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Abstract. The Feistel construction is a fundamental technique for building pseudo-
random permutations and block ciphers. This paper shows that a simple adaptation
of the construction is resistant, even to algorithm substitution attacks—that is,
adversarial subversion—of the component round functions. Specifically, we es-
tablish that a Feistel-based construction with more than 337𝑛/log(1/𝜖) rounds
can transform a subverted random function—which disagrees with the original
one at a small fraction (denoted by 𝜖) of inputs—into an object that is crooked-
indifferentiable from a random permutation (or ideal cipher), even if the adversary
is aware of all the randomness used in the transformation. Here, 𝑛 denotes the
length of both the input and output of the round functions that underlie the Feistel
cipher. We also provide a lower bound showing that the construction cannot use
fewer than 2𝑛/log(1/𝜖) rounds to achieve crooked-indifferentiable security.

1 Introduction

Random oracles/permutations and ideal ciphers are idealized models that have proven
to be powerful tools for designing and reasoning about cryptographic schemes. They
consist of the following two steps: (i) design a scheme Π in which all parties (including
the adversary) have oracle access to (a family of) truly random functions or random
permutations (and the corresponding inversions), and establish the security of Π in this
favorable setting; (ii) instantiate the oracle in Π with a suitable hash or cipher (such as
SHA-1 or AES) to obtain an instantiated scheme Π′. The random oracle (ideal cipher)
heuristic states that if the original scheme Π is secure, then the instantiated scheme Π′ is
also secure. In this work we focus on the problem of correcting faulty—or adversarially
corrupted—random oracles/random permutations so that they can be confidently applied
for such cryptographic purposes.

One particular motivation for correcting random oracles/permutations in a crypto-
graphic context arises from works studying design and security in the subversion (i.e.,
kleptographic) setting. In this setting, various components of a cryptographic scheme may
be subverted by an adversary, so long as the tampering cannot be detected via blackbox
testing. This is a challenging framework because many basic cryptographic techniques
are not directly available: in particular, the random oracle/permutation paradigm is
directly undermined. In terms of the discussion above, the random oracle/permutation—
which is eventually to be replaced with a concrete cipher—is subject to adversarial
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subversion which complicates even the first step of the random oracle/permutation
methodology. To see a simple example, for AES, denoted as (AES.K,AES.E,AES.D),
whose software/hardware implementation (denoted as AES.K̃,AES.Ẽ,AES.D̃) might
be subverted as follows: AES.Ẽ(k,m∗) = k, for a trigger message 𝑚∗ randomly chosen
by the adversary, while AES.Ẽ = AES.E otherwise, i.e., only when encrypting a special
trigger message, the subverted encryption directly outputs the secret key. Such subverted
AES implementation can be completely broken via a chosen plaintext attack (even if AES
itself is a solid design). Also, this is clearly undetectable via blackbox testing. Moreover,
since the subverted implementation of AES now cannot be assumed to be an ideal cipher
anymore, the security of applications (or constructions of more complicated primitives)
that previously relied on this assumption also becomes elusive.

Our goal is to provide a generic approach that can rigorously “protect” the usage
of random oracle/permutation/cipher from subversion. Specifically, given a function ℎ̃

drawn from a distribution which agrees in most places with a uniform function, we would
like to produce a corrected version which appears still as a random oracle/permutation to
adversaries with a polynomially bounded number of queries. This model is also analogous
to the classical study of “program checking and self-correcting” [3,4,5]: the goal in this
theory is to transform a program that is faulty at a small fraction of inputs (modeling an
evasive adversary) to a program that is correct at all points with overwhelming probability.
Our setting intuitively adapts this classical theory of self-correction to the study of
“self-correcting a probability distribution.” Notably, the functions to be corrected are less
structured, for ideal ciphers or random permutations (or even structureless, for random
oracles), instead of heavily structured.

The model of “crooked” indifferentiability. The first work in this line was [21], focusing
on correcting subverted random oracles; in particular, they introduced a security model
called crooked-indifferentiability to formally capture the problem as follows: First, a
function ℎ : {0, 1}𝑛 → {0, 1}𝑛 is drawn uniformly at random. Then, an adversary may
subvert the function ℎ, yielding a new function ℎ̃. The subverted function ℎ̃(𝑥) is described
by an adversarially-chosen (polynomial-time) algorithmA, with oracle access to ℎ. This
function may differ from the original function (so that ℎ̃(𝑥) ≠ ℎ(𝑥)) at only a negligible
fraction of inputs (to evade blackbox testing). To show that the resulting function
(construction) is “as good as” a random oracle in the sense of indifferentiability [17,9], a
crooked-distinguisher D was introduced; it first prepares the subverted implementation
ℎ̃ (after querying ℎ first); then a fixed amount of (public) randomness 𝑅 is drawn
and published; the construction C may use only the subverted implementation ℎ̃ and
the randomness 𝑅. Now, following the indifferentiability framework, we will ask for
a simulator S such that (Cℎ̃ (·, 𝑅), ℎ) and (F ,SA (𝑅)) are indistinguishable to any
crooked-distinguisher D (even one who knows 𝑅).

1.1 Our Contribution

We investigate the above question in the more restrictive random permutation setting with
also better parameters (actually our construction directly implies a better construction
for correcting random oracles [21]). We first adopt the security model of crooked-
indifferentiability for random permutation. (A formal definition appears in Section 2.)
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A warm-up construction. To consider feasibility of correcting a subverted random
permutation, and also as an example to explore the crooked-indifferentiability model, we
start with a warm-up construction by composing the following two components.
Component I. The first component is built from a source random function that was proven
to be crooked-indifferentiable from a random oracle [21].

The source function is expressed as a family of ℓ + 1 independent random oracles:

ℎ0 : {0, 1}𝑛 → {0, 1}3𝑛 , and ℎ𝑖 : {0, 1}3𝑛 → {0, 1}𝑛 for 𝑖 ∈ {1, . . . , ℓ}.

These can be realized as slices of a single random function 𝐻 : {0, 1}𝑛′ → {0, 1}𝑛′ ,
with 𝑛′ = 3𝑛 + ⌈log ℓ + 1⌉ by an appropriate convention for embedding and extracting
inputs and values. Given subverted implementations {ℎ̃𝑖}𝑖=0,...,ℓ (defined as above by the
adversarially-defined algorithm A), the corrected function is defined as:

Cℎ̃ (𝑥) def
= ℎ̃0

(
ℓ⊕
𝑖=1

ℎ̃𝑖 (𝑥 ⊕ 𝑟𝑖)
)
,

where 𝑅 = (𝑟1, . . . , 𝑟ℓ) is sampled uniformly after ℎ̃ is provided (and then made public).
Component II: the classical Feistel cipher. The second component is the classical Feistel
cipher with ℓ rounds for ℓ = 14. Coron et al. [10] proved it is indifferentiable from
a random permutation. The classical ℓ-round Feistel cipher transforms a sequence of
functions 𝐹1, . . . , 𝐹ℓ : {0, 1}𝑛 → {0, 1}𝑛 into a permutation on the set {0, 1}2𝑛. The
construction logically treats 2𝑛-bit strings as pairs (𝑥, 𝑦), with 𝑥, 𝑦 ∈ {0, 1}𝑛, and is
defined as the composition of a sequence of permutations defined by the 𝐹𝑖 . Specifically,
given an input (𝑥0, 𝑥1), the construction defines

𝑥𝑖+1 := 𝑥𝑖−1 ⊕ 𝐹𝑖 (𝑥𝑖)

for each 𝑖 = 1, . . . , ℓ, and results in the output string (𝑥ℓ , 𝑥ℓ+1). It is easy to see that the
resulting function is a permutation. In practical settings, the “round functions” (𝐹𝑖) are
often keyed functions (determined by secret keys of length poly(𝑛)), in which case the
construction results in a keyed permutation.
Composing the two components. We can compose the above two components by replacing
the 14 round functions in component II with 14 independent copies of component I. The
result construction, by the property of indifferentiability, is also crooked-indifferentiable
from a random permutation as a corollary of the replacement theorem of crooked-
indifferentiability (see Section A.3 in the Supplementary Materials).

Our direct and “optimal” construction. However, there are two drawbacks. First, the
structure of the construction is complicated. Second, it makes at least linear number
of invocations of the underlying subverted component (and also 𝑂 (𝑛2) random bits) to
achieve security. Instead, we prove that a direct Feistel-based construction can also work
and remove these drawbacks, answering an open question in [21,22].

In particular, our construction involving only public randomness can boost a “sub-
verted” random permutation (or just a function) into a construction that is indifferentiable
from a perfect random permutation. (Section 3, 4). Besides structure-wise simplicity
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Fig. 1: The ℓ round classical Feistel construction.

(and the fact that it adopts the direct Feistel structure), our construction requires a smaller
number (𝑂 (𝑛/log(1/𝜖))) of invocations of the underlying (subverted) random function,
which is essentially optimal up to constant factors (at least for the Feistel structure, as we
prove impossibility to have fewer rounds; there was also explicit attacks for the case of
random oracle in [21], but the construction in [21] was not “tight” in this sense, with a
factor of 𝑂 (log(1/𝜖))).

Our subversion-resistant construction on strings of length 2𝑛 relies on the parameter
ℓ and the Feistel construction applied to ℓ round functions that are determined by:

– ℓ functions 𝐹𝑖 : {0, 1}𝑛 → {0, 1}𝑛 that are subject to subversion as described above,
– an additional family of ℓ public, uniform affine-linear functions determined by ℓ

pairs (𝑎𝑖 , 𝑏𝑖) ∈ GL(F2, 𝑛) × F𝑛2 .4

The affine-linear functions are determined by independent and uniform selection of 𝑎𝑖
from GL(𝑛, F2) (to be concrete, the collection of invertible 𝑛 × 𝑛 matrices with elements
in F2), and 𝑏𝑖 ∈ F𝑛2 . The 𝑖-th affine linear function, defined on an input 𝑥 ∈ F𝑛2 , is given
by the rule 𝑥 ↦→ 𝑎𝑖 · 𝑥 ⊕ 𝑏. The final construction is given by the Feistel construction
applied to the round functions 𝑥 ↦→ �̃�𝑖 (𝑎𝑖 · 𝑥 ⊕ 𝑏), where �̃� is the subverted version of the
function 𝐹𝑖 . To be concrete, with the data (𝐹𝑖 , 𝑎𝑖 , 𝑏𝑖) (with 𝑖 = 1, . . . , ℓ), the construction

4 For technical reasons, we need to encode the input of the round function with the pairwise
independent function, please see the proof of Lemma 3 for detailed discussions.
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𝐶 : {0, 1}2𝑛 → {0, 1}2𝑛 is defined by the rule

𝐶 (𝑥0, 𝑥1) := (𝑥ℓ , 𝑥ℓ+1) ,where
𝑥𝑖+1 := 𝑥𝑖−1 ⊕ �̃�𝑖 (𝑎𝑖 · 𝑥𝑖 ⊕ 𝑏𝑖) , for 𝑖 = 1, . . . , ℓ .

where 𝑛-bit strings 𝑥 and 𝑏𝑖 are viewed as length 𝑛 column vectors, 𝑎𝑖 · 𝑥𝑖 is the
multiplication between matrix 𝑎𝑖 and column vector 𝑥𝑖 , and �̃�𝑖 (𝑥) is the subverted
function value at (𝑖.𝑥) using the subversion algorithm A.

New techniques for proving crooked-indifferentiability of Feistel structure. Besides
that we aim to get a random permutation, which has stricter requirements, our security
analysis needs substantially more sophisticated techniques than that in [21]. The security
of the two-layer construction for random oracle in [21] relies on the fact that the XOR
structure

�̃�𝑅 (𝑥)
def
=

ℓ⊕
𝑖=1

ℎ̃𝑖 (𝑥 ⊕ 𝑟𝑖)

is unpredictable so that the simulator can always program ℎ0 (at �̃�𝑅 (𝑥)). By contrast, our
simulator cannot program at one fixed round function (because otherwise the distinguisher
can always query this round function first). The simulator needs to flexibly choose where
to program according the queries of the distinguisher.

We remark that some techniques in our proof are inspired by the elegant techniques
of Coron et al. [10] for conventional indifferentiability; for example, we adopt the concept
of “chain” to analyze the basic structure of Feistel construction. However, the subversion
of the random function in our setting introduces multiple new challenges, because of,
e.g., on-the-fly adaptive queries of the subverted �̃� when the simulator runs it.

To achieve “crooked” indifferentiability, our simulator needs to ensure consistency
between two ways of generating output values: one is directly from the construction𝐶; the
other calls for an “explanation” of 𝑃—a truly random permutation—via reconstruction
from related queries to 𝐹 (in a way consistent with the subverted �̃�). To ensure a correct
simulation, the simulator must suitably answer related queries (defining one value of 𝐶).
Essentially, the proof relies on the fact that for any Feistel “chain” (𝑥0, . . . , 𝑥ℓ+1), the
simulator can find two places (𝑥𝑢, 𝑥𝑢+1) and program 𝐹𝑢 (𝑎𝑢 · 𝑥𝑢 ⊕ 𝑏𝑢) := 𝑥𝑢−1 ⊕ 𝑥𝑢+1,
𝐹𝑢+1 (𝑎𝑢+1 ·𝑥𝑢+1⊕𝑏𝑢+1) := 𝑥𝑢⊕𝑥𝑢+2 to make the Feistel chain consistent with 𝑃(𝑥0, 𝑥1) =
(𝑥ℓ , 𝑥ℓ+1). There are two major challenges in the simulation: first, one of the two
programmed terms 𝐹𝑢 (𝑎𝑢 · 𝑥𝑢 ⊕ 𝑏𝑢) and 𝐹𝑢+1 (𝑎𝑢+1 · 𝑥𝑢+1 ⊕ 𝑏𝑢+1) may be already
evaluated prior to programming by the simulator; second, the one of the two programmed
terms may be dishonest (i.e., �̃� ≠ 𝐹) so that programming may not be possible.

In the security proof, to analyze the difference between the construction and the ideal
object (random permutation), we need to carefully design several intermediate games
for transition. Using the games, we reduce the gap between the construction and the
ideal object to the probability of two “bad events” that reflect the two challenges above.
Finally, we prove the bad events are negligible by carefully analyzing the structure of our
construction. We also need to give a more careful analysis of efficiency of the simulator
as it has to internally generate many more terms because of the necessity of running �̃�.
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1.2 Related works

Crooked-indifferentiability of random oracles. In [21], the authors proved that a simple
two-layer construction using 𝑂 (𝑛2) public random bits is crooked-indifferentiable from
a random oracle (following results [2,22] gave more rigorous analysis, and showed
applications in subversion resistant digital signatures [7]). This work focuses on a strictly
stronger goal: to obtain a random permutation, and with a smaller number of rounds (thus
also improves the rounds of construction for correcting subverted random oracles). This
line of work was motivated to defend against kleptographic attacks, originally introduced
by Young and Yung [24,25], with renewed recent interests (e.g., [1,13,19,23,20]).
Conventional indifferentiability of Feistel cipher. The notion of indifferentiability was
proposed in the elegant work of Maurer et al. [17]; this notably extends the classical
concept of indistinguishability to circumstances where one or more of the relevant oracles
are publicly available (such as a random oracle). It was later adapted by Coron et al. [9];
several other variants were proposed and studied in [15,16]. A line of notable work
applied the framework to the ideal cipher problem: in particular the Feistel construction
(with a small constant number of rounds) is indifferentiable from a random permutation,
see [10,11,12]. Our work adopts the indifferentiability framework applied to the subverted
case (that is, crooked-indifferentiability); the construction aims to sanitize a subverted
random function to be indifferentiable from a clean random permutation.
Related work on non-uniformity and pre-processing. There are several recent approaches
that study idealized objects in the auxiliary input model (or with pre-processing) [14,8]. As
pointed out in [22], crooked-indifferentiability is strictly stronger than the pre-processing
model: besides pre-processing queries, the adversary may embed (and keep) compressed
state as backdoor; more importantly, our subverted implementation can further misbehave
in ways that cannot be captured by any single-shot polynomial-query adversary because
the subversion at each point is determined by a local adaptive computation.

2 The Model: Crooked Indifferentiability

The primitives that we focus on in this paper are random permutations. A random
permutation is an ideal primitive which provides an independent random output for each
new query so that the resulting function is a permutation. We next extend the model of
crooked indifferentiability [21] for random oracles 5 to capture the setting of random
permutations.

Crooked indifferentiability for random permutations. As mentioned in the introduction,
we consider the problem of “repairing” a subverted random permutation (or function
directly) in such a way that the corrected construction can be used as a drop-in replacement
for an unsubverted random permutation. Same as [21], we model the act of subversion
of ℎ as the creation of an “implementation” ℎ̃ of the new, subverted permutation (or
function); in practice, this would be the source code of the subverted version of the
5 The concept of crooked indifferentiability for random oracles was initially an extension of

classical indifferentiability. We put the definition and properties of classical indifferentiability
in Section A.1 of the Supplementary Materials.
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function ℎ. In our setting, we defineA as a polynomial-time algorithm with oracle access
to ℎ; thus the subverted function is 𝑥 ↦→ Aℎ (𝑥). Specifically, in Fig. 2,

1. The deterministic construction will have oracle access to the random permutation only
via the subverted implementation ℎ̃ but not via the ideal primitive ℎ. (Operationally,
the construction has oracle access to the function 𝑥 ↦→ Aℎ (𝑥).) The construction
depends on access to trusted, but public, randomness 𝑅.

2. The simulator is provided, as input, a description of the subversion algorithm A (a
Turing machine) and the public randomness 𝑅; it has oracle access to the target ideal
functionality (F , here is a random permutation).

Point (2) is necessary, and desirable, as it is clearly impossible to achieve indifferentiability
using a simulator that has no access to A (the distinguisher can simply query an input
such that C will use a value that is modified byA while S has no way to reproduce this).
As shown in [21], such an extended notion can also enjoy a replacement theorem (see
Section A.3 in the Supplementary Materials.)

C

𝑅

A ℎ F

𝑅

S
A

D

Fig. 2: The crooked indifferentiability notion: the distinguisher D, in the first phase,
manufactures and publishes a subverted implementation denoted as ℎ̃, for ideal primitive
ℎ; then in the second phase, a random string 𝑅 is published; after that, in the third phase,
algorithm C, and simulator S are developed; the crooked-distinguisher D, in the last
phase, either interacting with algorithm C and ideal primitive ℎ, or with ideal primitive
F and simulator S, return a decision bit. Here, algorithm C has oracle access to ℎ̃, while
simulator S has a description of A and oracle access to F .

Definition 1 (Crooked indifferentiability[21]). We define the notion of crooked indif-
ferentiability by the following experiment.

Real Execution

1. Consider a distinguisher D and the following multi-phase real execution.
Initially, the distinguisher D commences the first phase: with oracle access
to ideal primitive ℎ the distinguisher constructs and publishes a subverted
implementation of ℎ; this subversion is described as a deterministic polynomial
time algorithm denoted A. (Recall that the algorithm A implicitly defines a
subverted version of ℎ by providing ℎ to A as an oracle—thus Aℎ (𝑥) is the
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value taken by the subverted version of ℎ at 𝑥.) Then, a uniformly random string
𝑅 is sampled and published.

2. Then the second phase begins involving a deterministic construction C: the
construction C requires the random string 𝑅 as input and has oracle access to
ℎ̃ (the crooked version of ℎ); explicitly this is the oracle 𝑥 ↦→ Aℎ (𝑥).

3. Finally, the distinguisher D, now with random string 𝑅 as input and full
oracle access to the pair (C, ℎ), returns a decision bit 𝑏. Often, we call D the
crooked-distinguisher.

Ideal execution

1. Consider now the corresponding multi-phase ideal execution with the same
crooked-distinguisherD. The ideal execution introduces a simulator S respon-
sible for simulating the behavior of ℎ; S is provided full oracle access to the
ideal object F . Initially, S must answer any queries made to ℎ byD in the first
phase. Then S is given the random string 𝑅 and the algorithm ⟨A⟩ (generated
by D at the end of the first phase) as input.

2. In the second phase, the crooked-distinguisher D, now with random string 𝑅

as input and oracle access to the alternative pair (F ,S), returns a bit 𝑏.

We say that construction C is (𝑛source, 𝑛target, 𝑞D , 𝑞A , 𝜖)-crooked-indifferentiable
from ideal primitive F if there is an efficient simulator S so that for any crooked-
distinguisher D making no more than 𝑞D (𝑛) queries and producing a subversion A
making no more than 𝑞A (𝑛) queries, the real execution and the ideal execution are
indistinguishable. Specifically,

����� Pr
𝑢,𝑅,ℎ

[
ℎ̃← Dℎ (1𝑛) ; DCℎ̃ (𝑅) ,ℎ (1𝑛, 𝑅) = 1

]
−

Pr
𝑢,𝑅,F

[
ℎ̃← Dℎ (1𝑛) ; DF,SF (𝑅,⟨ℎ̃⟩) (1𝑛, 𝑅) = 1

] ����� ≤ 𝜖 (𝑛) .

Here 𝑅 denotes a random string of length 𝑟 (𝑛) and both ℎ : {0, 1}𝑛source → {0, 1}𝑛source

andF : {0, 1}𝑛target → {0, 1}𝑛target denote random functions where 𝑛source (𝑛) and 𝑛target (𝑛)
are polynomials in the security parameter 𝑛. We let 𝑢 denote the random coins of D. The
simulator is efficient in the sense that it is polynomial in 𝑛 and the running time of the
supplied algorithm A (on inputs of length 𝑛source). See Figure 2 for detailed illustration
of the last phase in both real and ideal executions. (While it is not explicitly captured
in the description above, the distinguisher D is permitted to carry state from the first
phase to the second phase.) The notation 𝐶 ℎ̃ (𝑅) denotes oracle access to the function
𝑥 ↦→ Aℎ (𝑥).

Remarks. We leave a few remarks here.

1. Our main security proof will begin by demonstrating that in our particular setting,
security in a simpler model suffices: this is the abbreviated crooked indifferentiability
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model, articulated in Section A.2 in the Supplementary Materials. We then show
that—in light of the special structure of our simulator—it can be effectively lifted to
the full model above. Roughly speaking, the only difference between the full and
abbreviated crooked-indifferentiability is that, in phase I of the abbreviated crooked
indifferentiability model, the distinguisher can not query ℎ(in the real execution) or
S(in the ideal execution) before it outputs the subversion algorithm.

2. In the crooked-indifferentiability model, it is noteworthy that for a specific con-
struction C, the need to correct subverted random oracles and subverted random
permutations can be simplified to addressing subverted random permutations alone.
This is due to the fact that a subverted random permutation deviates negligibly from
a subverted random function. Thus, the focus in the subsequent sections will be on
correcting subverted random permutations exclusively.

3 Main Result and Technical Overview

3.1 The Construction and Main Result

For a security parameter 𝑛 and a (polynomially related) parameter ℓ, the construction
depends on public randomness 𝑅 = ((𝑎1, 𝑏1), . . . , (𝑎ℓ , 𝑏ℓ)).

The source function is expressed as a family of ℓ independent random oracles:

𝐹𝑖 : {0, 1}𝑛 → {0, 1}𝑛 , for 𝑖 ∈ {1, . . . , ℓ}.

These can be realized as slices of a single random function 𝐹′ : {0, 1}𝑛′ → {0, 1}𝑛′ ,
with 𝑛′ = 𝑛+ ⌈log ℓ+1⌉ by an appropriate convention for embedding and extracting inputs
and values. (Note that the 𝐹𝑖 will not generally be permutations.) The family of ℓ public,
uniform affine-linear functions are determined by 𝑅 = ((𝑎1, 𝑏1), . . . , (𝑎ℓ , 𝑏ℓ)) where
(𝑎𝑖 , 𝑏𝑖) ∈ GL(F2, 𝑛) × F𝑛2 for each 𝑖 = 1, . . . , ℓ. 𝑎𝑖 and 𝑏𝑖 are selected independently and
uniformly from GL(𝑛, F2) (to be concrete, the collection of invertible 𝑛× 𝑛 matrices with
elements in F2) and F𝑛2 , respectively. The 𝑖-th affine linear function, defined on an input
𝑥 ∈ F𝑛2 , is given by the rule 𝑥 ↦→ 𝑎𝑖 · 𝑥 ⊕ 𝑏. The final construction is given by the Feistel
construction applied to the round functions 𝑥 ↦→ �̃�𝑖 (𝑎𝑖 · 𝑥 ⊕ 𝑏), where �̃� is the subverted
version of the function 𝐹𝑖 . To be concrete, with the data (𝐹𝑖 , 𝑎𝑖 , 𝑏𝑖) (with 𝑖 = 1, . . . , ℓ),
the construction 𝐶 : {0, 1}2𝑛 → {0, 1}2𝑛 is defined by the rule

𝐶 (𝑥0, 𝑥1) := (𝑥ℓ , 𝑥ℓ+1) ,where
𝑥𝑖+1 := 𝑥𝑖−1 ⊕ �̃�𝑖 (𝑎𝑖 · 𝑥𝑖 ⊕ 𝑏𝑖) , for 𝑖 = 1, . . . , ℓ ,

where 𝑛-bit strings 𝑥 and 𝑏𝑖 are viewed as length 𝑛 column vectors, 𝑎𝑖 · 𝑥𝑖 is the
multiplication between matrix 𝑎𝑖 and column vector 𝑥𝑖 , and �̃�𝑖 (𝑥) is the subverted
function value at (𝑖, 𝑥) using the subversion algorithm A. A visual illustration of the
construction can be obtained by substituting the family of the round functions 𝐹𝑖 in Fig.
1 with �̃�𝑖 (𝑎𝑖 · 𝑥 ⊕ 𝑏).

We wish to show that such a construction is indifferentiable from an actual random
permutation (with the proper input/output length).
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Theorem 1. We treat a function 𝐹′ : {0, 1}𝑛′ → {0, 1}𝑛′ , with 𝑛′ = 𝑛 + ⌈log ℓ + 1⌉, as
implicitly defining a family of random oracles

𝐹𝑖 : {0, 1}𝑛 → {0, 1}𝑛 , for 𝑖 > 0,

by treating {0, 1}𝑛′ = {0, . . . , 𝐿 − 1} × {0, 1}𝑛 and defining 𝐹𝑖 (·) = 𝐹 (𝑖, ·), for 𝑖 =

0, . . . , ℓ ≤ 𝐿 − 1. (Output lengths are achieved by removing the appropriate number of
trailing symbols). Consider a (subversion) algorithm A so that it defines a subverted �̃�.
Assume that for every 𝐹 (and every 𝑖),

Pr
𝑥∈{0,1}𝑛

[�̃�𝑖 (𝑥) ≠ 𝐹𝑖 (𝑥)] ≤ 𝜖 (𝑛) = negl(𝑛) . (1)

For ℓ ≥ 337𝑛/log(1/𝜖), the above Feistel-based construction is (𝑛′, 2𝑛, 𝑞D , 𝑞A , 𝜖 ′)-
indifferentiable from a random permutation 𝑃 : {0, 1}2𝑛 → {0, 1}2𝑛, where 𝑞D is the
number of queries made by the distinguisher D, 𝑞A is the number of queries made by
A as in Definition 1 and 𝜖 ′ = (22𝑞D (𝑞A + 1))3/2𝑛. Both 𝑞D and 𝑞A are polynomial
functions of 𝑛, ensuring 𝜖 ′ is negligibly small.

Remark. For some technical reasons, we need the round number parameter ℓ to be at least
337𝑛/log(1/𝜖). A more careful choice of parameters in the proof could potentially reduce
the constant factor to below 200. When considering ℓ = 337𝑛/log(1/𝜖), a particularly
intriguing scenario arises when 𝜖 = 2−𝑐𝑛 for some constant 0 < 𝑐 < 1. In this case, ℓ
becomes a constant value of 337/𝑐.

To somewhat simplify the notation, we define the function 𝐶𝐹𝑖 : {0, 1}𝑛 → {0, 1}𝑛
to be the unsubverted analog of the round function 𝐶𝐹𝑖 (𝑥) = 𝐹𝑖 (𝑎𝑖 · 𝑥 ⊕ 𝑏𝑖) and,
similarly, define 𝐶�̃�𝑖 (𝑥) = �̃�𝑖 (𝑎𝑖 · 𝑥 ⊕ 𝑏𝑖) to be actual round function. Since the function
𝑥 → 𝑎𝑖 · 𝑥 ⊕ 𝑏𝑖 is a permutation (note that 𝑎𝑖 is an invertable linear function), reasoning
about 𝐶𝐹𝑖 (and 𝐶�̃�𝑖 , respectively) is effectively equivalent to reasoning about 𝐹𝑖 (and
𝐶𝐹𝑖). For convenience, we will focus on 𝐶𝐹𝑖 (𝐶�̃�𝑖) for the bulk of the paper (i.e., we will
treat the query and evaluation of 𝐹𝑖 (𝑥) as the query and evaluation of 𝐶𝐹𝑖 (𝑥′) such that
𝑥 = 𝑎𝑖 · 𝑥′ ⊕ 𝑏𝑖). When evaluating 𝐶�̃�𝑖 (𝑥), the subversion algorithm queries 𝐶𝐹 at a set
of points of polynomial size. We define the set of these points to be

𝑄𝑖 (𝑥) = {( 𝑗 , 𝑥′) | the evaluation of 𝐶�̃�𝑖 (𝑥) queries 𝐶𝐹𝑗 (𝑥′)} .

3.2 2𝒏/log(1/𝝐) rounds are not enough

We first show that the above construction is insecure with fewer than 2𝑛/log(1/𝜖) rounds.

Lemma 1. Let 𝑛 be a positive integer and 𝜖 be a real number with 1/16 ≥ 𝜖 ≥ 2−𝑛. Let
ℓ be a positive integer not greater than 2𝑛/log(1/𝜖) and let 𝜆 = ⌊𝑛/ℓ + 1⌋. Consider
selecting a uniform vector 𝐵 ∈ F𝜆ℓ/22 and a 𝜆ℓ/2 by 𝑛 matrix 𝐴 = (𝐶1, ..., 𝐶ℓ/2)𝑇 , where
each 𝐶𝑖 is a uniform full rank matrix in F𝑛×𝜆2 . Then, over the randomness of the choice of
𝐴 and 𝐵,

Pr
[
There does not exist a vector 𝑋 ∈ F𝑛2 such that 𝐴 · 𝑋 = 𝐵.

]
= 𝑂 (2−𝑛/4) ,

where 𝐴 · 𝑋 is the multiplication between a matrix and a column vector and 𝐵 is viewed
as a column vector.
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Proof. Notice that it suffices to show that the matrix 𝐴 chosen above has full rank with
probability 1 −𝑂 (2−𝑛/4). Rather than proving this, we establish a stronger statement by
regarding 𝐴 as a uniform matrix in F𝜆ℓ/2×𝑛2 .

It is worth noting that 𝜆ℓ/2 ≤ (𝑛 + ℓ)/2 < (𝑛 + 𝑛/2)/2 = 3𝑛/4. Thus, it is adequate
to demonstrate that a uniform 3𝑛/4 by 𝑛 binary matrix 𝐴′ has full rank with probability
1 −𝑂 (2−𝑛/4).

For any 𝑖 = 1, . . . , 𝜆ℓ/2, we denote by 𝑤𝑖 the 𝑖th row vector of 𝐴′ and 𝑊𝑖 the set of
first 𝑖 row vectors of 𝐴′. For a set 𝑆 of vectors, we use ⟨𝑆⟩ to denote the vector space
spanned by the elements of 𝑆.

Then, over the uniform choice of 𝐴′, we have

Pr[𝐴′ does not have full rank]

≤
3𝑛/4∑︁
𝑖=1

Pr[𝑤𝑖 ∈ ⟨𝑊𝑖−1⟩]

≤
3𝑛/4∑︁
𝑖=1
|⟨𝑊𝑖−1⟩|/2𝑛

=

3𝑛/4∑︁
𝑖=1

2𝑖−1/2𝑛 = 𝑂 (2−𝑛/4).

Theorem 2. The construction is not crooked-indifferentiable from a random permutation
if ℓ ≤ 2𝑛/log(1/𝜖).

Proof. Let 𝜆 = ⌊𝑛/ℓ + 1⌋(so 𝜆 ≥ 𝑛/ℓ). Consider the following subversion algorithm A:
for each 𝐹𝑖 (𝑖 = 1, . . . , ℓ) and any 𝑛 bit string 𝑥, define �̃�𝑖 (𝑥) := 0𝑛 if the first 𝜆 bits
of 𝑥 are 0s. Otherwise, define �̃�𝑖 (𝑥) := 𝐹𝑖 (𝑥). (Notice that this subversion algorithm is
legitimate since the dishonest fraction is 2−𝜆 ≤ 2−𝑛/ℓ ≤ 𝜖 .)

Now we prove the distinguisher can launch the following attack with the subversion
algorithm above. We will show that, with overwhelming probability over the choice of
𝑅, there is a pair of 𝑛-bit strings (𝑥0, 𝑥1) such that for the Feistel chain (𝑥1, 𝑥2, . . . , 𝑥ℓ)
related to (𝑥0, 𝑥1), 𝐶�̃�𝑖 (𝑥𝑖) = 0𝑛 for all 𝑖 = 1, . . . , ℓ. (We use the terminology “with
overwhelming probability” in the paper to mean “with all but negligible probability.”)

Notice that the fact that such a pair (𝑥0, 𝑥1) exists is equivalent to the fact that there is a
pair (𝑥0, 𝑥1) such that the first 𝜆 bits of 𝑎2𝑖+1 ·𝑥1 ⊕ 𝑏2𝑖+1 and the first 𝜆 bits of 𝑎2 𝑗 ·𝑥0 ⊕ 𝑏2 𝑗
are 0s for all 0 < 2𝑖 + 1, 2 𝑗 ≤ ℓ. And this is true with constant probability due to Lemma
1. (Also, the attack can be launched by a polynomial running time adversary since the
linear equations in Lemma 1 can be solved efficiently.)

3.3 Technical Overviews and Notations

In this section we give a technical overview of proving Theorem 1.
Our strategy: Simulation via judicious preemptive chain completion. To convey the main
idea, suppose that a distinguisher queries the simulated round functions in order to
determine the value of the permutation 𝑃 on input (𝑥0, 𝑥1) ∈ {0, 1}2𝑛; in particular,
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the resulting output (𝑥ℓ , 𝑥ℓ+1) is obtained by computing 𝑥𝑖+1 := 𝑥𝑖−1 ⊕ 𝐶�̃�𝑖 (𝑥𝑖) for all
𝑖 = 1, . . . , ℓ. Then, (𝑥ℓ , 𝑥ℓ+1) must equal the output of 𝑃 on input (𝑥0, 𝑥1): otherwise the
distinguisher can easily detect that it is not interacting with the real Feistel construction.
To ensure such consistency, the simulator must recognize that the queries 𝑥1, . . . , 𝑥ℓ
belong to an evaluation of C, and must set the values 𝐶𝐹𝑖 (𝑥𝑖) to enforce consistency with
𝑃. This mechanism is described informally below and in more detail in the next section.

The simulator maintains an internal table for each function 𝐶𝐹𝑖 that indicates a
partial definition of this function: these tables typically expand during interaction with
the distinguisher and satisfy the invariant that once a 𝐶𝐹𝑖 value is defined in the table
for a particular element 𝑥 of the domain, this is never removed or altered later in the
computation. While the tables define the 𝐶𝐹𝑖 values used to respond to any query
answered by the simulator, the table may record additional 𝐶𝐹𝑖 values not as yet queried
by the distinguisher as a bookkeeping tool. Of course, distinguisher queries are always
answered consistently with the values in the tables.
Subverted and unsubverted chains; honest chains. In the following, an index 𝑠, combined
with a sequence of values 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 (𝑟 ≥ 1, 1 ≤ 𝑠 < 𝑠 + 𝑟 ≤ ℓ) such that 𝐶𝐹𝑖 (𝑥𝑖) is
defined by the simulator for all 𝑠 ≤ 𝑖 ≤ 𝑠 + 𝑟 and such that 𝑥𝑖+1 := 𝑥𝑖−1 ⊕ 𝐶𝐹𝑖 (𝑥𝑖) for all
𝑠 + 1 ≤ 𝑖 ≤ 𝑠 + 𝑟 − 1, will be called an unsubverted chain(denoted by (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 )).
For each index 𝑖 and an element 𝑥 ∈ S.𝐶𝐹𝑖 , we say 𝐶�̃�𝑖 (𝑥) is defined if its value can be
determined by the subversion algorithm and the 𝐶𝐹 values that are already defined by
the simulator. We assume without loss of generality that the subversion algorithm always
evaluates𝐶𝐹𝑖 (𝑥) when called upon to evaluate𝐶�̃�𝑖 (𝑥) (for any 𝑖 and 𝑥). Therefore,𝐶𝐹𝑖 (𝑥)
must be defined when 𝐶�̃�𝑖 (𝑥) is defined. An index 𝑠, combined with a sequence of values
𝑥𝑠 , . . . , 𝑥𝑠+𝑟 (𝑟 ≥ 1, 1 ≤ 𝑠 < 𝑠 + 𝑟 ≤ ℓ) such that 𝐶�̃�𝑖 (𝑥𝑖) is defined by the simulator for
all 𝑠 ≤ 𝑖 ≤ 𝑠 + 𝑟, and such that 𝑥𝑖+1 := 𝑥𝑖−1 ⊕ 𝐶�̃�𝑖 (𝑥𝑖) for all 𝑠 + 1 ≤ 𝑖 ≤ 𝑠 + 𝑟 − 1, will
be called a subverted chain. The length 𝐿 (·) of an unsubverted (or subverted) chain is
defined to be the number of the elements in the chain. An unsubverted (or subverted)
chain is called a full chain if it has length ℓ. Note, in general, that chains always have
length of at least two (as 𝑟 ≥ 1).

For a chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ), we define 𝑄𝑐 =
⋃𝑠+𝑟

𝑖=𝑠 𝑄𝑖 (𝑥𝑖) if 𝐶�̃�𝑖 (𝑥𝑖) is defined
for 𝑖 = 𝑠, . . . , 𝑠 + 𝑟. For any 𝑖 ∈ {1, . . . , ℓ} and 𝑥 ∈ {0, 1}𝑛, if 𝐶�̃�𝑖 (𝑥) is defined, we
say (𝑖, 𝑥) is honest when 𝐶𝐹𝑖 (𝑥) = 𝐶�̃�𝑖 (𝑥); similarly, we say it is dishonest when
𝐶𝐹𝑖 (𝑥) ≠ 𝐶�̃�𝑖 (𝑥). We say a subverted chain is honest if all the elements on the chain are
honest.

For a chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) and a term (𝑖, 𝑥), we say (𝑖, 𝑥) is an element of
𝑐(or (𝑖, 𝑥) ∈ 𝑐) if 𝑠 ≤ 𝑖 ≤ 𝑠 + 𝑟 and 𝑥𝑖 = 𝑥. For two chains 𝑐1 = (𝑠1, 𝑥𝑠1 , . . . , 𝑥𝑠1+𝑟1 ) and
𝑐2 = (𝑠2, 𝑦𝑠2 , . . . , 𝑦𝑠2+𝑟2 ), we say 𝑐1 ⊂ 𝑐2 if each element of 𝑐1 is also an element of 𝑐2.
We say 𝑐1 and 𝑐2 are disjoint if there is no chain 𝑐 for which 𝑐 ⊂ 𝑐1 and 𝑐 ⊂ 𝑐2 (i.e., the
chains 𝑐1 and 𝑐2 do not share any pair of adjacent elements).
The definition of the simulator S. Our simulation strategy will consider a carefully cho-
sen set of relevant unsubverted chains as “triggers” for completion: once a chain of this
family is defined in the simulator’s table, the simulator will preemptively “complete” the
chain to ensure consistency of the resulting full chain with 𝑃. Upon a query for 𝐶𝐹𝑖 with
input 𝑥𝑖 (in fact, the query is a query for 𝐹𝑖 with input 𝑥′

𝑖
such that 𝑎𝑖 · 𝑥′𝑖 ⊕ 𝑏𝑖 = 𝑥𝑖),

the simulator sets 𝐶𝐹𝑖 (𝑥𝑖) to a fresh random value and looks for new relevant partial
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chains involving 𝑥𝑖 , adding them to a FIFO queue. (In general, many new chains may
be added by this process.) The simulator then repeats the following, until the queue is
empty: It removes the first unsubverted chain from the queue. If the chain satisfies a
certain property (will be described later), the simulator completes it to a full subverted
chain 𝑥1, . . . , 𝑥ℓ in such a way so as to guarantee that 𝑃(𝑥0, 𝑥1) = (𝑥ℓ , 𝑥ℓ+1), where
𝑥0 = 𝑥2 ⊕ 𝐶�̃�1 (𝑥1) and 𝑥ℓ+1 = 𝑥ℓ−1 ⊕ 𝐶�̃�ℓ (𝑥ℓ). In particular, it sets each undefined 𝐶𝐹

in 𝑄𝑖 (𝑥𝑖) to a fresh uniform random string, with the exception of two consecutive values
𝐶𝐹𝑢 (𝑥𝑢) and 𝐶𝐹𝑢+1 (𝑥𝑢+1) which are set adaptively to ensure consistency with 𝑃. We
refer to this step as adapting or programming the values of 𝐶𝐹𝑢 (𝑥𝑢) and 𝐶𝐹𝑢+1 (𝑥𝑢+1).
Establishing that such adapting is always possible (for some carefully chosen 𝑢) will be a
major challenge of our analysis below.
Technical Challenges. We now face two main challenges. Our choice of which chains
are relevant and how they are completed will be crucial in order to solve them:
1. Freshness and Honesty. We need to show that the values of 𝐶𝐹𝑢 (𝑥𝑢) and

𝐶𝐹𝑢+1 (𝑥𝑢+1) are always undefined when these values are selected for program-
ing. Moreover, we hope the two terms (𝑢, 𝑥𝑢) and (𝑢 + 1, 𝑥𝑢+1), which are adapted to
ensure consistency are always honest; i.e., 𝐶𝐹𝑢 (𝑥𝑢) = 𝐶�̃�𝑢 (𝑥𝑢) and 𝐶𝐹𝑢+1 (𝑥𝑢+1) =
𝐶�̃�𝑢+1 (𝑥𝑢+1).

2. Efficiency. We need to show that the simulation terminates with high probability
when answering a query; i.e., the queue becomes empty after a small (polynomial)
number of completions.

3. Indistinguishability. Finally, with the two demands above in hand, it is still necessary
to show that the simulated world cannot be distinguished from the real world.

Addressing Challenge 1. To understand why proving freshness and honesty is hard,
consider the following example. During the interaction with the distinguisher, suppose the
simulator S sees an unsubverted chain 𝑐 = (𝑠, 𝑥𝑠 , ..., 𝑥𝑠+𝑟 ) that triggers completion. Let
us call the current S.𝐶𝐹 table 𝑇Initial. For the full chain 𝑐′ = (1, 𝑥1, . . . , 𝑥ℓ) determined
by 𝑐 (𝑐 ⊂ 𝑐′), S hopes that it can find an index 𝑢 so that (𝑢, 𝑥𝑢) and (𝑢 + 1, 𝑥𝑢+1) are
undefined before adaption. It is easy to find an index 𝑢 so that these two terms are not
in 𝑇Initial. However, before S determines 𝑥𝑢 and 𝑥𝑢+1, it needs to evaluate 𝐶�̃�𝑖 (𝑥𝑖) for
𝑖 ≠ 𝑢, 𝑢 + 1. And there may exist an index 𝑖 so that (𝑢, 𝑥𝑢) or (𝑢 + 1, 𝑥𝑢+1) is in 𝑄𝑖 (𝑥𝑖),
which breaks the freshness. It is also not obvious how to find 𝑢 so that (𝑢, 𝑥𝑢) and
(𝑢 + 1, 𝑥𝑢+1) are honest since the distinguisher can subvert the round functions of any
index. In our analysis, we will have to find 𝑢, 𝑢 + 1 such that both freshness and honesty
can be satisfied.

