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Abstract

Local Differential Privacy (LDP) provides a formal guarantee of privacy that en-
ables the collection and analysis of sensitive data without revealing any individual’s
data. While LDP methods have been extensively studied, there is a lack of a sys-
tematic and empirical comparison of LDP methods for descriptive statistics. In this
paper, we first provide a systematization of LDP methods for descriptive statistics,
comparing their properties and requirements. We demonstrate that several mean
estimation methods based on sampling from a Bernoulli distribution are equivalent
in the one-dimensional case and introduce methods for variance estimation. We
then empirically compare methods for mean, variance, and frequency estimation.
Finally, we provide recommendations for the use of LDP methods for descriptive
statistics and discuss their limitations and open questions.

1 Introduction

The advent of mobile applications has led to the emergence of numerous modern ap-
plications that necessitate the collection and analysis of sensitive data generated in a
decentralized manner by different users or devices. These include, but are not limited
to, applications in the field of medicine [Raa+23; Kai+20; Amm+23; Zie+20], teleme-
try [DKY17], or usage statistics [EPK14; Dif17]. Historically, this data has been collected
by a central entity for analysis, which has required individuals to trust the central entity.
In light of recent advances towards sharing sensitive data with more entities, especially in
the field of healthcare, the consideration of individuals’ privacy has become more critical.

While these advances in data sharing often require the use of anonymization or
pseudonymization techniques, these methods have been demonstrated to be inadequate
for the protection of privacy, as evidenced by the findings of Sweeney [Swe97] and Berrang,
Gerhart, and Schröder [BGS24]. Differential Privacy (DP), as proposed by Dwork, rep-
resents a more robust privacy definition that provides strong privacy guarantees, yet still
requires trust in the central entity [Dwo+06]. The local variant of differential privacy,
Local Differential Privacy (LDP) [Kas+11], eliminates the need for trust in the system.
In LDP, each participant perturbs their data locally before sending it to the central ag-
gregator. The LDP mechanism ensures a formal privacy guarantee for each user while
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enabling the central entity to estimate aggregate statistics. LDP preserves privacy by
introducing noise into the data shared with the aggregator, making it difficult to perform
accurate analysis. This privacy-utility trade-off is a central challenge in the design of
LDP mechanisms.

A review of the literature reveals that there are only a few documented applications
of LDP in practice, with the majority of these being implemented by large corpora-
tions [DKY17; EPK14; Dif17]. In contrast, the majority of the literature focuses on theo-
retical aspects of LDP. This underscores a significant disparity between LDP research and
its practical applications, likely attributable to the absence of a comprehensive overview
and empirical comparison to assess the efficacy of LDP methods in real-world settings.

A number of surveys on LDP methods have been conducted, e.g., [Xio+20; Wan+20;
Yan+24]. However, none of these surveys provide a comprehensive empirical evaluation
of these methods for data analysis, which are crucial for practical implementation. These
evaluations reveal real-world performance, context-specific effectiveness, and implemen-
tation challenges that theoretical analyses often overlook. Empirical studies serve to
bridge the gap between theory and practice, thereby aiding practitioners in making in-
formed decisions and driving further research and development. For instance, Wang et al.
[Wan+20] review various LDP techniques, focusing on definitions, frequency estimation,
mean estimation, and machine learning. However, their work does not offer empirical
comparisons. Similarly, Xiong et al. [Xio+20] summarize LDP applications in frequency
estimation, mean estimation, distribution estimation, and machine learning. However,
their work also lacks empirical evaluations. Yang et al. [Yan+24] present an overview of
LDP methods and applications, but their work provides only a broad summary. They
do not cover all methods comprehensively and do not emphasize descriptive statistics.
Consequently, a detailed empirical comparison of LDP methods remains a critical missing
piece in the literature, necessary for bridging the gap between theoretical research and
practical application.

This paper presents a systematization of LDP methods for descriptive statistics, in-
cluding mean estimation, variance estimation, frequency and distribution estimation,
contingency tables, range queries, and quantile estimation. We compare the methods
in terms of their properties, requirements, and error bounds (where available) and show
empirical comparisons for the most common applications. Our main contributions are as
follows:

1. We provide a systematization of LDP methods for descriptive statistics, including
mean estimation, variance estimation, quantile estimation, and distribution esti-
mation. We compare the methods in terms of their properties, requirements, and
error bounds.

2. We show that several mean estimation methods based on sampling from a Bernoulli
distribution are equivalent in the one-dimensional case.

3. We generalize a method for variance estimation from mean estimation methods and
provide an error bound for the variance estimate.

4. We empirically compare methods for mean estimation, variance estimation and
frequency estimation and give recommendations for the choice of method.
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5. We discuss the limitations of LDP methods for data analysis and open problems.

Related Privacy Definitions. While this work only focuses on pure (or approximate)
local differential privacy, other variants of local differential privacy exist. One such variant
is personalized local differential privacy, where each participant can choose a different
privacy budget [AH17; SXY21; XZW21b]. Another variant, metric LDP, relaxes LDP’s
requirement of indistinguishability over the whole domain [Alv+18b]. This may allow
an adversary to learn some approximate information about the private value while still
hiding the exact value and enables a more accurate data analysis in many applications.
This variant can be applied in all domains provided with a metric, and it provides a better
privacy-utility trade-off especially with more sophisticated notions of statistical utility,
such as those that measure the quality of a distribution estimation in terms of the earth
mover’s distance (aka Wasserstein distance or Kantorovich-Rubinstein metric) [Alv+18a;
BP24; EP20]. For this reason, metric LDP is particularly successful in those applications
that require an estimation of distributions (or frequencies, or histograms) that takes into
account the ground distance. It has been applied in a wide range of domains, including
location privacy [BP24], private text processing [FDM19], and private and personalized
federated learning [Gal+23].

Organization. In Section 2, we overview key concepts and definitions related to LDP
and descriptive statistics. Section 3 summarizes LDP methods for descriptive statistics.
In Section 4, we present the results of our empirical comparison of LDP methods for
mean, variance, and frequency estimation. We discuss the limitations and open topics in
Section 5 before concluding in Section 6. In the appendix, Table 4 provides an overview
of the notation and Tables 5 and 6 summarize all discussed algortihms.

2 Preliminaries

This section defines local differential privacy and related concepts, and provides an
overview of descriptive statistics.

2.1 (Central) Differential Privacy

Dwork et al. [Dwo+06] introduced the concept of differential privacy, which provides
a framework for quantifying the privacy loss resulting from computations on datasets
containing sensitive information. The premise of differential privacy is that two nearly
identical databases, differing by only one element, should yield similar outputs. An
algorithm is defined as differentially private if its outputs for these databases fall within
a specified closeness threshold. This guarantees that the outcome of the computation
reveals little about an individual’s data, thereby protecting privacy while still allowing
the analysis of valuable aggregate data. More formally:

Definition 1 (Differential Privacy). A randomized algorithm A is (ε, δ)-differentially
private if for all data sets D1 and D2 differing on at most one element, and all S ⊆
Range(A):

Pr[A(D1) ∈ S] ≤ exp(ε) Pr[A(D2) ∈ S] + δ,
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If δ = 0, we say that A achieves ε-DP.

Achieving differential privacy involves the injection of a precise amount of random
noise into the algorithm’s output, effectively obscuring the impact of any individual data
point. This noising approach strikes a balance between preserving privacy and maintain-
ing the utility of the data, allowing insights to be gained without compromising individual
privacy. One of the biggest advantages of using differential privacy is that the privacy
guarantees are information-theoretical and hold against adversaries with unbounded com-
putational power. This means no matter which computation is done after the data is
published in a differentially private way, the privacy bounds still hold. Yet, central DP
has a downside: It allows data to be disclosed in a privacy-compliant manner after it
has been processed by the curator A. However, all data must first be given to A, which
requires trusting the curator. To remove this trust assumption, local differential privacy
was proposed.

2.2 Local Differential Privacy

In contrast to the central model of differential privacy, the local model operates without
a trusted curator. The local model of differential privacy was first formalized by Ka-
siviswanathan et al. [Kas+11]. In the local model, each client randomizes its data before
sending it to the server that aggregates and potentially publishes it. This minimizes the
trust required. The algorithm performing the randomization on each client is often called
local randomizer. An adversary observing the output of the local randomizer should not
be able to infer the private input as any possible input value is similarly likely to have
generated the observed output. More formally:

Definition 2 (Local Differential Privacy). A randomized algorithm A with domain D is
(ε, δ)-locally differentially private (an (ε, δ)-DP local randomizer) if for all S ⊆ Range(A)
and for all pairs of client’s values x, y ∈ D:

Pr[A(x) ∈ S] ≤ exp(ε) Pr[A(y) ∈ S] + δ,

If δ = 0, we say that A is an ε-DP local randomizer (or (purely) ε-LDP).

2.3 Sequential Composition

While local differential privacy ensures the privacy of individual queries, the question
arises as to how we can integrate multiple queries without violating overall privacy. Se-
quential composition solves this dilemma by showing that the aggregate privacy loss from
sequentially applying different differentially private algorithms is limited to the sum of
their individual privacy losses. Sequential composition is a strength of (local) differential
privacy since the obtained bounds hold without any special effort by the curator. We
now recite the theorem of sequential composition for central differential privacy and refer
the reader to [DR14] for the proof. It should be noted that the theorem also holds for
local differential privacy when considering databases of size 1.

Theorem 1 (Sequential Composition [DR14]). Let Ai be an (εi, δi)-differentially private
algorithm for 1 ≤ i ≤ λ. Then A := (A1, . . . ,Aλ) is (

∑λ
i=1 εi,

∑λ
i=1 δi)-differentially

private.
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2.4 Interactivity

Local differential privacy algorithms can be classified into three categories: non-interactive,
sequentially interactive, and fully interactive. In the non-interactive setting, the server
assigns a local randomizer to each client before the clients send their responses to the
server. In the sequentially interactive setting, the server may query clients with adap-
tively chosen local randomizers based on the responses of previous clients, but may only
query each client once. In the fully interactive setting, the server is permitted to query
each client multiple times with adaptively chosen local randomizers (ensuring that the
privacy guarantees remain intact throughout the interaction). The majority of the meth-
ods discussed in this paper are non-interactive, with the exception of a few sequentially
interactive methods that are explicitly marked as such. We refer the reader to the work
by Joseph et al. [Jos+19b] for a detailed discussion of interactivity in local differential
privacy.

2.5 Descriptive Statistics

Descriptive statistics form the foundation of data analysis and are employed to analyze
data prior to the application of other methods, such as inferential statistics or machine
learning [Bla15; PP20]. Descriptive statistics describe or summarize the main features
of a dataset, which can consist of quantitative or categorical data. Quantitative data
can be continuous (e.g., body weight) or discrete (e.g., number of children). Categorical
data consist of values from a finite set of categories and can be unordered (e.g., blood
type) or ordered (e.g., cancer stage). For continuous data, measures of central tendency
(mean, median) and variability (standard deviation/variance, range/min/max, interquar-
tile range) can be employed. In the case of unordered categorical data, the absolute or
relative frequencies of each category can be calculated (i.e., the number of occurrences of
each category divided by the total number of observations). This allows for the creation
of contingency tables, which summarize the relationship or joint distribution between two
categorical variables (providing frequencies for each combination of categories).

3 Descriptive Statistics Under Local Differential Pri-

vacy

This section provides an overview of methods for estimating descriptive statistics under
local differential privacy.

