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Abstract. Modern data analytics requires computing functions on streams
of data points from many users that are challenging to calculate, due to
both the high scale and nontrivial nature of the computation at hand.
The need for data privacy complicates this matter further, as general-
purpose privacy-enhancing technologies face limitations in at least scala-
bility or utility. Existing work has attempted to improve this by designing
purpose-built protocols for the use case of Private Stream Aggregation;
however, prior work lacks the ability to compute more general aggrega-
tive functions without the assumption of trusted parties or hardware.
In this work, we present PPSA, a protocol that performs Private Poly-
nomial Stream Aggregation, allowing the private computation of any
polynomial function on user data streams even in the presence of an un-
trusted aggregator. Unlike previous state-of-the-art approaches, PPSA
enables secure aggregation beyond simple summations without relying
on trusted hardware; it utilizes only tools from cryptography and differ-
ential privacy. Our experiments show that PPSA has low latency during
the encryption and aggregation processes with an encryption latency of
10.5 ms and aggregation latency of 21.6 ms for 1000 users, which are up
to 138× faster than the state-of-the-art prior work.

Keywords: Public key cryptosystems · Lattice-based Cryptography, ·
Private Stream Aggregation.

1 Introduction
Private Stream Aggregation (PSA) protocols allow aggregative computations on
time-series user data. It is mostly focused on the summation of data, which is
not sufficient for more complex data analysis such as regressions or modeling.
What work does exist in polynomial PSA, and particularly post-quantum PSA,
requires the addition of specific hardware or higher communication overhead.
Our approach uses current solutions for post-quantum secure aggregation but
applies the Complex Canonical Embedding (CCE) commonly used in Fully Ho-
momorphic Encryption (FHE) to transform the input in a way that allows us
to extract the product efficiently and securely. As such, our approach produces
polynomial aggregation without requiring additional outside resources.



Background and Motivation The core idea of PSA [37] is the need for a re-
search method such that data can be gathered on sensitive subjects without the
leakage of any one person’s information. For example, hospital patients should
never worry that information on their cancer diagnosis is shared with the world,
but medical researchers still need patient information to be able to research
how to cure cancer. At the heart of this contradiction lies the tradeoff between
security and accuracy, accurately represented in PSA with the use of differen-
tial privacy (DP). PSA protocols employ algorithms to encrypt user data and
sufficiently obscure personally identifiable traits to allow people to freely share
their data, without worrying about a leak of their information throughout the
data-gathering process either in data storage or by a malicious aggregator. PSA,
a particular case of Secure Aggregation (SA), is a class of secure protocols built
to collect data from distributed sources in a way that does not leak any one
individual’s data. It is widely used for many purposes, such as smart metering
or federated learning, to ensure user privacy [45,44].

Limitations of State-of-the-art PSA For time-series data analysis, specifi-
cally PSA, the most challenging aspect is how to make algorithms with a low
enough overhead to be used in real-life large-scale applications [25,40,44,41].
In the past year, that challenge has been compounded by the movement to-
wards Post-Quantum secure algorithms, which increase computational complex-
ity [10,19,39]. In particular, there seems to be a lack of research on how to
account for fault tolerance and computational variability, particularly for the
newest Post-Quantum secure algorithms. For data to be taken from a wide range
of sources over time, it is necessary to permit a number of users to be unavail-
able during all rounds of data collection [18,28,45]. Additionally, the classic PSA
only collects the sum of the data. As such, PSA may be insufficient for certain
research that requires further computation, such as when the product of the pro-
vided data may be necessary. To do this, we present a new Post-Quantum PSA
protocol that has both fault tolerance and finds the product of provided user
data, and provide both theoretical and practical proof of its efficacy through
theory and model testing. We wish to investigate how our protocol compares
with existing protocols in terms of speed and accuracy.

Research Challenges The primary challenge is the difficulty of supporting
multiplicative aggregation in Post-Quantum PSA due to the difficulty of sup-
porting high multiplicative depths in lattice-based cryptography [4]. Due to this
challenge, it is highly nontrivial to expand the functionality of Post-Quantum
PSA beyond simple summation.

Our Work In this work, we present the first-of-its-kind polynomial PSA proto-
col with quantum security and minimal overhead. Our protocol, PPSA: Polyno-
mial PSA, is practical for collecting data for computationally complex analysis
like data modeling or regressions. The novelty of our approach lies in the way
differential privacy and complex canonical embedding are used to achieve poly-
nomial aggregation.
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Our Contributions
1. We present PPSA, the first RLWE-based PSA scheme that can be used to

perform polynomial computations (instead of just summation) on user data
without relying on trusted hardware. This is enabled by a novel idea that
intelligently combines PSA and differential privacy.

