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Abstract. This work introduces several algorithms related to the com-
putation of orientations in endomorphism rings of supersingular ellip-
tic curves. This problem boils down to representing integers by ternary
quadratic forms, and it is at the heart of several results regarding the
security of oriented-curves in isogeny-based cryptography.
Our main contribution is to show that there exists efficient algorithms
that can solve this problem for quadratic orders of discriminant n up to
O(p4/3). Our approach improves upon previous results by increasing this
bound from O(p) to O(p4/3) and removing some heuristics.
We introduce several variants of our new algorithm and provide a careful
analysis of their asymptotic running time (without heuristic when it is
possible). The best proven asymptotic complexity of one of our variant
is O(n3/4/p) in average. The best heuristic variant has a complexity of
O(p1/3) for big enough n.
We then introduce several results regarding the computation of ideals be-
tween oriented orders. The first application of this is a simplification of
the known reduction from vectorization to computing the endomorphism
ring, removing the assumption on the factorization of the discriminant.
As a second application, we relate the problem of computing fixed-degree
isogenies between supersingular curves to the problem of computing ori-
entations in endomorphism rings, and we show that for a large range
of degree d, our new algorithms improve on the state-of-the-art, and in
important special cases, the range of degree d for which there exist a
polynomial-time algorithm is increased. In the most special case we con-
sider, when both curves are oriented by a small degree endomorphism, we
show heuristically that our techniques allow the computation of isogenies
of any degree, assuming they exist.

1 Introduction

Isogeny-based cryptography uses supersingular elliptic curves and isogenies be-
tween them to construct cryptographic schemes. An essential part of isogeny-
based cryptography is the Deuring correspondence, relating supersingular elliptic
curves over Fp to maximal orders in a quaternion algebra ramified at p and ∞,
and isogenies to ideals, by passing to the endomorphism ring of the curve.



One particular flavour of isogeny-based schemes [3, 5, 9] use the extra infor-
mation of an orientation, which is an embedding of a quadratic imaginary order
inside the endomorphism ring. This subring corresponds to an embedding of an
imaginary quadratic order O into the endomorphism ring, which in turn allows
one to consider the action of O-ideals on the curves (primitively) oriented by O
through O-oriented isogenies. It is a well known fact that Cl(O) acts freely on
the set of primitively O-oriented curves (up to oriented isomorphisms) in one or
two orbits [15].

An important part of the study of the schemes using these oriented curves and
isogenies it to understand the link of oriented problems with generic non-oriented
problems. One of the main object of study in this context is the embedding
problem which was first studied in [19] (although not under that name). We
present it as Problem 1.

Problem 1. (Quaternion order embedding problem.) Let p be a prime
number, let O be a maximal order inside Bp,∞ and let t, n be such that there
exists an element of norm n and trace t in O. Find α ∈ O with

n(α) = n, tr(α) = t (1)

Related Works. Oriented curves first appeared in isogeny-based cryptography
with the CSIDH group action [3]. However, they were not defined as such at
the time. The notion of orientation was introduced formally by Kohel and Colo
in [5] together wiht a new group action called OSIDH. Some of the results of [5]
were refined by Onuki [15]. These works introduced generic hard problems such
as O-vectorization.

At first, the only applications of orientations were related to these group
actions, but a broader link with the other areas of isogeny-based cryptography
was demonstrated by De Feo et al. in [7] with the introduction of the O-uber
isogeny problem. The authors of [7] provided in particular some reductions be-
tween flavours of the O-uber isogeny problem and generic isogeny computation
problems.

In 2022, Wesolowski provided a much more complete picture in [19] by study-
ing all orientation-related problems and providing several reductions between
them, and generic problems such as the endomorphism ring problem. In par-
ticular, Wesolowski proposed the first algorithm to solve the quaternion order
embedding problem when the discriminant is smaller than √

p, and proved some
relations between the O-vectorization, the O-uber isogeny, and problems related
to the computation of endomorphism rings (with or without the knowledge of
an orientation).

An improved heuristic algorithm to solve the embedding problem was intro-
duced in [1] that increases the bound for when the embedding problem is solvable
in polynomial time from disc O = O(

√
p) to disc O = O(p).

In [12], Leroux proved a lower bound on the number of oriented curves by
using quaternion orders generated by two non-commuting quadratic orders. The
same ideas are going to be crucial in our new algorithms.
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An algorithm to solve the embedding problem can be used to find fixed de-
gree isogeny between supersingular elliptic curves. This is an important problem
in isogeny-based cryptography that was first studied from the quaternionic per-
spective in [11] with the famous KLPT algorithm. This algorithm has found
numerous applications in cryptography in the study of the Deuring correspon-
dence (see the reductions of [8] or the signature scheme from [6] for instance).
Understanding and improving the known algorithms to find isogenies of fixed de-
gree between supersingular curves is an important task. While previous literature
had been focusing on identifying cases for which there was an polynomial-time
algorithm (such as KLPT), the recent article [2] was the first one to provide a
generic analysis of the run-time of such algorithms in ranges of input where the
running-time is not known to be polynomial.

1.1 Our Contributions

In this work, we study orientations purely on the quaternion side. Our main con-
tribution is a set of new algorithms for solving the quaternion order embedding
problem (Problem 1), which can be executed in polynomial time for disc O up
to O(p4/3).

GenericOrderEmbedding, our first algorithm, treats the generic case of an ar-
bitrary quaternion order. It’s complexity depends on the size of the first, second,
and third successive minima of the ternary quadratic form associated to O, and
on the number of distinct primes factors of disc O. When O is a random quater-
nion order of discriminant ∆ the expected running time is polynomial when
disc O = O(∆4/3) and ∆ has a constant number of prime factors.

From there, we deduce two other algorithms. MaximalOrderEmbeddingEichler
uses GenericOrderEmbedding as a building block by applying it on several Eichler
sub-orders of the maximal provided in input. We show that the average running
time is asymptotically better than a direct application of GenericOrderEmbed-
ding.

In some good cases where O contains a particularly small element, we can go
beyound the O(p4/3) bound at the cost of using a factorization oracle, under some
heuristics. The resulting algorithm GenericOrderEmbeddingFactorization can be
seen as a generalization of the algorithm from [1], and in the best cases where
the O contains an element of norm O(1), it runs in polynomial time for any
discriminant that has a constant number of primes factors. Further, for any
order, the runtime is always upper bounded as O(p1/3), independent of the size
of the discriminant.

In the second part, we study ideals between oriented quaternion orders. We
show that when the orientation of the quaternion orders induce the same orien-
tation of K into Bp,∞, their connecting ideal is always generated by the image of
a quadratic ideal. We apply this result to give a new, simple reduction to show
that the O-vectorization problem reduces to the endomorphism ring problem, a
result previously only known for when the factorization of disc O was known,
and assuming O has a small number of genera [19, Theorem 2].
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We also give a heuristic reduction from the problem of computing equivalent
ideals of a given norm to the quaternion order embedding problem, and show
that in important special cases, our algorithms improves the range for which
this is solvable in polynomial time. In particular, in the special case where the
two maximal orders are optimally embedded by quadratic orders of very small
discriminant, it is possible to find equivalent ideals of any norm efficiently. We
also obtain a heuristic improvement in the best known asymptotic complexity
to solve this problem in the generic case, showing that it is always solvable in
time O(p2/3), improving on the results from [2] for a wide variety of degrees d.

We implement our algorithms in SageMath [17]. The implementation can be
found at:

https://github.com/Jonathke/Computing-Optimal-Embeddings

1.2 Technical Overview

Let us take an order O of dscriminant ∆, and elements t, n, α as in Problem 1.

Overview of the algorithms. Our new algorithms to find elements of given norm
and trace are mainly built upon an oracle to find trace pairings, i.e.the value of
the trace of the product of the element α with some elements β of O. This oracle
is built by looking at the discriminant of the quaternion order Z[1, α, β, αβ] and
seeing that its discriminant must be divided by ∆ when α and β do not commute.
This gives an equation on tr(αβ) modulo ∆. And this equation is enough to
recover the value over Z when n(αβ) < ∆2.

We obtain our algorithm GenericOrderEmbedding by applying this idea on a
reduced basis 1, β1, β2, β3 of O and enumerating all possible solutions until the
correct one is found. As for a random order O we can expect n(β1) ≈ n(β2) ≈
n(β3) ≈ ∆2/3, this will be efficient to recover α when n = O(∆4/3) and we can
show that asymptotically (when n grows and p remains fixed) the complexity of
this algorithm is O(n3/2/p2).

Our algorithm MaximalOrderEmbeddingEichler is obtained by trying to apply
GenericOrderEmbedding on all Eichler sub-order of order N (where N is chosen
to ensure that each execution GenericOrderEmbedding should be polynomial in
average and that there is one execution that will succeed). We show that the
average running time of this algorithm is O(n3/4/p).

Finally, in cases where n(β1) is smaller than the expected ∆2/3, the trace
pairing tr(αβ1) will be much smaller than tr(αβj) for 1 < j ≤ 3. Thus, it will
be possible to determine tr(αβ1) exactly for values of n bigger than ∆4/3. In
those cases, we can exploit the knowledge of tr(αβ1) to translate the embedding
problem to a problem of representing some integer by some binary quadratic
form. It is well known that such equation can be solved in polynomial time
with the help of a factorization oracle. This yields the GenericOrderEmbedding-
Factorization algorithm.
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2 Mathematical Background

A quaternion algebra B is a four dimensional Q-algebra with a Q-basis 1, i, j,
satisfying

i2 = a, j2 = b, k = ij = −ji,

for some a, b ∈ Q×. Elements α = x + iy + jz + kw ∈ B have a conjugate
ᾱ = x− iy− jz−kw, and from this we define the reduced norm n(α) := αᾱ and
reduced trace tr(α) := α+ ᾱ.

