
Asynchronous Verifiable Secret Sharing with Elastic
Thresholds and Distributed Key Generation

Junming Li
Huazhong University of Science and Technology

Zhi Lu
Huazhong University of Science and Technology

Renfei Shen
Huazhong University of Science and Technology

Yuanqing Feng
Huazhong University of Science and Technology

Songfeng Lu
Huazhong University of Science and Technology

Abstract
Distributed Key Generation (DKG) is a technique that enables
the generation of threshold cryptography keys among a set of
mutually untrusting nodes. DKG generates keys for a range
of decentralized applications such as threshold signatures,
multiparty computation, and Byzantine consensus. Over the
past five years, research on DKG has focused on optimizing
network communication protocols to improve overall sys-
tem efficiency by reducing communication complexity. How-
ever, SOTA asynchronous distributed key generation (ADKG)
schemes (e.g., Kokoris-Kogias ADKG, CCS 2020 and Das
ADKG, S&P 2022, and others) only support recovery thresh-
olds of either f or 2 f , where f is the maximum number of
malicious nodes. This paper proposes an asynchronous veri-
fiable secret sharing protocol featuring an elastic threshold,
where t ∈ [f ,n− f − 1] and n ≥ 3 f + 1 is the total number
of parties. Our protocol enables a dealer to share up to t +1
secrets with a total communication cost of O(λn3), where λ is
the security parameter, and the protocol relies on the hardness
of the q-SDH problem. We further modified the Schnorr pro-
tocol to enable simultaneous commitments to multiple secrets,
which we refer to m-Schnorr.

1 Introduction

Distributed Key Generation (DKG) is a technique for gen-
erating public/private key pairs among a group of mutually
untrusting nodes, where each parties node ultimately holds a
share of the private key and the public key. The private key
generated by DKG can be used in threshold cryptographic
applications, including threshold encryption[14, 26, 8, 23],
threshold signatures[5, 19] and multiparty computation[31].

The core of DKG lies in the secret sharing scheme, a funda-
mental cryptographic primitive. Secret sharing is a technique
in which a party distributes a secret among a group of multi-
ple nodes. The steps involved include secret division, sharing,
verification, and reconstruction. According to the most basic
definition, secret sharing is performed by an honest dealer

who shares a secret among a group of parties. When the num-
ber of secret shares exceeds a certain threshold, the original
secret can be reconstructed. This is known as the reconstruc-
tion threshold. When the reconstruction threshold is equal
to f , it is defined as a low threshold. In contrast, when the
reconstruction threshold is significantly higher than f +1, it
is defined as a high threshold.

Research on DKG can be classified based on the net-
work model and the threshold level. In synchronous net-
work environments, DKG has been the subject of extensive
study[32, 19, 9, 29, 23, 38, 27, 2, 23, 15, 22, 13, 11, 1].
In 2019, the first ADKG scheme was proposed[27]. Since
then, research on DKG has predominantly focused on asyn-
chronous environments[27, 2, 23, 15, 22, 13, 11, 1]. Unlike
synchronous networks, asynchronous environments do not
require additional assumptions about message delay and re-
ception order between nodes. To enhance robustness, ADKG
schemes are designed to be more complex. Compared to low-
threshold schemes, high-threshold require more secret shares
to reconstruct the original secret, offering better security prop-
erties. However, high-threshold ADKG consumes more com-
putational and communication resources. These factors result
in high-threshold ADKG being substantially less efficient than
synchronous DKG and low-threshold ADKG. Therefore, this
paper primarily studies high-threshold asynchronous DKG.

1.1 Our results

Elastic thresholds. We design an efficient asynchronous veri-
fiable secret sharing (AVSS) protocol with an elastic threshold.
In an asynchronous network of n≥ 3 f +1 nodes, our proto-
col allows a dealer to share m ∈ [1, t +1] secrets with a total
communication complexity of O(λn2), where n is the total
number of parties, f is the maximum number of malicious par-
ties, and reconstruction threshold t ∈ [f ,n− f −1]. In Table
1 and 2, we compare our scheme with other AVSS schemes.
Our scheme supports a greater range of thresholds while main-
taining good efficiency. Upon successful completion of our
protocol, each party receives a set of threshold secret shares

1

Table 1: Comparison of AVSS schemes. Common Reference String (CRS) is a set of pre-generated public parameters that all
parties trust for ensuring the security and correctness of constructing and verifying zero-knowledge proofs.

Scheme Word complexity CRS setup Threshold Assumptions
Cachin[8] O(λn3) - 2 f DL
Backes[4] O(λn2) ✓ f q−SDH, q− polyDH
Haven[3] O(λn2 logn) - 2 f DL, ROM

hbACSS[40] O(λn3) ✓ f q−SDH
Bingo[1] O(λn2) ✓ 2 f q−SDH, AGM[18]
This work O(λn2) ✓ [f ,n− f −1] q−SDH, ROM

Table 2: A comparison of ADKG schemes. All of these schemes can toleratre f < n/3 malicious nodes. Abbreviations used
are, Discrete Logarithm (DL), Symmetric External Diffie-Hellman (SXDH), Bilinear Diffie-Hellman (BDH), Decisional Diffie-
Hellman (DDH), q-Strong Diffie-Hellman (q-SDH), and Random Oracle Model (ROM).

Scheme Word complexity Rounds CRS setup Threshold Key as field element Assumptions
Kokoris-Kogias[27] O(λn4) O(n) - 2 f ✓ DL

Abraham[2] O(λn3) O(1) - f × SXDH, BDH, ROM
Das[13] O(λn3) O(logn) - 2 f ✓ DDH, ROM

Groth[22] O(λn3) O(1) - f × DL, ROM
Das[11] O(λn3) O(logn) - 2 f ✓ DL ROM
Bingo[1] O(λn3) O(1) ✓ 2 f ✓ q−SDH
This work O(λn3) O(1) ✓ [f ,n− f −1] ✓ q−SDH, ROM

derived from these secrets. When applied to ADKG, each
node can receive a set of threshold secret shares of randomly
chosen secrets z ∈ Zq, where Zq is a field of order q. There-
fore, our ADKG scheme can be integrated with off-the-shelf
threshold cryptosystems[5, 14, 19, 23, 39, 27].
Faster and more secure secret sharing. We select two asym-
metric bivariate polynomials, Φ and Φ̂, as the secret-sharing
polynomials. Φ is used to hide the secret, while Φ̂ is a com-
pletely randomly generated polynomial. Φ̂ is introduced to
enhance polynomial binding, as discussed in 3.3. The use of
bivariate polynomials accelerates secret sharing and enhances
its robustness in asynchronous networks. In the verifiable
part of the protocol, we built upon the work of Abraham et
al.[1] and incorporated HashToCurve[24] to modify the KZG
commitment[25].
Secure and space-efficient m-Schnorr protocol. In order to
generate m public key in a single ADKG, we design a non-
interactive Schnorr protocol[34, 30, 28, 36] to simultaneously
commit to m public key shares. The size of the commitment
is independent of m, and our Schnorr commitment incurs
a space overhead superior to that of invoking the Schnorr
protocol m times separately, amounting to 1/m of the latter.
This protocol is based on Discrete Logarithm Assumption
and Random Oracle Model. Additionally, we reuse the proof
generated by the KZG commitment to append further security
properties to the public key shares.
Implementation andevaluation. We implemented our AVSS

and m-Schnorr protocols using Rust and bls12381 elliptic
curve. We evaluated our scheme with up to 256 nodes. The
experimental results can be found in Tables 4, 5, and 6.

2 Related Work

AVSS. Our work builds upon asynchronous verifiable secret
sharing (AVSS). Cachin et al.[8] proposed a AVSS proto-
col with a communication complexity of O(λn3), based on
DL assumption. Backes et al.[4] improved upon this by in-
troducing an AVSS protocol with O(λn2) communication
complexity, though its recovery threshold is limited to f . Al-
Haddad et al.[3] introduced Haven protocol, which achieves
O(λn2 logn) communication complexity. Notably, Haven is
the first high-threshold secret sharing scheme that does not
rely on a PKI or trusted setup. Yurek et al.[40] proposed three
variants of hbACSS, which achieve O(λn3) communication
complexity without needing a trusted setup, yet these proto-
cols remain classified as low-threshold secret sharing schemes.
Abraham et al.[1] introduced Bingo protocol, which has a to-
tal communication complexity of O(λn2). Bingo is the first
high-threshold AVSS protocol that is adaptively secure and
can simultaneously share up to f +1 secrets, but it requires
both a PKI and a trusted setup.