2. We propose extensions of PPSA for practical issues such as fault tolerance
and differential privacy with parallel composition.

3. We implement PPSA and provide source codes for reproducibility and exten-
sions. The extensive experimental results with real implementations demon-
strates that its performance is superior to a state-of-the-art prior polynomial
aggregation protocol relying on Trusted Execution Environment.
For n = 1000 users and a plaintext space of |t| = 16 bits, PPSA encryption
achieves a latency of only 10.5 ms, and aggregation and decryption run in
21.6 ms. Our experiments with increasing numbers of users shows that PPSA
is practically scalable for real-world deployments.

2 Related Work

There are three important aspects of PSA protocols: whether they are Post-
Quantum or fault-tolerant and what functions they support. As it stands, most
protocols were created before the need for Post-Quantum cryptography arose,
and so do not address the issue. In particular, fault tolerance is also thoroughly
addressed in many protocols, but mostly ones that are not Post-Quantum. A
smaller category of protocols concerns protocols that can handle more than the
summation of data, in particular the product of data. As such, the clear current
gap in knowledge can be found at the intersection of these three categories.
The presence of trusted third parties fluctuates in different protocols, but there
is insufficient research on whether the presence of such a third party can be
entirely avoided.

Fig. 1: PSA Protocols [35,26,4,29,40,23,24,11,30,28,45,21,10]
Not Post-Quantum secure, fault tolerant, or support multiplication: [18,5,6,37].
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2.1 Post-Quantum Private Stream Aggregation

Post-Quantum versions of PSA usually fall into three categories when it comes
to general methods or techniques: Secure Multi-Party Computation (SMC),
Trusted Hardware, or Homomorphic Encryption (HE). These tools can be used
as a black box in the code by relying on a direct transformation, or by examining
and replicating underlying techniques such as secret sharing.

HE is a type of cryptography that allows for operations to be done on ciphertext
that reflect in the plaintext after decryption [8]. SMC can achieve lower com-
putational overhead than HE, but using it both directly or using secret sharing
accrues more communication overhead [6]. Trusted Hardware also has lower com-
putational overhead, but as it requires a trusted physical implementation, it is
the least popular of the three options [26]. As SMC and Trusted Execution En-
vironments (TEE) are not affected by Shor’s algorithm, only protocols that used
HE were affected by its discovery [39]. However, these schemes often have much
higher overhead than that of the prior protocols. The lack in recent solutions is
that the overhead is not low enough for the protocols to be able to compete with
non-Post-Quantum secure protocols [38,19,4].

Examples of security assumptions that are not Post-Quantum secure and ap-
pear most commonly in PSA protocols include Diffie-Hellman, LEOM, and the
Decisional Composite Residuosity Assumption (DCRA) [28,21,18]. Modern HE
utilizes lattice-based cryptography, often relying on the Learning with Errors
(LWE) Ring Learning With Errors (RLWE) assumptions [33,9,2]. These assump-
tions allowed for PSA to be implemented with the use of Fully Homomorphic
Encryption (FHE). Two encryption algorithms that serve as inspiration in par-
ticular in later PSA are the BGV and CKKS FHE schemes [7,14]. There are
some other FHE schemes that, while not initially Post-Quantum secure can be
made Post-Quantum secure with the addition of elliptic curve cryptography to
places where the Diffie-Hellman Key exchange is used [31].

2.2 Fault Tolerance

The classic version of PSA presented in Shi et. al is not fault-tolerant because
it was only designed for one round of data collection, but soon after there many
were developed protocols that sought to rectify that with the use of periodic
distributive SA, which endlessly exchanged information [37,11]. Protocols that
do not address fault tolerance usually require the keys and values to all be
recalculated, accruing significant overhead. There are two ways to handle failures,
reactively and proactively. To handle failures reactively, the protocol can group
the client nodes in a certain way or by changing the encryption to be able to
handle the lack of an input from some number of clients [30,28]. To handle
failures proactively, clients can send filler values in advance which can be drawn
from in the case that client cannot send their data on time or a trusted third
party can detect and send in the dummy data itself [45,13]. Another possible
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fix for fault tolerance with only slight modifications to the protocol itself is to
add trusted hardware, but that does add further technology requirements on the
part of the aggregator [26].

2.3 Beyond Sums

Although PSA is usually tailored for summation of data, there are several algo-
rithms that have emerged that can be also used in multiplication [23,24,27]. How-
ever, to construct these algorithms, there is a trade-off in terms of the overhead.
In the case of the algorithms which are not Post-Quantum secure, the trade-off is
in terms of communication complexity. These algorithms require clients to send
their information to a number of others in their direct neighborhood unlike reg-
ular FHE PSA, which only requires one message between aggregator and client
[23,24,27].