The values a, b determine the places where B ramify, which again determines
B up to isomorphism. In this work, we fix a prime p, and focus on the quaternion
algebra Bp,∞ ramified at p and ∞.

A lattice in Bp,∞ is a Z-submodule L ⊆ Bp,∞ of rank 4. Lattices have an
invariant called the discriminant, defined as

disc L = det (tr(βiβj)i,j)

where β1, β2, β3, β4 is a Z-basis of L. A lattice O is called an order if it is also
a subring of Bp,∞, i.e. it contains 1, and is closed under multiplication. The
discriminant of an order is always a square, hence we can define the reduced
discriminant

discrd O =
√

disc O ∈ Z

In Bp,∞, orders O always satisfy

discrd O = pN,

where N := [O0 : O], for some maximal order O0 containing O.
In the rest of this document, we will always use the reduced discriminant of

quaternion order despite very often using the word discriminant and using the
notation disc O.
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2.1 On Successive Minimas in a Quaternion Order
We define the successive minimas of a quaternion order O to be the successive
minimas of O/Z.

Below, we prove several simple results bounding the successive minimas of
quaternion orders. Most of those results are folklore and/or very easy to prove
but we restate them for convenience.

In all this section, O is a quaternion order of reduced discriminant ∆ and
β1, β2, β3 realizes the successive minimas of O.
Proposition 1. (Minkowski) 4

3∆
2 ≤ n(β1)n(β2)n(β3) ≤ 8∆2

Lemma 1. n(β1) ≤ 2∆2/3.
Proof. This follows from combining Proposition 1 with n(β2)n(β3) ≥ n(β1)

2. ut
Lemma 2. n(β2) ≤ 2

√
2∆/

√
n(β1).

Proof. By Proposition 1, n(β1)n(β2)
2 ≤ n(β1)n(β2)n(β3) ≤ 8∆2, and this proves

the result. ut
Lemma 3. n(β2) ≥ ∆/(4n(β1)).
Proof. The quaternion order Z[1, β1, β2, β1β2] is contained in O. Thus, by Propo-
sition 2, we have ∆ ≤ 4n(β1)n(β2). ut

Lemma 4. n(β1) ≤ 2
√
2∆√

n(β3)

Proof. Combining Proposition 1 with n(β1)
2n(β3) ≤ n(β1)n(β2)n(β3) ≤ 8∆2

proves the result. ut
Lemma 5. n(β3) ≤ 32∆

Proof. The result follows from the combination of Lemma 3 with Proposition 1.
ut

2.2 Oriented Orders
The main focus in this paper is on optimal embeddings. Our main motivation is
the relation to primitively O-oriented curves, defined as the pair (E, ι), where
E is a supersingular elliptic curve, and ι : K ↪→ End(E) ⊗ Q is an optimal
embedding of O into End(E), i.e. such that

ι|O : O ↪→ End(E)

satisfies
ι(K) ∩ O = ι(O).

Hence, we introduce the analogous notation, which will be used repeatedly in
Section 4:
Definition 1. Let K an imaginary quadratic field, with O ⊆ K an imaginary
quadratic order and let B be a definite quaternion algebra over Q with O ⊆ B
an order. Given an embedding ι : K ↪→ B, we can define a O-oriented order to
be the pair (O, ι), whenever ι(O) ⊆ O. Further, (O, ι) is said to be a primitively
O-oriented order if ι(O) = O.
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2.3 On the Order Generated by two Quaternion Elements

Give two integral elements α1, α2 ∈ B that does not commute, Z〈α1, α2〉 ⊆ B is
an order, with discriminant given by the following proposition:

Proposition 2. [10, Chapter 7] Let Oi be quadratic orders equal to Z[αi] for
i = 1, 2 such that α1, α2 are not commuting. Let Di = disc Oi, ti = tr(αi) for
i ∈ {1, 2} and s = tr(α1α2), then

disc Z〈α1, α2〉 = (D1D2 − (t1t2 − 2s)2)/4

3 Algorithms to Solve the Quaternion Embedding
Problem

In this section, we present several algorithms to solve the quaternion embedding
problem.

3.1 A First Algorithm for a Generic Order.

Our first algorithm GenericOrderEmbedding makes use of the formula stated in
Proposition 2 on the discriminant of the quaternion order generated by two
elements to produce a trace pairing oracle modulo the discriminant of the order
O.

Algorithm 1 GenericOrderEmbedding(O, t, n)

Input: A quaternion order O ⊂ Bp,∞ of discriminant ∆, two integers t, n ∈ Z such
that there exists an element of trace t and norm n in O.

Output: ⊥ or α ∈ O with n(α) = n and tr(α) = t.
1: Compute a Minkowski reduced basis 1, β1, β2, β3 of O.
2: Compute Di = tr(βi)

2 − 4n(βi) for 1 ≤ i ≤ 3, and D = t2 − 4n.
3: Compute Si the set of square roots of DDi mod ∆.
4: for s1, s2, s3 ∈ S1 × S2 × S3 and t1, t2, t3 ∈ [−

√
4nn(β1),

√
4nn(β1)] ×

[−
√

4nn(β2),
√

4nn(β2)] × [−
√

4nn(β3),
√

4nn(β3)] such that ti = (1/2)(si +
ttr(βi)) mod ∆ do

5: Compute α the element such that tr(α) = t, and tr(αβi) = ti for 1 ≤ i ≤ 3.
6: if n(α) = n then
7: Return α.
8: end if
9: end for

10: return Return ⊥.

Proposition 3. Let O ⊂ Bp,∞ be a quaternion order of discriminant ∆ (whose
factorization is known) and Minkowski reduced basis 1, β1, β2, β3. Let k be the
number of distinct prime factors of ∆. Let t, n be two integers such that there
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exists an element of norm n and trace t in O, the GenericOrderEmbedding will
output an element α in O with the correct trace and norm and runs in

O

(
2k

⌈
8

√
nn(β1)

∆

⌉⌈
8

√
nn(β2)

∆

⌉⌈
8

√
nn(β3)

∆

⌉
polylog(∆n)

)

Proof. Since 1, β1, β2, β3 is a basis of O, any element α ∈ O is uniquely deter-
mined by the values tr(α) and tr(αβi) for 1 ≤ i ≤ 3.

For any element α of O, the quaternion order Z〈α, βi〉 is contained in O and so
its discriminant is divisible by ∆. Thus, with the formula given in Proposition 2,
we get that if α has trace t and norm n, we must have DDi = (ttr(βi)−2tr(αβi))

2

mod ∆ which gives tr(αβi) = si + ttr(βi) mod ∆ where s2i = DDi mod ∆.
Moreover, since every quadratic order in the quaternion order O has negative

discriminant we must have tr(αβi)
2 ≤ 4nn(βi).

Thus, assuming that there exists an element of norm n and trace t in O, then
there will be two triples of value s1, s2, s3 and t1, t2, t3 that will lead to a corect
element α.

There are 2k squareroots of any given squares mod∆, and for each 1 ≤
i ≤ 3, there are less than

⌈
8
√

nn(βi)
∆

⌉
values of ti that satisfy the constraint

mod ∆ that are within the desired interval. When the factorization of ∆ is
known, it is possible to compute the set of squareroots Si in O(2kpolylog(∆))
and all the operations to execute for each triple t1, t2, t3 can be performed in
O(polylog(∆n)). This proves the result.

Proposition 3 has three interesting corollaries. The first corollary states an
asymptotic complexity of GenericOrderEmbedding when n is big compared to ∆.

Corollary 1. Let O,∆, k, t, n be as in Proposition 3, and assume that n >
∆2/64. Then, the complexity of GenericOrderEmbedding is O

(
2k(n3/2/∆2)polylog(∆n)

)
.

Proof. When n > ∆2/64, we have that 8
√
nn(βi) > ∆ for all 1 ≤ i ≤ 3, and

so the asymptotics d8
√

nn(βi)/∆e = Θ(
√
nn(βi)/∆) holds for any 1 ≤ i ≤ 3.

Then, we deduce the complexity of GenericOrderEmbedding from Proposition 1.

This second corollary identifies the situation where GenericOrderEmbedding
will always be polynomial-time.

Corollary 2. Let O,∆, k, t, n be as in Proposition 3. If n = O(∆) and k = O(1),
then the complexity of GenericOrderEmbedding is O(polylog(∆n)).

Proof. By Lemma 5, when n = O(∆),
√
nn(βi)/∆ = O(1) and the result follows

from Proposition 3.

A direct application on maximal orders. We can obtain a first algorithm to
solve Problem 1 on input O, by applying directly GenericOrderEmbedding on the
maximal order O. In that case, ∆ = p, and Corollary 2 proves that our algorithm
will be polynomial time when n = O(p). This is already an improvement over
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the result stated in [1] as it does not rely on any heuristic, but we expect Gene-
ricOrderEmbedding to be better than that in average.

In Corollary 3, we give a statement to quantify the number of maximal orders
for which the running time of GenericOrderEmbedding is polynomial in term of
the fraction p4/3/n. The proof of Corollary 3 uses a bound on the number of
maximal orders having a non-trivial endomorphism smaller than a given value
m that we introduce below as Lemma 6. This result was proven in [14].