3.1 Mean Estimation

The most common statistic is the mean, which describes the central tendency of a data
set. Formally, we are given a data set X = {x1, . . . , xn} with xi ∈ Rd and wish to estimate
the sample mean x̄ = 1

n

∑n
i=1 xi. In certain instances, we are also interested in estimating

the population mean µ (i.e., the mean of the underlying distribution µ = E[P ], xi ∼ P).
While we are generally interested in estimating the mean of data in Rd, we will see that
most methods require the data to be bounded. While these methods require specific input
ranges, data from many applications can be transformed into this range by scaling and
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Table 1: Comparison of mean estimation mechanisms for bounded data. All methods are
non-interactive and are purely ε-LDP.
Algorithm Input Range Error

Laplace xi ∈ [−1, 1] minimax squared error [DJW18]: O
(

1
nε2

)
Duchi, Jordan, and Wainwright [DJW14; DJW18] for ε ∈ [0, 1]:
- for ℓ2 [DJW14; DJW18] xi ∈ Rd, ∥xi∥2 ≤ r - minimax squared error: O

(
r2 d

nε2

)
- for ℓ∞ [DJW14]a xi ∈ Rd, ∥xi∥∞ ≤ r - minimax ℓ∞ error: O

(
r
√

d log(2d)
√
nε2

)
- for 1-sparse ℓ∞ [DJW14] xi ∈ Rd, ∥xi∥∞ ≤ r, ∥xi∥0 = 1 - minimax squared error: O

(
r2 d log(2d)

nε2

)
Nguyên et al. [Ngu+16]a xi ∈ [−1, 1]d with prob. 1− β: ∥µ̂− x̄∥∞ = O

(√
d log(d/β)

ε
√
n

)
Ding, Kulkarni, and Yekhanin [DKY17]a xi ∈ [0,m] with prob. 1− β: |µ̂− x̄| ≤ m√

2n
eε+1
eε−1

√
log (2/β)

Wang et al. [Wan+19a]

- Piecewise Mechanism xi ∈ [−1, 1] with prob. 1− β: |µ̂− x̄| = O

(√
log(1/β)

ε
√
n

)
- Hybrid Mechanism xi ∈ [−1, 1]d with prob. 1− β: ∥µ̂− x̄∥∞ = O

(√
d log(d/β)

ε
√
n

)
Waudby-Smith, Wu, and Ramdas [WWR23]a xi ∈ [0, 1] with prob. 1− β: |µ̂− µ| ≤ 1√

2n
eε+1
eε−1

√
log(1/β)

a These methods are equivalent for d = 1 (see Proposition 1).

shifting the data (e.g., by using the min-max scaling if the bounds of the data are known).
Some methods only handle 1-dimensional data (i.e., a single scalar value per participant)
while others specifically focus on d-dimensional data (i.e., a vector or multiple attributes
per participant).

In the following, we summarize the mean estimation methods and split them into two
categories: methods for bounded data and Gaussian data. For each algorithm, we provide
a brief description in the text and give details such as the input range and the error of
the algorithms in Table 1 for bounded data and Table 9 in the appendix for Gaussian
data. We also briefly summarize special cases of mean estimation that may be of interest
for specific applications but are not directly comparable to the other methods.

3.1.1 Mean Estimation for Bounded Data

In the 1-dimensional setting, Dwork et al. [Dwo+06] introduced the Laplace mechanism
for central DP, which can also be used for LDP. The Laplace mechanism involves adding
noise, drawn from a Laplace distribution, to each value xi ∈ [−1, 1]. The mean of these
noisy values is then calculated as µ̂ = 1

n

∑n
i=1(xi + Lap(2

ε
)). Duchi, Jordan, and Wain-

wright [DJW14; DJW18] show that the Laplace mechanism is asymptotically optimal for
d = 1. They further provide mechanisms for d ≥ 1, either bounded by the ℓ2 or ℓ∞ norm,
both of which are based on sampling from a Bernoulli distribution. The ℓ∞ mechanism
additionally randomly rounds each dimension of the input to −r or r. They show that
both mechanisms are unbiased (i.e., the expected value of the responses is the true mean)
and provide minimax squared error bounds for both cases. In the earlier work by Duchi,
Wainwright, and Jordan [DWJ13], they provide error bounds for the ℓ∞-norm case for
general data, while in the later work by Duchi, Jordan, and Wainwright [DJW14], they
only provide error bounds for the ℓ∞ mechanism for 1-sparse data, which is data where
only one dimension is non-zero.

Nguyên et al. [Ngu+16] claim to find issues in the method by Duchi, Jordan, and
Wainwright [DJW14] and Duchi, Wainwright, and Jordan [DWJ13] and aim to fix them
with their method. At the core, their method only handles one dimension and samples
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from a Bernoulli distribution with a probability that depends on the input value. In
fact, their method is equivalent to the ℓ∞ mechanism by Duchi, Jordan, and Wainwright
[DJW14] for d = 1 (see Proposition 1 below). To enable the method to handle d-
dimensional data, they randomly select one dimension for each user and only transmit
the response for this dimension.

Ding, Kulkarni, and Yekhanin [DKY17] propose 1BitMean which estimates the mean
of data in the range [0,m]. An input xi is rounded to 1 with probability xi

m
and 0

otherwise. The resulting bit is flipped with probability 1
eε+1

(by sampling from a Bernoulli
distribution) and transmitted to the aggregator. The aggregator corrects for the bit
flipping to obtain an unbiased estimate for the mean.

Wang et al. [Wan+19a] (who mostly consist of the same authors as Nguyên et al.
[Ngu+16]) handle multiple dimensions by randomly selecting k ≤ d dimensions for each
user and only transmitting mechanism responses for these dimensions. The authors com-
bine the 1-dimensional case of the ℓ∞ mechanism by Duchi, Jordan, and Wainwright
[DJW14] with the introduction of the Piecewise mechanism to create the Hybrid mecha-
nism. The Piecewise mechanism randomly samples a value from a range [−D,D] (where
D depends on ε), where values close to the input have the same high probability of being
sampled and values further away have the same low probability. The Hybrid mechanism
randomly selects a mechanism to use based on ε – with a higher probability for the
Piecewise mechanism for large ε and the ℓ∞ mechanism for small ε.

Waudby-Smith, Wu, and Ramdas [WWR23] present methods for estimating the popu-
lation mean and a corresponding confidence interval using a generalization of 1BitMean
[DKY17]. When using the default parameters, the mean estimation part of their method
reduces to 1BitMean.

We find that all Bernoulli-based methods [DJW14; Ngu+16; DKY17; WWR23] are
equivalent for d = 1. We formalize this observation in the following proposition and give
the proof in the appendix.

Proposition 1. The Bernoulli-based mechanisms MDu by Duchi, Jordan, and Wain-
wright [DJW14] (ℓ∞ case), MN by Nguyên et al. [Ngu+16], MD by Ding, Kulkarni, and
Yekhanin [DKY17], and MW by Waudby-Smith, Wu, and Ramdas [WWR23] (with de-
fault parameters) are equivalent for d = 1, i.e., they sample the response from the same
probability distribution given the same input (in the corresponding input range).

3.1.2 1-Dimensional Mean Estimation for Gaussian Distributions

In addition to the methods discussed in the previous sections, it is worth noting that there
are approaches specifically designed to estimate the mean of unbounded data. Specifically,
Gaboardi, Rogers, and Sheffet [GRS19] and Joseph et al. [Jos+19a] provide methods for
estimating the mean of a Gaussian distribution (see Table 9 in the appendix).

Gaboardi, Rogers, and Sheffet [GRS19] aim to estimate a confidence interval for the
mean of an unknown Gaussian distribution. They assume that the population mean is
bounded in [−R,R] and provide variants for known and unknown variance. Both variants
are (ε, δ)-LDP with δ > 0. Furthermore, both variants are sequentially interactive and
use multiple rounds of communication.

Joseph et al. [Jos+19a] provide a set of algorithms to estimate the mean of an unknown
Gaussian distribution with known or unknown variance. Furthermore, their algorithms
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are strictly ε-LDP (δ = 0) and require at most 2 rounds of communication (i.e., they
provide non-interactive and sequentially interactive variants).

3.1.3 Special Cases of Mean Estimation

Further special cases of mean estimation have been proposed in the literature. Bhowmick
et al. [Bho+19] and Asi, Feldman, and Talwar [AFT22] introduce methods for transmit-
ting data sampled from the unit sphere, which is specifically useful for applications in
machine learning. They claim that their algorithms are optimal, but also relax the privacy
setting compared to standard ε-LDP. Xue, Zhu, and Wang [XZW21b] provide algorithms
for mean estimation with personalized LDP (i.e., every data point xi is perturbed using a
different εi). Mean estimation for key-value pairs has been discussed by Ye et al. [Ye+19]
and Gu et al. [Gu+20]. The estimation of means of sparse vectors has been discussed by
Zhou et al. [Zho+22] and Duchi, Jordan, and Wainwright [DJW18].

3.2 Standard Deviation & Variance

Next to the mean, the standard deviation and variance are probably the most ubiquitous
statistics. Per its definition [Bla15] and following their notations, the unbiased sample
variance s2X can either be calculated by subtracting the mean from each value as s2X =
1

n−1

∑
i(xi − µX)

2 or directly from the mean and the mean of the squared values as
s2X = n

n−1
(µX2 − µ2

X).
The first option can be implemented through sequential interactivity by first estimat-

ing the mean using a subset of the participants and then estimating the variance using
the remaining participants and the estimated mean. Given an ε-LDP mean estimation
method, the resulting variance estimation is also ε-LDP as each participant is only queried
by an ε-LDP mechanism once. Note that this method is necessarily sequentially interac-
tive and requires two rounds of communication as the mean estimate is a prerequisite for
the variance estimate.

The second option can be implemented non-interactively by estimating the mean and
the mean of the squared values simultaneously. Ding et al. [Din+18] discuss how their
1BitMean algorithm can be used to estimate the mean µX and the mean of the squared
values µX2 and use those estimates to calculate the variance. By splitting the privacy
budget between the two estimations (ε1 and ε2 for the mean of X and X2 respectively),
they can provide an estimate for the variance with a total privacy budget of ε = ε1+ε2 (se-
quential composability). Similarly, Waudby-Smith, Wu, and Ramdas [WWR23] discuss
the estimation of the population variance using their method for estimating confidence
intervals for the mean.

We now generalize these insights to other mean estimation algorithms and provide
an upper bound for the error of the sample variance estimate. Assume an ε-LDP mean
estimation method µ̂ with error |µ̂ − µ| ≤ f(n, ε) (only depending on n and ε). Using
this method with privacy budget εX and nX participants, the mean µX = 1

n

∑
i xi can

be estimated with error |µ̂X − µX | ≤ f(nX , εX). Analogously, the mean of the squared
values µX2 = 1

n

∑
i x

2
i can be estimated with error |µ̂X2−µX2| ≤ f(nX2 , εX2). The sample

variance s2X can then be estimated as ŝ2X = n
n−1

(µ̂X2 − µ̂2
X). It is now possible to either

split the participants into two groups and estimate both means with the full privacy
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budget (n = nX + nX2 and ε = εX = εX2) or to split the privacy budget and include all
participants in the estimation of both means (n = nX = nX2 and ε = εX + εX2). The
first method is ε-LDP as it applies an ε-LDP mechanism to each participant once. The
second method is ε-LDP by sequential composability if ε = εX + εX2 .

The error of the non-interactive sample variance estimate can be calculated as follows:

Proposition 2. Given a dataset X = {x1, x2, . . . , xn}, xi ∈ [−1, 1] and an ε-LDP mean
estimation method µ̂ with error |µ̂ − µ| ≤ f(n, ε), the non-interactive sample variance
estimator described above has error

|ŝ2X − s2X | ≤ n

n− 1

(
f(nX2 , εX2) + f(nX , εX)2 + 2f(nX , εX)

)
. (1)

This result allows the estimation of a private dataset’s mean and variance in one step,
as the mean estimate is a necessary prerequisite for the variance estimate. Note that
the error of the variance estimate is always at least as large as the error of the mean
estimate. By selecting appropriate values for εX and εX2 , nx and nX2 , the errors of the
mean and the variance estimates can be balanced. An aggregator may allocate more
privacy budget (or participants) to the mean estimate if the mean is more important for
their application, or vice versa. The exact impact of the privacy budget allocation on
the error of the variance estimate depends on the error function of the mean estimation
method.

