
Practical Batch Proofs of Exponentiation
Charlotte Hoffmann

charlotte.hoffmann@ist.ac.at

Institute of Science and Technology

Austria

Klosterneuburg, Austria

Pavel Hubáček

hubacek@math.cas.cz

Institute of Mathematics,

Czech Academy of Sciences

Charles University,

Faculty of Mathematics and Physics

Prague, Czech Republic

Svetlana Ivanova

ivanovsv@o365.cuni.cz

Charles University,

Faculty of Mathematics and Physics

Prague, Czech Republic

ABSTRACT
A Proof of Exponentiation (PoE) allows a prover to efficiently con-

vince a verifier that 𝑦 = 𝑥𝑒 in some group of unknown order. PoEs

are the basis for practical constructions of Verifiable Delay Func-

tions (VDFs), which, in turn, are important for various higher-level

protocols in distributed computing. In applications such as dis-

tributed consensus, many PoEs are generated regularly, motivating

protocols for secure aggregation of batches of statements into a

few statements to improve the efficiency for both parties. Rotem

(TCC 2021) recently presented two such generic batch PoEs.

In this work, we introduce two batch PoEs that outperform

both proposals of Rotem and we evaluate their practicality. First,

we show that the two batch PoEs of Rotem can be combined to

improve the overall efficiency by at least a factor of two. Second, we

revisit the work of Bellare, Garay, and Rabin (EUROCRYPT 1998)

on batch verification of digital signatures and show that, under the

low order assumption, their bucket test can be securely adapted to

the setting of groups of unknown order. The resulting batch PoE

quickly outperforms the state of the art in the expected number of

group multiplications with the growing number of instances, and it

decreases the cost of batching by an order of magnitude already for

hundreds of thousands of instances. Importantly, it is the first batch

PoE that significantly decreases both the proof size and complexity

of verification. Our experimental evaluations show that even a non-

optimized implementation achieves such improvements, which

would match the demands of real-life systems requiring large-scale

PoE processing.

Finally, even though our proof techniques are conceptually simi-

lar to Rotem, we give an improved analysis of the application of the

low order assumption towards secure batching of PoE instances,

resulting in a tight reduction, which is important when setting the

security parameter in practice.

CCS CONCEPTS
• Security and privacy→Mathematical foundations of cryp-
tography;Distributed systems security; Public key (asymmet-
ric) techniques.
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1 INTRODUCTION
In recent years, various “time-based” cryptographic schemes were

constructed relying on verifiable delay functions – functions as-

sumed to be sequentially hard, i.e., that they cannot be computed

faster than a prescribed amount of time, while their output can be

efficiently verified given a succinct proof. Example applications in-

clude the design of blockchains [14], randomness beacons [34, 37],

proofs of data replication [8], computational time-stamping [13, 29]

and short-lived zero-knowledge proofs and signatures [1]. Although

the constructions and applications of such schemes are numerous,

the known sources of sequential hardness are still relatively scarce.

The core computational hardness assumption is the heuristic as-

sumption about the inherent sequentiality of repeated squaring in

groups of unknown order due to Rivest, Shamir, and Wagner [35],

i.e., that computing 𝑥2
𝑇
in a group of unknown order cannot be

significantly sped up below 𝑇 group operations even leveraging

parallelism.

Pietrzak [32] and Wesolowski [43] recently demonstrated the

first protocols for proving that a repeated squaring instance has

been computed correctly even without the knowledge of the group

order. Such Proofs of Exponentiation (PoEs) consist of few group

elements, and verifying their correctness is much faster than re-

computing the repeated squaring instance – usually logarithmic in

the number of squarings required to compute the result.

One practically important feature of PoEs is that many state-

ments can be efficiently aggregated to a single statement. In par-

ticular, 𝑚 statements 𝑦1 = 𝑥𝑒
1
, . . . , 𝑦𝑚 = 𝑥𝑒𝑚 can be represented

by a single aggregate statement

∏𝑚
𝑖=1 𝑦𝑖 =

(∏𝑚
𝑖=1 𝑥𝑖

)𝑒
. This prop-

erty suggests that one might be able to construct batch Proofs of

Exponentiation, i.e., secure aggregation protocols that allow one

to verify many statements by checking a single PoE. Clearly, the

above naive aggregation does not have any meaningful security

properties – it is easy to produce incorrect statements that would

be aggregated into a valid statement, e.g., by randomly permuting

the correct 𝑦𝑖 ’s. However, a sound batching procedure can be con-

structed by randomizing the aggregation using a suitable vector of

exponents 𝑟1, . . . , 𝑟𝑚 ∈ Z𝑝 and considering the batched statement∏𝑚
𝑖=1 𝑦

𝑟𝑖
𝑖

=

(∏𝑚
𝑖=1 𝑥

𝑟𝑖
𝑖

)𝑒
.

Notice that, in the extreme case where the randomization ex-

ponents are uniformly random bits 𝑟1, . . . , 𝑟𝑚 ∈ Z2, the procedure
amounts to the naive aggregation performed on a random subset

of the original statements. However, it already achieves soundness

error
1

2
for an arbitrary collection of statements.

1
There are two

natural approaches for boosting the soundness (i.e., reducing the

1
This can be seen by the following argument: Suppose that the 𝑖-th statement is false

and batch all statements except for the 𝑖-th one. Denote by 𝑏 the uniformly random

bit determining whether the 𝑖-th statement is multiplied to the batched statement or

not. If the batched statement is correct, then it will remain correct if and only if 𝑏 = 0.

If it is wrong, one needs at least that 𝑏 = 1 for it to become correct. In both cases, the

probability of resulting in a correct statement is at most
1

2
.
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soundness error). In applications requiring statistical security, 𝜆

parallel instances of the random subset approach can be run to get

soundness error 2
−𝜆

. We refer to the parallel repetition variant of

the random subset approach as the Random Subsets Protocol. It was
independently suggested by Block et al. [7] and Rotem [36].

The overhead stemming from the 𝜆 parallel repetitions can be

avoided when one is willing to settle for computational sound-

ness guarantees from the batching process. In particular, one can

perform a single randomized batching using exponents from a suf-

ficiently large set, which is computationally sound, assuming that

the adversary cannot efficiently produce group elements of low

order. The corresponding batch PoE, which we call the Random
Exponents Protocol, was proposed and analysed by Rotem [36].

The practical efficiency of the resulting batch PoE ultimately

depends on the number of group multiplications performed. When

raising the instances to uniformly random ℓ-bit exponents before

computing their product, one has to perform 1.5ℓ multiplications in

expectation per each exponentiation. Thus, for ℓ = 𝜆, the Random

Subsets Protocol based on computing products of 𝜆 random subsets

results (in expectation) roughly in half as much work as in the Ran-

dom Exponents Protocol that raises each statement to a random 𝜆

exponent before computing their product. However, when batching

via the Random Subsets Protocol, 𝜆 proofs have to be constructed

and verified, while the Random Exponents Protocol results in a

single PoE. Note that proofs can be efficiently verified, but the con-

struction is not as efficient, so proving 𝜆 many statements instead

of one yields a significant loss in the prover’s efficiency in practice.