Lemma 6. For any 0 < M < p2/3, the number of maximal order in Bp,∞
containing an element not in Z of norm smaller than M is O(M3/2).

Corollary 3. Let O ⊂ Bp,∞ be a maximal order. Let t, n be as in Proposition 3.
Assume further that the order O is uniformly random among the set of maximal
order types.

There exists a polynomial P (X) ∈ Q[X], and constants C1, C2 such that for
every ε > 0, if n < C1p

4/3−ε, then the running time of GenericOrderEmbedding
on input O, t, n is smaller than P (log(p)) with probability bigger than 1−C2p

−3ε.

Proof. A maximal order in Bp,∞ has discriminant ∆ = p.
If n(β3)n < p2, then Proposition 3 implies that the running time of Generic-

OrderEmbedding is poly-logarithmic in n, p and since n = O < C1p
4/3−ε there

exists a polynomial P (X) such that the running time is smaller than P (log(p)).
Thus, to prove the result, it suffices to prove that the probability of n(β3)n

being bigger than p2 is smaller than C2p
−3ε for some constant C2.

Using Lemma 4, we can show that if n(β3)n ≥ p2, then we must have n(β1) ≤
C
√
n ≤ CC1p

2/3−2ε for some C > 0. By Lemma 6, we know there exists C ′ > 0
such that there are at most C ′p1−3ε maximal orders admitting a non-trivial
β1 of norm smaller than CC1p

2/3−ε. Since there are O(p) distinct isomorphism
classes of maximal orders, we conclude that the probability of finding such a bad
maximal orders at random is smaller than C2p

−3ε for some constant C2 and this
concludes the proof.

In Appendix A, we outline a heuristic variant of this algorithm, which works
with any basis, followed by enumerating close vectors.

3.2 A Better Asymptotic Algorithm to Solve the Embedding
Problem.

To solve the embedding problem, we are not restricted to the obvious solution
of applying GenericOrderEmbedding on the maximal order given in input.

The goal of this section is to introduce another algorithm MaximalOrderEm-
beddingEichler that applies GenericOrderEmbedding on Eichler orders. We will
show that the average asymptotic complexity of this algorithm is the square-
root of the asymptotic complexity of GenericOrderEmbedding. Unfortunately,
despite that improvement, MaximalOrderEmbeddingEichler does not improve on
the range of values of n for which the running time is polynomial.
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The principle of MaximalOrderEmbeddingEichler is the following: by taking a
split prime N in O, we can deduce that the element α we are looking for must
be contained inside an Eichler order of level N contained in O. Thus, we can
compute the list of these orders and try to apply GenericOrderEmbedding on all
of them until one works. We formalize this idea below as MaximalOrderEmbed-
dingEichler. The value of N is chosen to ensure that the expected running time
of GenericOrderEmbedding on Eichler orders of level N (whose discriminant is
pN) is polynomial in log(pN). This is why we take N = O(n3/4/p). In that case,
we can expect the complexity of the algorithm to be O(N) = O(n3/4/p).

Algorithm 2 MaximalOrderEmbeddingEichler(O, t, n)

Input: A maximal order O ⊂ Bp,∞, two integers t, n ∈ Z such that there exists an
element of trace t and norm n in O.

Output: ⊥ or α ∈ O with n(α) = n and tr(α) = t.
1: Set D = t2 − 4n and O as the maximal order in Q(

√
−D).

2: Select a prime N split in O such that N/2 < n3/4/p < N .
3: Compute O1, . . . ,ON+1 the N + 1 Eichler orders of level N contained in O.
4: for i = 1 to M do
5: Compute α = GenericOrderEmbedding(Oi, t, n).
6: if α 6= ⊥ then
7: Return α.
8: end if
9: end for

10: return ⊥.

Despite the informal reasoning outlined above, it is not easy to prove for-
mally what is the complexity of MaximalOrderEmbeddingEichler because there
are Eichler orders of level N in O that will have elements of norm smaller than
expected. Nonetheless, we obtain a bound on the average running time by prov-
ing that executing MaximalOrderEmbeddingEichler on all maximal orders can be
done in O(n3/4+ε) for any ε > 0. This is stated in Proposition 4.

For the proof, we will need another corollary of Proposition 3 to bound the
running time of GenericOrderEmbedding in terms of the norm of its successive
minimas.

Corollary 4. Let O, t, n be as in Proposition 3, with β1, β2, β3 the three suces-
sive minimas of O.

(i) When n(β2) < ∆2/64n, the running time of GenericOrderEmbedding is

O

(⌈
16
√
2
√

n
n(β1)n(β2)

⌉)
.

(ii) When n(β1) < ∆2/64n and n(β2) ≥ ∆2/64n, the running time of GenericOrderEmbedding
is O

(
n

∆
√

n(β1)

)
.

Proof. For (i), when n(β2) ≤ ∆2/64n, then the first two factors in the complexity
given in Proposition 3 are 1, and so the complexity is given by the last term.
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From Proposition 1, we get n(β3) ≤ 8∆2/n(β1)n(β2) from which we derive

d8
√
nn(β3)/∆e = O(d16

√
2

√
n

n(β1)n(β2)
e)

For (ii), from n(β1) < ∆2/64n, we get that the first factor in the complexity
stated in Proposition 3 is 1. From n(β3) ≥ n(β2) ≥ ∆2/64n, we get that the
complexity is

O

(
n
√
n(β2)n(β3)

∆2

)
which can be simplified to

O

(
n

∆
√
n(β1)

)
by applying n(β2)n(β3) = O(∆2/n(β1)) that we derive from Proposition 1. ut

We will also need a lemma to upper-bound the number of Eichler orders
admitting an embedding of two non-commuting quadratic orders of discriminant
δ1, δ2.

Lemma 7. Let O be an Eichler order of level N in Bp,∞. Let O1,O2 be two
quadratic imaginary orders of discriminant δ1, δ2 (and conductors f(δ1), f(δ2))
such that the Oi are optimally embedded inside O and their embedding is non-
commuting.

Let us take α1 and α2 two elements of O such that optimal embedding of Oi

is equal to Z[αi]. Let O1,2 be the quaternion sub-order of O generated by α1, α2

and let s = tr(α1α2).
We define T (s, δ1, δ2) as the number of Eichler orders of level N containing

O1,2.
Then, there exists a constant C such that :

T (s, δ1, δ2) ≤ Cτ(∆1,2/∆)τ(f(s, δ1, δ2))f(s, δ1, δ2) (2)

where τ(x) counts the number of divisors of the integer x and f(s, δ1, δ2)
2 =

gcd(f(δ1)
2, f(δ2)

2, (1 − 2s)) when tr(α1)tr(α2) = 1 and gcd(f(δ1)
2, f(δ2)

2, s)
otherwise.

Proof. Since α1, α2 are supposed to reach successive minimas, it is easy to see
that their trace must be either 0 or 1 (if not then there would be an element of
smaller than norm inside Z+ αi).

By [18, 24.1.4], there exists a unique integer f(O1,2) and Gorenstein order
Gor(O1,2) such that O1,2 = Z + f(O1,2)Gor(O1,2), where f(O1,2) is an integer
and Gor(O1,2).

We start by showing that f(O1,2)
2 = gcd(f(δ1)

2, f(δ2)
2, (1 − 2s)) when

tr(α1)tr(α2) = 1 and f(O1,2)
2 = gcd(f(δ1)

2, f(δ2)
2, s) otherwise.

The number f(O1,2) divides all the coefficients of the ternary quadratic form
associated to the trace 0 elements of O1,2 (see [18, 24.2]). In particular, this means
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that f(O1,2) divides the conductor of all imaginary quadratic orders contained
in O1, 2. This proves that f(O1,2)

2 divides gcd(f(δ1)
2, f(δ2)

2).
When tr(αi) = 1, it is easy to verify that the conductor must be odd. When

tr(α1)tr(α2) = 1 we know that f(O1,2) is odd. With disc Z+ fO = f3disc O for
any f,O, and Proposition 2, we get that f(O1,2)

3 | (tr(α1)tr(α2) − 2s)2. Thus,
f(O1,2) | (tr(α1)tr(α2)− 2s).

Moreover, since f(O1,2) divides the conductor of Z[α1α2], f(O1,2)
2 divides

its discriminant which is equal to

s2 − 4n(α1)n(α2) =
−δ1δ2 − 1 + δ2 + δ1 + 4s2

4

=
−δ1δ2 + δ2 + δ1 + (2s− 1)(2s+ 1)

4

Since f(O1,2)
2 divides δ1, δ2 it must divide (2s−1)(2s+1) and since f(O1,2)

is odd, it cannot divide (2s + 1) as it already divides 2s − 1. Thus, f(O1,2)
2

divides (2s− 1).
When tr(α1) = 1 and tr(α2) = 0, we must have that f(O1,2) is odd and

that f(O1,2)
2 divides the conductor of α1 + α2. We have tr(α1 + α2) = 1 and

n(α1 + α2) = n(α1) + n(α2) + tr(α1α2). Since tr(α2) = 0, α2 = −α2 and so
n(α1 − α2) = n(α1) + n(α2) − s. With n(α1) = (1 − δ1)/4 and n(α2) = −δ2/4,
we get that the discriminant of α1 +α2 is δ1 + δ2 − 4s. Thus, we must have that
f(O1,2)

2 | s which proves the result.
A similar reasonning proves the result when tr(α1) = 0 and tr(α2) = 0.
Now we need to prove that gcd(f(δ1)

2, f(δ2)
2, (tr(α1)tr(α2) − 2s)) (resp.

gcd(f(δ1)
2, f(δ2)

2, s)) must divide f(O1,2)
2.

f(O1,2)
2 is the gcd of the norms of all the trace 0 element in O1,2. By ex-

pressing the ternary quadratic form corresponding to the norm of trace 0 ele-
ments given as alinear combinations of 1, α1, α2, α1α2, it is easy to verify that
gcd(f(δ1)

2, f(δ2)
2, (1− 2s)) (resp. gcd(f(δ1)2, f(δ2)2, s)) when tr(α1)tr(α2) = 1

(resp. otherwise) divides the norm of all the elements of trace 0 in O1,2. This
proves the result.