2.4 Trusted Third Party

One question, that can determine the usability of some PSA protocols in real-life
situations, is the need for a trusted third party. Some prior PSA schemes require
an entity to be a trusted key dealer, a party that calculates the secret keys of
the clients and aggregator and sends them out to all parties [39]. In this case,
the key-dealer is commonly used because of the requirement that the secret keys
of the users be used to create the aggregator secret key [29]. Without such a key
dealer, the usual way for the users to collaborate and create secret keys which
correspond to the aggregator secret key is if there is inter-client communication,
which is often not possible due to the nature of the application and introduces
additional communication overhead [12]. It has been noted that an untrusted
third party can also be used to facilitate (PRE) Proxy Re-Encryption to assist
with fault tolerance and reduce the need for a trusted key dealer, but there has
not yet been a Post-Quantum version of this protocol [35].

3 Background

3.1 Private Stream Aggregation (PSA)

In the scenario of PSA, we assume that there are n users, each of whom has
a stream of time-series data. The users will continually send messages to the
aggregator, who is honest-but-curious, i.e., they will execute the protocol cor-
rectly, but may also carry out additional computations to try to learn about
user data. A PSA scheme allows the aggregator to learn an aggregative function
(i.e., sum, product) of all user data points emitted at the same timestamp, and
ideally nothing else.
The formal definition of PSA schemes includes the following three algorithms
[39,37,4]:

– Setup: The user keys and other values (e.g., nonces) are distributed or gen-
erated along with the aggregator key.
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– NoisyEnc: Each user uses this function and their individual key to create
their own ciphertext that will be collected by the aggregator.

– AggrDec: The aggregator uses this function when it is in possession of all
the ciphertexts to get the noisy sum of the user data.

Some algorithms may require additional functions or actions, but all PSA al-
gorithms at least use these three algorithms during the course of the protocol.
PSA usually guarantees Aggregator Obliviousness, which limits how much infor-
mation the aggregator can gain from the information it receives [37]. Although
PSA is usually applied for summation, protocols have emerged that can compute
multiplication and other functions beyond simple additive aggregation [23,24,27].

3.2 Differential Privacy for PSA

PSA can use differential privacy (DP) to ensure the privacy of individual clients’
data values. During the process of data aggregation, the aggregator will normally
have access to all the data points that they wish to aggregate. Even though data
can be anonymized and names stripped, there is always a possibility that the
data contains sufficient personal information for their name or other identifica-
tion to be extrapolated. To prevent data from being traced back to the source,
DP introduces noise to obscure individual data while maintaining some level of
accuracy across the whole set [17]. The privacy guarantee relies on the trade-off
between the accuracy of the data and the identifiability of specific data points
[16].

In particular, DP can usually be split into the two categories of Local or Global
DP, each of which has different privacy assumptions. In global differential pri-
vacy (GDP), the assumption is that the aggregator is a trusted party, but the
requester is not trusted. Local differential privacy (LDP) assumes that not even
the aggregator is a trusted party, and may attempt to use their position to gain
additional access to information, commonly referred to as an honest but curious
party [36].

DP can be used in conjunction with many types of cryptography. When used in
an encryption scheme, the addition of differentially private noise and encryption
may be different steps [42]. Additionally, the DP parameters chosen in the imple-
mentation of a system reflect whether privacy or accuracy is the priority [15]. DP
is commonly used in PSA because of the sensitive nature of the data [37,4,39].
During a chosen-plaintext attack, the querier or aggregator could request the
sum of data for some n entities and then request the same sum for n−1 entities,
which leads to the revelation of the information of that missing individual [17].
As encryption cannot be used to counter this attack, DP is commonly used in
conjunction with encryption [37].
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3.3 Residue Number System

Theorem 1. The Chinese Remainder Theorem states that if q1, ..., qk are
pairwise co-prime integers greater than 1, we define q =

∏k
i=1 qi. Then for x ∈

Zq, the map
x mod q 7→ (x mod q1, ...x mod qk)

defines a ring isomorphism

Z/qZ ∼= Z/q1Z× ...× Z/qkZ

We call the set of coprime factors a Residue Number System (RNS) basis. This
is useful for arithmetic on numbers modulo a large value q. By choosing RNS
moduli qi to be less than a computer word (usually 64 bits on modern sys-
tems), representing a number x ∈ Zq as the tuple (x mod q1, ...x mod qk) can
avoid costly multiprecision integer arithmetic, greatly improving the efficiency
of addition and multiplication on numbers modulo q [3,20].