Hence, the above two batch PoEs from the literature give a trade-off

for the complexities of the verifier and prover.

To evaluate the improvement achieved by the above batch PoEs,

we need to compare them to the baseline when one disregards

any attempt at batching and simply verifies all PoEs, which, e.g.,

avoids any implementation overhead of batching. Clearly, batch

PoEs minimize the storage requirement, as instead of storing 𝑚

proofs, one can store 𝜆 or even a single proof. Below, we discuss the

number of expected multiplications per instance in the PoEs from

Pietrzak [32] and Wesolowski [43] to compare with the verification

complexity in the known batch PoEs.

Verification cost of Wesolowski’s PoEs. Wesolowski’s proof con-

tains a single group element 𝜋 , and the verifier needs to verify a

single group identity 𝑦 = 𝜋𝑠𝑥𝑟 , where 𝑠 and 𝑟 are ℓ-bit integers.

This can be done using at most 3ℓ + 1multiplications in expectation.

Thus, if we set ℓ to the security parameter 𝜆, then the expected

multiplication overhead of verifying proofs for all𝑚 instances is

roughly the same as in the Random Exponents Protocol. However,

for the non-interactive variant of Wesolowski’s protocol, it is nec-

essary to set ℓ = 2𝜆 due to an attack by Boneh, Bünz, and Fish [9]

Therefore, the Random Exponents Protocol is likely to speed up

the batch verification process by a factor of two in practice.
2

Verification cost of Pietrzak’s PoEs. Pietrzak’s proof is based on

an interactive folding approach that proceeds in log𝑇 rounds for

statements of the form 𝑦 = 𝑥2
𝑇
. Given 𝑥𝑖 and 𝑦𝑖 constructed in

2
There might be additional gains since, when verifying the Wesolowski’s proof, the

verifier needs to additionally perform some computation, which induces non-trivial

overhead. Attias et al. [3] reported that, for most parameters, the additional overhead

might amount to at least half of the verification time (see Table 1 in [3]).

round 𝑖 , the verifier needs to construct a new statement with 𝑥𝑖+1 =
𝑥𝑟
𝑖
· 𝜇 and 𝑦𝑖+1 = 𝜇𝑟 · 𝑦𝑖 , where 𝑟 is an ℓ-bit integer. This can be

perfomed using at most 3ℓ + 2multiplications in expectation. In the

final round, the verifier checks a group identity of the form 𝑦 = 𝑥2

using a single multiplication. Thus, the overall multiplication cost

can be estimated as (3ℓ + 2) log𝑇 . Due to the dependency on the

time delay parameter 𝑇 , the effects of batching would be more

pronounced for Pietrzak’s PoE.

Practical importance of batch PoEs. In higher-level protocols,

many PoE proofs are commonly generated, and there is a clear

incentive to batch them to minimize the communication complex-

ity as well as the computational overhead for the users. For example,

PoE-based VDFs can be used in the design of distributed consen-

sus protocols together with “time-less” primitives such as Proof of

Space [15]. Consider the Chia Network [26] blockchain that cur-

rently generates 32 VDF proofs in expectation every 10 minutes

and has a block length of around 4.8 million blocks. One possi-

ble application of batch PoEs for such blockchains is for efficient

onboarding of new users with “light” clients. Specifically, miners

could provide a single batch PoE for all intermediate PoE state-

ments. Thus, the storage overhead and clients’ computation are

reduced simultaneously.

1.1 Our Contributions
In this work, we present two new approaches for batching PoEs

that improve over the above protocols in various ways.

The Hybrid Protocol. The first approach, which we call theHybrid
Protocol, is a natural combination of the two approaches above. It

only slightly increases the work performed by the verifier compared

to the Random Subsets Protocol but results in a single PoE proof

that has to be constructed and verified. Specifically, using the Ran-

dom Subsets Protocol described above,𝑚 instances are first batched

to 𝜆 instances, which are then batched to a single PoE instance via

the Random Exponents approach with 𝜆-bit exponents. Our experi-

ments show that this new batch PoE, while very easy to implement,

is already roughly twice as fast as the Random Exponents Protocol.

The Bucket Protocol. The second approach, which we call the

Bucket Protocol, can be seen as an optimization of the Hybrid Pro-

tocol that, for a large enough number of instances, is one order of

magnitude faster than the random exponents approach and five

times faster than the random subsets approach. It is based on a

protocol of Bellare, Garay and Rabin [6] for batch verification of

signatures in prime-order groups. The main difference to our con-

struction is that we ultimately aggregate all statements into one,

such that only one proof needs to be computed and verified in the

end, while the original batching of Bellare et al. yields multiple

proofs that need to be verified in parallel.

The main idea of the Bucket Protocol is to optimize the number

of multiplications incurred in the Random Subsets Protocol by

decreasing the number of parallel repetitions as follows: In the

Random Subsets Protocol, a new PoE statement is constructed by

taking a random subset of the𝑚 original PoE statements, which

is of expected size half the number of instances, and computing

the product of the statements in the subset. Given 𝑚 instances,

repeating this step 𝜆 times to amplify the soundness results in

2
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𝜆𝑚/2 multiplications in expectation. In the Bucket Protocol, each

of the𝑚 instances is assigned uniformly at random to one of𝐾 = 2
𝑘

buckets, where 𝑘 is a parameter of the protocol. Each bucket then

gives rise to a new statement by taking the product of the statements

that are assigned to that bucket, and the resulting 𝐾 instances are

then batched via the Random Exponents Protocol using random

exponents of size 𝑘 . The soundness analysis shows that, in this case,

𝜌 ≈ 𝜆/𝑘 parallel repetitions are sufficient, reducing the number of

statement multiplications from 𝜆𝑚/2 to 𝜌𝑚, whereas the number of

exponentiations is independent of𝑚. In particular, for any specific

number of statements𝑚, we can find the best 𝑘 that minimizes the

number of group multiplications. We discuss the optimal choice of

𝑘 and its effect on performance in Section 5.

The soundness analysis. Our soundness analysis of the Bucket
Protocol differs from Bellare et al. as they considered the setting of

prime-order groups, whereas we analyze the protocol in groups of

hidden order. The main tool we use in the soundness analysis of our

protocols is a technical lemma (Lemma 2) which (informally) states

that an adversary can only win the following game with probability

at most 1 over the size of the randomness space or by breaking the

low order assumption: Output a set of statements, of which at least

one is incorrect, and which yield a correct statement after raising

them to random exponents and multiplying them. The intuition

behind the proof is the following: If the statement𝑦
?

= 𝑥𝑒 is incorrect

in a group, then you can think of the group element 𝑦 as being

obtained by multiplying the correct result by another “bad” element.