Numerous works have examined th eproblem of Dis-
tributed Key Generation with various cryptographic assump-

2

tions, network conditions, secret sharing and with other
properties[32, 19, 9, 29, 23, 38, 27, 2, 23, 15, 22, 13, 11, 1].
We categorize prior work into two classes based on network
assumptions: Synchronous and Asynchronous.
Synchronous DKG. The synchronous network assumes rel-
atively ideal conditions where all nodes have equal perfor-
mance and resources, and messages are successfully deliv-
ered within an ideal time frame. Synchronous DKG has been
studied for decades. Pedersen[32] proposed the first DKG
scheme based on verifiable secret sharing (VSS)[16]. Gen-
naro et al.[19] demonstrated that an attacker could bias the
public key generated by this protocol and proposed a solution,
though computationally expensive. Canetti et al.[9] and Neji
et al.[29] improved Gennaro’s method by introducing adap-
tive security and increasing computational efficiency. Gurkan
et al.[23] designed a DKG protocol based on publicly verifi-
able secret sharing (PVSS), with a communication complexity
of O(n3 logn). However, the generated keys belong to group
elements, which is a limitation. Shrestha et al.[38] proposed
a protocol with O(n3) communication complexity that does
not rely on broadcast channels.
Asynchronous DKG. The asynchronous network is closer
to real-world network conditions, where issues such as vary-
ing computational power across nodes and potential message
loss or delivery failures due to various factors must be con-
sidered. Kokoris et al.[27] designed the first ADKG proto-
col, which has a communication complexity of O(λn4) and a
round complexity of O(n). Abraham et al.[2] devised a con-
sensus protocol and combined it with Gurkan et al.’s PVSS
protocol[23] to construct a high-threshold ADKG with a com-
munication complexity of O(n3 logn). However, this protocol
inherits the drawback of generating keys that belong to group
elements, making it incompatible with widely-used threshold
cryptography schemes[15] based on field elements. Groth
and Shoup[22] proposed a DKG protocol that does not re-
quire a trusted setup and has a communication complexity of
O(n3). Das et al.[13] developed a high-threshold DKG with
a communication complexity of O(λn3), and the generated
keys belong to field elements, based on the DDH assumption.
More recently, Das et al.[11] introduced an improved scheme
based on DL assumption, which offers higher security than
the DDH assumption. They also enhanced the efficiency of
the high-threshold ADKG, making it nearly as efficient as low-
threshold ADKG. Recently, Abraham et al.[1] proposed an
ADKG protocol that achieves adaptive security, with a com-
munication complexity of O(λn3) and a round complexity of
O(1). Their AVSS protocol is also capable of simultaneously
sharing f +1 secrets.

3 Preliminaries

In this section, we first define the basic notation, followed by
the definitions of Reliable Broadcast (RBC)[12, 7], Polyno-
mial Commitment Scheme (PCS)[25, 33], Asynchronous Ver-

ifiable Secret Sharing[8, 4, 3, 40, 1], Validated Asynchronous
Byzantine Agreement[1], Schnorr Protocol[36, 37] and Fiat-
Shamir Heuristic[17].

3.1 Notations
We summarize the notations in Table 3. To simplify the no-
tation, if a variable is written in boldface, it indicates that
the variable is actually a set. λ is the security parameter. For
example, λ can denote the output size of a hash function. For

a finite set S, |S| denotes its size. The notation x $←− S denotes
sampling a random element from the set S and assigning it to x.
For any n∈N, we define [n] = {1, . . . ,n} and JnK= {0, . . . ,n}.
Specifically, for two integers i < j, we define the ordered set
[i, j] = {i, . . . , j}. Probabilistic Polynomial Time denoted by
PPT. In constructing a polynomial, the randomly selected
coefficients are typically chosen from Zq by default.

Table 3: Notations used in the paper
Notation Description
n Total number of nodes, where n≥ 3 f +1
f Maximum number of malicious nodes
t Reconstruction threhold of secret sharing
Zq Field of order q where q is prime
G Cyclic group of order q
g, ĝ,h Random and independent generators of G
z,gz ADKG secret and public key
m Total number of secret, m ∈ [1, t +1]
Φ(X ,Y) Bivariate asymmetric polynomial
zk(i) k-th secret shared by the i-th node
z(i) Set of secrets shared by the i-th node
gzk(i),gz(i) i-th node’s threshold public keys
pki,ski Communication key pair of the i-th node
Com NIZK commitment
A PPT adversaries

3.2 Reliable Broadcast
Reliable Broadcast is a communication primitive guarantee-
ing, intuitively, that all nodes in a distributed system deliver
the same set of messages. The RBC[12, 7] ensures reliable
data transmission if more than two-thirds of the nodes are
honest. A reliable broadcast has the following properties:

• Validity. If the sender is nonfaulty, then every nonfaulty
party that completes the protocol outputs the sender’s input
value v.

• Agreement. If any honest node receives a message m, then
all honest nodes will eventually receive m.

• Termination. If the dealer is nonfaulty, then all nonfaulty
parties complete the protocol and output a value. Further-

3

more, if some nonfaulty party completes the protocol, every
nonfaulty party completes the protocol.

3.3 Polynomial Commitment Scheme
A PCS[25, 33] is a cryptographic protocol that allows a party
to commit to a polynomial while keeping it hidden and later
reveal and prove evaluations of the polynomial at specific
points without revealing the polynomial itself. This is partic-
ularly useful in various cryptographic applications[21, 20],
including zero-knowledge proofs, verifiable computation, and
blockchain systems.

Common polynomial commitments include Pedersen
commitments[33], KZG commitments[25], and others. A PCS
consist of the following algorithms:

• CRS ← Setup(1λ) takes a security parameter λ as input
and outputs a set of global parameters CRS.

• Com← Commit(CRS,α(x)) takes CRS and a polynomial
α as input and computes the commitment Com.

• p,π← Eval(CRS,α(X),x) takes CRS, a polynomial α, and
a variable x as input. The output is p = α(x) along with a
proof at (x,α(x)).

• True/False← Verify(CRS,Com,(x, p),π) takes CRS, Com,
(x, p), and a proof π as input. If (x, p) is a point on the poly-
nomial, the verification passes and returns True; otherwise,
it returns False.

A polynomial commitment scheme satisfies the following
security definitions:
Definition 1 (Binding)[25]. The Binding property encom-
passes both polynomial binding and evaluation binding. Poly-
nomial binding means that for a polynomial commitment
Com, a PPT adversary can only use a specific polynomial to
succeed in verification. Evaluation binding means that for two
different points (a, p) and (a, p′), consider a game GBinding(λ)
in which an adversary A takes λ as inputs and outputs the
(Φ,Φ′). The probability that their proofs π and π′ both satisfy
the Verify function is negligible.
Definition 2 (Hiding). An adversary A cannot obtain any
information about the original polynomial solely from Com.
Definition 3 (Correctness). The output of Verify is True if
and only if all inputs are computed honestly.

3.4 Asynchronous Verifiable Secret Sharing
Asynchronous secret sharing (ASS) protocol consists of two
phases: Sharing and Reconstruction. During the sharing phase,
the dealer L shares the secret s using Share. During the re-
construction phase, parties use Reconstruct to recover the
original secret. ASS is a f -resilient if the following properties
hold with probability 1-V (λ) against any A that corrupts up
to f nodes, V (·) is a negligible function takes λ as input.
AVSS has the following properties:

• Correctness. If the dealer is honest, then after the sharing
phase, all honest nodes will obtain the correct secret shares.

• Secrecy. If the dealer is honest, then for any A controlling
at most f nodes, there exists a PPT simulator S such that
the output of S and the view of A in the actual protocol are
indistinguishable.