To prove honesty, we will show that for any term (𝑖, 𝑥𝑖) in 𝑐′, it is honest if 𝑖 is much
smaller than 𝑠 or much greater than 𝑠 + 𝑟 (i.e., the term is far away from the initial chain
𝑐 that triggers completion). Therefore, there is a long subchain 𝑐′′ of 𝑐′ that is honest.
The simulator will select the index 𝑢 in this honest area. To prove freshness, we will
show that, inside the long enough honest chain 𝑐′′, for any term ( 𝑗 , 𝑥 𝑗 ) in the “middle
area” of 𝑐′′ and any term (𝑖, 𝑥𝑖) ∈ 𝑐′ with 𝑖 ≠ 𝑗 , 𝐶𝐹𝑗 (𝑥 𝑗 ) is not queried by 𝐶�̃�𝑖 (𝑥𝑖)(i.e.,
( 𝑗 , 𝑥 𝑗 ) ∉ 𝑄𝑖 (𝑥𝑖)). To achieve freshness, the simulator only needs to pick 𝑢 in the middle
part of the honest area.
Addressing Challenge 2. To see why it is possible the queue may not become empty
after a small number of completions, notice that the completion of a certain chain

13



forces the evaluation of many terms that have not been queried by the distinguisher.
These newly evaluated terms may generate another chain that triggers completion. The
same efficiency problem also appears in the proof of classical indifferentiability of a
constant round Feistel construction. (See Coron et al. [10]) The efficiency problem in
our case (the crooked-indifferentiability model) is more complex than that in [10] (the
classical indifferentiability model) because when completing a chain in the crooked-
indifferentiability model, the simulator needs to evaluate 𝐶�̃� instead of just 𝐶𝐹 values in
the chain, which in general, generates many more terms than the classical model.

To prove efficiency, we will show that the recursion stops after at most poly(𝑞D)
steps, where 𝑞D is the number of the queries made by the distinguisher D. The proof
relies on the observation that, for the chains that are completed, on average, all but a
constant number of elements in each chain were once queried by D. (Notice that not all
the elements in these chains are evaluated because they are queried by D. For example,
some elements are evaluated when the simulator completes a chain.) Hence, the total
number of the chains that are completed is in fact asymptotically equivalent to 𝑞D/ℓ.

Addressing Challenge 3. It is still not easy to establish crooked-indifferentiability after
we understand freshness, honesty, and efficiency. The reason is that the 𝐶𝐹 values that
are maintained by S are not perfectly uniform conditioned on the distinguisher’s query
to the ideal object 𝑃, which is a crucial property in the proofs of efficiency, freshness and
honesty.

To see why the 𝐶𝐹 values held by S are not perfectly uniform, imagine that the
distinguisher queries 𝑃(𝑥0, 𝑥1) for some (𝑥0, 𝑥1) and then makes several 𝐶𝐹 queries to
trigger the completion of the chain corresponding to (𝑥0, 𝑥1). The two adapted values
𝐶𝐹𝑢 (𝑥𝑢) and 𝐶𝐹𝑢+1 (𝑥𝑢+1) are not uniform because they are, of course, adapted to
maintain consistency.

To break down the proof, we introduce a sequence of game transitions involving 6
games, beginning with the simulator game (Game 1) and ending with the construction
(Game 6). By mapping the randomness from one game to another, we prove that the gap
between the 6 games is negligible if the gap between Games 5 and 6 is negligible. (In
particular, we explain how to treat the games as coupled random variables that can be
investigated with the same underlying randomness; this provides a convenient way to
identify differences in the dynamics and conclusions of the games.) Then we turn our
attention to Game 5, which maintains an explicit, additional table of uniform 𝐶𝐹 values.
This table (in Game 5) provides a vantage point from which all future 𝐶𝐹 values are
in fact uniform, and simplifies reasoning about many of the critical events of interest.
Finally, we formally prove honesty and freshness in Game 5 to show the gap between
Game 5 and 6 is negligible.
Technical differences between [10] and this paper. In [10] (the classical indifferentia-
bility model), Coron et al. used a simulation strategy similar to ours—simulation via
judicious preemptive chain completion—to demonstrate the classical indifferentiability
of a constant round Feistel structure. Despite using similar simulation strategy, there are
some significant technical differences between our security proof and the proof in [10].

1. Freshness: The proof of freshness is challenging in both [10] and our work, but for
quite different reasons. The chains in [10] are very short (i.e., have only constant
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length), and when two of them are intersected, the terms of one chain can easily occupy
the “adaptation space” for the other, which hinders freshness. In our case, however,
we are not that worried about the intersection of chains since our construction has
many more than constant rounds. The difficulty of our freshness proof arises from
the subversion algorithm: to prove freshness, we need to rule out the case that when
completing a chain, the two adapted terms are queried by some previously evaluated
𝐶�̃�.

2. Honesty: In the security proof of [10], the authors only need to show freshness and
efficiency of the simulation since there is no subversion; they are not required to
prove honesty.

3. Efficiency: The efficiency proof in [10] is quite straightforward. By contrast, in our
case, it is not that obvious how to upper bound the number of the terms generated
in the simulation. The difference is again due to the existence of the subversion
algorithm. In our case, the chains that are completed are subverted chains, while the
classical case has no subversion algorithm and therefore only completes “unsubverted”
chains. The evaluation of a subverted chain generates many more terms than the
evaluation of an unsubverted chain, which in general, may generate many more
chains that trigger completion.

4 Security Proof

In the rest of the paper, we turn the explanation above into a real proof. We first introduce
the detailed definition of the simulator.

4.1 The Detailed Definition of the Simulator

The simulator provides an interface S.𝐶𝐹 (𝑖, 𝑥) to query the simulated random function
𝐶𝐹𝑖 on input 𝑥. As mentioned above, for each 𝑖 the simulator internally maintains a table
whose entries are pairs (𝑥, 𝑦) of 𝑛-bit strings; each such entry intuitively determines
a simulated value of 𝐶𝐹 at a particular point: in particular, if the pair (𝑥, 𝑦) appears
then any query to S.𝐶𝐹 (𝑖, 𝑥) returns the value 𝑦. The simulator maintains the natural
invariants described previously: responses provided to the distinguisher are always
consistent with the table; furthermore, once an entry has been added to the table, it is
never removed or changed. Note that in many cases the table will reflect function values
that have not been queried by the distinguisher. We denote the 𝑖th table by S.𝐶𝐹𝑖 and
write 𝑥 ∈ S.𝐶𝐹𝑖 whenever 𝑥 is a preimage in this table, often identifying S.𝐶𝐹𝑖 with
the set of preimages stored. When 𝑥 ∈ S.𝐶𝐹𝑖 , 𝐶𝐹𝑖 (𝑥) denotes the corresponding image.
S.𝐶𝐹 is the collection of all these S.𝐶𝐹𝑖 tables. We use the notation (𝑖, 𝑥) ∈ S.𝐶𝐹 when
𝑥 ∈ S.𝐶𝐹𝑖 .

For each 𝑖, we additionally define a table S.𝐶�̃�𝑖 induced implicitly by S.𝐶𝐹. As
with S.𝐶𝐹𝑖 , the table S.𝐶�̃�𝑖 consists of pairs of inputs and outputs of 𝐶�̃�𝑖 . We write
𝑥 ∈ S.𝐶�̃�𝑖 when all queries generated by evaluation of 𝐶�̃�𝑖 (𝑥) are defined in S.𝐶𝐹;
naturally, the corresponding function value determines the pair (𝑥, 𝑦) in the table. The
collection of all of theseS.𝐶�̃�𝑖 is denoted byS.𝐶�̃�. (Note that this table is not maintained
explicitly by the simulator, but rather determined implicitly by S.𝐶𝐹.)
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Handling queries to S.𝐶𝐹. On a query S.𝐶𝐹 (𝑖, 𝑥), the simulator first checks whether
𝑥 ∈ S.𝐶𝐹𝑖 . If so, it answers with 𝐶𝐹𝑖 (𝑥). Otherwise the simulator picks a random
value 𝑦 and inserts (𝑥, 𝑦) into S.𝐶𝐹𝑖 . (The process above is done by a procedure called
S.𝐶𝐹Inner which takes input (𝑖, 𝑥).) After this, the simulator takes further steps to ensure
that its future answers are consistent with the permutation 𝑃. Only after this consistency
maintenance step is the value 𝑦 finally returned.

To ensure consistency, the simulator considers all newly generated unsubverted
chains with length ℓ/20 that terminate at the last-queried position; for a newly evaluated
term 𝐶𝐹𝑠 (𝑥𝑠), these chains of interest either have the form (𝑠, 𝑥𝑠 , ..., 𝑥𝑠+ℓ/20−1) or
(𝑠 − ℓ/20 + 1, 𝑥𝑠−ℓ/20+1, ..., 𝑥𝑠). Each such detected chain is enqueued by the simulator
in a “completion queue,” identifying the chain for future completion.

The simulator then repeats the following detection and completion step until the
queue is emptied. (When the queue is finally empty, the simulator returns the answer 𝑦 to
the initial query.)

1. Detection Step. The first chain 𝑐 = (𝑠, 𝑥𝑠 , ..., 𝑥𝑠+ℓ/20−1) is removed from the queue.
A procedure called S.HonestyCheck is then run on the chain. The procedure
S.HonestyCheck evaluates 𝐶�̃� values of the elements of 𝑐 and generates a four-tuple
(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢) for future completion if all the elements in 𝑐 are honest. (In fact,
not all chains removed from the queue are processed by S.HonestyCheck. A chain
removed from the queue is processed by S.HonestyCheck only if it is disjoint with
all the chains that are previously processed by S.HonestyCheck and is disjoint with
all the previously completed full subverted chains. Any chain that is not processed by
S.HonestyCheck is discarded. The procedure that decides whether a chain is going
to be discarded or processed by S.HonestyCheck is called S.Check.) In the tuple
(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢), the value 𝑠 ensures that later the simulator knows that the first value
𝑥𝑠 corresponds to 𝐶𝐹𝑠 . The value 𝑢 describes where to adapt (that is, program) the
values of 𝐶𝐹 in order to ensure consistency with the given permutation: this will
occur at positions 𝑢 and 𝑢 + 1. The convention for determining 𝑢 is straightforward:
If 𝑠 > 3ℓ/4 or 𝑠 + ℓ/20 − 1 < ℓ/4, then there is “plenty of space around ℓ/2,” and
𝑢 = ℓ/2; otherwise, 𝑢 = ℓ − 10.

2. Completion Step. Finally, the simulator takes the four-tuple (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢) and
completes the subverted chain related to (𝑠, 𝑥𝑠 , 𝑥𝑠+1). Intuitively, this means that
the chain is determined by iteratively determining neighbouring values of 𝐶�̃� (𝑥)
by evaluating the subversion algorithm and, when necessary, carrying out internal
calls to 𝐶𝐹𝑖 () in order to answer queries made by that algorithm to the 𝐹𝑖 . This
iterative process is continued, using 𝑃 to “wrap around,” until the only remaining
undetermined values appear at positions 𝑢 and 𝑢 + 1; at this point, the values at 𝑢 and
𝑢 + 1 are programmed to ensure consistency. In more detail: Assuming that 𝑢 < 𝑠,
the completion process (conducted by a procedure called S.Complete) proceeds as
follows.

– The initial chain consists of the two adjacent values 𝑥𝑠 , 𝑥𝑠+1.
– 𝐶�̃�𝑠+1 (𝑥𝑠+1) is determined by simulating the subversion algorithm which gener-

ates oracle queries to 𝐶𝐹 to be answered using S.𝐶𝐹. (Note that this process
may enqueue new chains for completion.) The value 𝑥𝑠+2 = 𝑥𝑠 ⊕ 𝐶�̃�𝑠+1 (𝑥𝑠+1)
is then determined, yielding the enlarged chain (𝑥𝑠 , 𝑥𝑠+1, 𝑥𝑠+2). This process is

16



repeated until the chain is extended maximally “to the right” so that it has the
form (𝑥𝑠 , 𝑥𝑠+1, . . . , 𝑥ℓ , 𝑥ℓ+1).

– 𝑃−1 is then applied to 𝑥ℓ , 𝑥ℓ+1 to yield 𝑥0, 𝑥1.
– Starting from the pair (𝑥0, 𝑥1), this process is repeated, as above, to yield

values for 𝑥2, . . . , 𝑥𝑢. Note that 𝑥𝑢 = 𝑥𝑢−2 ⊕ 𝐶�̃� (𝑥𝑢−1) so that 𝐶�̃� (𝑥𝑢) is never
evaluated during this process (which is to say that the subversion algorithm is
never simulated on 𝑥𝑢).

– Similarly, the original pair 𝑥𝑠 , 𝑥𝑠−1 is extended “to the left” to determine the
values 𝑥𝑠−1, ..., 𝑥𝑢+1; as above, 𝑥𝑢+1 is determined by 𝑥𝑢+3 ⊕ 𝐶�̃� (𝑥𝑢+2), so that
𝐶�̃� (𝑥𝑢+1) is never evaluated.

– Then, the simulator defines 𝐶𝐹𝑢 (𝑥𝑢) and 𝐶𝐹𝑢+1 (𝑥𝑢+1) that is consistent with 𝑃,
i.e., 𝐶𝐹𝑢 (𝑥𝑢) := 𝑥𝑢−1 ⊕ 𝑥𝑢+1 and 𝐶𝐹𝑢+1 (𝑥𝑢+1) := 𝑥𝑢 ⊕ 𝑥𝑢+2. The game aborts if
either of these is defined from a previous action of S. If the game does not abort,
the simulator evaluates the subversion algorithm on both 𝑥𝑢 and 𝑥𝑢+1. During
this evaluation, the values 𝐶𝐹𝑢 (𝑥𝑢) and 𝐶𝐹𝑢+1 (𝑥𝑢+1) are already determined;
other queries are answered using S.𝐶𝐹 as above. The game aborts if (𝑢, 𝑥𝑢) or
(𝑢 + 1, 𝑥𝑢+1) is dishonest; otherwise, the chain is a valid subverted chain (and
consistent with 𝑃).

– A set S.CompletedChains is maintained to store the chains that are completed:
for any (𝑖, 𝑥𝑖 , 𝑥𝑖+1) (1 ≤ 𝑖 ≤ ℓ − 1), S updates

S.CompletedChains := S.CompletedChains ∪ (𝑖, 𝑥𝑖 , 𝑥𝑖+1).

The alternative case, when 𝑢 > 𝑠 + 1, is treated analogously.

4.2 Plan of the Proof

To establish crooked indifferentiability, we need to prove that, from the perspective of
D, interacting with (𝑃,S𝑃) (the ideal world) is indistinguishable from interacting with
(𝐶𝐹 , 𝐹) (the real world).

Recall that we have three challenges in the security proof:
1. Freshness and Honesty. We need to show that the values of 𝐶𝐹𝑢 (𝑥𝑢) and

𝐶𝐹𝑢+1 (𝑥𝑢+1) are always undefined when these values are selected for program-
ing. Moreover, we hope the two terms (𝑢, 𝑥𝑢) and (𝑢 + 1, 𝑥𝑢+1), which are adapted to
ensure consistency are always honest; i.e., 𝐶𝐹𝑢 (𝑥𝑢) = 𝐶�̃�𝑢 (𝑥𝑢) and 𝐶𝐹𝑢+1 (𝑥𝑢+1) =
𝐶�̃�𝑢+1 (𝑥𝑢+1).

2. Efficiency. We need to show that the simulation terminates with high probability
when answering a query; i.e., the queue becomes empty after a small (polynomial)
number of completions.

3. Indistinguishability. Finally, with the two demands above in hand, it is still necessary
to show that the simulated world cannot be distinguished from the real world.
Let us define the event that S aborts as Abort. According to the description of S,

Abort happens only when the distinguisher D finds a chain (1, 𝑥1, . . . , 𝑥ℓ) such that the
programmed term, (𝑢, 𝑥𝑢) or (𝑢 + 1, 𝑥𝑢+1), has been evaluated before it is programmed or
is dishonest. It is easy to see that maintaining freshness and honesty is synonymous with
preventing S from aborting. We will stick to the following plan of the proof to address
these challenges.
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1. In the first two steps of the proof,we begin by assuming that Challenge 2 has been
adequately dealt with, allowing us to focus on resolving Challenges 3 and 1. First, in
Section 4.3, we aim to establish that resolving Challenge 1 enables us to address
Challenge 3. Put differently, we will demonstrate that our construction is crooked
indifferentiable if Abort happens negligibly.

2. Second, in Section 4.4, we address Challenge 1 under the assumption that Challenge
2 has been successfully addressed. In Theorem 4, we will establish that the likelihood
of Abort occurring is negligible given that S is efficient, which means, with
overwhelming probability, only a polynomial number of terms are evaluated by S
(or 𝑃) when D interacts with (𝑃,S𝑃).

3. Last, in Section 4.5, we will address Challenge 2 by showing the efficiency of S in
Theorem 5.

A simplified proof. Unfortunately, due to space limitations, we can only provide a
“simplified” proof (which is the plan above) in the main body. A complete and more
rigorous proof is put in Section B of the Supplementary Materials. In the simplified
proof, we omit less critical details while retaining a focus on the primary aspects relevant
to the core argument. To assure readers that the essential concepts and outcomes from
the complete proof are preserved in the simplified version, we will outline the structure
of the complete proof and provide a concise explanation of the distinctions between the
two versions.

Compare the complete and simplified proof. In the complete proof, we deal with Challenge
3 by developing a “game transition approach”. We introduce four intermediate games to
build the connection between the ideal world (the interaction between D and (𝑃,S𝑃))
and the real world (the interaction between D and (𝐶𝐹 , 𝐹)). Using the game transition,
we clearly analyze the gaps between adjacent games. Summing up these gaps gives the gap
between the ideal and real world, which is bounded by the probability of two bad events,
BadComplete5 and BadEval5. The first and the major bad event BadComplete5 is
same as the bad event Abort we defined above. (In fact, there is a little difference between
BadComplete5 and Abort. BadComplete5 is defined in one of the four intermediate
games, while Abort is defined in the interaction between D and (𝑃,S𝑃). Otherwise, the
two bad events are same and we can use the same proof to show their probabilities are
negligible.) The second and the auxiliary bad event BadEval5 is derived from the game
transition, which is used to make the proof rigorous. The missing part in the simplified
proof are the four intermediate games in the game transitions and the proof that bounds
the probability of BadEval5, which is an auxiliary event.

Although we omit the details of the four intermediate games in the simplified proof,
we will provide a concise overview of the central ideas underpinning the game transition
approach. This summary will explain why crooked indifferentiability can be reduced to
the negligibility of Abort. (See Section 4.3) We also want to stress that the efficiency
proof of the simulator in the simplified proof (Section 4.5) is same as that in the complete
proof.
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4.3 Relating Crooked Indifferentiability to the Bad Event

To understand how crooked indifferentiability is related to the probability of Abort, we
consider a situation where we need to “complete” a chain in the ideal world (𝑃,S𝑃) and
in the real world (𝐶𝐹 , 𝐹).

Suppose in both worlds, we start with an initial table of 𝐶𝐹 values 𝑇initial. Suppose
there is an unsubverted chain 𝑐 = (𝑠, 𝑥𝑠 , ..., 𝑥𝑠+ℓ/20−1) in 𝑇initial that has passed the test of
S.HonestyCheck, which means that all the elements of 𝑐 are honest. (Without loss of
generality, we assume 𝑠 + ℓ/20 − 1 < ℓ/4. This means, when S completes 𝑐, it adapts
the value of 𝐶𝐹 at 𝑢 = ℓ/2.) Now we want to see the gap between the two worlds when
generating a subverted full chain 𝑐′ that contain 𝑐.

In the ideal world (𝑃,S𝑃), what S does is the following Procedure 1:

1. Generate 𝐶�̃� values before the adaption position ℓ/2 by uniformly selecting 𝐶𝐹

values as needed: For 𝑖 = 2, . . . , ℓ/2, generate (𝑖, 𝑥𝑖) recursively by defining 𝑥𝑖 :=
𝑥𝑖−2 ⊕ 𝐶�̃�𝑖−1 (𝑥𝑖−1) for 2 ≤ 𝑖 ≤ ℓ/2 (each 𝐶𝐹 as needed is evaluated uniformly).

2. Generate 𝐶�̃� values after the adaption position ℓ/2 + 1 by querying 𝑃 and uniformly
selecting 𝐶𝐹 values as needed: Query 𝑃 at (𝑥0, 𝑥1) and receive an (almost) uniform
pair of 𝑛-bit strings (𝑥ℓ , 𝑥ℓ+1). To generate (𝑖, 𝑥𝑖) (𝑖 = ℓ/2, . . . , ℓ), recursively define
𝑥𝑖−2 := 𝑥𝑖 ⊕ 𝐶�̃�𝑖−1 (𝑥𝑖−1) for ℓ/2 + 3 ≤ 𝑖 ≤ ℓ + 1 (each 𝐶𝐹 as needed is evaluated
uniformly).

3. Adapt 𝐶𝐹 values at the adaption positions ℓ/2 and ℓ/2 + 1: Define 𝐶𝐹𝑢 (𝑥ℓ/2) :=
𝑥ℓ/2−1 ⊕ 𝑥ℓ/2+1 and 𝐶𝐹ℓ/2+1 (𝑥ℓ/2+1) := 𝑥ℓ/2 ⊕ 𝑥ℓ/2+2. Evaluate 𝐶�̃�ℓ/2 (𝑥ℓ/2) and
𝐶�̃�ℓ/2+1 (𝑥ℓ/2+1) (each 𝐶𝐹 as needed is evaluated uniformly).

4. Abort if freshness or honesty is violated: The game aborts if there is an index 𝑗 such
that ℓ/4 ≤ 𝑗 ≤ 3ℓ/4 and ( 𝑗 , 𝑥 𝑗 ) is in 𝑇initial or

⋃ℓ
𝑖=1 𝑄𝑖 (𝑥𝑖)/𝑄 𝑗 (𝑥 𝑗 ). The game also

aborts if there is an index 𝑗 such that (ℓ/2, 𝑥ℓ/2) or (ℓ/2 + 1, 𝑥ℓ/2+1) is dishonest.

In the real world (𝐶𝐹 , 𝐹), we extend 𝑐 to a full chain by Procedure 2:

1. For 𝑖 = 2, . . . , ℓ + 1, generate (𝑖, 𝑥𝑖) recursively by defining 𝑥𝑖 := 𝑥𝑖−2 ⊕𝐶�̃�𝑖−1 (𝑥𝑖−1)
for 2 ≤ 𝑖 ≤ ℓ + 1 (each 𝐶𝐹 is evaluated uniformly).

2. Assign 𝑃(𝑥0, 𝑥1) = (𝑥ℓ , 𝑥ℓ+1).

To connect Procedure 1 to Procedure 2, we rewrite Procedure 1 as Procedure 1’:

1. For all 𝑥 ∈ {0, 1}𝑛 and ℓ/2 + 2 ≤ 𝑖 ≤ ℓ, evaluate 𝐶�̃�𝑖 (𝑥) (each 𝐶𝐹 is evaluated
uniformly).

2. Same as step 2 of Procedure 1.
3. Same as step 3 of Procedure 1 except that no additional uniform 𝐶𝐹 values need to

be selected because all needed 𝐶𝐹 values are already evaluated in Step 1.
4. Same as step 4 of Procedure 1.
5. Same as step 5 of Procedure 1.

Procedure 1 and Procedure 1’ are equivalent in the sense that the resulting full chain
𝑐′ in these two procedure are same.

Slightly changing Procedure 1’ gives Procedure 2’ :

1. Same as step 1 of Procedure 1’.
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2. Same as step 2 of Procedure 1’.
3. Select 𝑥ℓ/2+1 and 𝑥ℓ/2+2 uniformly. To generate (𝑖, 𝑥𝑖) (for 𝑖 = ℓ/2 + 3, . . . , ℓ + 1),

define 𝑥𝑖 := 𝑥𝑖−2⊕𝐶�̃�𝑖−1 (𝑥𝑖−1) for ℓ/2+3 ≤ 𝑖 ≤ ℓ+1. Assign 𝑃(𝑥0, 𝑥1) = (𝑥ℓ , 𝑥ℓ+1).
4. Same as step 4 of Procedure 1’.

Notice that step 3 of Procedure 2’ is equivalent to that of Procedure 1’ because the
Feistel structure gives a permutation of 2𝑛-bit strings: selecting a uniform “input” string
(𝑥ℓ+1, 𝑥ℓ+2) is equivalent to selecting an uniform “output” string (𝑥ℓ , 𝑥ℓ+1). (In fact, they
are not perfectly equivalent since in Step 3 of Procedure 1’, querying 𝑃 at (𝑥0, 𝑥1) does
not give a perfectly uniform (𝑥ℓ , 𝑥ℓ+1): 𝑃 is a random permutation so (𝑥ℓ , 𝑥ℓ+1) is chosen
in a way to avoid collision. However, this only causes a negligible difference as we
assume 𝑇initial contains a polynomial number of terms.)

Therefore, the only difference between Procedure 1’ and Procedure 2’ is that, in Step
5, Procedure 1’ aborts when freshness or honesty is violated. And this is indicated by the
occurrence of the bad event Abort. Moreover, observe that Procedure 2’ is equivalent to
Procedure 2 since in both procedures, all 𝐶𝐹 values are selected uniformly and 𝑃 values
are determined by 𝐶𝐹. By combining these observations, it can be inferred that the gap
between Procedure 1 and Procedure 2 is bounded by Pr[Abort].

4.4 Bounding the Bad Events

In this section, we assume S is efficient to prove Pr[Abort] is negligible. The efficiency
of S will be proved in the next section. In the rest of the paper, all the definitions, lemmas
and theorems are in the interaction game between D and (𝑃,S𝑃) unless otherwise
specified.

We recall the following example to explain our plan for bounding Pr[Abort]. During
the interaction with the distinguisher, suppose the simulator S sees an unsubverted chain
𝑐 = (𝑠, 𝑥𝑠 , ..., 𝑥𝑠+𝑟 ) that triggers completion. Let us call the current S.𝐶𝐹 table 𝑇Initial.
For the full chain 𝑐′ = (1, 𝑥1, . . . , 𝑥ℓ) determined by 𝑐 (𝑐 ⊂ 𝑐′), S hopes that it can find
an index 𝑢 so that (𝑢, 𝑥𝑢) and (𝑢 + 1, 𝑥𝑢+1) are undefined before adaptation. It is easy to
find an index 𝑢 so that these two terms are not in 𝑇Initial. However, before S determines
𝑥𝑢 and 𝑥𝑢+1, it needs to evaluate 𝐶�̃�𝑖 (𝑥𝑖) for 𝑖 ≠ 𝑢, 𝑢 + 1. And there may exist an index
𝑖 so that (𝑢, 𝑥𝑢) or (𝑢 + 1, 𝑥𝑢+1) is in 𝑄𝑖 (𝑥𝑖). It is also not obvious how to find 𝑢 so
that (𝑢, 𝑥𝑢) and (𝑢 + 1, 𝑥𝑢+1) are honest since the distinguisher can subvert the round
functions of any index.

We deal with the challenge in the following three steps.

Step 1: Analysis of unsubverted chains: We introduce the notion of monotone increasing
(and decreasing) chains to analyze the property of unsubverted chains. We show
that any unsubverted chain is a union of a decreasing chain and an increasing
chain. We also show that (Theorem 3), inside a long monotone chain 𝑐∗, for any
other term ( 𝑗 , 𝑥 𝑗 ) in the “middle area” of 𝑐∗ and any term (𝑖, 𝑥𝑖) ∈ 𝑐∗ (𝑖 ≠ 𝑗),
( 𝑗 , 𝑥 𝑗 ) is honest and 𝐶𝐹𝑗 (𝑥 𝑗 ) is not queried by 𝐶�̃�𝑖 (𝑥𝑖)(i.e., ( 𝑗 , 𝑥 𝑗 ) ∉ 𝑄𝑖 (𝑥𝑖)).

Step 2: Analysis of subverted chains: We prove all the dishonest terms on a subverted
chain are located on an interval shorter than ℓ/12. As a result, the subverted
chain 𝑐′ can be viewed as an unsubverted chain except for a small dishonest area.
That is to say, there always exists a long unsubverted chain 𝑐′′ ⊂ 𝑐′.
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Step 3: Bounding the bad event: By combining the two results above, we can deduce
the existence of a long monotone chain 𝑐∗ ⊂ 𝑐′′ ⊂ 𝑐′. To conclude the proof
regarding the negligibility of Pr[Abort], we demonstrate that the selection rule
for the adaptation terms (𝑢, 𝑥𝑢) and (𝑢 + 1, 𝑥𝑢+1) ensures that these two terms
fall within the middle area of 𝑐∗, which implies honesty and freshness.

Step 1: Analysis of unsubverted chains. To analyze the properties of unsubverted
chains, we first introduce the notion of monotone chains.
The order function; monotone chains. To record the order in which S sets 𝐶𝐹 values,
we define the following order function 𝑂 from {1, . . . , ℓ} × {0, 1}𝑛 to positive integers
(with an additional symbol ⊥):

𝑂 (𝑖, 𝑥) =
{
𝑡 if 𝐶𝐹𝑖 (𝑥) is the 𝑡-th evaluated 𝐶𝐹 value by S,
⊥ if 𝐶𝐹𝑖 (𝑥) is undefined in S.𝐶𝐹.

An unsubverted chain (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) in S.𝐶𝐹 is said to be monotone increasing (or
monotone decreasing) if 𝑂 (𝑖, 𝑥𝑖) < 𝑂 (𝑖 + 1, 𝑥𝑖+1) for all 𝑠 ≤ 𝑖 < 𝑠 + 𝑟 (or, likewise,
𝑂 ( 𝑗 , 𝑥 𝑗 ) > 𝑂 ( 𝑗 + 1, 𝑥 𝑗+1) for all 𝑠 ≤ 𝑗 < 𝑠 + 𝑟).

In the rest of the paper, w.l.o.g, we focus our analytic efforts on increasing chains;
the results related to increasing chains can be easily transitioned into those related to
decreasing chains. In the following lemma, we show that any unsubverted chain is a
union of a decreasing chain and an increasing chain.

Lemma 2. If S is efficient, then with overwhelming probability, any unsubverted chain
𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) in S.𝐶𝐹 will satisfy one of the three conditions below:
1. 𝑐 is increasing,
2. 𝑐 is decreasing,
3. There exists an index 𝑠 < 𝑣 < 𝑠 + 𝑟 such that (𝑠, 𝑥𝑠 , . . . , 𝑥𝑣) is decreasing and
(𝑣, 𝑥𝑣 , . . . , 𝑥𝑠+𝑟 ) is increasing.

Proof. It suffices to show that in S.𝐶𝐹 there is no unsubverted length three chain
(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑥𝑠+2) such that 𝐶𝐹𝑠+1 (𝑥𝑠+1) is evaluated after both 𝐶𝐹𝑠 (𝑠𝑠) and 𝐶𝐹𝑠+2 (𝑥𝑠+2)
are evaluated. Suppose that throughout the interaction betweenD and (𝑃,S𝑃), there are
no more than 𝑃 (= poly(𝑛)) elements in S.𝐶𝐹. Then,

Pr
[
There is a length 3 chain (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑥𝑠+2) such that
𝑂 (𝑠 + 1, 𝑥𝑠+1) > max{𝑂 (𝑠 + 2, 𝑥𝑠+2), 𝑂 (𝑠, 𝑥𝑠).}

]
=

𝑃∑︁
𝑖=2

Pr
[
There is a length 3 chain (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑥𝑠+2) such that
𝑂 (𝑠+1, 𝑥𝑠+1) = 𝑖 > max{𝑂 (𝑠+2, 𝑥𝑠+2), 𝑂 (𝑠, 𝑥𝑠)}.

]
=

𝑃∑︁
𝑖=2

∑︁
𝑗 ,𝑘<𝑖
𝑗≠𝑘

Pr

[There is a length 3 chain (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑥𝑠+2) such
that 𝑂 (𝑠 + 1, 𝑥𝑠+1) = 𝑖, 𝑂 (𝑠 + 2, 𝑥𝑠+2) = 𝑗 and
𝑂 (𝑠, 𝑥𝑠) = 𝑘 .

]

<

𝑃∑︁
𝑖=2

∑︁
𝑗 ,𝑘<𝑖
𝑗≠𝑘

1
2𝑛

<
𝑃3

2𝑛
= negl(𝑛),
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where the first inequality is based on the fact that and 𝐶𝐹𝑠+1 (𝑥𝑠+1) is selected uniformly
and is independent of 𝐶𝐹𝑠 (𝑠𝑠) and 𝐶𝐹𝑠+2 (𝑥𝑠+2). □

Parameters in the Main Theorem. The security parameter 𝜖 ′ in Theorem 1 is determined
by the last line of the inequality in the proof of Lemma 2, along with Theorem 5, which
states that 𝑃 is bounded by 22𝑞D (𝑞A + 1).

Next, we will use a sequence of lemmas to establish the following major theorem
that describes the nice properties of increasing chains.

Theorem 3. If S is efficient, then with overwhelming probability, any unsubverted
increasing chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) (𝑟 > 8) in S.𝐶𝐹 will satisfy:

1. for any 0 < 𝑖 < 𝑗 and 8 < 𝑗 ≤ 𝑟 , (𝑠 + 𝑗 , 𝑥𝑠+ 𝑗 ) ∉ 𝑄𝑠+𝑖 (𝑥𝑠+𝑖);
2. for any 7 ≤ 𝑖 < 𝑗 ≤ 𝑟, (𝑠 + 𝑖, 𝑥𝑠+𝑖) ∉ 𝑄𝑠+ 𝑗 (𝑥𝑠+ 𝑗 ).

Lemma 3. With overwhelming probability, the following event does not happen: at some
point of the game, there exist an unsubverted (or subverted) chain 𝑐 = (𝑖, 𝑥𝑖 , . . . , 𝑥 𝑗 ) and
a length 10 unsubverted chain 𝑐′ = (𝑠, 𝑦𝑠 , . . . , 𝑦𝑠+9) in S.𝐶𝐹 such that

– for all ( 𝑗 , 𝑥) ∈ 𝑐, 𝐶�̃�𝑖 (𝑥) is defined;
– 𝑐 and 𝑐′ are disjoint;
– for each 𝑠 ≤ 𝑘 ≤ 𝑠 + 9, (𝑘, 𝑦𝑘) ∈ 𝑄𝑐.

Proof. Consider proving the following stronger statements: Imagine we fill the entire
table S.𝐶𝐹 by uniformly selecting all the 𝐹 values and (𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, . . . , ℓ). We will
prove that with overwhelming probability over the choice of 𝐹 values and (𝑎𝑖 , 𝑏𝑖), there
are not two chains 𝑐 and 𝑐′ that satisfy the properties in the lemma.

Let (𝑥𝑖+1, 𝑥𝑖+2), (𝑦𝑠 , 𝑦𝑠+1) be two pairs of 𝑛-bit strings and (𝑖, 𝑗 , 𝑠) be three positive
indices. We denote by 𝑐 the length ( 𝑗 − 𝑖) chain starting with (𝑖 + 1, 𝑥𝑖+1, 𝑥𝑖+2) (without
loss of generality, we assume 𝑐 is a subverted chain for convenience in the rest of the
proof) and denote by 𝑐′ the length 10 unsubverted chain starting with (𝑠, 𝑦𝑠 , 𝑦𝑠+1). We
denote by 𝑥𝑣 (𝑣 = 𝑖 + 1, . . . , 𝑗) the elements of 𝑐 and denote by 𝑦𝑘 (𝑘 = 𝑠, . . . , 𝑠 + 9) the
elements of 𝑐′. It is important to note that while 𝑥𝑖+1, 𝑥𝑖+2, 𝑦𝑠 and 𝑦𝑠+1 are specific 𝑛-bit
strings, the values of 𝑥𝑣 and 𝑦𝑘 are currently undetermined. We use 𝑥𝑣 and 𝑦𝑘 purely to
represent the elements of 𝑐 and 𝑐′ respectively. The actual values they will take on will
be determined by choice of 𝐹 values and (𝑎𝑖 , 𝑏𝑖). We define the event:

𝐸𝑖, 𝑗 ,𝑠 (𝑥𝑖+1, 𝑥𝑖+2, 𝑦𝑠 , 𝑦𝑠+1) := {𝑐 and 𝑐′ are disjoint, and for each 𝑠 ≤ 𝑘 ≤ 𝑠 + 9, (𝑘, 𝑦𝑘) ∈ 𝑄𝑐} .

For 𝑠 ≤ 𝑡 ≤ 𝑠 + 9, we also define:

𝐸 𝑡
𝑖, 𝑗 ,𝑠 (𝑥𝑖+1, 𝑥𝑖+2, 𝑦𝑠 , 𝑦𝑠+1) := {𝑐 and 𝑐′ are disjoint, and for each 𝑠 ≤ 𝑘 ≤ 𝑡, (𝑘, 𝑦𝑘) ∈ 𝑄𝑐} .

To analyze the probability of 𝐸𝑖, 𝑗 ,𝑠 (𝑥1, 𝑥2, 𝑦𝑠 , 𝑦𝑠+1) over the choice of 𝐹 and (𝑎𝑖 , 𝑏𝑖)
(𝑖 = 1, . . . , ℓ), we consider selecting uniformly the values of 𝐹𝑖 (𝑥) for all 𝑖 = 1, . . . , ℓ
and 𝑥 ∈ {0, 1}𝑛 and selecting uniformly 𝑎𝑣 · 𝑥𝑣 ⊕ 𝑏𝑣 for 𝑣 = 𝑖, . . . , 𝑗 . Since the function
𝑥𝑣 → 𝑎𝑖 · 𝑥𝑣 ⊕ 𝑏𝑖 is pairwise independent, the values of 𝑎𝑘 · 𝑦𝑘 ⊕ 𝑏𝑘(𝑘 = 𝑠, . . . , 𝑠 + 9)
are uniformly random. (For convenience, in the following, we will write 𝐸𝑖, 𝑗 ,𝑠 for
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𝐸𝑖, 𝑗 ,𝑠 (𝑥1, 𝑥2, 𝑦𝑠 , 𝑦𝑠+1) and 𝐸 𝑡
𝑖, 𝑗 ,𝑠

for 𝐸 𝑡
𝑖, 𝑗 ,𝑠
(𝑥1, 𝑥2, 𝑦𝑠 , 𝑦𝑠+1).) Over the randomness of

𝑎𝑘 · 𝑦𝑘 ⊕ 𝑏𝑘 (𝑘 = 𝑠, . . . , 𝑠 + 9), we have

Pr[ 𝐸𝑖, 𝑗 ,𝑠]
= Pr[𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+1

𝑖, 𝑗 ,𝑠 ] · Pr[𝐸 𝑠+1
𝑖, 𝑗 ,𝑠]

< Pr[ 𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+1
𝑖, 𝑗 ,𝑠 ]

· (Pr[𝐶𝐹𝑠 (𝑦𝑠) ∈ ∪ 𝑗

𝑣=𝑖
𝑄𝑣 (𝑥𝑣) | 𝑦𝑠 ≠ 𝑥𝑠 ] + Pr[𝐶𝐹𝑠+1 (𝑦𝑠+1) ∈ ∪ 𝑗

𝑣=𝑖
𝑄𝑣 (𝑥𝑣) | 𝑦𝑠+1 ≠ 𝑥𝑠+1 ])

< Pr[𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+3
𝑖, 𝑗 ,𝑠 ] · Pr[𝐸 𝑠+3

𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+1
𝑖, 𝑗 ,𝑠 ] · 2 · (ℓ · 𝑞A/2𝑛)

< Pr[𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+5
𝑖, 𝑗 ,𝑠 ] · Pr[𝐸 𝑠+5

𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+3
𝑖, 𝑗 ,𝑠 ] · (2ℓ · 𝑞A/2𝑛)2

< Pr[𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+7
𝑖, 𝑗 ,𝑠 ] · Pr[𝐸 𝑠+7

𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+5
𝑖, 𝑗 ,𝑠 ] · (2ℓ · 𝑞A/2𝑛)3

< Pr[𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+7
𝑖, 𝑗 ,𝑠 ] · (2ℓ · 𝑞A/2𝑛)4 < (2ℓ · 𝑞A/2𝑛)5 .

The lemma is implied by taking the union bound over the choice of (𝑥1, 𝑥2, 𝑦𝑠 , 𝑦𝑠+1).

A similar proof can be used to prove the following lemma:

Lemma 4. With overwhelming probability over the choice of all the 𝐹 values and
(𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, . . . , ℓ), there are not a term (𝑖, 𝑥𝑖) and a length 8 unsubverted chain
𝑐 = (𝑠, 𝑦𝑠 , . . . , 𝑦𝑠+7) in S.𝐶𝐹 such that (𝑘, 𝑦𝑘) ∈ 𝑄𝑖 (𝑥𝑖) for all 𝑘 = 𝑠, 𝑠 + 2, 𝑠 + 4, 𝑠 + 6.

Lemma 5. If S is efficient, then with overwhelming probability, for any unsubverted
increasing chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) in S.𝐶𝐹, if (𝑠 + 2𝑡 + 1, 𝑥𝑠+2𝑡+1) ∈ 𝑄𝑠+2𝑘 (𝑥𝑠+2𝑘)
(assuming 𝐶�̃�𝑠+2𝑘 (𝑥𝑠+2𝑘) is defined) for some 𝑡, 𝑘 with 0 < 2𝑡 + 1, 2𝑘 ≤ 𝑟, then
(𝑠 + 2𝑖, 𝑥𝑠+2𝑖) ∈ 𝑄𝑠+2𝑘 (𝑥𝑠+2𝑘) for all 0 < 𝑖 ≤ 𝑡.

Proof. We give a simple example to show the idea of the proof. Take 𝑠 = 1, 𝑟 = 7,
𝑘 = 2 and 𝑡 = 3 for example. We want to show that for any chain 𝑐 = (1, 𝑥1, . . . , 𝑥8), if
(8, 𝑥8) ∈ 𝑄5 (𝑥5), then with overwhelming probability, (1 + 2𝑖, 𝑥1+2𝑖) ∈ 𝑄5 (𝑥5) for 𝑖 = 1.

Consider the following two ways of determining a length 8 unsubverted chain:

– Procedure 1:
1. Pick an arbitrary moment in the interaction between D and (𝑃,S𝑃) and abort

the game. Denote the table S.𝐶𝐹 at this moment by 𝑇initial. Pick a length 2
increasing chain (1, 𝑥1, 𝑥2) in 𝑇initial such that it is not a subchain of a length 3
unsubverted chain.

2. For 2 ≤ 𝑖 ≤ 7, select 𝐶𝐹𝑖 (𝑥𝑖) uniformly, set 𝑥𝑖+1 := 𝐶𝐹𝑖 (𝑥𝑖) ⊕ 𝑥𝑖−1 and abort
the procedure if (𝑖 + 1, 𝑥𝑖+1) is already in the table 𝑇initial.

3. Evaluate 𝐶�̃�5 (𝑥5).
– Procedure 2:

1. Pick an arbitrary moment in the interaction between D and (𝑃,S𝑃) and abort
the game. Denote the table S.𝐶𝐹 at this moment by 𝑇initial. Pick a length 2
increasing chain (1, 𝑥1, 𝑥2) in 𝑇initial such that it is not a subchain of a length 3
unsubverted chain.

2. Select 𝐶𝐹2 (𝑥2) uniformly and set 𝑥3 := 𝑎2 ⊕ 𝑥1.
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3. Select 4 uniform 𝑛-bit strings 𝑎4, 𝑎5, 𝑎6 and 𝑎7. Set 𝑥5 := 𝑎4 ⊕ 𝑥3, 𝑥7 := 𝑎6 ⊕ 𝑥5
and abort the procedure if either of them is in 𝑇initial. Set 𝐶𝐹5 (𝑥5) := 𝑎5 and
𝐶𝐹7 (𝑥7) := 𝑎7.

4. Evaluate 𝐶�̃�5 (𝑥5).
5. Select 𝐶𝐹3 (𝑥3) uniformly (use the existing value if it has been evaluated), set

𝑥4 := 𝐶𝐹3 (𝑥3) ⊕ 𝑥2, 𝑥6 := 𝑎5 ⊕ 𝑥4, 𝑥8 := 𝑎7 ⊕ 𝑥6, and abort the procedure if any
one of 𝑥4, 𝑥4 and 𝑥8 is in 𝑇initial.

