adapt the functionality to
the multi-sessionmodel, whereas the original presentation of this functionality in
[33] was done in a single-session model, and (2) each party can output a transcript
of the protocol interaction to the environment. The functionality additionally
enforces that transcript equality implies that two parties are passively connected,
so if U and S outputs the same transcripts then U evaluates the OPRF on the
key of S.

Efficient adaptive OPRF protocol. In Figure 11 we include the 2HashDH
protocol, which was shown to realize the OPRF functionality in [33], adjusted
to the syntax of the FOPRF functionality in Figure 10, and so that the protocol
transcript is included in both parties’ outputs.

C.2 Ciphertext Integrity of Authenticated Encryption

We say that an authentication encryption scheme AE has ciphertext integrity, if
for any efficient algorithm A, the adversarial advantage Advci,aeA (λ) is a negligible
function of λ, where

Advci,aeA (λ) = Pr[ AuthDecsk(aecU
∗) ̸= ⊥ ∧ aecU

∗ ̸= aecU | sk←$ {0, 1}λ,
m← A(1, λ), aecU ← AuthEncsk(m), aecU

∗ ← A(2, aecU) ]

C.3 Signatures

A Signature Scheme is a tuple of algorithms Sig = (KeyGen,Sign,Verify), s.t.

Key Generation KeyGen takes as input the security parameter λ and outputs
a key pair (sk, pk);

(sk, pk)← KeyGen(1λ)

Signature Generation Sign takes as input the signing key sk and a message
m and outputs σ;

σ ← Sign(sk,m)

Signature Verification Verify takes as input the verification key pk and the
signature σ on message m, and outputs 0 or 1 upon rejection or acceptance
of σ on m.

{0, 1} ← Verify(pk, σ,m)

The standard security requirement on a signature is EUF-CMA (existiential
unforgeability under adaptive chosen message attack). Formally, scheme Sig is

EUF-CMA if the adversarial advantage Adveuf−cma,sig
A (λ) is a negligible function

of λ, where

Adveuf−cma,sig
A (λ) = Pr[ Verifypk(σ

∗,m∗) = 1 |
(sk, pk)← KeyGen(1λ), (σ∗,m∗)← A(Sign(sk, ·), pk))]

where A has access to the signing oracle Sign(sk, ·) butm∗ has never been queried
to the signing oracle Sign(sk, ·).

36



Public Parameters: PRF output-length l, polynomial in security parameter λ. This
functionality is tagged by a global session identifier sid, but since all calls should
include that globally fixed identifier we omit it from the syntax.
FOPRF interacts with arbitrary parties and an adversary A∗. Let P denote the set
of all parties (potentially dynamically changing), and let P∗ = P ∪{A∗}.
Convention: For every function identifier id and argument x, value Fid(x) is ini-
tially undefined. Whenever an undefined value Fid(x) is referenced then FOPRF

assigns Fid(x)←$ {0, 1}l.

Initialization

– On (oprf.init, id) from S ∈ P∗, reject this query if id ̸= [S||id′] for some id′ or if
∃ prior record (oprf.init, id, ∗). Otherwise, record (oprf.init, id, S), set tx[id] =
0, send (oprf.init, id, S) to A∗. If S is corrupted or S = A∗ then declare id
compromised.

Server Compromise (Query oprf.compromise requires permission from the envi-
ronment.)

– On (oprf.compromise, id, S) from A∗, if ∃ record (oprf.init, id, S), declare id
compromised.

Offline Evaluation

– On (oprf.offeval, id, x) from P ∈ P∗, if ∃ rec. (oprf.init, id, S) s.t. either (i) P =
S or (ii) P = A∗ and id is compromised, send (oprf.offeval, id, x, Fid(x)) to P.

Online Evaluation

– On (oprf.eval, ssid, x, S) from U ∈ P∗, reject this query if ∃ prior record
(oprf.eval, ssid,U, ∗). Otherwise send (oprf.eval, ssid,U, S) to A∗, record
(oprf.eval, ssid,U, x) marked fresh.

– On (oprf.sndrcomplete, id, ssid′) from P ∈ P∗, if ∃ record (oprf.init, id, S)
and either (i) P = S or (ii) P = A∗ and id is compromised,
send (oprf.sndrcomplete, id, ssid′) to A∗ and on reply trS, record
(oprf.sndrtrans, id, trS) send (oprf.sndrtrans, id, ssid′, trS) to S, set tx[id]++.

– On (oprf.rcvcomplete, id∗, ssid,U, trU) from A∗, if tx[id∗] > 0 and ∃ record
(oprf.eval, ssid,U, x) marked fresh, then:
1. If ∃ record (oprf.sndrtrans, id, trU) then abort if id∗ ̸= id.
2. Send (oprf.eval, ssid, Fid∗(x), trU) to U, set tx[id∗]––, mark

(oprf.eval, ssid,U, x) completed.

Fig. 10: Global OPRF functionality FOPRF with Adaptive Compromise

37



Components: Hash functions H(·, ·), H ′(·) with ranges {0, 1}ℓ and G, respectively.
Functions H, H ′ are specific to the OPRF instance initialized for a unique session
ID sid, and they should be implemented by folding sid into their inputs.

Initialization:

1. On input (oprf.init, id), S picks k ←$ Zq and stores (id, k).

Server Compromise:

1. On (oprf.compromise, id, S) from the adversary, reveal key k.

Offline Evaluation:

1. On input (oprf.offeval, id, S, x) for id matching record (id, k), S outputs
(oprf.offeval, id, y) for y = H(x, (H ′(x))k).

Online Evaluation:

– On input (oprf.eval, ssid, S′, x), U picks r ←$ Zq, records (ssid, r), and sends
(ssid, a) for a = H ′(x)r to S′

– On input (oprf.sndrcomplete, id, ssid′) and message (ssid, a) from U s.t. a ∈ G,
S retrieves pair (id, k) with matching id, aborts if such pair is not found, else
sends (ssid, b) for b = ak to U and outputs (oprf.sndrtrans, ssid′, (a, b)).

– On message (ssid, b) s.t. b ∈ G, U retrieves tuple (ssid, r), aborts if tuple not
found, else outputs (oprf.eval, ssid, y, (a, b)) for y = H(x, b1/r).

Fig. 11: Adaptive OPRF Protocol 2HashDH

C.4 Authenticated Channel Model

In Figure 12 we recall the ideal functionality FAUTH for message authentication
from [11]. This functionality can be realized using signatures if party names like
PS can be securely mapped to a public key, e.g. using PKI.

Ideal Functionality FAUTH

– On input (send, sid,PR,m) from PS , record tuple (send, sid,PS ,PR,m) and
send it to adversary A∗.

– On message (sent, sid,PS ,PR,m) from A∗, if this tuple is stored then send it
to PR and delete it from the storage.

Fig. 12: Ideal Functionality FAUTH

38



D Proof for aPPSS security

In this section we provide the missing proof of Theorem 2.

Proof. For any adversary A∗, we construct a simulator SIM as shown in Fig. 13
and 14. Without loss of generality, we may assume that A∗ is a “dummy” adver-
sary that merely passes all its messages and computations to the environment
Z. We omit all interactions with corrupted U and S where SIM acts as FOPRF,
since the simulation is trivial (SIM gains all information needed and simply fol-
lows the code of FOPRF). Following [33], we assume that for any server S, the
adversary A always sends (oprf.compromise, sid,S) and (ppss.compromise, sid,S)
messages together, since both messages correspond to the real-world action of
compromising S. We now show that the distinguishing advantage of Z between
the real world and the simulated world is negligible. The argument uses a se-
quence of games, starting from the real world and ending at the simulated world;

for any two adjacent games Gi and Gi+1, let Dist
Gi,Gi+1

Z denote the distinguish-

ing advantage of Z between them, i.e., Dist
Gi,Gi+1

Z = |Pr[Z outputs 1 in Gi] -

Pr[Z outputs 1 in Gi+1]|. (Dist
Gi,Gi+1

Z is a function of the security parameter λ,
but we omit λ below.)

In our analysis we will use following convention: if value is picked or cal-
culated during Initialization, then it will be denoted in pure form e.g. s, pw.
In the Reconstruction phase values have added apostrophe to denote the fact,
that they were sent by A∗ or calculated using other values sent by A∗. Let HL

denotes first λ bits of output of H. Respectively HR denotes last λ bits of H.
Define Succesful Password Test (SPT) as an event, in which A∗ receives t + 1
values Fid(pw), where id are function identifier used by different servers in the
User Initialization and pw is password by the User in that phase.

Game G1: Collision in H. At the start of G1 set H(x) = ⊥ for all x. When
U or A∗ queries H on some input x, if H(x) ̸= ⊥, then return H(x). Otherwise,
if H(x) = ⊥, pick y1 ←$ {0, 1}λ and y2 ←$ {0, 1}λ. If there exists x′ such that
HL(x

′) = y1, then abort. Otherwise set H(x) = [y1||y2] and output [y1||y2].
Probability of finding a collision on first λ bit in G0 when querying H on two
inputs is equal to 1

2λ
. In G1 there is no collisions in H. In case of no collisions

on H both games outputs random value in {0, 1}2λ. A∗ can query H up to qH

times, which results in probability of collision being equal bounded by
q2H
2λ

.