• Agreement. In the reconstruction phase, if all shares held
by the parties are valid, then all parties will be able to
reconstruct the same original secret.

AVSS is built upon ASS by adding verifiability, ensur-
ing that all parties can verify the authenticity of the se-
cret shares. To achieve agreement property, we apply KZG
commitments[25] to verify the shares, preventing erroneous
shares from affecting the correct recovery of the secret. By
leveraging binding and hiding properties mentioned in Sec-
tion 3.3, we ensure that the polynomial is verified without
revealing the original values of the shares.

3.5 Validated Asynchronous Byzantine Agree-
ment

Validated asynchronous Byzantine agreement (VABA)[1] is
an asynchronous agreement protocol that ensures honest
nodes in the system can still reach consensus even if some
nodes are malicious. By running this protocol, ADKG can
elect f + 1 parties to use their secret shares to compute the
public and private keys. The VABA protocol, which has been
proven to be adaptively secure[1].

• Correctness. All nonfaulty parties that complete the proto-
col output the same value.

• Validity. If a nonfaulty party outputs a value, then it is
externally valid.

• p-Quality. With probability p or greater, all nonfaulty par-
ties output the value xi for some nonfaulty i.

• Termination. All nonfaulty parties output a value and com-
plete the protocol.

3.6 Schnorr Protocol and Fiat-Shamir
The Schnorr protocol[36, 37] is a specialized zero-knowledge
proof system that allows a prover to demonstrate knowledge
of a discrete logarithm without revealing the secret itself. It is
commonly used in identification schemes where the prover
convinces the verifier that they know a secret x such that
h = gx, where g is a generator of a cyclic group of prime order
q, and h is the public value.

The original Schnorr protocol operates interactively. It con-
sists of three main steps: the prover first commits to a ran-
dom value, the verifier generates a random challenge, and the
prover responds by combining the challenge with the original

4

secret. This structure ensures that the prover cannot cheat and
convince the verifier without knowing the secret. However,
this interaction can be communication-heavy, especially in
distributed or asynchronous networks.

The Fiat-Shamir Heuristic[17] provides a transforma-
tion that converts such an interactive protocol into a Non-
Interactive Zero-Knowledge Proof (NIZK) by replacing the
verifier’s challenge with the output of a cryptographic hash
function applied to the prover’s commitment. This transfor-
mation significantly reduces communication complexity, en-
abling the prover to generate a proof independently, which
the verifier can check later. The prover computes the chal-
lenge as c = H(g,h,u), where u is the prover’s commitment.
This heuristic preserves the zero-knowledge properties of the
original protocol under the ROM.

4 Design

In this section, we will describe our secret sharing polyno-
mial, adaptation of KZG commitments, secret sharing, secret
reconstruction, and secret share recovery.

Our secret sharing polynomial uses bivariate asymmetric
polynomials, while KZG commitments only support univari-
ate polynomials. Therefore, we have made adjustments based
on Bingo[1] to address this limitation. During the sharing
phase, we leveraged our polynomial to additionally acceler-
ate the process, and once the sharing phase is completed, the
reconstruction phases can be executed.

4.1 Secret Sharing Polynomial

Inspired by the work of Bingo[1], our AVSS scheme uses a bi-
variate asymmetric polynomial, where one dimension is used
to hide secret and the other to accelerate sharing process. The
main advantages are as follows: (1) Enhanced Security: As-
suming Φ(X ,Y) has degree d1 in X and d2 in Y respectively,
recovering the original polynomial requires (d1+1)×(d2+1)
valid secret shares. This significantly increases the difficulty
of the attack compared to a univariate polynomial. (2) Acceler-
ated Sharing Process: In asynchronous network environments,
the correct delivery of shared secrets by the dealer is not
guaranteed. Therefore, by utilizing the dimension Y of the
bivariate polynomial, nodes that have successfully obtained
their shares can participate in the secret sharing phase. They
can use their own share polynomials to compute the shares for
other nodes. Once a node collects enough correct shares, it can
independently complete the interpolation of the share poly-
nomial. Nodes use KZG commitments to generate evaluation
proofs during the sharing process. This approach mitigates
the impact of packet loss or a malicious dealer, thereby in-
creasing the scheme’s robustness in asynchronous network
environments. (3) Mutual Verification: Regardless of whether
a node has obtained the share polynomial, it can still verify

the shares transmitted by other nodes.

MΦ =

s0(r0,0) s1(r1,0) · · · rt−1,0 rt,0
r0,1 r1,1 · · · rt−1,1 rt,1

...
...

. . .
...

...
r0, f−1 r1, f−1 · · · rt−1, f−1 rt, f−1
r0, f r1, f · · · rt−1, f rt, f

(1)

The coefficients can be viewed as a two-dimensional matrix
MΦ, as shown in Equation (1). The first row of the matrix is
responsible for hiding secret, such as s0 and s1. The vertical
dimension of the matrix is used to accelerate sharing, with
a fixed dimension of f . Additionally, to enhance polynomial
binding property in the scheme, a completely random Φ̂ will
be constructed for sharing and verification. The structure of
Φ̂ is identical to that of Φ.

4.2 Adaptation of KZG Commitments
KZG commitments are implemented based on elliptic curve
bilinear pairings. Therefore, before calculating the CRS, it
is necessary to determine the basic parameters. We need to
decide on g ∈G1,h ∈G2,GT , and the bilinear pairing func-
tion e : G1×G2→ GT . We use crs′ to denote (g ∈ G1,h ∈
G2,GT ,e). Next, we will sequentially describe all the func-
tions in Figure 1.

• CRS← Setup(crs′,d1,d2). Based on polynomial binding,
our scheme additionally constructs a polynomial Φ̂ with
completely random coefficients. In the Bingo[1], they select
an additional generator ĝ to compute the commitment to

Φ̂. Specifically, they randomly select a value a $←− Zq and
set ĝ = ga. Since the dealer knows the linear relationship
between g and ĝ, particularly in schemes based on bilinear
pairings, they can forge incorrect proofs[10] that can still
pass verification. Generally, the computation of the CRS
can be handled by a PKI. However, to further enhance the se-
curity of the scheme, we use HashToCurve[24] to compute
the generator ĝ ∈G1. The publicly computed input enables
other nodes to verify the generation of ĝ. This design en-
sures that our scheme is secure even in an asynchronous
network environment without a PKI.

• Com← Commituni(CRS,α(X), α̂(X)). KZG commitments
support univariate polynomials, but they cannot directly
commit to bivariate asymmetric polynomials.

• Com← Commitbi(CRS,Φ(X ,Y),Φ̂(X ,Y)) treats each row
of the matrix MΦ as an independent polynomial for com-
mitment, ultimately resulting in a set of polynomial com-
mitments with d2 +1 terms.

• CM←DivideCom(Com,n). To save bandwidth in an asyn-
chronous network, we send commitment CM of size f +1.
Given that n ≥ 3 f + 1, this approach allows us to save

5

CRS← Setup(crs′,d1,d2)

τ
$←− Fq

ĝ← HashToCurve
CRS ← ((g, ĝ) ∈ G1,{gτi

, ĝτi}i∈Jd1K,(h,hτ) ∈ G2,GT ,e,
(d1,d2))

Com← Commituni(CRS,α(X), α̂(X))
Com← gα(τ)ĝα̂(τ)

Com← Commitbi(CRS,Φ(X ,Y),Φ̂(X ,Y))
φi(X) = r0,iX0 + r1,iX1 + · · ·+ rd1,iX

d1

φ̂i(X) = r̂0,iX0 + r̂1,iX1 + · · ·+ r̂d1,iX
d1

Com←{gφi(τ)ĝφ̂i(τ)}d2
i=0

CM← DivideCom(Com,n)

CMi = g∑
d2
w=0[φw(τ)]iw · ĝ∑

d2
w=0[φ̂w(τ)]iw

CM={CMi},i ∈ [n]

p, p̂,π← Eval(CRS,α(X), α̂(X),x)
p← α(x), p̂← α(x)
θ(τ)← (α(τ)− p)/(τ− x)
θ̂(τ)← (α̂(τ)− p̂)/(τ− x)
π← gθ(τ)ĝθ̂(τ)

True/False← Verify(CRS, CM,(i, j),(p, p̂),π)
if e(CM j ·g−p · ĝ−p̂,h) = e(π,hτ−i) then return True
else return False

Figure 1: Adaptation of Bivariate Asymmetric Polynomials
to KZG Commitments.

approximately 2/3 of the bandwidth consumption in this
step. After receiving Com, parties can use DivideCom to
decompose it into n sub-commitments, which are then used
to verify the shares of each of the n nodes. By utilizing
the additive homomorphic property of the elliptic curve,
DivideCom will compute CMi to verify the share of parties
i ∈ [n]:

f

∑
w=0

[gφw(τ)ĝφ̂w(τ)]iw = g∑
f
w=0 φw(τ)iw + ĝ∑

f
w=0 φ̂w(τ)iw , i ∈ [n]

By substituting X = τ and Y = i into the matrix MΦ,
∑

f
w=0 φw(τ)iw can be computed as follows:

=

r0,0i0 r1,0τ1i0 · · · rt,0τt i0

...
...