3.4 The Number-Theoretic Transform (NTT)

The Number-Theoretic Transform (NTT), a variant of the Fast Fourier Trans-
form, is useful for performing fast polynomial multiplication [32]. A textbook
algorithm for polynomial multiplication on polynomials of degree N has a run-
time of O(N2). However, the NTT has a runtime of O(N · log(N)). Coefficient-
wise multiplication (an O(N) operation) on polynomials that have had the NTT
applied to them corresponds to polynomial multiplication on the original poly-
nomials. Thus, applying the NTT, performing coefficientwise multiplication, and
then applying the inverse NTT to the result can accomplish polynomial multi-
plication in log-linear time.

Let Zp be an integer ring modulo a prime p, and let P (x) denote a polynomial in
Zp[x]. Define ω as the primitive N−th root of unity in Zp, and ψ as the primitive
N − th root of unity in Zp such that ωN ≡ 1 (mod p) and ψ2 ≡ ω (mod p).
The Number-Theoretic Transform of the coefficients a of P (x) is the map ZN

p 7→
ZN
p defined by:

âj =

N−1∑
i=0

ψ2ij+iai (mod p)

Using the properties of ψ: ψk+2N = ψk and ψk+N = −ψk, we obtain:

âj =

N−1∑
i=0

ψ2ij+iai (mod p) =

N
2 −1∑
i=0

ψ4ij+2ia2i + ψ2j+1

N
2 −1∑
i=0

ψ4ij+2ia2i+1 (mod p)

âj+N/2 =

N
2 −1∑
i=0

ψ4ij+2ia2i − ψ2j+1

N
2 −1∑
i=0

ψ4ij+2ia2i+1 (mod p)
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3.5 The Complex Canonical Embedding (CCE)

The Complex Canonical Embedding comprises a map between vectors in CN
2

and polynomials in Rq = Zq[X] (mod XN + 1). A CCE σ is defined as σ :
R[X] 7→ CN . Within the context of this paper, we are concerned with σ :
Zq[X]/(ΦM (X)) 7→ CN with ΦM (X) denoting the M-th cyclotomic polynomial.

Let EM = e
2iπ
M be the primitive M-th root of unity, the N roots of ΦM (x) is the

set S = {EM , E3
M , ..., E

2N−1
M }. For an element P (x) ∈ Zq[X]/(ΦM (X)), the CCE

σ : Zq[X]/(ΦM (X)) 7→ CN of P (x) is defined as:

σ(P (x)) = (P (EM ), P (E3
M ), ...P (E2N−1

M ))T

3.6 Definition of Security

Definition 1. A polynomial PSA scheme is differentially private aggregator
oblivious in the encrypt-once model if any probabilistic polynomial-time (PPT)
adversary has no more than negligible advantage with respect to security param-
eters (ϵ, δ, λ) in the following security game:

Setup The challenger runs the Setup algorithm, returning any public parameters
to the adversary.

Queries The adversary may make up to poly(λ) of following types of queries
adaptively:

- Encrypt: The adversary may specify (i, j, ts, cj , ei,j , xi,j,ts, ri,j,ts) and ask for the
ciphertext. The challenger returns the ciphertext ci,ts = Enc(si, ts, ei,j , xi,j,ts, ri,j,ts)
to the adversary.
- Compromise: The adversary specifies a party i ∈ [0, n) ∪ {□}. If i = □, the
challenger returns the aggregator’s decryption key s′ to the adversary (i.e., the
aggregator is compromised.). Otherwise, the challenger returns user i’s secret
key si, to the adversary (i.e., user i is compromised).
- Challenge: This query is only made once. The adversary specifies a set of
participants U and a time ts, such that neither ts nor any i ∈ U was previously
argued to Compromise. For each user i ∈ U , the adversary chooses a pair of input
sets. If the aggregator was compromised, the adversary has further restrictions
that polynomial outcomes from the two input sets are identical such that the
adversary cannot infer from the outcome which input set was used in encryption.
The challenger then randomly chooses one of the two input sets to generate and
publish their ciphertexts.

Guess The adversary attempts to guess which input set was encrypted.
The adversary wins if they can guess the input set correctly.

Aggregator obliviousness here means that the protocol execution won’t leak any
more data than what groups can collude to figure out [37].
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4 PPSA Construction

In many scenarios, parties i ∈ S holding time-series private data mi,j,ts wish

to privately calculate a polynomial function
∑d

j=0 cj
∏

i∈S m
ei,j
i,j,ts for publicly

known values cj , ei,j at a particular timestamp ts. We can achieve this with the
combinations of semantic security on intermediate calculations and differential
privacy for the outcome. Our idea is to perform the calculations of product terms
separately with the inclusion of differential privacy and then to perform the final
summation of polynomial terms.