DistG0,G1

Z ≤ q2H
2λ

Game G2: In step 2 of User Reconstruction, U gets (oprf.eval, [sid||j||ssid], ϕj , trj)
from FOPRF and messages (ij , ωj) from S[j], for all j ∈ [t+1]. Values σj are cal-
culated as a value of a random function Fid∗(pw′), where id∗ was chosen by
A∗.

39



Set H(x) := ⊥, xH := ∅, Fid(pw) := ⊥, tested(pw) := ∅, pointer(i) :=
⊥, pointer(ssid, j) := ⊥, for all values x,id, pw, i, ssid, j. Assume that for any
x if H(x) is referenced for H(x) = ⊥ then SIM assigns H(x)←$ {0, 1}2λ and
xH := x ∪ xH . Analogously for any id, x if Fid(x) is referenced for Fid(x) = ⊥
then SIM assigns Fid(x)←$ {0, 1}λ.

1. On (ppss.uinit, sid,U) from FaPPSS for honest U, parse sid = (sid′||Psid), send
(oprf.eval, [sid||i||0],U,Psid[i]) to A∗ for i∈[n].

2. On (ppss.sinit, sid, i,S,U) from FaPPSS for honest S, send
(oprf.init, [S||sid], S) and (oprf.sndrcomplete, [S||sid], 0) to A∗, and on
reply trS, save (oprf.sndrtrans, [S||sid], trS), set tx[S||sid]++, and send
(send, [sid||i||0],S,U, trS) to A∗.

3. On (oprf.rcvcomplete, id∗, [sid||i||0],U, trU) and (sent, [sid||i||0], S,U, tr∗S) from
A∗ for U which was initialized via ppss.uinit in step 1 (otherwise ignore this
message), proceed only if: (a) S = P[i], (b) if S is honest then there exists
record (oprf.sndrtrans, [S||sid], tr∗S), (c) if ∃ record (oprf.sndrtrans, id, trU) then
id∗ = id, (d) tx[id∗] > 0, (e) trU = tr∗S .
If all conditions are met then do:
– set tx[id∗]–– and pointer(i) := id∗,
– if S is corrupt send (ppss.sinit, sid, i,S,U) to FaPPSS,
– if pointer(i) ̸= ⊥ for all i ∈ [n], pick e ←$ Fn and C ←$

{0, 1}λ , set ω := (e, C), and send (ppss.fininit, sid) to FaPPSS and
{(send, [sid||i||1],U,P[i], ω)}i∈[n] to A∗.

4. On (sent, [sid||i||1],U, S, ωi) from A∗ for S which was initialized via ppss.sinit
in step 2 with matching inputs (sid, i,U) (otherwise ignore this message):
If U is honest then abort unless ωi = ω. Otherwise, save (sid, i, ω).

5. Emulation of adversarial OPRF calls, server compromise, and off-line pass-
word tests:

(a) On (oprf.init, id) for id = [P||id′] and new id′ from either corrupt party P
or from P = A∗, set tx[id] := 0, mark id compromised.

(b) If the environment lets A∗ send (oprf.compromise, id, S) for id = [S || sid]
for honest S (for which SIM executed ppss.sinit), declare id compromised,
and if ∃ i s.t. id = pointer(i) then send (ppss.compromise, sid, S) to FaPPSS.

(c) On (oprf.sndrcomplete, id, ssid) and trS from A∗ for compromised id and
any ssid, save (oprf.sndrtrans, id, trS) and set tx[id]++ and if ∃ i s.t. id =
pointer(i) then send (ppss.srec, sid, ssid,P[i],⊥) to FaPPSS.

(d) On (oprf.eval, ssid, x,S) from P followed by
(oprf.rcvcomplete, id, ssid,P, trU) by A∗ where P is either corrupt or
P = A∗ (w.l.o.g. assume A∗ sends trU that allows evaluation of Fid):
If tx[id] > 0 then set tx[id]––, execute (5f), and send
(oprf.eval, ssid, Fid(x), trU) to P.

(e) On (oprf.offeval, id, x) from A∗ for compromised id, do: If ∃ i s.t. id =
pointer(i) then send (ppss.srec, sid,⊥,P[i],⊥) to FaPPSS; Execute (5f) and
send (oprf.offeval, id, x, Fid(x)) to A∗.

(f) Before SIM in line (5d) or (5e) sends Fid(x) to P/A∗ for id = pointer(i),
add i to tested(x), send (ppss.testpw, sid,P[i], x) to FaPPSS, and if FaPPSS

replies sk ̸= ⊥ then set si = ei⊕Fpointer(i)(x) for all i ∈ tested(x), interpo-
late (s, {si}i ̸∈tested(x)) from {(i, si)}i∈tested(x), set H(x, e, s) := [C||sk] (abort
simulation if H(x, e, s) already defined), and set Fpointer(i)(x) := si⊕ ei for
all i ∈ [n] \ tested(x).

Fig. 13: Simulator SIM for protocol ΠaPPSS (init., OPRF, off-line attacks)

40



6. On (ppss.urec, sid, ssid,U′,S) from FaPPSS, send
{(oprf.eval, [sid||j|ssid],U′,S[j])}j∈[t+1] to A∗.

7. On (ppss.srec, sid, ssid, S,U) from FaPPSS, if SIM saved (sid, i, ω′) for S in
step 4 (otherwise ignore this message), send (oprf.sndrcomplete, [S||sid], ssid)
to A∗, and on reply trS, save (oprf.sndrtrans, [S||sid], trS), set tx[S||sid]++, and
send (i, ω′) to A∗.

8. On (oprf.rcvcomplete, id∗j , [sid||j||ssid],U′, trUj) and (ij , ω
′
j) for any j∈[t+1]

from A∗, for U′ which ran ppss.urec on (sid, ssid) in step 6 (otherwise
ignore this message), proceed only if: (a) tx[id∗j ] > 0, (b) if ∃ record
(oprf.sndrtrans, id, S, trUj) then it must hold that id∗j = id. If all conditions
are met then set tx[id∗j ]– – and set pointer(ssid, ij) := id∗j .

Moreover, if pointer(ssid, ij) ̸= ⊥ for all j ∈ [t + 1] then send
(ppss.urec, sid, ssid,C, flag, pw∗, sk∗) to FaPPSS for (flag, pw∗, sk∗) s.t.:

(a) If some ij ’s are repeated, i.e. ∃ j1 ̸= j2 s.t. ij1 = ij2 , or if some ω′
j ’s are

not the same, i.e. ∃ j1, j2 s.t. ω′
j1 ̸= ω′

j2 , then (flag, pw∗, sk∗) := (0,⊥,⊥)
(b) Otherwise set ω′ := ω′

1. If ω′ = ω and pointer(ssid, ij) = pointer(ij)
∀ j∈[t+1] then (flag, pw∗, sk∗) := (1,⊥,⊥).

(c) Otherwise, parse ω′ = (e′, C′). Check if there exists x ∈ xH such that
H(x) = [C′||sk′] for any sk′ ∈ {0, 1}λ. If there exists such x then parse
x = (pw′′, e′′, s′′), set I := {ij | j ∈ [t+1]}. If Fpointer(ssid,i)(pw

′′) ̸= ⊥ for
all i ∈ I, then set s′i := e′i ⊕ Fpointer(ssid,i)(pw

′′) for all i ∈ I, interpolate
s′ from {(i, s′i)}i∈I). If s

′′ = s′ and e′′ = e′, then set (flag, pw∗, sk∗) :=
(2, pw′′, sk′′).

(d) If (flag, pw∗, sk∗) were not set above, then (flag, pw∗, sk∗) := (0,⊥,⊥).

Fig. 14: Simulator SIM for protocol ΠaPPSS (reconstruction and on-line attacks)

If ∃ j1 ̸= j2 s.t. ij1 = ij2 or ωj1 ̸= ωj2 or ∃ j s.t. ij ̸∈ [n] , output ⊥ and halt.
Otherwise set ρ′ij := ϕj for j ∈ [t+1] and I := {ij | j ∈ [t+1]} and ω′ := ω1. G2

modifies G1 if ω′ = ω and id∗j = idj for all j ∈ [t+1]: in this case G2 outputs sk,
if pw′ = pw. If pw′ ̸= pw, then G2 outputs ⊥. Observe, that if pw′ ̸= pw, then
U in G1 calculates H(pw′, e, s′) := [C ′||sk′]. From the definition of H we obtain
C ′ ̸= C and G1 outputs ⊥. On the other hand, if pw′ = pw, then both games
output sk.