3.3 Frequency & Distribution Estimation

Another important task in data analysis is estimating the data distribution. We first
discuss this in the form of frequency estimation of categorical values, before moving to
the estimation of histograms and probability density functions for numerical values (often
called “distribution estimation” in literature).

3.3.1 Frequency Estimation

In frequency estimation, we have n data owners, each owning a single categorical value
xi from a domain D of size |D| = k.1 For a given item x ∈ D, we define the frequency2

as f(x) = 1
n
|{i ∈ [n] | xi = x}|. The goal of LDP frequency estimation is to privately

obtain an estimate f̂ of f (often called a frequency oracle). Note that in this paper,
we are interested in the relative frequency, i.e.,

∑
x∈D f(x) = 1. Postprocessing may be

necessary to ensure that the sum of frequencies equals 1 and to improve the accuracy of
frequency estimates from the input data. Methods for this range from simple normaliza-
tion (dividing the frequencies of a value by the sum of all frequencies) to more advanced
techniques like the matrix inversion method by Kairouz, Bonawitz, and Ramage [KBR16].
A more sophisticated approach is the Iterative Bayesian Update (IBU) [EP20; ACP23;
MHS18], which is a form of the expectation maximization (EM) method. IBU computes
the maximum likelihood estimator (MLE) of input frequencies based on output frequen-
cies. Additional postprocessing methods are discussed by Cormode, Maddock, and Maple

1In literature the domain size is sometimes denoted d instead of k. To avoid confusion with the
dimensionality d of the data we use k for the domain size.

2Note that the frequency f(x) is unrelated to the error function f(n, ε) used in Section 3.2.
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[CMM21]. A common approach used by some methods (and applied to all methods in
this paper) is the projection onto the probability simplex. The probability simplex is
defined as ∆k = {p ∈ Rk | p ≥ 0,

∑k
i=1 pi = 1} and represents the set of all (valid)

probability distributions over k categories [DJW14]. The projection of a vector p onto
the probability simplex is defined as Π∆k

(p) = argminq∈∆k
∥q − p∥2.

Literature also considers the problem of finding heavy hitters, which are often defined
as items x with f(x) ≥ ϕ for some threshold ϕ or the top-l items with the largest
frequencies. We do not cover heavy hitters in this paper and refer the reader to Cormode,
Maddock, and Maple [CMM21] for an overview and the relevant literature for details
[EPK14; BS15b; Qin+16; Bas+20; WLJ21].

Randomized response is the basis for many frequency estimation methods and was
first introduced by Warner [War65] for binary data. The original idea was to give survey
participants plausible deniability for sensitive questions. It works by flipping a biased coin
and answering truthfully with probability p and answering randomly with probability
1− p. Randomized response is ε-LDP if p = eε

eε+1
[War65; Wan+17].

Frequency oracles are the main component of locally differentially private frequency
estimation, but vary in their construction, accuracy and the size of domain they are best
suited for. Wang et al. [Wan+17] unify a number of frequency oracles under their pro-
posed concept of pure LDP protocols. Note that this “pure” differs from the “pure” in
pure LDP protocols (see Section 2.2) and refers to the simplicity of the protocols. In the
following definition and the rest of the paper, we use “pure” to refer to the type of the
protocols introduced by Wang et al. [Wan+17] and not the LDP property. Pure LDP
protocols rely on an additional function Support(z), which is selected by the mechanism
designer. This function defines the set of items that a given output z should be mapped
to during frequency estimation, and therefore also influences the perturbation step. In-
formally, Support(z) can be understood as representing the idea that observing output
z “supports” the “hypothesis” that the true value lies within the set Support(z). We
give examples for the definition of this function for some mechanisms in the following
paragraphs.

Definition 3 (Pure LDP Protocol [Wan+17]). A protocol PE is a pure LDP protocol if
and only if there exists a function Support and two probability values p∗ > q∗ such that
for all v1,

Pr[PE(v1) ∈ {z | v1 ∈ Support(z)}] = p∗,

∀v2 ̸= v1Pr[PE(v2) ∈ {z | v1 ∈ Support(z)}] = q∗

Pure protocols are ε-LDP if p∗/q∗ = eε. Responses zi for i ∈ [n] from pure LDP proto-

cols can be used to estimate the frequency of an item x as f̂(x) = 1
p∗−q∗

(∑
j 1x∈Support(zi) − nq∗

)
.

We now briefly summarize pure and non-pure LDP frequency estimation protocols.
The following protocols are known to be pure LDP protocols [Wan+17; CMM21] (see
Cormode, Maddock, and Maple [CMM21] for a more detailed description):

Direct encoding or k-ary randomized response (k-RR; sometimes d-RR in literature)
was first introduced by Kairouz, Oh, and Viswanath [KOV14; KOV16] and generalizes
randomized response to k-ary data. The mechanism’s output space is equal to the input
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space and the probability of reporting the true value is p = eε

eε+k−1
, while the probability

of reporting any other value is q = 1
eε+k−1

. In this case, Support(z) = {x | x = z}, i.e.,
we count every response as though it were the true value.

Another method, proposed by Wang et al. [Wan+17], is histogram encoding. It works
by encoding the input into a “histogram” B, i.e., a vector of size k with a 1 indicating
the index of the item and 0’s elsewhere. Each participant now perturbs each entry of
this vector with Laplace noise (B′[i] = B[i] + Lap(ε/2)) and sends the perturbed vector
B′ to the aggregator. Reports can be aggregated using summation (SHE), where all
noisy reports are summed up in a noisy frequency estimate. SHE is not a pure protocol
as there is no known Support function. Alternatively, thresholding (THE) can be used,
where each noisy vector B′ is interpreted as a binary vector through the definition of
Support(B′) = {i | B′[i] > θ}. The intuition here is that θ is used to distinguish between
samples from the two possibly overlapping distributions 1 + Lap(ε/2) and 0 + Lap(ε/2).
The binarized vectors are then summed up to result in a frequency estimate. Wang et al.
[Wan+17] claim that an optimal θ can be found numerically to be in (1

2
, 1) and depends

on ε.
Unary encoding methods encode the input into a one-hot-encoded binary string (a

vector of size k with a 1 indicating the index of the item and 0’s elsewhere) and inde-
pendently flip the single 1 bit with probability 1 − p and the 0 bits with probability q.
To the best of our knowledge, this method was first introduced by Duchi, Wainwright,
and Jordan [DWJ13]. Symmetric unary encoding (SUE) uses p + q = 1 (equivalent to
the basic RAPPOR protocol [EPK14]). Optimized unary encoding (OUE) was intro-
duced by Wang et al. [Wan+17] and uses optimized choices for p and q. In both cases,
Support(B) = {i | B[i] = 1}, i.e., we “decode” the one-hot encoding and count every
response as though it were the true value.

Following the ideas of RAPPOR (see non-pure protocols below), Wang et al. [Wan+17]
propose local hashing methods. In the local hashing approach, users randomly pick a hash
function H to map the input to a smaller output space of size g and then apply direct
encoding to the output of the hashed values. Binary local hashing (BLH) uses binary
hash functions with g = 2 and optimal local hashing (OLH) uses hash functions with
g = eε +1. Here, Support(⟨H, z⟩) = {x | H(x) = z}, i.e., the set of items that are hashed
to the observed output y. Bassily and Smith [BS15a] use random matrix projection to
reduce the dimensionality of the data to one bit and then use randomized response to
perturb the bit, which is logically equivalent to BLH according to Wang et al. [Wan+17].
Fast local hashing (FLH) [CMM21] proposes a heuristic modification to speed up OLH
by reducing the number of hash functions to sample from.

Hadamard methods are based on the Hadamard transform which is closely related to
the discrete Fourier transform. The Hadamard mechanism (HM) [Bas+20] samples an
index j and calculates the corresponding Hadamard coefficient of the input vector and
the index j. It reports this coefficient using direct encoding. This allows the aggregator
to estimate the Hadamard coefficients and use them to approximate the frequency of
any item. The related Hadamard response protocol (HR) [ASZ19] also reports a random
Hadamard coefficient, but does not randomly choose a fixed index. Instead, it randomly
chooses whether to report a positive or negative coefficient and chooses an appropriate
index j.

Wang et al. [Wan+17] give some guidelines for the selection of an appropriate pure
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protocol: For small domains (k < 3eε + 2), direct encoding is the best choice, whereas
OUE should be used for larger domains if its communication cost is acceptable. When
the domain is so large that the communication cost is a concern, OLH is the best choice.
Cormode, Maddock, and Maple [CMM21] add that FLH is several times faster than OLH
with comparable accuracy and that Hadamard-based methods are orders of magnitudes
faster and almost as accurate in extremely large domains (more than thousands of items).

Next to pure protocols, there are also protocols that do not fit the definition of pure
protocols (or where no mapping to pure protocols is known). Erlingsson, Pihur, and
Korolova [EPK14] introduced the well-known RAPPOR protocol, which uses a Bloom
filter to project the input to a smaller space of fixed size and then applies randomized
response. Its basic version is pure (see above) and similar to earlier work by Duchi,
Wainwright, and Jordan [DWJ13].

Kairouz, Bonawitz, and Ramage [KBR16] show that k-RR and basic RAPPOR are
order-optimal for frequency estimation in certain privacy regimes (k-RR in the regime
where ε ≈ log(k) and basic RAPPOR in the regime where ε is close to 0). They introduce
the O-RR mechanism based on k-RR and hash functions for settings with domains that
are not enumerable, but show that this method also outperforms k-RR and RAPPOR
on closed domains of size k when using permutations instead of hash functions. The
downside to this method is that the aggregator needs to choose the number of cohorts
that each use a different hash function or permutation in advance and the authors do not
discuss how to choose this number optimally.

Wang et al. [Wan+16] and Ye and Barg [YB17] independently propose the l-Subset
mechanism (k-Subset in literature), in which each participant reports a random subset of
size l < k of the input domain, which contains the true value with a certain probability.
Ye and Barg [YB17] claim that this method fills the gap between RAPPOR and k-RR
and is optimal for “medium” privacy regimes that are far from 0 and log(k). They show
that their method can improve utility when 3.8 ≪ ε ≪ ln(l/9).

Nguyên et al. [Ngu+16] base their frequency estimation method on the work by Bassily
and Smith [BS15a]. Instead of constructing a random matrix, they create a binary k× k
matrix where any two column vectors are orthogonal. By letting each user randomly
select one attribute to report, they enable a combination of frequency estimation and
mean estimation for multiple categorical and numeric attributes without reducing the
privacy budget of individual reports.

Murakami, Hino, and Sakuma [MHS18] specifically care about the setting where n
or ε are small and propose a solution based on the IBU to improve the accuracy of the
frequency estimation. They use k-RR to obtain noisy reports and then apply the IBU to
reduce the estimation error of the frequencies.

ElSalamouny and Palamidessi [EP20] make two main contributions: First, they gener-
alize the IBU postprocessing to the case of personalized privacy, and second, they compare
it to other standard postprocessing methods used in LDP, in particular the matrix in-
version method by Kairouz, Bonawitz, and Ramage [KBR16]. They show that while the
IBU is equivalent to the matrix inversion method in the case of the k-RR mechanism,
it outperforms it when applied to other obfuscation mechanisms such as those used in
metric privacy. In general, IBU is the only known postprocessing method that is univer-
sally optimal, as it is shown to produce a maximum likelihood estimator regardless of the
mechanism used for obfuscation.

12



3.3.2 Histogram Estimation

At the intersection of frequency and distribution estimation we find the estimation of
histograms. A histogram is a discretization of the continuous data space into bins and
the estimation of the frequency of data points in each bin. Note that the histogram
estimation problem is a special case of the frequency estimation problem where each bin
is a different item in the domain. For this reason, few methods are designed explicitly
for histogram estimation.