4.1 Basic Construction

Formally, we define our protocol as follows. Suppose S contains n users, and
that a Private Stream Aggregation PSA scheme PSA = (Setup,Enc,Agg) ex-
ists. Our polynomial aggregation scheme PPSA can then be defined with the
following procedures:

– PPSA.Setup: Given the number of users n, the desired levels of differential
privacy and accuracy for each coefficient of the polynomial, and the desired
level of semantic security for ciphertexts, use PSA.Setup to derive a set
of parameters parms that satisfy the given constraints. parms includes a
Discrete Laplacian distribution DLs parameterized to a scale parameter s
[4].

– PPSA.Enc: Given a PSA secret key ski and a set of data mi,j,ts for some
particular timestamp ts, set xi,j,ts = CCE(ln(m

ei,j
i,j,ts + ri,j,ts)), where each

ri,j,ts is drawn from DLs and ln is the natural log. Then, return

CTi = {cti,j,ts = PSA.Enc(parms, xi,j,ts, ski, ts)}j∈[0,d] (1)

– PPSA.Agg: Given a PSA aggregator key sk′, a timestamp ts, and the ci-
phertext sets {CTi}i∈S , first calculate the values
coeffj = exp(CCE−1(PSA.Agg(parms, {cti,j}i∈S , sk

′, ts))) where exp is
the exponential function. Here, coeffj are the polynomial coefficients which
are then attached to the evaluation given by the vector cj of the polynomial.
(Note that each of these values is not exactly the product

∏
i∈S m

ei,j
i,j,ts, due

to the differentially private noise used.) Then, simply compute the result
y =

∑
j∈[0,d] cj · coeffj .

Correctness A correct PSA scheme will ensure the following:

PSA.Agg(parms, {PSA.Enc(parms, xi,ts, ski, ts}i∈Zn , sk
′, ts) =

n−1∑
i=0

xi,ts

By this property, coeffj = exp

(
CCE−1

(∑n−1
i=0 CCE

(
ln
(
m

ei,j
i,j,ts+ri,j,ts

))))
=

exp
(∑n−1

i=0 ln
(
m

ei,j
i,j,ts + ri,j,ts

))
=
∏n−1

i=0 m
ei,j
i,j,ts + ri,j,ts ≈

∏n−1
i=0 m

ei,j
i,j,ts. It then

easily follows that multiplying each term coeffj yields the desired polynomial.
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Table 1: Common Important Notation

Notation Meaning

λ Security parameter, measured in bits.
Rq The polynomial ring that ciphertexts and other terms reside

in.
q Ciphertext modulus, an integer that is commonly hundreds

of bits long.
N The polynomial modulus degree, a power of two commonly

ranging from 210 to 215.
t The plaintext modulus, an integer much less than q. Com-

monly ranges from 16 to 192.
n Number of users in the PSA instantiation.
χ, ζ Small error distributions on Rq.
ts The timestamp at which a particular aggregation takes place.
mi,j,ts Time-series private data
xi,j,ts User i’s PSA input at timestamp ts.
ri,j,ts User i’s PSA noise j at timestamp ts, typically drawn from

DLs.
ei,j,ts User i’s PSA error term at timestamp ts.
cti,j,ts User i’s ciphertext at timestamp ts.
ski User i’s PSA key
sk′ The aggregator’s key.
H A random-oracle hash function mapping from timestamps to

Rq.
parms The public PSA parameters Rq, t, n,H, and a discrete Lapla-

cian distribution DLs.
yts The final aggregation result, equal to the sum of users’ inputs

and noise.
ϵ Differential Privacy parameter related to privacy.
s, σ Parameters of the Discrete Laplacian distribution DLs.
k Number of RNS moduli used for the ciphertext.
q0, q1, · · · , qk−1 Coprime ciphertext moduli used in RNS, whose product is

q. For use in the NTT, these should each be equivalent to 1
modulo 2N.

q∗i , q̃i, wi, θi Precomputed parameters used in RNS base conversion and
division-with-rounding.

k
′

Number of RNS moduli used for the plaintext.
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4.2 Preventing Repeated-Encryption Attacks

In the above basic protocol, there is a subtle flaw. It is easy to define the scheme
in a way that is not vulnerable, but we explicitly show and fix the flaw in the
interest of being informative.