. . .
...

r0, f−1i f−1 r1, f−1τ1i f−1 · · · rt, f−1τt i f−1

r0, f i f r1, f τ1i f · · · rt, f τt i f

Thus, we obtain ∑

f
w=0[φw(τ)]iw = Φ(τ, i) = αi(τ) and

g∑
f
w=0[φw(τ)]iw = gαi(τ). Similarly, ĝ∑

f
w=0[φ̂w(τ)]iw = ĝα̂i(τ).

Based on the additive homomorphism, verifier can com-
pute Uni_Commit(α′(X), α̂′(X)) after receiving α′ and α̂′.
Due to polynomial binding, the verification will succeed if
and only if α = α′ and α̂ = α̂′.

• p, p̂,π← Eval(CRS,α(X), α̂(X),x) can generate proofs for
the shares provided to other parties. When computing θ(τ),
τ is required to calculate α(τ) and (τ− x), but τ must not
be revealed to external nodes. Therefore, we need to use
interpolation to compute θ. For node i, points contains f
points computed by αi(X). Specifically, (i, p = αi(i)) must
not be included in points:

points = {(j,α(j))} j∈[n]
j ̸=i , |points|= f

Subtract (i,αi(i)) from each entry in points to construct
pointsθ:

pointsθ = {(j− i,α(j)− p)} j∈[n]
j ̸=i , |pointsθ|= f

By interpolating pointsθ, θ(X) can be computed:

Interpolate(pointsθ) = θ(X) =
α(X)− p

X− i

The final π can be directly computed using commituni:

Commituni(CRS,α(X), α̂(X) = g(
α(τ)−p

τ−i)ĝ(
α̂(τ)−p

τ−i) = π

• Verify(CRS, CM,(i, j),(p, p̂),π). Since p and p̂ belong to
Zq, we need to find their additive inverses within Zq, de-
noted as −p and −p̂, in order to compute g−p and ĝ−p̂.
Similarly, based on the additive homomorphism, we can
decompose CM j ·g−p · ĝ−p̂ into two parts. In the proof pro-
cess of DivideCom, we know that CM j = gα j(τ)ĝα̂ j(τ). Thus,
CM j and π satisfy the following algebraic relationship:

CM j ·g−p · ĝ−p̂ = gα j(τ)−p · ĝα̂ j(τ)−p̂(
g

α j(τ)−p
τ−i · ĝ

α̂ j(τ)−p̂
τ−i

)τ−i

= π
τ−i

According to evaluation binding, the bilinear pairing equa-
tion in Verify will only pass the verification if and only if p
and p̂ satisfy α and α̂, respectively.

e(CM j ·g−p · ĝ−p̂,h) = e(πτ−i,h) = e(π,h)τ−i = e(π,hτ−i)

4.3 Sharing Phase
During the sharing phase, dealer constructs a polynomial
based on the recovery threshold t ∈ [f ,2 f], with the secret
hidden within the polynomial. Our secret sharing scheme
can share m ∈ [1, t + 1] secrets, and can be divided into the
following three cases:

6

1. Single Secret: Sharing a single secret s0 is similar to most
secret sharing schemes. The secret is used as the constant
term of the polynomial, and then t coefficients are ran-
domly sampled to construct a polynomial of degree t.

a(x) = s0 + r1x1 + r2x2 + · · ·+ rt−1xt−1 + rtxt

2. [2, t] Secrets: We construct the polynomial by interpo-
lation or by directly setting the secret as one of the co-
efficients. Subsequently, we randomly select additional
coefficients to fill out the polynomial.

a(x) = s0 + s1x1 + s2x2 + · · ·+ rt−1xt−1 + rtxt

3. t+1 Secrets: This situation should be considered as data
sharing. If the polynomial is constructed using interpo-
lation, these secrets will be fully visible to the parties.
Conversely, if t +1 secrets are directly set as coefficients,
then sufficient shares are still required to reconstruct the
secrets.

a(x) = s0 + s1x1 + s2x2 + · · ·+ st−1xt−1 + stxt

Our secret sharing phase primarily composed of Algorithm
1 and 2. GenPolyandRbcCom outlines the construction of the
polynomial and the computation of polynomial commitments.
Sharing Phase (for node i) mainly describes the processes of
sharing, verifying, and interpolating the secret shares.

Algorithm 1: GenPolyandRbcCom
Input: n, t, f ,k, [s0, . . . ,sk]

1 α(X)← Interpolate([s0, . . . ,sk])
2 uniformly sample coefficients from Zq to fill Φ(X ,Y)
3 ▷ degree t in X, f in Y
4 uniformly sample Φ̂(X ,Y) with degree t in X, f in Y
5 Com← Commitbi(CRS,Φ(X ,Y),Φ̂(X ,Y))
6 RBC (<‘commits’, Com>) ▷ reliably broadcast Com
7 for each i ∈ [n]
8 αi(X)←Φ(X , i), α̂i← Φ̂(X , i)
9 send <‘poly’,αi(X), α̂i(X)> to party i

Algorithm 1. In lines 7-9, we compute and encrypt the
share polynomials for other nodes and transmit them. The
polynomial Φ has a degree of t in X and a degree of f in Y. We
set y = [n], which allows us to compute n polynomials α of
degree t. Each αi(x) is used as the secret sharing polynomial
for patry i. By setting x = [n], we obtain n polynomials β

of degree f . Each βi(y) is used as the accelerated sharing
polynomial for party i.

Algorithm 2. In lines 4-5, we calculate n sub-commitments
for verification based on the total number of nodes n. In lines
10-13, this part is used to compute the shares for other nodes
and send them to the corresponding nodes. Then, in line 17,

Algorithm 2: Sharing Phase (for parties i)
Input: n, t, f

1 αi←⊥, α̂i←⊥,acceptαi
← /0,acceptα̂i

← /0

2 βi←⊥, β̂i←⊥,acceptβi
← /0,accept

β̂i
← /0

3 CM← /0

4 upon receiving <‘commits’,Com> from RBC, do
5 CM← DivideCom(Com, n)

6 upon receiving <‘poly’, αi
′, α̂′i> from dealer, do

7 upon CM ̸= /0, do
8 if αi =⊥ and Commituni(αi

′, α̂′i) = CMi then
9 αi← αi

′, α̂i← α̂′i
10 upon αi ̸=⊥, do
11 for each j ∈ [n] do
12 αi(j), α̂i(j),παi, j ← Eval(αi, α̂i, j)
13 send <‘row’, αi(j), α̂i(j),παi, j > to parties j

14 upon receiving <‘row’, α j(i), α̂ j(i),πα j,i> from j, do
15 upon CM ̸= /0, do
16 if |acceptβi | ≤ f then
17 if Verify(CM, (i, j),α j(i), α̂ j(i),πα j,i) = True
18 ▷ α j(i) = βi(j), α̂ j(i) = β̂i(j)
19 acceptβi

← acceptβi
∪{(j,βi(j))}

20 accept
β̂i
← accept

β̂i
∪{(j, β̂i(j))}

21 else if |acceptβi
|= |accept

β̂i
|= f +1 then

22 βi← Interpolate(acceptβi
)