Duchi, Wainwright, and Jordan [DWJ13] discuss histogram estimation as an approx-
imation of the density estimation problem. They split the data space [0, 1] into k equal-
sized bins and replace each data point xi with a one-hot vector of length k where the j-th
entry is 1 if xi falls into the j-th bin and 0 otherwise. Each vector is then perturbed using
the Laplace mechanism. The aggregator then sums up the perturbed vectors to obtain
counts for each bin. The counts are normalized and projected onto the k-dimensional
probability simplex to obtain a differentially private estimate for the density. They note
that the histogram estimator is also asymptotically optimal for the density estimation
problem for Lipschitz densities.

Ding, Kulkarni, and Yekhanin [DKY17] introduce dBitFlip, a method for estimating
histograms with k buckets. Their method works by sampling l bucket indices from [k]
for each user and responding with one bit for each selected bucket. The bits are drawn
from a Binomial distribution with probability eε/2/(eε/2 + 1) for the correct bucket and
1/(eε/2+1) for all other buckets. The aggregator sums up the received bits for each bucket
and uses the noisy counts to estimate the histogram (compensating for the random bit
flipping).

IBU postprocessing has been used for histogram estimation by Agrawal and Aggarwal
[AA01]. Although their work predates the development of differential privacy and applies
IBU to a different obfuscation mechanism, the method they proposed is general and can
be applied to LDP as well.

3.3.3 Distribution Estimation

In distribution estimation, the goal is to estimate the probability density function of
continuous data. Duchi, Jordan, and Wainwright [DJW18] argue that the Laplace mech-
anism does not provide optimal error bounds for distribution estimation. They then
discuss minimax bounds for LDP density estimation for cases where the underlying den-
sity belongs to a Sobolev class defined using trigonometric functions as basis functions.
For densities in the Sobolev class of order 1, histogram estimators (like the estimator by
Duchi, Wainwright, and Jordan [DWJ13] discussed in the previous section) are asymp-
totically optimal. For densities with higher orders of smoothness (i.e., density functions
that are more often differentiable), they develop an estimator based on orthogonal series
expansions and show that it is asymptotically optimal.

Diao et al. [Dia+20] aim to model the data distribution as a Gaussian Mixture Model
(GMM) and provide a method to estimate the parameters of the GMM in a differentially
private manner. They build on the Gaussian mechanism and therefore only provide
(ε, δ)-LDP instead of ε-LDP.

Li et al. [Li+20] introduce the square wave mechanism which is conceptually very sim-
ilar to the Piecewise mechanism by Wang et al. [Wan+19a]. They construct a histogram
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Table 2: Comparison of methods for estimating contingency and marginal tables under
local differential privacy.
Method # Attributes Goal Main Component

Fanti, Pihur, and Erlingsson [FPE16] 2 categorical full contingency table Expectation Maximization
Ren et al. [Ren+18] d categorical fixed k-way marginal Expectation Maximization / Lasso regression
Cormode, Kulkarni, and Srivastava [CKS18] d binary all k-way marginals Hadamard Transform on private data
Zhang et al. [Zha+18] d categorical all k-way marginals Entropy Maximization + Frequency Oracle for sample marginal
Xue, Zhu, and Wang [XZW21a] 2 categorical joint distribution Extension of l-Subset for frequency estimation [Wan+16; YB17]

of the perturbed values and use an Expectation Maximization algorithm to estimate the
underlying input distribution. They use the prior knowledge that the frequencies of neigh-
boring numerical values are similar to introduce a smoothing step in the EM algorithm.
The authors relate the core of their algorithm to frequency oracles (for numerical values)
and show how their method can be used to estimate the mean, variance and quantiles of
the input distribution. Their method works best for smooth input domains and is less
effective for spiky distributions.

3.4 Contingency Tables & Marginal Tables

The methods in the previous section are designed for estimating distributions over uni-
variate data, but many applications require the estimation of joint distributions over
multiple attributes. In this section, we discuss methods for estimating contingency tables
and marginal tables under local differential privacy. All methods in this section assume
that there are up to d categorical attributes and that the domain of each attribute is
known (see Table 2 for details). First, we need to define some terms: A full contingency
table gives the joint distribution of all d attributes in a dataset, but may be very large
and computationally expensive to estimate. The k-way marginal over a set A of k < d at-
tributes gives the joint distribution of the attributes in A. The set of all k-way marginals
contains the marginals for all possible subsets of size k.3

Fanti, Pihur, and Erlingsson [FPE16] show how reports from RAPPOR can be used to
estimate the joint distribution of two categorical variables (contingency table) by applying
an expectation maximization algorithm to the noisy reports. They explain that their
proposed method is not RAPPOR-specific and can be used with other locally differentially
private encoding methods. The main limitation of their method is that it only works for
two categorical variables and is not directly applicable to higher-dimensional data.

Ren et al. [Ren+18] aim to privately publish synthetically generated data with a
similar joint distribution as the underlying discrete d-dimensional private data. Inspired
by the work of Fanti, Pihur, and Erlingsson [FPE16], they use the EM algorithm to
estimate the joint distribution of the private data, but introduce LASSO regression to deal
with the sparsity of high-dimensional data. They then perform dimensionality reduction
on the learned distribution and sample from the resulting low-dimensional distributions
to synthesize an approximate dataset. Note that their method for estimating the joint
distribution only works for a specific k-way marginal and does not provide a method for
estimating the full contingency table or the set of all k-way marginals.

Cormode, Kulkarni, and Srivastava [CKS18] provide a method for estimating k-way

3Note that the k < d in this section denotes a subset of attributes/dimensions and is different from
the k in frequency estimation, which denotes the size of the domain.
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marginals of a high-dimensional binary dataset under local differential privacy based on
the discrete Fourier transform (Hadamard transform) which has previously been studied
in the central differential privacy setting. The authors claim that in practical applica-
tions, analysts are often interested in lower-dimensional marginals and therefore provide
a method of estimating all k-way marginals without having to select a specific subset of
attributes in advance. They compare several algorithm variants and conclude that com-
puting the Hadamard transform on the private data and releasing a random coefficient via
randomized response is the most effective method for reconstructing any k-way marginal
through postprocessing. They also compare their methods to the EM-based approach
by Fanti, Pihur, and Erlingsson [FPE16] and claim that the EM-based approach does
not provide any worst case guarantees for the accuracy and may terminate with a poor
estimate.

Zhang et al. [Zha+18] propose the CALM method to estimate any k-way marginal
of a high-dimensional dataset under local differential privacy. They claim that previous
methods [FPE16; Ren+18; CKS18] are not practical for high-dimensional data. CALM
is based on PriView, which was used in the central differential privacy setting, and works
by first selecting m marginals of size l and then assigning each user to one of the se-
lected marginals. The aggregator uses a frequency oracle to estimate the frequencies
for the selected marginals. Since the selected marginals do not cover all possible k-
way marginals, the authors rely on the postprocessing steps of PriView to estimate the
remaining marginals: The resulting frequencies are first checked for consistency and non-
negativity and then used to estimate the remaining marginals using maximum entropy
estimation. The authors discuss that their method has three sources of error: noise errors
from the frequency oracle, reconstruction errors when a k-way marginal is not covered by
the selected marginals, and sampling errors since each marginal is only estimated from
a subset of the population. Since the choice of m and l is crucial for the accuracy of
the method and the reconstruction error depends on the dataset, the authors provide a
method to determine these parameters based on some required error threshold.

Xue, Zhu, and Wang [XZW21a] propose the JESS method for estimating the joint
distribution of two categorical attributes under local differential privacy. The method
is inspired by the k-subset mechanism [Wan+16; YB17] for frequency estimation and
extends it to transmitting two categorical attributes.

3.5 Range Queries

In this section, we discuss methods for estimating range queries on discrete ordinal data,
which can be used to estimate quantiles and other statistics. Assuming n participants,
each with a private value xi ∈ [k], a range query R[a,b] ≥ 0 with a, b ∈ [k] and a < b
counts the relative frequency of participants with a value in the range [a, b]: R[a,b] =
1
n

∑n
i=1 1a≤xi≤b. The goal is to privately collect enough information upfront to be able to

estimate any R[a,b] with a small error.
Cormode, Kulkarni, and Srivastava [CKS19] are the first to introduce range queries in

the LDP setting, and discuss methods for performing range queries on discrete (ordered)
one-dimensional data. They first consider the naive solution of summing up point queries
(i.e., frequencies obtained through frequency oracles; see section 3.3) for each value in
the range, but show that the variance of this approach grows linearly with the size of the
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range. Inspired by methods from the central DP setting, they propose a method based
on hierarchical histograms, where the variance of the estimate only grows logarithmically
with the size of the range. Additionally, they provide a method based on the discrete
Haar transform which has a similar variance growth, but empirically shows better results
for small privacy budgets.

Wang et al. [Wan+19b] introduce the problem of answering multi-dimensional ana-
lytical queries, where the goal is to aggregate a non-private measure for participants for
which certain constraints on their private data (point constraints for categorical data and
range constraints for ordinal data) are satisfied. Their special case of COUNT-queries is
comparable to range queries on multi-dimensional data of mixed types. They introduce
HIO, which – for the one-dimensional case – works by building a b-way tree of height h,
where each node represents an interval with b equally sized subintervals as children. A
range query can then be answered by summing up the frequencies for the appropriate sub-
intervals. Similar to the other methods, they use one frequency oracle (OLH [Wan+17])
per tree level and split the participants over the levels. Their base approach is extended
to d ordinal dimensions by constructing multiple trees and taking the Cartesian prod-
uct, resulting in (h+ 1)d d-dimensional tree levels. Each participant then responds their
interval membership for one of these multi-dimensional levels using a frequency oracle.
They additionally introduce categorical dimensions by constructing a tree of height 2,
where the root covers the whole domain and has children for each possible value of the
categorical dimension. Since their method does not scale well to large d, they propose
a conjunctive frequency estimator which combines single-dimension responses from OLH
to estimate the joint frequencies for multiple dimensions. However, in their experiments
they only test the methods on settings with small d ≤ 4 and the conjunctive method does
not work well for multiple ordinal dimensions.

Li et al. [Li+20] show how their work on estimating the distribution of numerical one-
dimensional data can be used to answer range queries. They compare against the method
by Cormode, Kulkarni, and Srivastava [CKS19] on a number of real-world datasets and
show that their method has lower error in most cases.

Yang et al. [Yan+20] estimate multi-dimensional range queries with what they call
the hybrid-dimensional grid (HDG) approach. Their approach constructs grids for each
individual dimension (similar to binning in histograms) and for all pairs of dimensions.
Participants are split over the d+

(
d
2

)
grids and asked to respond their cell membership us-

ing OLH [Wan+17]. These responses are then used to construct answers for λ-dimensional
(λ ≤ d) range queries by selecting relevant grids and performing maximum entropy es-
timation to combine the estimates. This approach is very similar to CALM [Zha+18]
for marginal estimation, which first collects l-way marginals (l < k) and uses maximum
entropy estimation to estimate the requested k-way marginals.

Du et al. [Du+21] notice that sparse areas in the data space can lead to large errors for
the respective sub-intervals or grid cells in the previous methods. They therefore propose
AHEAD, which adaptively builds a hierarchical grid structure that avoids sparse regions
(only cells/intervals with a large enough estimated frequency are further sub-divided). At
each level of the hierarchy, they estimate the frequencies of the cells/intervals using OUE
[Wan+17]. They perform experiments on real-world datasets and show that AHEAD
outperforms the previous methods in terms of mean squared error.
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3.6 Order Statistics: Quantiles, Median, Maximum, Minimum

As the final type of descriptive statistics, we now discuss order statistics, such as the
median, quantiles, maximum, and minimum. Although they are rather important in
non-private data analysis, we have waited until now to discuss these statistics because
they are closely related or build on the methods we have discussed in the previous sections.
Quantiles divide the data into equal-sized groups, with the median dividing the data into
two equal-sized groups. The maximum and minimum represent the largest and smallest
values in the data, respectively.