A quick thought reveals that the above two procedures are equivalent in terms of
the distribution of the chain and, furthermore, the probability they abort is negligible
because of Lemma 2. We use the second procedure to analyze the distribution of the
first one. In the second procedure, we can see that if (3, 𝑥3) ∉ 𝑄5 (𝑥5), then 𝐶𝐹3 (𝑥3) is
still uniform conditioned on 𝑄5 (𝑥5), which implies that 𝑥8 = 𝑎7 ⊕ 𝑥6 = 𝑎7 ⊕ 𝑎5 ⊕ 𝑥4 =

𝑎7 ⊕ 𝑎5 ⊕𝐶𝐹3 (𝑥3) ⊕ 𝑥2 is uniform. Therefore, if (3, 𝑥3) ∉ 𝑄5 (𝑥5), (8, 𝑥8) ∈ 𝑄5 (𝑥5) with
negligible probability.

The full proof can be achieved by replacing the concrete numbers in the last example
by more general parameters 𝑠, 𝑟, 𝑘 and 𝑡 and taking the union bound over the various
values of these parameters.

Lemma 6. If S is efficient, then with overwhelming probability, for any unsubverted
increasing chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) in S.𝐶𝐹 and any index 𝑖, 𝑗 with 0 < 𝑖 < 𝑗 and
8 < 𝑗 ≤ 𝑟, (𝑠 + 𝑗 , 𝑥𝑠+ 𝑗 ) ∉ 𝑄𝑠+𝑖 (𝑥𝑠+𝑖) (if 𝐶�̃�𝑠+𝑖 (𝑥𝑠+𝑖) is defined).

Proof. Without loss of generality, assume 𝑖 = 0. Suppose (𝑠 + 𝑗 , 𝑥𝑠+ 𝑗 ) ∈ 𝑄𝑠 (𝑥𝑠). Notice
that (𝑠 + 𝑗 − 1, 𝑥𝑠+ 𝑗−1) ∈ 𝑄𝑠+𝑖 (𝑥𝑠+𝑖) with overwhelming probability because otherwise
the randomness of 𝐶𝐹𝑠+ 𝑗−1 (𝑥𝑠+ 𝑗−1) will cause the event (𝑠 + 𝑗 , 𝑥𝑠+ 𝑗 ) ∉ 𝑄𝑠 (𝑥𝑠). Then,

– if 𝑗 is odd, since 𝑗 > 8 and (𝑠 + 𝑗 , 𝑥𝑠+ 𝑗 ) ∈ 𝑄𝑠 (𝑥𝑠), by Lemma 5, (𝑠 + 2𝑘, 𝑥𝑠+2𝑘) ∈
𝑄𝑠 (𝑥𝑠) for 𝑘 = 1, 2, 3, 4. This contradicts Lemma 4.

– if 𝑗 is even, since 𝑗 > 8 and (𝑠 + 𝑗 − 1, 𝑥𝑠+ 𝑗−1) ∈ 𝑄𝑠 (𝑥𝑠), by Lemma 5, (𝑠 +
2 𝑗 , 𝑥𝑠+2 𝑗 ) ∈ 𝑄𝑠 (𝑥𝑠) for 𝑗 = 1, 2, 3, 4, which contradicts with Lemma 4. □

Lemma 7. If S is efficient, then with overwhelming probability, for any unsubverted
increasing chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) in S.𝐶𝐹, if (𝑠+2𝑡, 𝑥𝑠+2𝑡 ) ∈ 𝑄𝑠+𝑘 (𝑥𝑠+𝑘) (assuming
𝐶�̃�𝑠+𝑘 (𝑥𝑠+𝑘) is defined) for some 𝑡, 𝑘 with 0 < 2𝑡 < 𝑘 ≤ 𝑟, then (𝑠 + 2𝑖 − 1, 𝑥𝑠+2𝑖−1) ∈
𝑄𝑠+𝑘 (𝑥𝑠+𝑘) for all 0 < 𝑖 ≤ 𝑡.

Proof. The proof of the lemma is similar to that of Lemma 5. Consider the example where
𝑠 = 1, 𝑟 = 8, 𝑡 = 2 and 𝑘 = 8. We want to show that for any chain 𝑐 = (1, 𝑥1, . . . , 𝑥9), if
(5, 𝑥5) ∈ 𝑄9 (𝑥9), then with overwhelming probability, (2𝑖, 𝑥2𝑖) ∈ 𝑄9 (𝑥9) for 𝑖 = 1.

Consider the following two ways of determining a length 9 unsubverted chain:

– Procedure 1:
1. Pick an arbitrary moment in 𝐺5 and abort the game. Denote the tableM3.𝐶𝐹 at

this moment by 𝑇initial. Pick a length 2 increasing chain (1, 𝑥1, 𝑥2) in 𝑇initial such
that it is not a subchain of a length 3 unsubverted chain.

2. For 2 ≤ 𝑖 ≤ 8, select 𝐶𝐹𝑖 (𝑥𝑖) uniformly, set 𝑥𝑖+1 := 𝐶𝐹𝑖 (𝑥𝑖) ⊕ 𝑥𝑖−1 and abort
the procedure if (𝑖 + 1, 𝑥𝑖+1) is already in the table 𝑇initial.
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3. Evaluate 𝐶�̃�9 (𝑥9).
– Procedure 2:

1. Pick an arbitrary moment in 𝐺5 and abort the game. Denote the tableM3.𝐶𝐹 at
this moment by 𝑇initial. Pick a length 2 increasing chain (1, 𝑥1, 𝑥2) in 𝑇initial such
that it is not a subchain of a length 3 unsubverted chain.

2. Select 3 uniform 𝑛-bit strings 𝑎3, 𝑎4 and 𝑎5. Set 𝑥4 := 𝑎3 ⊕ 𝑥2, 𝑥6 := 𝑎5 ⊕ 𝑥4
and aborts the procedure if either of them is in 𝑇initial. Set 𝐶𝐹4 (𝑥4) := 𝑎4 and
𝐶𝐹6 (𝑥6) := 𝑎6.

3. Select 𝑥7, 𝑥8 and 𝑥9 uniformly and aborts the procedure if any one of them is in
𝑇initial. Set 𝐶𝐹7 (𝑥7) := 𝑥6 ⊕ 𝑥8 and 𝐶𝐹8 (𝑥8) := 𝑥7 ⊕ 𝑥9.

4. Evaluate 𝐶�̃�9 (𝑥9).
5. Select 𝐶𝐹2 (𝑥2) uniformly(use the existing value if it has been evaluated), set

𝑥3 := 𝐶𝐹2 (𝑥2) ⊕ 𝑥1, 𝑥5 := 𝑎4 ⊕ 𝑥3, 𝐶𝐹6 (𝑥6) := 𝑥7 ⊕ 𝑥5, and aborts the procedure
if either 𝑥3 or 𝑥5 is in 𝑇initial.

A quick thought reveals that the above two procedures are equivalent in terms of
the distribution of the chain (and, furthermore, the probability they abort is negligible
because of Lemma 2). We use the second procedure to analyze the distribution of the
first one. In the second procedure, we can see that if (2, 𝑥2) ∉ 𝑄9 (𝑥9), then 𝐶𝐹2 (𝑥2) is
still uniform conditioned on 𝑄9 (𝑥9), which implies that 𝑥5 = 𝑎4 ⊕ 𝑥3 = 𝑎4 ⊕ 𝑎2 ⊕ 𝑥1 is
uniform. Therefore, if (2, 𝑥2) ∉ 𝑄9 (𝑥9), (5, 𝑥5) ∈ 𝑄9 (𝑥9) with negligible probability.

The formal proof can be achieved by replacing the concrete numbers in the last
example by more general parameters 𝑠, 𝑟, 𝑡 and 𝑘 and taking the union bound over the
various values of these parameters. □

Following directly from Lemma 4 and Lemma 7, we get:

Lemma 8. If S is efficient, then with overwhelming probability, for any unsubverted
increasing chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) in S.𝐶𝐹 and any index 𝑖, 𝑗 with 7 < 𝑖 < 𝑗 ≤ 𝑟,
(𝑠 + 𝑖, 𝑥𝑠+𝑖) ∉ 𝑄𝑠+ 𝑗 (𝑥𝑠+ 𝑗 )(if 𝐶�̃�𝑠+ 𝑗 (𝑥𝑠+ 𝑗 ) is defined).

Theorem 3 follows from the combination of Lemma 6 and Lemma 8.
Step 2: Analysis of subverted chains. Now we turn our attention to subverted chains.

We want to show that although, in general, there are some dishonest terms on a subverted
chain, all of them gather in a small area.

Lemma 9. If S is efficient, then with overwhelming probability, there does not exist
an unsubverted increasing chain 𝑐 = (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+8) in S.𝐶𝐹 such that 𝐶�̃�𝑖+8 (𝑥𝑖+8) is
defined in S.𝐶𝐹 and (𝑖 + 8, 𝑥𝑖+8) is dishonest.

Proof. We say the distinguisher D wins the interaction game with (𝑃,S𝑃) if it is able
to find an unsubverted increasing chain 𝑐 in S.𝐶𝐹 that satisfies the property in the
lemma. By Lemma 6, the probability that there is a length-9 unsubverted increasing
chain 𝑐 = (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+8) with (𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥𝑖+8) (𝐶�̃�𝑖+8 (𝑥𝑖+8)) is negligible. We
denote this negligible probability by 𝛿. To show the probability thatD wins is negligible,
consider the following experiment with a distinguisher D∗:
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Exp*
1. D∗ takes an arbitrary moment of S, stops the game and selects an arbitrary

length-2 increasing chain (𝑖, 𝑥𝑖 , 𝑥𝑖+1) in S.𝐶𝐹 such that 𝐶𝐹𝑖+2 (𝑥𝑖+2) is not
evaluated for 𝑥𝑖+1 := 𝑥𝑖 ⊕ 𝐶𝐹𝑖 (𝑥𝑖).

2. Then, D∗ extends (𝑖, 𝑥𝑖 , 𝑥𝑖+1) to (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+7) by iteratively evaluating
𝐶𝐹𝑗−1 (𝑥 𝑗−1) (selected uniformly) and 𝑥 𝑗 := 𝑥 𝑗−2 ⊕ 𝐶𝐹𝑗−1 (𝑥 𝑗−1) for 𝑖 + 3 ≤
𝑗 ≤ 𝑖 + 7. The experiment aborts if 𝐶𝐹𝑖+7 (𝑥𝑖+7) is already evaluated.

3. For any term ( 𝑗 , 𝑦), if 𝐶𝐹𝑗 (𝑦) is still unevaluated and ( 𝑗 , 𝑦) ≠ (𝑖 + 7, 𝑥𝑖+7),D∗
selects 𝐶𝐹𝑗 (𝑦) uniformly.

4. Finally D∗ selects 𝐶𝐹𝑖+7 (𝑥𝑖+7) and check if (𝑖 + 8, 𝑥𝑖+8) is dishonest for
𝑥𝑖+8 := 𝑥𝑖+6 ⊕ 𝐶𝐹𝑖+7 (𝑥𝑖+7).

5. D∗ wins Exp* if the experiment does not abort in Step 2 and (𝑖 + 8, 𝑥𝑖+8) is
dishonest.

To proveD wins negligibly, it is sufficient to show the probability that the experiment
aborts in Step 2 or D∗ wins is negligible. We also stress that although Exp* is not the
interaction between D and (𝑃,S𝑃), the lemmas we proved in this section can still be
applied because all the 𝐶𝐹 values here are also selected uniformly and independently.

Pr
Exp*
[The experiment aborts in Step 2 or D∗ wins.]

≤ Pr
Exp*
[The experiment aborts in Step 2.] + Pr

Exp*

[D∗ wins and there are at least√
𝛿2𝑛 𝑛-bit strings 𝑥 such that
(𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥).

]
+ Pr

Exp*

[
D∗ wins and there are fewer than

√
𝛿2𝑛 𝑛-bit

strings 𝑥 such that (𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥).

]
< negl(𝑛) + Pr

Exp*

[
D∗ wins and there are at least

√
𝛿2𝑛 𝑛-bit strings 𝑥 such that

(𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥).

]
+ Pr

Exp*

[
D∗ wins.

���� There are fewer than
√
𝛿2𝑛 𝑛-bit strings 𝑥 such that

(𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥).

]
< negl(𝑛) +

√
𝛿 + Pr

Exp*


(𝑖 + 8, 𝑥𝑖+8) is dishon-
est and (𝑖 + 7, 𝑥𝑖+7) ∈
𝑄𝑖+8 (𝑥𝑖+8).

������ There are fewer than
√
𝛿2𝑛 𝑛-bit

strings 𝑥 such that (𝑖 + 7, 𝑥𝑖+7) ∈
𝑄𝑖+8 (𝑥).


+ Pr

Exp*


(𝑖 + 8, 𝑥𝑖+8) is dishon-
est and (𝑖 + 7, 𝑥𝑖+7) ∉
𝑄𝑖+8 (𝑥𝑖+8).

������ There are fewer than
√
𝛿2𝑛

𝑛-bit strings 𝑥 such that
(𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥).


< negl(𝑛) +

√
𝛿 +
√
𝛿 + 𝜖 = negl(𝑛). □

Definition 2 (Bad region). For a subverted chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) in S.𝐶𝐹, we say
a subchain (𝑖, 𝑥𝑖 , . . . , 𝑥 𝑗 ) (𝑠 ≤ 𝑖 < 𝑗 ≤ 𝑠 + 𝑟) of 𝑐 is a bad region of 𝑐 if there is no
sequence of 14 consecutive elements (𝑘, 𝑥𝑘 , . . . , 𝑥𝑘+13) (𝑖 ≤ 𝑘 ≤ 𝑗 − 13) that are honest.

For a subverted chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) in S.𝐶𝐹, we say two bad regions of
𝑐, (𝑖, 𝑥𝑖 , . . . , 𝑥 𝑗 ) and (𝑖′, 𝑥𝑖′ , . . . , 𝑥 𝑗′ ) (𝑖 < 𝑖′, 𝑗 < 𝑗 ′) are separated if the subchain
(𝑖, 𝑥𝑖 , . . . , 𝑥′𝑗 ) of 𝑐 is not a bad region of 𝑐.
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Lemma 10. If ℓ > 337𝑛/log(1/𝜖), then in the interaction game betweenD and (𝑃,S𝑃),
with overwhelming probability, there does not exist a subverted chain (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 )
in S.𝐶𝐹 such that it has a bad region with length greater than ℓ/12.

Proof. Consider proving the following stronger statement: with overwhelming probability
over the uniform choice of (𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, . . . , ℓ) and values of 𝐹𝑖 (𝑥) for all 𝑖 = 1, . . . , ℓ
and 𝑥 ∈ {0, 1}𝑛, there is no bad region with length greater than ℓ/12. Imagine we select
𝐹𝑖 (𝑥) for all 𝑖 = {1, . . . , ℓ} and 𝑥 ∈ {0, 1}𝑛 and leave 𝑎𝑖 and 𝑏𝑖 undetermined. Then, over
the randomness of the choice of 𝑎𝑖 and 𝑏𝑖 , we have

Pr[There is a subverted chain 𝑐 with a bad region longer than ℓ/12.]

=

ℓ∑︁
𝑖=1

Pr
[
There is a subverted chain 𝑐 with a bad region longer than ℓ/12 and the
bad region begins at index 𝑖.

]
=

ℓ∑︁
𝑖=1

∑︁
𝑥,𝑥′∈{0,1}𝑛

Pr

[There is a subverted chain 𝑐 with a bad region longer than ℓ/12.
The bad region begins at index 𝑖 and its first two elements are
(𝑖, 𝑥) and (𝑖 + 1, 𝑥′).

]

<

ℓ∑︁
𝑖=1

∑︁
𝑥,𝑥′∈{0,1}𝑛

Pr


There is a subverted chain 𝑐 = (𝑖, 𝑥, 𝑥′, . . . , 𝑥𝑟 ) such that its first
element has index 𝑖 and 𝑟 − 𝑖 > ℓ/12. Moreover, for any length
14 subchain of 𝑐 in the form of (14𝑘, 𝑥14𝑘 , . . . , 𝑥14𝑘+13), at least
one of 14 elements is dishonest.


<

ℓ∑︁
𝑖=1
(2𝑛)2 · (14𝜖)ℓ/168−1 = ℓ · 22𝑛 · (14𝜖)ℓ/168−1 = negl(𝑛).

Lemma 11. If S is efficient, then with overwhelming probability, there is no subverted
chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) in S.𝐶𝐹 that has two separated bad regions.

Proof. The lemma is implied directly by Lemma 2 and Lemma 9.

Step 3: Bounding the bad event. Now we put together the properties of unsubverted
and subverted chains above to show the main theorem:

Theorem 4. If S is efficient, the probability that Abort happens is negligible.

Proof. Due to space limitations, we only give a high-level description of how integrating
the properties of chains above gives the negligibility of Abort.

Imagine we start with an initial table of 𝐶𝐹 values 𝑇initial. Suppose there is an unsub-
verted chain 𝑐 = (𝑠, 𝑥𝑠 , ..., 𝑥𝑠+ℓ/20−1) in𝑇initial that has passed the test ofS.HonestyCheck.
This indicates that all the elements of 𝑐 are honest. Without loss of generality, here we
assume 𝑠 + ℓ/20 − 1 < ℓ/4. Consequently, when S completes 𝑐, it adapts the value of
𝐶𝐹 at 𝑢 = ℓ/2.

Now we prove freshness and honesty when completing the chain 𝑐. We denote by
𝑐′ = (1, 𝑥1, ..., 𝑥ℓ) the full chain that contains 𝑐.

– Case 1: There exists a dishonest term ( 𝑗 , 𝑥 𝑗 ) in (𝑠, 𝑥𝑠 , ..., 𝑥ℓ). In this case, by Lemma
9 and 10, 𝑗 < (𝑠 + ℓ/20 − 1) + 8 + ℓ/12 < ℓ/4 + 8 + ℓ/12 = ℓ/3 + 8. This means
the chain 𝑐′′ = (ℓ/3 + 8, 𝑥ℓ/3+8, ..., 𝑥ℓ) is honest. Again by Lemma 9, the chain
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𝑐∗ = (ℓ/2−10, 𝑥ℓ/2−10, ..., 𝑥ℓ) is increasing. Therefore, the𝐶𝐹 values in the adaption
positions are honest. They also satisfy freshness since: 1. they are not in 𝑄𝑐∗ because
of Theorem 3; 2. they are uniform and are therefore outside of 𝑇initial and 𝑄𝑐′/𝑐∗ .

– Case 2: There does not exist a dishonest term ( 𝑗 , 𝑥 𝑗 ) in (𝑠, 𝑥𝑠 , ..., 𝑥ℓ). The proof in
this case is simply a subset of that of Case 1.

4.5 Efficiency of S

In this section, we are going to show that the number of the elements in S.𝐶𝐹 is bounded
by a polynomial function if the distinguisher D makes at most 𝑞D (𝑞D is polynomial)
queries to 𝐶𝐹 or the ideal object.

Lemma 12. If S is efficient, then with overwhelming probability, there is not a chain
𝑐 = (1, 𝑤1, . . . , 𝑤ℓ) and three pairwise disjoint increasing chains 𝑐1 = (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+10),
𝑐2 = ( 𝑗 , 𝑦 𝑗 , . . . , 𝑦 𝑗+10) and 𝑐3 = (𝑘, 𝑧𝑘 , . . . , 𝑧𝑘+10) in S.𝐶𝐹, such that

– for all (𝑖, 𝑥) ∈ 𝑐, 𝐶�̃�𝑖 (𝑥) is defined;
– 𝑐 is disjoint with 𝑐1, 𝑐2, 𝑐3;
– (𝑖 + 10, 𝑥𝑖+10), ( 𝑗 + 10, 𝑦 𝑗+10), (𝑘 + 10, 𝑧𝑘+10) ∈ 𝑄𝑐.

Proof. According to Lemma 3, if (𝑖 + 10, 𝑥𝑖+10) ∈ 𝑄𝑐, then there exists an index 𝑚

(𝑖 + 1 ≤ 𝑚 ≤ 𝑖 + 9) such that in the length 3 monotone increasing chain (𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1),
(𝑖, 𝑥𝑖) ∉ 𝑄𝑐 but (𝑖 + 1, 𝑥𝑖+1) ∈ 𝑄𝑐. Now we turn this observation into a proof.

Consider the following experiment in S. Take an arbitrary pair of 𝑛-bit strings
(𝑤1, 𝑤2). D tries to find a subverted chain 𝑐 starting with (𝑤1, 𝑤2) (w.l.o.g., we only
consider subverted chain for convenience) and a length 3 increasing chain (𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1)
s.t., (𝑖, 𝑥𝑖) ∉ 𝑄𝑐 and (𝑖 +1, 𝑥𝑖+1) ∈ 𝑄𝑐. We show the probability thatD wins is negligible
(ℓ𝑞A/𝑠𝑛): Suppose, without loss of generality, D queries all the elements in 𝑄𝑐 at
the beginning of S. At some moment of the experiment, D will select a pair of terms
(𝑖 − 1, 𝑥𝑖−1, 𝑥𝑖) as the starting pair of target length 3 chain. It is easy to see that, since
(𝑖, 𝑥𝑖) ∉ 𝑄𝑐, (𝑖 + 1, 𝑥𝑖+1) ∈ 𝑄𝑐 with probability not greater than poly(𝑛) · ℓ𝑞A/2𝑛, where
poly(𝑛) denotes the upper bound of the number of the terms in S.𝐶𝐹.

For any pair (𝑤1, 𝑤2), we define the event:

𝐸 (𝑤1, 𝑤2) :=



There are three monotone increasing unsub-
verted chains 𝑐1 = (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+10), 𝑐2 =

( 𝑗 , 𝑦 𝑗 , . . . , 𝑦 𝑗+10) and 𝑐3 = (𝑘, 𝑧𝑘 , . . . , 𝑧𝑘+10) in
S.𝐶𝐹, such that 𝑐 is disjoint with 𝑐1, 𝑐2, 𝑐3 and
(𝑖 + 10, 𝑥𝑖+10), ( 𝑗 + 10, 𝑦 𝑗+10), (𝑘 + 10, 𝑧𝑘+10) ∈
𝑄𝑐, where 𝑐 is the subverted starting with (𝑤1, 𝑤2)


Finally we have∑︁

(𝑤1 ,𝑤2 ) ∈{0,1}2𝑛
Pr[𝐸 (𝑤1, 𝑤2)] < 22𝑛 · (poly(𝑛) · ℓ𝑞A/2𝑛)3 = negl(𝑛). □

Lemma 13. Suppose S is efficient. Let 𝐶11 be a set of length 11 increasing chains and 𝑐

be a chain in S.𝐶𝐹 such that 𝑐 is disjoint with any element in 𝐶11, and for all (𝑖, 𝑥) ∈ 𝑐,
𝐶�̃�𝑖 (𝑥) is defined. Then, with overwhelming probability, there are at most 20 chains
𝑐′ = (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+10) ∈ 𝐶11 such that (𝑖 + 10, 𝑥𝑖+10) ∈ 𝑄𝑐.
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Proof. Suppose there are 21 chains in 𝐶11 that satisfy the property in the lemma. Notice
that for each length 11 chain 𝑐′, there are at most 9 other length 11 chains that are not
disjoint with 𝑐′. Then, among the 21 chains satisfying the property in the lemma, we can
find 3 pairwise disjoint chains. This contradicts Lemma 12.

Definition 3 (Order of a chain). We define the order of an unsubverted chain 𝑐 =

(𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) in S.𝐶𝐹 to be:

𝑂 (𝑐) := min
𝑘=𝑠,...,𝑠+𝑟−1

{
max{𝑂 (𝑘, 𝑥𝑘), 𝑂 (𝑘 + 1, 𝑥𝑘+1)}

}
Intuitively speaking, the order of a chain describes the time when a chain is “determined.”

Lemma 14. Suppose S is efficient. Let 𝐶Disj be a set of pairwise disjoint unsubverted
chains with length greater than or equal to 4 in S.𝐶𝐹. Define the set 𝐴 to be the set
of the elements of the chains in 𝐶Disj. Then, with overwhelming probability, |𝐴| ≥∑

𝑐∈𝐶Disj (𝐿 (𝑐) − 3).

Proof. For any 𝑐 ∈ 𝐶Disj and a term (𝑖, 𝑥) in 𝑐, we say (𝑖, 𝑥) is original in 𝑐 if there
does not exist a different element 𝑐′ ∈ 𝐶Disj such that 𝑐 and 𝑐′ intersects at (𝑖, 𝑥) and
𝑂 (𝑐) ≥ 𝑂 (𝑐′). Notice that a term (𝑖, 𝑥) can be original in at most one chain.

Now we are going to show that, with overwhelming probability, each element in 𝐶Disj
contains at most 3 non-original terms. Suppose there is a chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) that
has four non-original terms. Then there are two non-original elements, (𝑖, 𝑥𝑖) and ( 𝑗 , 𝑥 𝑗 ),
such that 𝑠 ≤ 𝑖 < 𝑗 − 2 ≤ 𝑠 + 𝑟 − 2. Because of Lemma 2, w.l.o.g, we assume

𝑂 (𝑖, 𝑥𝑖) > 𝑂 (𝑖 + 1, 𝑥𝑖+1) > 𝑂 (𝑖 + 2, 𝑥𝑖+2) .

Since (𝑖, 𝑥𝑖) is non-original in 𝑐, there is a chain 𝑐′ ≠ 𝑐 such that (𝑖, 𝑥𝑖) ∈ 𝑐′ and
𝑂 (𝑐) ≥ 𝑂 (𝑐′). Since 𝑐 and 𝑐′ are disjoint, (𝑖 + 1, 𝑥𝑖+1) ∉ 𝑐′. Then, since 𝑂 (𝑐) ≥ 𝑂 (𝑐′)
and 𝑂 (𝑖 + 1, 𝑥𝑖+1) > 𝑂 (𝑖 + 2, 𝑥𝑖+2), we have 𝑂 (𝑐) > 𝑂 (𝑐′), which means (𝑖 + 1, 𝑥𝑖+1) is
not evaluated when 𝑐′ has been determined. Finally, because S.𝐶𝐹 (𝑖 + 1, 𝑥𝑖+1) is selected
uniformly, (𝑖, 𝑥𝑖) ∈ 𝑐′ with negligible probability. A contradiction.

Going back to the proof of the lemma, since each term is original in at most one chain
and each chain in 𝐶Disj has all but 3 original elements, |𝐴| is lower bounded by the sum
of the original terms in the elements of 𝐶Disj, which is not less than

∑
𝑐∈𝐶Disj (𝐿 (𝑐) − 3).

Theorem 5. For any positive integer 𝑘 ≤ 𝑞D , with overwhelming probability, at the end
of the 𝑘-th round of S, there are fewer than (22𝑞A + 1)𝑘 terms in S.𝐶𝐹.

Remark. In the proof of Theorem 5, we will make use of Lemma 13 and Lemma 14.
However, these lemmas already take efficiency of S as their assumptions. To reassure
the reader that there is not a circular argument here, we imagine that the 𝑘-th round of
the game is forced to end when S.𝐶𝐹 contains more than (22𝑞A + 1)𝑘 elements. In this
way, we can also feel free to reason about S.𝐶𝐹 [𝑘].

Proof. In S.𝐶𝐹 [𝑘], for any unsubverted chain 𝑐, we call 𝑐 a generator if 𝑐 was processed
by the procedure S.HonestCheck. We denote by 𝐶𝐺 the set of generators. We define
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a function 𝑔 from 𝐶FComp [𝑘] to 𝐶𝐺: for each 𝑐1 ∈ 𝐶FComp [𝑘] and 𝑐 ∈ 𝐶𝐺 , we say
𝑔(𝑐1) = 𝑐 if 𝑐1 ⊂ 𝑐. Define 𝐺 := {(𝑖, 𝑥) | there is 𝑐 ∈ 𝐶𝐺 such that (𝑖, 𝑥) ∈ 𝑐.} .

Since 𝐶𝐺 is a set of pairwise disjoint chains, by Lemma 14,

|𝐺 | ≥
∑︁
𝑐∈𝐶𝐺

(𝐿 (𝑐) − 3) = (ℓ/20 − 3) · |𝐶𝐺 |. (2)

To understand the structure of 𝐺, we define several subsets of 𝐺. We say a point
(𝑖, 𝑥) ∈ 𝐺 is a tail point if there is an increasing 𝑐2 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+10) in S.𝐶𝐹 (w.l.o.g.,
we only consider the increasing case) and a chain 𝑐 ∈ 𝐶𝐺 such that (𝑖, 𝑥) = (𝑠+10, 𝑥𝑠+10)
and 𝑐2 ⊂ 𝑐. We say a point (𝑖, 𝑥) ∈ 𝐺 is a head point if it is not a tail point. We denote
the sets of the head points and tail points by 𝐺Head and 𝐺Tail, respectively. For any point
(𝑖, 𝑥) ∈ 𝐺Tail and any chain 𝑐 ∈ 𝐶𝐺 , we say 𝑐 covers (𝑖, 𝑥) ((𝑖, 𝑥) ∉ 𝑐) if (𝑖, 𝑥) ∈ 𝑄𝑐 or
(𝑖, 𝑥) ∈ 𝑄𝑔−1 (𝑐) (if 𝑐 has a preimage in function 𝑔). We define 𝐺Query to be the set of the
points in 𝐺Tail that are not covered by any element in 𝐶𝐺 . Notice that any element in
𝐺Query was queried directly by the distinguisher D. Our goal is to show |𝐺Query | is big.

By Lemma 2, the number of the elements in 𝐺Head is easily bounded by

|𝐺Head | ≤ 19 · |𝐶𝐺 |. (3)

By Lemma 13
|𝐺Tail/𝐺Query | ≤ 20 · |𝐶𝐺 |. (4)

Summarizing Equation 2, 3 and 4, we have

|𝐺Query | = |𝐺 |−|𝐺Head |−|𝐺Tail/𝐺Query | ≥ (ℓ/20−3) |𝐶𝐺 |−19|𝐶𝐺 |−20|𝐶𝐹𝑢 | = (ℓ/20−42) |𝐶𝐺 |.

This implies that

|S.𝐶𝐹 [𝑘] | ≤ ℓ · 𝑞A · |𝐶𝐺 | + 𝑘 ≤ ℓ · 𝑞A · |𝐺Query |/(ℓ/20 − 42) + 𝑘
≤ ℓ · 𝑞A · 𝑘/(ℓ/20 − 42) + 𝑘 ≤ ℓ · 𝑞A · 𝑘/(ℓ/22) + 𝑘 = (22𝑞A + 1)𝑘.

We remark that all the statements in the proof are true with overwhelming probability.

5 Conclusions and Open Problems

In this work, we answer an open problem in [21,22] and analyze the classical Feistel struc-
ture under the crooked-indifferentiability framework that can give a better construction
for correcting subverted random function/permutation to a good random permutation.

There are still many interesting questions remain to be explored: broader applications
of crooked-indifferentiability, and whether we can have a truly practical construction.
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Supplementary Materials
The supplementary material consists of four section. Section A describes the definition

of classical indifferentiability and the replacement theorems for both classical and crooked
indifferentiability. Section B is a complete proof for the main result in the paper. Section
B.9 contains the pseudocode of the games we defined in Section B.

A Indifferentiability and Replacement Theorems

A.1 Preliminary: Indifferentiability

The notion of indifferentiability proposed in the elegant work of Maurer et al. [17]
has proven to be a powerful tool for studying the security of hash function and many
other primitives. The notion extends the classical concept of indistinguishability to the
setting where one or more oracles involved in the construction are publicly available.
The indifferentiability framework of [17] is built around random systems providing
interfaces to other systems. Coron et al. [9] demonstrate a strengthened6 indifferentiability
framework built around Interactive Turing Machines (as in [6]). Our presentation borrows
heavily from [9]. In the next subsection, we will introduce our new notion, crooked
indifferentiability.
6 Technically, the quantifiers in the security definitions in the original [17] and in the followup

[9] are different; in the former, a simulator needs to be constructed for each adversary, while in
the latter a simulator needs to be constructed for all adversaries.
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Defining indifferentiability. An ideal primitive is an algorithmic entity which receives
inputs from one of the parties and returns its output immediately to the querying party.
We now proceed to the definition of indifferentiability [17,9]:

Definition 4 (Indifferentiability [17,9]). A Turing machine C with oracle access to an
ideal primitive G is said to be (𝑡D , 𝑡S , 𝑞, 𝜖)-indifferentiable from an ideal primitive F , if
there is a simulator S, such that for any distinguisher D, it holds that :���Pr[DC,G (1𝑛) = 1] − Pr[DF,S (1𝑛) = 1]

��� ≤ 𝜖 .

The simulator S has oracle access to F and runs in time at most 𝑡S . The distinguisher
D runs in time at most 𝑡D and makes at most 𝑞 queries. Similarly, CG is said to be
(computationally) indifferentiable from F if 𝜖 is a negligible function of the security
parameter 𝑛 (for polynomially bounded 𝑡D and 𝑡S). See Figure 3.

C G F S

D

Fig. 3: The indifferentiability notion: the distinguisher D either interacts with algorithm
C and ideal primitive G, or with ideal primitive F and simulator S. Algorithm C has
oracle access to G, while simulator S has oracle access to F .

As illustrated in Figure 3, the role of the simulator is to simulate the ideal primitive G
so that no distinguisher can tell whether it is interacting with C and G, or with F and S;
in other words, the output of S should look “consistent” with what the distinguisher can
obtain from F . Note that the simulator does not observe the distinguisher’s queries to F ;
however, it can call F directly when needed for the simulation. Note that, in some sense,
the simulator must “reverse engineer” the construction C so that the simulated oracle
appropriately induces F and, of course, possesses the correct marginal distribution.

Replacement. It is shown in [17] that if CG is indifferentiable from F , then CG can
replace F in any cryptosystem, and the resulting cryptosystem is at least as secure in the
G model as in the F model.

We use the definition of [17] to specify what it means for a cryptosystem to be at
least as secure in the G model as in the F model. A cryptosystem is modeled as an
Interactive Turing Machine with an interface to an adversary A and to a public oracle.
The cryptosystem is run by an environment E which provides a binary output and also
runs the adversary. In the G model, cryptosystem P has oracle access to C whereas
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C G

P A

E

F

P SA

E

Fig. 4: The environment E interacts with cryptosystem P and attacker A. In the G
model (left), P has oracle access to C whereasA has oracle access to G. In the F model,
both P and SA have oracle access to F .

attacker A has oracle access to G. In the F model, both P and A have oracle access to
F . The definition is illustrated in Figure 4.

Definition 5. A cryptosystem is said to be at least as secure in theG model with algorithm
C as in the F model, if for any environment E and any attacker A in the G model, there
exists an attacker SA in the F model, such that:

Pr[E(PC ,AG) = 1] − Pr[E(PF ,SFA) = 1] ≤ 𝜖 .

where 𝜖 is a negligible function of the security parameter 𝑛. Similarly, a cryptosystem is
said to be computationally at least as secure, etc., if E, A and SA are polynomial-time
in 𝑛.

We have the following security preserving (replacement) theorem, which says that
when an ideal primitive is replaced by an indifferentiable one, the security of the “big”
cryptosystem remains:

Theorem 6 ([17,9]). Let P be a cryptosystem with oracle access to an ideal primitive
F . Let C be an algorithm such that CG is indifferentiable from F . Then cryptosystem P
is at least as secure in the G model with algorithm C as in the F model.

A.2 Abbreviated crooked indifferentiability

Definition 6 (Abbreviated crooked indifferentiability). The abbreviated model calls for
the distinguisher to provide the subversion algorithm ℎ̃ at the outset (without the advantage
of any preliminary queries to ℎ). Thus, the abbreviated model consists only of the last
phase of the full model. Formally, in the abbreviated model the distinguisher is provided
as a pair (D̂, ℎ̃), the random string 𝑅 is drawn (as in the full model), and insecurity is
expressed as the difference between the behavior of D̂ on the pair (𝐶 ℎ̃ (𝑅), ℎ) and the
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pair (F ,SF (𝑅, ⟨ℎ̃⟩)). Specifically, the construction C is (𝑛source, 𝑛target, 𝑞 D̂ , 𝑞ℎ̃, 𝑟, 𝜖)-
Abbreviated-crooked-indifferentiable from ideal primitive F if there is an efficient
simulator S so that for any crooked-distinguisher D̂ making no more than 𝑞 D̂ (𝑛) queries
and subversion algorithm ℎ̃ making no more than 𝑞 ℎ̃ (𝑛) queries, the real execution and
the ideal execution are indistinguishable:���� Pr

𝑢,𝑅,ℎ

[
D̂Cℎ̃ (𝑅) ,ℎ (1𝑛, 𝑅) = 1

]
− Pr

𝑢,𝑅,F

[
D̂F,SF (𝑅,⟨ℎ̃⟩) (1𝑛, 𝑅) = 1

] ���� ≤ 𝜖 (𝑛) .

Here 𝑅 denotes a random string of length 𝑟 (𝑛) and both ℎ : {0, 1}𝑛source → {0, 1}𝑛source and
F : {0, 1}𝑛target → {0, 1}𝑛target denote random functions where 𝑛source (𝑛) and 𝑛target (𝑛)
are polynomials in the security parameter 𝑛. We let 𝑢 denote the random coins of D̂. The
simulator is efficient in the sense that it is polynomial in 𝑛 and the running time of the
supplied algorithm ℎ̃ (on inputs of length 𝑛source).

Observe that while the abbreviated simulator is a fixed algorithm, its running time
may depend on the running time of ℎ̃—in particular, the definition permits S sufficient
running time to simulate ℎ̃ on a polynomial number of inputs.

Regarding the difference between the full and abbreviated crooked-indifferentiability,
observe that the distinguisher can “compile into” the subversion algorithm ℎ̃ any
queries and pre-computation that might have been advantageous to carry out in phase
I; such queries and pre-computation can also be mimicked by the distinguisher itself.
This technique can effectively simulate the two phase execution with a single phase.
Nevertheless, the models do make slightly different demands on the simulator which
must be prepared to answer some queries (in Phase I) prior to knowledge of 𝑅 and ℎ̃.

A.3 Replacement with Crooked indifferentiability [21]

Security preserving (replacement) has been shown in the indifferentiability frame-
work [17]: if CG is indifferentiable from F , then CG can replace F in any cryptosystem,
and the resulting cryptosystem in the G model is at least as secure as that in the F model.
We next show that the replacement property also holds in the crooked indifferentiability
framework.

Recall that, in the “standard” indifferentiability framework [17,9], a cryptosystem
can be modeled as an Interactive Turing Machine with an interface to an adversary
A and to a public oracle. There the cryptosystem is run by a “standard” environment
E. In our “crooked” indifferentiability framework, a cryptosystem has the interface to
an adversary A and to a public oracle. However, now the cryptosystem is run by a
crooked-environment Ê.

Consider an ideal primitive G. Similar to the G-crooked-distinguisher, we can
define the G-crooked-environment Ê as follows: Initially, the crooked-environment Ê
manufactures and then publishes a subverted implementation of the ideal primitive G,
and denotes it G̃. Then Ê runs the attacker A, and the cryptosystem P is developed.
In the G model, cryptosystem P has oracle access to C whereas attacker A has oracle
access to G; note that, C has oracle access to G̃, not to directly G. In the F model, both
P and A have oracle access to F . Finally, the crooked-environment Ê returns a binary
decision output. The definition is illustrated in Figure 5.
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Definition 7. Consider ideal primitives G and F . A cryptosystem P is said to be at
least as secure in the G-crooked model with algorithm C as in the F model, if for any
G-crooked-environment Ê and any attacker A in the G-crooked model, there exists an
attacher SA in the F model, such that:

Pr[Ê (PCG̃ ,AG) = 1] − Pr[Ê (PF ,SFA) = 1] ≤ 𝜖 .

where 𝜖 is a negligible function of the security parameter 𝑛.

C

𝑅

G̃ G

P A

Ê

F

𝑅

P SA

Ê

Fig. 5: The environment Ê interacts with cryptosystem P and attacker A: In the G
model (left), P has oracle access to C whereas A has oracle access to G; the algorithm
C has oracle access to the subverted G̃. In the F model, both P and SA have oracle
access to F . In addition, in both G and F models, randomness 𝑅 is publicly available to
all entities.

The following theorem was given in [21] which shows that security is preserved
when replacing an ideal primitive by a crooked-indifferentiable one:

Theorem 7 ([21]). Consider an ideal primitive G and a G-crooked-environment Ê. Let
P be a cryptosystem with oracle access to an ideal primitive F . Let C be an algorithm
such that CG is G-crooked-indifferentiable from F . Then cryptosystem P is at least as
secure in the G-crooked model with algorithm C as in the F model.

Proof. The proof is very similar to that in [17,9]. Let P be any cryptosystem, modeled
as an Interactive Turing Machine. Let Ê be any crooked-environment, and A be any
attacker in the G-crooked model. In the G-crooked model, P has oracle access to C (who
has oracle access to G̃, not to directly G.) whereasA has oracle access to ideal primitive
G; moreover crooked-environment Ê interacts with both P and A. This is illustrated in
Figure 6 (left part).
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Since C is crooked-indifferentiable from F (see Figure 2), one can replace (C G̃ ,G)
by (F ,S) with only a negligible modification of the crooked-environment Ê’s output
distribution. As illustrated in Figure 6, by merging attacker A and simulator S, one
obtains an attacker SA in the F model, and the difference in Ê’s output distribution is
negligible. □

Similar proof can be used to show the following corollary.

Corollary 1 (Proof of the warm-up construction.). Let G, F1 and F2 be three ideal
primitives. Suppose there are two algorithms C1 and C2 such that CG1 is crooked-
indifferentiable from F1 and CF1

2 is indifferentiable from F2. Then CG is crooked-
indifferentiable from F2 for C := CC2

1 .

C

𝑅

G̃ G

P A

Ê

D̂

F

𝑅

S
G̃

P A

Ê

D̂

SA

Fig. 6: Construction of attacker SA from attacker A and simulator S

Restrictions (of using crooked indifferentiability). Ristenpart et al. [18] has demonstrated
that the replacement/composition theorem (Theorem 6) in the original indifferentiability
framework only holds in single-stage settings. We remark that, the same restriction also
applies to our replacement/composition theorem (Theorem 7). We leave it as our future
work to extend our crooked indifferentiability to the multi-stage settings where disjoint
adversaries are split over several stages.

B A Complete Proof

The formal proof consists of four steps:
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1. First, we define the simulator for the security proof in Section B.1 and introduce
a sequence of intermediate games from Section B.2 to Section B.5 that build
connections between the simulator’s game and the construction. Using the game
transition, we show that the security proof can be reduced to controlling the probability
of two bad events (assuming the simulator is efficient). We address challenge 4 here.

2. Second, from Section B.6 to B.7, we formally prove the bad events are negligible.
3. Third, we prove the simulator is efficient in Section B.8.
4. Finally, we lift the security in the abbreviated model to the full model in Section B.9.

The security proof we have is applicable to any ℓ ≥ 2000𝑛/log(1/𝜖). However, for
the sake of brevity, we will initially consider ℓ = 8𝑛 and then later replace it with the
more precise value of ℓ = 2000𝑛/log(1/𝜖) towards the conclusion of the proof.

B.1 The Detailed Definition of the Simulator

The simulator provides an interface S.𝐶𝐹 (𝑖, 𝑥) to query the simulated random function
𝐶𝐹𝑖 on input 𝑥. As mentioned above, for each 𝑖 the simulator internally maintains a table
whose entries are pairs (𝑥, 𝑦) of 𝑛-bit strings; each such entry intuitively determines a
simulated value of𝐶𝐹 at a particular point: in particular, if the pair (𝑥, 𝑦) appears then any
query to S.𝐶𝐹 (𝑖, 𝑥) returns the value 𝑦. The simulator maintains the natural invariants
described previously: responses provided to the distinguisher are always consistent with
the table and, furthermore, once an entry has been added to the table, it is never removed
or changed. Note that in many cases the table will reflect function values that have not
been queried by the distinguisher. We denote the 𝑖th table by S.𝐶𝐹𝑖 and write 𝑥 ∈ S.𝐶𝐹𝑖
whenever 𝑥 is a preimage in this table, often identifying S.𝐶𝐹𝑖 with the set of preimages
stored. When 𝑥 ∈ S.𝐶𝐹𝑖 , 𝐶𝐹𝑖 (𝑥) denotes the corresponding image. We also denote the
collection of all these S.𝐶𝐹𝑖 tables by S.𝐶𝐹. We use the notation (𝑖, 𝑥) ∈ S.𝐶𝐹 when
𝑥 ∈ S.𝐶𝐹𝑖 .