Then, we show that Gor(O1,2) is a Bass order. A Gorenstein order is Bass if
all its superorder are Gorenstein. Thus, if Gor(O1,2) is not a Bass order, there
exists a non-Gorenstein order O′ = Z + f(O′)Gor(O′) that contains GorO1,2.
Since O′ is non-Gorenstein, we must have f(O′) > 1. We can show that GorO1,2

contains the quadratic imaginary orders of O1,2, but with a conductor divided
by f(O1,2). We can follow the same reasoning we just led to prove that f(O′)2

must divide gcd(f(δ1)
2, f(δ2)

2, (tr(α1)tr(α2)− 2s))/(f(O1,2)
2) and this value is

1 which is a contradiction.
Thus GorO1,2 is Bass.
Eichler and Brzezinski proved that the number of Eichler orders of discrim-

inant ∆ containing a given Bass suborder of discriminant ∆ | D (in fact their
result is about the number of maximal orders containing some Bass sub-order,
but it can easily be extended to Eichler orders of level N ) is upper-bound by

12



τD/∆ where τ is the function counting the number of divisors of any given
number.

To conclude our proof, we just need a result to quantify the number of quater-
nion order of discriminant disc O containing a given order of the form Z + fO
for any integer f and Bass order O. Leroux [13, Lemma 3] provided such a
result when f is prime and O is a maximal order. We will adapt his proof to
show that if Z + fO is contained in O′ where O and O′ are Bass orders of the
same discriminant, then O and O′ are connected with an primitive ideal of norm
f ′ | f .

Let us consider the ideal I = {x ∈ O′, xO ⊂ O′}. It is easily verified that
this is an integral ideal whose left order is O′ and right order is O. We have
fO′ ⊂ I ⊂ O′, and so I is equal to f1I

′ where f1 and n(I ′) divide f and I ′ is a
primitive integral ideal whose left order is O′ and right order is O.

Thus, we can bound the number O′ of orders containing Z+fO with disc O′ =
disc O by Cτ(f)f for some constant C as the number of integral ideals of norm
f is in O(f).

We get the final results by multiplying the bound on the number of super-
order containing the Bass order GorO1,2 with Cf(O1,2)τ(fO1,2).

ut

Proposition 4. Let p, t, n,O,∆, k be such that k = O(1) and there exists an
element of trace t and norm n inside O and n > p4/3, MaximalOrderEmbedding-
Eichler will output an element α of the correct trace and norm inside O.

For any ε > 0, the average complexity of MaximalOrderEmbeddingEichler is

O

(
n3/4+ε

p

)
.

Proof. Correctness follow from Proposition 3 and the fact that if N is split in
O, then α of trace t and norm n, is contained in one of the two Eichler orders
of the form Z+ON where N is an O-ideal of norm N .

We are going to prove that the sequential executions of MaximalOrderEmbed-
dingEichler on all types of maximal orders in Bp,∞ takes time O(n3/4+ε). This
will prove the result as there are O(p) distinct maximal order types in Bp,∞.

Since the values t, n are always the same, the value of N can be the same ac-
cross all executions of MaximalOrderEmbeddingEichler. In that case, the sequen-
tial executions of MaximalOrderEmbeddingEichler on all maximal orders types
simply consist in the computation of all Eichler orders of level N , and the se-
quential executions of GenericOrderEmbedding on all these orders.

The integer N is prime, so there are O(Np) Eichlers orders of level N , and
each one can be computed in O(polylog(pN)) by enumerating ideals of norm N
and intersecting their left and right orders. With the choice of N , the cost of
computing them all is O(n3/4polylog(pn)).

Let us write SN,p the set of all Eichler orders of level N in Bp,∞ and let us
write pN = ∆ the discriminant of these orders. For each O ∈ SN,p, the cost
of executing GenericOrderEmbedding on input O, t, n is written CO. We write

13



nO
1 , n

O
2 , n

O
3 the norm of the successive minima. Corollary 4 proves that there

exists a function C : N4 → N such that CO = O(C(∆,n, nO
1 , n

O
2 )).

By Lemma 1, we have that nO
1 ≤ 2∆2/3, and by Lemmas 2 and 3 we have

that max(∆/(4nO
1 ), n

O
1 ) ≤ nO

2 ≤ 2
√
2∆/

√
nO
1 .

Now, let us define δOi as the discriminant of Z[βO
i ]. Its value is ((εOi )2−4nO

i )
where εOi = tr(βO

i ) is a value in {0, 1}. In particular, we have 4nO
i − 1 ≤ −δOi ≤

4nO
i . In that case, note that we also have CO = O(C(∆,n,−δO1 ,−δO2 ))
If we write T (δ1, δ2) = #{O ∈ SN,p|δO1 = δ1, δ

O
2 = n2}, and we regroup

maximal orders by the discriminants corresponding to their first and second
successive minimas, we can get

∑
O∈SN,p

CO ≤ C1

d8∆2/3e∑
−δ1=3

d
√
2∆/

√
−δ1e∑

−δ2=bmax(4∆/(−δ1),−δ1)c

T (δ1, δ2)C(∆,n,−δ1,−δ2) (3)

for some constant C1.
When δ2 ≥ ∆2/(16n)− 1, the bound (ii) from Corollary 4 yields

d8∆2/3e∑
−δ1=3

d
√
2∆/

√
−δ1e∑

−δ2=d∆2/(4n)e

T (δ1, δ2)C(∆,n,−δ1,−δ2)

≤C2

d8∆2/3e∑
−δ1=3

n

∆
√
−δ1

d
√
2∆/

√
−δ1e∑

−δ2=d∆2/(n)e

T (δ1, δ2)

for some constant C2.
We have an optimal embedding of the quadratic order of discriminant δ1

inside every Eichler order such that δO1 = δ1. Let us write O1 for this quadratic
order.

Each optimal embedding of O1 inside an Eichler order O of level N gives
an optimal embedding of O1 in the two maximal super-orders of O. There are
O(h(O1)) distinct optimal embeddings of O1 inside maximal orders (see [15,
Proposition 3.3] for instance) and it can be shown that each of these embeddings
gives an embedding of O1 in at most 2 Eichler orders of level N (corresponding
to the at most 2 O1-ideals of norm N).

Thus, there are O(h(O1)) distinct types of Eichler orders of level N with δO1 =

δ1 and we deduce that
∑d

√
2∆/

√
−δ1e

−δ2=d∆2/(4n)e T (δ1, δ2) = O(h(O1)) = O((−δ1)
1/2+ε).

With ∆ = pN = O(n3/4), we deduce

d8∆2/3e∑
−δ1=3

d
√
2∆/

√
−δ1e∑

−δ2=d∆2/(16n)e

T (δ1, δ2)C(∆,n,−δ1,−δ2) = O(n∆−1/3+ε) = O(n3/4+ε)

(4)
For every Eichler order O containing an embedding of the quadratic orders

of discriminant δ1, δ2, Proposition 2 tells us that their must be a value s =
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(1/2) ±
√
δ1δ2 + ε mod ∆ where |s| ≤

√
δ1δ. In that case, the value of δ1δ2 =

(2s− ε)2 + k∆ for some integer 0 ≤ k.
Thus we can upper-bound the second part of our sum as follows:

d8∆2/3e∑
−δ1=3

d∆2/(16n)e∑
−δ2=bmax(4∆/(−δ1),−δ1)c

T (δ1, δ2)C(∆,n,−δ1,−δ2)

≤
∑

|s|≤2∆/
√
n

d∆5/3/ne∑
k=0

∑
δ1,δ2∈{δ1,δ2|δ1δ2, (2s−ε)2+k∆}

T (s, δ1, δ2)C(∆,n,−δ1,−δ2)

where T (s, δ1, δ2) was defined in Lemma 7.
Now, we can apply Corollary 4 (i) to get

∑
|s|≤2∆/

√
n

d∆5/3/ne∑
k=0

∑
δ1,δ2∈{δ1,δ2|δ1δ2, (2s−ε)2+k∆}

T (s, δ1, δ2)C(∆,n,−δ1,−δ2)

≤
√
n

∑
|s|≤2∆/

√
n

d∆5/3/ne∑
k=0

∑
δ1,δ2∈{δ1,δ2|δ1δ2, (2s−ε)2+k∆}

T (s, δ1, δ2)√
δ1δ2

We have δ1δ2 > s2, thus 1/
√
δ1δ2 ≤ 1/|s|. Moreover, we can apply Lemma 7

to upper-bound T (s, δ1, δ2). This yields

∑
|s|≤2∆/

√
n

d∆5/3/ne∑
k=0

∑
δ1,δ2∈{δ1,δ2|δ1δ2, (2s−ε)2+k∆}

T (s, δ1, δ2)√
δ1δ2

≤
√
n max

x≤nm
τ(N)2

∑
|s|≤2∆/

√
n

1

|s|

d∆5/3/ne∑
k=0

∑
δ1,δ2∈{δ1,δ2|δ1δ2, (2s−ε)2+k∆}

f(s, δ1, δ2)

for some constant C3 and integer m > 0. We define τ(x) to be the number of
distinct divisor of any integer x.