In local differential privacy, binary search has been used to estimate the median and
quantiles. Cyphers and Veeramachaneni [CV17] first introduce the concept of using
binary search for estimating the median in the LDP setting, but do not analyze the error
of their method. Later, Gaboardi, Rogers, and Sheffet [GRS19] provide a method for
estimating quantiles as part of their method for estimating the mean and variance of
Gaussian distributions. For a given privacy budget and maximum deviation from the
target quantile, they provide the required number of participants and search rounds to
achieve this deviation with high probability. Finally, Fukuchi, Yu, and Sakuma [FYS22]
aim to find the minimum (or maximum) value in a numerical 1-dimensional dataset
bounded in [−1, 1] using binary search in combination with randomized response and
a fixed search depth.4 While the approach is very straightforward, they show that the
minimum finding problem is fundamentally difficult in the LDP setting and that no
LDP mechanism can consistently estimate the minimum value under the worst case data
distribution. They show that the problem is easier if the data has a larger minimum-side
fatness, i.e., if more data points are close to the minimum. All three methods [CV17;
GRS19; FYS22] require some initial bounded search interval that contains the target
quantile and a search depth to be set in advance.

Another approach to estimating the median is to use stochastic gradient descent.
Duchi, Jordan, and Wainwright [DJW18] provide a sequentially interactive method for
estimating the median of a numerical 1-dimensional dataset in the LDP setting using
stochastic gradient descent. The method starts with a random estimate for the median
and sequentially asks each participant to provide a noisy answer to whether their value
is larger or smaller than the current estimate. After each step, the estimate is updated
based on the noisy answer and a decreasing learning rate. This procedure requires each
participant to only respond once and therefore does not need to split the privacy budget
between multiple rounds of communication (as the binary search methods do). The
authors only discuss the method for ε ≤ 1, and it is not immediately clear whether the
method can be adapted to larger privacy budgets and other quantiles.

Next to binary search and gradient descent, range queries of the form R[0,q] (so-called
prefix queries) can be used to estimate quantiles by setting q to the desired quantile
[CKS19].
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Table 3: Datasets used for the empirical evaluation. Type: Num=Numeric,
Cat=Categorical. Domain: k is the number of categories for categorical data. Size:
Number of data points.
Dataset Type Domain Size Notes

Synthetic Data

Uniform small Num [0, 1] any Uniform Distribution
Uniform large Num [−100, 100] any Uniform Distribution
Bimodal Num [0, 1] any N (0.3, 0.1) +N (0.6, 0.2)
Binomial Num [0, 100] any B(100, 0.2)
Binomial Cat k = {8, 128} any B(k, 0.2)
Geometric Cat k = {8, 16, . . . , 512} any Geometric Distribution over k elements with

p = 5/k, as in Kairouz, Bonawitz, and Ramage
[KBR16]

Real Data

Adult Num [16, 100] 48 842 “Age” column from the UCI Adult dataset [BK96]
NYC Taxi Num [0, 86400] 8 760 687 “Pick-up time” column (in seconds) from the Yel-

low Taxi Trip records dataset for January 2018
[Cit02]

US Census Cat k = 400 2 458 285 US Census [MTH90] dataset processed to 400 bi-
nary attributes as in [MHS18]

4 Empirical Comparison

The previous section outlines many methods estimating various descriptive statistics un-
der local differential privacy. However, it is not immediately clear which method is best
suited for a given task, number of participants, or privacy budget. In this section, we
aim to provide an empirical comparison of the methods for estimating the mean and the
variance of numerical data and estimating the frequency of categorical data. We do not
provide comparisons for the other statistics, as the relevant methods often have differing
goals or requirements and are not directly comparable.

For the empirical comparisons, we used a number of synthetic and real-world datasets,
which are summarized in Table 3 and visualized in Figure 17 in the appendix. For each
numerical dataset, we defined a specific data range [a, b], which was used to transform
the data to the range required by the methods.

4.1 Mean Estimation

For the mean estimation task, we simulated each method from Table 1 with 100 different
random seeds for each combination of n, ε, and dataset to account for the random nature
of the methods. As many methods are designed for a specific input range, we first
transformed the data to the required range, applied the method, and then transformed
the result back to the original range. To evaluate the utility, we consider the mean
squared error ( 1

n

∑
(µ̂− x̄)2) and the mean absolute error ( 1

n

∑
|µ̂− x̄|). To account for

the different dataset and input ranges, we mainly consider “range-scaled” errors, where

4The method can potentially also be adapted to finding any quantile. However, the utility analysis in
the paper only applies to finding the minimum/maximum as it is based on the fatness of the data near
the minimum/maximum.
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Figure 1: Mean absolute error of the mean estimation averaged over all datasets (scaled
by the respective input range) and n = 104. “Duchi” and “Wang” refer to the works by
Duchi, Wainwright, and Jordan [DWJ13] and Duchi, Jordan, and Wainwright [DJW18]
andWang et al. [Wan+19a] respectively. Ding, Kulkarni, and Yekhanin [DKY17], Nguyên
et al. [Ngu+16], and Waudby-Smith, Wu, and Ramdas [WWR23], and the ℓ∞ mecha-
nism by Duchi, Wainwright, and Jordan [DWJ13] are equivalent and are summarized as
“Bernoulli Mechanisms”. For better readability, we have omitted the standard deviations
of the errors, which are shown in Figure 5 in the appendix. Figures 7, 8 and 9 show the
mean absolute error, the mean squared error and response variances for the different
methods, respectively.

the error is divided by the size of the input data range to allow for a comparison between
datasets.

4.1.1 One-Dimensional Mean Estimation

Figure 1 shows the mean absolute error of the mean estimation methods for all numerical
datasets (scaled by the respective input range) and n = 104. We observe that the error
decreases with increasing privacy budget, but that the rate of decrease differs between the
methods. While all methods show a similar error for ε ⪅ 1, the errors deviate for larger ε,
with Bernoulli methods [DWJ13; Ngu+16; DKY17; WWR23] showing the largest error
and the methods by Wang et al. [Wan+19b] showing the smallest error. Looking more
closely at the Piecewise and Hybrid methods by Wang et al. [Wan+19b], we see that the
Hybrid method shows a lower error than the Piecewise method for small ε. However, for
larger ε, the Piecewise method shows a lower error than the Hybrid method, although
Wang et al. [Wan+19b] have constructed the Hybrid method to be optimal for all ε.

Further, we find that the Bernoulli mechanisms [DWJ13; DKY17; Ngu+16; WWR23]
and the ℓ2 mechanism by Duchi, Wainwright, and Jordan [DWJ13] show similar error
rates and converge to the same (high) error for increasing ε. As ε increases, these methods
reduce to randomly rounding the data, i.e., Pr(zi = 1) = xi and Pr(zi = 0) = 1−xi. We
have also simulated this “random rounding” method and show the result in the relevant
figures. We see that the error of the Bernoulli mechanisms indeed converge towards the
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Figure 2: Mean absolute error of the multi-dimensional mean estimation (scaled by the
input range) for n = {102, 104, 105} and d = 32 for the Binomial dataset stacked d
times. The methods refer to Wang et al. [Wan+19b] and Duchi, Wainwright, and Jordan
[DWJ13] and Duchi, Jordan, and Wainwright [DJW18]. The “split” variants perform
1-dimensional mean estimation on each dimension, where split n splits the participants
by the number of dimensions and split ε splits the privacy budget by the number of
dimensions. The shaded areas show the standard deviation of the errors. See Figures 10
and 11 in the appendix for different combinations of n and d.

error of this random rounding procedure.
From Figures 7 and 8 in the appendix we see that the mean absolute error and the

mean squared error behave similarly. Figure 9 in the appendix shows the variance of the
responses for the different methods. Here we see that, similar to the errors, the variance
of responses for all unbiased methods decreases with increasing privacy budget, but the
decrease levels off as ε approaches 10. We also note that the variance of the method by
Ding, Kulkarni, and Yekhanin [DKY17] is constant for all privacy budgets, which is due
to the biased nature of the method (i.e., the mean of the noisy responses is not the true
mean and needs correction to be applied).

4.1.2 Multi-Dimensional Mean Estimation

We now consider the multi-dimensional mean estimation task. For the evaluation, we use
the Binomial dataset stacked d times to create a d-dimensional dataset. In addition to the
ℓ2 and ℓ∞ methods by Duchi, Wainwright, and Jordan [DWJ13] and Duchi, Jordan, and
Wainwright [DJW18] and the method by Wang et al. [Wan+19b], we also add variants of
the latter: First, instead of setting k optimally, we set k = 1 (as in the previous version of
the paper [Ngu+16]). Additionally, we test the naive approaches of splitting the privacy
budget or the participants by the number of dimensions.

Figure 2 shows the mean absolute error of the multi-dimensional mean estimation
(scaled by the input range) for n = {102, 104, 105} and d = 32 (see Figures 10 and 11
in the appendix for further combinations of n and d). We observe that the ℓ∞ method
[DWJ13] shows a constant error for all settings with d > 1. While Duchi, Wainwright,
and Jordan [DWJ13] discussed this method for general mean estimation in the earlier
version of their paper, the later publication [DJW18] only discuss its use for 1-sparse
data, which could explain the bad performance for our dense data.

Out of the other methods, splitting the privacy budget by the number of dimensions
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Figure 3: Mean absolute error of the variance estimation averaged over all datasets (scaled
by the respective input range) with n = 104 and ε = 2. The split ratio defines how much
of the privacy budget (or participants) is used for the mean estimation step. The variance
estimation uses the Piecewise mechanism by Wang et al. [Wan+19a] as the underlying
mean estimator. The shaded areas show the standard deviation of the errors. See Figures
12 and 13 in the appendix for different n and ε.

shows the highest error, whereas splitting the participants by the number of dimensions
shows the lowest error. The other methods show a similar error, with the ℓ2 method
showing a slightly higher error than the method by Wang et al. [Wan+19b] (both for
optimal k and k = 1). Interestingly, there is no substantial difference between setting k
optimally and setting k = 1 for the method by Wang et al. [Wan+19b]. In fact, both
variants are equivalent for ε < 5 as the optimal value k = max(1,min(d,

⌊
ε
2.5

⌋
)) is equal

to 1 for ε < 5. The optimal variant only slowly increases k from 2 to 4 for ε between 5
and 10.

4.2 Variance Estimation

We have introduced and discussed three options for variance estimation in Section 3.2
and now evaluate their performance. We simulated each variant of variance estimation
20 times for each combination of n (between 102 and 107), ε (between 0.1 and 10), and
dataset. In all cases, we used the Piecewise mechanism by Wang et al. [Wan+19a] as
the underlying mean estimator. Figure 3 shows the range-scaled MAE of the estimated
mean and variance over different split ratios (i.e., how much n or ε is used for the mean
estimation step) for n = 104 and ε = 2. The split ratio defines how much of the privacy
budget (or participants) is used for the mean estimation step. If the split ratio is 0.9,
90% of the privacy budget (or participants) is used for the mean estimation step, and
if the split ratio is 0.5, half of the privacy budget (or participants) is used for the mean
estimation step. See Figures 12 and 13 in the appendix for different n and ε. The error
for the split by ε method is, on average, larger than that of the other two methods for
both mean and variance estimation. This aligns with the general idea that splitting n is
preferred over splitting ε when performing multiple queries in LDP [Wan+17].

The errors for the split by n and sequential split methods are similar for the mean
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with n = 103, n = 104, n = 105. For better readability, we have omitted the standard
deviations of the errors, which are shown in Figure 6 in the appendix.

estimation, which is expected as those methods are equivalent for the mean estimation. In
the variance estimation, the sequential split method has a slightly lower error on average
than the split by n method. However, since both errors show a large standard deviation,
the difference is not significant (in fact, the split by n method shows a lower error for
some individual simulations).