For each 𝑖, we additionally define a table S.𝐶�̃�𝑖 induced implicitly by S.𝐶𝐹. As
with S.𝐶𝐹𝑖 , the table S.𝐶�̃�𝑖 consists of pairs of inputs and outputs of 𝐶�̃�𝑖 . We write
𝑥 ∈ S.𝐶�̃�𝑖 when all queries generated by evaluation of 𝐶�̃�𝑖 (𝑥) are defined in S.𝐶𝐹;
naturally, the corresponding function value determines the pair (𝑥, 𝑦) in the table. The
collection of all of theseS.𝐶�̃�𝑖 is denoted byS.𝐶�̃�. (Note that this table is not maintained
explicitly by the simulator, but rather determined implicitly by S.𝐶𝐹.)

Handling queries to S.𝐶𝐹. On a query S.𝐶𝐹 (𝑖, 𝑥), the simulator first checks whether
𝑥 ∈ S.𝐶𝐹𝑖 . If so, it answers with 𝐶𝐹𝑖 (𝑥). Otherwise the simulator picks a random value 𝑦

and inserts (𝑥, 𝑦) into S.𝐶𝐹𝑖 . The process above is done by a procedure called S.𝐶𝐹Inner

which takes input (𝑖, 𝑥).) After this, the simulator takes further steps to ensure that
its future answers are consistent with the permutation 𝑃. Only after this consistency
maintenance step is the value 𝑦 finally returned.

To ensure consistency, the simulator considers all newly generated unsubverted
chains with length 𝑛/10 that terminate at the last-queried position; for a newly evaluated
term 𝐶𝐹𝑠 (𝑥𝑠), these chains of interest either have the form (𝑠, 𝑥𝑠 , ..., 𝑥𝑠+𝑛/10−1) or
(𝑠 − 𝑛/10 + 1, 𝑥𝑠−𝑛/10+1, ..., 𝑥𝑠). Each such detected chain is enqueued by the simulator
in a “completion queue,” idenifying the chain for future completion.
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The simulator then repeats the following completion step until the queue is emptied.
(When the queue is finally empty, the simulator returns the answer 𝑦 to the initial query.)

1. Detection Step. The first chain 𝑐 = (𝑠, 𝑥𝑠 , ..., 𝑥𝑠+𝑛/10−1) is removed from the
queue. A procedure called S.HonestyCheck is then run on the chain. The procedure
S.HonestyCheck evaluates 𝐶�̃� values of the elements of 𝑐 and generates a four-tuple
(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢) for future completion if all the elements in 𝑐 are honest. (In fact,
not all chains removed from the queue are processed by S.HonestyCheck. A chain
removed from the queue is processed by S.HonestyCheck only if it is disjoint with
all the chains that are previously processed by S.HonestyCheck and is disjoint with
all the previously completed full subverted chains. Any chain that is not processed by
S.HonestyCheck is discarded. The procedure that decides whether a chain is going
to be discarded or processed by S.HonestyCheck is called S.Check.) In the tuple
(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢), the value 𝑠 ensures that later the simulator knows that the first value
𝑥𝑠 corresponds to 𝐶𝐹𝑠 . The value 𝑢 describes where to adapt (that is, program) the
values of 𝐶𝐹∗ in order to ensure consistency with the given permutation: this will
occur at positions 𝑢 and 𝑢 + 1. The convention for determining 𝑢 is straightforward:
If 𝑠 > 5𝑛 or 𝑠 + 𝑛/10−1 < 3𝑛, then there is “plenty of space around 4𝑛,” and 𝑢 = 4𝑛;
otherwise, 𝑢 = 7𝑛.

2. Completion Step. Finally, the simulator takes the four-tuple (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢) and
completes the subverted chain related to (𝑠, 𝑥𝑠 , 𝑥𝑠+1). Intuitively, this means that
the chain is determined by iteratively determining neighbouring values of 𝐶�̃� (𝑥)
by evaluating the subversion algorithm and, when necessary, carrying out internal
calls to 𝐶𝐹𝑖 () in order to answer queries made by that algorithm to the 𝐹𝑖 . This
iterative process is continued, using 𝑃 to “wrap around,” until the only remaining
undetermined values appear at positions 𝑢 and 𝑢 + 1; at this point, the values at 𝑢 and
𝑢 + 1 are programmed to ensure consistency. In more detail: Assuming that 𝑢 < 𝑠,
the completion process (conducted by a procedure called S.Complete) proceeds as
follows.

– The initial chain consists of the two adjacent values 𝑥𝑠 , 𝑥𝑠+1.
– 𝐶�̃�𝑠+1 (𝑥𝑠+1) is determined by simulating the subversion algorithm which gener-

ates oracle queries to 𝐶𝐹 to be answered using S.𝐶𝐹. (Note that this process
may enqueue new chains for completion.) The value 𝑥𝑠+2 = 𝑥𝑠 ⊕ 𝐶�̃�𝑠+1 (𝑥𝑠+1)
is then determined, yielding the enlarged chain (𝑥𝑠 , 𝑥𝑠+1, 𝑥𝑠+2). This process is
repeated until the chain is extended maximally “to the right” so that it has the
form (𝑥𝑠 , 𝑥𝑠+1, . . . , 𝑥8𝑛, 𝑥8𝑛+1).

– 𝑃−1 is then applied to 𝑥8𝑛, 𝑥8𝑛+1 to yield 𝑥0, 𝑥1.
– Starting from the pair (𝑥0, 𝑥1), this process is repeated, as above, to yield

values for 𝑥2, . . . , 𝑥𝑢. Note that 𝑥𝑢 = 𝑥𝑢−2 ⊕ 𝐶�̃� (𝑥𝑢−1) so that 𝐶�̃� (𝑥𝑢) is never
evaluated during this process (which is to say that the subversion algorithm is
never simulated on 𝑥𝑢).

– Similarly, the original pair 𝑥𝑠 , 𝑥𝑠−1 is extended “to the left” to determine the
values 𝑥𝑠−1, ..., 𝑥𝑢+1; as above, 𝑥𝑢+1 is determined by 𝑥𝑢+3 ⊕ 𝐶�̃� (𝑥𝑢+2), so that
𝐶�̃� (𝑥𝑢+1) is never evaluated.

– Then, the simulator defines 𝐶𝐹𝑢 (𝑥𝑢) and 𝐶𝐹𝑢+1 (𝑥𝑢+1) that is consistent with 𝑃,
i.e., 𝐶𝐹𝑢 (𝑥𝑢) := 𝑥𝑢−1 ⊕ 𝑥𝑢+1 and 𝐶𝐹𝑢+1 (𝑥𝑢+1) := 𝑥𝑢 ⊕ 𝑥𝑢+2. The game aborts if
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either of these is defined from a previous action of S. If the game does not abort,
the simulator evaluates the subversion algorithm on both 𝑥𝑢 and 𝑥𝑢+1. During
this evaluation, the values 𝐶𝐹𝑢 (𝑥𝑢) and 𝐶𝐹𝑢+1 (𝑥𝑢+1) are already determined;
other queries are answered using S.𝐶𝐹 as above. The game aborts if (𝑢, 𝑥𝑢) and
(𝑢 + 1, 𝑥𝑢+1) are dishonest; otherwise, the chain is a valid subverted chain (and
consistent with 𝑃).

– A set S.CompletedChains is maintained to store the chains that are completed:
for any (𝑖, 𝑥𝑖 , 𝑥𝑖+1) (1 ≤ 𝑖 ≤ 8𝑛 − 1), S updates

S.CompletedChains := S.CompletedChains ∪ (𝑖, 𝑥𝑖 , 𝑥𝑖+1).

The alternative case, when 𝑢 > 𝑠 + 1, is treated analogously.

For a pseudocode description of the simulator, please see page 82.
Notice that we achieve freshness and honesty if the simulator above does not abort.

However, even if we can prove the simulation of S is perfect (i.e., it does not abort) and
S is efficient, it is still not a rigorous proof for the fact that the simulated world cannot be
distinguished from the real world. We provide a rigorous proof below by using a game
transition approach.

B.2 Game Transition Approach: Some preparations

Our overall purpose is to show that for any deterministic distinguisher D that make at
most 𝑞D queries (where 𝑞D is some polynomial function in 𝑛), the probability that D
outputs 1 when interacting with (𝑃,S𝑃) differs negligibly from the probability it outputs
1 when interacting with (𝐶𝐹 , 𝐹). Here 𝐶 is the construction in Section 3, and 𝐹 is a
collection of 8𝑛 uniform functions. We also wish to establish that, with overwhelming
probability, only a polynomial number of terms are evaluated by S (or 𝑃) when D
interacts with (𝑃,S𝑃).

We denote the game where the distinguisherD interacts with (𝑃,S𝑃) by𝐺1 (the ideal
world), and the game where D interacts with (𝐶𝐹 , 𝐹) by 𝐺6 (the real world). We will
introduce four intermediate games, 𝐺2, 𝐺3, 𝐺4 and 𝐺5, in the following narrative to study
the relationship between 𝐺1 and 𝐺6. When we use the term “𝐺𝑖” (𝑖 = 1, ..., 6), we always
have a fixed deterministic distinguisher (denoted by D) in mind, without mentioning it
explicitly. Also, whenever we prove a statement about “𝐺𝑖 ,” this is understood to mean
that the statement holds every fixed distinguisher that issues at most 𝑞D queries in the
setting defined by 𝐺𝑖 (including the queries to 𝐶𝐹 and to the ideal object).

In the description of 𝐺1, we defined various concepts (e.g., unsubverted/subverted
chains, honest, 𝑄𝑖 (𝑥𝑖), etc.) that are used to describe the behavior of the simulator S (or
its table S.𝐶𝐹). In the rest of the paper, we likewise will apply these concepts to describe
the simulators in other games. To avoid confusion, we will specify the simulator (or its
counterpart) we are working with when using these concepts.

In the following, we say a game is efficient if, with overwhelming probability, only
a polynomial size of terms are evaluated by the simulator or the ideal object when the
game ends. To prove 𝐺1 is efficient and is indistinguishable from 𝐺6, our plan is to show
the following statements:
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1. 𝐺1 vs 𝐺2: assuming 𝐺2 is efficient, 𝐺1 is efficient and is indistinguishable from 𝐺2.
2. 𝐺2 vs 𝐺3: assuming 𝐺3 is efficient, 𝐺2 is efficient and the total variation distance

between the transcript of 𝐺2 and 𝐺3 is 0.
3. 𝐺3 vs 𝐺4: assuming 𝐺4 is efficient, the total variation distance between the transcript

of the distinguisher in 𝐺3 and 𝐺4 is bounded by the probability of the bad events in
𝐺4, and 𝐺3 is efficient if the probability of the bad events in 𝐺4 is negligible.

4. 𝐺4 vs 𝐺5: assuming 𝐺5 is efficient, 𝐺4 is efficient and the total variation distance
between the transcript of 𝐺4 and 𝐺5 is 0.

5. 𝐺5 vs 𝐺6: the total variation distance between the transcript of 𝐺5 and 𝐺6 is bounded
by the probability of the bad events in 𝐺5.

6. Bounding bad events: assuming 𝐺5 is efficient, the probability of the bad events in
𝐺4 and 𝐺5 is negligible.

7. Efficiency: 𝐺5 is efficient.
8. Full model: The crooked-indifferentiability in the abbreviated model can be lifted to

the full model.

It is easy to see how these results together imply the efficiency of simulator S in 𝐺1
and the crooked-indifferentiability of our construction (𝐺1 is indistinguishable from
𝐺6). Statements 1 to 5 will be formally defined and proved as we introduce new games.
Statement 6, 7 and 8 will be proved in B.7, B.8 and B.9, respectfully.

B.3 The Second Game

Description of the Second Game To obtain 𝐺2 from 𝐺1, we replace the random
permutation 𝑃 by a “two-sided random function” 𝑅𝐹. 𝑅𝐹 is a system that provides
answers to “𝑅𝐹 queries” and “𝑅𝐹−1 queries.” Ideally, the system would maintain a
consistent, partially defined bijection that is extended independently and uniformly
whenever a “fresh value” is requested. These constraints are, of course, impossible to
guarantee perfectly beyond the first query, so the system adopts a particular convention for
subsequent answers that yields a probability distribution that is nearly indistinguishable
from a random permutation so long as the number of queries is polynomial. Specifically,
the system maintains an initially empty table with entries of the form (↓, 𝛼, 𝛽), intuitively
indicating that 𝑅𝐹 (𝛼) = 𝛽, or the form (↑, 𝛼, 𝛽), intuitively indicating that 𝑅𝐹−1 (𝛽) = 𝛼.
Under expected circumstances, these tables will provide the guarantees mentioned above,
defining a consistent, partially defined permutation. A query of the form 𝑅𝐹 (𝛼) is
answered as follows: (i.) if there is a tuple (↓, 𝛼, 𝛽) in the table, 𝛽 is returned, (ii.)
otherwise, a uniformly random value 𝛽 is drawn and both (↓, 𝛼, 𝛽) and ↑, 𝛼, 𝛽) are added
to the table and, (ii.’) in the event that there is a tuple (↑, 𝛼′, 𝛽) in the table for some
𝛼 ≠ 𝛼′, this is removed. Queries to 𝑅𝐹−1 are handled similarly. Of course, it is natural
to expect and easy to prove that such collisions occur only with negligible probability. In
the absence of such collisions 𝑅𝐹 behaves like a random permutation.

See page 85 for the pseudocode description of 𝐺2.

The Gap Between the First Game and the Second Game To understand the gap
between 𝐺1 and 𝐺2, we notice that the only difference between the two games is the
ideal object. The following lemma shows that the two ideal objects, 𝑃 and 𝑅𝐹 are
indistinguishable for a distinguisher that issues polynomial queries.
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Lemma 15 (𝑃 and 𝑅𝐹 are indistinguishable). A distinguisherD′ that issues 𝑞′ queries
to either 𝑃 or 𝑅𝐹 has advantage at most (𝑞′)2/22𝑛 to distinguish the two objects.

Proof. We denote the transcripts of D′ interacting with 𝑃 and 𝑅𝐹 by 𝑇𝑃 and 𝑇𝑅𝐹
respectively. We say 𝑇𝑃 (𝑇𝑅𝐹) is equal to 𝑡 for a certain bitstring 𝑡 if it reflects the
transcript correctly. We say a query 𝐴(𝛼) (𝐴 = 𝑃, 𝑃−1, 𝑅𝐹, 𝑅𝐹−1) is redundant if D′
has queried 𝐴(𝛼) or 𝐴−1 (𝛽) (= 𝛼) before. In the proof, without loss of generality, we
assume D′ does not make any redundant queries.

We bound the advantage of the distinguisher by bounding the total variation distance
between the two scenarios. We say a bitstring 𝑡 is good if when 𝑇𝑅𝐹 = 𝑡, there is no
overwrite in the execution of 𝑅𝐹. 𝑡 is called bad if it is not good. We notice that if 𝑡 is
good it behaves like a transcript of a permutation. Then, for any good 𝑡,

Pr[𝑇𝑃 = 𝑡] =
𝑞′∏
𝑖=1

1
22𝑛 − 𝑖 + 1

>
1

22𝑛𝑞′ = Pr[𝑇𝑅𝐹 = 𝑡] .

Let 𝛼𝑃 and 𝛼𝑅𝐹 denote the distribution of the 𝑇𝑃 and 𝑇𝑅𝐹 . The above observation
shows that

∥𝛼𝑃 − 𝛼𝑅𝐹 ∥tv ≤ Pr[𝑇𝑅𝐹 = 𝑡 for a bad 𝑡] .

Now we proceed to bound the probability that 𝑇𝑅𝐹 is equal to a bad string. By
definition, 𝑇𝑅𝐹 is bad if and only if there is an overwrite in the execution of 𝑅𝐹. Since
𝑅𝐹 are queried for 𝑞′ times, the probability that there is an overwrite is less than
(𝑞′)2/22𝑛. □

Lemma 16 (The Gap between 𝐺1 and 𝐺2). If 𝐺2 is efficient, then 𝐺1 is efficient and
the probability of D outputting 1 in 𝐺2 differs negligibly from that in 𝐺1.

Proof. The lemma is implied directly by Lemma 15. □

B.4 The Third and the Fourth Game

We will put the descriptions of 𝐺3 and 𝐺4 together since they have similar structures.
For convenience, we will introduce 𝐺4 first and then make some changes to 𝐺4 to arrive
at 𝐺3.

Description of the Fourth Game In 𝐺4, we adopt a new simulator O2 with two inbound
parties S2 andM2. (In the rest of the paper, we will use different superscripts for the
simulators and parties in different games.) S2 is a direct analogue of S in 𝐺2.M2 is a
party that knows the distinguisher’s query to the ideal object 𝑅𝐹. In other words, the
simulator O2 in 𝐺4 is a ”public” simulator, which means it answers the 𝐶𝐹 queries from
D and at the same time, knows all queries made by D to 𝑅𝐹.
O2 maintains two tables of 𝐶𝐹 values (denoted by S2.𝐶𝐹 andM2.𝐶𝐹), which have

the same format as S.𝐶𝐹 in 𝐺2. The 𝐶𝐹 values in the table S2.𝐶𝐹 are evaluated in a way
such that it is a subset ofM2.𝐶𝐹 unless the game aborts: roughly speaking, when O2

evaluates a term 𝐶𝐹𝑖 (𝑥) in S2.𝐶𝐹, it inserts the same value to the tableM2.𝐶𝐹; when
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O2 needs to evaluate a previously undefined term 𝐶𝐹𝑖 (𝑥) in S2.𝐶𝐹 and (𝑖, 𝑥) ∈ M2.𝐶𝐹,
it typically copies 𝐶𝐹𝑖 (𝑥) inM2.𝐶𝐹 to S2.𝐶𝐹.

Like S in 𝐺2, both S2 and M2 have two important procedures: the “evaluation
procedure” S2.𝐶𝐹Inner (M2.𝐶𝐹Inner, respectively) takes care of query to the table S2.𝐶𝐹
(M2.𝐶𝐹, respectively), and the “completion procedure” S2.Complete (M2.Complete,
respectively) is used to complete chains in S2.𝐶𝐹 (M2.𝐶𝐹, respectively).

The two procedures ofM2,M2.𝐶𝐹Inner andM2.Complete, only insert values into
the tableM2.𝐶𝐹, while the two procedures of S2 can insert values to both S2.𝐶𝐹 and
M2.𝐶𝐹. For convenience, in the following description ofM2’s procedures, we will just
say a certain term 𝐶𝐹 (𝑖, 𝑥) is evaluated instead of saying it is evaluated in the table
M2.𝐶𝐹. However, in the description of the procedures of S2, we will mention clearly
whether 𝐶𝐹 is inserted into S2.𝐶𝐹 orM2.𝐶𝐹.

Handling D’s query to the ideal object. When the distinguisher makes a query to
𝑅𝐹 on a 2𝑛-bit string (𝑥0, 𝑥1), O2 does nothing if S2 orM2 has queried 𝑅𝐹 (𝑥0, 𝑥1)
or 𝑅𝐹−1 (𝑥8𝑛, 𝑥8𝑛+1) (for some (𝑥8𝑛, 𝑥8𝑛+1) with 𝑅𝐹−1 (𝑥8𝑛, 𝑥8𝑛+1) = (𝑥0, 𝑥1)) before.
Otherwise, M2 proceeds to complete a chain in M2.𝐶𝐹. In more detail: Assuming
that the distinguisher queries 𝑅𝐹 (𝑥0, 𝑥1), the “completion procedure”M2.Complete
proceeds as follows.

– 𝐶�̃�1 (𝑥1) is determined by simulating the subversion algorithm. This will generate
oracle queries to 𝐶𝐹∗ () which are answered usingM2.𝐶𝐹. (The way a query to
M2.𝐶𝐹 is answered will be explained later.) The value 𝑥2 = 𝑥0 ⊕ 𝐶�̃�1 (𝑥1) is then
determined, yielding the chain (1, 𝑥1, 𝑥2). This process is repeated until the chain is
extended “to the right” to 𝑥4𝑛 so that it has the form (𝑥1, 𝑥2, . . . , 𝑥4𝑛−1, 𝑥4𝑛). Note
that 𝑥4𝑛 = 𝑥4𝑛−2 ⊕𝐶�̃� (𝑥4𝑛−1) so that 𝐶�̃� (𝑥4𝑛) is never evaluated during this process
(which is to say that the subversion algorithm is never simulated on 𝑥𝑢).

– 𝑅𝐹 is then applied to 𝑥0, 𝑥1 to yield 𝑥8𝑛, 𝑥8𝑛+1.
– Similarly, the pair (𝑥8𝑛, 𝑥8𝑛+1) is extended “to the left” to determine the values

for 𝑥4𝑛+1, . . . , 𝑥8𝑛−1; as above, 𝑥4𝑛+1 is determined by 𝑥4𝑛+3 ⊕ 𝐶�̃� (𝑥4𝑛+2), so that
𝐶�̃� (𝑥4𝑛+1) is never evaluated.

– Then,M2 defines 𝐶𝐹4𝑛 (𝑥4𝑛) and 𝐶𝐹4𝑛+1 (𝑥4𝑛+1) in such a way that consistency with
𝑃 is ensured, i.e., 𝐶𝐹4𝑛 (𝑥4𝑛) := 𝑥4𝑛−1 ⊕ 𝑥4𝑛+1 and 𝐶𝐹4𝑛+1 (𝑥4𝑛+1) := 𝑥4𝑛 ⊕ 𝑥4𝑛+2.
The game aborts if either of these is defined from a previous action of the simulator.
If the game does not abort,M2 evaluates the subversion algorithm on both 𝑥4𝑛 and
𝑥4𝑛+1. During this evaluation, the values 𝐶𝐹4𝑛 (𝑥4𝑛) and 𝐶𝐹4𝑛+1 (𝑥4𝑛+1) are already
determined; other queries are answered usingM2.𝐶𝐹 as above. The game aborts
if for any 𝑖 with 3𝑛 ≤ 𝑖 ≤ 5𝑛, (𝑖, 𝑥𝑖) ∈

⋃8𝑛
𝑗=1 𝑄 𝑗 (𝑥 𝑗 )/𝑄𝑖 (𝑥𝑖) or (𝑖, 𝑥𝑖) is dishonest;

otherwise, the chain is a valid subverted chain (and consistent with 𝑅𝐹).
– A setM2.CompletedChains is maintained to store the chains that are completed:

for any (𝑖, 𝑥𝑖 , 𝑥𝑖+1) (1 ≤ 𝑖 ≤ 8𝑛 − 1), M2 updates M2.CompletedChains :=
M2.CompletedChains ∪ (𝑖, 𝑥𝑖 , 𝑥𝑖+1).

– A set M2.MiddlePoints is maintained to store the points with index between
3𝑛 and 5𝑛: for any (𝑖, 𝑥𝑖) with 3𝑛 ≤ 𝑖 ≤ 5𝑛, M2 updates M2.MiddlePoints :=
M2.MiddlePoints ∪ (𝑖, 𝑥𝑖).
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– A setM2.AdaptedPoints is maintained to store the points with index 4𝑛 and 4𝑛+1: for
(𝑖, 𝑥𝑖) with 𝑖 = 4𝑛 or 4𝑛+1,M2 updatesM2.AdaptedPoints :=M2.AdaptedPoints∪
(𝑖, 𝑥𝑖).

O2 reacts to the distinguisher’s query to 𝑅𝐹−1 (·) similarly.

Handling queries toM2.𝐶𝐹. On a queryM2.𝐶𝐹 (𝑖, 𝑥),M2 implements the evaluation
procedureM2.𝐶𝐹Inner:

– First,M2 checks whether 𝑥 ∈ S2.𝐶𝐹𝑖 . If so, it answers with S2.𝐶𝐹𝑖 (𝑥).
– If 𝑥 ∉ S2.𝐶𝐹𝑖 ,M2 checks whether 𝑥 ∈ M2.𝐶𝐹𝑖 and (𝑖, 𝑥) ∉M2.MiddlePoints. If

so, it answers withM2.𝐶𝐹𝑖 (𝑥).
– If 𝑥 ∉ S2.𝐶𝐹𝑖 , 𝑥 ∈ M2.𝐶𝐹𝑖 and (𝑖, 𝑥) ∈ M2.MiddlePoints, the game aborts.
– If 𝑥 ∉ S2.𝐶𝐹𝑖 and 𝑥 ∉M2.𝐶𝐹𝑖 ,M2 picks a random value 𝑦 and inserts (𝑥, 𝑦) into
M2.𝐶𝐹𝑖 .

Notice that in the first case above, we do not need to check whether 𝑥 ∈ M2.𝐶𝐹𝑖
because S2.𝐶𝐹 is a subset ofM2.𝐶𝐹 (which will be clear later).

Handling D’s query to 𝐶𝐹 In 𝐺1 and 𝐺2, we view the distinguisher’s queries to 𝐶𝐹 as
queries to the simulator’s table S.𝐶𝐹. Similarly, in 𝐺4, the distinguisher’s query to 𝐶𝐹

is viewed as a query to the table S2.𝐶𝐹. See below for a description of how O2 handles
queries to S2.𝐶𝐹.

Handling queries to S2.𝐶𝐹. On a query S2.𝐶𝐹 (𝑖, 𝑥), S2 implements the procedure
S2.𝐶𝐹Inner:

– First, S2 checks whether 𝑥 ∈ S2.𝐶𝐹𝑖 . If so, it answers with S2.𝐶𝐹𝑖 (𝑥).
– If 𝑥 ∉ S2.𝐶𝐹𝑖 , S2 checks whether 𝑥 ∈ M2.𝐶𝐹𝑖 and (𝑖, 𝑥) ∉ M2.MiddlePoints. If

so, it assigns and answers with S2.𝐶𝐹𝑖 (𝑥) :=M2.𝐶𝐹𝑖 (𝑥). (This is the reason that
S2.𝐶𝐹 is always a subset ofM2.𝐶𝐹.)

– If 𝑥 ∉ S2.𝐶𝐹𝑖 , 𝑥 ∈ M2.𝐶𝐹𝑖 and (𝑖, 𝑥) ∈ M2.MiddlePoints, the game aborts.
– If 𝑥 ∉ S2.𝐶𝐹𝑖 and 𝑥 ∉M2.𝐶𝐹𝑖 , S2 picks a random value 𝑦 and inserts (𝑥, 𝑦) into
S2.𝐶𝐹𝑖 andM2.𝐶𝐹𝑖 .

– After this, S2 takes further steps to ensure that its future answers are consistent with
the permutation 𝑅𝐹. Only after this consistency maintenance step is the value 𝑦

finally returned.

Completing chains in S2.𝐶𝐹. For any input (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢), the procedure S2.Complete
proceeds as follows.

– if (𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∉M2.CompletedChains
• S2.Complete first generates the two sequences (𝑥0, . . . , 𝑥𝑢) and (𝑥𝑢+1, . . . , 𝑥8𝑛+1)

in the way as S.Complete does in 𝐺2.
• Then, S2 defines 𝐶𝐹𝑢 (𝑥𝑢) := 𝑥𝑢−1 ⊕ 𝑥𝑢+1 and 𝐶𝐹𝑢+1 (𝑥𝑢+1) := 𝑥𝑢 ⊕ 𝑥𝑢+2 in both
S2.𝐶𝐹 orM2.𝐶𝐹. The game aborts if either of these is defined previously in
S2.𝐶𝐹 or M2.𝐶𝐹. If the game does not abort, S2 evaluates the subversion
algorithm on both 𝑥𝑢 and 𝑥𝑢+1. During this evaluation, the values 𝐶𝐹𝑢 (𝑥𝑢) and
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𝐶𝐹𝑢+1 (𝑥𝑢+1) are already determined; other queries are answered using S2.𝐶𝐹
as above. The game aborts if for 𝑖 = 𝑢 or 𝑢 + 1, (𝑖, 𝑥𝑖) ∈

⋃8𝑛
𝑗=1 𝑄 𝑗 (𝑥 𝑗 )/𝑄𝑖 (𝑥𝑖) or

(𝑖, 𝑥𝑖) is dishonest.
– if (𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∈ M2.CompletedChains and 𝑢 = 7𝑛, the game aborts.
– if (𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∈ M2.CompletedChains and 𝑢 = 4𝑛, S2 copies 𝑄𝑐 fromM2.𝐶𝐹 to
S2.𝐶𝐹, where 𝑐 is the full subverted chain containing (𝑠, 𝑥𝑠 , 𝑥𝑠+1) inM2.𝐶𝐹. The
game aborts if for either 𝑖 = 𝑢 or 𝑢 + 1, (𝑖, 𝑥𝑖) was in S2.𝐶𝐹 before this execution of
S2.Complete, (𝑖, 𝑥𝑖) ∈

⋃8𝑛
𝑗=1 𝑄 𝑗 (𝑥 𝑗 )/𝑄𝑖 (𝑥𝑖), or (𝑖, 𝑥𝑖) is dishonest.

– A set S2.CompletedChains is maintained to store the chains that are completed: for
any (𝑖, 𝑥𝑖 , 𝑥𝑖+1) (1 ≤ 𝑖 ≤ 8𝑛 − 1), the simulator updates S2.CompletedChains :=
S2.CompletedChains ∪ (𝑖, 𝑥𝑖 , 𝑥𝑖+1).

See page 88 for the pseudocode description of 𝐺4.

Description of the Third Game 𝐺3 is a small pivot from 𝐺4 that does not abort in
some cases where 𝐺4 aborts. For clarity, we denote by O1 the simulator in 𝐺3 and by
S1 andM1 the two parties of O1. The parties of O1 maintain similar tables and sets to
their counterparts in 𝐺4. (The formal notation for these tables and sets is determined by
changing the identifier in the notations from S2 to S1 and fromM2 toM1.)

The procedures in 𝐺3 are similar to their counterparts in 𝐺4 except that they abort in
fewer cases. To aid the reader, we color the differences between 𝐺4 and 𝐺3 in red below.

The completion procedureM1.Complete. M1.Complete is same as its counterpart in
𝐺4 except that it never aborts:

– When M1.Complete programs 𝐶𝐹4𝑛 (𝑥4𝑛) and 𝐶𝐹4𝑛+1 (𝑥4𝑛+1), it does not abort
even if either 𝐶𝐹4𝑛 (𝑥4𝑛) or 𝐶𝐹4𝑛+1 (𝑥4𝑛+1) is previously defined. It just assigns
𝐶𝐹4𝑛 (𝑥4𝑛) := 𝑥4𝑛−1 ⊕ 𝑥4𝑛+1 and 𝐶𝐹4𝑛+1 (𝑥4𝑛+1) := 𝑥4𝑛 ⊕ 𝑥4𝑛+2 (this may overwrite
the value).

– Also, the game does not abort even if for any 𝑖 with 3𝑛 ≤ 𝑖 ≤ 5𝑛, (𝑖, 𝑥𝑖) ∈⋃8𝑛
𝑗=1 𝑄 𝑗 (𝑥 𝑗 )/𝑄𝑖 (𝑥𝑖) or (𝑖, 𝑥𝑖) is dishonest.

The evaluation procedureM1.𝐶𝐹Inner. On a queryM1.𝐶𝐹 (𝑖, 𝑥):

– First,M1 checks whether 𝑥 ∈ S1.𝐶𝐹𝑖 . If so, it answers with S1.𝐶𝐹𝑖 (𝑥).
– If 𝑥 ∉ S1.𝐶𝐹𝑖 ,M1 checks whether 𝑥 ∈ M1.𝐶𝐹𝑖 and (𝑖, 𝑥) ∉M1.MiddlePoints. If

so, it answers withM1.𝐶𝐹𝑖 (𝑥).
– If 𝑥 ∉ S1.𝐶𝐹𝑖 , 𝑥 ∈ M1.𝐶𝐹𝑖 and (𝑖, 𝑥) ∈ M1.MiddlePoints, it answers with
M1.𝐶𝐹𝑖 (𝑥).

– If 𝑥 ∉ S1.𝐶𝐹𝑖 and 𝑥 ∉M1.𝐶𝐹𝑖 ,M1 picks a random value 𝑦 and inserts (𝑥, 𝑦) into
M1.𝐶𝐹𝑖 .

The evaluation procedure S1.𝐶𝐹Inner. On a query S1.𝐶𝐹 (𝑖, 𝑥):

– First, S1 checks whether 𝑥 ∈ S1.𝐶𝐹𝑖 . If so, it answers with S1.𝐶𝐹𝑖 (𝑥).
– If 𝑥 ∉ S1.𝐶𝐹𝑖 , S1 checks whether 𝑥 ∈ M1.𝐶𝐹𝑖 and (𝑖, 𝑥) ∉M1.AdaptedPoints. If

so, it assigns and answers with S1.𝐶𝐹𝑖 (𝑥) :=M1.𝐶𝐹𝑖 (𝑥).
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– If 𝑥 ∉ S1.𝐶𝐹𝑖 , 𝑥 ∈ M1.𝐶𝐹𝑖 and (𝑖, 𝑥) ∈ M1.AdaptedPoints, S1 picks a random
value 𝑦 and inserts (𝑥, 𝑦) into S1.𝐶𝐹𝑖 .

– If 𝑥 ∉ S1.𝐶𝐹𝑖 and 𝑥 ∉M1.𝐶𝐹𝑖 , S1 picks a random value 𝑦 and inserts (𝑥, 𝑦) into
S1.𝐶𝐹𝑖 andM1.𝐶𝐹𝑖 .

– After this, S1 takes further steps to ensure that its future answers are consistent with
the permutation 𝑅𝐹. Only after this consistency maintenance step is the value 𝑦

finally returned.

The completion procedure S1.Complete. For any input (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢), the procedure
S1.Complete proceeds as follows.

– if (𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∉M1.CompletedChains
• S1.Complete first generates the two sequences (𝑥0, . . . , 𝑥𝑢) and (𝑥𝑢+1, . . . , 𝑥8𝑛+1)

in the same way as S.Complete does in 𝐺2.
• Then, S1 defines 𝐶𝐹𝑢 (𝑥𝑢) := 𝑥𝑢−1 ⊕ 𝑥𝑢+1 and 𝐶𝐹𝑢+1 (𝑥𝑢+1) := 𝑥𝑢 ⊕ 𝑥𝑢+2 in

both S1.𝐶𝐹 orM1.𝐶𝐹. (This may overwrite the values inM1.𝐶𝐹.) The game
aborts if either of these was defined previously in S1.𝐶𝐹. If the game does not
abort, S1 evaluates the subversion algorithm on both 𝑥𝑢 and 𝑥𝑢+1. During this
evaluation, the values 𝐶𝐹𝑢 (𝑥𝑢) and 𝐶𝐹𝑢+1 (𝑥𝑢+1) are already determined; other
queries are answered using S1.𝐶𝐹 as above. The game aborts if for 𝑖 = 𝑢 or
𝑢 + 1, (𝑖, 𝑥𝑖) ∈

⋃8𝑛
𝑗=1 𝑄 𝑗 (𝑥 𝑗 )/𝑄𝑖 (𝑥𝑖) or (𝑖, 𝑥𝑖) is dishonest.

– if (𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∈ M1.CompletedChains, the procedure proceeds in the same way as
the last case.

– A set S1.CompletedChains is maintained to store the chains that are completed: for
any (𝑖, 𝑥𝑖 , 𝑥𝑖+1) (1 ≤ 𝑖 ≤ 8𝑛 − 1), the simulator updates S1.CompletedChains :=
S1.CompletedChains ∪ (𝑖, 𝑥𝑖 , 𝑥𝑖+1).

See page 85 for the pseudocode description of 𝐺3.

The Gap Between the Second and the Third Game We define the status of a game
𝐺𝑖 (𝑖 = 1, . . . , 5) at some point (if the game does not abort at this moment) to be the
collection of the transcript of the distinguisher, the tables of the simulator and the table
of the ideal object at this moment. (To make the definition work for 𝐺1, we imagine that
a table of the ideal object 𝑃 is maintained in 𝐺1 to store the evaluated terms of 𝑃.) We
say the status of the game is equal to “Abort” at some moment if the game already aborts
at this moment. Note that in 𝐺𝑖 (𝑖 = 1, . . . , 6) we always assume a fixed distinguisher D
that issues at most 𝑞D queries.

We say the status of 𝐺𝑖 (𝑖 = 1, . . . , 5) at some moment 𝑡1 is same as the status of 𝐺 𝑗

( 𝑗 = 1, . . . , 5, 𝑗 ≠ 𝑖) at some moment 𝑡2 if 𝐺4 at 𝑡1 and 𝐺5 at 𝑡2 have the same transcripts
of the distinguisher, the same 𝑅𝐹 tables, and the same simulator tables. (When we
compare the simulator tables between different games, we only compare a table with its
counterpart in another game. For example, when we compare the status of 𝐺2 and 𝐺3,
we only compare S.𝐶𝐹 to S1.𝐶𝐹 and ignoreM1.𝐶𝐹.)

Lemma 17 (The gap between 𝐺2 and 𝐺3). If 𝐺3 is efficient, then 𝐺2 is efficient and
the probability of D outputting 1 in 𝐺3 equals that in 𝐺2.
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Proof. To understand the gap between the transcripts of D in 𝐺2 and 𝐺3, it is sufficient
to compare the tables S.𝐶𝐹 and S1.𝐶𝐹 since D queries S (S1) in 𝐺2 (𝐺3) for 𝐶𝐹
values.

First, we compare the evaluation procedures S.𝐶𝐹Inner and S1.𝐶𝐹Inner between the
two games. The evaluation procedure S.𝐶𝐹Inner in 𝐺2 always selects 𝐶𝐹 uniformly. A
quick check reveals that S1.𝐶𝐹Inner also evaluates 𝐶𝐹 uniformly because all the values it
takes from tableM1.𝐶𝐹 were selected byM1 uniformly. Then, the lemma follows by
the fact that the procedure S.Complete has the same abort condition with S1.Complete
with respect to the status of table S.𝐶𝐹 and S1.𝐶𝐹. □

The Gap Between the Third and the Fourth Game To analyze the relationship between
𝐺3 and 𝐺4, we define the following two bad events in 𝐺4.

The first bad event happens when 𝐺4 aborts during the execution of the completion
procedure S2.Complete orM2.Complete, which means S2 orM2 fails to complete a
chain. Remember that the simulators fail to complete a chain when some terms on the
subverted chain they are evaluating have been evaluated before or are dishonest.

The second bad event happens when 𝐺4 aborts during the execution of the evaluation
procedure S2.𝐶�̃�Inner or S2.𝐶�̃�Inner, which means when S2 orM2 wants to set a uniform
𝐶𝐹 value to a certain term (𝑖, 𝑥), 𝐶𝐹 (𝑖, 𝑥) is a middle point ofM2, and it has not been
put in the table S2.𝐶𝐹.

The formal names and definitions of the bad events are:

BadComplete4 =

{
𝐺4 aborts during the execution of the procedure
S2.Complete orM2.Complete

}
,

BadEval4 =

{
𝐺4 aborts during the execution of the procedureS2.𝐶�̃�Inner

orM2.𝐶�̃�Inner

}
.

Remark. Notice that the completion procedure S2.Complete (M2.Complete) sometimes
calls the evaluation procedure S2.𝐶�̃�Inner (M2.𝐶�̃�Inner), so the completion procedure
may abort because its Inner evaluation procedure aborts. We stress that we categorize
this event as BadEval4.

It is clear that a bad event (BadComplete4 or BadEval4) happens if and only if the
game 𝐺4 aborts.

Lemma 18 (The gap between 𝐺3 and 𝐺4). The probability of D outputting 1 in 𝐺4
differs by at most Pr[BadComplete4] + Pr[BadEval4] from that in 𝐺3. Moreover, if 𝐺4
is efficient and Pr[BadComplete4] + Pr[BadEval4] is negligible, 𝐺3 is efficient.

Proof. From the descriptions of 𝐺3 and 𝐺4, we can see that there are two differences
between the two games:

– In 𝐺3, when S1 completes a chain that has been completed byM1 before and 𝑢 = 4𝑛,
it completes the chain as usual (as if it is not completed byM1). However, in the
same situation, S2 will just copy 𝑄𝑐 to S2.𝐶𝐹, where 𝑐 = (1, 𝑥1, . . . , 𝑥8𝑛) is the full
subverted chain completed byM2.

– 𝐺3 does not abort in several cases where 𝐺4 aborts.
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We want to show gap between the two games caused the above two differences are
bounded by the probability that 𝐺4 aborts.

– The first difference causes zero gap between the two games unless 𝐺4 aborts. Imagine
that 𝐺3 and 𝐺4 have the same status (assuming the status of 𝐺4 is not “Abort”) at
some point and S1.Complete (S2.Complete) is going to complete a chain that has
been completed byM1 (M2). In this case, S2.Complete copies 𝑄𝑐 to S2.𝐶𝐹. We
want to show that what S1.Complete does is equivalent to copying 𝑄𝑐 to S1.𝐶𝐹. For
any (𝑖, 𝑥) ∈ 𝑄𝑐 ((𝑖, 𝑥) ≠ (4𝑛, 𝑥4𝑛) or (4𝑛+1, 𝑥4𝑛+1)), ifS1 assigns a different𝐶𝐹𝑖 (𝑥)
in S1.𝐶𝐹 than inM1.𝐶𝐹, then by definition of S1.𝐶𝐹Inner, (𝑖, 𝑥) is an adapted point
that is not in S1.𝐶𝐹, which violates the assumption that 𝐺4 does not abort. For
(𝑖, 𝑥) = (4𝑛, 𝑥4𝑛) or (4𝑛 + 1, 𝑥4𝑛+1), the values of 𝐶𝐹𝑖 (𝑥) are equal in S1.𝐶𝐹 and
M1.𝐶𝐹 by programming rules.

– The second difference also causes zero gap between the two games unless 𝐺4 aborts,
which is obviously true.

As a result, the total variation distance between the transcripts of the distinguisher in
𝐺3 and 𝐺4 is smaller than Pr[BadComplete4] + Pr[BadEval4], the probability that 𝐺4
aborts.

To show the second claim, we observe that if 𝐺4 is efficient and aborts with negligible
probability, 𝐺3 will be efficient since the total variation distance between 𝐺3 and 𝐺4 is
negligible. □

B.5 The Fifth Game

To obtain 𝐺5 from 𝐺4, we update the simulator O2 to O3 which has two partiesM3 and
S3.
O3 has a significantly different structure than the simulators in previous games. In

the previous games, when the simulators complete a chain, they query 𝑅𝐹 first and then
adapt two particular terms ((𝑢, 𝑥𝑢) and (𝑥𝑢+1, 𝑢 + 1)) on the chain to ensure consistency.
In contrast, in 𝐺5 we imagine the ideal object 𝑅𝐹 as simulated byM3 and S3. During
the execution of the completion procedure,M3 and S3 set all the 𝐶𝐹 values of the target
chain uniformly and then program the 𝑅𝐹 value to ensure consistency.

The evaluation procedures. The evaluation proceduresM3.𝐶𝐹Inner and S3.𝐶𝐹Inner in
𝐺5 are the same as their counterparts in 𝐺4.

HandlingD’s query to the ideal object. When the distinguisher makes a query to 𝑅𝐹 on
a 2𝑛-bit string (𝑥0, 𝑥1), if S3 orM3 has evaluated 𝑅𝐹 (𝑥0, 𝑥1) or 𝑅𝐹−1 (𝑥8𝑛, 𝑥8𝑛+1) (for
some (𝑥8𝑛, 𝑥8𝑛+1) with 𝑅𝐹−1 (𝑥8𝑛, 𝑥8𝑛+1) = (𝑥0, 𝑥1)) before, O3 answers correspondingly.
Otherwise, M3 proceeds to complete a chain in M3.𝐶𝐹. In more detail: Assuming
that the distinguisher queries 𝑅𝐹 (𝑥0, 𝑥1), the “completion procedure”M3.Complete
proceeds as follows. (Similar to the situation inM2.Complete, all the 𝐶𝐹 evaluations
made byM3.Complete are in the tableM3.𝐶𝐹.)
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– 𝐶�̃�1 (𝑥1) is determined by simulating the subversion algorithm. This will generate ora-
cle queries to𝐶𝐹∗ ()which are answered usingM3.𝐶𝐹. The value 𝑥2 = 𝑥0⊕𝐶�̃�1 (𝑥1) is
then determined, yielding the chain (1, 𝑥1, 𝑥2). This process is repeated until the chain
is extended maximally “to the right” so that it has the form (𝑥1, 𝑥2, . . . , 𝑥8𝑛−1, 𝑥8𝑛).
Set 𝑥8𝑛+1 := 𝑥8𝑛−1 ⊕ 𝐶�̃�8𝑛 (𝑥8𝑛).