The size of the set {δ1, δ2 | δ1δ2, (2s− ε)2+ k∆} can be uppper-bounded by
τ((2s− ε)2 + k∆)2.

By definition of f(s, δ1, δ2) in Lemma 7, we see that we must have f(s, δ1, δ2)4 |
k. Thus, by writing every value k as k40k1 we can upper bound f(s, δ1, δ2)

4 by
k0, and we obtain :

√
n max

x≤nm
τ(N)2

∑
|s|≤2∆/

√
n

1

|s|

d∆5/3/ne∑
k=0

∑
δ1,δ2∈{δ1,δ2|δ1δ2, (2s−ε)2+k∆}

f(s, δ1, δ2)

≤
√
n max

x≤nm
τ(N)4

∑
|s|≤2∆/

√
n

1

|s|

d(∆5/3/n)1/4e∑
k0=1

b∆5/3/(nk4
0)c∑

k1=0

k0
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There exists a constant C4 such that

d(∆5/3/n)1/4e∑
k0=1

b∆5/3/(nk4
0)c∑

k1=0

k0 ≤ C4∆
5/3/n

d(∆5/3/n)1/4e∑
k0=1

1

k30
.

The value of ζ(3) is a constant and
∑x

s=1 1/s = O(log x). Thus, there is a
constant C5 such that

√
n max

x≤nm
τ(N)4

∑
|s|≤2∆/

√
n

1

|s|

d(∆5/3/n)1/4e∑
k0=1

b∆5/3/(nk4
0)c∑

k1=0

k0

≤C5
∆5/3

√
n

log(∆/
√
n) max

x≤nm
τ(N)4

With ∆ = pN = O(n3/4) and the fact that τ(x) = O(xε) for any ε > 0 [20],
we conclude that

d8∆2/3e∑
−δ1=3

d∆2/(16n)e∑
−δ2=bmax(4∆/(−δ1),−δ1)c

T (δ1, δ2)C(∆,n,−δ1,−δ2) = O(n3/4+ε) (5)

The combination of Eqs. (3) to (5) proves that executing MaximalOrderEm-
beddingEichler on all maximal orders takes time O(n3/4+ε) and this proves that
the average running time is O(n3/4+ε)/p. ut

3.3 Another Heuristic Algorithm with Factorization

The problem with GenericOrderEmbedding is that it does not work well when the
input order O contains smaller elements that one should expect from a random
order of the same discriminant. Thus, while being efficient in the average case,
it is not always optimal. Interestingly, we will see that the bad cases for Generic-
OrderEmbedding are actually good cases for another algorithm that we present
below as GenericOrderEmbeddingFactorization.

The idea of this algorithm is that since O contains a very small element β1,
it will be easier to know the value of tr(αβ1) exactly. Then, once this value is
fixed, the ternary quadratic form becomes a binary quadratic form that we know
how to solve efficiently.

More precicely, let β be an element in O for which we know tr(αβ), and let
γ be any element in O orthogonal to Z[β]. Now look at the order

Z〈β, γ〉 ⊆ O

and write M for the index [Z〈β, γ〉 : O]. Writing x + βy + γz + γβw for a
generic element in Z〈β, γ〉, the norm form of this order is of the simple form

Q(x, y, z, w) := f(x, y) + n(γ)f(z, w)
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where f(x, y) denotes the norm of x + βy. While it is unlikely that α lies in
Z〈β, γ〉, we have that Mα ∈ Z〈β, γ〉, thus, we can instead solve for Mα. First, we
find the values of x and y from the knowledge of tr(α) and tr(αβ) (because z, w
contribute nothing to these traces). Then, we can solve for z, w by enumerating
all solutions of

f(z, w) =
n(Mα)− n(α0)

n(γ)
.

with Cornacchia’s algorithm. Finally, for each potential solution of the form
α′ := x+ βy + γz + γβw, we check if α′/M ∈ O.

The only caveat is that Cornacchia’s algorithm require the factorization of the
number one is trying to represent. Furthermore, the total amount of solutions is
exponential in the number of distinct prime factors of the number one is trying
to represent. Thus, the best we can do, as we need to enumerate through all
the solutions of each Cornacchia instance, is get a heuristic runtime for our
algorithm, under the plausible assumption that the integers that we encounter
will not have too many prime factors.

Heuristic 1 All integers M (resp. N) occuring in Step 4 (resp. Step 8) of Al-
gorithm 3 behave like four times random numbers (resp. random numbers). In
particular, the number of distinct prime factors is exptected to be small, i.e.
O(poly(log logM)) (resp. O(poly(log logN))) .

We also introduce a second heuristic to estimate the number of expected
embedding of a given quadratic order in any maximal order. This heuristic will
be useful in both the proof of this algorithm and later.

Heuristic 2 Let O ⊆ Bp,∞ be a maximal quaternion order, and let O be a
quadratic order, embedding into Bp,∞. The expected number of optimal embed-
dings ι : O ↪→ O up to conjugation by O× is Θ(h(O)/p).

One reasoning for this heuristic comes from [18, Theorem 30.7.5], which,
specialized to our case, say that summing over a representative of all isomor-
phism classes of maximal orders in Bp,∞, there should be Θ(h(O)) embeddings.
Heuristic 2 simply says that these embeddings are randomly distributed over
these representatives. In [12], Leroux proved some bounds on the number of dis-
tinct embeddings of the same quadratic order inside the same maximal order.
While these bounds are not enough to prove Heuristic 2, they are a first step
in the right direction as they prove that extreme situations where all quadratic
orders are embedded inside the same maximal order are not possible.

Proposition 5. Assume the existence of a factorization oracle, and that Heuris-
tic 1 holds. Given integers t and n, GenericOrderEmbeddingFactorization outputs
an element α ∈ O with tr(α) = t and n(α) = n or decide that none exists in
time

O

(
2k
√
nn(β1)

∆
· polylog(np)

)
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Algorithm 3 GenericOrderEmbeddingFactorization(O, t, n)

Input: An order O ⊂ Bp,∞ of discrd O = ∆ (with known factorization), and two
integers t, n ∈ Z.

Output: ⊥, or α ∈ O with n(α) = n and tr(α) = t.
1: Compute a Minkowski reduced basis 1, β1, β2, β3 of O.
2: Compute D1 = tr(β1)

2 − 4n(β1), and D = t2 − 4n.
3: Compute γ1, γ2, a Minkowski reduced basis of the part of O orthogonal to Z[β].
4: Compute M := [Z〈β1, γ〉 : O].
5: Compute S1 a set of squareroots of DD1 mod ∆.
6: for s1 ∈ S1, and t1 ∈ [1,

√
4nn(β1)] such that t1 = (1/2)(s1 + ttr(β1)) mod ∆

do
7: Let α′

0 := x+ yβ1 be the element in Z[β1] with tr(α′
0) = Mt, tr(α′

0β1) = Mt1

8: Set N := M2n−n(α0)
Mn(γ1)

9: for z, w such that n(z + β1w) = MN do
10: Set α′ := α′

0 + γ(z + β1w)
11: if α′/M ∈ O then
12: return α′/M
13: end if
14: end for
15: end for
16: return Return ⊥.

where ∆ = disc O and k is the number of primes divisors of ∆. Further, assum-
ing O is maximal, and that Heuristic 2 holds, the expected runtime is also upper
bounded by

O
(√

n(β1) · polylog(np)
)
⊆ O

(
p1/3 · polylog(np)

)
Proof. The correctness of the algorithm follows directly from the description at
the start of this section. We now proceed to prove the runtime of the algorithm.

The algorithm tries the 2k values of s1 and O
(√

nn(β1)
∆

)
possible values of t1,

and for each one, attempts to derive a solution α from representations of some
integer MN by the principal binary quadratic form corresponding to elements
in Z[β1].

Under Heuristic 1, Cornacchia’s algorithm can find the O(polylog(MN))
solutions in O(polylog(MN)) time. Testing each candidate has the same com-
plexity and this proves the first part of the result.

However, the runtime above is the same as the time it takes to find all
solutions. Applying Heuristic 2, we expect there to be a total of

O(h(Z[α])/p) = O(
√
n/p)

solutions. By Heuristic 1, each value of t1 is only expected to give a polylogarith-
mic number of solutions, hence the total number of values t1 that corresponds
to a value of tr(αβ1) for a solution α, divided by the total possible number of
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values of t1, is

Õ

( √
n/p√

nn(β1)/p

)
= Õ

(
1√
n(β1)

)
This bounds the expected number of values of t1 we have to try before a solution
will be found. The final expected runtime is obtained by the bound on n(β1) given
by Lemma 1 ut

From Proposition 5, we see that as n increases, the algorithm’s runtime even-
tually becomes independent of n. In the cases when n is very large, we can also
discard the factorization oracle altogether, by only running Cornacchia on “easy”
instances (for instance when N is a prime number). Indeed, under Heuristic 1,
the numbers N in Step 8 behave like random integers of the same size and so
they have a probability of 1/ logN to be prime. This allow us to run Generic-
OrderEmbeddingFactorization without the need of a factorization oracle, and the
running time is only increased by a factor O(log(np)).