This holds without loss of generality, because every element has

an inverse in a group. Now, if you raise the statement to a random

exponent 𝑟 , then the bad element vanishes from the equation if and

only if 𝑟 is a multiple of its order, which happens with probability

approximately 1 over the order. Rotem proves a similar lemma

in [36]. However, his reduction from the low order assumption

incurs a quadratic loss in the winning probability because it guesses

the order of the low order element it outputs. We observe that,

whenever the winning probability of the adversary is not negligible,

the reduction can efficiently find the order of the element it outputs

and, hence, it has the same winning probability as the adversary.

Furthermore, the lemma in [36] depends on the bound on the order

of low-order elements in the assumption, i.e., the bound that defines

when an element is considered of “low-order”. We remove this

dependency as it is not needed for the analysis, and thereby clarify

the role of the different parameters.

Overview of all protocols. In Figure 1, we visualise the various

batching approaches. All protocols run on𝑚 PoE instances repre-

sented by the black squares.

Random Subsets Protocol (Figure 1a): The prover computes

the product of 𝜆 independent uniformly random subsets

of the instances sampled by the verifier and outputs PoE

proofs for all 𝜆 resulting PoE instances represented by the

gray squares.

Random Exponents Protocol (Figure 1b): The prover com-

putes the product of the original instances after raising

them to uniformly random 𝜆-bit exponents. The thicker

arrows compared to the first subfigure correspond to the

higher cost of the exponentiation in terms of group opera-

tions (i.e., 1.5𝜆 group multiplications in expectation).

Hybrid Protocol (Figure 1c): The prover uses the Random

Exponents Protocol to batch the 𝜆 statements produced by

the Random Subsets Protocol. Crucially, the more costly

exponentiation to 𝜆-bit uniformly random exponents is

always performed only to 𝜆 statements independently of

the total number of instances𝑚.

Bucket Protocol (Figure 1d): First, there are only 𝜌 ≈ 𝜆/𝑘
parallel repetitions of the step when the initial 𝑚 state-

ments are placed in the 2
𝑘
buckets. Second, the batched

instances corresponding to each bucket are batched using

“small” 𝑘-bit uniformly random exponents. Finally, the most

costly Random Exponents Protocol is run to batch only 𝜌

instances.

1.2 Related Work
Batch verification of digital signatures. A related line of work

initiated by Fiat [18] considers the batch verification of many digi-

tal signatures. See Camenish, Hohenberger, and Pedersen [10] for

a historical overview of this line of work. Bellare, Garay, and Ra-

bin [6] presented a set of protocols for batch verification of modular

exponentiation in prime-order groups. For a generator 𝑔 of a group

G, they consider the problem of verifying statements of the form

𝑦1 = 𝑔𝑒1 , . . . , 𝑦𝑚 = 𝑔𝑒𝑚 . Importantly, they work in groups with a

publicly known order, and wish to batch verify exponentiations

with a fixed base and varying exponents. However, their protocols

can also be adapted to the relevant setting relevant for VDFs. Di

Crescenzo et al. [16] extended the small exponent protocol of [6]

to the setting of safe prime RSA groups. However, their proof size

is linear in the number of statements to be batched.

Efficient multi-exponentiation. Group multi-exponentiation, i.e.,

evaluation of products of the form

∏𝑘
𝑖=1 𝑔

𝑒𝑖
𝑖
, has long been rec-

ognized as an important algorithmic task in cryptography. Going

back to Straus [41] and Pippenger [33], various algorithms for multi-

exponentiation were proposed (see Möller [31] and Henry [21] and

the references therein). Attias et al. [4] recently presented an exper-

imental evaluation of the known multi-exponentiation algorithms

on various architectures. We discuss the effects of more efficient

multi-exponentiation algorithms on our protocols in Section 5.1.

Constructions of PoEs. Even though proofs of exponentiation

were introduced only recently, there are already several construc-

tions for different applications. The first two PoEs were introduced

concurrently by Wesolowski [43] and Pietrzak [32] in the context

of VDFs. Block et al. [7] presented the first statistically-sound PoE

in any group, which is needed as a building block in a polynomial

commitment. The PoE in [23] is built on their protocol and reduces

the complexity for a special choice of exponent. The PoE in [24]

works in an extension field of Z𝑁 and is used to build a VDF where

the delay property relies on a potentially weaker assumption than

iterated squaring. In [25] a PoE for Proth number groups is pre-

sented to certify proofs of non-primality to improve the efficiency

of large-scale distributed projects for computational number theory.

Batching of PoEs. The PoEs in [7, 23] achieve statistical sound-

ness via a parallel repetition of Pietrzak’s PoE and can be easily

3
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1 2 3 · · · m 1 2 3 · · · m 1 2 3 · · · m

1 2
· · ·

λ

π1 π2 πλ

(a) Random Subsets Protocol [7, 36] (Figure 2)

1 2 3 · · · m

1

π

(b) Random Exponents Protocol [36] (Figure 3)

1 2 3 · · · m 1 2 3 · · · m 1 2 3 · · · m

1 2
· · ·

λ

1

π

(c) Hybrid Protocol (Figure 4)

1 2 3 · · · m 1 2 3 · · · m

1 2 · · · 2k 1 2 · · · 2k

1 ρ

1

π

(d) Bucket Protocol (Figure 5)

Figure 1: Depiction of the known (top) and new (bottom) batch Proofs of Exponentiation. Squares represent PoE instances. The
thickness of full arrows highlights the cost in group operations, i.e., thicker arrows correspond to less efficient aggregation.
Dashed arrows represent computation of the final PoE(s).

modified to prove arbitrarily many statements at once, resulting in

the Hybrid Protocol. Rotem [36] concurrently presented a similar

batching technique as [7] and the Random Exponents Protocol. His

protocols can be viewed as adaptations of two protocols in [6] to

groups in which the low order assumption holds. Similarly, the

most efficient protocol in our work is an adaptation of a protocol

in [6] to those groups. The main difference is that the protocols

in [6] are constructed for and analyzed in prime-order groups. We

note that the batching protocol in [23] is the only one that works

for statements with different exponents, but it specifically uses

Pietrzak’s PoE, whereas the other batching protocols are more

flexible as to which PoE is run after aggregating the statements.

Therefore, constructing a general batching protocol that handles

different exponents remains an open problem.

Other VDFs. There are several candidate VDFs with sequentiality
not based on iterated squaring, such as the permutation-polynomial

based construction [8], the isogenies-based constructions [11, 17,

40] and the constructions from lattice problems [12, 28]. The con-

structions in [17, 40] work in the algebraic setting of isogenies of

elliptic curves. Although these constructions provide a certain form

of quantum resistance, they are presently far from efficient. Freitag

et al. [20] constructed VDFs from any sequentially hard function

and polynomial hardness of learning with errors, the first from stan-

dard assumptions. The works of Cini, Lai, and Malavolta [12, 28]

constructed the first VDF from lattice-based assumptions and con-

jectured it to be post-quantum secure. Finally, some VDF candidates

rely on “arithmetization friendly” symmetric primitives and prac-

tically efficient SNARKs [8, 27, 38]. However, the sequentiality of

SNARK-based VDFs is yet to be understood, as shown, e.g., by the

recent analysis of MinRoot [30].