– Set 𝑅𝐹 (𝑥0, 𝑥1) := (𝑥8𝑛, 𝑥8𝑛+1) and return (𝑥8𝑛, 𝑥8𝑛+1) to D.
– The game aborts if for any 𝑖 = 𝑢 or 𝑢 + 1, (𝑖, 𝑥𝑖) was inM3.𝐶𝐹 before this execution

ofM3.Complete, (𝑖, 𝑥𝑖) ∈
⋃8𝑛

𝑗=1 𝑄 𝑗 (𝑥 𝑗 )/𝑄𝑖 (𝑥𝑖), or (𝑖, 𝑥𝑖) is dishonest.
– A setM3.CompletedChains is maintained to store the chains that are completed:

for any (𝑖, 𝑥𝑖 , 𝑥𝑖+1) (1 ≤ 𝑖 ≤ 8𝑛 − 1), M3 updates M3.CompletedChains :=
M3.CompletedChains ∪ (𝑖, 𝑥𝑖 , 𝑥𝑖+1).

– A set M3.MiddlePoints is maintained to store the points with index between
3𝑛 and 5𝑛: for any (𝑖, 𝑥𝑖) with 3𝑛 ≤ 𝑖 ≤ 5𝑛, M3 updates M3.MiddlePoints :=
M3.MiddlePoints ∪ (𝑖, 𝑥𝑖).

– A setM3.AdaptedPoints is maintained to store the points with index 4𝑛 and 4𝑛+1: for
(𝑖, 𝑥𝑖) with 𝑖 = 4𝑛 or 4𝑛+1,M3 updatesM3.AdaptedPoints :=M3.AdaptedPoints∪
(𝑖, 𝑥𝑖).

The completion procedure S3.Complete. For input (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢), the completion
procedure S3.Complete (assuming (𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∉ M3.CompletedChains) proceeds as
follows.

– The initial chain consists of the two adjacent values 𝑥𝑠 , 𝑥𝑠+1.
– 𝐶�̃�𝑠+1 (𝑥𝑠+1) is determined by simulating the subversion algorithm. This will generate

oracle queries to 𝐶𝐹∗ () which are answered using S3.𝐶𝐹. (Note that this process
may enqueue new chains for completion.) The value 𝑥𝑠+2 = 𝑥𝑠 ⊕ 𝐶�̃�𝑠+1 (𝑥𝑠+1)
is then determined, yielding the enlarged chain (𝑥𝑠 , 𝑥𝑠+1, 𝑥𝑠+2). This process is
repeated until the chain is extended maximally “to the right” so that it has the form
(𝑥𝑠 , 𝑥𝑠+1, . . . , 𝑥8𝑛, 𝑥8𝑛+1).

– Similarly, the original pair 𝑥𝑠 , 𝑥𝑠−1 is extended “to the left” to determine the values
𝑥𝑠−1, ..., 𝑥0.

– Set 𝑅𝐹 (𝑥0, 𝑥1) = (𝑥8𝑛, 𝑥8𝑛+1).
– The game aborts if for either 𝑖 = 𝑢 or 𝑢 + 1, (𝑖, 𝑥𝑖) was in S3.𝐶𝐹 orM3.𝐶𝐹 before

this execution of S3.Complete, (𝑖, 𝑥𝑖) ∈
⋃8𝑛

𝑗=1 𝑄 𝑗 (𝑥 𝑗 )/𝑄𝑖 (𝑥𝑖), or (𝑖, 𝑥𝑖) is dishonest.
– A set S3.CompletedChains is maintained to store the chains that are completed: for

any (𝑖, 𝑥𝑖 , 𝑥𝑖+1) (1 ≤ 𝑖 ≤ 8𝑛 − 1), the simulator updates S3.CompletedChains :=
S.CompletedChains ∪ (𝑖, 𝑥𝑖 , 𝑥𝑖+1).

The case when (𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∈ M3.CompletedChains is taken care of in the same
way as in 𝐺4.

See page 90 for the pseudocode description of 𝐺5.

The Gap Between the Fourth and the Fifth Game We wish to show that the
distinguisher can not distinguish between 𝐺4 and 𝐺5. To prove this claim, we note that
these two games behave differently only when they complete chains: when completing a
chain, 𝐺4 queries the ideal object 𝑅𝐹 and adapts the 𝐶𝐹 values of (𝑥𝑢, 𝑥𝑢+1) to ensure
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consistency; in contrast, 𝐺5 assigns 𝐶𝐹 of 𝑥𝑢 and 𝑥𝑢+1 uniformly, and then programs
𝑅𝐹. In the following lemma, we are going to show that these two different conventions
of completing a chain will yield the same distribution of the status of the game.

Lemma 19 (The gap between 𝐺4 and 𝐺5). If 𝐺5 is efficient, then 𝐺4 is efficient and
the probability of D outputting 1 in 𝐺5 equals that in 𝐺4.

Proof. It is sufficient to show that, for any 0 < 𝑘 ≤ 𝑞D , the total variation distance
between the status of 𝐺4 and 𝐺5 is 0 at the end of 𝑘-th round of interaction between the
distinguisher and the simulators.

Consider a proof by induction. Denote by 𝛼𝑠
4 and 𝛼𝑠

5 the distribution of the status of
𝐺4 and 𝐺5 at the end of the 𝑠-th interaction. For any 0 < 𝑘 ≤ 𝑞D , assume 𝛼𝑠

4 = 𝛼𝑠
5 when

𝑠 = 𝑘 − 1. We will show
∥𝛼𝑘

4 − 𝛼
𝑘
5 ∥tv = 0.

- If 𝐺4 (𝐺5) already aborts before the end of the 𝑘 − 1-th round of the game, then 𝐺4
(𝐺5) also aborts at the end of the 𝑘-th round and ∥𝛼𝑡

4 − 𝛼
𝑡
5∥tv = 0.

- If𝐺4 (𝐺5) does not abort before the end of the 𝑘−1-th round, and the 𝑘-th query made
byD does not activate the procedures S2.Complete orM2.Complete (S3.Complete
orM3.Complete), it is obvious that ∥𝛼𝑘

4 − 𝛼
𝑘
5 ∥tv = 0.

- If 𝐺4 (𝐺5) does not abort before the end of the 𝑘 − 1-th round, and the 𝑘-th query
made by D activates the procedures S2.Complete orM2.Complete (S3.Complete
orM3.Complete), the situation is more complicated. We will deal with this case in
the rest of the proof.

To show ∥𝛼𝑘
4 − 𝛼𝑘

5 ∥tv = 0 in the last case, it suffices to prove that if the “initial
statuses” before the execution of the completion procedures are identical in 𝐺4 and 𝐺5,
the “resulting statuses” after the execution are identically distributed. Formally speaking,
assume that at some moment of 𝐺4 and 𝐺5, the two games have the same status and begin
to execute procedureM2.Complete andM3.Complete. (Without loss of generality, we
assume this execution is activated by a query from D to 𝑅𝐹 (𝑥0, 𝑥1) for some bitstring
pair (𝑥0, 𝑥1).) We will show the distribution of 𝛼4 and 𝛼5 at the end of the execution
are identical. The proof of the two games executing S2.Complete and S3.Complete are
omitted because it is the same as the proof forM2.Complete andM3.Complete.

To prove the above claim, we introduce the following transition of the four different
completion procedures. M2.Complete and M3.Complete are the first and the last
procedure. Two middle procedures are used to build their connections. We assume the
four procedures share a common initial table of the simulator, 𝑇initial. (𝑇initial isM2.𝐶𝐹 in
𝐺4 andM3.𝐶𝐹 in 𝐺5.) Our goal is to prove that the distributions of the resulting table,
𝑇final, are identical among the four procedures. Roughly speaking, the job of a completion
procedure is to generate a sequence of terms (𝑖, 𝑥𝑖) (for 𝑖 = 1, . . . , 8𝑛) that are supposed
to form a full subverted chain, a pair of two bitstrings ((𝑥0, 𝑥1), (𝑥8𝑛, 𝑥8𝑛+1)) such that
𝑅𝐹 (𝑥0, 𝑥1) = (𝑥8𝑛, 𝑥8𝑛+1), and checks whether the game needs to abort in the process.
Our proof will focus mainly on the distribution of these variables and when the game
aborts.

– Procedure 1: Procedure 1 isM2.Complete.
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1. For 𝑖 = 2, . . . , 𝑢, generate (𝑖, 𝑥𝑖) recursively by defining 𝑥𝑖 := 𝑥𝑖−2⊕𝐶�̃�𝑖−1 (𝑥𝑖−1)
for 2 ≤ 𝑖 ≤ 𝑢 (each 𝐶𝐹 is evaluated uniformly).

2. Query 𝑅𝐹 at (𝑥0, 𝑥1) and receive a uniform pair of 𝑛-bit strings (𝑥8𝑛, 𝑥8𝑛+1). To
generate (𝑖, 𝑥𝑖) (𝑖 = 𝑢, . . . , 8𝑛), define 𝑥𝑖−2 := 𝑥𝑖 ⊕ 𝐶�̃�𝑖−1 (𝑥𝑖−1) for 𝑢 + 3 ≤ 𝑖 ≤
8𝑛 + 1 (each 𝐶𝐹 is evaluated uniformly).

3. Define 𝐶𝐹𝑢 (𝑥𝑢) := 𝑥𝑢−1 ⊕ 𝑥𝑢+1 and 𝐶𝐹𝑢+1 (𝑥𝑢+1) := 𝑥𝑢 ⊕ 𝑥𝑢+2. The game
aborts if there is an index 𝑗 such that 3𝑛 ≤ 𝑗 ≤ 5𝑛 and ( 𝑗 , 𝑥 𝑗 ) is in 𝑇initial or⋃8𝑛

𝑖=1 𝑄𝑖 (𝑥𝑖)/𝑄 𝑗 (𝑥 𝑗 ).
4. Evaluate 𝐶�̃�𝑢 (𝑥𝑢) and 𝐶�̃�𝑢+1 (𝑥𝑢+1); the game aborts if there is an index 𝑗 such

that 3𝑛 ≤ 𝑗 ≤ 5𝑛 and ( 𝑗 , 𝑥 𝑗 ) is dishonest.
– Procedure 2:

1. Same as step 1 of Procedure 1.
2. Select 𝑥𝑢+1 and 𝑥𝑢+2 uniformly. To generate (𝑖, 𝑥𝑖) (𝑖 = 𝑢 + 3, . . . , 8𝑛 + 1), define
(𝑖, 𝑥𝑖) := 𝑥𝑖−2 ⊕ 𝐶�̃�𝑖−1 (𝑥𝑖−1) for 𝑢 + 3 ≤ 𝑖 ≤ 8𝑛 + 1 (each 𝐶𝐹 is evaluated
uniformly). Assign 𝑅𝐹 (𝑥0, 𝑥1) = (𝑥8𝑛, 𝑥8𝑛+1).

3. Same as step 3 of Procedure 1.
4. Same as step 4 of Procedure 1.

– Procedure 3: Procedure 3 is a small pivot from Procedure 2.
1. Same as step 1 of Procedure 2.
2. Select 𝐶𝐹𝑢 (𝑥𝑢) uniformly and define 𝑥𝑢+1 := 𝑥𝑢−1 ⊕ 𝐶𝐹𝑢 (𝑥𝑢). The game

aborts if 𝐶𝐹𝑢 (𝑥𝑢) is previously assigned. Select 𝐶𝐹𝑢+1 (𝑥𝑢+1) uniformly and
define 𝑥𝑢+2 := 𝑥𝑢 ⊕ 𝐶𝐹𝑢+1 (𝑥𝑢+1). The game aborts if 𝐶𝐹𝑢+1 (𝑥𝑢+1) is previously
assigned. To generate the sequence (𝑖, 𝑥𝑖) (for 𝑖 = 𝑢 + 3, . . . , 8𝑛 + 1), define
𝑥𝑖 := 𝑥𝑖−2 ⊕𝐶�̃�𝑖−1 (𝑥𝑖−1) for 𝑢+3 ≤ 𝑖 ≤ 8𝑛+1 (each 𝐶𝐹 is evaluated uniformly).
Assign 𝑅𝐹 (𝑥0, 𝑥1) = (𝑥8𝑛, 𝑥8𝑛+1).

3. The game aborts if there is an index 𝑗 such that 3𝑛 ≤ 𝑗 ≤ 5𝑛 and ( 𝑗 , 𝑥 𝑗 ) is in
𝑇initial or

⋃8𝑛
𝑖=1 𝑄𝑖 (𝑥𝑖)/𝑄 𝑗 (𝑥 𝑗 ).

4. Same as step 4 of Procedure 2.
– Procedure 4: Procedure 4 isM3.Complete.

1. For 𝑖 = 2, . . . , 8𝑛 + 1, generate (𝑖, 𝑥𝑖) recursively by defining 𝑥𝑖 := 𝑥𝑖−2 ⊕
𝐶�̃�𝑖−1 (𝑥𝑖−1) for 2 ≤ 𝑖 ≤ 8𝑛 + 1 (each 𝐶𝐹 is evaluated uniformly). The game
aborts if there is an index 𝑗 such that 3𝑛 ≤ 𝑗 ≤ 5𝑛 and ( 𝑗 , 𝑥 𝑗 ) is in 𝑇initial or⋃8𝑛

𝑖=1 𝑄𝑖 (𝑥𝑖)/𝑄 𝑗 (𝑥 𝑗 ).
2. The game aborts if there is an index 𝑗 such that 3𝑛 ≤ 𝑗 ≤ 5𝑛 and ( 𝑗 , 𝑥 𝑗 ) is

dishonest.
3. Assign 𝑅𝐹 (𝑥0, 𝑥1) = (𝑥8𝑛, 𝑥8𝑛+1).

For 𝑖 = 1, 2, 3, 4, We denote the distribution of 𝑇final in Procedure 𝑖 by 𝛼𝑃𝑖
. We will

prove ∥𝛼𝑃1 − 𝛼𝑃4 ∥tv = 0 by showing that ∥𝛼𝑃𝑗
− 𝛼𝑃𝑗+1 ∥tv = 0 for 𝑗 = 1, 2, 3.

To see why ∥𝛼𝑃1 − 𝛼𝑃2 ∥tv = 0, we rewrite Procedure 1 and 2 as:

– Procedure 1’: Procedure 1’ is a rewrite of Procedure 1.
1. For all 𝑥 ∈ {0, 1}𝑛 and 𝑢 + 2 ≤ 𝑖 ≤ 8𝑛, evaluate 𝐶�̃�𝑖 (𝑥) (each 𝐶𝐹 is evaluated

uniformly).
2. Same as step 1 of Procedure 1.
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3. Select an uniform pair of 𝑛-bit strings (𝑥8𝑛, 𝑥8𝑛+1) and assign 𝑅𝐹 (𝑥0, 𝑥1) =
(𝑥8𝑛, 𝑥8𝑛+1). To generate (𝑖, 𝑥𝑖) (for 𝑖 = 𝑢 + 1, . . . , 8𝑛), define 𝑥𝑖−2 := 𝑥𝑖 ⊕
𝐶�̃�𝑖−1 (𝑥𝑖−1) for 𝑢 + 3 ≤ 𝑖 ≤ 8𝑛 + 1.

4. Define𝐶𝐹𝑢 (𝑥𝑢) := 𝑥𝑢−1⊕𝑥𝑢+1 and𝐶𝐹𝑢+1 (𝑥𝑢+1) := 𝑥𝑢⊕𝑥𝑢+2. For all 𝑥 ∈ {0, 1}𝑛
and 1 ≤ 𝑖 ≤ 8𝑛, remove 𝐶𝐹𝑖 (𝑥) from the table if 𝐶𝐹𝑖 (𝑥) is not in 𝑇initial and is
not in 𝑄 𝑗 (𝑥 𝑗 ) for any 1 ≤ 𝑗 ≤ 8𝑛 ( 𝑗 ≠ 𝑢, 𝑢 + 1). The game aborts if there is an
index 𝑗 such that 3𝑛 ≤ 𝑗 ≤ 5𝑛 and ( 𝑗 , 𝑥 𝑗 ) is in 𝑇initial or

⋃8𝑛
𝑖=1 𝑄𝑖 (𝑥𝑖)/𝑄 𝑗 (𝑥 𝑗 ).

5. Same as step 4 of Procedure 1.
– Procedure 2’: Procedure 2’ is a rewrite of Procedure 2.

1. Same as step 1 of Procedure 1’.
2. Same as step 2 of Procedure 1’.
3. Select 𝑥𝑢+1 and 𝑥𝑢+2 uniformly. To generate (𝑖, 𝑥𝑖) (for 𝑖 = 𝑢+3, . . . , 8𝑛+1), define

𝑥𝑖 := 𝑥𝑖−2⊕𝐶�̃�𝑖−1 (𝑥𝑖−1) for 𝑢+3 ≤ 𝑖 ≤ 8𝑛+1. Assign 𝑅𝐹 (𝑥0, 𝑥1) = (𝑥8𝑛, 𝑥8𝑛+1).
4. Same as step 4 of Procedure 1’.
5. Same as step 5 of Procedure 1’.

Notice that the step 3 of Procedure 1’ is equivalent to that of Procedure 1’ because the
Feistel structure gives a permutation of 2𝑛-bit strings: selecting an uniform “input” string
(𝑥𝑢+1, 𝑥𝑢+2) is equivalent to selecting an uniform “output” string (𝑥8𝑛, 𝑥8𝑛+1). Therefore,
∥𝛼𝑃1 − 𝛼𝑃2 ∥tv = ∥𝛼𝑃1′ − 𝛼𝑃2′ ∥tv = 0, where 𝛼𝑃1′ and 𝛼𝑃2′ are the distributions of 𝑇final
in Procedure 1’ and 2’.

The fact that ∥𝛼𝑃2 − 𝛼𝑃3 ∥tv = 0 and ∥𝛼𝑃3 − 𝛼𝑃4 ∥tv = 0 are clear from the definitions
of Procedures 2,3, and 4. □

Similar to 𝐺4, we define the following two bad events in 𝐺5:

BadComplete5 =

{
𝐺5 aborts during the execution of the procedure
S3.Complete orM3.Complete

}
,

BadEval5 =

{
𝐺5 aborts during the execution of the procedureS3.𝐶�̃�Inner

or S3.𝐶�̃�Inner

}
.

Remark. Same as the bad events in 𝐺4, if S3.Complete orM3.Complete aborts because
its inner procedure S3.𝐶�̃�Inner or S3.𝐶�̃�Inner aborts, we say BadEval5 happens rather
than BadComplete5 happens.

It is clear that a bad event (BadComplete5 or BadEval5) happens if and only if the
game 𝐺5 aborts.

The proof of Lemma 19 also implies:
Lemma 20. Pr[BadComplete4] = Pr[BadComplete5], and Pr[BadEval4] = Pr[BadEval5].

Remark. Recall that in Section 3, we mentioned the following statement: Assuming 𝐺5
is efficient, the probability that 𝐺4 or 𝐺5 aborts is negligible. Due to Lemma 20, the
statement can be reduced to: assuming 𝐺5 is efficient, the probability that 𝐺5 aborts is
negligible.
Lemma 21. In 𝐺5, S3.𝐶𝐹 is a subset ofM3.𝐶𝐹 unless the game aborts.

Proof. Clear from the definition. □

Because of Lemma 21, we can treat unsubverted (subverted) chains in S3.𝐶𝐹 as
unsubverted (subverted) chains inM3.𝐶𝐹.
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The Gap Between the Fifth and the Sixth Game
Lemma 22 (The gap between 𝐺5 and 𝐺6). The probability of D outputting 1 in 𝐺5
differs that in 𝐺6 by at most Pr[BadComplete5] + Pr[BadEval5].

Proof. The proof of the lemma is clear from the definition of 𝐺5. □

B.6 Preparations for Security and Efficiency Proof

In this section, we will make some technical preparations for the proof of the two
remaining statements:

– Security: Assuming 𝐺5 is efficient, the probability that 𝐺5 aborts is negligible.
– Efficiency: 𝐺5 is efficient. □

We will focus on 𝐺5 and its tables (especiallyM3.𝐶𝐹) in this section since both
statements above are about 𝐺5. The key property of 𝐺5 we use to understand its
distribution is that all the 𝐶𝐹 values inM3.𝐶𝐹 are selected uniformly and independently.
Formally speaking, to understand the property of 𝐺5 and its table M3.𝐶𝐹, we will
consider the following simple probability model:

– Consider uniformly selecting a table 𝐶𝐹Full that contains 𝐶𝐹 values for all (𝑖, 𝑥).
– In 𝐺5, when the simulator proceeds to assign a new value to the tableM3.𝐶𝐹, the

simulator takes the value from 𝐶𝐹Full instead of selecting it uniformly as usual.

It is easy to see that the above model does not change the distribution of 𝐺5 at all.
Under this model,M .𝐶𝐹 is an uniform table in the sense that, at any moment of 𝐺5,
conditioned on the current exposed (evaluated) terms inM .𝐶𝐹, any unexposed term, if
it is ever evaluated, will be evaluated uniformly.

We will work on two main results in this section. First, we introduce the notion of
monotone increasing (and decreasing) chains, prove that each unsubverted chain can be
viewed as a union of a decreasing chain and an increasing chain, and then show several
nice properties of increasing (or decreasing) chains. Second, we prove all the dishonest
terms on a subverted chain are located on an interval shorter than 𝑛/6.

The order function; monotone chains. To record the order in whichM3 sets 𝐶𝐹 values,
we define the following order function 𝑂M3 from {1, . . . , 8𝑛} × {0, 1}𝑛 to positive
integers (with an additional symbol ⊥):

𝑂M3 (𝑖, 𝑥) =
{
𝑡 if 𝐶𝐹𝑖 (𝑥) is the 𝑡-th evaluated 𝐶𝐹 value byM3,

⊥ if 𝐶𝐹𝑖 (𝑥) is undefined inM3.𝐶𝐹.

An unsubverted chain (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) inM3.𝐶𝐹 is said to be monotone increasing (or
monotone decreasing) if 𝑂M3 (𝑖, 𝑥𝑖) < 𝑂M3 (𝑖 + 1, 𝑥𝑖+1) for all 𝑠 ≤ 𝑖 < 𝑠 + 𝑟 (or, likewise,
𝑂M3 ( 𝑗 , 𝑥 𝑗 ) > 𝑂M3 ( 𝑗 + 1, 𝑥 𝑗+1) for all 𝑠 ≤ 𝑗 < 𝑠 + 𝑟).

In the rest of the paper, without loss of generality, we focus our analytic efforts on
increasing chains; the results related to increasing chains can be easily transitioned into
those related to decreasing chains.

We first show that any unsubverted chain can be viewed as a union of a deceasing
chain and an increasing chain.
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Lemma 23. If 𝐺5 is efficient, then with overwhelming probability, any unsubverted
chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) inM3.𝐶𝐹 will satisfy one of the three conditions below:

1. 𝑐 is increasing,
2. 𝑐 is decreasing,
3. There exists an index 𝑠 < 𝑣 < 𝑠 + 𝑟 such that (𝑠, 𝑥𝑠 , . . . , 𝑥𝑣) is decreasing and
(𝑣, 𝑥𝑣 , . . . , 𝑥𝑠+𝑟 ) is increasing.

Proof. It suffices to show that in M3.𝐶𝐹 there is no unsubverted length three chain
(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑥𝑠+2) such that 𝐶𝐹𝑠+1 (𝑥𝑠+1) is evaluated after both 𝐶𝐹𝑠 (𝑠𝑠) and 𝐶𝐹𝑠+2 (𝑥𝑠+2)
are evaluated. Suppose that throughout𝐺5, there are no more than 𝑃 (= poly(𝑛)) elements
inM3.𝐶𝐹. Then in 𝐺5,

Pr
[
There is a length 3 chain (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑥𝑠+2) such that 𝑂M3 (𝑠 + 1, 𝑥𝑠+1) >
max{𝑂M3 (𝑠 + 2, 𝑥𝑠+2), 𝑂M3 (𝑠, 𝑥𝑠).}

]
=

𝑃∑︁
𝑖=2

Pr
[
There is a length 3 chain (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑥𝑠+2) such that 𝑂M3 (𝑠 + 1, 𝑥𝑠+1) =
𝑖 > max{𝑂M3 (𝑠 + 2, 𝑥𝑠+2), 𝑂M3 (𝑠, 𝑥𝑠)}.

]
=

𝑃∑︁
𝑖=2

∑︁
𝑗 ,𝑘<𝑖
𝑗≠𝑘

Pr
[
There is a length 3 chain (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑥𝑠+2) such that 𝑂M3 (𝑠+1, 𝑥𝑠+1) = 𝑖,
𝑂M3 (𝑠 + 2, 𝑥𝑠+2) = 𝑗 and 𝑂M3 (𝑠, 𝑥𝑠) = 𝑘 .

]

<

𝑃∑︁
𝑖=2

∑︁
𝑗 ,𝑘<𝑖
𝑗≠𝑘

1
2𝑛

<
𝑃3

2𝑛
= negl(𝑛),

where the first inequality is based on the fact that and 𝐶𝐹𝑠+1 (𝑥𝑠+1) is selected uniformly
and is independent of 𝐶𝐹𝑠 (𝑠𝑠) and 𝐶𝐹𝑠+2 (𝑥𝑠+2). □

Advantages ofM3 over S3. Note that Lemma 23 does not work for the simulator S3

because not all terms in S3.𝐶𝐹 are selected independently. Classifying the unsubverted
chains inM3.𝐶𝐹 as increasing and decreasing is extremely useful to analyze the property
of the chains in 𝐺5.

Next, we will use a sequence of lemmas to establish the following major theorem
that describes the nice properties of increasing chains.

Theorem 8. If 𝐺5 is efficient, then with overwhelming probability, any unsubverted
increasing chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) (𝑟 > 8) inM3.𝐶𝐹 will satisfy:

1. for any 0 < 𝑖 < 𝑗 and 8 < 𝑗 ≤ 𝑟 , (𝑠 + 𝑗 , 𝑥𝑠+ 𝑗 ) ∉ 𝑄𝑠+𝑖 (𝑥𝑠+𝑖);
2. for any 7 ≤ 𝑖 < 𝑗 ≤ 𝑟, (𝑠 + 𝑖, 𝑥𝑠+𝑖) ∉ 𝑄𝑠+ 𝑗 (𝑥𝑠+ 𝑗 );
3. for any 7 < 𝑖 ≤ 𝑟 , (𝑠 + 𝑖, 𝑥𝑠+𝑖) is honest if 𝐶�̃�𝑠+𝑖 (𝑥𝑠+𝑖) is defined.

Lemma 24. In 𝐺5, with overwhelming probability, there is not an unsubverted (or sub-
verted) chain 𝑐 = (𝑖, 𝑥𝑖 , . . . , 𝑥 𝑗 ) and a length 10 unsubverted chain 𝑐′ = (𝑠, 𝑦𝑠 , . . . , 𝑦𝑠+9)
inM3.𝐶𝐹 such that
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– for all ( 𝑗 , 𝑥) ∈ 𝑐, 𝐶�̃�𝑗 (𝑥) is defined;
– 𝑐 and 𝑐′ are disjoint;
– for each 𝑠 ≤ 𝑘 ≤ 𝑠 + 9, (𝑘, 𝑦𝑘) ∈ 𝑄𝑐.

Proof. Consider proving the following stronger statement: Imagine we fill the entire
tableM3.𝐶𝐹 by uniformly selecting all the 𝐹 values and (𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, . . . , 8𝑛). We
will prove that with overwhelming probability over the choice of 𝐹 values and (𝑎𝑖 , 𝑏𝑖),
there are not two chains 𝑐 and 𝑐′ that satisfy the properties in the lemma.

Let (𝑥𝑖+1, 𝑥𝑖+2), (𝑦𝑠 , 𝑦𝑠+1) be two pairs of 𝑛-bit strings and (𝑖, 𝑗 , 𝑠) be three positive
indices. We denote by 𝑐 the length ( 𝑗 − 𝑖) chain starting with (𝑖 + 1, 𝑥𝑖+1, 𝑥𝑖+2) (without
loss of generality, we assume 𝑐 is a subverted chain for convenience in the rest of the
proof) and denote by 𝑐′ the length 10 unsubverted chain starting with (𝑠, 𝑦𝑠 , 𝑦𝑠+1). We
denote by 𝑥𝑣 (𝑣 = 𝑖 + 1, . . . , 𝑗) the elements of 𝑐 and denote by 𝑦𝑘 (𝑘 = 𝑠, . . . , 𝑠 + 9) the
elements of 𝑐′. It is important to note that while 𝑥𝑖+1, 𝑥𝑖+2, 𝑦𝑠 and 𝑦𝑠+1 are specific 𝑛-bit
strings, the values of 𝑥𝑣 and 𝑦𝑘 are currently undetermined. We use 𝑥𝑣 and 𝑦𝑘 purely to
represent the elements of 𝑐 and 𝑐′ respectively. The actual values they will take on will
be determined by choice of 𝐹 values and (𝑎𝑖 , 𝑏𝑖). We define the event:

𝐸𝑖, 𝑗 ,𝑠 (𝑥𝑖+1, 𝑥𝑖+2, 𝑦𝑠 , 𝑦𝑠+1) := {𝑐 and 𝑐′ are disjoint, and for each 𝑠 ≤ 𝑘 ≤ 𝑠 + 9, (𝑘, 𝑦𝑘) ∈ 𝑄𝑐} .

For 𝑠 ≤ 𝑡 ≤ 𝑠 + 9, we also define:

𝐸 𝑡
𝑖, 𝑗 ,𝑠 (𝑥𝑖+1, 𝑥𝑖+2, 𝑦𝑠 , 𝑦𝑠+1) := {𝑐 and 𝑐′ are disjoint, and for each 𝑠 ≤ 𝑘 ≤ 𝑡, (𝑘, 𝑦𝑘) ∈ 𝑄𝑐} .

To analyze the probability of 𝐸𝑖, 𝑗 ,𝑠 (𝑥1, 𝑥2, 𝑦𝑠 , 𝑦𝑠+1) over the choice of 𝐹 and (𝑎𝑖 , 𝑏𝑖)
(𝑖 = 1, . . . , 8𝑛), we consider selecting uniformly the values of 𝐹𝑖 (𝑥) for all 𝑖 = 1, . . . , 8𝑛
and 𝑥 ∈ {0, 1}𝑛 and selecting uniformly 𝑎𝑣 · 𝑥𝑣 ⊕ 𝑏𝑣 for 𝑣 = 𝑖, . . . , 𝑗 . Since the function
𝑥𝑣 → 𝑎𝑖 · 𝑥𝑣 ⊕ 𝑏𝑖 is pairwise independent, the values of 𝑎𝑘 · 𝑦𝑘 ⊕ 𝑏𝑘(𝑘 = 𝑠, . . . , 𝑠 + 9)
are uniformly random. (For convenience, in the following, we will write 𝐸𝑖, 𝑗 ,𝑠 for
𝐸𝑖, 𝑗 ,𝑠 (𝑥1, 𝑥2, 𝑦𝑠 , 𝑦𝑠+1) and 𝐸 𝑡

𝑖, 𝑗 ,𝑠
for 𝐸 𝑡

𝑖, 𝑗 ,𝑠
(𝑥1, 𝑥2, 𝑦𝑠 , 𝑦𝑠+1).) Over the randomness of

𝑎𝑘 · 𝑦𝑘 ⊕ 𝑏𝑘 (𝑘 = 𝑠, . . . , 𝑠 + 9), we have

Pr[ 𝐸𝑖, 𝑗 ,𝑠]
= Pr[𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+1

𝑖, 𝑗 ,𝑠 ] · Pr[𝐸 𝑠+1
𝑖, 𝑗 ,𝑠]

< Pr[ 𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+1
𝑖, 𝑗 ,𝑠 ]

· (Pr[𝐶𝐹𝑠 (𝑦𝑠) ∈ ∪ 𝑗

𝑣=𝑖
𝑄𝑣 (𝑥𝑣) | 𝑦𝑠 ≠ 𝑥𝑠 ] + Pr[𝐶𝐹𝑠+1 (𝑦𝑠+1) ∈ ∪ 𝑗

𝑣=𝑖
𝑄𝑣 (𝑥𝑣) | 𝑦𝑠+1 ≠ 𝑥𝑠+1 ])

< Pr[𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+3
𝑖, 𝑗 ,𝑠 ] · Pr[𝐸 𝑠+3

𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+1
𝑖, 𝑗 ,𝑠 ] · 2 · (8𝑛 · 𝑞A/2𝑛)

< Pr[𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+5
𝑖, 𝑗 ,𝑠 ] · Pr[𝐸 𝑠+5

𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+3
𝑖, 𝑗 ,𝑠 ] · (16𝑛 · 𝑞A/2𝑛)2

< Pr[𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+7
𝑖, 𝑗 ,𝑠 ] · Pr[𝐸 𝑠+7

𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+5
𝑖, 𝑗 ,𝑠 ] · (16𝑛 · 𝑞A/2𝑛)3

< Pr[𝐸𝑖, 𝑗 ,𝑠 | 𝐸 𝑠+7
𝑖, 𝑗 ,𝑠 ] · (16𝑛 · 𝑞A/2𝑛)4

< (16𝑛 · 𝑞A/2𝑛)5 .

The lemma is implied by taking the union bound over the choice of (𝑥1, 𝑥2, 𝑦𝑠 , 𝑦𝑠+1). □

A similar proof can be used to prove the following lemma:

55



Lemma 25. With overwhelming probability over the choice of all the 𝐹 values and
(𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, . . . , 8𝑛), there are not a term (𝑖, 𝑥𝑖) and a length 8 unsubverted chain
𝑐 = (𝑠, 𝑦𝑠 , . . . , 𝑦𝑠+7) inM3.𝐶𝐹 such that (𝑘, 𝑦𝑘) ∈ 𝑄𝑖 (𝑥𝑖) for all 𝑘 = 𝑠, 𝑠+2, 𝑠+4, 𝑠+6.

Lemma 26. If 𝐺5 is efficient, then with overwhelming probability, for any unsubverted
increasing chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) inM3.𝐶𝐹, if (𝑠 + 2𝑡 + 1, 𝑥𝑠+2𝑡+1) ∈ 𝑄𝑠+2𝑘 (𝑥𝑠+2𝑘)
(assuming 𝐶�̃�𝑠+2𝑘 (𝑥𝑠+2𝑘) is defined) for some 𝑡, 𝑘 with 0 < 2𝑡 + 1, 2𝑘 ≤ 𝑟, then
(𝑠 + 2𝑖, 𝑥𝑠+2𝑖) ∈ 𝑄𝑠+2𝑘 (𝑥𝑠+2𝑘) for all 0 < 𝑖 ≤ 𝑡.

Proof. We give a simple example to show the idea of the proof. Take 𝑠 = 1, 𝑟 = 7,
𝑘 = 2 and 𝑡 = 3 for example. We want to show that for any chain 𝑐 = (1, 𝑥1, . . . , 𝑥8), if
(8, 𝑥8) ∈ 𝑄5 (𝑥5), then with overwhelming probability, (1 + 2𝑖, 𝑥1+2𝑖) ∈ 𝑄5 (𝑥5) for 𝑖 = 1.

Consider the following two ways of determining a length 8 unsubverted chain:

– Procedure 1:
1. Pick an arbitrary moment in 𝐺5 and abort the game. Denote the tableM3.𝐶𝐹 at

this moment by 𝑇initial. Pick a length 2 increasing chain (1, 𝑥1, 𝑥2) in 𝑇initial such
that it is not a subchain of a length 3 unsubverted chain.

2. For 2 ≤ 𝑖 ≤ 7, select 𝐶𝐹𝑖 (𝑥𝑖) uniformly, set 𝑥𝑖+1 := 𝐶𝐹𝑖 (𝑥𝑖) ⊕ 𝑥𝑖−1 and abort
the procedure if (𝑖 + 1, 𝑥𝑖+1) is already in the table 𝑇initial.

3. Evaluate 𝐶�̃�5 (𝑥5).
– Procedure 2:

1. Pick an arbitrary moment in 𝐺5 and abort the game. Denote the tableM3.𝐶𝐹 at
this moment by 𝑇initial. Pick a length 2 increasing chain (1, 𝑥1, 𝑥2) in 𝑇initial such
that it is not a subchain of a length 3 unsubverted chain.

2. Select 𝐶𝐹2 (𝑥2) uniformly and set 𝑥3 := 𝑎2 ⊕ 𝑥1.
3. Select 4 uniform 𝑛-bit strings 𝑎4, 𝑎5, 𝑎6 and 𝑎7. Set 𝑥5 := 𝑎4 ⊕ 𝑥3, 𝑥7 := 𝑎6 ⊕ 𝑥5

and abort the procedure if either of them is in 𝑇initial. Set 𝐶𝐹5 (𝑥5) := 𝑎5 and
𝐶𝐹7 (𝑥7) := 𝑎7.

4. Evaluate 𝐶�̃�5 (𝑥5).
5. Select 𝐶𝐹3 (𝑥3) uniformly (use the existing value if it has been evaluated), set

𝑥4 := 𝐶𝐹3 (𝑥3) ⊕ 𝑥2, 𝑥6 := 𝑎5 ⊕ 𝑥4, 𝑥8 := 𝑎7 ⊕ 𝑥6, and abort the procedure if any
one of 𝑥4, 𝑥4 and 𝑥8 is in 𝑇initial.

A quick thought reveals that the above two procedures are equivalent in terms of
the distribution of the chain and, furthermore, the probability they abort is negligible
because of Lemma 23. We use the second procedure to analyze the distribution of the
first one. In the second procedure, we can see that if (3, 𝑥3) ∉ 𝑄5 (𝑥5), then 𝐶𝐹3 (𝑥3) is
still uniform conditioned on 𝑄5 (𝑥5), which implies that 𝑥8 = 𝑎7 ⊕ 𝑥6 = 𝑎7 ⊕ 𝑎5 ⊕ 𝑥4 =

𝑎7 ⊕ 𝑎5 ⊕𝐶𝐹3 (𝑥3) ⊕ 𝑥2 is uniform. Therefore, if (3, 𝑥3) ∉ 𝑄5 (𝑥5), (8, 𝑥8) ∈ 𝑄5 (𝑥5) with
negligible probability.

The full proof can be achieved by replacing the concrete numbers in the last example
by more general parameters 𝑠, 𝑟, 𝑘 and 𝑡 and taking the union bound over the various
values of these parameters. □

Lemma 27. If 𝐺5 is efficient, then with overwhelming probability, for any unsubverted
increasing chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) inM3.𝐶𝐹 and any index 𝑖, 𝑗 with 0 < 𝑖 < 𝑗 and
8 < 𝑗 ≤ 𝑟, (𝑠 + 𝑗 , 𝑥𝑠+ 𝑗 ) ∉ 𝑄𝑠+𝑖 (𝑥𝑠+𝑖) (if 𝐶�̃�𝑠+𝑖 (𝑥𝑠+𝑖) is defined).
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Proof. Without loss of generality, assume 𝑖 = 0. Suppose (𝑠 + 𝑗 , 𝑥𝑠+ 𝑗 ) ∈ 𝑄𝑠 (𝑥𝑠). Notice
that (𝑠 + 𝑗 − 1, 𝑥𝑠+ 𝑗−1) ∈ 𝑄𝑠+𝑖 (𝑥𝑠+𝑖) with overwhelming probability because otherwise
the randomness of 𝐶𝐹𝑠+ 𝑗−1 (𝑥𝑠+ 𝑗−1) will cause the event (𝑠 + 𝑗 , 𝑥𝑠+ 𝑗 ) ∉ 𝑄𝑠 (𝑥𝑠). Then,

– if 𝑗 is odd, since 𝑗 > 8 and (𝑠 + 𝑗 , 𝑥𝑠+ 𝑗 ) ∈ 𝑄𝑠 (𝑥𝑠), by Lemma 26, (𝑠 + 2𝑘, 𝑥𝑠+2𝑘) ∈
𝑄𝑠 (𝑥𝑠) for 𝑘 = 1, 2, 3, 4. This contradicts Lemma 25.

– if 𝑗 is even, since 𝑗 > 8 and (𝑠 + 𝑗 − 1, 𝑥𝑠+ 𝑗−1) ∈ 𝑄𝑠 (𝑥𝑠), by Lemma 26, (𝑠 +
2 𝑗 , 𝑥𝑠+2 𝑗 ) ∈ 𝑄𝑠 (𝑥𝑠) for 𝑗 = 1, 2, 3, 4, which contradicts with Lemma 25. □

Lemma 28. If 𝐺5 is efficient, then with overwhelming probability, for any unsubverted
increasing chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) inM3.𝐶𝐹, if (𝑠 + 2𝑡, 𝑥𝑠+2𝑡 ) ∈ 𝑄𝑠+𝑘 (𝑥𝑠+𝑘) (assum-
ing 𝐶�̃�𝑠+𝑘 (𝑥𝑠+𝑘) is defined) for some 𝑡, 𝑘 with 0 < 2𝑡 < 𝑘 ≤ 𝑟 , then (𝑠+2𝑖−1, 𝑥𝑠+2𝑖−1) ∈
𝑄𝑠+𝑘 (𝑥𝑠+𝑘) for all 0 < 𝑖 ≤ 𝑡.

Proof. The proof of the lemma is similar to that of Lemma 26. Consider the example
where 𝑠 = 1, 𝑟 = 8, 𝑡 = 2 and 𝑘 = 8. We want to show that for any chain 𝑐 = (1, 𝑥1, . . . , 𝑥9),
if (5, 𝑥5) ∈ 𝑄9 (𝑥9), then with overwhelming probability, (2𝑖, 𝑥2𝑖) ∈ 𝑄9 (𝑥9) for 𝑖 = 1.

Consider the following two ways of determining a length 9 unsubverted chain:

– Procedure 1:
1. Pick an arbitrary moment in 𝐺5 and abort the game. Denote the tableM3.𝐶𝐹 at

this moment by 𝑇initial. Pick a length 2 increasing chain (1, 𝑥1, 𝑥2) in 𝑇initial such
that it is not a subchain of a length 3 unsubverted chain.

2. For 2 ≤ 𝑖 ≤ 8, select 𝐶𝐹𝑖 (𝑥𝑖) uniformly, set 𝑥𝑖+1 := 𝐶𝐹𝑖 (𝑥𝑖) ⊕ 𝑥𝑖−1 and abort
the procedure if (𝑖 + 1, 𝑥𝑖+1) is already in the table 𝑇initial.

3. Evaluate 𝐶�̃�9 (𝑥9).
– Procedure 2:

1. Pick an arbitrary moment in 𝐺5 and abort the game. Denote the tableM3.𝐶𝐹 at
this moment by 𝑇initial. Pick a length 2 increasing chain (1, 𝑥1, 𝑥2) in 𝑇initial such
that it is not a subchain of a length 3 unsubverted chain.

2. Select 3 uniform 𝑛-bit strings 𝑎3, 𝑎4 and 𝑎5. Set 𝑥4 := 𝑎3 ⊕ 𝑥2, 𝑥6 := 𝑎5 ⊕ 𝑥4
and aborts the procedure if either of them is in 𝑇initial. Set 𝐶𝐹4 (𝑥4) := 𝑎4 and
𝐶𝐹6 (𝑥6) := 𝑎6.

3. Select 𝑥7, 𝑥8 and 𝑥9 uniformly and abort the procedure if any one of them is in
𝑇initial. Set 𝐶𝐹7 (𝑥7) := 𝑥6 ⊕ 𝑥8 and 𝐶𝐹8 (𝑥8) := 𝑥7 ⊕ 𝑥9.

4. Evaluate 𝐶�̃�9 (𝑥9).
5. Select 𝐶𝐹2 (𝑥2) uniformly(use the existing value if it has been evaluated), set

𝑥3 := 𝐶𝐹2 (𝑥2) ⊕ 𝑥1, 𝑥5 := 𝑎4 ⊕ 𝑥3, 𝐶𝐹6 (𝑥6) := 𝑥7 ⊕ 𝑥5, and aborts the procedure
if either 𝑥3 or 𝑥5 is in 𝑇initial.