4.3 Frequency Estimation

We simulated all non-pure frequency oracles from Section 3.3 (RAPPOR [EPK14], l-
Subset [YB17; Wan+16], and the methods by Kairouz, Bonawitz, and Ramage [KBR16]
and Nguyên et al. [Ngu+16], and Murakami, Hino, and Sakuma [MHS18]) and the pure
frequency oracles recommended by Wang et al. [Wan+17] and Cormode, Maddock, and
Maple [CMM21] (i.e., k-RR/direct encoding, symmetric and optimized unary encoding,
optimized local hashing, Hadamard mechanism, and Hadamard response) for different n,
ε, and datasets of different domain sizes. Each simulation was repeated 20 times for each
combination of n, ε, and dataset.

To ensure a fair comparison, we applied projection onto the probability simplex for
all methods (implemented according to the algorithm by Wang and Carreira-Perpiñán

[WC13]). Following literature, we used the mean squared error
(

1
d

∑
x∈D(f̂(x)− f(x))2

)
and the variance of the frequency estimates as evaluation metrics. We calculate the
variance as the mean over the sample variances of the individual frequency estimates.

We evaluated the frequency estimation methods on the categorical datasets from
Table 3, where the Geometric distribution dataset was used with varying domain size to
evaluate the impact of the domain size on the frequency estimation methods (see Figure
16 in the appendix).

Figure 4 shows the mean squared error of the frequency estimation methods for dif-
ferent n and ε averaged over all datasets. We provide a more detailed overview of the
results in Figure 14 in the appendix. From these figures, we observe that most methods
have a similar error for given n and ε and that an increase in n or ε typically leads to
a decrease in error. However, some frequency oracles show a different behavior: OLH,
OUE, Nguyên et al. [Ngu+16], and HM all show a “levelling off” effect where the error
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does not decrease further for increasing ε. OUE and OLH even show an increase in error
before levelling off for larger ε. Nguyên et al. [Ngu+16] produces roughly the same error
for ε < 3 regardless of n. RAPPOR [EPK14] shows another interesting behavior, where
the error first decreases with increasing ε reaching a minimum around ε = 1 and then
increases again for larger ε. Furthermore, while RAPPOR shows the lowest error among
all methods for ε around 1 and n = 1000, this advantage diminishes for larger n. For
n = 100 000, RAPPOR only performs best for ε ≈ 1 and performs worse than the best
methods for all other ε.

The other methods show comparable error rates, with a few exceptions: SUE (or
Duchi, Wainwright, and Jordan [DWJ13]) and HR perform similarly but do not decrease
as fast for large ε as the other methods. l-Subset shows competitive error for large
k, but does not scale well with n for smaller ε around 1 and small k (see panels for
n = 10000, 100000 and k = 8, 16 in Figure 16). Direct Encoding / k-RR / O-RR [KBR16]5

behave similarly to the other methods for small d, but show a higher error for larger k.
Murakami, Hino, and Sakuma [MHS18] on the other hand benefits from large k and small
n and ε and shows substantially smaller error for small ε and n. This effect is stronger for
larger k. In terms of their performance, we were unable to see a clear difference between
the groups of pure and non-pure frequency oracles.

Comparing the variance of the frequency oracles (see Figure 15 in the appendix) to
the MSE (see Figure 14 in the appendix), we see a mismatch between the two. While the
variance of most methods stays roughly constant for ε > 1, the MSE of most methods still
decreases. Furthermore, for most methods the variance converges to the same method-
specific value regardless of n when ε increases. This indicates that the variance is not a
good indicator of the error of the frequency estimation methods, although several previous
works have only discussed the variance of the frequency estimates as a measure of the
methods’ utility (see e.g., [Wan+17] and [CMM21]).

5 Practical Considerations

This section presents the general findings of our empirical evaluation and discusses some
open topics that the research community must address before local differential privacy
can be widely adopted for the estimation of descriptive statistics in practice.

5.1 General Findings

There is an abundance of literature describing methods for estimating various descriptive
statistics under LDP (see Section 3). However, practical differences between the meth-
ods are often minor, with most methods showing similar performance in our empirical
evaluations. For the mean estimation task, the choice of method becomes relevant when
ε > 1, where the error rates of the methods start to diverge. Here, the Piecewise method
by Wang et al. [Wan+19b] shows the best performance and the Bernoulli-based methods

5Note that we were unable to reproduce a reduction in error for O-RR [KBR16] when increasing
the number of cohorts, as reported in their paper. For this reason, O-RR is equivalent to k-RR in our
evaluation.
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[DWJ13; DKY17; Ngu+16; WWR23] show the worst performance, even falling behind
the basic Laplace mechanism.

In multi-dimensional mean estimation and variance estimation, our results validate
the well-known fact that for multiple queries (or dimensions), splitting the participants
by the number of queries is performs better than splitting the privacy budget.

While most methods show similar performance in the frequency estimation task, their
differences for different parameters are more complex and do not allow to pick a clear
winner for all cases. For small k, k-RR or l-Subset are good choices regardless of n
and ε. For larger k (we tested up to k = 512), the method by Murakami, Hino, and
Sakuma [MHS18] shows the best performance for small ε and n, RAPPOR shows the best
performance for ε ≤ 3 and l-Subset, k-RR and Murakami, Hino, and Sakuma [MHS18]
show the best performance for ε > 3. For guidelines on very large k, refer to Wang et al.
[Wan+17] and Cormode, Maddock, and Maple [CMM21].

5.2 Towards Practical Application

When utility is the primary concern, central differential privacy would be the preferred
choice for estimating descriptive statistics. However, as discussed in the introduction,
LDP offers a better trust model and is more suitable for applications where the data
is distributed across multiple parties. In this section, we discuss how this gap may be
bridged to make LDP more practical for estimating descriptive statistics. Furthermore,
choosing the right privacy budget ε and explaining the privacy guarantee given by LDP
to the users of the system are difficult tasks that need to be addressed to ensure the
usability of LDP in practice.

5.2.1 Improved Utility and Multiple Queries

Most methods are designed for low-dimensional data or single queries. In practice,
datasets may be high-dimensional or contain multiple attributes of different types (e.g.,
numerical and categorical) thus requiring multiple queries to calculate all statistics of in-
terest. The naive solution for handling multiple queries is to apply the methods for each
query separately either with a reduced privacy budget or a reduced number of partici-
pants to ensure the overall privacy budget is not exceeded. While this may be acceptable
when the number of queries is small, it is not practical when the number of queries is
large. In this case, the shuffle model [Bit+17] may provide a path forward.

The shuffle model introduces an additional participant, the shuffler S, into the pro-
tocol. This shuffler is a trusted and randomized entity that takes the input values from
each party and produces a random permutation of those inputs. The main goal of this
shuffling process is to eliminate any trace of information about the original position of
each input before the data is made public. Several approaches have been used to achieve
shuffling in this model. One such method involves secret sharing, as demonstrated in
the work of Balle et al. [Bal+20]. Another strategy uses well-shufflable data structures,
such as wedges, as proposed by Imola, Murakami, and Chaudhuri [IMC22]. In addition,
shuffling can be accomplished using strings [CZ22] or by employing frequency estimation
techniques [LWY22].
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5.2.2 Guarantees and Confidence Intervals

We have seen that the errors are often accompanied by large standard deviations, i.e.,
large differences between individual runs of the randomized algorithms, which can make
the interpretation of the resulting statistics difficult as it is unclear how far they deviate
from the true value. Here, methods that provide confidence intervals could be benefi-
cial. To the best of our knowledge, only Waudby-Smith, Wu, and Ramdas [WWR23]
and Gaboardi, Rogers, and Sheffet [GRS19] discuss methods for estimating confidence
intervals for mean estimation and there is no work on confidence intervals for the other
statistics discussed in this paper.

5.2.3 Susceptibility to Attacks

While different LDP methods with the same privacy budget ε offer the same worst-
case privacy guarantees, they may show a different susceptibility to attacks in practice.
Arcolezi et al. [Arc+23] analyze the success rate of re-identification attacks on frequency
estimation methods under LDP and find that, given the same privacy budget, different
methods show a different success rate. It is therefore important to consider differences in
attack susceptibility when choosing an LDP method.

5.2.4 Choosing ε and Improving Usability

Choosing the right privacy budget ε is a difficult task for practitioners as can be seen by
the differences in choice for the few known applications [DKY17; EPK14; Dif17]. Fernan-
des, McIver, and Sadeghi [FMS24] use information theory and quantitative information
flow to give an interpretation of ε in the context of LDP. Their work provides an impor-
tant step towards understanding ε under multiple threat models. However, further work
is needed to make these theoretical insights approachable for practitioners. Relatedly,
the choice of ε and the guarantee given by LDP is difficult to explain to the end users
of the system, which can lead to a lack of trust in the system and a reduction in their
willingness to participate. Nanayakkara et al. [Nan+23] is one of the few works to address
the issue of explaining ε in the central DP setting. Further work is needed to transfer
these ideas to the LDP setting.

6 Conclusion

Local differential privacy (LDP) offers strong privacy guarantees and a trust model for
estimating descriptive statistics in distributed settings, which are increasingly relevant in
practice. In this SoK, we systematize the literature on LDP for estimating descriptive
statistics and provide an extensive empirical comparison of methods for estimating the
mean, variance, and frequency of data. Although some open topics remain before LDP
can be widely adopted, its use can enhance trust in data analysis and sharing in dis-
tributed settings. Our systematization and empirical evaluation serve as a starting point
for practitioners to choose the right method for their specific use case and for researchers
to focus on the practical aspects of LDP.
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A Notation and Methods Overview

Table 4 provides an overview of the notation used in this paper. Tables 5 and 6 provide
an overview of the methods for estimating descriptive statistics under local differential
privacy. Table 9 gives more details on the methods for estimating the mean of Gaussian
data.

Table 4: Notation used in this paper. Further notation may be used in parts of the paper
and is defined there.

Symbol Description

General Notation

n Number of participants/clients
[n] The set {1, 2, . . . , n}
ε Privacy budget of ε-(L)DP
δ Privacy parameter (“privacy failure”)
xi Private input of participant i
zi Noisy output of participant i
d Dimension of the data
A Randomized algorithm
B[i] Entry at index i in vector B

Mean Estimation

x̄ True sample mean
µ True population mean
µ̂ Estimated (sample or population) mean
σ̂2 Estimated variance

Frequency Estimation

D Domain of the data
k Domain size
l ≤ k Subset size (for the l-Subset mechanism)

f̂(x) Estimated frequency of x
f(x) True frequency of x
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Table 5: Overview of the methods for estimating descriptive statistics under local differ-
ential privacy. Continued in Tables 6, 7, and 8.

Mean Estimation

Method Summary

Laplace Mechanism Add noise from Laplace distribution to the
mean

[DWJ13; DJW18] – ℓ2 Bernoulli-based mechanism for data in an
ℓ2 ball

[DWJ13] – ℓ∞ Bernoulli-based mechanism for data in an
ℓ∞ ball

[DWJ13] – 1-sparse Bernoulli-based mechanism for 1-sparse
data (only one non-zero entry)

[Ngu+16] Bernoulli-based mechanism for mean esti-
mation

[DKY17] Bernoulli-based mechanism for mean esti-
mation

[Wan+19b] Piecewise and Hybrid mechanisms for
mean estimation

[WWR23] Bernoulli-based mechanism for mean esti-
mation
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Table 6: Overview of the methods for estimating descriptive statistics under local differ-
ential privacy. [Continuation of Table 5].