23 β̂i← Interpolate(accept
β̂i

)
24 for all j ∈ [n] do
25 βi(j), β̂i(j),πβi, j ← Eval(βi, β̂i, j)

26 send <‘col’, βi(j), β̂i(j),πβi, j > to parties j

27 upon receiving <‘col’, β j(i), β̂ j(i),πβ j,i> from j, do
28 upon CM ̸= /0, do
29 if αi =⊥ and α̂i =⊥ then
30 if Verify(CM, (j, i),β j(i), β̂ j(i),πβ j,i) = True

31 ▷ β j(i) = αi(j), β̂ j(i) = α̂i(j)
32 acceptαi

← acceptαi
∪{(j,αi(j))}

33 acceptα̂i
← acceptα̂i

∪{(j, α̂i(j))}
34 if |acceptαi

|= |acceptα̂i
|= t +1 then

35 αi← Interpolate(acceptαi
)

36 α̂i← Interpolate(acceptα̂i
)

37 upon αi ̸=⊥, α̂i ̸=⊥ and βi ̸=⊥, β̂i ̸=⊥, do
38 send <‘done’> to all parties
39 upon receiving <‘done’> from n− f parties, do
40 upon αi ̸=⊥, α̂i ̸=⊥ and βi ̸=⊥, β̂i ̸=⊥, do
41 Terminate

verification is performed; if it passes, the share is saved for
interpolation. Finally, in line 21, when the number of shares

7

reaches f + 1, β and β̂ can be reconstructed. Based on the
condition in line 21, we can determine that when a node
completes the recovery of β and β̂, at least f +1 honest nodes
among all parties have successfully saved α and α̂. When
another set of t− f honest nodes recover their β and β̂, these
t + 1 honest nodes can provide t + 1 shares of α and α̂ for
the entire network. With these t +1 honest nodes, the entire
network’s nodes can be helped to recover their polynomials.
We can simply summarize it as: if f +1 nodes in the entire
network obtain the correct α and α̂, the entire network can
recover their polynomials.

In lines 37-41, this is the phase where sharing is concluded.
When the dealer is sharing, we do not share β and β̂. However,
our condition for sending the done signal ensures that β and
β̂ are not empty. The reason for this is the same as in the
accelerated sharing section. We need to ensure that at least
f + 1 honest nodes in the entire network have completed
sharing.

4.4 Reconstruction Phase

Algorithm 3: Reconstructioni (for node i)
Input: t, CM

1 sharesi← /0

2 βi(0), β̂i(0),πβi,0 ← Eval(βi, β̂i,0)

3 send <‘rec’, βi(0), β̂i(0),πβi,0 >

4 upon receiving <‘rec’, β j(0), β̂ j(0),πβ j,0> from j, do
5 if Verify(CM, (j,0),β j(0), β̂ j(0),πβ j,0) = True then
6 sharei← sharei∪{(j,α0(j))}
7 ▷ β j(0) = Φ(0, j) = α0(j)
8 if |sharei|= t +1 then
9 α0(X)← Interpolate(sharei)

10 Terminate

We describe how to recover our shared secret in Algorithm
3. After all nodes have completed sharing, the secret recon-
struction phase can begin. Our secret sharing scheme cannot
recover a specific k-th secret. This is designed to prevent the
leakage of secrets during the sharing phase.

The set of secrets is hidden in the polynomial α0(X). Par-
ties use their β and β̂ polynomials to compute βi(0), β̂i(0)
and proof πβi,0 . Once the received secret shares reach t +1,
reconstruction can begin. Using Lagrange interpolation, the
polynomial α0(X) is recovered. Subsequently, the original
secret can be obtained from the coefficients.

5 From AVSS to ADKG

In this section, we use AVSS to construct the ADKG protocol.
In the key agreement phase, we utilized the validated asyn-

chronous Byzantine agreement (VABA)[1] protocol proposed
in the Bingo scheme. All generated keys are field elements,
sk ∈ Zq. By adjusting the threshold of AVSS, we can con-
struct threshold schemes that cater to different requirements,
such as encryption and signature schemes with varying thresh-
old demands[14, 26, 8, 23, 5, 19]. This allows the system to
find the optimal balance between security and performance
according to different needs.

5.1 Non-interactive m-Schnorr Protocol
In the subsequent key derivation phase, parties need to dis-
close their public key shares to other nodes. We implemented
additional commitments to the public key shares using the
m-Schnorr protocol. The traditional Schnorr protocol is only
used to commit to a single value[36], but our scheme may in-
volve sharing multiple keys. Our shares follow the following
Relation R :

R = {({pk0, · · · , pkm},{z0, · · · ,zm}) :
m

∏
i=0

pki = g∑
m
i=0 zi}

gz, ĝẑ,π, π̂← Sc.Prove(CRS,z, ẑ)
ĝ← HashToCurve
gz←{gz(k)}m

k=0, ĝ
ẑ←{ĝẑ(k)}m

k=0

r1,r2
$←− Zq

U1← gr1 ,U2← ĝr2

C1← Hash(g|gz(0)|gz(1)|gz(2)| · · · |gz(m),U1)
C2← Hash(ĝ|ĝẑ(0)|ĝẑ(1)|ĝẑ(2)| · · · |ĝẑ(m),U2)
R1← r1 +C1 ·∑m

k=0 zk
R2← r2 +C2 ·∑m

k=0 ẑk
π← (U1,C1,R1)
π̂← (U2,C2,R2)

True/False← Sc.Verify(CRS,gz, ĝẑ,π, π̂)
if C1← Hash(g|gz(0)|gz(1)|gz(2)| · · · |gz(m),U1) and
C2← Hash(ĝ|ĝẑ(0)|ĝẑ(1)|ĝẑ(2)| · · · |ĝẑ(m),U2) and
gR1 =U1 +C1 ·g∑

m
k=0 zk and

ĝR2 =U2 +C2 · ĝ∑
m
k=0 ẑk then return True

else return False

Figure 2: m-Schnorr protocol.

In Figure 2, the overall process of the protocol follows the
general structure of the Schnorr protocol.

• gz, ĝẑ,π, π̂← Sc.Prove(CRS,z, ẑ). We computed the corre-
sponding proofs π and π̂ based on the two sets of keys. (1)
Commitment a: We continue to use HashToCurve[24] to
compute a new ĝ, which can be different from the ĝ used
in AVSS. For two independent generators (g, ĝ), we ran-
domly sample (r1,r2) and compute (U1,U2). (2) Challenge
e: We concatenate the public key shares and use them as

8

the input to the Hash function to construct a non-interactive
challenge. (3) Response z: We compute the final responses
using the random values, private keys, and the hash val-
ues, respectively. Finally, use (a,e,z) as the proof π for our
public key share.

• True/False← Sc.Verify(CRS,gz, ĝẑ,π, π̂). The traditional
Schnorr protocol can only commit to a single public-private
key pair. However, our AVSS scheme enhances polynomial
binding by using two polynomials. Suppose we plan to
negotiate m public keys in one session. The most straight-
forward approach would be to reuse the non-interactive
Schnorr protocol m times, generating 2m proofs. Instead,
we aggregate all the key shares and commit to them, with
the size of the resulting proof determined by the hash func-
tion used. We estimate that the space overhead of our proof
π is approximately 1/m of the space consumed by reusing
the Schnorr protocol m times. The m-Schnorr protocol is
based on DL and ROM assumptions.

5.2 Key Derivation Phase
We describe how to verify public key shares and derive the
final public key in Algorithm 4. During the key agreement
phase, we derive the public and private keys using the dealers’
set. For the sake of simplicity, we assume that m+ 1 keys
need to be negotiated. First, each node computes its own
private keys zi from the secrets shared by the dealers. Next,
we use the generator g and zi to compute the public key gzi

and commit it using a non-interactive Schnorr protocol. We
use the CM from the dealers to compute a new commitment
that verifies whether the private key was correctly computed
using the appropriate shares.