DistG1,G2

Z = 0

Game G3: In step 2 of User Reconstruction, U gets (oprf.eval, [sid||j||ssid], ϕj , trj)
from FOPRF and messages (ij , ωj) from S[j], for all j ∈ [t+1]. Values ϕj are cal-
culated as a value of a random function Fid∗(pw′), where id∗ was chosen by
A∗.

If ∃ j1 ̸= j2 s.t. ij1 = ij2 or ωj1 ̸= ωj2 or ∃ j s.t. ij ̸∈ [n] , output ⊥ and
halt. Otherwise set ρ′ij := ϕj for j ∈ [t+1] and I := {ij | j ∈ [t+1]} and ω′ := ω1.

41



If ω′ ̸= ω or there exists j ∈ [t+1] such that id∗j ̸= idj G3 modifies G2 in the
following way:
In steps 3. and 4. of User Reconstruction U reconstructs s′. If there exists x
such that H(x) = [C ′||sk∗] for some sk∗, then parse x = (pw∗, e∗, s∗), else set
(pw∗, e∗, s∗) = (⊥,⊥,⊥). If e∗ = e′ and s∗ = s′, then check if pw∗ = pw′. If all
statements are true, then output sk∗. Otherwise output ⊥.

Observe, that if G3 outputs sk∗ ̸= ⊥, then G2 will output the same sk∗. In
both games U reconstructs the same s′ and there ∃x = (pw′, e′, s′) s.t. HL(x) =
C ′; both games output HR(x) = sk∗. On the other hand, if G2 outputs ⊥, then
G3 also outputs ⊥. It is so, because G2 outputs ⊥ when HL(pw

′, e′, s′) ̸= C ′

and if G3 outputs sk ̸= ⊥, then there exists x such that HL(x) = C ′ and
x = (pw∗, e′, s′). However, pw∗ = pw′, which leads to a contradiction.

In the rest of the analysis, we show, that if G2 outputs sk∗ ̸= ⊥, then G3

also outputs sk∗. We can differentiate 3 cases:

1. Case 1: ”C ′ ̸= C”.

G2 outputs sk′ ̸= ⊥, if H(pw′, e′, s′) = [C ′||sk′]. There exists at most one
value (pw′, e′, s′) which, when input to H outputs C ′ as first λ bits.
If A∗ has queried H on (pw′, e′, s′) before, then G3 outputs sk′. Other-
wise, if A∗ has not queried H on (pw′, e′, s′) before, then G3 outputs ⊥ and
HL(pw

′, e′, s′) is picked at random from {0, 1}λ. Probability, that HL(pw
′, e′, s′) =

[C ′] is equal to 1
2λ
.

2. Case 2: ”C ′ = C, e′ ̸= e”.
There exists exactly one value (pw, e, s) which when input to H outputs C as
first λ bits. In this case H(pw′, e′, s′) ̸= [C||sk∗] for every sk∗, which results
in both games G2 and G3 outputting ⊥.

3. Case 3: ”C ′ = C, e′ = e,∃i : id∗i ̸= idi”.
In both games G2 and G3 user U reconstructs s′ from extrapolating values
s′i = e′i ⊕ ρ′i. If s

′
i ̸= si for at least one i ∈ [t+1], then the probability of

reconstructing s′ = s is at most 1
2λ
. There exists only one s′ = s such that

HL(pw
′, e′, s′) = C ′, for which G2 outputs sk∗ ̸= ⊥.

On the other hand, Fid∗
i
(pw′) and Fidi(pw

′) are both random strings in

{0, 1}λ, so the probability that Fid∗
i
(pw′) = Fidi

(pw′) is equal to 1
2λ
. In

this case G2 outputs sk, if pw′ = pw and G3 always outputs ⊥.

DistG2,G3

Z ≤ 1

2λ

Game G4: If A∗ has queried H(pw, e, s) before step 4 of User Initialization, then
abort. A∗ can query H at most qH times and s is chosen at random from F in
step 3 of User Initialization, where |F| = 2λ. If A∗ did not query H(pw, e, s), then
[C||sk] in both games are indistinguishable, because [C||sk] is s independently
random of everything else.

DistG3,G4

Z ≤ qH
2λ

Game G5: User U picks s at random as inG43 in step 3 of User Initialization,
but in step 4 picks e = (e1, ..., en) at random and sets Fidi

(pw) := ei ⊕ si for

42



i ∈ [n]. By definition of FOPRF values of Fidi
(pw) in G4 are chosen at random

from {0, 1}λ. In G5 they are calculated as xor of a random values ei and si,
which also results in Fidi(pw) being a random value. By the same logic, in G4

values ei’s are calculated as xor of a random value Fidi(pw) and si, which results
in a random value, just like in G5.

DistG4,G5

Z = 0

Game G6: Leave values of Fidi
(pw) undefined until A∗ queries them. Obviously,

DistG5,G6

Z = 0

Game G7: Do not pick secret-sharing of s in step 3 of User Initialization, but
leave si undefined until Fidi

(pw) is queried by A∗. Then pick si at random and
set Fidi

(pw) := ei ⊕ si, unless A∗ queried before t servers on pw. If A∗ has
queried t servers, extrapolate (t+1)-st to n-th shares from s and previously sent
si’s. Note that until the SPT event occurs, s is independently random from any
other value in G6. Obviously:

DistG6,G7

Z = 0

Game G8: is the simulated world. We can see that the change from G7 to G8

is merely conceptual, with the game challenger split into the ideal functionality
FaPPSS and the simulator SIM. We have that

DistG7,G8

Z = 0

Summing up all results above, we conclude that Z’s distinguishing advantage
between the real world and the simulated world is a negligible function of λ .
This completes the proof.

E Changes between UC aPPSS and UC PPSS of [30]

We list the changes between the augmented (and adaptively secure) PPSS func-
tionality FaPPSS of Figure 3 and the PPSS functionality FPPSS of [30]. The main
differences which make the functionality augmented and adaptively secure are
as follows:

1. FaPPSS allows adaptive corruptions of secret-sharing parties via interface
ppss.compromise, which did not exist in FPPSS. The effect of ppss.compromise
is adding a party to the corrupted parties list Corr.

2. In the initialization stage FPPSS reveals secret sk to the adversary if at least
t+1 parties in P are in Corr. In FaPPSS this leakage is not automatic, and
requires the adversary to stage an offline dictionary attack, as explained in
the next item.

43



3. If Pi ∈ Corr then FaPPSS allows A∗ to execute the PPSS reconstruction pro-
tocol on behalf of Pi, via command ppss.srec. The effect of Pi executing the
PPSS reconstruction protocol is modeled by incrementing Pi’s ticket counter
tx(Pi). Such ticket increase can be then utilized for either completing PPSS
reconstruction by some user U′ via query ppss.urec, or for an adversarial
offline password test via query ppss.testpw.

4. In the processing of offline password test command ppss.testpw functionality
FPPSS allows the adversary to test a password guess pw∗ by utilizing the
tickets from (t + 1) − |P ∩ Corr| servers. In other words, the adversary
must explicitly perform the test using only uncorrupted servers, whereas
the contributions from corrupt servers come “for free”. By contrast, FaPPSS

requires that the adversary utilizes the tickets for some t+ 1 serves for each
password test. Such tickets can be obtained if the environment asks Pi to
run ppss.srec (see item 6 below) or, if Pi is corrupted, then the adversary A∗
can execute PPSS reconstruction on behalf of Pi as well (see item 3 above).

In addition to the above essential changes we made several changes which
include adjusting the functionality to the setting of unauthenticated channels in
the reconstruction stage, simplifying some syntax, and adjusting the functional-
ity to either strengthen the model by giving more power to the environment, or
to weaken the model to allow for its efficient realization. We stress that the latter
modifications still create a useful primitive, because, as we show, any protocol
that realizes FaPPSS can be used in black-box way to implement a password
protected signature.

5. Functionality FPPSS assumes authenticated channels in both initialization
and reconstruction phases while FaPPSS assumes it only in initialization. This
is reflected by the reconstruction query ppss.urec not including the set R of
parties which the user intends to participate in the reconstruction instance.
(See also discussion below.) The effect of this change is that FaPPSS allows
A∗ to specify in ppss.urec any set C of parties with positive ticket counters
as the participants in the reconstruction, whereas FPPSS required that set
C is identical to set R except for parties in R ∩Corr.

6. Functionality FPPSS gave A∗ the power to decide on the participation of
party Pi in both the PPSS initialization and in the PPSS reconstruction
instances. This gives too much power to the adversary, esp. regarding recon-
struction. We tighten up this processing in FaPPSS so that queries ppss.sinit
and ppss.srec are both made by Pi, and the adversary A∗ is merely informed
about it. This change allows us also to model offline password tests correctly,
see item 4 above, because offline password tests require utilizing ticket coun-
ters of t+ 1 active servers, and this change assures that the adversary can-
not increase servers’ ticket counters at will, except in the case of corrupted
servers.