A quick thought reveals that the above two procedures are equivalent in terms of
the distribution of the chain (and, furthermore, the probability they abort is negligible
because of Lemma 23). We use the second procedure to analyze the distribution of the
first one. In the second procedure, we can see that if (2, 𝑥2) ∉ 𝑄9 (𝑥9), then 𝐶𝐹2 (𝑥2) is
still uniform conditioned on 𝑄9 (𝑥9), which implies that 𝑥5 = 𝑎4 ⊕ 𝑥3 = 𝑎4 ⊕ 𝑎2 ⊕ 𝑥1 is
uniform. Therefore, if (2, 𝑥2) ∉ 𝑄9 (𝑥9), (5, 𝑥5) ∈ 𝑄9 (𝑥9) with negligible probability.

The formal proof can be achieved by replacing the concrete numbers in the last
example by more general parameters 𝑠, 𝑟, 𝑡 and 𝑘 and taking the union bound over the
various values of these parameters. □
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Lemma 29. If 𝐺5 is efficient, then with overwhelming probability, for any unsubverted
increasing chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) inM3.𝐶𝐹 and any index 𝑖, 𝑗 with 7 < 𝑖 < 𝑗 ≤ 𝑟,
(𝑠 + 𝑖, 𝑥𝑠+𝑖) ∉ 𝑄𝑠+ 𝑗 (𝑥𝑠+ 𝑗 )(if 𝐶�̃�𝑠+ 𝑗 (𝑥𝑠+ 𝑗 ) is defined).

Proof. The lemma is derived directly from Lemma 25 and Lemma 28. □

Lemma 30. If 𝐺5 is efficient, then with overwhelming probability, there does not exist
an unsubverted increasing chain 𝑐 = (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+8) inM3.𝐶𝐹 such that 𝐶�̃�𝑖+8 (𝑥𝑖+8) is
defined inM3.𝐶𝐹 and (𝑖 + 8, 𝑥𝑖+8) is dishonest.

Proof. We say the distinguisherD wins 𝐺5 if it is able to find an unsubverted increasing
chain 𝑐 inM3.𝐶𝐹 that satisfies the property in the lemma. By Lemma 27, the probability
that there is a length-9 unsubverted increasing chain 𝑐 = (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+8)with (𝑖+7, 𝑥𝑖+7) ∈
𝑄𝑖+8 (𝑥𝑖+8) (𝐶�̃�𝑖+8 (𝑥𝑖+8)) is negligible. We denote this negligible probability by 𝛿.

To show the probability that D wins is negligible, consider the following experiment
with a distinguisher D∗:

Exp*

1. D∗ takes an arbitrary moment of 𝐺5, stops the game and selects an arbitrary
length-2 increasing chain (𝑖, 𝑥𝑖 , 𝑥𝑖+1) inM3.𝐶𝐹 such that 𝐶𝐹𝑖+2 (𝑥𝑖+2) is not
evaluated for 𝑥𝑖+1 := 𝑥𝑖 ⊕ 𝐶𝐹𝑖 (𝑥𝑖).

2. Then, D∗ extends (𝑖, 𝑥𝑖 , 𝑥𝑖+1) to (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+7) by iteratively evaluating
𝐶𝐹𝑗−1 (𝑥 𝑗−1) (selected uniformly) and 𝑥 𝑗 := 𝑥 𝑗−2 ⊕ 𝐶𝐹𝑗−1 (𝑥 𝑗−1) for 𝑖 + 3 ≤
𝑗 ≤ 𝑖 + 7. The experiment aborts if 𝐶𝐹𝑖+7 (𝑥𝑖+7) is already evaluated.

3. For any term ( 𝑗 , 𝑦), if 𝐶𝐹𝑗 (𝑦) is still unevaluated and ( 𝑗 , 𝑦) ≠ (𝑖 + 7, 𝑥𝑖+7),D∗
selects 𝐶𝐹𝑗 (𝑦) uniformly.

4. Finally D∗ selects 𝐶𝐹𝑖+7 (𝑥𝑖+7) and check if (𝑖 + 8, 𝑥𝑖+8) is dishonest for
𝑥𝑖+8 := 𝑥𝑖+6 ⊕ 𝐶𝐹𝑖+7 (𝑥𝑖+7).

5. D∗ wins Exp* if the experiment does not abort in Step 2 and (𝑖 + 8, 𝑥𝑖+8) is
dishonest.

It is easy to see that to prove D wins 𝐺5 negligibly, it is sufficient to show the
probability that the experiment aborts in Step 2 or D∗ wins is negligible. We also stress
that although Exp* is not 𝐺5, the lemmas we proved in this section can still be applied
because all the 𝐶𝐹 values here are also selected uniformly and independently.
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Pr
Exp*
[The experiment aborts in Step 2 or D∗ wins.]

≤ Pr
Exp*
[The experiment aborts in Step 2.] + Pr

Exp*

[
D∗ wins and there are at least

√
𝛿2𝑛 𝑛-bit strings 𝑥

such that (𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥).

]
+ Pr

Exp*

[
D∗ wins and there are fewer than

√
𝛿2𝑛 𝑛-bit strings

𝑥 such that (𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥).

]
< negl(𝑛) + Pr

Exp*

[
D∗ wins and there are at least

√
𝛿2𝑛 𝑛-bit strings 𝑥 such that (𝑖 + 7, 𝑥𝑖+7) ∈

𝑄𝑖+8 (𝑥).

]
+ Pr

Exp*

[
D∗ wins.

���� There are fewer than
√
𝛿2𝑛 𝑛-bit strings 𝑥 such that

(𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥).

]
< negl(𝑛) +

√
𝛿 + Pr

Exp*

[
(𝑖 + 8, 𝑥𝑖+8) is dishonest and
(𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥𝑖+8).

���� There are fewer than
√
𝛿2𝑛 𝑛-bit strings 𝑥

such that (𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥).

]
+ Pr

Exp*

[
(𝑖 + 8, 𝑥𝑖+8) is dishonest and
(𝑖 + 7, 𝑥𝑖+7) ∉ 𝑄𝑖+8 (𝑥𝑖+8).

���� There are fewer than
√
𝛿2𝑛 𝑛-bit strings 𝑥

such that (𝑖 + 7, 𝑥𝑖+7) ∈ 𝑄𝑖+8 (𝑥).

]
< negl(𝑛) +

√
𝛿 +
√
𝛿 + 𝜖

= negl(𝑛). □

Proof (Proof of Theorem 8). The theorem is the combination of Lemma 27, Lemma 29
and Lemma 30. □

Definition 8 (Quasi-honest). In 𝐺5, for any 𝑖 = 9, . . . , 8𝑛 and 𝑥 ∈ {0, 1}𝑛, we say (𝑖, 𝑥)
is quasi-honest if there is an increasing chain (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) (𝑟 ≥ 8) inM3.𝐶𝐹 such
that (𝑠 + 𝑟, 𝑥𝑠+𝑟 ) = (𝑖, 𝑥).

Now we turn our attention to the dishonest terms on a subverted chain. We want to
show that although, in general, there are some dishonest terms on a subverted chain, all
of them gather in a small area.

Definition 9 (Bad region). For a subverted chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) inM3.𝐶𝐹, we
say a subchain (𝑖, 𝑥𝑖 , . . . , 𝑥 𝑗 ) (𝑠 ≤ 𝑖 < 𝑗 ≤ 𝑠 + 𝑟) of 𝑐 is a bad region of 𝑐 if there is no
sequence of 14 consecutive elements (𝑘, 𝑥𝑘 , . . . , 𝑥𝑘+13) (𝑖 ≤ 𝑘 ≤ 𝑗 − 13) that are honest.

For a subverted chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) in M3.𝐶𝐹, we say two bad regions
of 𝑐, (𝑖, 𝑥𝑖 , . . . , 𝑥 𝑗 ) and (𝑖′, 𝑥𝑖′ , . . . , 𝑥 𝑗′ ) (𝑖 < 𝑖′, 𝑗 < 𝑗 ′) are separated if the subchain
(𝑖, 𝑥𝑖 , . . . , 𝑥′𝑗 ) of 𝑐 is not a bad region of 𝑐.

Lemma 31. In 𝐺5, with overwhelming probability, there does not exist a subverted
chain (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) inM3.𝐶𝐹 such that it has a bad region with length greater than
𝑛/6.

Proof. Consider proving the following stronger statement: with overwhelming probability
over the uniform choice of (𝑎𝑖 , 𝑏𝑖) (𝑖 = 1, . . . , 8𝑛) and values of 𝐹𝑖 (𝑥) for all 𝑖 = 1, . . . , 8𝑛
and 𝑥 ∈ {0, 1}𝑛, there is no bad region with length greater than 𝑛/6. Imagine we select
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𝐹𝑖 (𝑥) for all 𝑖 = {1, . . . , 8𝑛} and 𝑥 ∈ {0, 1}𝑛 and leave 𝑎𝑖 and 𝑏𝑖 undetermined. Then,
over the randomness of the choice of 𝑎𝑖 and 𝑏𝑖 , we have

Pr[There is a subverted chain 𝑐 with a bad region longer than 𝑛/6.]

=

8𝑛∑︁
𝑖=1

Pr
[
There is a subverted chain 𝑐 with a bad region longer than 𝑛/6 and the
bad region begins at index 𝑖.

]
=

8𝑛∑︁
𝑖=1

∑︁
𝑥,𝑥′∈{0,1}𝑛

Pr
[
There is a subverted chain 𝑐 with a bad region longer than 𝑛/6. The bad region begins
at index 𝑖 and its first two elements are (𝑖, 𝑥) and (𝑖 + 1, 𝑥′).

]
<

8𝑛∑︁
𝑖=1

∑︁
𝑥,𝑥′∈{0,1}𝑛

Pr

[There is a subverted chain 𝑐 = (𝑖, 𝑥, 𝑥′, . . . , 𝑥𝑟 ) such that its first element has index 𝑖 and
𝑟 − 𝑖 > 𝑛/6. Moreover, for any length 14 subchain of 𝑐 in the form of (14𝑘, 𝑥14𝑘 , . . . , 𝑥14𝑘+13),
at least one of 14 elements is dishonest.

]
<

8𝑛∑︁
𝑖=1
(2𝑛)2 · (14𝜖)𝑛/84−1

= 8𝑛 · 22𝑛 · (14𝜖)𝑛/84−1

= negl(𝑛). □

Lemma 32. If 𝐺5 is efficient, then with overwhelming probability, there is no subverted
chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) inM3.𝐶𝐹 that has two separated bad regions.

Proof. The lemma is implied directly by Lemma 23 and Lemma 30. □

B.7 Bounding Bad Events

Now we proceed to show the security: assuming 𝐺5 is efficient, the probability that 𝐺5
aborts is negligible.

There are two bad events that can cause 𝐺5 to abort: BadComplete5 and BadEval5.
For some technical reasons, we divide BadComplete5 into three smaller bad events:

– M .BadComplete5:M .BadComplete5 happens when 𝐺5 aborts during the exe-
cution ofM3.Complete.

– S.NewBadComplete5: S.NewBadComplete5 happens when 𝐺5 aborts during
the execution of S3.Complete on a chain (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑢) and

(𝑖, 𝑥𝑖 , 𝑥𝑖+1) ∉M3.CompletedChains ,

which means the chain (𝑖, 𝑥𝑖 , 𝑥𝑖+1) has not been completed byM3.
– S.ExistingBadComplete5: S.ExistingBadComplete5 happens when 𝐺5 aborts

during the execution of S3.Complete on a chain (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑢) and

(𝑖, 𝑥𝑖 , 𝑥𝑖+1) ∈ M3.CompletedChains ,

which means S3 aborts when it is completing an existing chain in M3.𝐶𝐹. By
definition of S3.Complete, this bad event can happen only if 𝑢 = 7𝑛.

60



For any bad event 𝐴 (e.g.,M .BadComplete5, BadEval5, etc.) and a positive integer
𝑘 ≤ 𝑞D , we denote by 𝐴[𝑘] the event that bad event 𝐴 causes 𝐺5 to abort before the end
of the 𝑘-th round of the interaction between D and the simulators. We also denote the
tableM3.𝐶𝐹 (S3.𝐶𝐹) at the end of the 𝑘-th interaction of 𝐺5 byM3.𝐶𝐹 [𝑘] (S3.𝐶𝐹 [𝑘]).

Definition 10 (Completed chains). For any subverted chain 𝑐 = (𝑖, 𝑥𝑖 , . . . , 𝑥 𝑗 ) in
M3.𝐶𝐹, we say it isM .Completed if (𝑖, 𝑥𝑖 , 𝑥𝑖+1) ∈ M3.CompletedChains. We denote
the set of fullM .Completed chains by 𝐶M.FComp.

The concepts of S.Completed chains, 𝐶S.FComp are defined similarly.
For any set 𝐸 we mentioned above (e.g.,M .CompletedChains, S.CompletedChains,

𝐶M.FComp, etc.) and a positive integer 𝑘 ≤ 𝑞D , we denote by 𝐸 [𝑘] the set 𝐸 at the end
of 𝑘-th round of the game.

To understand the probability of the bad events, we introduce the following property
of the status of the game:

Definition 11 (Good Status). For any 0 < 𝑘 ≤ 𝑞D , we say 𝐺5 has a good status at
round 𝑘 (denoted by GoodStatus[𝑘]) if at the end of the 𝑘-th round of the game:

– The game does not abort with any bad events.
– For any increasing chain (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2) inM3.𝐶𝐹, if (𝑖 + 1, 𝑥𝑖+1) ∉ S3.𝐶𝐹, then

1. (𝑖 + 2, 𝑥𝑖+2) ∉ S3.𝐶𝐹, and
2. for any 𝑐 ∈ 𝐶M.FComp [𝑘] such that (𝑖 + 2, 𝑥𝑖+2) ∈ 𝑄𝑐, (𝑖 + 1, 𝑥𝑖+1) ∈ 𝑄𝑐.

– For any decreasing chain (𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2) inM3.𝐶𝐹, if (𝑖 + 1, 𝑥𝑖+1) ∉ S3.𝐶𝐹, then
1. (𝑖, 𝑥𝑖) ∉ S3.𝐶𝐹, and
2. for any 𝑐 ∈ 𝐶M.FComp [𝑘] such that (𝑖, 𝑥𝑖) ∈ 𝑄𝑐, (𝑖 + 1, 𝑥𝑖+1) ∈ 𝑄𝑐.

We will use an induction proof to show the following three theorems:

Theorem 9 (BadComplete5 is negligible.). If 𝐺5 is efficient and for some positive
integer 𝑇 < 𝑞D ,

Pr[GoodStatus[𝑘] does not happen] = negl(𝑛),

then
Pr[BadComplete5 [𝑘 + 1] happens] = negl(𝑛).

Theorem 10 (BadEval5 is negligible.). If 𝐺5 is efficient and for some positive integer
𝑘 < 𝑞D ,

Pr[GoodStatus[𝑘] does not happen] = negl(𝑛),
then

Pr[BadEval5 [𝑘 + 1] happens] = negl(𝑛).

Theorem 11. If 𝐺5 is efficient and for some positive integer 𝑘 < 𝑞D ,

Pr[GoodStatus[𝑘] does not happen] = negl(𝑛),

then
Pr[GoodStatus[𝑘 + 1] does not happen] = negl(𝑛).
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GoodStatus[𝑘 ]

M.BadComplete5 [𝑘 + 1]
is negligible

S.NewBadComplete5 [𝑘 + 1]
is negligible

BadEval5 [𝑘 + 1]
is negligibleGoodStatus[𝑘 + 1]

S.ExistingBadComplete5 [𝑘 + 1]
is negligible

BadComplete5 [𝑘 + 1]
is negligible

(2)

(4)

(3)

(5)

(1)

Fig. 7: A diagram showing the flow of the proof.

The structure of the proof is:

Each arrow in the diagram above corresponds to a lemma we use to show the three
main theorems. In section B.7, we will prove Theorem 9 by showing lemma (1), (2), (3)
are true and assuming lemma (4) is true. In section B.7 we will prove Theorem 10 by
proving lemma (4). In section B.7, we will proving Theorem 11 by lemma (5).

Putting the three theorems together, we have:

Theorem 12. If 𝐺5 is efficient, the probability that it aborts because of bad events is
negligible.

Proof. The theorem is derived from Theorem 9, Theorem 10, Theorem 11 and the fact
that GoodStatus[𝑘] is true for 𝑘 = 1. □

BadComplete5[𝒌 + 1] is negligible We first prove S.NewBadComplete5 [𝑘 + 1] is
negligible when GoodStatus[𝑘] does not happen. Consider the following experiment
Exp-LongGeneration[𝑘] with a distinguisher DLong:

Exp-LongGeneration[𝑘]
For a positive integer 𝑘 < 𝑞D , if 𝐺5 does not abort by the end of the 𝑘-th

round of the game, DLong takes the tableM3.𝐶𝐹 [𝑘] and renames it by 𝑇1. As the
experiment goes, DLong will add new 𝐶𝐹 values to 𝑇1. All the newly added 𝐶𝐹

values will be evaluated uniformly.

1. Define 𝐶long to be the set of unsubverted chains in 𝑇1 with length 𝑛/10 − 22.
Define the set 𝑆 := 𝐶long × {1, 2}.
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2. DLong uniformly selects three distinct elements in 𝑠1, 𝑠2, 𝑠3 ∈ 𝑆. Run the
following For-loop:

For 𝑖 = 1, 2, 3:
If 𝑠𝑖 is in the form of (𝑐, 1) for some 𝑐 = (𝑟, 𝑥𝑟 , . . . , 𝑥𝑟+𝑛/10−23) then

Select an integer 𝑚 uniformly from (0, 1, 2, . . . , 22).
Extend the chain 𝑐 to the right by 𝑚 terms and to the left by 22 − 𝑚 terms.
Call the extended chain 𝑐𝑖 . Evaluate 𝐶�̃�𝑗 (𝑥 𝑗 ) for each ( 𝑗 , 𝑥 𝑗 ) ∈ 𝑐𝑖 .

If 𝑠𝑖 is in the form of (𝑐, 2) for some 𝑐 = (𝑟, 𝑥𝑟 , . . . , 𝑥𝑟+𝑛/10−23) then
Evaluate 𝐶�̃�𝑗 (𝑥 𝑗 ) for 𝑗 = 𝑟, . . . , 𝑟 + 𝑛/10 − 23.
If 𝐶�̃�𝑖 (𝑥𝑖) ≠ 𝐶𝐹𝑖 (𝑥𝑖) for some 𝑟 ≤ 𝑖 ≤ 𝑟 + 𝑛/10 − 23 then

The experiment aborts.
Else

Evaluate the full subverted chain that contains 𝑐 as a subchain and
name the full chain by 𝑐𝑖 .

The new table after the For-loop is called 𝑇2.

DLong wins if there is an increasing chain 𝑐′ = (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2) in 𝑇2 such that

– none of the elements of 𝑐′ is in 𝑇1;
– (𝑖 + 2, 𝑥𝑖+2) ∈ 𝑄𝑐3 ;
– (𝑖 + 1, 𝑥𝑖+1) ∉ 𝑄𝑐3 .

Lemma 33. If 𝐺5 is efficient,

Pr[DLong wins Exp-LongGeneration[𝑘]] = negl(𝑛).

Proof. We first notice that, although Exp-LongGeneration[𝑘] is not 𝐺5, the lem-
mas about the properties of monotone chains can still be applied since, in Exp-
LongGeneration[𝑘], all the 𝐶𝐹 values are selected uniformly and independently.

Suppose Exp-LongGeneration[𝑘] fails with non-negligible probability. Consider
the following realization of Exp-LongGeneration[𝑘]: with non-negligible probability
in Exp-LongGeneration[𝑘], we can select 𝑇1, 𝑠1, 𝑠2 and 𝑠3 so that the probability in the
lemma is non-negligible; conditioned on 𝑇1, 𝑠1, 𝑠2 and 𝑠3, with non-negligible probability
over the choice of 𝑇2, we can find an increasing chain 𝑐′ = (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2) in 𝑇2 that
makes Exp-LongGeneration[𝑘] fail.

Consider the following realization of Exp-LongGeneration[𝑘] which have the
same non-negligible probability with the above one. First we select the same 𝑇1. Then
we select the same three elements of 𝑆 in the order 𝑠3, 𝑠1, 𝑠2. Finally the same 𝑇2 is
selected. Now we want to find a contradiction by showing that (𝑖, 𝑥𝑖 , 𝑥𝑖+1) is increasing and
(𝑖+1, 𝑥𝑖+1, 𝑥𝑖+2) is decreasing, which violates Lemma 23. Notice that in the last realization
of Exp-LongGeneration[𝑘], 𝑐′ = (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2) is increasing, (𝑖 + 2, 𝑥𝑖+2) ∈ 𝑄𝑐3 and
(𝑖 + 1, 𝑥𝑖+1) ∉ 𝑄𝑐3 . It is clear that 𝐶𝐹𝑖+1 (𝑥𝑖+1) is evaluated after 𝐶𝐹𝑖+2 (𝑥𝑖+2). We want to
show 𝐶𝐹𝑖+1 (𝑥𝑖+1) is also evaluated after 𝐶𝐹𝑖 (𝑥𝑖).

63



– Case 1: if (𝑖, 𝑥𝑖) ∈ 𝑄𝑐3 ,𝐶𝐹𝑖+1 (𝑥𝑖+1) is evaluated after𝐶𝐹𝑖 (𝑥𝑖) since (𝑖+1, 𝑥𝑖+1) ∉ 𝑄𝑐3 .
– Case 2: if (𝑖, 𝑥𝑖) ∉ 𝑄𝑐3 , 𝐶𝐹𝑖+1 (𝑥𝑖+1) is evaluated after 𝐶𝐹𝑖 (𝑥𝑖) since 𝑐′ is increasing.

□

Lemma 34. If 𝐺5 is efficient and does not abort by the end of 𝑘-th round of the
game for some positive integer 𝑘 < 𝑞D , then with overwhelming probability, for
any unsubverted chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑛/10−1) that is processed by the procedure
S3.HonestyCheck in the (𝑘 + 1)-th round of 𝐺5, there is a length (𝑛/10 − 22) subchain
𝑐′ = (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+𝑛/10−23) of 𝑐 such that each element of 𝑐′ is inM3.𝐶𝐹 [𝑘].

Proof. Suppose that all the chains that are processed by S3.HonestyCheck before
𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑛/10−1) have the properties in the lemma (i.e., has a length (𝑛/10−22)
subchain that is included in M3.𝐶𝐹 [𝑘]). We want to show that either 𝑐 will not be
processed by S3.HonestyCheck or 𝑐 has a length (𝑛/10 − 22) subchain inM3.𝐶𝐹 [𝑘].

If 𝑐 does not have a length (𝑛/10− 22) subchain inM3.𝐶𝐹 [𝑘], then, without loss of
generality, we assume the chain (𝑠 + 𝑛/10 − 11, 𝑥𝑠+𝑛/10−11, . . . , 𝑥𝑠+𝑛/10−1) is increasing
and none of the elements in the chain is inM3.𝐶𝐹 [𝑘].

Denote by 𝑡 the moment when S3 is about to run the procedure S3.Check on 𝑐. We
will focus on the status of the game at moment 𝑡. Define 𝑆1 to be the set of the chains
that have been processed at S3.HonestyCheck at 𝑡 in the 𝑘 + 1-th round of 𝐺5. Define
𝑆2 := 𝐶S.FComp/𝐶S.FComp [𝑘], where 𝐶S.FComp is the set of full S.Completed chains at 𝑡.
Since S3.HonestyCheck and S3.Complete are the only two procedures that add new 𝐶𝐹

values, there exists an element 𝑐∗ ∈ 𝑆1 ∪ 𝑆2 such that (𝑠 + 𝑛/10 − 1, 𝑥𝑠+𝑛/10−1) ∈ 𝑄𝑐∗ .
By Lemma 33, (𝑖, 𝑥𝑖) ∈ 𝑄𝑐∗ for 𝑖 = 𝑠 + 𝑛/10 − 10, . . . , 𝑠 + 𝑛/10 − 1. Then, because of
Lemma 24, 𝑐∗ and (𝑠 + 𝑛/10 − 10, 𝑥𝑠+𝑛/10−10, . . . , 𝑥𝑠+𝑛/10−1) are not disjoint. Finally, by
definition of S3.Check, 𝑐 will not be processed by S3.HonestyCheck. □

Next we prove a lemma that describes the property ofM3.𝐶𝐹 [𝑘].

Lemma 35. If 𝐺5 is efficient and GoodStatus[𝑘] happens for some positive integer
𝑘 < 𝑞D , then for any length 3𝑛/10 + 30 increasing chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+3𝑛/10+29) in
M3.𝐶𝐹 [𝑘], (𝑠 + 3𝑛/10 + 28, 𝑥𝑠+3𝑛/10+28, 𝑥𝑠+3𝑛/10+29) is inM3.CompletedChains[𝑘] or
S3.CompletedChains[𝑘].

Proof. We analyze the following two cases:

– Case 1: (𝑠 + 3𝑛/10 + 10, 𝑥𝑠+3𝑛/10+10) ∈ S3.𝐶𝐹 [𝑘].
Because of GoodStatus[𝑘], the chain (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+3𝑛/10+10) is in S3.𝐶𝐹 [𝑘]. Then
suppose ( 𝑗 , 𝑥 𝑗 ) (𝑠 + 𝑛/10 + 11 ≤ 𝑗 ≤ 𝑠 + 3𝑛/10 + 10) is the last element of
(𝑠 + 𝑛/10 + 11, 𝑥𝑠+𝑛/10+11, . . . , 𝑥𝑠+3𝑛/10+10) that is evaluated in S3.𝐶𝐹 [𝑘].
1. if 𝑗 ≤ 𝑠 + 2𝑛/10+ 11, then 𝑐1 = ( 𝑗 , 𝑥 𝑗 , . . . , 𝑥 𝑗+𝑛/10−1) is a length 𝑛/10 subchain

of (𝑠 + 𝑛/10 + 11, 𝑥𝑠+𝑛/10+11, . . . , 𝑥𝑠+3𝑛/10+10), which means 𝑐1 was checked
by the procedure S3.Check at some moment before the end of round 𝑘 of the
game. Then, since any unsubverted chain that is not disjoint with 𝑐1 consists of
quasi-honest points, ( 𝑗 , 𝑥 𝑗 , 𝑥 𝑗+1) ∈ S3.CompletedChains[𝑘], therefore

(𝑠 + 3𝑛/10 + 28, 𝑥𝑠+3𝑛/10+28, 𝑥𝑠+3𝑛/10+29) ∈ S3.CompletedChains[𝑘] .
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2. if 𝑗 ≥ 𝑠+2𝑛/10+12, similar analysis can be used to show that ( 𝑗 −1, 𝑥 𝑗−1, 𝑥 𝑗 ) ∈
S3.CompletedChains[𝑘] and

(𝑠 + 3𝑛/10 + 28, 𝑥𝑠+3𝑛/10+28, 𝑥𝑠+3𝑛/10+29) ∈ S3.CompletedChains[𝑘] .

– Case 2: (𝑠 + 3𝑛/10 + 10, 𝑥𝑠+3𝑛/10+10) ∉ S3.𝐶𝐹 [𝑘].
Because of GoodStatus[𝑘], none of the elements of the chain

(𝑠 + 3𝑛/10 + 10, 𝑥𝑠+3𝑛/10+10, . . . , 𝑥𝑠+3𝑛/10+29)

is inS3.𝐶𝐹 [𝑘]. Suppose (𝑠+3𝑛/10+29, 𝑥𝑠+3𝑛/10+29) ∈ 𝑄𝑐′ for some 𝑐′ ∈ 𝐶M.FComp.
By GoodStatus[𝑘], all elements in the chain

𝑐2 = (𝑠 + 3𝑛/10 + 19, 𝑥𝑠+3𝑛/10+19, . . . , 𝑥𝑠+3𝑛/10+29)

are in 𝑄𝑐′ . By Lemma 24, 𝑐2 and 𝑐′ are not disjoint. Since all the elements of 𝑐2 are
quasi-honest, 𝑐2 ⊂ 𝑐′ and therefore,

(𝑠 + 3𝑛/10 + 28, 𝑥𝑠+3𝑛/10+28, 𝑥𝑠+3𝑛/10+29) ∈ M3.CompletedChains[𝑘] . □

Lemma 36. If 𝐺5 is efficient and for some positive integer 𝑘 < 𝑞D ,

Pr[GoodStatus[𝑘] does not happen] = negl(𝑛),

then
Pr[S.NewBadComplete5 [𝑘 + 1]] = negl(𝑛).

Proof. Suppose at some moment during the (𝑘 + 1)-th interaction of 𝐺5, the simulator
S3 is starting to execute procedure S3.Complete on a chain (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢) such that
(𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∉M3.CompletedChains. We will show that, with overwhelming probability,
S.NewBadComplete5 does not happen in this execution.

Denote by 𝑇initial the tableM3.𝐶𝐹 right before the execution of S3.Complete on
(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢). Assume, without loss of generality, that 𝑠 < 𝑢. (Then, by our convention
of the simulator, 𝑢 − 𝑠 > 𝑛.) Imagine we run S3.Complete on (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢) and stop
when the procedure just finished evaluating 𝐶�̃�𝑠+9𝑛/10+8 (𝑥𝑠+9𝑛/10+8). We call the table
M3.𝐶𝐹 at this moment 𝑇final.

Consider the subverted chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+9𝑛/10+8) and its subchain 𝑐′ =

(𝑠 + 9𝑛/10, 𝑥𝑠+9𝑛/10, . . . , 𝑥𝑠+9𝑛/10+8). To prove S.NewBadComplete5 [𝑘 + 1] does not
happen during the completion of (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢), it is sufficient to show that 𝑐′ has the
following properties:

– 𝑐′ is honest, and therefore can be viewed as an unsubverted chain;
– 𝑐′ is increasing;
– None of the elements in 𝑐′ is in 𝑇initial.

Before we prove these properties, it is helpful to see how these properties imply that
the bad event S.NewBadComplete5 does not happen.
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– First, because of Lemma 23 and Theorem 8, the future subverted chain (𝑠 +
9𝑛/10, 𝑥𝑠+9𝑛/10, . . . , 𝑥8𝑛) is honest and increasing (as an unsubverted chain). By
Theorem 8 again, for 𝑚 = 𝑢, 𝑢 + 1, (𝑚, 𝑥𝑚) will not be queried by any 𝐶�̃�𝑖 (𝑥𝑖) with
𝑠 + 9𝑛/10 + 8 < 𝑖 ≤ 8𝑛 and 𝑖 ≠ 𝑚.

– Second, imagine evaluating the subverted chain 𝑐′′ = (1, 𝑥1, . . . , 𝑥𝑠+9𝑛/10+8) (by
uniformly assigning new 𝐶𝐹 values in need). We will show (𝑚, 𝑥𝑚) ∉ 𝑄𝑐′′ for
𝑚 = 𝑢, 𝑢 + 1. Suppose (𝑚, 𝑥𝑚) ∈ 𝑄𝑐′′ . Since 𝑐′ is increasing, (𝑠 + 9𝑛/10 +
9, 𝑥𝑠+9𝑛/10+9, . . . , 𝑥𝑚) is also increasing by Lemma 23. This implies all the ele-
ments of (𝑠 + 9𝑛/10 + 9, 𝑥𝑠+9𝑛/10+9, . . . , 𝑥𝑚) are in 𝑄𝑐′′ , which is contradictory to
Lemma 24. (Although the order we generate 𝐶𝐹 values here is not same as that
in 𝐺5, we still select 𝐶𝐹 values uniformly, which allows us to use the lemmas we
showed about increasing chains.)

– Finally, since (𝑠 + 9𝑛/10, 𝑥𝑠+9𝑛/10) ∉ 𝑇initial, (𝑚 − 1, 𝑥𝑚−1) ∉ 𝑇initial for 𝑚 = 𝑢, 𝑢 + 1.
By the randomness of 𝐶𝐹𝑚−1 (𝑥𝑚−1), (𝑚, 𝑥𝑚) is not in 𝑇initial.

We prove the above properties of 𝑐′ in three steps.

– Step 1: We first show the chain (𝑠 + 𝑛/2, 𝑥𝑠+𝑛/2, . . . , 𝑥𝑠+9𝑛/10+8) is honest and
increasing as an unsubverted chain.
• Case 1: if (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+3𝑛/10+39) is not honest, then by Lemma 31 and Lemma

32, the chain

(𝑠 + 3𝑛/10 + 𝑛/6 + 39, 𝑥𝑠+3𝑛/10+𝑛/6+39, . . . , 𝑥𝑠+9𝑛/10+8)

is honest. By Theorem 8 and Lemma 23, the chain

(𝑠 + 3𝑛/10 + 𝑛/6 + 47, 𝑥𝑠+3𝑛/10+𝑛/6+47, . . . , 𝑥𝑠+9𝑛/10+8)

is increasing.
• Case 2: if (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+3𝑛/10+39) is honest, then by Lemma 23 and Lemma 35,

(𝑠 + 3𝑛/10 + 30, 𝑥𝑠+3𝑛/10+30, . . . , 𝑥𝑠+3𝑛/10+39)

is increasing. By Theorem 8, the chain

(𝑠 + 3𝑛/10 + 39, 𝑥𝑠+3𝑛/10+30, . . . , 𝑥𝑠+9𝑛/10+8)

is increasing and honest.
– Step 2: Next we show none of the elements in

(𝑠 + 4𝑛/5 + 30, 𝑥𝑠+4𝑛/5+30, . . . , 𝑥𝑠+9𝑛/10+8)

is inM3.𝐶𝐹 [𝑘].
It suffices to show that (𝑠+4𝑛/5+30, 𝑥𝑠+4𝑛/5+30) ∉M3.𝐶𝐹 [𝑘]. Suppose (𝑠+4𝑛/5+
30, 𝑥𝑠+4𝑛/5+30) ∈ M3.𝐶𝐹 [𝑘], then by Lemma 35, (𝑠+4𝑛/5+30, 𝑥𝑠+4𝑛/5+29, 𝑥𝑠+4𝑛/5+30)
is in M3.CompletedChains[𝑘] or S3.CompletedChains[𝑘]. This contradicts the
fact that S3.Complete only processes uncompleted chains and our assumption that
(𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∉M3.CompletedChains.
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– Step 3: Lastly, we show that no elements in (𝑠+4𝑛/5+40, 𝑥𝑠+4𝑛/5+40, . . . , 𝑥𝑠+9𝑛/10+8)
are in 𝑇initial.
It suffices to show that (𝑠 + 4𝑛/5 + 40, 𝑥𝑠+4𝑛/5+40) ∉ 𝑇initial. Suppose (𝑠 + 4𝑛/5 +
40, 𝑥𝑠+4𝑛/5+40) ∈ 𝑇initial. Since (𝑠 + 4𝑛/5 + 30, 𝑥𝑠+4𝑛/5+30) ∉M3.𝐶𝐹 [𝑘], the chain

(𝑠 + 4𝑛/5 + 30, 𝑥𝑠+4𝑛/5+30, . . . , 𝑥𝑠+4𝑛/5+40)

is in 𝑇initial, which, by the proof of Lemma 34, means that

(𝑠 + 4𝑛/5 + 30, 𝑥𝑠+4𝑛/5+30, . . . , 𝑥𝑠+4𝑛/5+40)

is already a S.Completed chain. This contradicts the fact that S3.Complete only
processes uncompleted chains. □

Lemma 37. If 𝐺5 is efficient and for some positive integer 𝑘 < 𝑞D ,

Pr[GoodStatus[𝑘] does not happen] = negl(𝑛),

then
Pr[M .BadComplete5 [𝑘 + 1]] = negl(𝑛).

Proof. The proof is similar to (and simpler than) that of Lemma 36. □

Lemma 38. If 𝐺5 is efficient and for some positive integer 𝑘 < 𝑞D ,

Pr[BadEval5 [𝑘 + 1]] = negl(𝑛),

then
Pr[S.ExistingBadComplete5 [𝑘 + 1]] = negl(𝑛).

Proof. Suppose at some moment during the (𝑘 + 1)-th interaction of 𝐺5, the simulator
S3 is starting to execute procedure S3.Complete on a chain (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢) such that
(𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∈ M3.CompletedChains.

Because ofS3’s convention of choosing 𝑢 and the fact that BadEval5 [𝑘+1] is negligi-
ble,𝑢 is equal to 4𝑛 in this case, which avoids the bad eventS.ExistingBadComplete5 [𝑘+
1]. □

Proof (Proof of Theorem 9). The theorem is proved by combining Lemma 36, Lemma
37, Theorem 10 and Lemma 38. □

BadEval5[𝒌 + 1] is negligible We assume GoodStatus[𝑘] throughout this section to
prove BadEval5 [𝑘 + 1] is negligible. Consider the following experiment Exp-Eval[𝑘 +
1] where an adaptive distinguisher D1 interacts with (S3,M3) and tries to trigger
BadEval5 [𝑘 + 1]:

Exp-Eval[𝑘 + 1]

1. D1 makes 𝑎 queries for some 0 ≤ 𝑎 < 𝑘 and outputs 𝑎.
2. At the 𝑎 + 1-th round of the game, D1 queries 𝑅𝐹 (𝑥0, 𝑥1) for some pair of

strings (𝑥0, 𝑥1). (By definition,M3 will complete a subverted chain determined
by (𝑥0, 𝑥1). We call this full subverted chain 𝑐.)

3. D1 makes another 𝑏 queries for 𝑏 = 𝑘 − 𝑎.
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We say D1 wins Exp-Eval[𝑘 + 1] if 𝑐 is not a S.Completed chain by the end
of the 𝑘-th round of the experiment and Exp-Eval[𝑘 + 1] aborts at the (𝑘 + 1)-th
round with the bad event BadEval5 [𝑘 + 1]: S3.𝐶𝐹Inner(orM3.𝐶𝐹Inner) calls a term
(𝑖, 𝑥) such that 3𝑛 ≤ 𝑖 ≤ 5𝑛 and (𝑖, 𝑥) ∈ 𝑐.

Here, without loss of generality, we do not consider the case where D1 makes a
𝑅𝐹−1 (·) query in round 𝑎 + 1.

It is easy to see that Theorem 10 is equivalent to:

Theorem 13 (BadEval5 is negligible.). If 𝐺5 is efficient and for some positive integer
𝑘 < 𝑞D ,

Pr[GoodStatus[𝑘] does not happen] = negl(𝑛),
for any distinguisher D, then, for any distinguisher D1,

Pr[D1 wins Exp-Eval[𝑘 + 1]] = negl(𝑛).

We take two steps to prove the theorem. First, notice that the only information D1
has to predict (𝑖, 𝑥) ∈ 𝑐 is the answer to the query 𝑅𝐹 (𝑥0, 𝑥1). We turn this observation
into a lemma that says D1 can not win Exp-Eval[𝑘 + 1] without receiving the answer to
the query 𝑅𝐹 (𝑥0, 𝑥1). Second, we prove that whether receiving the answer or not does
not affect too much the probability that D1 wins.

Consider the following modified version of Exp-Eval[𝑘 + 1] where the distinguisher
D2 does not receive the answer to 𝑅𝐹 (𝑥0, 𝑥1).

Exp-EvalNoAnswer[𝑘 + 1]

1. D2 makes 𝑎 queries for some 0 ≤ 𝑎 < 𝑘 and outputs 𝑎.
2. At the 𝑎+1-st round of the game,D2 queries 𝑅𝐹 (𝑥0, 𝑥1) for some pair of strings
(𝑥0, 𝑥1), but does not receive the answer. (By definition,M3 will complete a
subverted chain determined by (𝑥0, 𝑥1). We call this full subverted chain 𝑐.)

3. D2 makes another 𝑏 queries for 𝑏 = 𝑘 − 𝑎.

The winning condition of Exp-EvalNoAnswer[𝑘 + 1] is same as that of
Exp-Eval[𝑘 + 1].

To proveD2 wins Exp-EvalNoAnswer[𝑘+1] with negligible probability, we consider
the following distinguisher D3, which uses D2 in Exp-EvalNoAnswer[𝑘 + 1] to trigger
the bad eventM .BadComplete5 [𝑘 + 1].

Exp-BadMComplete[𝑘 + 1]

1. D3 uses D2 to make 𝑎 queries for some 0 ≤ 𝑎 < 𝑘 and outputs 𝑎. For each
round of the game, D3 receives the query from and gives the answer to D2.

2. D3 remembers the 𝑎 + 1-th query 𝑅𝐹 (𝑥0, 𝑥1) of D2 but does not make the
query (𝑥0, 𝑥1) to 𝑅𝐹 (·).

3. D3 uses D2 to make another 𝑏 queries for 𝑏 = 𝑘 − 𝑎. Again, for each round of
the game, D3 receives the query from and gives the answer to D2.
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4. D3 makes its last query 𝑅𝐹 (𝑥0, 𝑥1).

We sayD3 wins Exp-BadMComplete[𝑘 +1] if the subverted chain correspond-
ing to (𝑥0, 𝑥1) is not in S.Completed at the end of the 𝑘-th round of the experiment
and Exp-BadMComplete[𝑘 + 1] aborts at the (𝑘 + 1)-th round with the following
event: when M3.Complete is completing the subverted chain 𝑐 determined by
(𝑥0, 𝑥1), there is a term (𝑖, 𝑥) ∈ 𝑐 such that 3𝑛 ≤ 𝑖 ≤ 5𝑛 and (𝑖, 𝑥) is queried in the
𝑘-th round of the game.

Lemma 39. If for some positive integer 𝑘 < 𝑞D ,

Pr[M .BadComplete5 [𝑘 + 1] happens] = negl(𝑛),

for any distinguisher D, then, for any distinguisher D2,

Pr[D2 wins Exp-EvalNoAnswer[𝑘 + 1]] = negl(𝑛).

Proof. Conditioned on the same randomness of 𝐶𝐹 in Exp-EvalNoAnswer[𝑘 + 1] and
Exp-BadMComplete[𝑘 + 1], we can see that if D2 wins Exp-EvalNoAnswer[𝑘 + 1],
D3 will win Exp-BadMComplete[𝑘 + 1], which by assumption, is negligible. □

Now we proceed to show if D2 wins Exp-EvalNoAnswer[𝑘 + 1] with negligible
probability, D1 wins Exp-Eval[𝑘 + 1] with negligible probability, too.

Choose an arbitrary integer 𝑚 with 4𝑛 ≤ 𝑚 < 5𝑛. Consider the following variation
of Exp-Eval[𝑘 + 1] for D′1.

Exp-EvalRight[𝑘 + 1, 𝑚]
Select uniformly a full table of 𝐶𝐹 values 𝐶𝐹full and a 2𝑛-bit string 𝛼. In step 1

and 3 of the experiment, all the 𝐶𝐹 values queried by the simulators are taken from
𝐶𝐹full instead of being selected uniformly as usual. In step 2, 𝐶𝐹 values queried by
the simulators are generated with a special convention explained below.

1. Same as step 1 of Exp-Eval[𝑘 + 1].
2. Same as step 2 of Exp-Eval[𝑘 + 1] and the answer to the query 𝑅𝐹 (𝑥0, 𝑥1) is

𝛼.
3. Same as step 3 of Exp-Eval[𝑘 + 1].

In step 2,M3 uses the following convention to fill in its table:

1. Set (𝑥8𝑛, 𝑥8𝑛+1) := 𝛼.
2. For 𝑖 = 2, . . . , 𝑚, define 𝑥𝑖 := 𝑥𝑖−2 ⊕ 𝐶�̃�𝑖−1 (𝑥𝑖−1). For 𝑖 = 𝑚 + 3, . . . , 8𝑛 + 1,

define 𝑥𝑖−2 := 𝑥𝑖 ⊕ 𝐶�̃�𝑖−1 (𝑥𝑖−1). All the 𝐶𝐹 values are taken from 𝐶𝐹full.
3. Set 𝐶𝐹𝑚 (𝑥𝑚) := 𝑥𝑚−1 ⊕ 𝑥𝑚+1 and 𝐶𝐹𝑢+1 (𝑥𝑢+1) := 𝑥𝑢 ⊕ 𝑥𝑢+2. The game aborts

if there is an index 𝑗 such that 3𝑛 ≤ 𝑗 ≤ 5𝑛 and ( 𝑗 , 𝑥 𝑗 ) is inM3.𝐶𝐹 [𝑎] or⋃8𝑛
𝑖=1 𝑄𝑖 (𝑥𝑖)/𝑄 𝑗 (𝑥 𝑗 ).