Algorithm 4. In lines 4-7, we compute the key shares and
commitments at X = k based on dealers. In lines 8-11, we
calculate the total private key along with the corresponding
public key. The π̄ calculated in line 13 is used later to verify
whether the shares from other nodes are correct, as detailed
in line 19. In lines 21-23, when the number of elements in
sharei(k) reaches t +1, the k-th public key is derived through
InterpolationExp.
InterpolateExp(sharei(k)) is essentially a Lagrange inter-

polation, with the key difference that the interpolation pro-
duces a polynomial where each term has been multiplied by
the generator g through scalar multiplication:

InterpolateExp(sharei) = gzi(x) = gzi,0+zi,1x+···+zi,t xt

6 Analysis

6.1 AVSS Security
The security of our AVSS scheme is established in the follow-
ing main theorem.

Algorithm 4: Key Derivation Phase (for node i)
Input: dealers, m

1 sharei← /0, CMdealers← /0

2 ▷ share and CM each contain m+1 sets.
3 for k ∈ JmK do
4 for a ∈ dealers do
5 zi,a(k), ẑi,a(k),πi,a(k)← Eval(αi,a, α̂i,a,k)
6 CMa← DivideCom(Coma,k)
7 ▷ αi,a, α̂i,a are shared by a
8 zi(k)← ∑a∈dealers zi,a(k)
9 ẑi(k)← ∑a∈dealers ẑi,a(k)

10 π̄i(k)←∏a∈dealers πi,a(k)
11 CMdelaers(k)←∏a∈dealers CMa(k)

12 zi←{zi,a(k)}k∈JmK
a∈dealers, ẑi←{ẑi,a(k)}k∈JmK

a∈dealers
13 π̄i←{π̄i(k)}k∈JmK

a∈dealers
14 gzi , ĝẑi ,πi, π̂i← Sc.Prove(g,zi, ẑi)
15 send <‘pk share’,gzi ,gẑi ,πi, π̂i, π̄i> to all parties

16 upon receiving <‘pk share’, gz j , ĝẑ j ,π j, π̂ j, π̄ j> from j
17 if Sc.Verify(gz j , ĝẑ j ,π j, π̂ j) = True then
18 for k ∈ JmK do
19 if Verify(CMdealers(k),(k, j),gz j(k),gẑ j(k), π̄ j(k))

= True then
20 sharei(k)← sharei(k)∪{(j,z j(k))}
21 if |sharei(k)|= t +1 then
22 gzi(x)← InterpolateExp(sharei(k))
23 output (zi(k),gz(k))
24 output (zi,gz) and Terminate
25 ▷ zi = {zi(0), . . . ,zi(m)},gz = {gzi(0), . . . ,gzi(m)}

Theorem 1. If the underlying KZG commitment scheme is
secure, then our AVSS is an f -resilient AVSS for m secrets,
for any m≤ t ≤ 2n

3 .

To prove this, we use the q-Strong Diffie-Hellman (q-SDH)
assumption and the ROM to demonstrate the security of our
PCS, particularly its binding and hiding properties. Next, we
demonstrate the correctness, secrecy, and termination proper-
ties of the AVSS protocol.

The q-SDH posits that it is computationally infeasible
to produce a valid pair (c,g1/(x+c)) given a set of elements
(g,gx,gx1

, · · · ,gxq
,h,hx) from groups Gq+1

1 ×G2
2, where G1

and G2 are cyclic groups of prime order p, generated by g
and h, respectively, and form a bilinear group. Here, q is an
integer, and x is a randomly chosen from Fp.

Lemma 1. The q−SDH ensures that PCS is both binding and
secure. A cannot forge different polynomials that produce the
same commitment, nor can they extract information about the
committed polynomial from the commitment.

Lemma 2. The ROM guarantees that the generators g and
ĝ, derived via HashToCurve, are uniformly distributed and

9

Table 4: Evaluation of our AVSS schemes. The experimental environments consist of both local area networks (LAN) and wide
area networks (WAN). The total communication in the LAN matches that in the WAN. Therefore, ‘—’ is used in the table to
indicate this.

Network Threshold t
Avg. runtime (in seconds) Total communication per node (MB)

n = 16 n = 64 n = 128 n = 256 n = 16 n = 64 n = 128 n = 256

LAN
f 0.50 2.88 9.91 44.45 — — — —

n/2 0.58 3.75 13.88 77.89 — — — —
2n/3 0.63 4.61 19.62 130.44 — — — —

WAN
f 1.66 7.01 21.02 80.16 0.21 2.13 8.02 38.31

n/2 1.73 7.88 25.47 113.61 0.29 2.98 12.37 70.98
2n/3 1.78 8.74 30.72 166.15 0.34 3.81 17.50 122.29

Table 5: The table presents the time required to generate 1 public key and m public keys, including both the m-Schnorr protocol
and key agreement time.

Network Threshold t
Avg. runtime with 1 public key (in seconds) Avg. runtime with m = f

2 public keys (in seconds)

n = 16 n = 64 n = 128 n = 256 n = 16 n = 64 n = 128 n = 256

LAN
f 0.44 0.86 1.76 4.62 0.48 2.14 7.48 29.37

n/2 0.45 0.96 2.13 6.10 0.49 2.24 8.11 30.16
2n/3 0.45 1.04 2.46 7.91 0.49 2.34 8.85 43.27

WAN
f 1.39 3.62 6.91 14.60 1.67 13.76 52.02 200.78

n/2 1.40 3.71 7.29 16.07 1.68 13.86 52.65 201.58
2n/3 1.40 3.80 7.62 17.88 1.68 13.97 53.38 214.68

collision-resistant.

Lemma 3. The underlying KZG commitment scheme for
univariate polynomials is binding and hiding. Binding
implies that for any polynomial α(x), the commitment
Cα=Commit(α(x)) uniquely determines α(x), meaning no
adversary A can produce a different polynomial α′(x) such
that Commit(α(x))=Commit(α′(x)) unless α(x) = α′(x). Hid-
ing means that given a commitment Cα, no A can gain any
information about polynomial α(x) other than what is explic-
itly revealed through the protocol.

Corollary 1. Given that the underlying KZG commitment
scheme is both binding and hiding for univariate polynomials,
these properties not only hold but are enhanced for bivariate
asymmetric polynomials when two different generators are
used to commit to two different bivariate asymmetric polyno-
mials.

Proof. (1) By Lemma 2, g and ĝ are uniformly distributed
over the groups G1. This uniform distribution ensures that
the generators do not exhibit any predictable patterns or re-
lationships that could be exploited by an A . And collision
resistance prevents A from creating related generators that
could undermine the security of the commitment scheme. (2)
Binding Enhancement: Let Φ(x,y) be a bivariate asymmet-
ric polynomial, and consider the commitments Cxi = gΦ(xi,τ)

and Cyi = gΦ(τ,yi). By Lemma 1 and 3, each commitment
Cxi and Cyi uniquely determines the corresponding univariate
polynomial Φ(xi,y) and Φ(x,yi). Since this uniqueness holds
for any xi and yi, the entire bivariate polynomial Φ(x,y) is
uniquely determined, preserving the binding property. By us-
ing different generators g and ĝ, A would have to solve two
independent DL problems, which is computationally infeasi-
ble. (3) Hiding Enhancement: By Lemma 3, for each fixed
xi and yi, the commitments Cxi and Cyi reveal no information
about Φ(xi,y) and Φ(x,yi) beyond what is explicitly revealed,
due to the hiding property in Lemma 2. Thus, the confidential-
ity of bivariate asymmetric polynomial is preserved. Indepen-
dent generator further obscures the relationship between two
polynomials, thereby enhancing the overall confidentiality of
the committed data.

Theorem 2. If q-SDH, ROM and binding hold, then our AVSS
satisfies correctness.

Proof. The correctness property of AVSS means that all hon-
est parties reconstruct the correct secret if dealer is honest.
Given that the underlying KZG commitment scheme is bind-
ing for univariate polynomials, and this property are further
strengthened for bivariate asymmetric polynomials, as estab-
lished in Corollary 1, these enhanced properties can be em-
ployed to establish the correctness of the AVSS protocol.

10

Binding ensures that polynomial commitment generated by
dealer uniquely corresponds to shared secret. During the shar-
ing and reconstruction phase, all honest parties will be re-
constructing the correct polynomials because commitment
is binding, meaning no A can alter the polynomial or forge
valid shares that lead to a different result.