As noted in previous work [43], creating multiple ciphertexts cti,j,ts from a par-
ticular timestamp ts allows an attack. We thus modify the basic procedure to
prevent this. Instead of setting cti,j,ts = PSA.Enc(parms, x

ei,j
i,j,ts, ski, ts)}j∈[0,d]

(where every cti,j,ts depends on ts exactly), we first set tsj = ts||j. (Note that
the size of timestamps is extended by |n| bits.) Then, we can set CTi,j,ts =
{PSA.Enc(parms, xei,ji,j,ts, ski, tsj)}j∈[0,d]. This allows each user’s invocations of
PSA.Enc to use a different timestamp tsj . The timestamps should be similarly
extended in PPSA.Agg.

5 Analysis

5.1 Security and Accuracy

Semantic security of the ciphertexts cti,j,tsj follows directly from the semantic
security of the underlying PSA scheme. We note that the values coeffj do not
fully obscure user inputs; this sum of user data is protected only by differentially
private noise. A corollary to this is that the values coeffj may differ from the
actual sums

∑
i∈S m

ei,j
i,j,ts, and thus the final result y may differ from the exact

polynomial aggregate
∑d

j=0 cj
∏

i∈S m
ei,j
i,j,ts. A full analysis of the privacy and

accuracy tradeoffs can be found in [39,4].

5.2 Achieving Differential Privacy

For this paper, we rely on the Discrete Laplacian distribution to add differentially
private noise to the user inputs before aggregation, achieving the desired level
of differential privacy.

Definition 2. The Discrete Laplacian distribution is defined as following:
for parameters s > 1, σ = exp(−1/s) ∈ (0, 1), x ∈ DLs has probability mass
function:

DLs(x) =
1− σ

1 + σ
· σ|x|

We adopt the procedures of the Discrete Laplacian scheme from SLAP because it
closely relates to the purpose of PPSA. For each time-series private data mi,j,ts,
we add a private noise ri,j,ts. With probability β, ri,j,ts is drawn from a Discrete
Laplacian distribution with parameter s and with probability (1 − β), ri,j,ts is
zero.

Let the Discrete Laplacian parameter s to be w
ϵ determined by the desired level

of privacy (ϵ, δ) and n users whose inputs fit within the width of w. With ap-
propriate bounds on the proportion of honest users who would add differentially
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private noise to their inputs (γ ≥ 1
n ln(

1
δ )) and appropriate bounds on w (w ≥ ϵ

3 ),
the individual noises drawn from DLs can guarantee (ϵ, δ)-differential privacy
and the scheme can achieve (α, β)-accuracy from [39], Theorem 1.

5.3 Security Guarantees

Theorem 2. PPSA is a differentially private aggregator oblivious polynomial
PSA scheme.

We present an informal analysis only because the security guarantee follows
trivially from existing state-of-the-art PSA schemes. Existing PSA schemes (e.g.,
[39]) provide the property of aggregator obliviousness, i.e., the aggregator cannot
learn anything beyond the summation outcome, the differentially private noises
added to each invocation of PSA scheme ensure an aggregator in the security
game (Section 3.6) has no more than negligible advantage with respect to security
parameters (ϵ, δ, λ).

6 Extensions and Future Improvements

6.1 Fault Tolerance

We define the Lagrange coefficient for n users in the following manner. As de-
scribed in [22], we define the Lagrange coefficient for i ∈ {1, . . . , n} and a set
P of user IDs in {1, . . . , n} as Li,P (x) =

∏
j∈P\{i}

x−j
i−j , and use the simplified

Lagrange coefficient Li,P for a special case Li,P (0).

In the Equation (1), si is the secret key of the user i. To achieve fault tolerance
in this design, we replace this term si with some point on a polynomial. Now,
if this polynomial is multiplied by a Lagrange coefficient, and the summation
of these polynomials multiplied by the Lagrange coefficient becomes zero (or a
multiple of qagg where qagg is the ciphertext modulus) and cancels out during
the aggregation.

Polynomial Construction Suppose the aggregator uses n points to uniquely
define a polynomial qd(x) of degree d = n − 1. The other coefficients of the
polynomial are randomly chosen from a finite field Fqagg

. The constant term of
this polynomial is set to be zero (i.e., qd(0) = 0).

During the key generation, each user i is provided with a set of polynomials
q(2)(i), . . . , q(n−1)(i). Each key recipient i also receives one data point for each
secret polynomial qd(i), where the polynomial qd(x) remains unknown to every-
one because it is the sum of all users’ random polynomials. However, specific
points on this unknown polynomial can be jointly computed. Each key recipient
i receives one of the shares, where the polynomial qd(x) remains unknown to
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everyone and it can be computed by summing up all users’ polynomials. Hence,
using Lemma 6 in [22], for any set of users P , we have∑

i∈P

q|P |−1(i)Li,P = 0 mod qagg.