7. Since Pi can be marked ACTIVE only if Pi ∈ P, for set P specified in
ppss.uinit, and ticket counter tx(Pi) can be increased only if Pi is marked
ACTIVE, functionality FaPPSS foregoes on checking membership of Pi in P
in the processing of ppss.urec and ppss.testpw.

44



8. Functionality FaPPSS drops the sub-session identifier ssid input from the
server reconstruction query ppss.srec. This input was present in FPPSS but
it played no security role, and it looked as if the functionality enforces con-
sistency of ssid identifiers used by U′ and Pi in the reconstruction, which is
not the case.

F Proof for aptSIG scheme security

In this section we provide the missing proof of Theorem 3 of Section 4.3.

Simulation Overview. We start by showing in Figure 15 the top-level view of
the interactions between different components, including protocols, functionali-
ties, and simulators, which define the real-world and ideal-world executions. For
a more detailed overview of these interactions please see Section 4.3.

ZOO
��

ff

��

U/SOO

��
ΠaptSIG

network oo //

FAUTH
oo // A∗

FaPPSS
oo //

ΠtSIG
oo //

(a) Real world

ZOO
��

ff



Û/ŜOO

��
FaptSIGOO
��

SIM

”network” oo // A∗

”FAUTH” oo //

”FaPPSS” oo //

”FtSIG” oo // SIMtSIG

��

OO

(b) Simulated world

Fig. 15: Real-world vs. Ideal-World interactions

Simulation of honest parties in Signing. Most of the cases are trivial as
SIM can determine the respective case using flag and ptsig.pretest and handle

45



On (ptsig.uinit, sid,U) from FaptSIG for honest U:

1. Send (ppss.uinit, sid,U) to A∗

2. Wait to receive:
(a) (ptsig.sinit, sid, i,Pi,U) from FaptSIG for all Pi ∈ Psid \Corr
(b) (ppss.sinit, sid, i,Pi,U) from A∗ for all Pi ∈ Psid ∩Corr
(c) (ppss.fininit, sid) from A∗

3. Set sid+ := add(sid,U) and send (tsig.keygen, sid+,U) to SIMtSIG

4. Wait to receive
(d) (tsig.keygen, sid+,Pi) from SIMtSIG for all Pi ∈ Psid ∩Corr
(e) (tsig.publickey, sid+,V) from SIMtSIG

(f) (tsig.keygencomplete, sid+,U) from SIMtSIG

5. Set aecU := SIMAE(lenm), send {(send, sid,U,Pi, aecU)}Pi∈Psid to A∗,
send {(ptsig.sinit, sid, i,Pi,U)}Pi∈Psid∩Corr and (ptsig.uinit, sid,V) to FaptSIG.

On (ptsig.sinit, sid, i,S,U) from FaptSIG for honest S ∈ Psid (assuming honest U):

1. Send (ppss.sinit, sid, i,S,U) to A∗

2. Set sid+ := add(sid,U) and send (tsig.keygen, sid+, S) to SIMtSIG

3. Wait to receive
(a) (ptsig.uinit, sid,U) from FaptSIG

(b) (ptsig.sinit, sid, i,Pi,U) from FaptSIG for all Pi ∈ Psid \ (Corr ∪ {S})
(c) (ppss.sinit, sid, i,Pi,U) from A∗ for all Pi ∈ P ∩Corr
(d) (tsig.keygen, sid+,Pi) from SIMtSIG for all Pi ∈ P ∩Corr
(e) (tsig.publickey, sid+,V) from SIMtSIG

(f) (tsig.keygencomplete, sid+,U) from SIMtSIG

(g) (sent, sid,U,S, aecU) from A∗

4. If all messages received, save record (sid, sid+, aecU), mark S as initialized.

Fig. 16: Simulator for ΠaptSIG (1): Initialization for honest parties

accordingly as the code of FaPPSS and FtSIG, except for the case where A∗ sends
flag = 2 and correctly guess the password (pw = pw′ and ptsig.pretest returns
a bit b = 1) and a shifted ciphertext aecU

∗ ← AuthDecsk∗(U, tsU, tcsU). In this
case, SIM has to treat U as attacked and run tSIG.ΠTSign+ with the adversarial
inputs (tsU, tcsU).

Simulation of corrupt parties in Signing. Most of cases can be handled
trivially as described in the Fig. 18 except for the case where A∗ specifies flag = 1
in ppss.finrec message with a correct password pw = pw′ (where ptsig.pretest
returns a bit b = 1). Playing the role of FaPPSS the simulator SIM would need
to return the secret key sk to the A∗. In this case, SIM would need to go ahead
and compromise the U in the tSIG protocol to extract the local state (tsU, tcsU)
from SIMtSIG and invoke SIMAE to equivocate the ciphertext aecU to decrypt
to (U, tsU, tcsU) under the key sk and then send sk to A∗.

Proof. Let Advci,aeD (λ), Adveqv,aeD (λ) denote an advantage of the algorithm D in
the ciphertext integrity and the equivocable game of the authenticated encryp-
tion scheme AE.

46



On (ptsig.usign, sid, ssid,U′,S,m) from FaptSIG for honest U′:

1. Send (ppss.urec, sid, ssid,U′,S) to A∗

2. When A∗ sends message (ppss.finrec, sid, ssid,C, flag, pw∗, sk∗) and A∗ sends
(sid, aecU

∗) as a message from all S ∈ S to U′ (else go to step 2d) then:
(a) If (flag = 1 and aecU

∗ = aecU), then send (ptsig.pretest, sid, ssid,C, flag, ·)
to FaptSIG, if FaptSIG’s replies b = 0 go to step 2d, else do:
i. set sid+ := add(sid,U) and send (tsig.sign, sid+,U′,m) to SIMtSIG;
ii. wait for (tsig.signature, sid+,m,P, σ,P∗) from SIMtSIG;
iii. if σ = ⊥ go to step 2d, else wait for the following messages:

– (ptsig.ssign, sid, ·, S, ·,m) from FaptSIG for all S ∈ P \Corr
– (tsig.sign, sid+,m,S) from SIMtSIG for all S ∈ P ∩Corr;

iv. wait for (tsig.signcomplete, sid+,U′) from SIMtSIG;
v. send (ptsig.finsign, sid, ssid,P, flag, σ,⊥) to FaptSIG;

(b) If (flag = 1 and aecU
∗ ̸= aecU and U is marked attacked), then reset

flag := 2, sk∗ := skU, and pw∗ := pwU, and go to step 2c.
(c) If flag = 2, let b be FaptSIG’s reply to (ptsig.pretest, sid, ssid,⊥, flag, pw∗):

i. If b = 0 or AE.AuthDecsk∗(aecU
∗) = ⊥ then go to step 2d;

ii. Else set (U, tsU, tcsU) = AE.AuthDecsk∗(aecU
∗), sid+ = add(sid,U),

run tSIG.ΠTSign+ on input (sid+, tsU, tcsU,m) on behalf of a virtual
party U∗, interacting with SIMtSIG as an adversary. If U∗ completes
the protocol with local output σ∗ then send (ptsig.finsign, sid, ssid,
⊥, flag=2, σ∗,⊥) to FaptSIG;

(d) Else send (ptsig.finsign, sid, ssid,⊥, flag=0,⊥,⊥) to FaptSIG and abort;

On (ptsig.ssign, sid, ssid, i,S,U′,m) from FaptSIG for honest S marked initialized:

1. Send (ppss.srec, sid, ssid,S,U′) and (sid, aecU) to A∗;
2. Recover record (sid, sid+, aecU) and send (tsig.sign, sid+,m) to SIMtSIG+.

Fig. 17: Simulator for ΠaptSIG (2): Signing for honest parties

We now show that the distinguishing advantage of Z between the real world
and the simulated world is negligible. The argument uses a sequence of games,
starting from the real world and ending at the simulated world; for any two ad-

jacent games Gi and Gi+1, let Dist
Gi,Gi+1

Z denote the distinguishing advantage

of Z between them, i.e., Dist
Gi,Gi+1

Z = |Pr[Z outputs 1 in Gi] - Pr[Z out-

puts 1 in Gi+1]|. (Dist
Gi,Gi+1

Z is a function of the security parameter λ, but we
omit λ below.)
In our analysis we will use following convention: if value is picked or calculated
during Initialization, then it will be denoted in pure form e.g. pw, sk, aecU, tsU,
tcsU. In Signing phase values have added apostrophe to denote the fact, that
they were sent by A∗ or calculated using other values sent by A∗.

Game G0: This is the real world execution.