Theorem 3. If q-SDH and ROM hold, then our AVSS satisfies
secrecy.

Proof. Secrecy in the AVSS protocol ensures that, during
both the sharing and reconstruction phases, an A with access
to fewer than t +1 shares cannot learn any information about
the secret. This follows from Hiding property of the PCS,
as established in Corollary 1, which ensures that the com-
mitted polynomial remains concealed until sufficient shares
are gathered for reconstruction. Since the A can only access
fewer than t + 1 shares, and due to hiding property of the
commitment, no information about the secret can be inferred
during the sharing phase.

Theorem 4. If q-SDH, ROM and binding hold, then our AVSS
satisfies termination.

Proof. Termination ensures that all honest parties will com-
plete the protocol in finite time, regardless of the actions of
malicious parties, as long as the network eventually delivers
all messages. (1) Sharing Phase: If the dealer is honest, they
broadcast valid shares to all parties. Once at least f +1 honest
parties have received their α(x) and α̂(x) correctly, they will
broadcast ‘row’ messages to all other parties. Each honest
party will receive enough ‘row’ evaluations (at least f +1),
allowing them to interpolate β(y) and β̂(y), then send their
‘column’ messages. (2) Reconstruction Phase: Once t +1
valid shares are collected, parties can reconstruct the origi-
nal secret. Since the network eventually delivers the required
shares, all honest parties will be able to reconstruct α0(x) and
complete the protocol.

From the results established in Theorems 2, 3, and 4, we
can now conclude the proof of Theorem 1.

Theorem 5. Our AVSS protocol incurs a communication cost
of O(λn2) among all honest parties. Based on the properties
established in Corollary 1, the protocol ensures that all par-
ties complete the sharing and reconstruction phases in O(1)
asynchronous rounds.

6.2 m-Schnorr Protocol Security
The security of m-Schnorr protocol is established in the fol-
lowing main theorem. We use P and V to represent the Prover
and Verifier, respectively.

Lemma 4. There exists a simulator S that, without knowledge
of the secret z, can generate a proof transcript indistinguish-
able from one generated by a real prover.

Table 6: The data in the table represent the space usage com-
parison between the m-Schnorr algorithm and running the
Schnorr protocol m times independently for negotiating m
public keys.

Scheme Space usage (m = f
2)

n = 16 n = 64 n = 128 n = 256

Our work 0.96 3.21 6.31 12.21
m times 1.38 6.88 14.44 28.87

70.45 % 46.81 % 43.72 % 42.32 %

Theorem 6. (Zero-knowledge) If DL and ROM hold, the V
cannot extract any information about the secret z from a valid
proof.

Proof. Theorem 6 can be proved by Lemma 2 and 4. (1)
The S picks random challenges r1,r2 ∈ Zq and responses
R1,R2 ∈ Zq. C1 and C2 are assumed to be the output of a
cryptographic hash function, mapping the commitment values
and other relevant inputs to elements in Zq. (2) S computes
the commitments U1 and U2. (3) S outputs the simulated
proof (π, π̂) = ((U1,C1,R1),(U2,C2,R2)). Since the challenges
C1 and C2 are generated through ROM, V cannot distinguish
between the simulated proof and a real proof generated by a
P who knows the secret z. This holds under the DLP, where
computing z from gz is computationally infeasible.

Lemma 5. If P knows the secret z and follows the m-Schnorr
protocol correctly, the verification equation holds.

Theorem 7. (Completeness) If DL and ROM hold, the V
will always accept a proof generated by an honest prover who
knows the secret z.

Proof. Theorem 7 can be proved by Lemma 2 and 5. The
responses R1 and R2 are computed as functions of the secret
z. Given that the verifier’s challenge values are unpredictable
under the ROM assumption, the prover’s responses satisfy the
verification equations. This holds under the DL assumption,
where computing z from gz is infeasible.

Theorem 8. (Unforgeability) If DLP and ROM hold, an ad-
versary A cannot forge a valid proof in the described non-
interactive protocol without knowing the secret z.

Proof. (1) Based on Lemma 2, A cannot predict or manip-
ulate the values of C1 without querying the oracle with spe-
cific inputs. Once C1 are generated, it is independent and
unpredictable. (2) To generate a valid response R1, A must
know secret z, as R1 is dependent on z through the equation
gR1 =U1 +C1 ·g∑

m
k=0 zk . According to the DLP, computing z

from gz is computationally infeasible. Therefore, A cannot
compute without knowing z.

11

7 Implementation and Evaluation

Implementation. We implemented the cryptographic mod-
ules in Rust, including the generation of bivariate asymmet-
ric polynomials, KZG commitments, and the non-interactive
m-Schnorr protocol. In our implementation, we used the
bls_12_381_plus[6] library for elliptic curve operations. This
library provides a robust implementation of the BLS12-381
pairing-friendly elliptic curve, so we did not modify the source
code, ensuring the accuracy and reliability of the results. For
the HashToCurve functionality, we chose SHA-256[35] as
the hash function. Our implementation includes some opti-
mizations, such as precomputing necessary data during the
system initialization phase to reduce redundant computations
during protocol execution, for example, constructing the n-
dimensional Vandermonde matrix.

Tables 4 and 5 present the evaluation results of our AVSS
and key agreement steps, respectively. Table 6 demonstrates
the space optimization achieved by our m-Schnorr protocol.
Our evaluation demonstrates the effectiveness of our approach
in improving communication performance. By precomput-
ing necessary data, we significantly reduced the impact of
redundant computations on efficiency, although this comes
at the cost of increased storage space. Our results demon-
strate that our protocol can maintain high performance even
under high-threshold configurations, particularly in terms of
communication efficiency.

8 Conclusion

In this paper, we propose and thoroughly analyze a novel
AVSS protocol that features flexible thresholds and the ability
to share multiple secrets in a single round. In constructing
the secret-sharing polynomial, we use interpolation to convert
m+1 secrets into a degree-m polynomial, and then randomly
select sufficient coefficients from a finite field to expand the
polynomial into a bivariate asymmetric polynomial. Addi-
tionally, we extend the traditional Schnorr protocol into a
non-interactive m-Schnorr protocol, with the aim of generat-
ing proofs for multiple public key shares simultaneously.

Building upon the VABA protocol proposed in Bingo[1],
we ultimately construct an asynchronous distributed key gen-
eration protocol that supports flexible thresholds and can ne-
gotiate multiple public keys in a single round. In a network of
n nodes, the communication complexity of our AVSS protocol
is O(λn2). When extended to ADKG, our protocol achieves a
communication complexity of O(λn3) even in the worst case.
Overall, our protocol is based on the q-SDH and ROM as-
sumptions and remains secure even in networks without a PKI.
We implemented the AVSS and non-interactive m-Schnorr
protocols using Rust.

Our AVSS protocol currently does not support the recovery
of a single secret, which we plan to explore in future research.

References

[1] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah
Meiklejohn, and Gilad Stern. Bingo: Adaptivity
and asynchrony in verifiable secret sharing and dis-
tributed key generation. In Helena Handschuh and
Anna Lysyanskaya, editors, Advances in Cryptology –
CRYPTO 2023, pages 39–70, Cham, 2023. Springer Na-
ture Switzerland.

[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah
Meiklejohn, Gilad Stern, and Alin Tomescu. Reach-
ing consensus for asynchronous distributed key genera-
tion. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, PODC’21, page
363–373, New York, NY, USA, 2021. Association for
Computing Machinery.

[3] Nicolas AlHaddad, Mayank Varia, and Haibin Zhang.
High-threshold avss with optimal communication com-
plexity. In Nikita Borisov and Claudia Diaz, editors,
Financial Cryptography and Data Security, pages 479–
498, Berlin, Heidelberg, 2021. Springer Berlin Heidel-
berg.

[4] Michael Backes, Amit Datta, and Aniket Kate. Asyn-
chronous computational vss with reduced communica-
tion complexity. In Ed Dawson, editor, Topics in Cryptol-
ogy – CT-RSA 2013, pages 259–276, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[5] Alexandra Boldyreva. Threshold signatures, multisig-
natures and blind signatures based on the gap-diffie-
hellman-group signature scheme. In Yvo G. Desmedt,
editor, Public Key Cryptography — PKC 2003, pages
31–46, Berlin, Heidelberg, 2002. Springer Berlin Hei-
delberg.