Frequency Estimation

Method Summary

Randomized Response [War65; Wan+17] Randomized response mechanism for fre-
quency estimation

Direct Encoding / k-ary randomized re-
sponse [KBR16]

Randomized response for non-binary data

Histogram Encoding [Wan+17] Encode data as one-hot vectors and add
Laplace noise

Unary Encoding [DWJ13] Encode data as one-hot vectors and inde-
pendently flip bits

Symmetric Unary Encoding / Basic RAP-
POR [EPK14]

like Unary Encoding, but with a specific
probability

Optimized Unary Encoding [Wan+17] like Unary Encoding, but with optimized
probability

RAPPOR [EPK14] Apply randomized response to a Bloom fil-
ter

Local Hashing [Wan+17] Apply a hash function to the data before
using direct encoding

Fast Local Hashing [CMM21] Local Hashing with heuristics
Hadamard Mechanism [Bas+20] Respond with random Hadamard coeffi-

cient
Hadamard Response [ASZ19] Randomly choose a positive or negative

Hadamard coefficient to report
Optimized Randomized Response
[KBR16]

Randomized response with cohorts and
hash functions

l-Subset [YB17; Wan+16] Submit a subset of the domain of size l < k
to the aggregator

Nguyên et al. [Ngu+16] Encoding using an orthogonal matrix
ElSalamouny and Palamidessi [EP20] Postprocessing using Iterative Bayesian

Update (IBU) to enable best accuracy.
Optimal for any obfuscation mechanism.

Murakami, Hino, and Sakuma [MHS18] Postprocessing using IBU – designed to
cope with small samples

Histogram Estimation

Method Summary

Duchi, Wainwright, and Jordan [DWJ13] Encode bins as one-hot vector and apply
the Laplace mechanism

Ding, Kulkarni, and Yekhanin [DKY17] Randomly sample buckets and respond
with randomly flipped bits to indicate
whether the bucket was the correct one
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Table 7: Overview of the methods for estimating descriptive statistics under local differ-
ential privacy. [Continuation of Tables 5 and 6].

Distribution Estimation

Method Summary

Duchi, Jordan, and Wainwright [DJW18] Estimator based on orthogonal series ex-
pansion

Diao et al. [Dia+20] Model data distribution as a Gaussian
mixture model – only approximately LDP

Li et al. [Li+20] Square wave mechanism – conceptually
similar to the Piecewise mechanism for
mean estimation [Wan+19a]
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Table 8: Overview of the methods for estimating descriptive statistics under local differ-
ential privacy [Continuation of Tables 5, 6, and 7].

Contingency Tables & Marginal Tables

Method Summary

Fanti, Pihur, and Erlingsson [FPE16] Full contingency table for 2 categorical
variables using Expectation Maximiza-
tion

Ren et al. [Ren+18] Fixed k-way marginal for d categorical
variables using Expectation Maximiza-
tion / Lasso regression

Cormode, Kulkarni, and Srivastava [CKS18] All k-way marginals for d binary vari-
ables using a Hadamard transform on
private data

Zhang et al. [Zha+18] All k-way marginals for d categorical us-
ing Entropy Maximization + Frequency
Oracle

Xue, Zhu, and Wang [XZW21a] Joint distribution for 2 categorical vari-
ables based on the k-subset mechanism
[Wan+16; YB17]

Range Queries

Method Summary

Cormode, Kulkarni, and Srivastava [CKS19] Range queries based on hierarchical his-
tograms

Wang et al. [Wan+19b] Range queries based on subintervals
stored as nodes in a tree structure

Li et al. [Li+20] Range queries based on the distribution
estimation method in the same paper

Yang et al. [Yan+20] Range queries based on multi-
dimensional (sub-)grids

Du et al. [Du+21] Range queries based on an adaptive hi-
erarchical grid structure

Order Statistics

Method Summary

Cyphers and Veeramachaneni [CV17] Find the median using binary search –
no analysis of error

Gaboardi, Rogers, and Sheffet [GRS19] Estimate quantiles based on binary
search

Fukuchi, Yu, and Sakuma [FYS22] Find the minimum/maximum based on
binary search

Duchi, Jordan, and Wainwright [DJW18] Find the median based on stochastic
gradient descent

Cormode, Kulkarni, and Srivastava [CKS19] Find any quantile using range queries
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Table 9: Comparison of mean estimation mechanisms for Gaussian data.
Algorithm Input Range Error Rounds LDP Type

Gaboardi, Rogers, and Sheffet [GRS19] xi ∼ N (µ, σ2), µ ∈ [−R,R] with prob. 1− β, µ ∈ I, |I| = . . . (ε, δ)

- KnownVar - known σ O

(
σ
ε

√
1
n
log
(

1
β

)
log
(

n
β

)
log
(
1
δ

))
2

- UnkVar - σ ∈ [σmin, σmax], σmax ≤ 2R O

(
σ
ε

√
1
n
log
(

1
β

)
log
(

n
β

)
log
(
1
δ

))
Ω(log( R

σmin
))

Joseph et al. [Jos+19a] xi ∼ N (µ, σ2), µ = O
(
2nε

2/ log(n/β)
)

with prob. 1− β, |µ̂− µ| = . . . ε

- KVGausstimate - known σ O

(
σ
ε

√
1
n
log
(

1
β

))
2

- 1RoundKVGausstimate - known σ O

(
σ
ε

√
1
n
log
(

1
β

)√
log(n)

)
1

- UVGausstimate - σ ∈ [σmin, σmax] O

(
σ
ε

√
1
n
log
(

1
β

)
log (n)

)
2

- 1RoundUVGausstimate - σ ∈ [σmin, σmax] O

(
σ
ε

√
1
n
log
(

σmax

σmin
+ 1
)
log
(

1
β

)
log3/2 (n)

)
1
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B Proofs

Proof of Proposition 1. We claim that all Bernoulli-based mechanisms MDu, MN , MD,
and MW are equivalent for the mean estimation of 1-dimensional input. The fact, that
MW and MD are equivalent (for default parameters of MW ), has already been shown by
Waudby-Smith, Wu, and Ramdas [WWR23]. We therefore only need to show that MDu

and MN are equivalent and that MN and MD are equivalent.
We first show that MN and MD are equivalent. We begin, by recalling the definitions

of the mechanisms MD and MN and their mean estimators.
The mechanism MD by Ding, Kulkarni, and Yekhanin [DKY17] takes inputs xi ∈

[0,m] and outputs zi ∈ {0, 1}. The zi are sampled from a Bernoulli distribution as

zi ∼ Bern (p) , p =
1

eε + 1
+

xi

m

eε − 1

eε + 1
.

The mean estimator µ̂ is defined as

µ̂ =
m

n

n∑
i=1

zi · (eε + 1)− 1

eε − 1
.

The mechanism MN by Nguyên et al. [Ngu+16] (in the 1-dimensional case) takes in-
puts x′

i ∈ [−1, 1] and outputs z′i ∈ {0, 1}. The zi are sampled from a Bernoulli distribution
as

z′i ∼ Bern (p′) , p′ =
x′
i(e

ε − 1) + eε + 1

2eε + 2
.

The participants then respond with

u′
i =

{
eε+1
eε−1

if z′i = 1

− eε+1
eε−1

if z′i = 0
.

The mean estimator µ̂′ is defined as

µ̂′ =
1

n

n∑
i=1

u′
i.

The authors mention that the participants can also directly respond with z′i instead of u′
i

as this can be calculated by the aggregator. We can rewrite u′
i as u

′
i = (2z′i − 1) e

ε+1
eε−1

and
get for the mean estimator

µ̂′ =
1

n

n∑
i=1

(2z′i − 1)
eε + 1

eε − 1
.

We now show that both mechanisms sample from the same distribution if the input
is transformed accordingly. We define the transformation T : [0,m] → [−1, 1] as

T (x) = 2
x

m
− 1.
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We can then rewrite the probability p′ as

p′ =
T (xi)(e

ε − 1) + eε + 1

2eε + 2

=

(
2xi

m
− 1
)
(eε − 1) + eε + 1

2eε + 2

=
2xi

m
(eε − 1)− eε + 1 + eε + 1

2eε + 2

=
2xi

m
(eε − 1) + 2

2eε + 2

=
2
(
xi

m
(eε − 1) + 1

)
2(eε + 1)

=
1

eε + 1
+

xi

m

eε − 1

eε + 1

= p.

Therefore, the mechanisms MD and MN sample from the same distribution if the input
is transformed accordingly.

We now show that the mean estimators are equivalent if we transform their outputs
accordingly. We take the mean estimator µ̂ and transform the output from [0, m] to [-1,1]
using T .

T (µ̂) = 2
µ̂

m
− 1 = 2

m
n

∑n
i=1

zi·(eε+1)−1
eε−1

m
− 1

=
2

n

(
n∑

i=1

zi · (eε + 1)− 1

eε − 1

)
− 1

=
1

n

(
n∑

i=1

2
zi · (eε + 1)− 1

eε − 1

)
− 1

n

n∑
i=1

1

=
1

n

n∑
i=1

2
zi · (eε + 1)− 1

eε − 1
− 1

=
1

n

n∑
i=1

(
2zi · (eε + 1)− 2

eε − 1
− 1

)
=

1

n

n∑
i=1

2zi · (eε + 1)− 2− (eε − 1)

eε − 1

=
1

n

n∑
i=1

2zi · (eε + 1)− eε − 1

eε − 1

=
1

n

n∑
i=1

2zi · (eε + 1)− (eε + 1)

eε − 1

=
1

n

n∑
i=1

(2zi − 1)
(eε + 1)

eε − 1

= µ̂′.

42



We now show thatMDu andMN are equivalent. Recall the definition of the mechanism
MDu and its mean estimators (we already recalled the definition of MN above). The
mechanism MDu by Duchi, Jordan, and Wainwright [DJW14; DJW18] (for d = 1) takes
inputs xi ∈ [−r, r] and outputs zi ∈ {−B,B}. Without loss of generality, we assume that
r = 1.

It calculates x̃i =

{
+1 with probability 1

2
+ xi

2

−1 with probability 1
2
− xi

2
.
It samples T from a Bernoulli distri-

bution as Ti ∼ Bern
(

eε

eε+1

)
. It then calculates zi =


B if Ti = 1 and x̃i = 1

−B if Ti = 1 and x̃i = −1

−B if Ti = 0 and x̃i = 1

B if Ti = 0 and x̃i = −1

where

B = eε+1
eε−1

.
Note that the possible return values B and −B are the same as the return values of

MN . We therefore only need to show that the sampling distributions of MDu and MN

are the same. We rewrite the output of MDu as

Pr[zi = B] = Pr[Ti = 1 and x̃i = 1] + Pr[Ti = 0 and x̃i = −1]

= Pr[Ti = 1]Pr[x̃i = 1] + Pr[Ti = 0]Pr[x̃i = −1]

= Pr[Ti = 1]Pr[x̃i = 1] + (1− Pr[Ti = 1])(1− Pr[x̃i = 1])

= Pr[Ti = 1]Pr[x̃i = 1] + 1− Pr[x̃i = 1]

− Pr[Ti = 1] + Pr[Ti = 1]Pr[x̃i = 1]

= 2Pr[Ti = 1]Pr[x̃i = 1] + 1− Pr[x̃i = 1]− Pr[Ti = 1]

= 2
eε

eε + 1

(
1

2
+

xi

2

)
+ 1−

(
1

2
+

xi

2

)
− eε

eε + 1

=
eε

eε + 1
+

eε

eε + 1
xi +

1

2
− xi

2
− eε

eε + 1

=
eε

eε + 1
xi +

eε + 1

eε + 1
(
1

2
− xi

2
)

=
1

2eε + 2
(2eεxi + eε − eεxi + 1− xi)

=
(eε − 1)xi + eε + 1

2eε + 2

This is the same as the probability p′ of MN . Therefore, the mechanisms MDu and
MN are equivalent.