Game G1: User not marked attacked aborts if pw′ = pw, A∗ finalizes
aPPSS with flag = 1, but sends aecU

∗ ̸= aecU. Note that G1 is the same

47



On (ppss.urec, sid, ssid,S, pw′) from A∗ for corrupt U′:

1. Send (ptsig.usign, sid, ssid,S, pw′,⊥) to FaptSIG

2. If A∗ sends (ppss.finrec, sid, ssid,C, flag, pw∗, sk∗) then:
(a) If flag = 0 send (ppss.finrec, sid, ssid,⊥) to A∗.
(b) If flag = 1 then add ssid to Setssid:

i. Send (ptsig.pretest, sid, ssid,C, flag=1,⊥) to FaptSIG and if FaptSIG

sends b = 0 then send (ppss.finrec, sid, ssid,⊥) to A∗;
ii. Otherwise if FaptSIG sends b = 1 then :

A. If U is not yet marked attacked then mark U attacked and:
– send (tsig.compromise, sid,U) to SIMtSIG to obtain (tsU, tcsU)
– set skU ← SIMAE(aecU, (U, tsU, tcsU))

B. send (ppss.finrec, sid, ssid, skU) to A∗

(c) If flag = 2 then send (ppss.finrec, sid, ssid, sk∗) to A∗ if pw∗ = pw′,
otherwise send (ppss.finrec, sid, ssid,⊥).

On (tsig.sign, sid+,U,m) from SIMtSIG for U marked attacked:

1. Wait to receive (tsig.signature, sid+,m,P, σ∗,P∗) from SIMtSIG. If there were
at least t+1 messages received of either of the following two types:
(a) (ptsig.ssign, sid, ·,S, ·,m) from FaptSIG for S ∈ Psid \Corr
(b) (tsig.sign, sid+, S,m) from SIMtSIG for S ∈ Psid ∩Corr
Then remove one ssid from Setssid and send (ptsig.finsign, sid, ssid,P\{U},
flag=1, σ∗,m) to FaptSIG.

On (ppss.srec, sid, ·, S, ·) from A∗ for S ∈ Psid ∩Corr:

1. Send (ptsig.ssign, sid, ssid=⊥, S,U′=⊥,m=⊥, 1) to FaptSIG.

On (tsig.sign, sid+, S,m) from SIMtSIG for S ∈ Psid ∩Corr:

1. Send (ptsig.ssign, sid, ssid=⊥, S,U′=⊥,m, 0) to FaptSIG.

Fig. 18: Simulator for ΠaptSIG (3): Signing for corrupt parties

as G0 except possibly in the case where the user is not marked attacked, A∗
finalizes aPPSS with flag = 1 (which denotes passive completion of the aPPSS
reconstruction protocol), the user runs on the correct password pw′ = pw, but
the user receives aecU

∗ ̸= aecU from A∗.
In this case, in the ideal world, the user would abort following sending

(ptsig.finsign.sid, ssid, flag = 0,⊥, .) to FaptSIG. In the real world (game G0),
the user would also abort unless it can decrypt aecU

∗ using sk. This implies
that G0 and G1 are identical unless ⊥ ̸= AuthDecsk(aecU

∗). We can construct
a reduction RCI to the ciphertext authenticity property of AE where sk is the
challenge AE key and aecU is the challenge ciphertext: RCI runs the code of G0

except that it “outsources” values sk and aecU created in the initialization to the
CI challenge oracle, and then submits aecU

∗ sent by A∗ as the CI forgery. We
have that

DistG0,G1

Z ≤ Advci,aeRCI
(λ)

which is a negligible function of λ.

48



Note: We assume A∗ compromises all components of S at the same time.

On (ppss.testpw, sid, S, pw∗) from A∗, send (ptsig.testpw, sid, S, pw∗) to FaptSIG,
and let b be FaptSIG’s response. If b = 0 then sent ⊥ to A∗, else do:

1. If U is already marked attacked then send skU to A∗ and abort;
2. Otherwise mark U attacked and:

– send (tsig.compromise, sid,U) to SIMtSIG to obtain (tsU, tcsU)
– set skU ← SIMAE(aecU, (U, tsU, tcsU))
– send skU to A∗

Fig. 19: Simulator for ΠaptSIG (4): Test Password

Game G2: creating aecU via encryption equivocability simulator SIMAE .
At the beginning of the game, let SIMAE simulate aecU and leave sk undefined,
then let SIMAE simulate sk when A∗ computes it, i.e.

1. At the beginning of the game, set aecU ← SIMAE(lenm)
2. When A∗ obtains the correct password pw through either the online or offline

password test avenue (ppss.testpw with enough tickets tx(S)). In such an
event SIM would go ahead and compromise U in the tSIG scheme and obtain
the simulated local state of the user U (tsU, tcsU) from SIMtSIG. Then SIM
asks SIMAE to equivocate sk← SIMAE(aecU, (U, tsU, tcsU)).

Observe that in G1, Z sees aecU ← AuthEncsk(U, tsU, tcsU), and unless and until
A∗ obtains the correct password pw and learns sk, sk is not used by any party
except in generating aecU, hence is a random string in {0, 1}λ and independent
of everything else (except for aecU) in Z’s view. , in G1, all processing is based
on whether flag = 1, pw = pw′, and aecU

∗ ̸= aecU. Therefore, in G5 aecU followed
by sk are formed as in the real game in the equivocability game of AE, where
A∗ sees the encryption aecU of (U, tsU, tcsU) under key sk. On the other hand,
in G2, the ciphertext aecU followed by key sk are formed as in the ideal game in
the equivocability game of AE. We can thus conduct a reduction REQV to the
equivocability of AuthEnc: REQV runs the code of G1 except that it uses input
as aecU and sk, and copies Z’s output. We have that

DistG1,G2

Z ≤ Adveqv,aeREQV
(λ)

which is a negligible function of λ.

Game G3: In this game we outsource the interaction with tSIG to functionality
FaptSIG and the simulator SIMtSIG, whose existence is implied by the fact that
tSIG UC-realizes functionality FaptSIG. Note that in game G2 the uncompro-
mised parties run tSIG key generation followed by tSIG signing on the created
shares, and the rest of the game can be thought of as an environment for tSIG.
The only apparent exception is when U runs tSIG singing not on shares create
in key generation but on adversarial shares which it outputs from the aPPSS
subprotocol.

49



That concretely is the case where A∗ sends flag = 2 and correctly guess the
password (pw = pw′ and ptsig.pretest returns a bit b = 1) and a shifted ciphertext
aecU

∗ ← AuthDecsk∗(U, tsU, tcsU). In this case, SIM has to treat U as attacked
and run tSIG.ΠTSign+ with the adversarial inputs (tsU, tcsU). This is depicted
in the Fig. 15 as tSIG+, we treat such U execution separately, as an extension
of A∗, and after this “externalization” the rest of the game can be seen as an
environment for tSIG.

Therefore, by the fact that tSIG UC-realizes FaptSIG, this environment can-
not distinguish (except for negligible probability) an interaction with the tSIG
implementation (as in G2), from an interaction with functionality FtSIG and
simulator SIMtSIG. Let Z ′ be an environment formed by Z together with the
rest of game G2. It follows that

DistG2,G3

Z ≤ Advuc,tsigZ′ (λ)

where Advuc,tsigZ′ (λ) is an upper-bound on the advantage of environment Z ′ in dis-
tinguishing between the real-world protocol tSIG and an ideal-world interaction
of FtSIG and simulator SIMtSIG.

Game G4: This is the ideal-world interaction where honest parties interact with
FaptSIG which in turn interacts with SIM as shown in Figures 16-19. We can see
that the change from G3 to G4 is merely notational, with the game challenger
split into the ideal functionality FaptSIG and the simulator SIM which internally
emulates functionalities FaPPSS and FAUTH. It follows that

DistG3,G4

Z = 0

Summing up all inequalities above, we conclude that Z’s distinguishing advan-
tage between the real world and the simulated world is a negligible function of
λ, which completes the proof.

G Password-Protected Signatures with PFS Security

In this section we present a variant of the aptSIG functionality FaptSIG shown in
Figure 5 in Section 4.1. The variant defined strengthens the notion by capturing
the property of Perfect Forward Security (PFS). This functionality, denoted
FaptSIG−PFS, is shown in Figure 20. The modifications are small, and they are
marked in grey. Next, we present a protocol ΠaptSIG−PFS, shown in Figure 21,
which modifies the ΠaptSIG protocol shown in Figure 7 in Section 4.2. Finally,
we sketch why protocol ΠaptSIG−PFS realizes functionality FaptSIG−PFS.

PFS version of aptSIG functionality. The difference between the aptSIG
functionality FaptSIG−PFS which captures the PFS property, and the basic fun-
cionality FaptSIG, is very small, and it is all contained in how the functionality
responds to the server S’s signing query ptsig.ssign. Namely, instead of “blindly”
incrementing tickets tx(S) and issuing a S-willing-to-sign-m record (sid,m,S),
the modified functionality still increments tickets tx(S), but it only issues record

50



Initialization:

1. On (ptsig.uinit, sid, pw) from party U for sid = (...,Psid) s.t. |Psid| = n, send
(ptsig.uinit, sid,U) to A∗, save (sid,U,Psid, pw) and set flag flagsid = 0.
Ignore further ptsig.uinit calls for same sid.