During the aggregation, since the constant terms in all the polynomials are 0,
the above sum equals q|P |−1(0) = 0 mod qagg.

Aggregation During the aggregation, the aggregator simply sums n ciphertexts
ci,ts received from n users such that final aggregation value results in the sum
of the users’ inputs plus some noise ri,ts modulo plaintext modulus. To be able
to support a dynamic number of total users (i.e., enable new users to join and
old users to leave), we employ the following ideas:

Adding New Users Suppose we are adding a new user with ID = n+ 1 in a
group of n users {1, . . . , n}. First, we need to update the key set (i.e., the random
polynomial) of every user i in the old group {1, . . . , n}. Then, each user i needs to
acquire and add one extra polynomial item qn(i) into his/her key set. Aggregator
provides all old users in the new group {1, . . . , n + 1} with a complete key set
containing q2(i), . . . , qn(i). Secondly, the aggregator issues the new user n + 1
with his/her full key set EKn+1 = {q(2)(n + 1), . . . , q(n−1)(n + 1), q(n)(n + 1)}
such that they can participate in any future aggregation process.

Removing Existing Users During the departure of one or more users from
the group, the scheme can ignore the existing users, and the keys of the rest of
the users are not affected by this change.

6.2 Differential Privacy

One alternative method to achieve the desired differential privacy of our scheme
is to utilize Parallel Composition. Parallel Composition is based on splitting the
input data into disjoint subsets and performing a differentially private scheme on
each subset. The scheme is as private as the worst-performing subset, as proven
in Theorem 4 in [34]. Therefore, for the overall scheme to achieve ϵ-differential
privacy, we just need to guarantee ϵ-differential privacy for each subset. However,
the Parallel Composition scheme does achieve the result at the cost of accuracy
and thus needs to be cautiously applied.

7 Experimental Evaluation

7.1 Testing scaling and overhead

We evaluated our proposed method for polynomial aggregation to observe its
performance in various settings. Our source code files are available at https:
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Fig. 2: Performance of our polynomial aggregation method for various functions

//github.com/cornflower26/PSAapp. For the implementation, we used C++17
and the OpenFHE library [1] as the PSA backend, which employs optimizations
including RNS, SIMD encoding, and NTT. We used a security parameter λ =
128, a polynomial modulus degree N = 1024, and a ciphertext modulus q = 64
bits. In all our experiments, the plaintext modulus with the number of bits
set to |t| = 16, except in cases where the number of users reaches 106, where
|t| = 10 due to memory constraints on our machine when handling a large
number of users. Our experiments were run on a server with an AMD EPYC
7313P processor and 128GB of memory, running Ubuntu 20.04. We evaluated
the runtime for aggregation for different numbers of users ranging from 102 to
106 by performing 10 trials and reporting the average latency.

We computed polynomials of the form
∑2

j=1

∏n−j+1
i=1−j+1mi,j,ts+ri,j,ts and report

the timing data for adding differential privacy noise, encryption, and aggrega-
tion. Encryption time measures the time taken to encrypt one data input, while
aggregation and decryption take into account the amount of users whose data
needs to be aggregated. We can observe no increase in the time taken to encrypt
a single data input when the number of users is increased. The aggregation time
includes the decryption time as well, however, decryption is a small portion of
the total aggregation time and does not significantly impact the aggregation
timing. We report how the performance of our aggregation method changes as
we increase the number of users in Figure 2. The pre-processing time, including
the differential privacy noise addition and encryption time, remains under 0.0112
seconds for users up to 106. The aggregation time grows very slowly with the
number of users and demonstrates very practical runtime for large-scale data
aggregation applications. We note that the timing charts do not account for the
network latencies of the users.
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Fig. 3: Aggregation runtime for Cryptonomial [27] compared to PPSA

Comparison with prior work. Cryptonomial [27] is a state-of-the-art se-
cure computation protocol proposed by Karl et al. for computing a multivariate
polynomial that employs a Trusted Execution Environment. We used the exper-
imental data provided in their work as the configurations of the machine they
employed for their experiments closely resemble ours. We compare the aggre-
gation latency of our method with Cryptonomial in Figure 3. Our method is
almost 6− 138× faster than Cryptonomial for aggregating inputs for up to 106

users as we do not incur any overheads resulting from using TEEs. As there is no
need for the data to be transferred in and out of the TEE enclave, which incurs
additional overhead in Cryptonomial, the aggregation latency of our method is
significantly lower, which results in faster performance.

7.2 Testing differential privacy and accuracy

In the following experiment, we will investigate a scenario involving a group of
users and their data inputs, which are constrained within a specific interval. We
aim is to explore the trade-offs between privacy guarantees and data accuracy.