Assumptions in hidden order groups. The low order assumption in

RSA groups is analyzed in [39]. The authors give equivalence results

for weaker forms of the low order assumption and the factoring

assumption for a non-negligible portion of moduli. The low order

assumption in class groups is analyzed in [5]. The authors show

that it is broken for Mersenne primes and other special forms of

prime numbers.

Performance of PoEs in Practice. Attias, Vigneri, and Dimitrov [2]

reported on the practical performance of verification for two PoEs

in the context of Verifiable Delay Functions in RSA groups. The

verification time for Wesolowski’s VDF can be further optimized in

RSA groups, e.g., as suggested by Attias et al. [3].

2 PRELIMINARIES
In the rest of the paper, we let 𝜆 denote a security parameter. We use

[𝑛] := {1, . . . , 𝑛} to denote the set of all positive integers smaller

than or equal to 𝑛.

4
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Low order assumption. The following assumption was first for-

malized in [9]. It states that, in certain groups, it is (computationally)

hard to find elements of low order.

Definition 1 (low order assumption). Let GGen(1𝜆) be a random-

ized algorithm that outputs the description of a groupG of unknown

order. We say that the low order assumption holds for GGen if, for
any probabilistic polynomial-time algorithm A, the probability of

winning the following game is negligible in 𝜆:

(1) A takes as input the description of a group G output by

GGen(1𝜆).
(2) A outputs a pair (𝑑, 𝛼) ∈ [2𝜆] × G.
(3) A wins if and only if 𝛼 ≠ 1 and 𝛼𝑑 = 1.

Multiplication cost of group exponentiation. A commonly used

technique for group exponentiation is the square-and-multiply

algorithm. The multiplication cost of computing 𝑥𝑒 is at most

⌊log(𝑛)⌋ +𝑤 (𝑒) ⌊log(𝑛)⌋, where 𝑛 is the bit length of 𝑒 and𝑤 (𝑒) its
Hamming weight (see, e.g., [42]). Therefore, when raising group

elements to exponents of bit length 𝑛, we will use 1.5 log(𝑛) as an
upper bound on the expected number of multiplications.

Interactive proofs. For the formal analysis, we rely on the follow-

ing standard notions from the context of interactive proof systems.

Definition 2 (interactive proof). For a function 𝜀 : N→ [0, 1], an
interactive proof for a language 𝐿 is a pair of interacting algorithms

(P,V), whereV is a PPT algorithm, which satisfies the following

properties:

• Completeness: For every 𝑥 ∈ 𝐿, ifV interacts with P on

the common input 𝑥 , thenV accepts with probability 1.

• Soundness: For every 𝑥 ∉ 𝐿 and every (computationally

unbounded) cheating prover strategy P̃, the verifier V
accepts when interacting with P̃ with probability less than

𝜀 ( |𝑥 |), where 𝜀 is called the soundness error.

Definition 3 (proof of exponentiation). A proof of exponentiation
(PoE) in a group G is an interactive proof for the language

𝐿 = {(𝑥,𝑦, 𝑒) ∈ G2 × N | 𝑥𝑒 = 𝑦}.

Definition 4 (batch proof of exponentiation). A batch proof of
exponentiation for𝑚 statements in a group G is an interactive proof

for the language

𝐿 = {{(𝑥𝑖 , 𝑦𝑖 , 𝑒)}𝑖∈[𝑚] ∈ {G2 × N}𝑚 | 𝑥𝑒𝑖 = 𝑦𝑖 for all 𝑖 ∈ [𝑚]}.

In the paper, we sometimes use the term batching protocol to
refer to a batch proof of exponentiation.

Known Batch Proofs of Exponentiation. Next, we present formally

the Random Subsets Protocol by [7, 36] (Figure 2) and the Random

Exponents Protocol by [36] (Figure 3) discussed on Section 1. Both

of these protocols are adaptations of protocols from [6] to the setting

of hidden order groups.

Optimizations of communication complexity. For ease of exposi-
tion, we present batching protocols in their interactive form. A

non-interactive batch PoE can be obtained via the Fiat-Shamir

heuristic [19], i.e., by deriving the verifier’s challenges from the

statements and current transcript via a suitable hash function. This

is commonly done in constructions of PoE-based VDFs.

Parameters:
(1) group G
(2) common exponent 𝑒

(3) number of statements𝑚

(4) number of repetitions of subset multiplications 𝜌

Statements:
{
𝑦𝑖

?

= 𝑥𝑒
𝑖

}
𝑖∈[𝑚]

in G

Protocol:
(1) V samples a matrix 𝐵 ← {0, 1}𝜌×𝑚 uniformly at

random and sends it to P.
(2) V and P both construct new statements{

𝑦′
𝑖

?

= (𝑥 ′
𝑖
)𝑒
}
𝑖∈[𝜌 ]

, where

𝑦′𝑖 =
∏
𝑗∈[𝑚]

𝑦
𝐵𝑖,𝑗
𝑗

and 𝑥 ′𝑖 =
∏
𝑗∈[𝑚]

𝑥
𝐵𝑖,𝑗
𝑗

.

(3) V and P run 𝜌 many PoE on statements{
𝑦′
𝑖

?

= (𝑥 ′
𝑖
)𝑒
}
𝑖∈[𝜌 ]

in parallel.

Figure 2: The Random Subsets Protocol [7, 36].

Parameters:
(1) group G
(2) common exponent 𝑒

(3) number of statements𝑚

(4) size of random coins ℓ

Statements:
{
𝑦𝑖

?

= 𝑥𝑒
𝑖

}
𝑖∈[𝑚]

in G

Protocol:
(1) V samples a vector 𝑟 ← [2ℓ ]𝑚 uniformly at random

and sends it to P.
(2) V and P both construct one new statement 𝑦

?

= (𝑥)𝑒 ,
where

𝑦 =
∏
𝑖∈[𝑚]

(𝑦𝑖 )𝑟𝑖 and 𝑥 =
∏
𝑖∈[𝑚]

(𝑥𝑖 )𝑟𝑖 .

(3) V and P run PoE on statement 𝑦
?

= (𝑥)𝑒 .

Figure 3: The Random Exponents Protocol [36].

When interaction per se is not an issue, a natural approach for

minimizing the communication complexity from the verifier to the

prover suggested, e.g., in Rotem [36] is for the verifier to sample

a key for a pseudorandom function (PRF), send it to the prover

instead of the challenges, and let the prover derive the verifier’s

messages using the PRF. Similarly to the Fiat-Shamir heuristic, this

optimization can be applied to any public-coin batching protocol

and, in particular, to protocols presented in this work.