Remark 1. Our algorithm GenericOrderEmbeddingFactorization can be seen as
a generalization of the method introduced in [1]. Indeed, what is done in [1,
Algorithm 5.1] is equivalent to looking at tr(N0ω0α) where ω0 is an integral
element of very small norm, and the integer N0 is such that O is connected with
O0, a maximal order containing ω0 by an ideal of norm N0. Since one can expect
N0 ≈ √

p when O is a random maximal order, this method allows us to recover
α in polynomial time when n = O(p). In the case where N0 is especially small,
Dω0 might be equal to β1 and in that case, our method is equivalent to the one
of [1]. Note that in every other case, our method is strictly better. Also, note
that, by replacing β1 by other elements of small norm, we can perform a similar
randomization as was explained in [1, Section 5.3], to remove the need for the
factorization oracle. However, this rerandomization may not help in some cases
where β1 is much smaller than β2, β3, because in that case all the small vectors
will lie in the same quadratic order generated by 1 and β1.

4 Ideals Between Oriented Orders

In this section, we expand on results related to primitively oriented maximal
orders. We do this by first considering ideals between oriented maximal orders,
and show that such ideals “comes from” quadratic ideals precicely when the left
and right order of the ideal admits the same orientation.

Our first result is then a new algorithm that reduces O-vectorisation to O-
EndRing in polynomial time for all orders. One such reduction first appeared in
the work by Castryck, Vercauteren and Panny [4] for the order Z[

√
−p], and this

was later generalised Wesolowski [19] to arbitrary orders. However, the algorithm
is only polynomial in #Cl(O)[2] (which can be exponential in the discriminant
of O), and requires the factorization of disc O. Our reduction does not have this
caveat, and only depends on the size of the discriminant, not its factorization.
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Second, we consider the problem of finding ideals of fixed degree between iso-
morphism classes of quaternion orders, a problem of huge importance in isogeny-
based cryptography. For large norm, this is solved efficiently by the (generalised)
KLPT algorithm [11] [6], while for small degree, this is efficiently solvable by sim-
ple lattice reduction. The remaining sizes of norms in between here were recently
studied by Benjamin Bencina, Péter Kutas, Simon-Philipp Merz, Christophe Pe-
tit, Miha Stopar and Charlotte Weitkämper [2]. The relation to the quaternion
embedding problem was mentioned in the same work [2, Appendix A]. We ex-
pand on this connection, giving a heuristic algorithm which solves this problem
in time O(p2/3) for any degree d, and we show that in the special case where both
orders are oriented orders of small class number, this algorithm is polynomial
time for any d, allowing the computation of optimal paths between supersingular
curves with small endomorphisms. Finally, in Appendix C, we consider the case
where one of the orders contain an element of very small norm, and show that
this can be solved in polynomial time up to d < p2/3.

Given an O-ideal l, and an primitively O-oriented order (O, ι) (Definition 1)
we can define the corresponding quaternion ideal as O〈ι(l〉). Further, given an
O-ideal I, one can define the corresponding O-ideal to be ι−1(I), which can be
computed by intersecting I with ι(K). The relation between these operations
are given by the following proposition.

Proposition 6. Let (O, ι) be a primitively O-oriented order. Then

– Given a left O-ideal I, we have that O〈n(I)〉 ⊆ O〈I ∩ ι(K)〉 ⊆ I.
– Given an invertible O-ideal l, we have that O〈ι(l)〉 ∩ ι(K) = ι(l)

Proof. To prove the first statement, note that the first inequality follows from
the fact that n(I)Z ⊆ I ∩ ι(O), and the second follows from the observation that
O〈I ∩ ι(O)〉 ⊆ I.

To prove the second statement, following [18, Exercise 30.2.a], we see that
O〈ι(l)〉 ∩ ι(K) ⊃ ι(l), since 1 ∈ O, and conversely, since l is invertible, we have
find that

(O〈ι(l)〉 ∩ ι(K))ι(O) = (O〈ι(l)〉 ∩ ι(K))ι(l−1l)

⊆ (O〈ι(l)ι(l−1)〉 ∩ ι(K))ι(l) = ι(O)l

where we are using O〈ι(l)ι(l−1)〉 ∩ ι(K) = O ∩ ι(K) = ι(O), which follows by
definition of (O, ι) being primitively O-oriented. ut

The previous proposition motivates the following definition, which empha-
sizes when a quaternion ideal is generated by the image of a quadratic ideal:

Definition 2. Let (O, ι) be a primitively O-oriented maximal order. A left O-
ideal is said to be generated by an O-ideal if

I = O〈I ∩ ι(K)〉

The following lemma shows that the orientation automatically “transfer” to
the right order of an ideal generated by an O-ideal.
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Lemma 8. Let (O, ι) be a primitively O-oriented maximal order, and let I be
a left O-ideal, generated by an O-ideal. Then (OR(I), ι) is a (not necessarily
primitively) O-oriented maximal order.

Proof. Let ω be the image of a generator of O under ι. To prove that (OR(I), ι)
is a O-oriented maximal order, it suffices to see that ω ∈ OR(I). But this follows
from the fact that I can be given generators in ι(K), which commute with ω. ut

When we have a primitively O-oriented maximal order (O, ι), the previous
lemma showed that given an O-ideal I, the right order of I admitting the same
orientation is a necessary condition for I to be generated by an O-ideal. Next,
we show that this condition is also sufficient.

Lemma 9. Let (O1, ι) and primitively O-oriented maximal order, and let (O2, ι)
be a (not necessarily primitively) O-oriented maximal order. Then their connect-
ing ideal I is generated by an O-ideal.

Proof. Let ω be a generator of O under ι, and let I be the unique primitive
connecting ideal between O1,O2. We have that ω ∈ O1∩O2 = Z+I, and hence,
a+ ω ∈ I for some a ∈ Z. Let

J = O1〈a+ ω, n(I)〉.

Clearly, J is generated by an O-ideal, and we will show that I = J . First, note
that O〈n(I)〉 ⊆ J ⊆ I, so assume n(J) = n(I)d for some d | n(I). Assume now
that J ( I, i.e. that d 6= 1. Since O1〈n(I)〉 ⊆ J , we have O1〈d〉 ⊂ J+O1〈d〉. Since
we have n(J+O1〈d〉) = gcd(n(J), d2), we see that we must have n(J+O1〈d〉) =
d2. By equality of the norm, we must have J+O1〈d〉 = O1〈d〉. Hence, J/(d) ⊆ O1,
implying that a+ω

d ∈ O1, contradicting the assumption that O1 was primitively
O-oriented. Hence I = J , which shows that I is generated by an O-ideal. ut

4.1 Vectorisation to Oriented Endring Reduction

From Lemma 9, we see that the only obstruction in finding an ideal generated
by an O-ideal between two primitively oriented maximal orders is that the two
O-oriented orders might be oriented in different ways. Fortunately, the following
lemma shows that this is easy to fix.

Lemma 10. Let (O, ι1) be a primitively O-oriented maximal order, and let ι2 :
K ↪→ B be another embedding. Then there exists an order O′ ∼= O such that
(O′, ι2) is a primitively O-oriented maximal order

Proof. By the Skolem-Noether theorem, given any two embeddings ι1, ι2 : K ↪→
B, there exists some α ∈ B× such that for any δ ∈ K, we have that ι1(δ) =
α−1ι2(δ)α. Then O′ := αOα−1 is isomorphic to O, and further it is clear that

ι2(K) ∩ O′ = ι1(K) ∩ αOα−1 = α−1ι2(K)α ∩ O = ι1(K) ∩ O = ι(O),

hence (O′, ι2) is a primitively oriented maximal order. ut
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Algorithm 4 VectorizationO((O1, ι1), (O2, ι2))

Input: Two primitively O-oriented maximal orders (O1, ι1), (O2, ι2).
Output: An O-ideal l such that OR(O1〈l〉) ∼= O2.

Set ωi := ιi(ω) for i = 1, 2, where ω is any generator of O.
Compute α such that αω1 − ω2α = 0 using linear algebra.
Set O′

2 := αO2α
−1.

Compute the connecting (O1,O′
2)-ideal I := NO1O′

2.
Set l := ι−1(I ∩ ι(O)).
return l.

Thus, the reduction simply consists of fixing the orientations, and intersecting
with the image of K under the orientation. We summarize this in Algorithm 4.

Proposition 7. Algorithm 4 is correct and runs in polynomial time in the length
of the input.

Proof. Lemma 10 shows both the existence of α, and that (O′
2, ι1) is a primitively

O-oriented order. Thus, it follows from Lemma 9, that the connecting ideal
between O1 and O′

2 is generated by an O-ideal. Finally, the runtime is clear, as
all operations done consists of simple linear algebra. ut

The Corollary from Proposition 7 is that O-Vectorization reduces to O-
Endring in polynomial time, regardless of the size of Cl(O)[2], and without
knowing the factorization of disc O, improving the results of Wesolowski [19].

Corollary 5. Effective O-Vectorization reduces to O-Endring in polynomial time.

Proof. In this proof, we reuse the notation from [19]. We are given two oriented
curves (E1, γ1), (E2, γ2) ∈ SSO(p), together with an ε-basis of End(E1) and
End(E2), and our goal is to compute an O-ideal a such that a?(E1, γ1) = (E2, γ2),
and an efficient representation of φa : (E1, γ1) → a ? (E1, γ1).