2. On (ptsig.sinit, sid, i,U) from party S, or (ptsig.sinit, sid, i,S,U) from A∗ for
S ∈ Corr, send (ptsig.sinit, sid, i,S,U) to A∗, save (sid,U, S, i).

3. On (ptsig.uinit, sid,V) from A∗, if ∃ record (sid,U,Psid, pw) and records
(sid,U, S, i) for each S ∈ Psid, then create record (sid,Psid, pw,V) and send
(ptsig.verificationkey, sid,V) to U.

Server Compromise: (This query requires permission from the environment.)
On (ptsig.corrupt, sid,P) from A∗, set Corr := Corr ∪ {P}.

Signing:

1. On (ptsig.usign, sid, ssid,S, pw′,m) from party U′ or from U′ = A∗, send
(ptsig.usign, sid, ssid,U′,S,m) to A∗. If ∃ record (sid,Psid, pw,V) then save
(sid, ssid,U′,Psid, pw, pw

′,V,m), else save (sid, ssid,U′,⊥,⊥, pw′,⊥,m).
Ignore future ptsig.usign calls for same ssid.

2. On (ptsig.ssign, sid, ssid,U′,m) from party S or (ptsig.ssign, sid, ssid,S,U′,
m, b) from A∗ for S ∈ Corr, if ∃ record (sid,Psid, pw,V) s.t. S ∈ Psid then
send (ptsig.ssign, sid, ssid,S,U′,m) to A∗ and do:

(a) in every case except (S ∈ Corr and b = 0) set tx(S)++;

(b) if S ∈ Corr or (S ̸∈ Corr and ∃ record (sid, ssid, ∗, ∗, pw, pw′, ∗,m) s.t.

pw = pw′) then save (sid,m, S).

3. On (ptsig.pretest, sid, ssid,C, flag, pw∗) from A∗, if ∃ rec = (sid, ssid,U′,Psid,
pw, pw′, ·, ·) not marked as pretested(c) for any c then:
(a) if flag = 1, |C| = t+1, and ∀S∈C(tx(S)>0), then set tx(S)– – for all S ∈ C,

set b := (pw′ == pw), send b to A∗ and mark rec as pretested(b);
Moreover, if b = 1 and U′ is corrupted or U′ = A∗ then set flagsid = 1;

(b) if flag = 2 then set b := (pw′ == pw∗), send b to A∗, and if b = 1 then
mark rec as pretested(2) else mark rec as pretested(0).

4. On (ptsig.finsign, sid, ssid,C′, flag, σ∗,m∗) from A∗, if ∃ rec = (sid, ssid,U′,
Psid, pw, pw

′,V,m) then:
(a) if m = ⊥ and U′ is corrupted (or U′ = A∗) then reset m := m∗;
(b) if flagsid = 1, rec is marked pretested(0), and U′ is corrupted or U′ = A∗

then change rec mark to pretested(1);
(c) send (ptsig.finsign, sid, ssid, σ) to U′ s.t.

i. if flag = 1, rec is marked pretested(1), |C′| = t+1, C′ ⊆ Psid, ∃ record
(sid,m, S) for all S ∈ C′, V(m, σ∗) = 1, and there is no saved record
(sid,m, σ∗, 0), then save record (sid,m, σ∗, 1) and set σ := σ∗;

ii. if flag = 2 and rec is marked pretested(2) then set σ := σ∗;
iii. if neither of the above two cases is met set σ := ⊥.

Verification:
On (ptsig.verify, sid,m, σ,V) from Q, send (ptsig.verify, sid,m, σ,V) to A∗ and do:

– if ∃ records (sid,Psid, pw,V) and (sid,m, σ, β′) then set β := β′;
– else, if ∃ record (sid,Psid, pw,V) but no (sid,m, σ, 1) for any σ then set β := 0;
– else set β := V(m, σ).

Record (sid,m, σ, β) and send (tsig.verified, sid,m, σ, β) to Q.

Password Test:
On (ptsig.testpw, sid, S, pw∗) from A∗, retrieve record (sid,Psid, pw,V). If tx(S) >
0 then add S to set ppss.pwtested(pw∗) and set tx(S)– –. If |ppss.pwtested(pw∗)| =
t+ 1 then return bit b = (pw∗ == pw) to A∗.

Fig. 20: FaptSIG−PFS: Functionality for Password-Protected Threshold Signature

with PFS. Changes from FaptSIG marked in gray .

51



Public parameters: Security parameter λ, threshold parameters t, n s.t. t ≤ n. Let
AE = (AuthEnc,AuthDec) be an Equivocable Authenticated Encryption scheme,
let tSIG = (ΠTKeyGen, ΠTSign, ΠTVerify) be a Threshold Signature scheme realiz-
ing functionality FtSIG (see text), let Sig = (KeyGen, Sign,Verify) be a standard
Signature scheme. Procedure add(sid,U) parses sid = (sid′,Psid) and outputs
sid+ = (sid′,P+

sid) s.t. if Psid = (P1, ...,Pn) then P+
sid = (U,P1, ...,Pn).

Initialization for user U:

1. On input (ptsig.uinit, sid, pw), run tSIG.ΠTKeyGen+ on input sid+ = add(sid,U),
let (tsU, tcsU) and V be resp. U’s local output and the generated public key.

2. Generate (sksU, pkU)←$ KeyGen.

3. Send (ppss.uinit, sid, pw,⊥) to FaPPSS, let sk be FaPPSS’s output.

4. Set aecU := AE.AuthEncsk(U, tsU, tcsU, sksU), send (send, sid,Pi, (aecU, pkU)) to

FAUTH for all Pi ∈ Psid, output (ptsig.verificationkey, sid,V).

Initialization for server S:

1. On input (ptsig.sinit, sid, i,U), run tSIG.ΠTKeyGen+ on sid+ = add(sid,U) and
send (ppss.sinit, sid, i,U) to FaPPSS. Let (tsi, tcsi) be S’s local output from
tSIG.ΠTKeyGen+ .

2. On (sent, sid,U,S, (aecU,pkU)) from FAUTH, save (sid, sid
+, tsi, tcsi, aecU,pkU).

Signing for user U′

1. On input (ptsig.usign, sid, ssid,S, pw′,m) for |S| ≥ t+1 from U′, send
(ppss.urec, sid, ssid,S, pw′) to FaPPSS, and wait to receive (ppss.urec, sid, ssid,
sk) from FaPPSS and messages aecU for all S ∈ S.

2. If sk ̸= ⊥, all S ∈ S send the same value aecU,
and AE.AuthDecsk(aecU) output parses as (U, tsU, tcsU, sksU ),

then send σU ← Sign(sksU, (m, ssid)) to each S ∈ S, but if any conditions

fail then output (ptsig.usign, sid, ssid,⊥) and abort.
3. Run protocol tSIG.ΠTSign+ on input (sid+, tsU, tcsU,m) for sid+ = add(sid,U),

and when this protocol outputs σ, output (ptsig.finsign, sid, ssid, σ).

Signing for server S

1. On input (ptsig.ssign, sid, ssid,U′,m), retrieve stored tuple (sid, sid+, tsi, tcsi,
aecU), send (ppss.srec, sid, ssid,U′) to FaPPSS and send aecU to U′.

2. On received message σU, if Verify(pkU, (m, ssid), σU) = 1 then run
tSIG.ΠTSign+ on input (sid+, tsi, tcsi,m), otherwise abort.

Verification for Q

1. On input (ptsig.verify, sid,m, σ,V), compute β = tSIG.ΠTVerify(V,m, σ) and
output (ptsig.verified, sid,m, σ, β)

Fig. 21: Protocol ΠaptSIG−PFS which realizes FaptSIG−PFS in (FaPPSS,FAUTH)-

hybrid world ( shadow text omitted for ΠaptSIG)

52



(sid,m,S) if there is a user-side signing record (sid, ssid, ∗, ∗, pw, pw′, ∗,m) s.t.
pw = pw′, i.e. that some party (an honest or adversarial) was (1) requesting to
sign m, (2) they did so while holding the right password, pw′ = pw, and (3) they
did so explicitly for the signature subsession identified as ssid, and this identifier
matches the one that S used in the signing query ptsig.ssign. Only when all these
conditions are satisfied then the record (sid,m,S) is created. (And if there are
t + 1 such records for the same m then the user signing session will be allowed
to generate a signature.)

The three above imply that any server sessions which terminated in the past,
and they used ssid’s for which the user party (which includes an adversary)
did not hold a correct password, such sessions did not create any willing-to-sign
records which the adversary could “complete” some time in the future, when
it captured the password. Indeed, the only way to create signatures using a
password is if the servers agree to run ptsig.ssign with fresh subsession identifiers
ssid, which the adversary will be able to complete by runnig ptsig.usign with the
new ssid and the compromised password.