3 THE HYBRID PROTOCOL
In this section, we present our first protocol that improves the

number of multiplications over the Random Exponents Protocol

(Figure 3). We exploit the fact that the Random Subsets Protocol

(Figure 2) results in 𝜆 instances that can be securely batched under
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Parameters:
(1) group G
(2) common exponent 𝑒

(3) number of statements𝑚

(4) number of repetitions of subset multiplications 𝜌

(5) size of random coins ℓ

Statements:
{
𝑦𝑖

?

= 𝑥𝑒
𝑖

}
𝑖∈[𝑚]

in G

Protocol:
(1) V samples a matrix 𝐵 ← {0, 1}𝜌×𝑚 and a vector

𝑟 ← [2ℓ ]𝜌 uniformly at random and sends both to P.
(2) V and P both construct new statements{

𝑦′
𝑖

?

= (𝑥 ′
𝑖
)𝑒
}
𝑖∈[𝜌 ]

, where

𝑦′𝑖 =
∏
𝑗∈[𝑚]

𝑦
𝐵𝑖,𝑗
𝑗

and 𝑥 ′𝑖 =
∏
𝑗∈[𝑚]

𝑥
𝐵𝑖,𝑗
𝑗

.

(3) V and P both construct one new statement 𝑦
?

= (𝑥)𝑒 ,
where

𝑦 =
∏
𝑖∈[𝜌 ]

(𝑦′𝑖 )
𝑟𝑖
and 𝑥 =

∏
𝑖∈[𝜌 ]

(𝑥 ′𝑖 )
𝑟𝑖 .

(4) V and P run PoE on statement 𝑦
?

= (𝑥)𝑒 .

Figure 4: Our Hybrid batch proof of exponentiation.

computational hardness assumptions. The resulting Hybrid Proto-

col reduces the number of PoEs needed to one while applying the

random exponents technique solely to 𝜆 instances, i.e., the com-

plexity of the more costly technique is made independent of the

number of batched instances.

The protocol is presented in Figure 4. Completeness follows by

inspection of the protocol. In the rest of the section, we prove its

soundness based on the low order assumption (Definition 1).

Theorem 1. Let PoE be a proof of exponentiation with soundness
error 𝛾 and let G be a group output by GGen(𝜆). Assuming the low
order assumption for GGenwith soundness error 𝜇, the hybrid batching
protocol presented in Figure 4 has soundness error at most 𝛾 + 𝜇 +
2
−𝜌 + 2−𝜆 + 2−ℓ .

Before proving Theorem 1, we state two lemmas that we will

need in the proof. For the proof of Lemma 1, see Block et al. [7].

Lemma 1 ([7, Fact 8.1]). For any groupG and any 𝑥1, . . . , 𝑥𝑛 ∈ G,
where at least one of them is not the identity element, we have

Pr

𝑆←2
[𝑛]

[∏
𝑖∈𝑆

𝑥𝑖 = 1

]
≤ 1

2

.

The second lemma is similar to [36, Lemma 6.2] but the proof

differs. Importantly, Rotem’s reduction incurs a quadratic security

loss, and our reduction is tight.

Lemma 2. Let G be a group and 𝑛, 𝑒, ℓ ∈ N arbitrary positive inte-
gers. Let A be an algorithm that runs in time 𝑡 and, with probability
𝜀, outputs group elements 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ G such that, for at

least one 𝑖 ∈ [𝑛], we have 𝑥𝑒
𝑖
≠ 𝑦𝑖 and

Pr

𝑟1,...,𝑟𝑛←[2ℓ ]


∏
𝑖∈[𝑛]

(
𝑥
𝑟𝑖
𝑖

)𝑒
=

∏
𝑖∈[𝑛]

𝑦
𝑟𝑖
𝑖

 =
1

2
ℓ
+ 𝛿.

Then there exists an algorithm B that runs in time poly(𝑡, log(𝑒), 𝑛,
log(𝛿−1)𝛿−1) and, with probability 𝜀, outputs an element of order at
most 𝛿−1 in G together with its order.

Proof. We let B run A and find one pair (𝑥𝑖∗ , 𝑦𝑖∗ ) for which
𝑥𝑒
𝑖∗ ≠ 𝑦𝑖∗ among the group elements output by A. This takes

time poly(𝑡, log(𝑒), 𝑛). Set 𝑧 = 𝑥𝑒
𝑖∗/𝑦𝑖∗ . We claim that 𝑧 has or-

der at most 𝛿−1. This means that B can find the order in time

poly(log(𝛿−1)𝛿−1) and output 𝑧 together with its order. Clearly,A
and B have the same success probability. It remains to prove the

bound on the order of 𝑧. Let (𝑥𝑖1 , 𝑦𝑖1 ), . . . , (𝑥𝑖𝑠 , 𝑦𝑖𝑠 ) be the pairs for
which 𝑥𝑒

𝑖 𝑗
≠ 𝑦𝑖 𝑗 . Assume without loss of generality that 𝑥𝑒

𝑖 𝑗
= 𝑦𝑖 𝑗 𝑧 𝑗

for some group elements 𝑧1, . . . , 𝑧𝑠 ∈ G. Note that one of those

elements is equal to 𝑧 and denote the corresponding index by 𝑗∗.
We have

1

2
ℓ
+ 𝛿 = Pr

𝑟1,...,𝑟𝑛←[2ℓ ]


∏
𝑖∈[𝑛]

(
𝑥
𝑟𝑖
𝑖

)𝑒
=

∏
𝑖∈[𝑛]

𝑦
𝑟𝑖
𝑖

 (1)

= Pr

𝑟1,...,𝑟𝑛←[2ℓ ]


∏
𝑗∈[𝑠 ]

(
𝑥
𝑟𝑖 𝑗
𝑖 𝑗

)𝑒
=

∏
𝑗∈[𝑠 ]

𝑦
𝑟𝑖 𝑗
𝑖 𝑗

 (2)

= Pr

𝑟1,...,𝑟𝑛←[2ℓ ]


∏
𝑗∈[𝑠 ]
(𝑦𝑖 𝑗 𝑧 𝑗 )

𝑟𝑖 𝑗 =
∏
𝑗∈[𝑠 ]

𝑦
𝑟𝑖 𝑗
𝑖 𝑗

 (3)

= Pr

𝑟1,...,𝑟𝑛←[2ℓ ]


∏
𝑗∈[𝑠 ]

𝑧
𝑟𝑖 𝑗
𝑗

= 1

 (4)

= Pr

𝑟1,...,𝑟𝑛←[2ℓ ]

𝑧𝑟𝑖∗ =
∏

𝑗∈[𝑠 ], 𝑗≠𝑗∗
𝑧
−𝑟𝑖 𝑗
𝑗

 . (5)