First, compute optimal embeddings ι1 and ι2 such that (End(Ei), ιi) are
primitively O-oriented maximal orders using [19, Lemma 2]. Next, we run Algo-
rithm 4 on (End(E1), ι1), (End(E2), ι2), which outputs an O-ideal a solving the
vectorization problem. Finally, an efficient representation of the isogeny φa can
be computed unconditionally in polynomial time using [16, Theorem 2.8], or, for
a more practical alternative, with [19, Proposition 9] assuming GRH. ut

4.2 Finding Fixed Norm Ideals Between Maximal Orders

When given two maximal orders O1,O2, we consider the problem of finding a left
O1-ideal I of norm d such that OR(I) ∼= O2. This problem is of huge importance
in isogeny-based cryptography, as it corresponds to computing isogenies of a
given norm between supersingular curves, when they exists. One special case of
this, is finding such an ideal of norm `k for some fixed, small prime `, and the
smallest k ∈ Z≥0, such that such an ideal exists. This correspond to an optimal
path between the curves in the `-isogeny graph.
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In this section, we give a new algorithm for solving this problem, based on
our algorithms for the quaternion embedding problem. The algorithm consists
of computing the ascending ideal to the correct level, and then bruteforcing the
remaining horizontal part, for well chosen embeddings. To do this, we need the
following Lemma.

Lemma 11. Let (O, ι) be a primitively (Z+ dO)-oriented maximal order, with
ω = ι(dω0), where ω0 is any generator of O, and let

I := O〈ω, d〉.

Then, n(I) = d, and (OR(I), ι) is a primitively O-oriented maximal order.

Proof. First, note that n(I) = d, because if not, this would contradict the pri-
mality of the embedding, by the same argument as the last part of Lemma 9.
Next, we show that (OR(I), ι) is a O-oriented order, i.e. ω/d ∈ OR(I). To see
this, note that for any element

αω + βd ∈ I, α, β ∈ OL(I)

we have that

(αω + βd)ω/d = αω2/d+ βω

= α(tr(ω)ω − n(ω))/d+ βω

= α(tr(ι(ω0))ω + dn(ι(ω0))) + βω ∈ I

Finally, to see that the O-embedding on OR(I) induced by ι is optimal, note
that if it was not, this would again contradict the optimality of the (Z + dO)-
embedding on O, since n(I) induces the embedding dOR(I) ⊆ OL(I). ut

For simplicity, we will assume factorization, and use a special purpose algo-
rithm we call GenericOrderEmbeddingFactorizationAll, whose only difference with
GenericOrderEmbeddingFactorization, is that it keeps searching and outputting
solutions, until all are found. From the proof of Proposition 5, the expected
runtime of this version is still O

(√
nn(β1)
p

)
under Heuristics 1 and 2.

Proposition 8. Assume the existence of a factorization oracle, and that Heuris-
tic 1 and Heuristic 2 holds. Let β1 be the smallest non-integer in O1, and let
γ1 be the smallest non-integer in O2. ConnectingIdealWithNormd always returns
a solution I if it exists, or ⊥ if a solution does not exist, and runs in expected
time

O
(√

n(β1)n(γ1)
)
.

Proof. First, we prove the correctness of the algorithm. Assume a solution I
exists. We will prove that the solution I can be written as product I = I1 · I2,
where I2 comes from a Z[γ1]-ideal. This will also proves the correctness of the
algorithm, as it runs through all embeddings of Z[dγ1] into O1, computes the
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Algorithm 5 ConnectingIdealWithNormd(O1,O2)

Input: Two maximal orders O1,O2 ⊂ Bp,∞, and an integer d.
Output: ⊥ or an ideal I with OL(I) = O1, OR(I) ∼= O2, and n(I) = d.

Let γ1 be the element achieveing the first successive minima of O2.
for ω in GenericOrderEmbeddingFactorizationAll(O1, n(dγ1), t(dγ1)) do

Set d′ to be the biggest integer s.t. ω/d′ ∈ O1 for i = 1, 2, 3
Set I1 := O1〈ω/d′, d/d′〉
Set Ocrater := OR(I)
Let ι : Z[γ1] ↪→ Ocrater be defined by ι(γ1) = ω/d.
for l in all Z[γ1]-ideals of norm d′ do

Set I2 := Ocrater〈ι(l)〉
if OR(I2) ∼= O2 then

return I1 · I2.
end if

end for
end for
return ⊥

unique corresponding ascending ideal I ′1, and then multiplies this with all the
remaining ideals that comes from a Z[γ1]-ideals.

Let us denote by ω0, the element in OR(I) such that αω0α
−1 = γ1 for

some α ∈ B×
p,∞ (this exists since O2

∼= OR(I)). Let ω := dω0. The sequence of
inclusions dOR(I) ⊂ I ⊂ OL(I) coming from the fact that the norm of I is d
implies that ω ∈ OL(I). Since OL(I) ∩ OR(I) = Z + I it is easily verified that
since n(ω) = 0 mod d, we must have ω ∈ I or ω ∈ I. Without loss of generaliy
we can assume that ω ∈ I, and so we have OL(I)〈ω, d〉 ⊂ I.

Let d′ be the biggest integer such that ω/d′ ∈ OL(I). It is clear that d′ | d.
We then set

I1 := OL(I)〈ω/d′, d/d′〉

where I1 is a primitive ascending ideal of norm d/d′ by Lemma 11, and we have
OL(I)〈ω, d〉 = d′I1 ⊂ I.

The ideals I and I1 are both primitive, contained inside d′I1 and n(I1) divides
n(I) so it is easy to see that I must factor through I1 and we must have I ⊂ I1.
Hence, we can define

I2 := I−1
1 · I

By Lemma 11, ω/d defines an optimal embedding of Z[γ1] into OR(I1) =
OL(I2). Since we also had that ω/d ∈ OR(I) = OR(I2), we conclude that by
Lemma 9, I2 comes from a Z[γ1]-ideal.

Next, we analyse the runtime. Since we are assuming factorization, Heuristic 1
and Heuristic 2, Proposition 5 tells us that each execution of GenericOrderEmbeddingFactorizationAll
runs in O(

√
n(β1)) time before returning a potential solution. Enumerating the

Z[γ1]-ideals of norm d′ can be done efficiently, again by factoring d′. Since there
are at most O(h(Z[γ1])) isomorphism classes of maximal orders oriented by Z[γ1],
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each candidate ideal we end up with has the correct right order with probability

O

(
1

h(Z[γ1])

)
= O

(
1√
n(γ1)

)
,

hence we get the expected runtime

O
(√

n(β1)n(γ1)
)

to find a solution. ut

The following corollary is immediate from Proposition 8, but we point it
out here for convenience. The first part is generic, and gives the heuristic upper
bounded runtime for finding equivalent ideals of given norm, independent of the
degree. The second part says that when the orders are special, in the sense that
they are both oriented by small quadratic orders, this problem can be solved
efficiently, also independent of the degree.

Corollary 6. Let O1,O2 ⊂ Bp,∞ be two maximal orders. Then, assuming Heuris-
tic 1, 2, and factorization, ConnectingIdealWithNormd(O1,O2) runs in time

O
(
p2/3

)
.

In the special case that there exists γ1 ∈ O1 and β1 ∈ O2 with n(β1),n(γ1) ∈
O(1), and k = O(1), ConnectingIdealWithSmallNormd(O1,O2) runs in polyno-
mial time.

Proof. Immediate from combining Proposition 9, with using Lemma 1 to bound
n(γ1) and n(β1) by O(p2/3) in the generic case, or replacing them with O(1) in
the special case.

Appendix B illustrates why the second part of Corollary 6 is particularly
interesting, namely because it allows us to compute optimal paths between such
orders.

Finally, Algorithm 5 is expected to work in polynomial time for d = O(p2/3),
when only O1 contains an element of small norm. However, this expectation
completely fails whenever the solution ideal comes from a Z[γ1]-ideal, as the
algorithm degenerates into bruteforcing Z[γ1]-ideals. In Appendix C we give
another algorithm, which always works in polynomial time when d has O(1)
distinct prime factors in this case, assuming that the third successive minima of
O2 is O(p2/3), as one expects for “random” maximal orders.
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A Searching in the Unique Two-Sided Ideal of Norm p.

The main idea behind GenericOrderEmbedding is to exploit a system of equations
on the trace pairings mod ∆ provided by the formula from Proposition 2.
In GenericOrderEmbedding, the final solution α is recovered by enumerating all
suitable solutions of the trace pairings system until we find the solution.

One might wonder if we could try a different approach to recover the desired
solution more efficiently. To simplify the reasoning we restrict hereafter to the
special case where O is a maximal order in Bp,∞.

Let α be the solution we are looking for. Using the trace pairings mod p,
we get values t1, t2, t3 mod p. Let us take α0 any solution to the trace pairing
system, meaning that tr(α0) = t, and tr(α0βi) = ti mod p.

By linearity of the trace, we have that α1 = α−α0 is an element that lies in
the intersection mod p of the trace pairing kernels.

Since
tr(α0ᾱ1) ≡ tr(αᾱ1) (mod p)

and
tr(αᾱ1) = tr((α0 + α1)ᾱ1) = tr(α0ᾱ1) + tr(α1ᾱ1),

we have that tr(α1ᾱ1) = 2n(α1) ≡ 0 (mod p), hence α1 is contained in the
unique 2-sided ideal of norm p.