PFS version of ΠaptSIG protocol. Protocol ΠaptSIG−PFS, shown in Figure 21,
achieves PFS security in a simple way: First, we extend initialization so U creates
a standard signature key pair (sksU, pkU), encrypts sksU along with their share
tsU, tcsU in the threshold signature scheme in envelope aecU, and registers pkU
with the servers along with aecU. Then in the signing protocol U recovers sksU
along with their threshold signature share, and uses it to explicitly authorize
issuing of a signature on m for subsession identifier ssid (and to authenticate
itself as owner of pw) by sending signature σU on (m, ssid) under key sksU.
Finally, each server S waits to receive such signature, and verifies it, before
engaging in the threshold signature protocol on m.

Theorem 4 If AE = (AuthEnc,AuthDec) is an Equivocable Authenticated En-
cryption, Sig = (KeyGen,Sign,Verify) is an EUF-CMA Digital Signature Scheme,
and tSIG = (ΠTKeyGen, ΠTSign, ΠTVerify) is a Threshold Signature scheme which
UC-realizes functionality FtSIG, then protocol ΠaptSIG in Fig. 21 UC-realizes
functionality FaptSIG in Fig. 20 in the (FaPPSS,FAUTH)-hybrid model with Per-
fect Forward Secrecy.

Proof. We show how to modify the simulator in Fig. 22-24. The series of games
will include one more game G1b that is in between G1 and G2 and we show the
transition from G1 to G1b and from G1b to G2. We also make slight modification
to G2 by adding sksU into the plaintext of aecU but transition from G2 to G3

stays the same as it is not affected by the modification.

Game G1b: creating pkU and sksU inside SIM. At the beginning of the game,
let SIMSIG generates pkU and skU using the key generation algorithm Sig.KeyGen,
then let SIMSIG reveals sksU when A∗ computes it, i.e.

1. At the beginning of the game, set (pkU, sksU)← Sig.KeyGen(1λ)
2. When the signature is needed in the simulation, SIM just sign using sksU.

53



On (ptsig.uinit, sid,U) from FaptSIG for honest U:

1. Send (ppss.uinit, sid,U) to A∗

2. Wait to receive:
(a) (ptsig.sinit, sid, i,Pi,U) from FaptSIG for all Pi ∈ Psid \Corr
(b) (ppss.sinit, sid, i,Pi,U) from A∗ for all Pi ∈ Psid ∩Corr
(c) (ppss.fininit, sid) from A∗

3. Set sid+ := add(sid,U) and send (tsig.keygen, sid+,U) to SIMtSIG

4. Wait to receive
(d) (tsig.keygen, sid+,Pi) from SIMtSIG for all Pi ∈ Psid ∩Corr
(e) (tsig.publickey, sid+,V) from SIMtSIG

(f) (tsig.keygencomplete, sid+,U) from SIMtSIG

5. Set aecU := SIMAE(lenm) and (pkU, sksU) ← Sig.KeyGen(1λ), send
{(send, sid,U,Pi, aecU, pkU)}Pi∈Psid to A∗,
send {(ptsig.sinit, sid, i,Pi,U)}Pi∈Psid∩Corr and (ptsig.uinit, sid,V) to FaptSIG.

On (ptsig.sinit, sid, i,S,U) from FaptSIG for honest S ∈ Psid (assuming honest U):

1. Send (ppss.sinit, sid, i,S,U) to A∗

2. Set sid+ := add(sid,U) and send (tsig.keygen, sid+, S) to SIMtSIG

3. Wait to receive
(a) (ptsig.uinit, sid,U) from FaptSIG

(b) (ptsig.sinit, sid, i,Pi,U) from FaptSIG for all Pi ∈ Psid \ (Corr ∪ {S})
(c) (ppss.sinit, sid, i,Pi,U) from A∗ for all Pi ∈ P ∩Corr
(d) (tsig.keygen, sid+,Pi) from SIMtSIG for all Pi ∈ P ∩Corr
(e) (tsig.publickey, sid+,V) from SIMtSIG

(f) (tsig.keygencomplete, sid+,U) from SIMtSIG

(g) (sent, sid,U,S, aecU, pkU) from A∗

4. If all messages received, save record (sid, sid+, aecU, pkU), mark S as initialized.

Fig. 22: Simulator for ΠaptSIG with Perfect Forward Secrecy (1): Initialization
for honest parties

3. SIM verifies the signature σ∗U sent by A∗ when simulating the honest servers
in signing and abort if 0 := Sig.Verify(pkU, σ

∗
U ,m);

Observe that G1 and G1b are indistiguiable to A∗ unless SIM does not abort in
the case that σ∗U sent by A∗ meaning 1 := Sig.Verify(pkU, σ

∗
U ,m). We have that

DistG1,G1b

Z ≤ Adveuf−cma,sig
Z (λ)

which is a negligible function of λ as Sig is EUF-CMA secure.

Game G2: creating aecU via encryption equivocability simulator SIMAE .
At the beginning of the game, let SIMAE simulate aecU and leave sk undefined,
then let SIMAE simulate sk when A∗ computes it, i.e.

1. At the beginning of the game, set aecU ← SIMAE(lenm)
2. When A∗ obtains the correct password pw through either the online or offline

password test avenue (ppss.testpw with enough tickets tx(S)). In such an

54



On (ptsig.usign, sid, ssid,U′,S,m) from FaptSIG for honest U′:

1. Send (ppss.urec, sid, ssid,U′,S) to A∗

2. When A∗ sends message (ppss.finrec, sid, ssid,C, flag, pw∗, sk∗) and A∗ sends
(sid, aecU

∗) as a message from all S ∈ S to U′ (else go to step 2d) then:
(a) If (flag = 1 and aecU

∗ = aecU),
set σU ← Sig.Sign(sksU,m) and sends it to A∗

then send (ptsig.pretest, sid, ssid,C, flag, ·) to FaptSIG, if FaptSIG’s replies
b = 0 go to step 2d, else do:
i. set sid+ := add(sid,U) and send (tsig.sign, sid+,U′,m) to SIMtSIG;
ii. wait for (tsig.signature, sid+,m,P, σ,P∗) from SIMtSIG;
iii. if σ = ⊥ go to step 2d, else wait for the following messages:

– (ptsig.ssign, sid, ·,S, ·,m) from FaptSIG for all S ∈ P \Corr
– (tsig.sign, sid+,m, S) from SIMtSIG for all S ∈ P ∩Corr;

iv. wait for (tsig.signcomplete, sid+,U′) from SIMtSIG;
v. send (ptsig.finsign, sid, ssid,P, flag, σ,⊥) to FaptSIG;

(b) If (flag = 1 and aecU
∗ ̸= aecU and U is marked attacked), then reset

flag := 2, sk∗ := skU, and pw∗ := pwU, and go to step 2c.
(c) If flag = 2, let b be FaptSIG’s reply to (ptsig.pretest, sid, ssid,⊥, flag, pw∗):

i. If b = 0 or AE.AuthDecsk∗(aecU
∗) = ⊥ then go to step 2d;

ii. Else set (U, tsU, tcsU, sksU) = AE.AuthDecsk∗(aecU
∗), sid+ =

add(sid,U), run σU ← Sig.Sign(skU,m, ssid) and send it to A∗, and
then run tSIG.ΠTSign+ on input (sid+, tsU, tcsU,m) on behalf of a vir-
tual party U∗, interacting with SIMtSIG as an adversary. If U∗ com-
pletes the protocol with local output σ∗ then send (ptsig.finsign, sid,
ssid,⊥, flag=2, σ∗,⊥) to FaptSIG;

(d) Else send (ptsig.finsign, sid, ssid,⊥, flag=0,⊥,⊥) to FaptSIG and abort;

On (ptsig.ssign, sid, ssid, i,S,U′,m) from FaptSIG for honest S marked initialized:

1. Send (ppss.srec, sid, ssid,S,U′) and (sid, aecU, ) to A∗;
2. When A∗ sends σ∗

U abort if 0 := Sig.Verify(pkU, σ
∗
U ,m);

3. Recover record (sid, sid+, aecU, pkU) and send (tsig.sign, sid+,m) to SIMtSIG+.

Fig. 23: Simulator for ΠaptSIG with Perfect Forward Secrecy (2): Signing for
honest parties

event SIM would go ahead and compromise U in the tSIG scheme and obtain
the simulated local state of the user U (tsU, tcsU) from SIMtSIG. Then SIM
asks SIMAE to equivocate sk← SIMAE(aecU, (U, tsU, tcsU), sksU).