Equation (1) holds by assumption. In Equation (2), we only take

the product over the incorrect statements, since the correct state-

ments can be cancelled out in the equation. Equation (3) holds by

definition of 𝑧 𝑗 ’s. Equation (4) follows from cancelling out correct

statements. In Equation (5), we move all elements 𝑧 𝑗 different from

𝑧 to the other side of the equation. The element on the right side of

the equation is either an element of the subgroup generated by 𝑧

or not. If it is not an element of the subgroup, the probability of the

event is 0. Otherwise, let 𝛼 < ord(𝑧) be such that

∏
𝑗∈[𝑠 ], 𝑗≠𝑗∗

𝑧
−𝑟𝑖 𝑗
𝑗

= 𝑧𝛼
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and let 𝑠 be the largest integer such that 𝑠 · ord(𝑧) ≤ 2
ℓ
. Denote

Pr := Pr𝑟𝑖∗←[2ℓ ] . Then we have

(5) ≤ Pr

[
𝑧𝑟𝑖∗ = 𝑧𝛼

]
= Pr

[
𝑧𝑟𝑖∗ = 𝑧𝛼 | 𝑟𝑖∗ ≤ 𝑠 · ord(𝑧)

]
· Pr [𝑟𝑖∗ ≤ 𝑠 · ord(𝑧)]

+ Pr
[
𝑧𝑟𝑖∗ = 𝑧𝛼 | 𝑟𝑖∗ > 𝑠 · ord(𝑧)

]
· Pr [𝑟𝑖∗ > 𝑠 · ord(𝑧)]

≤ 𝑠 · ord(𝑧)
2
ℓ

· 1

ord(𝑧) +
2
ℓ − 𝑠 · ord(𝑧)

2
ℓ

· 1

2
ℓ − 𝑠 · ord(𝑧)

≤ 1

ord(𝑧) +
1

2
ℓ
.

Hence, we obtain that 2
−ℓ + 𝛿 ≤ 1/ord(𝑧) + 2−ℓ and the claim

follows. □

Proof of Theorem 1. Assume that at least one of the initial

statements

{
𝑦𝑖

?

= 𝑥𝑒
𝑖

}
𝑖∈[𝑚]

is incorrect. An adversary that tries to

break soundness of the protocol needs to be successful in one of

the Steps 2,3,4, which means that either in Step 2 or 3 it starts with

at least one wrong statement and at the end of the step all of the

statements are correct or it breaks the soundness of the PoE in

Step 4.

• By Lemma 1, we have that after Step 2 of the protocol at

least one of the statements

{
𝑦′
𝑖

?

= (𝑥 ′
𝑖
)𝑒
}
𝑖∈[𝜌 ]

is incorrect

except with probability at most 1/2𝜌 .
• Assume that at least one of those statements is incorrect

and consider Step 3. Applying Lemma 2 to the statements{
𝑦′
𝑖

?

= (𝑥 ′
𝑖
)𝑒
}
𝑖∈[𝜌 ]

, we get that 𝑦
?

= (𝑥)𝑒 is incorrect except

with probability at most 𝜇+2−𝜆 +2−ℓ . Otherwise, one could
find an element of order smaller than 2

𝜆
with probability

larger than 𝜇, which contradicts the low order assumption.

• In Step 4 of the protocolV and P run a PoEwith soundness
error 𝛾 .

Taking the union bound, we get that the soundness error of the

protocol is at most 𝛾 + 𝜇 +2−𝜌 +2−𝜆 +2−ℓ assuming the 𝜇-low order

assumption. □

On the quality of the low order assumption. As we have just

seen in the proof of Theorem 1, the summand 2
−𝜆

in our upper

bound in the soundness error of the Hybrid Protocol comes from

the assumption that it is hard to find elements of order less than

2
𝜆
(see Definition 1). Note that a weaker variant of the low order

assumption would suffice to get meaningful security. To weaken

the assumption, one can restrict the bound on the order of elements

the adversary can output while winning the game, for example, to

𝜆log𝜆 . This would increase the corresponding term in the bound on

the soundness error from 2
−𝜆

to 𝜆− log𝜆 , which is, however, still

negligible. Similarly, a weaker variant of the low order assumption

suffices also for our soundness analysis of the Bucket Protocol

presented next. For simplicity of presentation, we stick to the bound

of 2
−𝜆

in the low order assumption throughout the rest of the paper.

Parameters:
(1) group G
(2) common exponent 𝑒

(3) number of statements𝑚

(4) number of buckets 𝐾 = 2
𝑘
, where 𝑘 ≤ 𝜆

(5) number of repetitions of bucketings 𝜌 = ⌈𝜆/(𝑘 − 2)⌉
(6) size of random coins ℓ

Statements:
{
𝑦𝑖

?

= 𝑥𝑒
𝑖

}
𝑖∈[𝑚]

in G

Protocol:
(1) V samples two matrices 𝐵 ← [𝐾]𝜌×𝑚 and 𝑅 ←
[𝐾]𝜌×𝐾 and a vector 𝑟 ← [2ℓ ]𝜌 uniformly at random

and sends both to P.
(2) V and P both construct new statements{

𝑦′
𝑖,𝑏

?

= (𝑥 ′
𝑖,𝑏
)𝑒
}
𝑖∈[𝜌 ],𝑏∈[𝐾 ]

, where

𝑦′
𝑖,𝑏

=
∏

𝑗∈[𝑚],𝐵𝑖,𝑗=𝑏
𝑦 𝑗 and 𝑥

′
𝑖,𝑏

=
∏

𝑗∈[𝑚],𝐵𝑖,𝑗=𝑏
𝑥 𝑗 .

(3) V and P both construct new statements{
𝑦′′
𝑖

?

= (𝑥 ′′
𝑖
)𝑒
}
𝑖∈[𝜌 ]

, where

𝑦′′𝑖 =
∏
𝑏∈[𝐾 ]

(𝑦′
𝑖,𝑏
)𝑅𝑖,𝑏 and 𝑥 ′′𝑖 =

∏
𝑏∈[𝐾 ]

(𝑥 ′
𝑖,𝑏
)𝑅𝑖,𝑏 .

(4) V and P both construct one new statement 𝑦
?

= (𝑥)𝑒 ,
where

𝑦 =
∏
𝑖∈[𝜌 ]

(𝑦′′𝑖 )
𝑟𝑖
and 𝑥 =

∏
𝑖∈[𝜌 ]

(𝑥 ′′𝑖 )
𝑟𝑖 .

(5) V and P run PoE on statement 𝑦
?

= (𝑥)𝑒 .

Figure 5: Our Bucket batch proof of exponentiation based on
the bucket test from Bellare et al. [6].

4 THE BUCKET PROTOCOL
In this section, we present an adaptation of the bucket test of Bellare,

Garay, and Rabin [6] to the setting of batch proofs of exponentiation.

The protocol is presented in Figure 5.