[6] Sean Bowe, Jack Grigg, and Mike Lodder.
bls12_381_plus: Implementation of the bls12-
381 pairing-friendly elliptic curve construction. https:
//github.com/mikelodder7/bls12_381_plus,
2024.

[7] Gabriel Bracha. Asynchronous byzantine agreement
protocols. Information and Computation, 75(2):130–
143, 1987.

[8] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya,
and Reto Strobl. Asynchronous verifiable secret sharing
and proactive cryptosystems. In Proceedings of the 9th
ACM Conference on Computer and Communications
Security, CCS ’02, page 88–97, New York, NY, USA,
2002. Association for Computing Machinery.

[9] Ran Canetti, Rosario Gennaro, Stanisław Jarecki, Hugo
Krawczyk, and Tal Rabin. Adaptive security for thresh-
old cryptosystems. In Michael Wiener, editor, Advances

12

https://github.com/mikelodder7/bls12_381_plus
https://github.com/mikelodder7/bls12_381_plus

in Cryptology — CRYPTO’ 99, pages 98–116, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

[10] Sanjit Chatterjee, Darrel Hankerson, Edward Knapp, and
Alfred Menezes. Comparing two pairing-based aggre-
gate signature schemes. Designs, Codes and Cryptogra-
phy, 55:141–167, 2010.

[11] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias,
and Ling Ren. Practical asynchronous high-threshold
distributed key generation and distributed polynomial
sampling. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 5359–5376, Anaheim, CA,
August 2023. USENIX Association.

[12] Sourav Das, Zhuolun Xiang, and Ling Ren. Asyn-
chronous data dissemination and its applications. In
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’21, page
2705–2721, New York, NY, USA, 2021. Association for
Computing Machinery.

[13] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew
Miller, Lefteris Kokoris-Kogias, and Ling Ren. Practical
asynchronous distributed key generation. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 2518–
2534, 2022.

[14] Yvo G. Desmedt. Threshold cryptography. Euro-
pean Transactions on Telecommunications, 5(4):449–
458, 1994.

[15] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi
Shelat. Threshold ecdsa from ecdsa assumptions: The
multiparty case. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 1051–1066, 2019.

[16] Paul Feldman. A practical scheme for non-interactive
verifiable secret sharing. In 28th Annual Symposium
on Foundations of Computer Science (sfcs 1987), pages
427–438, 1987.

[17] Amos Fiat and Adi Shamir. How to prove yourself: prac-
tical solutions to identification and signature problems.
In Proceedings on Advances in Cryptology—CRYPTO

’86, page 186–194, Berlin, Heidelberg, 1987. Springer-
Verlag.

[18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The
algebraic group model and its applications. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology – CRYPTO 2018, pages 33–62, Cham,
2018. Springer International Publishing.

[19] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk,
and Tal Rabin. Secure distributed key generation for
discrete-log based cryptosystems. Journal of Cryptol-
ogy, 20:51–83, 2007.

[20] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Roth-
blum. Delegating computation: Interactive proofs for
muggles. J. ACM, 62(4), sep 2015.

[21] Jens Groth. On the size of pairing-based non-interactive
arguments. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016,
pages 305–326, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[22] Jens Groth and Victor Shoup. Design and analysis of a
distributed ECDSA signing service. Cryptology ePrint
Archive, Paper 2022/506, 2022.

[23] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah
Meiklejohn, Gilad Stern, and Alin Tomescu. Aggregat-
able distributed key generation. In Anne Canteaut and
François-Xavier Standaert, editors, Advances in Cryptol-
ogy – EUROCRYPT 2021, pages 147–176, Cham, 2021.
Springer International Publishing.

[24] Thomas Icart. How to hash into elliptic curves. In Shai
Halevi, editor, Advances in Cryptology - CRYPTO 2009,
pages 303–316, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[25] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In Masayuki Abe, editor, Advances in
Cryptology - ASIACRYPT 2010, pages 177–194, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[26] Eleftherios Kokoris Kogias, Enis Ceyhun Alp, Linus
Gasser, Philipp Svetolik Jovanovic, Ewa Syta, and
Bryan Alexander Ford. Calypso: Private data man-
agement for decentralized ledgers. volume 14, page
586–599, 2021.

[27] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexan-
der Spiegelman. Asynchronous distributed key genera-
tion for computationally-secure randomness, consensus,
and threshold signatures. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’20, page 1751–1767, New York,
NY, USA, 2020. Association for Computing Machinery.

[28] Gregory Maxwell, Andrew Poelstra, Yannick Seurin,
and Pieter Wuille. Simple schnorr multi-signatures with
applications to bitcoin. Designs, Codes and Cryptogra-
phy, 87(9):2139–2164, 2019.

[29] Wafa Neji, Kaouther Blibech, and Narjes Ben Rajeb.
Distributed key generation protocol with a new com-
plaint management strategy. Security and Communica-
tion Networks, 9(17):4585–4595, 2016.

13

[30] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter
Wuille. Musig-dn: Schnorr multi-signatures with verifi-
ably deterministic nonces. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’20, page 1717–1731, New York,
NY, USA, 2020. Association for Computing Machinery.

[31] Arpita Patra, Ashish Choudhury, and C Pandu Rangan.
Efficient asynchronous verifiable secret sharing and mul-
tiparty computation. Journal of Cryptology, 28:49–109,
2015.

[32] Torben Pryds Pedersen. A threshold cryptosystem with-
out a trusted party. In Donald W. Davies, editor, Ad-
vances in Cryptology — EUROCRYPT ’91, pages 522–
526, Berlin, Heidelberg, 1991. Springer Berlin Heidel-
berg.

[33] Torben Pryds Pedersen. Non-interactive and
information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, editor, Advances in Cryptology —
CRYPTO ’91, pages 129–140, Berlin, Heidelberg, 1992.
Springer Berlin Heidelberg.

[34] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas
Schneider-Bensch, and Dominique Schröder. Roast:
Robust asynchronous schnorr threshold signatures. In
Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’22, page 2551–2564, New York, NY, USA, 2022.
Association for Computing Machinery.

[35] RustCrypto Developers. Rustcrypto/hashes: Sha-
2 implementation in rust. https://github.com/
RustCrypto/hashes/tree/master/sha2, 2023.

[36] C. P. Schnorr. Efficient identification and signatures
for smart cards. In Gilles Brassard, editor, Advances
in Cryptology — CRYPTO’ 89 Proceedings, pages 239–
252, New York, NY, 1990. Springer New York.

[37] Claus-Peter Schnorr. Efficient signature generation by
smart cards. Journal of cryptology, 4:161–174, 1991.

[38] Nibesh Shrestha, Adithya Bhat, Aniket Kate, and Kar-
tik Nayak. Synchronous distributed key generation
without broadcasts. Cryptology ePrint Archive, Paper
2021/1635, 2021.

[39] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris
Kogias, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Michael J. Fischer, and Bryan Ford. Scalable bias-
resistant distributed randomness. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pages 444–460,
2017.

[40] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket
Kate, and Andrew Miller. hbACSS: How to robustly
share many secrets. Cryptology ePrint Archive, Paper
2021/159, 2021.

14

https://github.com/RustCrypto/hashes/tree/master/sha2
https://github.com/RustCrypto/hashes/tree/master/sha2

	Introduction
	Our results

	Related Work
	Preliminaries
	Notations
	Reliable Broadcast
	Polynomial Commitment Scheme
	Asynchronous Verifiable Secret Sharing
	Validated Asynchronous Byzantine Agreement
	Schnorr Protocol and Fiat-Shamir

	Design
	Secret Sharing Polynomial
	Adaptation of KZG Commitments
	Sharing Phase
	Reconstruction Phase

	From AVSS to ADKG
	Non-interactive m-Schnorr Protocol
	Key Derivation Phase

	Analysis
	AVSS Security
	m-Schnorr Protocol Security

	Implementation and Evaluation
	Conclusion