We consider a scenario with n = 100 users, whose inputs fit in an interval of
width w. In our experimental evaluations, we consider the parameters ϵ = 1
and δ = 0.1, which gives a minimum required proportion of honest participants
γ ≥ 1

n ln( 1δ ) = 0.023 in order to achieve (ϵ, δ)-differential privacy with values
drawn from the discrete Laplacian with parameter s = w

ϵ and w ≥ ϵ
3 (see [39,4]).

Furthermore, choosing β = 0.05 ≥ (20)−
1

0.023 = ( 2δ )
− 1

γ gives us (α, β)-accuracy

with α = 4w
ϵ

√
1
γ ln( 1δ ) ln(

2
β ) = 4w

√
ln(10) ln(40)

0.023 = 4w
√

ln(10) ln(40)
0.023 = 76.86w. As

we are testing with different means of user inputs and, consequently, different
widths, we provide a table for the sake of completeness (see table 2).
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Mean Width (w) Discrete Laplacian parameter (s) α

100 1 1 76.86
1000 10 10 768.69
10000 100 100 7686.9
100000 1000 1000 76869

Table 2: Description of parameters when ϵ = 1.

As the reader may observe in table 3 and figure 4, for each case, the minimum
value is 0 and the maximum is 1. As the mean increases, the ratio consistently
approaches a value very close to 1, indicating that the discrepancy between
the actual polynomial aggregation and the polynomial aggregation with discrete
Laplacian noise added diminishes.

Fig. 4: Minimum (bottom of blue line), maximum (top of blue line), mean (dot)
and standard deviation (red line) of the ratios of 100 samples when ϵ = 1.

Now, we consider ϵ to be variable while δ = 0.01 and mean = 100 are fixed. We
still need the minimum required proportion of honest participants γ ≥ 1

n ln( 1δ ) =
0.023 in order to achieve (ϵ, δ)-differential privacy with values drawn from the
discrete Laplacian with parameter s = w

ϵ and w ≥ ϵ
3 (see [39,4]). Similarly,

choosing β = 0.05 ≥ (20)−
1

0.023 = ( 2δ )
− 1

γ gives us (α, β)-accuracy with α =

4w
ϵ

√
1
γ ln( 1δ ) ln(

2
β ) =

4w
ϵ

√
ln(10) ln(40)

0.023 . In table 4 we give the complete description

of the parameters.
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Mean of users inputs Minimum Maximum Mean Standard deviation

100 0 1 0.48 0.49959984
1000 0 1 0.54 0.49839743
10000 0 1 0.58 0.49355851
100000 0 1 0.99 0.09949874

Table 3: Minimum, maximum, mean and standard deviation of the ratios of 100
samples when ϵ = 1.

Epsilon (ϵ) Width (w) Discrete Laplacian parameter (s) α

0.01 0.01 1 76.86
0.1 0.1 1 76.86
1 1 1 76.86
10 10 1 76.86

Table 4: Description of parameters when mean = 100.

As the reader may observe in table 5 and figure 5, for each case, the minimum
value is 0 and the maximum is 1. A minimum value of 0 suggests a significant
difference between the polynomial aggregation and the polynomial aggregation
with added noise. However, the crucial point is that the mean of the ratios, in
each case, is nearly equal to 1, indicating the similarity between the calculated
polynomials. Furthermore, we observe that the standard deviation is always
lower than 0.2, implying that the ratios will almost certainly cluster around 1.

Epsilon (ϵ) Minimum Maximum Mean Standard deviation

0.01 0 1 0.99 0.09949874
0.1 0 1 0.98 0.14
1 0 1 0.99 0.09949874
10 0 1 0.96 0.19595918

Table 5: Minimum, maximum, mean and standard deviation of the ratios of 100
samples when mean = 100.

The code for the experiment previously described is available on GitHub at
https://github.com/medranocode/PPSADataAnalysis.git.

8 Conclusion

In this paper, we presented PPSA, which builds on existing work in Private
Stream Aggregation to implement private polynomial aggregation without the
assumption of either a trusted party or trusted hardware. PPSA uses differential
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Fig. 5: Minimum (bottom of blue line), maximum (top of blue line), mean (dot)
and standard deviation (red line) of the ratios of 100 samples when mean = 100.

privacy to protect intermediate values from an untrusted aggregator. Our exper-
imental results show an aggregation latency of under 21.6 ms for 1000 users and
a 16-bit plaintext space, with improvements over prior polynomial PSA with
or without trusted hardware. The performance comparison between our PPSA
protocol and Cryptonomial shows that there is the possibility for real-world de-
ployment on any system, including one where trusted hardware is not available.
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