Starting with𝑚 statements, the following process is repeated 𝜌 =

⌈𝜆/(𝑘−2)⌉ times: The prover and verifier uniformly at random place

the𝑚 statements into𝐾 = 2
𝑘
buckets and then compute the product

of the statements in each bucket to obtain 𝐾 new statements, which

are aggregated to a single statement using the Random Exponents

Protocol with 𝑘-bit exponents.

After the 𝜌 repetitions, the prover and verifier aggregate the

resulting 𝜌 statements using the Random Exponents Protocol with

𝜆-bit exponents, and they run a proof of exponentiation on the final

statement. This last aggregation step differs from the bucket test

in [6], where the 𝜌 instances are verified directly in parallel instead

of aggregating them to a single statement.

Note that both the prover and verifier must run in polynomial

time in 𝜆, and, thus, they could not keep track of 2
𝜆
buckets. There-

fore, without loss of generality, we use 2
𝜆
as an upper bound on the

number of buckets 𝐾 = 2
𝑘
in the proof of the following theorem.
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Theorem 2. Let PoE be a proof of exponentiation with soundness
error 𝛾 and let G be a group output by GGen(𝜆). Assuming the low
order assumption for GGen with soundness error 𝜇 ≤ 2

−𝑘 − 2−𝜆 , the
bucket batching protocol presented in Figure 5 has soundness error at
most 𝛾 + 𝜇 + 2−𝜆+1 + 2−ℓ .

Proof. Suppose that there is at least one incorrect statement

among

{
𝑦𝑖

?

= 𝑥𝑒
𝑖

}
𝑖∈[𝑚]

. An adversary that tries to break the sound-

ness of the protocol needs to be successful in one of the Steps 2,3,4,5,

which means that either in Step 2, 3 or 4 it starts with at least one

wrong statement and at the end of the step all of the statements are

correct or it breaks the soundness of the PoE in Step 5.

• Following the analysis in [6], we show that after Steps 2 and

3 at least one of the statements

{
𝑦′
𝑖,𝑏

?

= (𝑥 ′
𝑖,𝑏
)𝑒
}
𝑖∈[𝜌 ],𝑏∈[𝐾 ]

is incorrect except with probability 2
−𝜆

. Fix one round

𝑖 ∈ [𝜌] and assume that all statements have been assigned

to a bucket except for one incorrect statement. We call a

bucket good if the product of all statements in that bucket

yields a correct statement. Otherwise, we call it bad. The
event that all 𝐾 buckets are good after that round 𝑖 can only

occur if all but one bucket so far are good: If more than

one bucket is bad, at least one of them cannot become good

after assigning the final missing statement. If all buckets are

good, assigning the final missing statement will make its

bucket bad. In order for all buckets to be good in the end, we

at least need that the final missing statement falls into the

only bad bucket. This occurs with probability 1/𝐾 = 2
−𝑘

.

• Now consider Step 3. Applying Lemma 2 to statements{
𝑦′
𝑖,𝑏

?

= (𝑥 ′
𝑖,𝑏
)𝑒
}
𝑏∈[𝐾 ]

for a fixed 𝑖 ∈ [𝜌], where at least one
of the statements is incorrect, we get that the resulting

statement 𝑦′′
𝑖

?

= (𝑥 ′′
𝑖
)𝑒 is incorrect except with probabil-

ity at most 𝜇 + 2−𝜆 + 2−𝑘 . Otherwise, one could find an

element of order smaller than 2
𝜆
with probability larger

than 𝜇, which contradicts the low order assumption. Tak-

ing the union bound, we get that at least one of the state-

ments

{
𝑦′′
𝑖

?

= (𝑥 ′′
𝑖
)𝑒
}
𝑖∈[𝜌 ]

is wrong except with probability

at most (𝜇 + 2−𝜆 + 2−𝑘 + 2−𝑘 )𝜌 ≤ (2−𝑘+2)𝜌 ≤ 2
−𝜆

since

𝜇 ≤ 2
−𝑘 − 2−𝜆 by assumption.

• Assume that at least one of those statements is incorrect

and consider Step 4. Applying Lemma 2 to the statements{
𝑦′′
𝑖

?

= (𝑥 ′′
𝑖
)𝑒
}
𝑖∈[𝜌 ]

, we get that 𝑦
?

= (𝑥)𝑒 is incorrect, ex-

cept with probability at most 𝜇 + 2−𝜆 + 2−ℓ . Otherwise,
one could find an element of order smaller than 2

𝜆
with

probability larger than 𝜇, which contradicts the low order

assumption.

• In Step 5 of the protocolV and P run a PoEwith soundness
error 𝛾 .

Taking the union bound, we get that the soundness error of the

protocol is at most 𝛾 + 𝜇 + 2−𝜆+1 + 2−ℓ . □

5 COMPARISON
A comparison of no batching and the four batching approaches is

summarised in Table 1. The number of proofs to verify is clear in

all approaches. Next, we explain the expected number of multipli-

cations for each approach. This computation excludes the multipli-

cation cost of the verification of the PoE proof(s) as that depends

on the specific PoE.

Random Subsets: In expectation, the Random Subsets Proto-

col selects subsets of [𝑚] of size𝑚/2, and, thus, it computes

two products of size𝑚/2 per each of the 𝜆 parallel repeti-

tions.

Random Exponents: The𝑚 instances are raised to random

𝜆-bit exponents, which is performed using 1.5𝜆 ·2𝑚 multi-

plications in expectation. Finally, it needs to compute two

products of𝑚 group elements (to construct the resulting

𝑥 ′
𝑖
’s and 𝑦′

𝑖
’s).

Hybrid Protocol: In expectation, the protocol in Figure 4

performs the 𝜆𝑚 multiplications as in the Random Subsets

Protocol. Then, it applies the Random Exponents Protocol

to the resulting 𝜆 instances.

Bucket Protocol: The protocol in Figure 5 performs 𝜌 =

⌈𝜆/(𝑘−2)⌉ repetitions. In total, it takes 2𝜌𝑚multiplications

to produce the instances corresponding to the buckets as,

in each repetition, every instance participates in exactly

one bucket. Then, in each repetition, the 𝐾 = 2
𝑘
bucket

instances are aggregated using the Random Exponents Pro-

tocol with coins of size 𝑘 . Finally, the resulting 𝜌 instances

are merged using the Ranom Exponents Protocol with coins

of size 𝜆.

Note that the approaches are ordered on the basis of their effi-

ciency. The Random Exponents Protocol increases the number of

multiplications compared to the Random Subsets Protocol. However,

it is the first protocol with a single PoE proof. The Hybrid Protocol

achieves the same number of multiplications as the Random Subsets

compiler up to an additive overhead independent of the number of

instances𝑚. Finally, the Bucket Protocol is parameterized by the

number of buckets and enables a trade-off between the number of

multiplications that depend on the number of instances and that

are independent of the number of instances.