4. Evaluate 𝐶�̃�𝑚 (𝑥𝑚) and 𝐶�̃�𝑚+1 (𝑥𝑚+1) and the game aborts if there is an index
𝑗 such that 3𝑛 ≤ 𝑗 ≤ 5𝑛 and ( 𝑗 , 𝑥 𝑗 ) is dishonest.
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The winning condition of the experiment is same as that of Exp-Eval[𝑘 + 1]
except that in this experiment,D′1 wins if the index 𝑖 of the term (𝑖, 𝑥) causing the bad
event has the range 3𝑛 ≤ 𝑖 ≤ 𝑚. For simplicity, we say 𝑊EvalRight (𝐶𝐹full, 𝛼, 𝑚) = 1
if D′1 wins with the choice of (𝐶𝐹full, 𝛼) in the experiment.

From the proof of Lemma 19, we can see the distribution of M3.𝐶𝐹 in Exp-
EvalRight[𝑘 + 1, 𝑚] is same as that of Exp-Eval[𝑘 + 1]. The only difference between
the two experiments is that the new version has a more strict winning condition than the
original one.

To prove the probability that D1 wins Exp-Eval[𝑘 + 1] is negligible, we first show,
for any distinguisher D′1, the probability that D′1 wins Exp-EvalRight[𝑘 + 1, 𝑚] is
negligible. Consider the following rewrite of Exp-EvalNoAnswer[𝑘 + 1], where the
randomness of 𝐶𝐹 is set like Exp-EvalRight[𝑘 + 1, 𝑚] and D2 uses D′1 as an oracle to
play the game.

Exp-EvalNoAnswer[𝑘 + 1]
Select uniformly a full table of 𝐶𝐹 values 𝐶𝐹full and a pair of 2𝑛-bit strings

𝛼 and 𝛽. The randomness of 𝐶𝐹 and 𝑅𝐹 are set the same way as they are set in
Exp-EvalRight[𝑘 + 1, 𝑚].

1. D2 uses D′1 to make 𝑎 queries for some 0 ≤ 𝑎 < 𝑘 and outputs 𝑎. For each
round of the game, D2 receives the query from and gives the answer to D′1.

2. At the 𝑎 + 1-st round of the game, D2 uses D′1 to query 𝑅𝐹 (𝑥0, 𝑥1) for some
pair of strings (𝑥0, 𝑥1). 𝛼 := 𝑅𝐹 (𝑥0, 𝑥1) is evaluated byM3 but not returned to
D2. (By definition,M3 will complete a subverted chain determined by (𝑥0, 𝑥1).
We call this full subverted chain 𝑐.) D2 selects 𝛽 uniformly and gives it to D′1.

3. D2 uses D′1 to make 𝑏 queries (𝑏 = 𝑘 − 𝑎). For each round of the game, D2
receives the query from and gives the answer to D′1.

For simplicity, we say 𝑊EvalNA (𝐶𝐹full, 𝛼, 𝛽) = 1 if D2 wins for the choice of
(𝐶𝐹full, 𝛼, 𝛽).

Lemma 40. If for some positive integer 𝑘 < 𝑞D ,

Pr[D2 wins Exp-EvalNoAnswer[𝑘 + 1]] = negl(𝑛)

over the randomness of (𝐶𝐹full, 𝛼, 𝛽), then, for any integer 4𝑛 ≤ 𝑚 < 5𝑛,

Pr[D′1 wins Exp-EvalRight[𝑘 + 1, 𝑚]] = negl(𝑛)

over the randomness of (𝐶𝐹full, 𝛼).

Proof. Suppose that the first probability is negligible and the second is not. Then, with
non-negligible probability, uniformly selecting a table 𝐶𝐹full and two 2𝑛-bit strings 𝛼, 𝛽
yields:

– 𝑊EvalRight (𝐶𝐹full, 𝛽) = 1;
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– 𝑊EvalNA (𝐶𝐹full, 𝛼, 𝛽) ≠ 1.

For convenience, we call the two experiments above 𝐸1 and 𝐸2. Suppose the full sub-
verted chain generated in the (𝑎+1)-th round of 𝐸1 is 𝑐1 = (1, 𝑥1, . . . , 𝑥𝑚, 𝑦𝑚+1, . . . , 𝑦8𝑛),
and the chain in 𝐸2 is 𝑐2 = (1, 𝑥1, . . . , 𝑥𝑚, 𝑧𝑚+1, . . . , 𝑧8𝑛). Notice that the first 𝑚 terms
of 𝑐1 and 𝑐2 are same because the two experiments share the same table 𝐶𝐹full.

We will find a contradiction by showing that the queries to 𝐶𝐹 (made by the
distinguisher or the simulators) are identical in 𝐸1 and 𝐸2 after the (𝑎 + 1)-th round of
the games. It is sufficient to show that 𝐸1 or 𝐸2 does not query (𝑚, 𝑥𝑚), (𝑚 + 1, 𝑦𝑚+1)
and (𝑚 + 1, 𝑧𝑚+1), the only three terms that have different 𝐶𝐹 values in 𝐸1, 𝐸2 and 𝐶𝐹full.
Since 𝑊EvalNA (𝐶𝐹full, 𝛼, 𝛽) ≠ 1, 𝐸2 does not query (𝑚, 𝑥𝑚) or (𝑚 + 1, 𝑧𝑚+1). Since
𝑊EvalRight (𝐶𝐹full, 𝛽) = 1, 𝐸1 does not query (𝑚 + 1, 𝑦𝑚+1).

Since𝑊EvalRight (𝐶𝐹full, 𝛽) = 1 and 𝐸1, 𝐸2 make same queries to𝐶𝐹 after the (𝑎+1)-th
round of the games, 𝑊EvalNA (𝐶𝐹full, 𝛼, 𝛽) = 1. A contradiction. □

A similar proof can be used to show that, for any 3𝑛 < 𝑚 ≤ 4𝑛, no distinguisher can
win the following game with non-negligible probability,

Exp-EvalLeft[𝑘 + 1, 𝑚]

1. D′1 makes 𝑎 queries for some 0 ≤ 𝑎 < 𝑘 and outputs 𝑎.
2. At the 𝑎 + 1-th round of the game, D′1 queries 𝑅𝐹 (𝑥0, 𝑥1) for some pair of

strings (𝑥0, 𝑥1). (By definition,M3 will complete a subverted chain determined
by (𝑥0, 𝑥1). We call this full subverted chain 𝑐.)

3. D′1 makes another 𝑏 queries for 𝑏 = 𝑘 − 𝑎.

We say D′1 wins Exp-Eval[𝑘 + 1] if 𝑐 is not a S.Completed chain by the end
of the 𝑘-th round of the experiment and Exp-Eval[𝑘 + 1] aborts at the (𝑘 + 1)-th
round with the bad event BadEval5 [𝑘 + 1]: S3.𝐶𝐹Inner(orM3.𝐶𝐹Inner) calls a term
(𝑖, 𝑥) such that 𝑚 ≤ 𝑖 ≤ 5𝑛 and (𝑖, 𝑥) ∈ 𝑐.

Summarizing the results above, we have:
Lemma 41. If for some positive integer 𝑘 < 𝑞D ,

Pr[D2 wins Exp-EvalNoAnswer[𝑘 + 1]] = negl(𝑛),

then, for any distinguisher D1,

Pr[D1 wins Exp-Eval[𝑘 + 1]] = negl(𝑛).

Putting Lemma 39 and Lemma 41 together, we have:
Lemma 42. If for some positive integer 𝑘 < 𝑞D ,

Pr[M .BadComplete5 [𝑘 + 1] happens] = negl(𝑛),

for any distinguisher D, then, for any distinguisher D1,

Pr[D1 wins Exp-Eval[𝑘 + 1]] = negl(𝑛).

Proof (Proof of Theorem 13). The theorem is implied by combining Lemma 37 and
Lemma 42. □
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GoodStatus[𝒌] is overwhelming In this section we prove that, assuming GoodStatus[𝑘],
GoodStatus[𝑘 +1] happens with overwhelming probability. We introduce the following
experiment between D4 and S3,M3 to formulate the bad event:

Exp-Status[𝑘 + 1]

1. D4 makes 𝑎 queries for some 0 ≤ 𝑎 < 𝑘 and outputs 𝑎.
2. At the 𝑎 + 1-th round of the game, D4 queries 𝑅𝐹 (𝑥0, 𝑥1) for some pair of

strings (𝑥0, 𝑥1). (By definition,M3 will complete a subverted chain determined
by (𝑥0, 𝑥1). We call this full subverted chain 𝑐.)

3. D4 makes another 𝑏 queries for 𝑏 = 𝑘 − 𝑎.

We sayD4 wins Exp-Status[𝑘+1] if there is an increasing chain (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2)
inM3.𝐶𝐹 [𝑘 + 1] such that (𝑖 + 1, 𝑥𝑖+1) ∈ 𝑄𝑐, (𝑖 + 1, 𝑥𝑖+1) ∉ S3.𝐶𝐹 [𝑘 + 1], and:

– (𝑖 + 2, 𝑥𝑖+2) ∈ S3.𝐶𝐹 [𝑘 + 1], or
– there is a chain 𝑐′ ∈ 𝐶M.FComp [𝑘 + 1] such that (𝑖 + 2, 𝑥𝑖+2) ∈ 𝑄𝑐′ and
(𝑖 + 1, 𝑥𝑖+1) ∉ 𝑄𝑐′ .

Here, without loss of generality, we ignore the case when (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2) is
decreasing.

Notice that to prove Theorem 11, it is sufficient to show the probability that D4 wins
Exp-Status[𝑘 + 1] is negligible. We will restrict our attention to the experiment in the
rest of the section.

Definition 12 (Covering Index). For any positive integer 𝑘 < 𝑞D , any index 𝑖 with
1 ≤ 𝑖 ≤ 8𝑛, and any 𝑥 ∈ {0, 1}𝑛, we say the covering index of (𝑖, 𝑥) at round 𝑘 , 𝐶𝐼𝑘 (𝑖, 𝑥),
is equal to 𝑡 (𝑡 ≥ 1) if (𝑖, 𝑥) ∈ M3.𝐶𝐹 [𝑘], (𝑖, 𝑥) ∉ S3.𝐶𝐹 [𝑘], and there are exactly 𝑡

elements 𝑐1, . . . , 𝑐𝑡 ∈ 𝐶M.FComp [𝑘] such that (𝑖, 𝑥) ∈ 𝑄𝑐 𝑗
for 𝑗 = 1, . . . , 𝑡. Otherwise,

we say 𝐶𝐼𝑘 (𝑖, 𝑥) = 0.

Suppose, with non-negligible probability, D4 can win Exp-Status[𝑘 + 1] with an
increasing chain (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2) that has the property 𝐶𝐼𝑘+1 (𝑖 + 1, 𝑥𝑖+1) ≥ 2. Then,
without loss of generality, we can assume 𝐶𝐼𝑎 (𝑖 + 1, 𝑥𝑖+1) ≥ 1, which means (𝑖 + 1, 𝑥𝑖+1)
has been evaluated before the (𝑎 + 1)-st query from D4. Using this observation, we
rewrite Exp-Status[𝑘 + 1] as:

Exp-Status[𝑘 + 1]

1. D4 makes 𝑎 queries for some 0 ≤ 𝑎 < 𝑘 and outputs 𝑎.
2. At the 𝑎 + 1-th round of the game, D4 queries 𝑅𝐹 (𝑥0, 𝑥1) for some pair of

strings (𝑥0, 𝑥1). (By definition,M3 will complete a subverted chain determined
by (𝑥0, 𝑥1). We call this full subverted chain 𝑐.)

3. D4 makes another 𝑏 queries for 𝑏 = 𝑘 − 𝑎.

We sayD4 wins Exp-Status[𝑘+1] if there is an increasing chain (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2)
inM3.𝐶𝐹 [𝑘 + 1] such that (𝑖 + 1, 𝑥𝑖+1) ∈ 𝑄𝑐, (𝑖 + 1, 𝑥𝑖+1) ∉ S3.𝐶𝐹 [𝑘 + 1], and
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1. 𝐶𝐼𝑘+1 (𝑖 + 1, 𝑥𝑖+1) = 1, or 𝐶𝐼𝑘+1 (𝑖 + 1, 𝑥𝑖+1) ≥ 2 and 𝐶𝐼𝑎 (𝑖 + 1, 𝑥𝑖+1) ≥ 1;
2. (𝑖 + 2, 𝑥𝑖+2) ∈ S3.𝐶𝐹 [𝑘 + 1], or there is a chain 𝑐′ ∈ 𝐶M.FComp [𝑘 + 1] such

that (𝑖 + 2, 𝑥𝑖+2) ∈ 𝑄𝑐′ and (𝑖 + 1, 𝑥𝑖+1) ∉ 𝑄𝑐′ .

Here, without loss of generality, we ignore the case when (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2) is
decreasing.

As in the last section, we take two steps to prove D4 wins Exp-Status[𝑘 + 1]
negligibly. First, notice that the only information that helps D4 to generate a chain
(𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2) that breaks the good status is the answer to the query in the (𝑎 + 1)-th
round of the game. We turn this observation into a lemma that says, without receiving
the answer in the (𝑎 + 1)-th round, the distinguisher can not win the experiment. Second,
we prove whether receiving the answer or not does not affect too much the probability
that D4 wins.

Consider the following modified version of Exp-Status[𝑘+1] where the distinguisher
D5 does not receive the answer in round (𝑎 + 1).

Exp-StatusNoAnswer[𝑘 + 1]

1. D5 makes 𝑎 queries for some 0 ≤ 𝑎 < 𝑘 and outputs 𝑎.
2. At the 𝑎+1-st round of the game,D5 queries 𝑅𝐹 (𝑥0, 𝑥1) for some pair of strings
(𝑥0, 𝑥1), but does not receive the answer. (By definition,M3 will complete a
subverted chain determined by (𝑥0, 𝑥1). We call this full subverted chain 𝑐.)

3. D5 makes another 𝑏 queries for 𝑏 = 𝑘 − 𝑎.

The winning condition of Exp-StatusNoAnswer[𝑘 + 1] is same as that of
Exp-Status[𝑘 + 1].

Lemma 43. If 𝐺5 is efficient and for some positive integer 𝑘 < 𝑞D ,

Pr[GoodStatus[𝑘] does not happen] = negl(𝑛),

for any distinguisher D, then, for any distinguisher D1,

Pr[D5 wins Exp-StatusNoAnswer[𝑘 + 1]] = negl(𝑛).

Proof. SupposeD5 wins Exp-StatusNoAnswer[𝑘 + 1] with some realization of the ran-
domness of 𝐶𝐹: at the end of the experiment, there is an increasing chain (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2)
in M3.𝐶𝐹 [𝑘 + 1] such that (𝑖 + 1, 𝑥𝑖+1) ∈ 𝑄𝑐, (𝑖 + 1, 𝑥𝑖+1) ∉ S3.𝐶𝐹 [𝑘 + 1], and
(𝑖 + 2, 𝑥𝑖+2) ∈ S3.𝐶𝐹 [𝑘 + 1]. (Without loss of generality, we ignore the case where
(𝑖 + 2, 𝑥𝑖+2) ∉ S3.𝐶𝐹 [𝑘 + 1].)

Consider the following experiment:

Exp-Monotone[𝑘 + 1]

1. D6 uses D5 to make 𝑎 queries for some 0 ≤ 𝑎 < 𝑘 and outputs 𝑎. For each
round of the game, D6 receives the query from and gives the answer to D5.
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2. D6 remembers the 𝑎 + 1-th query 𝑅𝐹 (𝑥0, 𝑥1) of D5 but does not make the
query (𝑥0, 𝑥1) to 𝑅𝐹 (·).

3. D6 uses D5 to make another 𝑏 queries for 𝑏 = 𝑘 − 𝑎. Again, for each round of
the game, D6 receives the query from and gives the answer to D5.

4. D6 makes its last query 𝑅𝐹 (𝑥0, 𝑥1).

Imagine Exp-Monotone[𝑘+1] has the same randomness of𝐶𝐹 with Exp-StatusNoAnswer[𝑘+
1]. Then, (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2) is also a chain ofM3.𝐶𝐹 [𝑘 + 1] in Exp-Monotone[𝑘 + 1].
And,

– if 𝐶𝐼𝑘+1 (𝑖 + 1, 𝑥𝑖+1) = 1, then 𝐶𝐹𝑖+1 (𝑥𝑖+1) is evaluated byM3 after 𝐶𝐹𝑖 (𝑥1) and
𝐶𝐹𝑖+2 (𝑥𝑖+2), which violates Lemma 23;

– if𝐶𝐼𝑘+1 (𝑖+1, 𝑥𝑖+1) ≥ 2,𝐶𝐼𝑎 (𝑖+1, 𝑥𝑖+1) ≥ 1, then GoodStatus[𝑘] does not happen.

The analysis above shows that, conditioned on the fact that GoodStatus[𝑘] happens
negligibly, D5 wins negligibly. □

Now we proceed to show if D5 wins Exp-StatusNoAnswer[𝑘 + 1] with negligible
probability, D4 wins Exp-Status[𝑘 + 1] with negligible probability, too.

Choose an arbitrary integer 𝑚 with 4𝑛 ≤ 𝑚 < 5𝑛. Consider the following variation
of Exp-Status[𝑘 + 1] for D′4.

Exp-StatusRight[𝑘 + 1, 𝑚]
Select uniformly a full table of 𝐶𝐹 values 𝐶𝐹full and a 2𝑛-bit string 𝛼. In step 1

and 3 of the experiment, all the 𝐶𝐹 values queried by the simulators are taken from
𝐶𝐹full instead of being selected uniformly as usual. In step 2, 𝐶𝐹 values queried by
the simulators are generated with a special convention explained below.

1. Same as step 1 of Exp-Status[𝑘 + 1].
2. Same as step 2 of Exp-Status[𝑘 + 1] and the answer to the query 𝑅𝐹 (𝑥0, 𝑥1)

is 𝛼.
3. Same as step 3 of Exp-Status[𝑘 + 1].

In step 2,M3 uses the following convention to fill in its table:

1. Set (𝑥8𝑛, 𝑥8𝑛+1) := 𝛼.
2. For 𝑖 = (2, . . . , 𝑚), define 𝑥𝑖 := 𝑥𝑖−2 ⊕ 𝐶�̃�𝑖−1 (𝑥𝑖−1). For 𝑚 + 3 ≤ 𝑖 ≤ 8𝑛 + 1

define 𝑥𝑖−2 := 𝑥𝑖 ⊕ 𝐶�̃�𝑖−1 (𝑥𝑖−1). All the 𝐶𝐹 values are taken from 𝐶𝐹full.
3. Set 𝐶𝐹𝑚 (𝑥𝑚) := 𝑥𝑚−1 ⊕ 𝑥𝑚+1 and 𝐶𝐹𝑢+1 (𝑥𝑢+1) := 𝑥𝑢 ⊕ 𝑥𝑢+2. The game aborts

if there is an index 𝑗 such that 3𝑛 ≤ 𝑗 ≤ 5𝑛 and ( 𝑗 , 𝑥 𝑗 ) is inM3.𝐶𝐹 [𝑎] or⋃8𝑛
𝑖=1 𝑄𝑖 (𝑥𝑖)/𝑄 𝑗 (𝑥 𝑗 ).

4. Evaluate 𝐶�̃�𝑚 (𝑥𝑚) and 𝐶�̃�𝑚+1 (𝑥𝑚+1) and the game aborts if there is an index
𝑗 such that 3𝑛 ≤ 𝑗 ≤ 5𝑛 and ( 𝑗 , 𝑥 𝑗 ) is dishonest.

The winning condition of the experiment is same as that of Exp-Status[𝑘 + 1]
except that in this experiment, D′4 wins if the chain (𝑖, 𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2) causing
the bad event has the index 𝑖 with 1 ≤ 𝑖 + 1 ≤ 𝑚. For simplicity, we say
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𝑊StatusRight (𝐶𝐹full, 𝛼, 𝑚) = 1 if D′4 wins for the choice of (𝐶𝐹full, 𝛼) in the ex-
periment.

From the proof of Lemma 19, we can see the distribution of𝐶𝐹 in Exp-EvalRight[𝑘+
1, 𝑚] is same as that of Exp-Eval[𝑘+1]. The only difference between the two experiments
is that the new version has a more strict winning condition than the original one.

To prove the probability that D1 wins Exp-Status[𝑘 + 1] is negligible, we first show,
for any distinguisher D′4, the probability that D′4 wins Exp-StatusRight[𝑘 + 1, 𝑚] is
negligible. Consider the following rewrite of Exp-StatusNoAnswer[𝑘 + 1], where the
randomness of 𝐶𝐹 is set like Exp-StatusRight[𝑘 + 1, 𝑚] and D5 uses D′4 as an oracle
to play the game.

Exp-StatusNoAnswer[𝑘 + 1]
Select uniformly a full table of 𝐶𝐹 values 𝐶𝐹full and a pair of 2𝑛-bit strings

𝛼 and 𝛽. The randomness of 𝐶𝐹 and 𝑅𝐹 are set the same way as they are set in
Exp-StatusRight[𝑘 + 1, 𝑚].

1. D5 uses D′4 to make 𝑎 queries for some 0 ≤ 𝑎 < 𝑘 and outputs 𝑎. For each
round of the game, D5 receives the query from and gives the answer to D′4.

2. At the 𝑎 + 1-st round of the game, D5 uses D′4 to query 𝑅𝐹 (𝑥0, 𝑥1) for some
pair of strings (𝑥0, 𝑥1). 𝛼 := 𝑅𝐹 (𝑥0, 𝑥1) is evaluated byM3 but not returned to
D5. (By definition,M3 will complete a subverted chain determined by (𝑥0, 𝑥1).
We call this full subverted chain 𝑐.) D5 selects 𝛽 uniformly and gives it to D′4.

3. D5 uses D′4 to make 𝑏 queries (𝑏 = 𝑘 − 𝑎). For each round of the game, D5
receives the query from and gives the answer to D′4.

For simplicity, we say 𝑊StatusNA (𝐶𝐹full, 𝛼, 𝛽) = 1 if D5 wins for the choice of
(𝐶𝐹full, 𝛼, 𝛽).

Lemma 44. If for some positive integer 𝑘 < 𝑞D ,

Pr[D5 wins Exp-StatusNoAnswer[𝑘 + 1]] = negl(𝑛)

over the randomness of (𝐶𝐹full, 𝛼, 𝛽), and

Pr[BadEval5 [𝑘 + 1]] = negl(𝑛),

for any distinguisher D, then, for any integer 4𝑛 ≤ 𝑚 < 5𝑛,

Pr[D′4 wins Exp-StatusRight[𝑘 + 1, 𝑚]] = negl(𝑛)

over the randomness of (𝐶𝐹full, 𝛼).

Proof. Suppose that the first probability is negligible and the third is not. Then, with
non-negligible probability, uniformly selecting a table 𝐶𝐹full and two 2𝑛-bit strings 𝛼, 𝛽
yields:

– 𝑊StatusRight (𝐶𝐹full, 𝛽) = 1 and BadEval5 [𝑘+1] does not happen in Exp-StatusRight[𝑘+
1, 𝑚] with the parameters (𝐶𝐹full, 𝛽);
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– 𝑊StatusNA (𝐶𝐹full, 𝛼, 𝛽) ≠ 1 and BadEval5 [𝑘+1] does not happen in Exp-StatusNoAnswer[𝑘+
1] with the parameters (𝐶𝐹full, 𝛼, 𝛽).

For convenience, we call the two experiments above 𝐸1 and 𝐸2. Suppose the full
subverted chain generated in (𝑎+1)-st round of 𝐸1 is 𝑐1 = (1, 𝑥1, . . . , 𝑥𝑚, 𝑦𝑚+1, . . . , 𝑦8𝑛),
and the chain in 𝐸2 is 𝑐2 = (1, 𝑥1, . . . , 𝑥𝑚, 𝑧𝑚+1, . . . , 𝑧8𝑛). Notice that the first 𝑚 terms
of 𝑐1 and 𝑐2 are same because the three experiments share the same table 𝐶𝐹full.

We will find a contradiction by showing that the queries to 𝐶𝐹 (made by the
distinguisher or the simulators) are identical in 𝐸1 and 𝐸2 after the (𝑎 + 1)-st round of
the games. It is sufficient to show 𝐸1 or 𝐸2 does not query (𝑚, 𝑥𝑚), (𝑚 + 1, 𝑦𝑚+1) and
(𝑚 + 1, 𝑧𝑚+1), the only three terms that have different 𝐶𝐹 values in 𝐸1(𝐸2) and 𝐶𝐹full.
This is directly implied by the fact that BadEval5 [𝑘 + 1] does not happen in 𝐸1 and 𝐸2.

Since 𝑊StatusRight (𝐶𝐹full, 𝛽) = 1 and 𝐸1, 𝐸2 make same queries to 𝐶𝐹 after the
(𝑎 + 1)-st round of the games, 𝑊StatusNA (𝐶𝐹full, 𝛼, 𝛽) = 1. A contradiction. □

A similar proof can be used to show that, for any 3𝑛 < 𝑚 ≤ 4𝑛, no distinguisher can
win the following game with non-negligible probability,

Exp-StatusLeft[𝑘 + 1, 𝑚]

1. D′4 makes 𝑎 queries for some 0 ≤ 𝑎 < 𝑘 and outputs 𝑎.
2. At the 𝑎 + 1-st round of the game, D′4 queries 𝑅𝐹 (𝑥0, 𝑥1) for some pair of

strings (𝑥0, 𝑥1). (By definition,M3 will complete a subverted chain determined
by (𝑥0, 𝑥1). We call this full subverted chain 𝑐.)

3. D′4 makes another 𝑏 queries for 𝑏 = 𝑘 − 𝑎.

We say D′4 wins Exp-Status[𝑘 + 1] if 𝑐 is not a S.Completed chain by the end
of the 𝑘-th round of the experiment and Exp-Status[𝑘 + 1] aborts at the (𝑘 + 1)-th
round with the bad event GoodStatus5 [𝑘 + 1]: S3.𝐶𝐹Inner(orM3.𝐶𝐹Inner) calls a
term (𝑖, 𝑥) such that 𝑚 ≤ 𝑖 ≤ 8𝑛 and (𝑖, 𝑥) ∈ 𝑐.

Summarize the results above and we have:

Lemma 45. If for some positive integer 𝑘 < 𝑞D ,

Pr[D5 wins Exp-StatusNoAnswer[𝑘 + 1]] = negl(𝑛)

over the randomness of (𝐶𝐹full, 𝛼, 𝛽), and

Pr[BadEval5 [𝑘 + 1]] = negl(𝑛),

for any distinguisher D, then, for any distinguisher D4,

Pr[D4 wins Exp-Status[𝑘 + 1]] = negl(𝑛).

Proof (Proof of Theorem 11). The theorem is implied by combining Lemma 43, Theorem
10 and Lemma 45. □
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B.8 Efficiency of 𝑮5

In this section, we are going to show that the number of the elements in S3.𝐶𝐹 and
M3.𝐶𝐹 are bounded by a polynomial function if the distinguisher D makes at most 𝑞D
(𝑞D is polynomial) queries to 𝐶𝐹 or 𝑅𝐹 (and 𝑅𝐹−1).

Lemma 46. If 𝐺5 is efficient, then with overwhelming probability, there are not a chain
𝑐 = (1, 𝑤1, . . . , 𝑤8𝑛) and three pairwise disjoint increasing chains 𝑐1 = (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+10),
𝑐2 = ( 𝑗 , 𝑦 𝑗 , . . . , 𝑦 𝑗+10) and 𝑐3 = (𝑘, 𝑧𝑘 , . . . , 𝑧𝑘+10) inM3.𝐶𝐹, such that

– for all (𝑖, 𝑥) ∈ 𝑐, 𝐶�̃�𝑖 (𝑥) is defined;
– 𝑐 is disjoint with 𝑐1, 𝑐2, 𝑐3;
– (𝑖 + 10, 𝑥𝑖+10), ( 𝑗 + 10, 𝑦 𝑗+10), (𝑘 + 10, 𝑧𝑘+10) ∈ 𝑄𝑐.

Proof. According to Lemma 24, if (𝑖 + 10, 𝑥𝑖+10) ∈ 𝑄𝑐, then there exists an index 𝑚

(𝑖 + 1 ≤ 𝑚 ≤ 𝑖 + 9) such that in the length 3 monotone increasing chain (𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1),
(𝑖, 𝑥𝑖) ∉ 𝑄𝑐 but (𝑖 + 1, 𝑥𝑖+1) ∈ 𝑄𝑐. Now we turn this observation into a proof.

Consider the following experiment in 𝐺5. Take an arbitrary pair of 𝑛-bit strings
(𝑤1, 𝑤2). D tries to find a subverted chain 𝑐 starting with (𝑤1, 𝑤2) (w.l.o.g., we only
consider subverted chain for convenience) and a length 3 increasing chain (𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1)
such that (𝑖, 𝑥𝑖) ∉ 𝑄𝑐 and (𝑖 + 1, 𝑥𝑖+1) ∈ 𝑄𝑐. A quick thought reveals that the probability
that D wins is negligible (8𝑛𝑞A/𝑠𝑛): Suppose, without loss of generality, D queries all
the elements in 𝑄𝑐 at the beginning of 𝐺5. At some moment of the experiment, D will
select a pair of terms (𝑖 − 1, 𝑥𝑖−1, 𝑥𝑖) as the starting pair of target length 3 chain. It is
easy to see that, since (𝑖, 𝑥𝑖) ∉ 𝑄𝑐, (𝑖 + 1, 𝑥𝑖+1) ∈ 𝑄𝑐 with probability not greater than
poly(𝑛) · 8𝑛𝑞A/2𝑛, where poly(𝑛) denotes the upper bound of the number of the terms
inM3.𝐶𝐹.

For any pair (𝑤1, 𝑤2), we define the event:

𝐸 (𝑤1, 𝑤2) :=


There are three monotone increasing unsubverted chains 𝑐1 = (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+10), 𝑐2 =

( 𝑗 , 𝑦 𝑗 , . . . , 𝑦 𝑗+10) and 𝑐3 = (𝑘, 𝑧𝑘 , . . . , 𝑧𝑘+10) in M3.𝐶𝐹, such that 𝑐 is disjoint with
𝑐1, 𝑐2, 𝑐3 and (𝑖 + 10, 𝑥𝑖+10), ( 𝑗 + 10, 𝑦 𝑗+10), (𝑘 + 10, 𝑧𝑘+10) ∈ 𝑄𝑐, where 𝑐 is the subverted
starting with (𝑤1, 𝑤2)


Finally we have∑︁

(𝑤1 ,𝑤2 ) ∈{0,1}2𝑛
Pr[𝐸 (𝑤1, 𝑤2)] < 22𝑛 · (poly(𝑛) · 8𝑛𝑞A/2𝑛)3 = negl(𝑛). □

Lemma 47. Suppose 𝐺5 is efficient. Let 𝐶11 be a set of length 11 increasing chains
and 𝑐 be a chain inM3.𝐶𝐹 such that 𝑐 is disjoint with any element in 𝐶11, and for all
(𝑖, 𝑥) ∈ 𝑐, 𝐶�̃�𝑖 (𝑥) is defined. Then, with overwhelming probability, there are at most 20
chains 𝑐′ = (𝑖, 𝑥𝑖 , . . . , 𝑥𝑖+10) ∈ 𝐶11 such that (𝑖 + 10, 𝑥𝑖+10) ∈ 𝑄𝑐.

Proof. Suppose there are 21 chains in 𝐶11 that satisfy the property in the lemma. Notice
that for each length 11 chain 𝑐′, there are at most 9 other length 11 chains that are not
disjoint with 𝑐′. Then, among the 21 chains satisfying the property in the lemma, we can
find 3 pairwise disjoint chains. This contradicts Lemma 46. □
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Definition 13 (Order of a chain). We define the order of an unsubverted chain 𝑐 =

(𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) inM3.𝐶𝐹 to be:

𝑂M3 (𝑐) := min
𝑘=𝑠,...,𝑠+𝑟−1

{
max{𝑂M3 (𝑘, 𝑥𝑘), 𝑂M3 (𝑘 + 1, 𝑥𝑘+1)}

}
Intuitively speaking, the order of a chain describes the time when a chain is “determined.”

Lemma 48. Suppose 𝐺5 is efficient. Let 𝐶Disj be a set of pairwise disjoint unsubverted
chains with length greater than or equal to 4 in M3.𝐶𝐹. Define the set 𝐴 to be
the set of the elements of the chains in 𝐶Disj. Then, with overwhelming probability,
|𝐴| ≥ ∑

𝑐∈𝐶Disj (𝐿 (𝑐) − 3).

Proof. For any 𝑐 ∈ 𝐶Disj and a term (𝑖, 𝑥) in 𝑐, we say (𝑖, 𝑥) is original in 𝑐 if there
does not exist a different element 𝑐′ ∈ 𝐶Disj such that 𝑐 and 𝑐′ intersects at (𝑖, 𝑥) and
𝑂M3 (𝑐) ≥ 𝑂M3 (𝑐′). Notice that a term (𝑖, 𝑥) can be original in at most one chain.

Now we are going to show that, with overwhelming probability, each element in 𝐶Disj
contains at most 3 non-original terms. Suppose there is a chain 𝑐 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+𝑟 ) that
has four non-original terms. Then there are two non-original elements, (𝑖, 𝑥𝑖) and ( 𝑗 , 𝑥 𝑗 ),
such that 𝑠 ≤ 𝑖 < 𝑗 − 2 ≤ 𝑠 + 𝑟 − 2. Because of Lemma 23, without loss of generality, we
assume

𝑂M3 (𝑖, 𝑥𝑖) > 𝑂M3 (𝑖 + 1, 𝑥𝑖+1) > 𝑂M3 (𝑖 + 2, 𝑥𝑖+2) .
Since (𝑖, 𝑥𝑖) is non-original in 𝑐, there is a chain 𝑐′ ≠ 𝑐 such that (𝑖, 𝑥𝑖) ∈ 𝑐′ and
𝑂M3 (𝑐) ≥ 𝑂M3 (𝑐′). Since 𝑐 and 𝑐′ are disjoint, (𝑖+1, 𝑥𝑖+1) ∉ 𝑐′. Then, since 𝑂M3 (𝑐) ≥
𝑂M3 (𝑐′) and 𝑂M3 (𝑖 + 1, 𝑥𝑖+1) > 𝑂M3 (𝑖 + 2, 𝑥𝑖+2), we have 𝑂M3 (𝑐) > 𝑂M3 (𝑐′), which
means (𝑖 + 1, 𝑥𝑖+1) is not evaluated when 𝑐′ has been determined. Finally, because
M3.𝐶𝐹 (𝑖 + 1, 𝑥𝑖+1) is selected uniformly, (𝑖, 𝑥𝑖) ∈ 𝑐′ with negligible probability. A
contradiction.

Going back to the proof of the lemma, since each term is original in at most one chain
and each chain in 𝐶Disj has all but 3 original elements, |𝐴| is lower bounded by the sum of
the original terms in the elements of 𝐶Disj, which is not less than

∑
𝑐∈𝐶Disj (𝐿 (𝑐) − 3). □

Theorem 14. [Efficiency of 𝐺5] For any positive integer 𝑘 ≤ 𝑞D , with overwhelming
probability, at the end of the 𝑘-th round of 𝐺5, there are fewer than (88𝑞A + 1)𝑘 terms
in S3.𝐶𝐹 and fewer than 8𝑛𝑞A𝑘 terms inM3.𝐶𝐹.

Remark. In the proof of Theorem 14, we will make use of Lemma 47 and Lemma 48.
However, these lemmas already take efficiency of 𝐺5 as their assumptions. To reassure
the reader that there is not a circular argument here, we imagine that the 𝑘-th round of
the game is forced to end when S3.𝐶𝐹 contains more than (88𝑞A + 1)𝑘 elements or
M3.𝐶𝐹 contains more than 8𝑛𝑞A𝑘 elements. In this way, we can also feel free to reason
about the tables of the simulators at the end of 𝑘-th round of the game (e.g., S3.𝐶𝐹 [𝑘],
𝐶S.FComp [𝑘]).

Proof. InS3.𝐶𝐹 [𝑘], for any unsubverted chain 𝑐, we call 𝑐 a generator if 𝑐 was processed
by the procedure S3.HonestCheck. We denote by 𝐶𝐺 the set of generators. We define
a function 𝑔 from 𝐶S.FComp [𝑘] to 𝐶𝐺: for each 𝑐1 ∈ 𝐶S.FComp [𝑘] and 𝑐 ∈ 𝐶𝐺 , we say
𝑔(𝑐1) = 𝑐 if 𝑐1 ⊂ 𝑐.
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Define
𝐺 := {(𝑖, 𝑥) | there is 𝑐 ∈ 𝐶𝐺 such that (𝑖, 𝑥) ∈ 𝑐.} .

Since 𝐶𝐺 is a set of pairwise disjoint chains, by Lemma 48,

|𝐺 | ≥
∑︁
𝑐∈𝐶𝐺

(𝐿 (𝑐) − 3) = (𝑛/10 − 3) · |𝐶𝐺 |. (5)

To understand the structure of 𝐺, we define several subsets of 𝐺. We say a point
(𝑖, 𝑥) ∈ 𝐺 is a tail point if there is an increasing 𝑐2 = (𝑠, 𝑥𝑠 , . . . , 𝑥𝑠+10) inM3.𝐶𝐹 (w.l.o.g.,
we only consider the increasing case) and a chain 𝑐 ∈ 𝐶𝐺 such that (𝑖, 𝑥) = (𝑠+10, 𝑥𝑠+10)
and 𝑐2 ⊂ 𝑐. We say a point (𝑖, 𝑥) ∈ 𝐺 is a head point if it is not a tail point. We denote
the sets of the head points and tail points by 𝐺Head and 𝐺Tail, respectively. For any point
(𝑖, 𝑥) ∈ 𝐺Tail and any chain 𝑐 ∈ 𝐶𝐺 , we say 𝑐 covers (𝑖, 𝑥) ((𝑖, 𝑥) ∉ 𝑐) if (𝑖, 𝑥) ∈ 𝑄𝑐 or
(𝑖, 𝑥) ∈ 𝑄 𝑓 −1 (𝑐) (if 𝑐 has a preimage in function 𝑓 ). We define 𝐺Query to be the set of the
points in 𝐺Tail that are not covered by any element in 𝐶𝐺 . Notice that any element in
𝐺Query was queried directly by the distinguisher D. Our goal is to show the size of the
set 𝐺Query is big.

By Lemma 23, the number of the elements in 𝐺Head is easily bounded by

|𝐺Head | ≤ 19 · |𝐶𝐺 |. (6)

By Lemma 47
|𝐺Tail/𝐺Query | ≤ 20 · |𝐶𝐺 |. (7)

Summarizing Equation 5, 6 and 7, we have

|𝐺Query |
= |𝐺 | − |𝐺Head | − |𝐺Tail/𝐺Query |
≥ (𝑛/10 − 3) |𝐶𝐺 | − 19|𝐶𝐺 | − 20|𝐶𝐹𝑢 |
= (𝑛/10 − 42) |𝐶𝐺 | .

This implies that

|S3.𝐶𝐹 [𝑘] |
≤ 8𝑛 · 𝑞A · |𝐶𝐺 | + 𝑘
≤ 8𝑛 · 𝑞A · |𝐺Query |/(𝑛/10 − 42) + 𝑘
≤ 8𝑛 · 𝑞A · 𝑘/(𝑛/10 − 42) + 𝑘
≤ 8𝑛 · 𝑞A · 𝑘/(𝑛/11) + 𝑘
= (88𝑞A + 1)𝑘.

Suppose D makes 𝑡 (0 ≤ 𝑡 ≤ 𝑘) queries to the ideal object and 𝑘 − 𝑡 queries to 𝐶𝐹,
then

|M3.𝐶𝐹 [𝑘] |
≤ 8𝑛 · 𝑞A · (𝑘 − 𝑡)/(𝑛/10 − 42) + (𝑘 − 𝑡) + 8𝑛 · 𝑞A · 𝑡
< (88𝑞A + 1) (𝑘 − 𝑡) + 8𝑛𝑞A 𝑡
≤ 8𝑛𝑞A𝑘
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when 𝑛 is large.
We remark that all the statements in the proof are true with overwhelming probability,

we omit “with overwhelming probability” for simplicity. □

B.9 Crooked indifferentiability in the full model

Now we show the simulator S achieving abbreviated crooked indifferentiability can be
lifted to a simulator that achieves full indifferentiability (Definition 6).

Theorem 15. If the construction in Section 1.1 is (𝑛′, 𝑛, 𝑞D , 𝑞A , 𝑟, 𝜖 ′)-Abbreviated-𝐻-
crooked-indifferentiable from a random oracle 𝐹, it is (𝑛′, 𝑛, 𝑞D , 𝑞A , 𝑟, 𝜖 ′ + 8𝑛 · 𝑞𝑛/10

D ·
2(2𝑛−𝑛2/10) )-𝐻-crooked-indifferentiable from 𝐹.

Proof. Consider the following simulator S𝐹 built on S:
1. In the first phase, S𝐹 answers 𝑓𝑖 (𝑥) (1 ≤ 𝑖 ≤ 8𝑛) queries uniformly.
2. The second phase, after which S𝐹 receives 𝑅, is divided into two sub-phases.

– First, S𝐹 simulates S in 𝐺1. It then plays the role of the distinguisher, and asks
S all the questions that were actually asked by the the distinguisher in the first
phase. S𝐹 aborts the game if, in this sub-phase, there are 𝑛/10 (simulated)
queries such that they form a length 𝑛/10 unsubverted chain.

– Second, S𝐹 simulates S and answers the second-phase questions from the
distinguisher.

For an arbitrary full model distinguisher D𝐹 , we construct the an abbreviated model
distinguisherD as follows. The proof will show that, with high probability, the execution
that takes place between D and S can be “lifted” to an associated execution between
D𝐹 and S𝐹 .
1. Prior to the game, D must publish a subversion algorithm A. This program is

constructed as follows. To decide how to subvert a certain term 𝑓𝑖 (𝑥), A first
simulates the first phase of D𝐹 ; all queries made by this simulation are asked as
regular queries by A and, at the conclusion, this first phase of D𝐹 produces, as
output, a subversion algorithmA𝐹 .A then simulates the algorithmA𝐹 on the term
ℎ𝑖 (𝑥).

2. In the game, D simulates the queries of D𝐹 in D𝐹’s first phase. After that, D
continues to simulate D𝐹 in the second phase. (Note that at the point in D𝐹 ’s game
where it produces the subversion algorithm A, this is simply ignored by D.)

Now we are ready to prove S𝐹 is secure against the arbitrarily chosen distinguisher
D𝐹 . We organize the proof around four different transcripts:

𝛾𝐹𝐶 transcript of C interacting with D𝐹

𝛾𝐶 transcript of C interacting with D
𝛾𝐹𝑆 transcript of S𝐹 interacting with D𝐹

𝛾𝑆 transcript of S interacting with D
S C S𝐹

D D𝐹

𝛾𝑆

𝛾𝐶

𝛾𝐹𝐶

𝛾𝐹𝑆
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(Here C denotes the construction, as usual.) Since

∥𝛾𝐹𝐶 − 𝛾𝐹𝑆 ∥tv ≤ ∥𝛾𝐹𝐶 − 𝛾𝐶 ∥tv + ∥𝛾𝐶 − 𝛾𝑆 ∥tv + ∥𝛾𝑆 − 𝛾𝐹𝑆 ∥tv ,

it is sufficient to prove the three terms in the right-hand side of the inequality are all
negligible.

- ∥𝛾𝐹𝐶 − 𝛾𝐶 ∥tv = 0. This is obvious by observing that 𝛾𝐹𝐶 = 𝛾𝐶 when the underlying
values of 𝐻 are the same.

- ∥𝛾𝐶 − 𝛾𝑆 ∥tv = 𝜖 ′. This is true because S achieves abbreviated crooked indifferentia-
bility.