Observe that in G1, Z sees aecU ← AuthEncsk(U, tsU, tcsU, sksU), and unless and
until A∗ obtains the correct password pw and learns sk, secret key sk is not used
by any party except in generating aecU, hence is a random string in {0, 1}λ and
independent of everything else (except for aecU) in Z’s view. In G1, all processing
is based on whether flag = 1, pw = pw′, and aecU

∗ ̸= aecU. Therefore, in G5 aecU
followed by sk are formed as in the real game in the equivocability game of AE,
where A∗ sees the encryption aecU of (U, tsU, tcsU, sksU) under key sk. On the

55



On (ppss.urec, sid, ssid,S, pw′) from A∗ for corrupt U′:

1. Send (ptsig.usign, sid, ssid,S, pw′,⊥) to FaptSIG

2. If A∗ sends (ppss.finrec, sid, ssid,C, flag, pw∗, sk∗) then:
(a) If flag = 0 send (ppss.finrec, sid, ssid,⊥) to A∗.
(b) If flag = 1 then add ssid to Setssid:

i. Send (ptsig.pretest, sid, ssid,C, flag=1,⊥) to FaptSIG and if FaptSIG

sends b = 0 then send (ppss.finrec, sid, ssid,⊥) to A∗;
ii. Otherwise if FaptSIG sends b = 1 then and:

A. If U is not yet marked attacked then mark U attacked and:
– send (tsig.compromise, sid,U) to SIMtSIG to obtain (tsU, tcsU)
– set skU ← SIMAE(aecU, (U, tsU, tcsU, sksU))

B. send (ppss.finrec, sid, ssid, sksU) to A∗

(c) If flag = 2 then send (ppss.finrec, sid, ssid, sk∗) to A∗ if pw∗ = pw′, other-
wise send (ppss.finrec, sid, ssid,⊥).

On (tsig.sign, sid+,U,m) from SIMtSIG for U marked attacked:

1. Wait to receive (tsig.signature, sid+,m,P, σ∗,P∗) from SIMtSIG. If there were
at least t+1 messages received of either of the following two types:
(a) (ptsig.ssign, sid, ·,S, ·,m) from FaptSIG for S ∈ Psid \Corr
(b) (tsig.sign, sid+, S,m) from SIMtSIG for S ∈ Psid ∩Corr
Then remove one ssid from Setssid and send (ptsig.finsign, sid, ssid,P\{U},
flag=1, σ∗,m) to FaptSIG.

On (ppss.srec, sid, ·, S, ·) from A∗ for S ∈ Psid ∩Corr:

1. Send (ptsig.ssign, sid, ssid=⊥, S,U′=⊥,m=⊥, 1) to FaptSIG.

On (tsig.sign, sid+, S,m) from SIMtSIG for S ∈ Psid ∩Corr:

1. Send (ptsig.ssign, sid, ssid=⊥, S,U′=⊥,m, 0) to FaptSIG.

Fig. 24: Simulator for ΠaptSIG with Perfect Forward Secrecy (3): Signing for
corrupt parties

other hand, in G2, the ciphertext aecU followed by key sk are formed as in the
ideal game in the equivocability game of AE. We can thus conduct a reduction
REQV to the equivocability of AuthEnc: REQV runs the code of G1 except that
it uses input as aecU and sk, and copies Z’s output. We have that

DistG1,G2

Z ≤ Adveqv,aeREQV
(λ)

which is a negligible function of λ.

H Concrete implementation of aptSIG-PFS

In Section 5 we describe protocol aptSIG-BLS, which is a full instantiation of
our generic aptSIG protocol using threshold BLS and the aPPSS scheme from
Section 3 with OPRF implemented as 2HashDH. In this section we show a full
instantiation, using the same components, of the aptSIG-PFS protocol shown in

56



Appendix G, i.e. a perfect forward secure extension of our main aptSIG scheme.
We call this fully instantiated protocol aptSIG-PFS-BLS and we show it in
Figure 25.

Protocol aptSIG-PFS-BLS introduces the following changes to its non-PFS
version, i.e. to protocol aptSIG-BLS. In the initialization phase after step 6, the
user generates a key pair (sksU, pkU)←$ KeyGen. Then in step 7 secret key sksU
is appended to the vector (U,V, V⃗, v0) which is encrypted as aecU, and the public
key pkU is attached to aecU and sent through an authenticated channel to each
server. In the signing phase party U in step 6 decrypts aecU and obtains skU which
she uses to sign (m, ssid) and send it back to each server. The server executes
step 3 in the signing phase only after receiving a a signature on (m, ssid) valid
under the verification key pkU stored in the initialization record. In Figure 25
we show the resulting protocol, and we mark therein all the above differences
compared to protocol aptSIG-BLS.

57



Parameters: Security parameter l, threshold parameters t, n, t ≤ n, field F =
GF (2l), cyclic group G of prime order p, bilinear map group Ĝ of prime order p̂
and generator ĝ; hash functions H1, H2, H3, H4 with ranges G, {0, 1}l, {0, 1}2l, Ĝ.
Let AE = (AuthEnc,AuthDec) be an Equivocable Authenticated Encryption

and Sig = (KeyGen,Sign,Verify) be a standard Signature scheme . authA→B{m}
and secA→B{m} stand for A sending message m to B via resp. authenticated
and secure A→ B channel.

Initialization for user U on input (sid,S1, ..., Sn, pw):

1. Pick α←$ Zp, set a = (H1(pw))
α, and send ((sid||i||0), a) to Si for i ∈ [n].

2. Receive authS→U{ai, bi(= aki)} for each Si, abort if (ai ̸= a) for any i.
3. Pick s←$ F, generate shares (s1, ..., sn) as a (t, n)-secret-sharing of s over F.

Set ρi = H2(pw, b
1/α
i ) and ei = si ⊕ ρi for all i ∈ [n].

4. Set e := (e1, ..., en), (C||sk) := H3(pw, e, s), and ω := (e, C).
5. Send authU→Si{(sid||i||1), ω} for all i ∈ [n].
6. Pick v′, v0←$ Zp̂, set v = v0 + v′ mod p̂, generate shares (v1, ..., vn) as (t, n)-

sharing of v′ over Zp̂. Send secU→Si{(sid||i), vi} for all i ∈ [n].

7. Generate (sksU, pkU)←$ KeyGen.

8. Set V = ĝv and V⃗ = (V1, ...,Vn) where Vi = ĝvi for every i ∈ [n].

Set aecU := AE.AuthEncsk(U,V, V⃗, v0, sksU ), send authU→Si{(sid, aecU,
pkU )} for all i ∈ [n]. Output (ptsig.verificationkey, sid,V).

Initialization for server S on input (sid, i,U):

1. Set k←$ Zp, on ((sid||i||0), a) from U, abort if a ̸∈ G, else send authS→U{a, ak}.
2. On message authU→S{((sid||i||1), ω} from U, store (sid, i, ω, k).
3. Receive secU→S{(sid||i), vi}, abort if vi /∈ Zp̂. Save (sid, vi).

4. On authU→S{sid, aecU, pkU } save (sid, aecU, pkU ).

Signing for user U on input (sid, ssid,S = {S1, ..., St+1}, pw,m):

1. Pick α←$ Zp, set a = (H1(pw))
α, send ((sid, ssid, j), a) to Sj ∈ S.

2. Given ((sid, ssid, j), (bj , ij , ωj)) and (sid, aecUj) from each Sj , set ϕj =

H2(pw, b
1/α
j ) for j ∈ [t + 1]. Abort if ij1 = ij2 or ωj1 ̸= ωj2 for any j1 ̸= j2.

Otherwise set ρij := ϕj for all j ∈ [t+ 1] and I := {ij |j ∈ [t+ 1]}.
3. Parse any ωj as (e, C) and e as (e1, ..., en). Set si := ei ⊕ ρi for each i ∈ I.
4. Recover s and the shares si for i /∈ I by interpolating points (i, si) for i ∈ I.
5. Parse H3(pw, e, s) as (C

′||sk). Abort if C′ ̸= C.
6. Abort if aecUj1 ̸= aecUj2 for any j1, j2 ∈ [t+1], else set aecU to any aecUj . Abort

if AE.AuthDecsk(aecU) = ⊥, else parse AE.AuthDecsk(aecU) as (U,V, V⃗, v0,

sksU ). Send σU ← Sign(sksU, (m, ssid)) to each S ∈ S.

7. On messages (j, σj) from each Sj ∈ S if e(g, σj) ̸= e(Vj ,H4(m)) for any
j ∈ [t+1], output (ptsig.finsign, sid, ssid,m,⊥). Else compute σ := σ0 ·
(
∏

j∈S(σi)
λi), where σ0 = H4(m)v0 and λi’s are Lagrange interpolation co-

efficients corresponding to the set of indexes in S corresponding to S.
8. Output (ptsig.finsign, sid, ssid,m, σ).

Signing for server S on input (sid, ssid,U,m):

1. Given ((sid, ssid, j), a) from U, abort if a /∈ G or S does not hold records
(sid, i, ω, k), (sid, vi) and (sid, aecU, pkU) with the matching sid.

2. Otherwise set b := ak and send ((sid, ssid, j), (b, i, ω)), (sid, aecU) to P.

3. On σU from U, if Verify(pkU, (m, ssid), σU) = 1, then send (i, σ) to U, where

σ := H4(m)vi .

Fig. 25: aptSIG-PFS-BLS: an aptSIG-PFS protocol instantiated similarly to
aptSIG-BLS of Figure 8, with all PFS-related additions marked in gray.


	Password-Protected Threshold Signatures