For security parameter 𝜆 = 128 and a varying number of PoE

instances𝑚, we plot the relative and total number of group multi-

plications in Figures 6 and 7. For the Bucket Protocol, we compute

with the optimal parameter 𝑘 w.r.t. 𝜆 and each𝑚. Already at one

thousand PoE instances, both the Hybrid Protocol and the Bucket

Protocol significantly decrease the number of expected group multi-

plications compared to the RandomExponents Protocol. TheHybrid

Protocol already achieves roughly a threefold decrease for tens of

thousands of instances, which is the expected gain as can be seen

from Table 1. Due to the varying 𝑘 , the gap between the Random Ex-

ponents Protocol and our Bucket Protocol is increasing. It achieves

a threefold improvement over the Random Exponents Protocol

at a thousand instances, and it decreases the expected number of

multiplications by an order of magnitude at a hundred thousand

instances.
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Table 1: The complexity of various batch PoEs for𝑚 instances with security parameter 𝜆, and 2
𝑘 buckets in the Bucket Protocol.

Protocol # multiplications # proofs

No batching 0 m

Random Subsets 𝜆𝑚 𝜆

Random Exponents (3𝜆 + 2)𝑚 1

Hybrid 𝜆(𝑚 + 3𝜆 + 2) 1

Bucket

⌈
𝜆
𝑘−2

⌉ (
2𝑚 + (3𝑘 + 2)2𝑘 + (3𝜆 + 2)

)
1

Figure 6: The relative number of multiplications on 100 to
10

14 instances compared to the random exponent batching
approach from Rotem [36] when the security parameter is
set to 𝜆 = 128 and the parameter 𝑘 in the Bucket Protocol is
chosen optimally w.r.t. the number of instances.

Table 2: Experimental evaluation of the times (in seconds)
for PoE batching approaches in a 2048-bit RSA group. The
last row is extrapolated for the first two approaches due to
excessive times.

# instances Random Exponents Hybrid Bucket

100 0.114 0.207 0.130

1 000 1.14 0.739 0.368

10 000 11.4 6.01 2.05

100 000 114 58.9 14.1

1 000 000 1140 584 109

10 000 000 11400 5840 892

5.1 Experimental Evaluation
In this section, we present experimental results that compare the

practical performance of known approaches for PoE batching.

We have implemented all approaches in SageMath 10.1. Our

implementation is available at [22]. We have timed the performance

of the implementations on a machine with a four core 3.60GHz

Intel Xeon CPU E5-1620 0 processor with 64 GB of RAM. For our

experiments, we have generated 10M random PoE instances of

Figure 7: The absolute number of multiplications on 100 to
10

14 instances when the security parameter is set to 𝜆 = 128

and the parameter 𝑘 in the Bucket Protocol is chosen opti-
mally w.r.t. the number of instances.

the form 𝑦 = 𝑥2
25

with a common 2048-bit RSA modulus (roughly

12 GB of data). We then timed the performance of the Random

Exponents Protocol, Hybrid Protocol, and Bucket protocol using

the SageMath timeit function. The timing results on multiples of ten

from one hundred to ten million instances are presented in Table 2

and Figures 8 and 9.

Discussion of experimental results. When comparing Figures 6

and 8, we see that the speed-up of the Bucket Protocol behaves as ex-

pected from the theoretical analysis: already at thousand instances,

we see a significant speed-up, which, with a growing number of

instances𝑚 quickly converges to a speed-up of one order of magni-

tude. However, the speed-up of the Hybrid Protocol is smaller than

one could expect based solely on the number of group multiplica-

tions. It is roughly twice as fast as the Random Exponents protocol,

whereas the number of multiplications is almost reduced by a factor

of three. We conjecture that this is due to the complexity of creating

the subsets in the first step of the protocol. In our implementation,

we loop through 𝜆 many uniformly random bit strings of length𝑚

and always check if the current bit 𝑏 is 0 or 1. We leave optimizing

the implementation open for future work.

Leveraging efficient multi-exponentiation. In our experiments,

we did not employ any advanced multi-exponentiation algorithm

9
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Figure 8: The relative time performance on 100 to 10M in-
stances compared to the randomexponent batching approach
from Rotem [36], where the security parameter is set to
𝜆 = 128 and the parameter 𝑘 is chosen optimally w.r.t. the
number of instances.

Figure 9: The times on 100 to 10M instances, where the secu-
rity parameter is set to 𝜆 = 128 and the parameter 𝑘 is chosen
optimally w.r.t. the number of instances.

discussed in Section 1.2. We note that our Hybrid Protocol can-

not take significant advantage of advanced multi-exponentiation

algorithms. The bulk of its computation is to evaluate products

of random subsets of the𝑚 instances, and it applies the Random

Exponents Protocol always only to 𝜆 instances (i.e., roughly 128

instances). Therefore, it would achieve smaller advantage over an

implementation of the Random Exponents Protocol that uses the

best known multi-exponentiation algorithm for the specific number

of instances and architecture.

However, the relative comparison of the Random Exponents

Protocol and our Bucket Protocol should remain unaffected as any

improvement in the complexity of multi-exponentiation that would

speed up the former should provide similar gains also to the latter.

Specifically, the parameter 𝑘 in the Bucket protocol allows for a

trade-off between the number of parallel repetitions 𝜌 = ⌈𝜆/(𝑘−2)⌉
and the size of multi-exponentiations performed on the 𝐾 = 2

𝑘

buckets. Thus, faster multi-exponentiation would allow to increase

the number of buckets and, correspondingly, decrease further the

number of parallel repetitions.

6 CONCLUSIONS
In this paper, we have introduced two approaches to batch Proofs

of Exponentiation – the Hybrid Protocol and the Bucket Protocol –

both of which significantly improve over the state of the art.

The Hybrid Protocol is an easy to implement combination of

the previously known Random Subsets and Random Exponents

approaches. Compared to the Random Exponents Protocol, it yields

a more efficient verification process when batching thousands or

more instances. Through experimental validation, the Hybrid Pro-

tocol has shown to be approximately twice as fast as the Random

Exponents Protocol.

The Bucket Protocol, drawing inspiration from the work of Bel-

lare, Garay, and Rabin [6], further optimizes the batching process.

This protocol, particularly effective for a large number of instances,

demonstrates a significant reduction in computational overhead,

outperforming the Random Exponents Protocol by an order of

magnitude and the Random Subsets Protocol by a factor of five.

In conclusion, our work presents a meaningful advancement in

the efficiency and practicality of batch PoEs, paving the way for

more robust and efficient cryptographic protocols in distributed

computing environments.

Various open problems are left for further research, such as:

• Aiming at even more efficient protocols, the pressing ques-

tion is whether it is possible to construct batch PoEs with

strictly linear or even sublinear verification.
• As we noted in Section 1.2, the known general batch PoEs

are restricted to PoE statements with a shared exponent,

while the batch PoE in [23] for instances with varying ex-

ponents inherently relies on Pietrzak’s PoE. Thus, the con-

struction of a generic batch PoE for instances with varying

exponents remains open.
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