Proof of Proposition 2. We assume that the error of the mean estimator is bounded by
f(n, ε), i.e., |µ̂−µ| ≤ f(n, ε). We now derive an upper bound for the error of the variance
estimator.
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∣∣ŝ2X − s2X
∣∣ = ∣∣∣∣ n

n− 1
(µ̂X2 − µ̂2

X)−
n

n− 1
(µX2 − µ2

X)

∣∣∣∣
=

n

n− 1

∣∣µ̂X2 − µX2 − µ̂2
X + µ2

X

∣∣
=

n

n− 1

∣∣(µ̂X2 − µX2) + (−(µ̂2
X − µ2

X))
∣∣

(applying the Triangle Inequality)

≤ n

n− 1
(|µ̂X2 − µX2 |+

∣∣µ̂2
X − µ2

X

∣∣)
(using |µ̂− µ| ≤ f(n, ε))

≤ n

n− 1
(f(nX2 , εX2) + |(µ̂X + µX)(µ̂X − µX)|)

=
n

n− 1
(f(nX2 , εX2) + |µ̂X + µX | |µ̂X − µX |)

(using |µ̂− µ| ≤ f(n, ε))

≤ n

n− 1
(f(nX2 , εX2) + |µ̂X + µX | f(nX , εX))

=
n

n− 1
(f(nX2 , εX2) + |µ̂X − µX + µX + µX | f(nX , εX))

(applying the Triangle Inequality)

≤ n

n− 1
(f(nX2 , εX2) + (|µ̂X − µX |+ |µX + µX |) f(nX , εX))

(using |µ̂− µ| ≤ f(n, ε) and µX ≤ 1 if xi ∈ [−1, 1])

≤ n

n− 1
(f(nX2 , εX2) + (f(nX , εX) + 2) f(nX , εX))

=
n

n− 1

(
f(nX2 , εX2) + f(nX , εX)

2 + 2f(nX , εX)
)

In the case where we split ε = εX + εX2 , we have n = nX = nX2 . Therefore, we have∣∣ŝ2X − s2X
∣∣ ≤ n

n− 1

(
f(n, εX2) + f(n, εX)

2 + 2f(n, εX)
)

In the case where we split n = nX + nX2 , we use the same ε for all participants:
ε = εX = εX2 . Therefore, we have∣∣ŝ2X − s2X

∣∣ ≤ n

n− 1

(
f(nX2 , ε) + f(nX , ε)

2 + 2f(nX , ε)
)

C Error Bound of the Mean Estimator by Waudby-

Smith et al. (2023)

Waudby-Smith, Wu, and Ramdas [WWR23] produce a confidence interval that contains
the population mean µ with probability 1− α.
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Figure 5: Mean absolute error of the mean estimation averaged over all datasets (scaled
by the respective input range) and n = 104. Shaded areas indicate the standard deviation.
“Duchi” and “Wang” refer to the works by Duchi, Wainwright, and Jordan [DWJ13] and
Duchi, Jordan, and Wainwright [DJW18] and Wang et al. [Wan+19a] respectively. Ding,
Kulkarni, and Yekhanin [DKY17], Nguyên et al. [Ngu+16], and Waudby-Smith, Wu, and
Ramdas [WWR23], and the ℓ∞ mechanism by Duchi, Wainwright, and Jordan [DWJ13]
are equivalent and are summarized as “Bernoulli Mechanisms”.

The lower and upper bounds are defined as µ̂n ±
√

log(1/α)

2n( 1
n

∑n
i=1 ri)

2 . Since we set εi = ε

for all clients and follow the authors’ recommendation Gi = 1, ri =
eε−1
eε+1

. Therefore, the

bounds are µ̂n ±
√

log(1/α)

2n( eε−1
eε+1)

2 . Since the population mean µ is within the bounds with

probability 1− α,

µ̂n −
√

log(1/α)

2n
(
eε−1
eε+1

)2 ≤ µ ≤ µ̂n +

√
log(1/α)

2n
(
eε−1
eε+1

)2 (2)

Therefore, we have with probability 1− α:

|µ̂n − µ| ≤

∣∣∣∣∣µ̂n − µ̂n −
√

log(1/α)

2n
(
eε−1
eε+1

)2
∣∣∣∣∣ (3)

=

√
log(1/α)

2n
(
eε−1
eε+1

)2 (4)

=
1√
2n

eε + 1

eε − 1

√
log(1/α) (5)

D Additional Figures
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Figure 6: Mean squared error of the frequency estimation averaged over all datasets with
n = 103, n = 104, n = 105. Shaded areas indicate the standard deviation.
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Figure 7: Mean absolute error for 1-dimensional mean estimation. Shaded areas indicate
the standard deviation. All results are averaged over 100 runs. “Duchi ℓ2” refers to the ℓ2
method by Duchi, Wainwright, and Jordan [DWJ13] and Duchi, Jordan, and Wainwright
[DJW18], “Wang” refers to the method by Wang et al. [Wan+19a], and “Bernoulli”
groups the methods by Ding, Kulkarni, and Yekhanin [DKY17], Nguyên et al. [Ngu+16],
Waudby-Smith, Wu, and Ramdas [WWR23], and the ℓ∞ method by Duchi, Wainwright,
and Jordan [DWJ13].
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Figure 8: Mean squared error for 1-dimensional mean estimation. Shaded areas indicate
the standard deviation. All results are averaged over 100 runs. “Duchi ℓ2” refers to the ℓ2
method by Duchi, Wainwright, and Jordan [DWJ13] and Duchi, Jordan, and Wainwright
[DJW18], “Wang” refers to the method by Wang et al. [Wan+19a], and “Bernoulli”
groups the methods by Ding, Kulkarni, and Yekhanin [DKY17], Nguyên et al. [Ngu+16],
Waudby-Smith, Wu, and Ramdas [WWR23], and the ℓ∞ method by Duchi, Wainwright,
and Jordan [DWJ13].
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Figure 9: Variance of the participants’ responses for 1-dimensional mean estimation.
Shaded areas indicate the standard deviation. All results are averaged over 100 runs.
“Duchi ℓ2” refers to the ℓ2 method by Duchi, Wainwright, and Jordan [DWJ13] and
Duchi, Jordan, and Wainwright [DJW18], “Wang” refers to the method by Wang et al.
[Wan+19a], and “Bernoulli” groups the methods by Nguyên et al. [Ngu+16], Waudby-
Smith, Wu, and Ramdas [WWR23], and the ℓ∞ method by Duchi, Wainwright, and
Jordan [DWJ13]. The variance of the responses generated by the method by Ding,
Kulkarni, and Yekhanin [DKY17] is not included in the “Bernoulli” group here as its
responses are biased and therefore show a different behavior.
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Figure 10: Mean absolute error for multi-dimensional mean estimation. Shaded areas
indicate the standard deviation. All results are averaged over 100 runs. “Wang” refers
to the method by Wang et al. [Wan+19a] with “optimal k” using the value suggested by
the authors. “Wang k=1” refers to the same method with k = 1 (as in the earlier version
of the paper by Nguyên et al. [Ngu+16]). The variants “split ε” and “split n” refer to
the naive approaches of splitting the privacy budget or the participants by the number of
dimensions and use the method by Wang et al. [Wan+19a] for the 1-dimensional mean
estimation. “Duchi” refers to the methods by Duchi, Wainwright, and Jordan [DWJ13]
and Duchi, Jordan, and Wainwright [DJW18].
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Figure 11: Mean absolute error for multi-dimensional mean estimation. Shaded areas
indicate the standard deviation. All results are averaged over 100 runs. “Wang” refers
to the method by Wang et al. [Wan+19a] with “optimal k” using the value suggested by
the authors. “Wang k=1” refers to the same method with k = 1 (as in the earlier version
of the paper by Nguyên et al. [Ngu+16]). The variants “split ε” and “split n” refer to
the naive approaches of splitting the privacy budget or the participants by the number of
dimensions and use the method by Wang et al. [Wan+19a] for the 1-dimensional mean
estimation. “Duchi” refers to the methods by Duchi, Wainwright, and Jordan [DWJ13]
and Duchi, Jordan, and Wainwright [DJW18].
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Figure 12: Mean absolute error of the variance estimation averaged over all datasets
(scaled by the respective input range) with n = {103, 104} and ε = {0.1, 1, 4, 8}. The
split ratio defines how much of the privacy budget (or participants) is used for the mean
estimation step. The variance estimation uses the Piecewise mechanism by Wang et al.
[Wan+19a] as the underlying mean estimator.

52



Split by Y
Split by=
Sequential Split

0.25 0.50 0.75
Split Ratio

10−2

10−1

Ra
ng

e-
Sc

al
ed

M
A

E

Mean

0.25 0.50 0.75
Split Ratio

100

101

Ra
ng

e-
Sc

al
ed

M
A

E

Variance
= = 100 000, Y = 0.1

0.25 0.50 0.75
Split Ratio

10−3

10−2

Ra
ng

e-
Sc

al
ed

M
A

E

Mean

0.25 0.50 0.75
Split Ratio

10−1

100

Ra
ng

e-
Sc

al
ed

M
A

E

Variance
= = 100 000, Y = 1.0

0.25 0.50 0.75
Split Ratio

10−4

10−3

10−2

Ra
ng

e-
Sc

al
ed

M
A

E

Mean

0.25 0.50 0.75
Split Ratio

10−1

100

Ra
ng

e-
Sc

al
ed

M
A

E

Variance
= = 100 000, Y = 4.0

0.25 0.50 0.75
Split Ratio

10−4

10−3

Ra
ng

e-
Sc

al
ed

M
A

E

Mean

0.25 0.50 0.75
Split Ratio

10−2

10−1

Ra
ng

e-
Sc

al
ed

M
A

E

Variance
= = 100 000, Y = 8.0

0.25 0.50 0.75
Split Ratio

10−2

10−1

Ra
ng

e-
Sc

al
ed

M
A

E

Mean

0.25 0.50 0.75
Split Ratio

100

101

Ra
ng

e-
Sc

al
ed

M
A

E

Variance
= = 1 000 000, Y = 0.1

0.25 0.50 0.75
Split Ratio

10−3

10−2

Ra
ng

e-
Sc

al
ed

M
A

E

Mean

0.25 0.50 0.75
Split Ratio

10−1

Ra
ng

e-
Sc

al
ed

M
A

E

Variance
= = 1 000 000, Y = 1.0

0.25 0.50 0.75
Split Ratio

10−4

10−3

Ra
ng

e-
Sc

al
ed

M
A

E

Mean

0.25 0.50 0.75
Split Ratio

10−2

10−1

Ra
ng

e-
Sc

al
ed

M
A

E

Variance
= = 1 000 000, Y = 4.0

0.25 0.50 0.75
Split Ratio

10−5

10−4

10−3

Ra
ng

e-
Sc

al
ed

M
A

E

Mean

0.25 0.50 0.75
Split Ratio

10−2

10−1

Ra
ng

e-
Sc

al
ed

M
A

E

Variance
= = 1 000 000, Y = 8.0

Figure 13: Mean absolute error of the variance estimation averaged over all datasets
(scaled by the respective input range) with n = {105, 106} and ε = {0.1, 1, 4, 8}. The
split ratio defines how much of the privacy budget (or participants) is used for the mean
estimation step. The variance estimation uses the Piecewise mechanism by Wang et al.
[Wan+19a] as the underlying mean estimator.
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Figure 14: Mean squared error for n = {102, 103, 104, 105, 106, 107} for pure and non-
pure frequency oracles averaged over all datasets (see table 3). Shaded areas indicate
the standard deviation. All results are averaged over 20 runs and each estimate is post-
processed by projection onto the probability simplex.
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Figure 15: Variance of the estimated frequencies for n = {102, 103, 104, 105, 106, 107} for
pure and non-pure frequency oracles averaged over all datasets (see table 3). All results
are averaged over 20 runs and each estimate is post-processed by projection onto the
probability simplex.
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Figure 16: Mean squared error for n = {103, 104, 105} and domain size k =
{8, 16, 32, 64, 128, 256, 512} for pure and non-pure frequency oracles for the geometric
dataset (see table 3). Note that the results for Murakami, Hino, and Sakuma [MHS18]
are missing in the subplots marked with an asterisk due to the computational overhead.
All results are averaged over 20 runs and each estimate is post-processed by projection
onto the probability simplex.
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Figure 17: Visualization of the datasets used in the empirical evaluation (see Table 3).
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