More precisely, it can be shown that the kernel of the trace pairing system
mod p has always dimension 2. Writing the kernel as a lattice Λ, we get that α1

must be contained in Λ+ pO. Thus, we end trying to find to solve the equation
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tr(α1) = 0 and n(α1 + α0) = n in Λ+ pO. This yields a new ternary quadratic
form, but it is unclear if it is any easier to solve.

However, we can use this idea to modify algorithm 1 in the case of maximal
orders to work with any basis (not necessarily reduced), and achieve the same
complexity under some heuristics. The idea is that once an element α0 is found,
which has the correct trace pairings modulo p, the element −α1 lying in the
unique two-sided ideal of norm p, will heuristically be the vector in the lattice
closest to p whenever n(α) = n(α0+α1) < p4/3. We summarize this in Algorithm
6.

Algorithm 6 OrderEmbeddingCVP(O, t, n)

Input: A maximal order O ⊂ Bp,∞, two integers t, n ∈ Z such that there exists an
element of trace t and norm n in O.

Output: ⊥ or α ∈ O with n(α) = n and tr(α) = t.
1: Compute any basis 1, β1, β2, β3 of O.
2: Compute Di = tr(βi)

2 − 4n(βi) for 1 ≤ i ≤ 3, and D = t2 − 4n.
3: Compute si a square root of DDi mod ∆.
4: Compute an element α0 such that tr(α) = t, and tr(αβi) = ti for 1 ≤ i ≤ 3
5: Compute the lattice Λ, the trace free part of the the unique two-sided O-ideal of

norm p.
6: for Enumerate −α1 ∈ Λ, closest to α0 do
7: if n(α0 + α1) = n then
8: Return α.
9: end if

10: end for

Remark 2. We remark that this idea can also be used to get the same bound for
the algorithm from [1]. Recall that this algorithm works by computing an HNF
basis β1, β2, β3, β4 of the order, i.e.

O = 〈e00 + e01i+ e02j + e03k,

e11i+ e12j + e13k,

e22j + e23k,

e33i〉Z
Then one finds an element α0 = tβ1 + x0β2 by solving for the trace and and

norm modulo p. Then, for a solution α, one is looking for α1 := α + α0 of the
form α1 = kpβ2+ yβ3+ zβ4. It is clear that pβ2, β3, β4 again generates the trace
free part of the unique two-sided ideal of norm p, hence, we can again expect α1

to be the CVP solution to α0 in this lattice whenever n(α) = n(α1−α0) < p4/3.

B A Worked Example

We use Algorithm 7 to compute the shortest path in the 2-isogeny graph between
E0 and E1728, where j(Ei) = i.
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Let p = 255 · 3− 1 ≡ 11 (mod 12). We work in the quaternion algebra

Bp,∞ = Q+ iQ+ jQ+ kQ

where i2 = −1 and j2 = −p. Let O1728
∼= End(E1728) and O0

∼= End(E0).
Explicitly, fix O1728 to be

O1728 = Z+ iZ+
i+ j

2
Z+

1 + k

2
Z.

We also know that O0 contains the element ω = 1+
√
−3

2 , where tr(ω) = 1, and
n(ω) = 1. Hence, we look for the smallest k ∈ N such that Z[2kω] embeds into
O1728, by running ConnectingIdealWithSmallNorm2k(O1728,O0) with for increas-
ing k ∈ [1, 2, . . . ]. This corresponds to running GenericOrderEmbeddingFactorizationAll
with t = tr(2kω) = 2k and n = n(2kω) = 22k. We find that there exists an opti-
mal embedding

ι : Z[2kω] ↪→ O1728

For k = 54 defined by

ι(2kω) = 9007199254740992 +
19924704230006999

2
i− 23041705

2
j − 34653096k,

and we use this element to find an ideal connecting O1728 and O0 of norm
254. Translating this to an isogeny from

E1728 : y2 = x3 + x

We find that the point K ∈ E1728 with

x(K) = 86739268981076750i+ 69276702275648044, i2 = −1

generates an isogeny to E0 of degree 254, corresponding to the shortest path
between E0 and E1728 in the 2-isogeny graph.

C Another Algorithm for Finding Equivalent Ideals

As mentioned, the problem with Algorithm 5 is that when (most of) the solution
ideal comes from a Z[γ1]-ideal, Algorithm 5 may end up brute-forcing through
many horizontal ideals if the degree contains many distinct prime factors. In
Algorithm 7, we fix this issue. The idea is to compute embeddings for all elements
in a basis of O2. Then we can recover the solution ideal using Lemma 12, which
we state below.

Lemma 12. Let O ⊆ Bp,∞ be a maximal order, and let I be a primitive right
O-ideal of norm d coprime to p. Given a basis 1, γ1, γ2, γ3 of O. Let di be the
smallest integer such that diγi ∈ OL(I), and let

Ii = OL(I)〈d1γ1, d1〉.

Then
I = I1 ∩ I2 ∩ I3
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Proof. I is a primitive ideal connecting its left and right order of norm coprime
to p, so all the ideals connecting OL(I) and OR(I) are contained in I. Indeed,
let J be an ideal connecting OL(I) and OR(J), then I · J is an OL(I) two-sided
ideal, and theory (see [18]) tells us that this ideal must be a scalar multiplied by
the unique two-sided ideal of norm p in OL(I). Since I has norm coprime to p,
J can be factored as I times scalars times the unique two-sided ideal and so J
is contained in I.

Let J = I1 ∩ I2 ∩ I3.
In the proof of Proposition 8, we proved that we must have I ⊂ Ii for

i = 1, 2, 3 and so we have I ⊂ J .
We will now show that we must have J ⊂ I. For that, we are going to

use that {x ∈ OL(I) | xOR(I) ⊂ OL(I)} ⊂ I. It is easy to see that this set
{x ∈ OL(I) | xOR(I) ⊂ OL(I)} is an ideal whose left order is OL(I) and right
order is OR(I). Thus, it must be contained in I by what we proved earlier.

Let us now take x ∈ J . For each i = 1, 2, 3, there must be αi, βi ∈ OL(I)
such that x = αidiγi + βidi.

We are going to show that xOR(I) ⊂ OL(I). Let us take y ∈ OR(I). Since
1, γ1, γ2, γ3 is a basis of OR(I), we have that y = y0 +

∑3
i=1 yiγi. Thus, xy =

y0x+
∑3

i=1 yi(αidiγi + βidi)γi. With γ2
i = tr(γi)γi − n(γi) we get

xy = y0x+
∑
i=1

yi(αin(γi))di + (βi + αitr(γi))diγi

and it is easy to verify that this belongs to OL(I).
This proves that J ⊂ I and this proves the result.

ut

We now give the algorithm.

Algorithm 7 ConnectingIdealWithSmallNormd(O1,O2)

Input: Two maximal orders O1,O2 ⊂ Bp,∞, and an integer d.
Output: ⊥ or an ideal I with OL(I) = O1, OR(I) ∼= O2, and n(I) = d.

Let 1, γ1, γ2, γ3 ∈ O2 be a Minkowski-reduced basis of O2.
Compute Allω1 = GenericOrderEmbeddingFactorizationAll(O1, n(dγ1), t(dγ1))
Compute Allω2 = GenericOrderEmbeddingFactorizationAll(O1, n(dγ2), t(dγ2))
Compute Allω3 = GenericOrderEmbeddingFactorizationAll(O1, n(dγ3), t(dγ3))
for ω1, ω2, ω3 in Allω1 × Allω2 × Allω3 . do

Set di to be the biggest integer s.t. ωi/di ∈ O1 for i = 1, 2, 3
Set Ii := O1〈ωi/di, d/di〉 for i = 1, 2, 3
Set I := I1 ∩ I2 ∩ I3
if OR(I) ∼= O2 then

return I.
end if

end for
return ⊥
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Proposition 9. Assume the existence of a factorization oracle, and that Heuris-
tic 1 holds. Let β1 be the smallest non-integer in O1, and let 1, γ1, γ2, γ3 be a
Minkowski-reduced basis of O2. ConnectingIdealWithSmallNormd always returns
a solution I if it exists, or ⊥ if a solution does not exist, and runs in time

O

(
max

{⌈
d
√
n(β1)n(γ3)

p

⌉
,

⌈
d
√

n(γ1)

p

⌉
·

⌈
d
√

n(γ2)

p

⌉
·

⌈
d
√
n(γ3)

p

⌉})
.

Proof. First, we show the correctness of the algorithm. Assume that a solution
I exists. Then I induces an embedding dO2

∼= dOR(I) ⊂ O1 = OL(I). The
isomorphism is given by an element α, i.e. αO2α

−1 = OR(I). Setting ωi :=
α−1dγiα for i ∈ {1, 2, 3}, it follows from Lemma 12 that

I =

3⋂
i=1

O1〈ωi/di, d/di〉

where di are the biggest integers such that ωi/di ∈ O1, thus showing the cor-
rectness of the algorithm.

Next, we analyse the runtime. The first potentially dominating term follows
directly from running GenericOrderEmbeddingFactorizationAll on γi sequencially,
and noting that γ1 < γ2 < γ3. However, when β1 is sufficiently small, the
bottleneck of the algorithm becomes iterating over the cartesian product of the
solutions. For each γi, we bound the number of solutions with Heuristic 2, giving
the second dominating term. ut

Thus, from Proposition 9, we see that when n(β1) = O(1), and n(γ3) =
O(p2/3) (as one expects for a random maximal order), Algorithm 7 runs in
polynomial time for d < p2/3.
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