- ∥𝛾𝑆 − 𝛾𝐹𝑆 ∥tv = 8𝑛 · 𝑞𝑛/10
D · 2(2𝑛−𝑛2/10) . To prove this statement, we suppose both

the full model game and the abbreviated model game select all randomness a priori
(as in the descriptions above). For the game between S𝐹 and D𝐹(the full game) or
the game between S and D(the abbreviated game), suppose we select a table 𝑇𝐹 of
𝐹 (𝑖, 𝑥) values for all 1 ≤ 𝑖 ≤ 8𝑛 and 𝑥 ∈ {0, 1}𝑛. When the simulator(in the full or
abbreviated game) needs to assign a certain term uniformly, it takes the value from
the table 𝑇𝐹 . Suppose the full and the abbreviated game share the same table 𝑇𝐹 and
𝑅. Notice that the two games have same transcripts unless, S𝐹 aborts the game in
the first sub-phase of the second phase. We denote this bad event by LongChain,
which by the following lemma 49, is negligible. □

N.b. While the description of the simulator above calls for all randomness to be
generated in advance, it is easy to see that the simulator can in fact be carried out lazily
with tables.

Lemma 49. For any distinguisher D𝐹 , the probability that LongChain happens is less
than 8𝑛 · 𝑞𝑛/10

D · 2(2𝑛−𝑛2/10) .

Proof. For any pair of 𝑛-bit strings (𝑥, 𝑦) and 𝑖 with 1 ≤ 𝑖 ≤ 8𝑛, over the randomness
of 𝑅, the probability that LongChain happens with a length 𝑛/10 unsubverted chain
starting with (𝑖, 𝑥, 𝑦) is bounded by (𝑞D · 2−𝑛)𝑛/10, which is equal to 𝑞

𝑛/10
D · 2−𝑛2/10. The

lemma follows by taking the union bound over the choice of (𝑥, 𝑦) and 𝑖. □

To see why we need ℓ ≥ 2000𝑛/log(1/𝜖), notice that in Lemma 31, when we set ℓ =
2000𝑛/log(1/𝜖), the upper bound of the length of a bad region is 1/48 · 2000𝑛/log(1/𝜖).
Therefore, the probability in the proof will be 8𝑛 · 22𝑛 · (14𝜖) (1/(48·14) ) ·2000𝑛/log(1/𝜖 )−1 =

negl(𝑛).
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Pseudocodes of Intermediate Games

Game1. Game 1 is the ideal world interaction.
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System S:
Variable:
Queue: 𝑄S
Tables: S.𝐶𝐹1, ...,S.𝐶𝐹8𝑛
Order function: 𝑂S
Set S.CompletedChains := ∅
Set S.HonestyCheckedChains := ∅
Sets 𝑄𝑖 (𝑧) := ∅ for all 𝑖 ∈ {1, . . . , 8𝑛} and 𝑥 ∈ {0, 1}𝑛
Sets 𝑄𝑖 := ∅ for all 𝑖 ∈ {1, . . . , 8𝑛}
Hashtable 𝑃 ⊂ {↑, ↓} × {0, 1}2𝑛 × {0, 1}2𝑛

1 public procedure 𝐶𝐹 (𝑖, 𝑥):
2 S.𝐶𝐹Inner (𝑖, 𝑥)
3 while ¬𝑄S .Empty() do
4 (𝑠, 𝑥𝑠 , ..., 𝑥𝑠+𝑛/10−1) := 𝑄S .Dequeue()
5 if S.Check(𝑠, 𝑥𝑠 , ..., 𝑥𝑠+𝑛/10−1) = (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢) then
6 S.Complete (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢)
7 Return S.𝐶𝐹𝑖 (𝑥)

8 public procedure 𝑃(𝑥0, 𝑥1):
9 while (↓, 𝑥0, 𝑥1) ∉ 𝑃 do

10 𝑥8𝑛 ←𝑅 {0, 1}𝑛
11 𝑥8𝑛+1 ←𝑅 {0, 1}𝑛
12 if (↑, 𝑥8𝑛, 𝑥8𝑛+1) ∉ 𝑃 then
13 𝑃(↓, 𝑥0, 𝑥1) := (𝑥8𝑛, 𝑥8𝑛+1)
14 𝑃(↑, 𝑥8𝑛, 𝑥8𝑛+1) := (𝑥0, 𝑥1)
15 Return 𝑃(↓, 𝑥0, 𝑥1)

16 public procedure 𝑃−1 (𝑥8𝑛, 𝑥8𝑛+1):
17 while (↑, 𝑥8𝑛, 𝑥8𝑛+1) ∉ 𝑃 do
18 𝑥0 ←𝑅 {0, 1}𝑛
19 𝑥1 ←𝑅 {0, 1}𝑛
20 if (↓, 𝑥0, 𝑥1) ∉ 𝑃 then
21 𝑃(↓, 𝑥0, 𝑥1) := (𝑥8𝑛, 𝑥8𝑛+1)
22 𝑃(↑, 𝑥8𝑛, 𝑥8𝑛+1) := (𝑥0, 𝑥1)
23 Return 𝑃(↑, 𝑥8𝑛, 𝑥8𝑛+1)

24 private procedure S.𝐶𝐹Inner (𝑖, 𝑥):
25 if 𝑥 ∉ S.𝐶𝐹𝑖 then
26 S.𝐶𝐹𝑖 (𝑥) ←𝑅 {0, 1}𝑛
27 S.EnqueueNewChain(𝑖, 𝑥)
28 Return S.𝐶𝐹𝑖 (𝑥)

29 private procedure S.𝐶�̃�Inner (𝑖, 𝑥):
30 while A(𝑖, 𝑥) queries 𝐶𝐹𝑗 (𝑦) do
31 𝑄𝑖 (𝑥) := 𝑄𝑖 (𝑥) ∪ {( 𝑗 , 𝑦)}
32 S.𝐶𝐹Inner ( 𝑗 , 𝑦)

/* Simulates the subversion algorithm A on input (𝑖, 𝑥) */
33 Return A(𝑖, 𝑥) 83



34 private procedure S.EnqueueNewChain(𝑖, 𝑥):
35 forall (𝑥𝑖−𝑛/10+1, ..., 𝑥) ∈ S.𝐶𝐹𝑖−𝑛/10+1 × · · · × S.𝐶𝐹𝑖 do
36 𝑄S .Enqueue(𝑖 − 𝑛/10 + 1, 𝑥𝑖−𝑛/10+1, ..., 𝑥)
37 forall (𝑥, 𝑥𝑖+1..., 𝑥𝑖+𝑛/10−1) ∈ S.𝐶𝐹𝑖 × · · · × S.𝐶𝐹𝑖+𝑛/10−1 do
38 𝑄S .Enqueue(𝑖, 𝑥, 𝑥𝑖+1..., 𝑥𝑖+𝑛/10−1)

39 private procedure S.Check(𝑠, 𝑥𝑠 , ..., 𝑥𝑠+𝑛/10−1):
40 if (𝑖, 𝑥𝑖 , 𝑥𝑖+1) ∉ S.Completedchains ∪ S.HonestyCheckedChains for all

𝑠 ≤ 𝑖 ≤ 𝑠 + 𝑛/10 − 2 then
41 S.HonestyCheck(𝑠, 𝑥𝑠 , ..., 𝑥𝑠+𝑛/10−1)

42 private procedure S.HonestyCheck(𝑠, 𝑥𝑠 , ..., 𝑥𝑠+𝑛/10−1):
43 k:=1
44 i:=s
45 while 𝑠 ≤ 𝑖 ≤ 𝑠 + 𝑛/10 − 2 do
46 S.HonestyCheckedChains := S.HonestyCheckedChains ∪ (𝑖, 𝑥𝑖 , 𝑥𝑖+1)
47 if S.𝐶�̃�Inner (𝑖, 𝑥𝑖) = S.𝐶𝐹𝑖 (𝑥𝑖) and S.𝐶�̃�Inner (𝑖 + 1, 𝑥𝑖+1) = S.𝐶𝐹𝑖+1 (𝑥𝑖+1)

then
48 k:=k+1
49 i:=i+1
50 if k=n/10 then
51 if 𝑖 + 𝑛/10 − 1 < 3𝑛 or 𝑖 > 5𝑛 then
52 Return (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 4𝑛)
53 else
54 Return (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 7𝑛)

55 private procedure S.Complete (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
56 (𝑥𝑢−2, 𝑥𝑢−1) := S.EvaluateForward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢)
57 (𝑥𝑢+2, 𝑥𝑢+3) := S.EvaluateBackward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢)
58 S.Adapt(𝑥𝑢−2, 𝑥𝑢−1, 𝑥𝑢+2, 𝑥𝑢+3, 𝑢)

59 private procedure S.EvaluateForward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
60 S.CompletedChains := S.CompletedChains ∪ {(𝑠, 𝑥𝑠 , 𝑥𝑠+1)}
61 while 𝑠 ≠ 𝑢 − 1 do
62 if 𝑠 = 8𝑛 then
63 (𝑥0, 𝑥1) := 𝑃−1 (𝑥8𝑛, 𝑥8𝑛+1)
64 𝑠 := 0
65 else
66 S.CompletedChains := S.CompletedChains ∪ {(𝑠 + 1, 𝑥𝑠+1, 𝑥𝑠+2)}
67 𝑥𝑠+2 := 𝑥𝑠 ⊕ S.𝐶�̃�Inner (𝑠 + 1, 𝑥𝑠+1)
68 𝑄𝑠+1 := 𝑄𝑠+1 (𝑥𝑠+1)
69 𝑠 := 𝑠 + 1
70 Return (𝑥𝑠−1, 𝑥𝑠)

71 private procedure S.EvaluateBackward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
72 while 𝑠 ≠ 𝑢 + 1 do
73 if 𝑠 = 0 then
74 (𝑥8𝑛, 𝑥8𝑛+1) := 𝑃(𝑥0, 𝑥1)
75 𝑠 := 8𝑛
76 else
77 S.CompletedChains := S.CompletedChains ∪ {(𝑠 − 1, 𝑥𝑠−1, 𝑥𝑠)}
78 𝑥𝑠−1 := 𝑥𝑠+1 ⊕ S.𝐶�̃�Inner (𝑠, 𝑥𝑠)
79 𝑄𝑠 := 𝑄𝑠 (𝑥𝑠)
80 𝑠 := 𝑠 − 1
81 Return (𝑥𝑠+1, 𝑥𝑠+2)
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82 private procedure S.Adapt(𝑥𝑢−2, 𝑥𝑢−1, 𝑥𝑢+2, 𝑥𝑢+3, 𝑢):
83 𝑥𝑢 := 𝑥𝑢−2 ⊕ S.𝐶𝐹Inner (𝑢 − 1, 𝑥𝑢−1)
84 𝑥𝑢+1 := 𝑥𝑢+3 ⊕ S.𝐶𝐹Inner (𝑢 + 2, 𝑥𝑢+2)
85 if 𝑥𝑢 ∉ S.𝐶𝐹𝑢 and 𝑥𝑢+1 ∉ S.𝐶𝐹𝑢+1 then
86 S.𝐶𝐹𝑢 (𝑥𝑢) ← 𝑥𝑢−1 ⊕ 𝑥𝑢+1
87 S.𝐶𝐹𝑢+1 (𝑥𝑢+1) ← 𝑥𝑢 ⊕ 𝑥𝑢+2
88 else
89 The game aborts.
90 if S.𝐶�̃�Inner (𝑢, 𝑥𝑢) = S.𝐶𝐹𝑢 (𝑥𝑢) and S.𝐶�̃�Inner (𝑢 + 1, 𝑥𝑢+1) = S.𝐶𝐹𝑢+1 (𝑥𝑢+1)

then
91 S.CompletedChains := S.CompletedChains ∪ {(𝑢, 𝑥𝑢, 𝑥𝑢+1)}
92 else
93 The game aborts.
94 𝑄𝑢 := 𝑄𝑢 (𝑥𝑢) and 𝑄𝑢+1 := 𝑄𝑢+1 (𝑥𝑢+1)
95 if (𝑢, 𝑥𝑢) ∈ ∪8𝑛

𝑗=1𝑄 𝑗/𝑄𝑢 or (𝑢 + 1, 𝑥𝑢+1) ∈ ∪8𝑛
𝑗=1𝑄 𝑗/𝑄𝑢+1 then

96 The game aborts.

Game2. The Game 2 is same as Game 1 except that the random permutation is replaced
by the following two-sided random function 𝑅𝐹.

System 𝑅𝐹:
Variable:
Hashtable 𝑅𝐹 ⊂ {↑, ↓} × {0, 1}2𝑛 × {0, 1}2𝑛

1 public procedure 𝑅𝐹 (𝑥0, 𝑥1):
2 if (↓, 𝑥0, 𝑥1) ∉ 𝑅𝐹 then
3 𝑥8𝑛 ←𝑅 {0, 1}𝑛
4 𝑥8𝑛+1 ←𝑅 {0, 1}𝑛
5 𝑅𝐹 (↓, 𝑥0, 𝑥1) := (𝑥8𝑛, 𝑥8𝑛+1)
6 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1) := (𝑥0, 𝑥1) /* May over write an entry */
7 Return 𝑅𝐹 (↓, 𝑥0, 𝑥1)

8 public procedure 𝑅𝐹−1 (𝑥8𝑛, 𝑥8𝑛+1):
9 if (↑, 𝑥8𝑛, 𝑥8𝑛+1) ∉ 𝑅𝐹 then

10 𝑥0 ←𝑅 {0, 1}𝑛
11 𝑥1 ←𝑅 {0, 1}𝑛
12 𝑅𝐹 (↓, 𝑥0, 𝑥1) := (𝑥8𝑛, 𝑥8𝑛+1) /* May over write an entry */
13 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1) := (𝑥0, 𝑥1)
14 Return 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1)

Game3. The Game 3 has two systems, S1 and M1. We will describe all the public
procedures, all the private procedures ofM1, and the private procedures of S1 that are
different from their counterparts of S.
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SystemM1,S1, 𝑅𝐹:
Variable:
Queue: 𝑄S1

Tables ofM1:M1.𝐶𝐹1, ...,M1.𝐶𝐹8𝑛
Tables of S1: S1.𝐶𝐹1, ...,S1.𝐶𝐹8𝑛
Order function: 𝑂M1 , 𝑂S1

SetM1.CompletedChains,S1.CompletedChains := ∅
Set S1.HonestyCheckedChains := ∅
SetM1.MiddlePoints := ∅
SetM1.AdaptedPoints := ∅
Sets 𝑄𝑖 (𝑧) := ∅ for all 𝑖 ∈ {1, . . . , 8𝑛} and 𝑥 ∈ {0, 1}𝑛
Sets 𝑄𝑖 := ∅ for all 𝑖 ∈ {1, . . . , 8𝑛}
Strings 𝑦𝑖 := {0, 1}𝑛 for all 𝑖 ∈ {1, . . . , 8𝑛}
Hashtable 𝑅𝐹 ⊂ {↑, ↓} × {0, 1}2𝑛 × {0, 1}2𝑛

1 public procedure 𝐶𝐹 (𝑖, 𝑥):
2 S1.𝐶𝐹Inner (𝑖, 𝑥)
3 while ¬𝑄S1 .Empty() do
4 (𝑠, 𝑥𝑠 , ..., 𝑥𝑠+𝑛/10−1) := 𝑄S1 .Dequeue()
5 if S1.Check(𝑠, 𝑥𝑠 , ..., 𝑥𝑠+𝑛/10−1) = (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢) then
6 S1.Complete (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢)
7 Return S1.𝐶𝐹𝑖 (𝑥)

8 public procedure 𝑅𝐹 (𝑥0, 𝑥1):
9 if (↓, 𝑥0, 𝑥1) ∉ 𝑅𝐹 then

10 𝑥8𝑛 ←𝑅 {0, 1}𝑛
11 𝑥8𝑛+1 ←𝑅 {0, 1}𝑛
12 𝑅𝐹 (↓, 𝑥0, 𝑥1) := (𝑥8𝑛, 𝑥8𝑛+1)
13 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1) := (𝑥0, 𝑥1)/* May over write an entry */
14 M1.Complete (0, 𝑥0, 𝑥1, 4𝑛)
15 Return 𝑅𝐹 (↓, 𝑥0, 𝑥1)

16 public procedure 𝑅𝐹−1 (𝑥8𝑛, 𝑥8𝑛+1):
17 if (↑, 𝑥8𝑛, 𝑥8𝑛+1) ∉ 𝑅𝐹 then
18 𝑥0 ←𝑅 {0, 1}𝑛
19 𝑥1 ←𝑅 {0, 1}𝑛
20 𝑅𝐹 (↓, 𝑥0, 𝑥1) := (𝑥8𝑛, 𝑥8𝑛+1) /* May over write an entry */
21 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1) := (𝑥0, 𝑥1)
22 M1.Complete (8𝑛, 𝑥8𝑛, 𝑥8𝑛+1, 4𝑛)
23 Return 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1)

24 private procedureM1.Complete (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
25 (𝑥𝑢−2, 𝑥𝑢−1) :=M1.EvaluateForward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢)
26 (𝑥𝑢+2, 𝑥𝑢+3) :=M1.EvaluateBackward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢)
27 M1.Adapt(𝑥𝑢−2, 𝑥𝑢−1, 𝑥𝑢+2, 𝑥𝑢+3, 𝑢)
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28 private procedureM1.EvaluateForward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
29 M1.CompletedChains :=M1.CompletedChains ∪ {(𝑠, 𝑥𝑠 , 𝑥𝑠+1)}
30 while 𝑠 ≠ 𝑢 − 1 do
31 if 𝑠 = 8𝑛 then
32 (𝑥0, 𝑥1) := 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1)
33 𝑠 := 0
34 else
35 M1.CompletedChains :=M1.CompletedChains ∪ {(𝑠 + 1, 𝑥𝑠+1, 𝑥𝑠+2)}
36 𝑥𝑠+2 := 𝑥𝑠 ⊕M1.𝐶�̃�Inner (𝑠 + 1, 𝑥𝑠+1)
37 if 3𝑛 ≤ 𝑠 + 1 ≤ 5𝑛 then
38 𝑀1.MiddlePoints = 𝑀1.MiddlePoints ∪ (𝑠 + 1, 𝑥𝑠+1)
39 𝑠 := 𝑠 + 1
40 Return (𝑥𝑠−1, 𝑥𝑠)

41 private procedureM1.EvaluateBackward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
42 while 𝑠 ≠ 𝑢 + 1 do
43 if 𝑠 = 0 then
44 (𝑥8𝑛, 𝑥8𝑛+1) := 𝑅𝐹 (↓, 𝑥0, 𝑥1)
45 𝑠 := 8𝑛
46 else
47 M1.CompletedChains :=M1.CompletedChains ∪ {(𝑠 − 1, 𝑥𝑠−1, 𝑥𝑠)}
48 𝑥𝑠−1 := 𝑥𝑠+1 ⊕M1.𝐶�̃�Inner (𝑠, 𝑥𝑠)
49 if 3𝑛 ≤ 𝑠 ≤ 5𝑛 then
50 M1.MiddlePoints =M1.MiddlePoints ∪ (𝑠, 𝑥𝑠)
51 𝑠 := 𝑠 − 1
52 Return (𝑥𝑠+1, 𝑥𝑠+2)

53 private procedureM1.Adapt(𝑥𝑢−2, 𝑥𝑢−1, 𝑥𝑢+2, 𝑥𝑢+3, 𝑢):
54 𝑥𝑢 := 𝑥𝑢−2 ⊕M1.𝐶𝐹Inner (𝑢 − 1, 𝑥𝑢−1)
55 𝑥𝑢+1 := 𝑥𝑢+3 ⊕M1.𝐶𝐹Inner (𝑢 + 2, 𝑥𝑢+2)
56 if 𝑥𝑢 ∉M1.𝐶𝐹𝑢 then
57 M1.𝐶𝐹𝑢 (𝑥𝑢) ← 𝑥𝑢−1 ⊕ 𝑥𝑢+1
58 M1.MiddlePoints =M1.MiddlePoints ∪ (𝑢, 𝑥𝑢)
59 M1.AdaptedPoints =M1.AdaptedPoints ∪ (𝑢, 𝑥𝑢)
60 if 𝑥𝑢+1 ∉M1.𝐶𝐹𝑢+1 then
61 M1.𝐶𝐹𝑢+1 (𝑥𝑢+1) ← 𝑥𝑢 ⊕ 𝑥𝑢+2
62 M1.MiddlePoints =M1.MiddlePoints ∪ (𝑢 + 1, 𝑥𝑢+1)
63 M1.AdaptedPoints =M1.AdaptedPoints ∪ (𝑢 + 1, 𝑥𝑢+1)
64 ifM1.𝐶�̃�Inner (𝑢, 𝑥𝑢) =M1.𝐶𝐹𝑢 (𝑥𝑢) and

M1.𝐶�̃�Inner (𝑢 + 1, 𝑥𝑢+1) =M1.𝐶𝐹𝑢+1 (𝑥𝑢+1) then
65 M1.CompletedChains :=M1.CompletedChains ∪ {(𝑢, 𝑥𝑢, 𝑥𝑢+1)}

66 private procedureM1.𝐶𝐹Inner (𝑖, 𝑥):
67 if 𝑥 ∉M1.𝐶𝐹𝑖 then
68 M1.𝐶𝐹𝑖 (𝑥) ←𝑅 {0, 1}𝑛
69 ReturnM1.𝐶𝐹𝑖 (𝑥)
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116 private procedure S1.EvaluateBackward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
117 while 𝑠 ≠ 𝑢 + 1 do
118 if 𝑠 = 0 then
119 if (↓, 𝑥0, 𝑥1) ∉ 𝑅𝐹 then
120 𝑥8𝑛 ←𝑅 {0, 1}𝑛
121 𝑥8𝑛+1 ←𝑅 {0, 1}𝑛
122 𝑅𝐹 (↓, 𝑥0, 𝑥1) := (𝑥8𝑛, 𝑥8𝑛+1)
123 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1) := (𝑥0, 𝑥1)/* May over write an entry */
124 else
125 (𝑥8𝑛, 𝑥8𝑛+1) := 𝑅𝐹 (↓, 𝑥0, 𝑥1)
126 𝑠 := 8𝑛
127 else
128 S1.CompletedChains := S1.CompletedChains ∪ {(𝑠 − 1, 𝑥𝑠−1, 𝑥𝑠)}
129 𝑥𝑠−1 := 𝑥𝑠+1 ⊕ S1.𝐶�̃�Inner (𝑠, 𝑥𝑠)
130 𝑄𝑠 := 𝑄𝑠 (𝑥𝑠)
131 𝑠 := 𝑠 − 1
132 Return (𝑥𝑠+1, 𝑥𝑠+2)

133 private procedure S1.𝐴𝑑𝑎𝑝𝑡 (𝑥𝑢−2, 𝑥𝑢−1, 𝑥𝑢+2, 𝑥𝑢+3, 𝑢):
134 𝑥𝑢 := 𝑥𝑢−2 ⊕ S1.𝐶𝐹Inner (𝑢 − 1, 𝑥𝑢−1)
135 𝑥𝑢+1 := 𝑥𝑢+3 ⊕ S1.𝐶𝐹Inner (𝑢 + 2, 𝑥𝑢+2)
136 if 𝑥𝑢 ∉ S1.𝐶𝐹𝑢 and 𝑥𝑢+1 ∉ S1.𝐶𝐹𝑢+1 then
137 S1.𝐶𝐹𝑢 (𝑥𝑢) ← 𝑥𝑢−1 ⊕ 𝑥𝑢+1
138 S1.𝐶𝐹𝑢+1 (𝑥𝑢+1) ← 𝑥𝑢 ⊕ 𝑥𝑢+2
139 M1.𝐶𝐹𝑢 (𝑥𝑢) ← S1.𝐶𝐹𝑢 (𝑥𝑢)/* May over write an entry */
140 M1.𝐶𝐹𝑢+1 (𝑥𝑢+1) ← S1.𝐶𝐹𝑢+1 (𝑥𝑢+1)/* May over write an entry */
141 else
142 The game aborts.
143 if S1.𝐶�̃�Inner (𝑢, 𝑥𝑢) = S1.𝐶𝐹𝑢 (𝑥𝑢) and

S1.𝐶�̃�Inner (𝑢 + 1, 𝑥𝑢+1) = S1.𝐶𝐹𝑢+1 (𝑥𝑢+1) then
144 S1.CompletedChains := S1.CompletedChains ∪ {(𝑢, 𝑥𝑢, 𝑥𝑢+1)}
145 else
146 The game aborts.
147 𝑄𝑢 := 𝑄𝑢 (𝑥𝑢) and 𝑄𝑢+1 := 𝑄𝑢+1 (𝑥𝑢+1)
148 if (𝑢, 𝑥𝑢) ∈ ∪8𝑛

𝑗=1𝑄 𝑗/𝑄𝑢 or (𝑢 + 1, 𝑥𝑢+1) ∈ ∪8𝑛
𝑗=1𝑄 𝑗/𝑄𝑢+1 then

149 The game aborts.

Game4. To obtain 𝐺4, we just need to add some abortion conditions to several procedures
of 𝐺3. Below we only show the procedures of S2 andM2 that are different from their
counterparts of S1 andM1. We use red color to stress the extra abortion conditions.
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72 private procedureM1.𝐶�̃�Inner (𝑖, 𝑥):
73 while A(𝑖, 𝑥) queries 𝐶𝐹 𝑗 (𝑦) do
74 𝑄𝑖 (𝑥) := 𝑄𝑖 (𝑥) ∪ {( 𝑗 , 𝑦)}
75 M1.𝐶𝐹Inner ( 𝑗 , 𝑦) /* Simulates the subversion algorithm A on

input (𝑖, 𝑥) */
76 Return A(𝑖, 𝑥)

77 private procedure S1.𝐶𝐹Inner (𝑖, 𝑥):
78 if 𝑥 ∉ S1.𝐶𝐹𝑖 then
79 if 𝑥 ∉M1.𝐶𝐹𝑖 then
80 S1.𝐶𝐹𝑖 (𝑥) ←𝑅 {0, 1}𝑛
81 M1.𝐶𝐹𝑖 (𝑥) ← S1.𝐶𝐹𝑖 (𝑥)
82 else if 𝑥 ∈ M1.𝐶𝐹𝑖 and (𝑖, 𝑥) ∉ 𝑀1.AdaptedPoints then
83 S1.𝐶𝐹𝑖 (𝑥) ← M1.𝐶𝐹𝑖 (𝑥)
84 else
85 S1.𝐶𝐹𝑖 (𝑥) ←𝑅 {0, 1}𝑛
86 S1.EnqueueNewChain(𝑖, 𝑥)
87 Return S1.𝐶𝐹𝑖 (𝑥)

88 private procedure S1.EvaluateForward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
89 S1.CompletedChains := S1.CompletedChains ∪ {(𝑠, 𝑥𝑠 , 𝑥𝑠+1)}
90 while 𝑠 ≠ 𝑢 − 1 do
91 if 𝑠 = 8𝑛 then
92 if (↑, 𝑥8𝑛, 𝑥8𝑛+1) ∉ 𝑅𝐹 then
93 𝑥0 ←𝑅 {0, 1}𝑛
94 𝑥1 ←𝑅 {0, 1}𝑛
95 𝑅𝐹 (↓, 𝑥0, 𝑥1) := (𝑥8𝑛, 𝑥8𝑛+1) /* May over write an entry */
96 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1) := (𝑥0, 𝑥1)
97 else
98 (𝑥0, 𝑥1) := 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1)
99 𝑠 := 0

100 else
101 S1.CompletedChains := S1.CompletedChains ∪ {(𝑠 + 1, 𝑥𝑠+1, 𝑥𝑠+2)}
102 𝑥𝑠+2 := 𝑥𝑠 ⊕ S1.𝐶�̃�Inner (𝑠 + 1, 𝑥𝑠+1)
103 𝑄𝑠+1 := 𝑄𝑠+1 (𝑥𝑠+1)
104 𝑠 := 𝑠 + 1
105 Return (𝑥𝑠−1, 𝑥𝑠)
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1 private procedureM2.𝐶𝐹Inner (𝑖, 𝑥):
2 if 𝑥 ∉M2.𝐶𝐹𝑖 then
3 M2.𝐶𝐹𝑖 (𝑥) ←𝑅 {0, 1}𝑛
4 else if (𝑖, 𝑥) ∈ M2.MiddlePoints and (𝑖, 𝑥) ∉ S2.𝐶𝐹𝑖 then
5 The game aborts.
6 ReturnM1.𝐶𝐹𝑖 (𝑥)

7 private procedureM2.EvaluateForward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
8 M2.CompletedChains :=M2.CompletedChains ∪ {(𝑠, 𝑥𝑠 , 𝑥𝑠+1)}
9 while 𝑠 ≠ 𝑢 − 1 do

10 if 𝑠 = 8𝑛 then
11 (𝑥0, 𝑥1) := 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1)
12 𝑠 := 0
13 else
14 M2.CompletedChains :=

M2.CompletedChains ∪ {(𝑠 + 1, 𝑥𝑠+1, 𝑥𝑠+2)}
15 if 3𝑛 ≤ 𝑠 + 1 ≤ 5𝑛 then
16 M2.MiddlePoints =M2.MiddlePoints ∪ (𝑠 + 1, 𝑥𝑠+1)
17 if 3𝑛 ≤ 𝑠 + 1 ≤ 5𝑛 and 𝑥𝑠+1 ∈ M2.𝐶𝐹 then
18 The game aborts.
19 𝑥𝑠+2 := 𝑥𝑠 ⊕M2.𝐶�̃�Inner (𝑠 + 1, 𝑥𝑠+1)
20 𝑄𝑠+1 := 𝑄𝑠+1 (𝑥𝑠+1)
21 𝑦𝑠+1 := 𝑥𝑠+1
22 if 3𝑛 ≤ 𝑠 + 1 ≤ 5𝑛 andM2.𝐶𝐹𝑠+1 (𝑥𝑠+1) ≠ 𝑥𝑠+2 ⊕ 𝑥𝑠 then
23 The game aborts.
24 𝑠 := 𝑠 + 1
25 Return (𝑥𝑠−1, 𝑥𝑠)

Game5. 𝐺5 is different from 𝐺4 in the following procedures:
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24 private procedureM2.EvaluateBackward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
25 while 𝑠 ≠ 𝑢 + 1 do
26 if 𝑠 = 0 then
27 (𝑥8𝑛, 𝑥8𝑛+1) := 𝑅𝐹 (↓, 𝑥0, 𝑥1)
28 𝑠 := 8𝑛
29 else
30 M2.CompletedChains :=M2.CompletedChains ∪ {(𝑠 − 1, 𝑥𝑠−1, 𝑥𝑠)}
31 if 3𝑛 ≤ 𝑠 ≤ 5𝑛 then
32 M2.MiddlePoints =M2.MiddlePoints ∪ (𝑠, 𝑥𝑠)
33 if 3𝑛 ≤ 𝑠 ≤ 5𝑛 and 𝑥𝑠 ∈ M2.𝐶𝐹 then
34 The game aborts.
35 𝑥𝑠−1 := 𝑥𝑠+1 ⊕M2.𝐶�̃�Inner (𝑠, 𝑥𝑠)
36 𝑄𝑠 := 𝑄𝑠 (𝑥𝑠)
37 𝑦𝑠 := 𝑥𝑠

38 if 3𝑛 ≤ 𝑠 ≤ 5𝑛 andM2.𝐶𝐹𝑠 (𝑥𝑠) ≠ 𝑥𝑠+1 ⊕ 𝑥𝑠−1 then
39 The game aborts.
40 𝑠 := 𝑠 − 1
41 Return (𝑥𝑠+1, 𝑥𝑠+2)

42 private procedureM2.Adapt(𝑥𝑢−2, 𝑥𝑢−1, 𝑥𝑢+2, 𝑥𝑢+3, 𝑢):
43 𝑥𝑢 := 𝑥𝑢−2 ⊕M2.𝐶𝐹Inner (𝑢 − 1, 𝑥𝑢−1)
44 𝑥𝑢+1 := 𝑥𝑢+3 ⊕M2.𝐶𝐹Inner (𝑢 + 2, 𝑥𝑢+2)
45 if 𝑥𝑢 ∉M2.𝐶𝐹𝑢 and 𝑥𝑢+1 ∉M2.𝐶𝐹𝑢+1 then
46 M2.𝐶𝐹𝑢 (𝑥𝑢) ← 𝑥𝑢−1 ⊕ 𝑥𝑢+1
47 M2.MiddlePoints =M2.MiddlePoints ∪ (𝑢, 𝑥𝑢)
48 M2.AdaptedPoints =M2.AdaptedPoints ∪ (𝑢, 𝑥𝑢)
49 M2.𝐶𝐹𝑢+1 (𝑥𝑢+1) ← 𝑥𝑢 ⊕ 𝑥𝑢+2
50 M2.MiddlePoints =M2.MiddlePoints ∪ (𝑢 + 1, 𝑥𝑢+1)
51 M2.AdaptedPoints =M2.AdaptedPoints ∪ (𝑢 + 1, 𝑥𝑢+1)
52 else
53 The game aborts.
54 ifM2.𝐶�̃�Inner (𝑢, 𝑥𝑢) =M2.𝐶𝐹𝑢 (𝑥𝑢) and

M2.𝐶�̃�Inner (𝑢 + 1, 𝑥𝑢+1) =M2.𝐶𝐹𝑢+1 (𝑥𝑢+1) then
55 M2.CompletedChains :=M2.CompletedChains ∪ {(𝑢, 𝑥𝑢, 𝑥𝑢+1)}
56 else
57 The game aborts.
58 𝑄𝑢 := 𝑄𝑢 (𝑥𝑢) and 𝑄𝑢+1 := 𝑄𝑢+1 (𝑥𝑢+1)
59 𝑦𝑢 := 𝑥𝑢 and 𝑦𝑢+1 := 𝑥𝑢+1
60 while 3𝑛 ≤ 𝑖 ≤ 5𝑛 do
61 if (𝑖, 𝑦𝑖) ∈ ∪8𝑛

𝑗=1𝑄 𝑗/𝑄𝑖 then
62 The game aborts.
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65 private procedure S2.𝐶𝐹Inner (𝑖, 𝑥):
66 if 𝑥 ∉ S2.𝐶𝐹𝑖 then
67 if 𝑥 ∉M2.𝐶𝐹𝑖 then
68 S2.𝐶𝐹𝑖 (𝑥) ←𝑅 {0, 1}𝑛
69 M2.𝐶𝐹𝑖 (𝑥) ← S2.𝐶𝐹𝑖 (𝑥)
70 else if 𝑥 ∈ M2.𝐶𝐹𝑖 and (𝑖, 𝑥) ∉M2.MiddlePoints then
71 S2.𝐶𝐹𝑖 (𝑥) ← M2.𝐶𝐹𝑖 (𝑥)
72 else
73 The game aborts.
74 S2.EnqueueNewChain(𝑖, 𝑥)
75 Return S2.𝐶𝐹𝑖 (𝑥)

76 private procedure S2.Complete (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
77 if (𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∈ M2.CompletedChains and 𝑢 = 7𝑛 then
78 The game aborts.
79 else if (𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∈ M2.CompletedChains and 𝑢 = 4𝑛 then
80 Copy the full subverted chain containing (𝑠, 𝑥𝑠 , 𝑥𝑠+1) inM2.𝐶𝐹 to S2.𝐶𝐹
81 else
82 (𝑥𝑢−2, 𝑥𝑢−1) := S2.EvaluateForward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢)
83 (𝑥𝑢+2, 𝑥𝑢+3) := S2.EvaluateBackward(𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢)
84 S2.Adapt(𝑥𝑢−2, 𝑥𝑢−1, 𝑥𝑢+2, 𝑥𝑢+3, 𝑢)

85 private procedure S2.Adapt(𝑥𝑢−2, 𝑥𝑢−1, 𝑥𝑢+2, 𝑥𝑢+3, 𝑢):
86 𝑥𝑢 := 𝑥𝑢−2 ⊕ S2.𝐶𝐹Inner (𝑢 − 1, 𝑥𝑢−1)
87 𝑥𝑢+1 := 𝑥𝑢+3 ⊕ S2.𝐶𝐹Inner (𝑢 + 2, 𝑥𝑢+2)
88 if 𝑥𝑢 ∉ S2.𝐶𝐹𝑢, 𝑥𝑢+1 ∉ S2.𝐶𝐹𝑢+1 then
89 S2.𝐶𝐹𝑢 (𝑥𝑢) ← 𝑥𝑢−1 ⊕ 𝑥𝑢+1
90 S2.𝐶𝐹𝑢+1 (𝑥𝑢+1) ← 𝑥𝑢 ⊕ 𝑥𝑢+2
91 if 𝑥𝑢 ∉M2.𝐶𝐹𝑢 and 𝑥𝑢+1 ∉M2.𝐶𝐹𝑢+1 then
92 M2.𝐶𝐹𝑢 (𝑥𝑢) ← S2.𝐶𝐹𝑢 (𝑥𝑢)
93 M2.𝐶𝐹𝑢 (𝑥𝑢+1) ← S2.𝐶𝐹𝑢+1 (𝑥𝑢+1)
94 else
95 The game aborts.
96 else
97 The game aborts.
98 if S2.𝐶�̃�Inner (𝑢, 𝑥𝑢) = S2.𝐶𝐹𝑢 (𝑥𝑢) and

S2.𝐶�̃�Inner (𝑢 + 1, 𝑥𝑢+1) = S2.𝐶𝐹𝑢+1 (𝑥𝑢+1) then
99 S2.CompletedChains := S2.CompletedChains ∪ {(𝑢, 𝑥𝑢, 𝑥𝑢+1)}

100 else
101 The game aborts.
102 𝑄𝑢 := 𝑄𝑢 (𝑥𝑢) and 𝑄𝑢+1 := 𝑄𝑢+1 (𝑥𝑢+1)
103 if (𝑢, 𝑥𝑢) ∈ ∪8𝑛

𝑗=1𝑄 𝑗/𝑄𝑢 or (𝑢 + 1, 𝑥𝑢+1) ∈ ∪8𝑛
𝑗=1𝑄 𝑗/𝑄𝑢+1 then

104 The game aborts.
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1 public procedure 𝑅𝐹 (𝑥0, 𝑥1):
2 if (↓, 𝑥0, 𝑥1) ∉ 𝑅𝐹 then
3 M3.Complete (0, 𝑥0, 𝑥1, 4𝑛)
4 Return 𝑅𝐹 (↓, 𝑥0, 𝑥1)

5 public procedure 𝑅𝐹−1 (𝑥8𝑛, 𝑥8𝑛+1):
6 if (↑, 𝑥8𝑛, 𝑥8𝑛+1) ∉ 𝑅𝐹 then
7 M3.Complete (8𝑛, 𝑥8𝑛, 𝑥8𝑛+1, 4𝑛)
8 Return 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1)

9 private procedureM3.Complete (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
10 if 𝑠 = 0 then
11 while 𝑠 ≠ 8𝑛 do
12 𝑥𝑠+2 := 𝑥𝑠 ⊕M3.𝐶�̃�Inner (𝑠 + 1, 𝑥𝑠+1)
13 if 3𝑛 ≤ 𝑠 + 1 ≤ 5𝑛 andM3.𝐶𝐹𝑠+1 (𝑥𝑠+1) ≠ 𝑥𝑠 ⊕ 𝑥𝑠+2 then
14 The game aborts.
15 if 3𝑛 ≤ 𝑠 + 1 ≤ 5𝑛 then
16 M3.MiddlePoints =M3.MiddlePoints ∪ (𝑠 + 1, 𝑥𝑠+1)
17 if 𝑠 + 1 = 𝑢, 𝑢 + 1 then
18 M3.AdaptedPoints =M3.AdaptedPoints ∪ (𝑠 + 1, 𝑥𝑠+1)
19 M3.CompletedChains :=

M3.CompletedChains ∪ {(𝑠 + 1, 𝑥𝑠+1, 𝑥𝑠+2)}
20 𝑠 := 𝑠 + 1
21 else
22 while 𝑠 ≠ 0 do
23 𝑥𝑠−1 := 𝑥𝑠+1 ⊕M3.𝐶�̃�Inner (𝑠, 𝑥𝑠)
24 if 3𝑛 ≤ 𝑠 ≤ 5𝑛 andM3.𝐶𝐹𝑠 (𝑥𝑠) ≠ 𝑥𝑠+1 ⊕ 𝑥𝑠−1 then
25 The game aborts.
26 if 3𝑛 ≤ 𝑠 ≤ 5𝑛 then
27 M3.MiddlePoints =M3.MiddlePoints ∪ (𝑠, 𝑥𝑠)
28 if 𝑠 = 𝑢, 𝑢 + 1 then
29 M3.AdaptedPoints =M3.AdaptedPoints ∪ (𝑠, 𝑥𝑠)
30 M3.CompletedChains :=M3.CompletedChains∪{(𝑠−1, 𝑥𝑠−1, 𝑥𝑠)}
31 𝑠 := 𝑠 − 1
32 while 3𝑛 ≤ 𝑖 ≤ 5𝑛 do
33 if (𝑖, 𝑥𝑖) ∈ ∪8𝑛

𝑗=1𝑄 𝑗/𝑄𝑖 then
34 The game aborts.
35 𝑅𝐹 (↓, 𝑥0, 𝑥1) := (𝑥8𝑛, 𝑥8𝑛+1)
36 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1) := (𝑥0, 𝑥1)
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32 private procedure S3.Complete (𝑠, 𝑥𝑠 , 𝑥𝑠+1, 𝑢):
33 if (𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∈ M3.CompletedChains and 𝑢 = 7𝑛 then
34 The game aborts.
35 else if (𝑠, 𝑥𝑠 , 𝑥𝑠+1) ∈ M3.CompletedChains and 𝑢 = 4𝑛 then
36 Copy the full subverted chain containing (𝑠, 𝑥𝑠 , 𝑥𝑠+1) inM3.𝐶𝐹 to S3.𝐶𝐹
37 else
38 𝑖 := 𝑠

39 while 𝑠 ≤ 𝑖 ≤ 8𝑛 do
40 if 𝑖 + 1 = 𝑢 or 𝑖 + 1 = 𝑢 + 1 then
41 if 𝑥𝑖+1 is in S3.𝐶𝐹𝑖+1 orM3.𝐶𝐹𝑖+1 then
42 The game aborts.
43 𝑥𝑖+2 := 𝑥𝑖 ⊕ S3.𝐶�̃�Inner (𝑖 + 1, 𝑥𝑖+1)
44 if 𝑖 + 1 = 𝑢 or 𝑖 + 1 = 𝑢 + 1 then
45 if S3.𝐶𝐹Inner (𝑖 + 1, 𝑥𝑖+1) ≠ S3.𝐶�̃�Inner (𝑖 + 1, 𝑥𝑖+1) then
46 The game aborts.
47 S3.CompletedChains := S3.CompletedChains ∪ {(𝑖 + 1, 𝑥𝑖+1, 𝑥𝑖+2)}
48 𝑖 := 𝑖 + 1
49 𝑗 := 𝑠

50 while 0 ≤ 𝑗 ≤ 𝑠 do
51 if 𝑗 = 𝑢 or 𝑗 = 𝑢 + 1 then
52 if 𝑥 𝑗 is in S3.𝐶𝐹 𝑗 orM3.𝐶𝐹 𝑗 then
53 The game abort.
54 𝑥 𝑗−1 := 𝑥 𝑗+1 ⊕ S3.𝐶�̃�Inner ( 𝑗 , 𝑥 𝑗 )
55 if 𝑗 = 𝑢 or 𝑗 = 𝑢 + 1 then
56 if S3.𝐶𝐹Inner ( 𝑗 , 𝑥 𝑗 ) ≠ S3.𝐶�̃�Inner ( 𝑗 , 𝑥 𝑗 ) then
57 The game aborts.
58 S3.CompletedChains := S3.CompletedChains ∪ {( 𝑗 − 1, 𝑥 𝑗−1, 𝑥 𝑗 )}
59 𝑗 := 𝑗 − 1
60 if (𝑢, 𝑥𝑢) ∈ ∪8𝑛

𝑗=1𝑄 𝑗/𝑄𝑢 or (𝑢 + 1, 𝑥𝑢+1) ∈ ∪8𝑛
𝑗=1𝑄 𝑗/𝑄𝑢+1 then

61 The game aborts.
62 𝑅𝐹 (↓, 𝑥0, 𝑥1) := (𝑥8𝑛, 𝑥8𝑛+1)
63 𝑅𝐹 (↑, 𝑥8𝑛, 𝑥8𝑛+1) := (𝑥0, 𝑥1)
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